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Resource Allocation for Smart Phones

in 4G LTE-Advanced Carrier Aggregation

Rebecca L. Kurrle

(ABSTRACT)

The purpose of this thesis is to explore the concept of resource scheduling and pricing and its rela-

tion to carrier aggregation. The first main topic is a modified Frank Kelly algorithm that allows for

the use of utility functions that are piecewise concave, but not a member of a strictly ’diminishing

return’ model. This adjustment to the Frank Kelly algorithm allows resource allocation to take into

account devices with multiple applications. The second topic introduces the idea of scheduling

resources in a carrier aggregation scenario assuming the carriers are scheduled sequentially.
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Chapter 1

Introduction

As smart phones and mobile computing become more commonplace, the demand on cellular net-

works is on the rise . Given the limited frequency band available to cellular providers, this demand

can exceed network capacity. Looking at the demand from the perspective of the user, smart phones

have a large number of applications and most of them require network resources. In the current

3GPP 4G LTE standard, users are limited to one carrier [9]. In instances where one carrier does

not provide enough bandwidth for a given user, this user would experience a diminished Quality

of Serve (QoS) with slower applications [16]. A new feature of the 3GPP LTE-Advanced cellular

standard that will work to solve these problems, from the perspective of the network and user, is

carrier aggregation [7].

This new feature of 4G LTE-Advanced allows for multiple carriers to be used by a single user [7].

The additional carriers per user will allow users to use their smart phones without a loss of QoS.

Carrier aggregation also helps to lessen the load on the network. If a carrier outside the traditional

cellular frequency band can be used, the stress on the traditional cellular band will diminish [16].

Frequency bands that may allow for this type of on-demand carrier aggregation can be in the public

service band, previously reserved military bands, or other non-traditional cellular bands.

1
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The addition of carrier aggregation allows for higher data rates for users in addition to a lower

demand on current cellular bands if non-traditional, on-demand bands are used for secondary car-

riers, but some outstanding technical implementation considerations remain. The issue of resource

allocation and the determination of shadow prices across multiple carriers is considered. The term

shadow price can be defined as the network resource price resulting from a demand on the network

in the form of user bids. This means the price of network resources, or Physical Resource Blocks

(PRB), will be more expensive in the case where users demand more resources and less expensive

in the case of less demand.

In addition to the complication of carrier aggregation when considering how to allocate resources

and determine shadow prices, smart phones run various applications all with differing utility func-

tions. The overall device utility function is the sum of the individual application utility functions.

Since the device utility function will be a combination of inelastic and elastic application utility

functions, it will have both inelastic and elastic regions. Traditional resource allocation algorithms

used for cellular networks, like the Frank Kelly algorithm, assume that the user utility functions

will be strictly elastic, or concave, functions [10]. This assumption allows for one unique optimal

solution for each user’s resource allocation [10]. A more realistic resource allocation approach is to

consider a utility function that is representative of a prioritized sum of application utility functions.

This type of utility function requires changes to the traditional methods of resource allocation,

namely the Frank Kelly algorithm.

The remaining sections of are organized as follows: Background, Algorithms and Simulation Set-

up, Results, and Conclusions and Future Work.



Chapter 2

Background

This section introduces background research including previous work done for resource allocation.

It is important to consider utility functions, costs to the users. and possible scenarios. In addition,

previous work on resource allocation algorithms, including the Frank Kelly algorithm, provides a

basis for the algorithms proposed in this paper.

2.1 Utility and Cost Functions

When assigning resources to specific users, the network attempts to optimize the utility and cost

across the network. Utility functions are unique to each user and depend on how the user is using

the network resources. Traditionally, utility functions for cellular networks are assumed to be

strictly concave [10]. That is, there is diminishing return as a user is allocated more and more

resources. This assumption allows for algorithms like the Frank Kelly algorithm to find unique

resource allocation solutions through either iterative or algebraic solutions [10].

More generically, there are a few classes of utility functions that can be associated with different

types of applications. The three types of utility functions are strictly inelastic utility functions,

strictly elastic utility functions and a combination of the two functions where a minimum rate is

3
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required, but after that minimum rate, the utility function resembles the elastic utility functions.

An illustration of these types of utility functions is seen in Figure 2.1.

When considering smart phones comprised of many applications, one can group these applications

into the three simple groups of utility functions considered in the previous paragraph. Applications

like telephone calls can be placed in the strictly inelastic category. Each phone uses a particular

codec that has a minimum data requirement to translate the voice over the network. No additional

resources are used beyond this data rate because the amount of data required to send voice in-

formation over the network is static. This gives it the step function shape seen in Figure 2.1(a).

Applications like email, social networking, and other applications that are not time critical can be

Figure 2.1: Example Utility Functions

placed in the strictly elastic utility function category. An email may be megabytes of data, but how

long it takes to get to the user is not as critical. Obviously, a higher data rate gives the user a better

QoS, but since the user is not notified until the email is in queue there is effectively no minimum

data rate requirement. Therefore any amount of resources from the network that can be dedicated

to these resources is useful to these types of applications. An example of this ”diminishing returns”

model is seen in Figure 2.1(b).

The last category of applications on a smart phone involves applications that resemble a combi-

nation of the inelastic and elastic utility functions. These applications consist of video streaming

applications, such as YouTube or time sensitive applications like Skype (including video calls).

Video streaming specifically requires a minimum data rate for coarse resolution, so that the user

can see what is on the screen [29]. However, unlike voice calls, added data rate can increase the
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resolution of the video with diminishing return like the strictly elastic applications [29]. This is

because once the user is able to see what is on the screen, additional resolution only provides the

video with greater detail. For example, instead of receiving a low quality video, the user may be

able to make out details of the background in the streaming movie. This type of application may

have a utility function like the one seen in Figure 2.1(c).

Based on smart phones available today, a user can have multiple applications, each with different

utility functions, running simultaneously on a single device. This complicates the traditional notion

of a strictly concave utility function for cellular phone users. Later in this paper, consideration is

taken on how to construct a user utility function from a combination of application utility functions

prioritized based on what applications are most important to any given user. An example table of

possible data rate requirements for certain applications is provided in Table 2.1 [25] [2]. Another

Table 2.1: Data Rate Requirements for Common Applications

Application Minimum Data Rate Maximum Data Rate
Voice Calls 16 kbps 64 kbps

Emails N/A N/A
Video (SD/HD) 2/6 Mbps 4/8 Mbps

important consideration when determining how to allocate resources is the cost functions for each

user [18]. There are some previously explored methods that select wireless networks solely based

on cost to the user [18]. The cost, in combination with the utility function for each user, is used

to determine optimal resource allocation through algorithms like the Frank Kelly algorithm [10],

that will be discussed in Section 2.3. These cost functions must consider many factors. The first

consideration is the price of the network resources themselves [18].

Each cellular provider or network sets a price for each resource block allocated to the user. This

price structure can take many forms, but in most cases is assumed to be linear [10]. That is, each

resource block costs a constant dollar amount to the user. This is typically the only cost considered

in the most simplistic solutions for resource block allocations across a network.
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Another important element of the cost to the user is in the form of energy costs [18]. Mobile

devices work on battery power and require different amounts of power given the frequency band

in which they are operating, whether they are on the fringes of the network or the main coverage

area, etc. This means there is an additional energy cost for the amount of rate that is allocated to a

user or the amount of time the user will be transmitting [18].

Other costs may include latency based on channel propagation properties and processing time [18].

The evaluation of this cost is complex, since channel properties, frequency band of operation, user

hardware, and base station hardware greatly change the cost of latency. This element of cost is

considered negligent in this paper, but should be considered in the future in order to attain a more

comprehensive model. The relevant costs and utility functions will be considered when allocating

rate to the users based on maximizing the utility for each user and therefore across the network.

2.2 Common Rate Allocation Considerations

There are several different fairness models for rate allocation across a network as well as different

algorithms for determining these rates. Two examples of fairness models include proportional fair-

ness, and maxmin fairness. In addition to these fairness models, an optimal solution needs to be

determined. These optimal solutions are typically referred to as Pareto optimal solutions. When

considering how to determine Pareto optimal solutions, it is important to consider Pareto ineffi-

cient, Pareto efficient, and infeasible solutions. For the case of distributing solutions, infeasible

solutions are those that require more resources than are available on the network. Pareto inefficient

solutions are those solutions that do not allocate all network resources. Finally, Pareto optimal, or

Pareto efficient, solutions are those solutions that distribute all of the network resources, which is

also referred to as the Pareto front [4]. Based on monotonically increasing utility functions, Pareto

optimal solutions guarantee a maximization of the network utility. Figure 2.2 represents the entire

solution space including the Pareto inefficient solutions, Pareto optimal solutions, and infeasible
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solutions. In this paper, it is considered that a network will want to distribute all of its resources

in order to maximize the overall network utility. Not all fairness models achieve Pareto optimal

Figure 2.2: Example Pareto Front, 2 Users [4]

solutions, but can be used in conjunction with Pareto optimality to determine an overall fair and

optimal solution of resource allocation. The first fairness model that is considered is maxmin fair-

ness [11]. This fairness models seeks to achieve the highest utility for users that have the lowest

limits of utility [11]. For example, this means that a user restricted to low channel capacity based

on user equipment would have the utility function maximized. Equation (2.1) [11] expresses the

maxmin fairness model, where Ui(ri) is the utility function of a user i and ri is the rate allocated

to that user. The use of maxmin fairness is rarely considered in the case of wireless networks and

has limited use in the case of bottlenecks and other rate limitations [11]. This fairness model will

not be considered in this paper, but should be noted for its possible uses for maximizing current

Release 8/9 capable devices in the presence of a growing number of Release 10 capable devices in
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the future.

ri = arg max
ri

min
i
Ui(ri) (2.1)

The second fairness model is proportional fairness. In this model, some rate must be allocated to

every user. This is done through setting the condition of fairness to be a proportion, like the name

suggests. This makes it impossible to set a users allocation to zero without setting the efficiency

of the network to zero. Equation (2.2) represents the proportional fairness model, where Ui(ri) is

the utility function of a user i and ri is the rate allocated to that user [10]. Because this resource

does not disenfranchise any given user, it will be considered as the appropriate fairness model for

this paper. This fairness model is the fairness basis for the Frank Kelly algorithm [10], which is

modified in this paper to allow for carrier aggregation.

ri = arg max
ri

n∏
i=1

Ui(ri) (2.2)

There are a few algorithms that can be used to achieve rate allocation with each fairness model.

Two examples of these algorithms include the water-filling algorithm and the Frank Kelly algo-

rithm. The water-filling algorithm can be simply explained as a method for equally distributing

the resources and filling users to capacity [15]. This algorithm does not necessarily maximize the

utility across the network, since more utility may be gained by allocating more resources to a user

with higher capacity. This algorithm uses the maxmin fairness model, since it works to maximize

the utility for the user with a limit to the resources it is capable of using.

The second algorithm, which uses proportional fairness, is the Frank Kelly algorithm [10]. This

algorithm will be explained more in the next part of this chapter, but is an iterative process for

determining rate allocation as well as the price the network should charge for given sets of re-

sources [10]. The iterative nature of the solution allows users to bid on resources until the allocated

rate matches its optimally determined rate based on utility functions and cost [10].
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In some instances, the price the network should charge for its resources is unknown as well. Since it

is important for the user to maximize its utility less the cost of the network resources, knowledge of

the shadow price is required. This is especially true in the case of carrier aggregation where demand

of secondary carriers is a large unknown. On-demand and opportunistic secondary carriers have

never before been exercised as cellular carriers. The Frank Kelly algorithm, as mentioned earlier

in this chapter, determines the optimal rate allocation as well as the network shadow price [10]. As

defined previously, the network shadow price is determined by the demand for network resources.

The choice to modify the algorithm as a method for rate allocation in carrier aggregation scenarios

was made in order to determine shadow prices of different carriers as well as the shadow price for

network resource blocks.

In the case of cellular networks, it may make sense in implementation to keep a reserve amount

of resources to deal with network overhead associated with coordinating other users, handover, or

other overhead costs. For the purpose of this paper, we will assume the total number of resources

used in the allocation are below the prescribed reserve required to complete handover, start new

connections, and any additional network overhead.

2.3 Frank Kelly Algorithm

The Frank Kelly algorithm, as mentioned in the previous section, is an iterative solution for

achieving Pareto optimal resource allocation across the network keeping in mind proportional fair-

ness [10]. This means the Frank Kelly algorithm seeks to distribute all network resources keeping

in mind not to disable any users.

The algorithm is an iterative solution and begins with initial bids from each of the users for what

each user would pay for network resources. These initial bids are transmitted to the network con-

troller and an initial shadow price is set to be the sum of all user bids over the total rate allocation

available [10]. The network then allocates network resources based on the ratio of a given users bid



Rebecca L. Kurrle Chapter 2. Background 10

to the shadow price determined on the network. These allocations are sent to the user. This starts

the iterative process of the user adjusting the bid in order to achieve a maximum of the derivative

less the shadow price of the network resources. The algorithm is reflected in the following pseudo-

code [10]. In the pseudo-code, wi is the bid of user i, p is the network shadow price, and R is the

total rate available on the network. The sum of the bids for n users is represented in
∑n

j=1 wj and

is used to determine the network shadow price as well as the rate allocated, ri, for a user i. Each

user, i, also determines the optimal rate, ri,opt, from the network shadow price, p, and its individual

utility function, Ui(ri). In the construct of this algorithm, no user is required to have knowledge of

available network resources. Each user merely bids based on the amount of network resources is

desired.

wi = initial bid of user i

p =
∑n

i=1 wi

R

ri = wi

p
= wi∑n

j=1 wj
R

ri,opt = arg max[Ui(ri)− rip]

U ′i(ri,opt) = p

while ri 6= ri,opt do

wi = ri,optp

p =
∑n

i=1 wi

R

ri = wi

p
= wi∑n

j=1 wj
P

max[Ui(ri)− rip]

U ′i(ri,opt) = p

end while

This algorithm requires reasonable starting bids in order to converge in a short amount of time as

perceived by the users on the network. Another consideration in using this algorithm is that it is

intended for use with elastic utility functions [10]. This is an important caveat that will be explored

in the modified version of this algorithm in Section 3.4.



Rebecca L. Kurrle Chapter 2. Background 11

Another assumption made in the above instantiation of the Frank Kelly algorithm is the assumption

that the cost is a strictly linear function [10]. This linear representation is seen in the cost term,

rip, where ri is the rate allocated to user i, and p is the shadow price per unit of network resource.

In Chapter 5, it is discussed that costs are more complicated than a simple linear cost of network

resources. These include step function like costs for energy consumption and unknown latency

costs. These elements are not added in this paper, but should be considered in future work.

The cost is still assumed to be the linear and represents only the network resource cost. In terms of

derivatives, the step function has a derivative of a delta function at the initial point of an allocated

rate of zero. In the above construct of the Frank Kelly algorithm, this would have no bearing on the

rate allocated (derivatives are used to find solutions). As mentioned earlier, logic could be added

to check if the amount of utility exceeds the cost of turning on the additional RF chain required

for a secondary carrier in the mobile device as well as the network price in order to achieve a rate

allocation. Latency costs are also not considered in this paper, but could be addressed by adjusting

the resource block allocation to the information the device is capable of sending over the network

given the amount of resources allocated to it by the network.

A simple example of the Frank Kelly algorithm can be explained in the case of only two users with

different diminishing returns models for utility. In this case, take the simple case of scaling the

natural logarithm to create each user’s utility function. Equations (2.3) - (2.4) represent the user

utility functions, where U1(r) and U2(r) are the utility functions for users 1 and 2, respectively.

The initial bid in this example is equal for each user. Equal bids are a valid starting condition given

each user will not have knowledge of other users utility functions and will base its bid on expected

demand on the network. For this example, say the initial bids are each 1 for a total amount of

resources of 20 MHz.

U1(r) =
1

2
ln(r) (2.3)

U2(r) = 2 ln(r) (2.4)
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By the construct of the Frank Kelly algorithm, the shadow price determined by the network will be

0.1/MHz. Based on the equal bids, each user is allocated half of the resources, or 10 MHz. Then

each user determines its ideal rate allocation based on the network resource shadow price. Given

the utility functions, the ideal rate allocations are determined to be 5 MHz and 20 MHz for users

1 and 2, respectively. Since these ideal rate allocations do not match what each user was actually

allocated, the users adjust their bids accordingly. The bids are adjusted to be 0.5 and 2 for users

1 and 2, respectively. The next iteration by the network provides a resource allocation of 4 MHz

and 16 MHz, which matches the fact that one user gains four times the utility of the second user.

The shadow price is the determined to be 0.125/MHz and the users determine that their ideal rate

allocation to be 4 MHz and 16 MHz, which matches that allocated by the network. A network

solution has been achieved and the iterations cease. With more users and varying utility functions,

the amount of time to converge can be expected to increase. The case of multiple solutions per

user will also affect convergence time.

In Section 3.4, a modified version of the Frank Kelly algorithm is detailed. This modified version

of the Frank Kelly algorithm attempts to allow an arbitrary utility function to be used as long as

portions of the utility function are concave. This allows a more representative smart phone utility

function to be used when determining resource allocation across the network.

2.4 Carrier Aggregation

In the 3GPP 4G LTE-Advanced standard, a new feature was added in Release 10 that allows for

single users to employ multiple carriers in order to achieve a higher combined bandwidth [28]. This

feature was required for a few reasons. One reason is that smart phones require large bandwidth

allocations. Smart phones have an increasing number of applications that can run simultaneously

on any given phone. This means the users are eventually limited by the carrier bandwidths provided

by the network. Another reason for this added feature is the fact that the current frequency spectrum
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is highly segmented and large contiguous bandwidths are not readily available for use within the

current cellular bands [19]. The current frequency allocation table for the US can be seen in

Figure 2.3 [1]. The many colors squeezed into every inch of frequency space give an idea of how

segmented the frequency spectrum is currently. By adding the feature of carrier aggregation to

Figure 2.3: US Frequency Spectrum Allocation

Release 10 of the 3GPP standard, users can now achieve their required bandwidths through the use

of resources on multiple carriers [19]. This can be done through carriers within the current reserved

band used by cellular providers or by using on-demand carriers [17] on bands like the public radio

band or previously reserved military bands. These previously reserved bands open up possibilities

for higher spectrum efficiency, since traditionally these bands are used for small amounts of time

and are empty for large portions of time. By allowing users to access these bands through on-

demand scheduling, the traffic load on the traditional cellular band, which is ever increasing, can

be lessened.

The different instantiations of carrier aggregation can be summed up in three large categories.

These categories are intraband contiguous, intraband non-contiguous, and interband non-contiguous

carrier aggregation [9]. These scenarios are illustrated in Figure 2.4 [9]. The interband, contiguous

scenario is not represented in the graphic, since this scenario can be represented by the intraband,
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contiguous scenario with different frequency band labels on the carriers. More specifically, in-

Figure 2.4: Carrier Aggregation Scenarios in Frequency [9]

traband contiguous carrier aggregation refers to the situation where all carriers used by a single

user on the uplink or the downlink are adjacent to each other in frequency [9]. This means that

effectively carrier aggregation is creating a large bandwidth within the traditional cellular band

through a combination of smaller carriers. This category of operation is unlikely given the seg-

mented nature of the frequency spectrum as illustrated previously, but would be simplistic from

a user hardware implementation perspective, since a single RF chain may be able to achieve this

type of carrier aggregation.

Intraband, non-contiguous carrier aggregation is described as carrier aggregation where the com-



Rebecca L. Kurrle Chapter 2. Background 15

bined carriers fall within the same band, assumed to be the traditional reserved cellular band, but

are not adjacent in frequency [9]. This is a more realistic scenario, since the frequency band tends

to be greatly segmented. Like the previous scenario, the user hardware implementation could

simply be achieved through a single RF chain since the carriers are within the same band.

The final category of carrier aggregation is interband, non-contiguous aggregation. The non-

contiguous nature of this category of carrier aggregation is implied by the fact that the two carriers

are within different bands [9]. This type of carrier aggregation allows the user the most flexibil-

ity and frequency band opportunity. However, the user hardware implementations are probably

the most complex since the limits of a single RF chain are typically a single band of interest for

practical reasons. The complexities of user hardware implementations are discussed in Section

2.7.

The size of the carriers match Release 8 and 9 carrier sizes and can vary from 1.4 MHz - 20 MHz

[6]. Theoretically these carriers can be grouped together and used for carrier aggregation in any

variation of ways [24]. The maximum aggregated bandwidth is currently 100 MHz, which means

up to five carriers can be aggregated, each carrier at 20 MHz [19]. The carriers are limited to carrier

sizes in Release 8/9 of the 3GPP standard because the addition of carrier aggregation still requires

the network to be backwards compatible with network devices compatible with Release 8/9 [19].

In other words, the addition of carrier aggregation is transparent to users not taking advantage

of the new feature. This means when considering how to allocate resources, all users, both those

taking advantage of carrier aggregation and those not taking advantage of carrier aggregation, must

be considered. Some resource allocation or packet scheduling algorithms seek to group these users

and will be discussed later in this chapter.

An important aspect of carrier aggregation is the coordination between carriers on a single mo-

bile user handset. In Release 10, the coordination is specified such that the uplink and downlink

carriers are comprised of a primary carrier and multiple secondary carriers [8]. All scheduling of

data packets for primary and secondary carriers is done through the primary carrier [8]. In the
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current implementations, the primary carrier is always established and scheduled before the sec-

ondary carrier. Practically, this makes sense given the primary carriers will be available to users

effectively all the time, while secondary carriers may have intermittent service. These procedures

for scheduling handle the intermittent and on-demand type of service for the secondary carriers

rescheduling lost or overly delayed packets on carrier one if the need arises. The illustration of an

example with primary and secondary carriers on the uplink and downlink is displayed in Figure

2.5 [8]. It is important to note that an asymmetry can arise between uplink and downlink carriers

Figure 2.5: Primary and Secondary Carriers [8]

and that carriers on the downlink are not necessarily associated with a given uplink carrier [17].

The asymmetry allows for higher downlink data rates where required and maintains efficiency on

the network where higher data rates are not required. In Release 10, asymmetric carrier aggrega-

tion only exists where the number of carriers is larger for downlink traffic [8]. This is because of

the nature of downlink and uplink traffic. For example, a user may require lower data rates to send

emails and social media posts on the uplink, but may require higher data rates to download and

stream videos on the downlink.

In carrier aggregation, the traffic can either be divided in frequency, or Frequency Division Duplex
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(FDD), or divided in time, Time Division Duplex (TDD) [8]. The choice between these is net-

work and demand dependent, but carriers have subcarriers or resource blocks in frequency, so the

implementation of either scheme is supported by the construct of the 3GPP standard.

In addition to user hardware implementation issues, which will be discussed at the end of this chap-

ter, there are many different base station implementation scenarios [12]. These different scenarios

change the network resource block allocations and effectively the price of the network resources

themselves. The focus of this paper will be the resource allocation in carrier aggregation scenarios

similar to those detailed in the following section.

2.5 Carrier Aggregation Scenarios

As mentioned in the previous section, there are several base station scenarios that require con-

sideration when determining the methods of resource allocation in relation to carrier aggregation.

The four scenarios that should be considered are depicted in Figure 2.6 [9], which shows the basic

concepts of each scenario. This section aims to go into each scenario in depth and consider the

implications to resource allocation. It should be noted that the utility functions for each scenario

and each carrier will not change. From the perspective of the user, it does not matter which carrier

provides the network resources, the utility is the same. The method to dealing with utility functions

across multiple carriers will be discussed in the following section. What will change for each base

station scenario is the cost of network resources.

For all the scenarios, the light blue carrier can be assumed to be the primary carrier, which is rep-

resentative of a current cellular base station carrier within a common cellular frequency band [9].

This carrier, as explained in the previous section, is used to send signalling and scheduling infor-

mation for all carriers on the network. The darker blue carrier is considered to be the secondary

carrier [9]. This carrier implementation has different scenarios illustrated in Figure 2.6 and covers

all of the carrier aggregation base station scenarios. The first scenario in the top left corner of Fig-
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Figure 2.6: Base Station Scenarios [9]

ure 2.6 shows the simplest case of carrier aggregation. In this case the two carrier coverage areas

are identical. This points to the two carriers being serviced by the same base station antenna and

being almost adjacent in frequency band, given the identical, or nearly identical, physical coverage

patterns. In this case, the scenario can be associated with intraband, contiguous carrier aggrega-

tion, or intraband, non-contiguous carrier aggregation [9]. Since the coverage of the carriers is the

same for both areas, the demand, and therefore the cost of each carrier can be expected to be the

same relative to the cost of network resources. As was mentioned in previous sections, the energy

cost of an additional carrier will resemble a step function assuming two different RF chains are

required for the two carriers.

The second scenario in the top right corner of Figure 2.6 shows another relatively simple case of

carrier aggregation. In this scenario, the carriers can be assumed to be operating through the same

base station given the same directionality of the carrier footprints. However, the second carrier has

a smaller coverage area when compared to the first carrier. This can be attributed to the second

carrier being at the edge of the frequency band covered by the given base station antenna [9]. This

means the second scenario falls into the category of intraband, non-contiguous carrier aggregation.

This creates different cost considerations for the second scenario relative to resource allocation.

Because the coverage of the second carrier is smaller than the coverage of the first carrier, there
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will be less demand for the second carriers resources. This means the cost of resource blocks on

the second carrier will be less than that of the first carrier based on the simple concept of supply

and demand [4]. Additionally, there are different energy costs to the user when comparing the two

carriers. The second carrier has a smaller coverage area, requiring users to transmit at a higher

power, incurring an energy consumption cost that is greater on the second carrier.

The third scenario in the bottom left corner in Figure 2.6 represents a more complex scenario. This

scenario depicts two carriers originating from the same physical base station location, but from

different antennas. This can be determined by the different directivity of the coverage patterns [9].

The different carriers could have similar coverage areas, but are almost disjoint in their coverage

areas. This means there will be a few users that can utilize both carriers, while most users will

use only one carrier. The two carriers are flexible in frequency since they are operated on different

antennas, which means that the intraband contiguous, intraband non-contiguous, and interband

contiguous carrier aggregation scenarios are possible. it is most likely that this scenario represents

interband non-contiguous carrier aggregation [9]. The amount of demand and cost of network

resources for each carrier is dependent on the coverage area of each carrier. Two instances of this

scenario can be considered.

The first of these instances is where the coverage area of each carrier is nearly identical. Assuming

uniform distribution of users, the demand on each carrier would be almost identical making the

price of network resources effectively the same. The cost to run two carriers will be greater,

similar to the step function in the previous scenarios. The second instance is that the two carriers

have differing coverage areas. This means that the carrier with less coverage will have less demand

and therefore cheaper network resources.

In addition to the cost of network resources, which varies based on carrier coverage areas, there

will be greater energy consumption by both carriers. The carriers are basically non-overlapping,

so users on both carriers will effectively be on the edge of each network. Another consideration

that should be made in this scenario is the fact that the time each user will be in the coverage area
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of both carriers will be intermittent. This will cause the user to drop in and out of carriers. Like

any handover, the overhead required to complete these transactions will increase the latency of the

system.

The final scenario in the lower right of Figure 2.6 is representative of a scenario where the primary

carrier has a wide coverage area as in all the previously described scenarios, but the second carrier

has satellite base stations that provide very limited coverage of the second carrier [9]. These

satellite base stations can be considered to be relay nodes or femptocells. The second carrier

is flexible in frequency, which allows for intraband contiguous, intraband non-contiguous carrier

aggregation. Like the previous scenario, it is most likely that this scenario enable interband non-

contiguous carrier aggregation, given its flexibility.

When considering the cost of the network resources on each carrier, the fact that the second carrier

has much smaller coverage areas, the demand will be much smaller [9]. This means that the cost of

the secondary carrier network resources will be much less than for the primary carrier. The energy

cost in this scenario will essentially be a step function for the addition of another carrier RF chain.

Since the secondary carriers are relays or femptocells and are well within the coverage areas of the

primary carrier, the energy consumption will not increase in the primary carrier. The secondary

carrier energy will be greater given the nature of relays and or femptocells and the limited ranges.

Like the previous scenario, mobile users will move in and out of the second carrier frequently, so

the overhead required to acquire and reacquire the second carrier (like in a cell network handover)

will increase the latency cost in this system.

Each of these carrier aggregation scenarios presents an important scenario for testing resource

allocation methods, handover algorithms in the presence of multiple carriers, user hardware testing,

and energy saving algorithms on the part of the user. This paper focuses on the issue of resource

allocation as it pertains to these carrier aggregation scenarios, but future work should consider

these issues when creating new algorithms for carrier aggregation implementation.
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2.6 Additional Physical Layer Considerations

In addition to limitations of carrier coverage, there are other physical layer considerations that

should be made when looking at carrier aggregation. These include fading scenarios, user mobil-

ity, and specified frequency bands of operation. All of these factors should be considered when

developing algorithms for carrier aggregation.

When considering what frequency band to operate in, it is important to consider the loss proper-

ties of certain frequencies. It is known that lower frequencies with longer wavelengths can travel

greater distances than higher frequencies, which have shorter wavelengths [3]. Operating at fre-

quencies with higher losses incurs more bit errors and therefore a higher Bit Error Rate. In order

to maintain a constant BER, the modulation scheme would be changed based on the frequency

band. This means that in any given resource block, the amount of information would increase or

decrease based on the required modulation scheme that is associated with a given frequency band.

Equation (2.5) represents the relationship between frequency and receive power [3], where Pr is

the power received from a one way transmission, Pt is the transmitted power, Gt is the transmitter

antenna gain, c is the speed of light, f is the center frequency of the transmitted signal, and R is

the distance between the transmitter and receiver.

Pr =
PtGtc

2

f 2(4π)2R2
(2.5)

This paper does not focus on this portion of the physical layer consideration, but it should be

considered in future work. An easy way to incorporate these modulation schemes is to scale the

independent axis of all utility functions based on the required modulation scheme. This allows the

utility to the user to be measured absolutely in terms of the amount of information sent over the

network.

Another important physical layer consideration is the fading environments and mobility of users.

These can be grouped together since fading environments typically are dependent on the users
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speed through their environment [21]. Fading environments must be considered in both frequency

and time. In time, there are two types of fading, fast and slow time fading. Fast fading refers

to fading that happens within a symbol time, while slow time fading refers to the scenario where

fading occurs at intervals longer than a symbol time [13]. In frequency, there are again two types

of fading, frequency selective and flat fading. Frequency selective fading refers to the scenario

where fading occurs within the bandwidth of the signal, where flat fading occurs across a larger

bandwidth than that of the signal itself [13].

When considering fading scenarios for mobile users, slow, flat fading is assumed because fading

within a symbol period or within a signal bandwidth is unlikely. The mobility of the user also

effects the amount of fading. The faster the user is moving through its environment, the more

fading that is occurring. The amount of fading determines the type of channel the user must

contend with. These channel parameters will change the modulation scheme required for each

user to maintain a constant BER [29]. Some possible modulation schemes and their bandwidth

efficiency are presented in Table 2.2 [29]. This paper does not attempt to determine the effect

Table 2.2: Spectral Efficiency of Modulation and Coding Schemes [29]

Modulation Level Coding Rate Spectral Efficiency (bps/Hz)
QPSK 1/2 1
QPSK 3/4 1.5
QPSK 1 (no coding) 2

16QAM 1/2 2
16QAM 3/4 3
16QAM 1 (no coding) 4
64QAM 2/3 4
64QAM 3/4 4.5
64QAM 1 (no coding) 6

of fading on resource allocation, but similar to the scaling of the x-axis to represent information

bits for the cases of different frequency bands, the same thing can be done when considering the

channel characteristics of each user.
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2.7 User Hardware Considerations

As mentioned in previous sections, user hardware implementation determines what type of carrier

aggregation the user is able to physically achieve. The types of carrier aggregation that are possible

are intraband contiguous, intraband non-contiguous, and interband non-contiguous, as mentioned

earlier in this chapter. Several different implementations for user hardware are possible based on

Component Carrier (CC) and are shown in Figure 2.7 [7]. The first hardware implementation

Figure 2.7: User Equipment Example [7]

option only allows for intraband contiguous carrier aggregation because it is limited to one local

oscillator. The second and third hardware implementations effectively have the same output, but

are implemented both in software and in hardware. Both of these options are able to perform

non-contiguous carrier aggregation within the same band, limited to the fact they only have one

antenna in both cases. The final hardware implementation allows for interband, non-contiguous

carrier aggregation, since there are two completely separate RF chains. This is the most costly from

a user equipment as well as an energy consumption perspective, but it allows the user the most

flexibility in choosing carriers and may allow for low frequency operation in the public service

band, as an example. In the future, it will be important to consider user hardware limitations when

simulating network demand, since not all users will be capable of operating on all carriers. This

paper assumes all users are able to use all carriers as long as they are in range.
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2.8 Previous Rate Allocation Work for Carrier Aggregation

There are several approaches to multiple carrier scheduling initially explored in its application to

carrier aggregation. These methods include packet scheduling resource allocation, User Grouping,

and Utility Maximization. All of these methods are detailed in this section.

2.8.1 Packet Scheduling Resource Allocation

The simple approach to packet scheduling is Round Robin scheduling. This method attempts to

balance the load across the network by assigning a new user to the network to the carrier(s) with the

least amount of current users. An example of this is shown in Figure 2.8 [26]. This approach is fair

Figure 2.8: Round Robin Scheduling

from a network perspective, since users will be approximately equal on each carrier. The approach

is similar to opportunistic assignment where a user looks for the most available carrier. There are

some drawbacks with this method for resource allocation. One drawback is the performance of the

entire network. Typically, since users are allocated to given carriers, the network as a whole may

be inefficient in terms of throughput and bandwidth. The Round Robin approach is also channel

unaware. This means that the method is unaware of users at the edge of the network versus those

users at the core of the network. An illustration of the core and edge of the network is shown in

Figure 2.9 [20]. There are some approaches that seek to improve performance of the network in
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Figure 2.9: Edge versus Core Users [20]

terms of throughput by making the assignment to a given carrier channel aware. Improvements

of 41 percent were seen when the Round Robin Scheduling Method was adjusted to make the

scheduling channel aware [20]. Essentially, the network edge is prioritized so that it is given a

more fair representation in packet scheduling. The only consideration made for carrier aggregation

with this algorithm is the fact that all requests for additional carriers will be treated equally whether

it be from one user or the next. This does not take into account the utility to be gained by one user

on one carrier only versus a user with primary and secondary carriers. This paper will consider

that case of utility maximization for each user across multiple carriers.

In addition to Round Robin Scheduling, there are load balancing resource allocation methods that

attempt to maximize a throughput metric [26]. This metric can be used both in the case of single

carrier and multi-carrier scenarios although the maximization of throughput across carriers is the

only carrier aggregation consideration that is made [26]. Equation (2.6) represents the metric for

multiple carriers, where Rk,i,j is the throughput of user k on component carrier i and Physical

Resource Block (PRB) group j, and
N∑
i=1

R̃k,i is the average throughput k across all N carriers
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available on the network [26].

Metrick,i,j =
Rk,i,j

N∑
i=1

R̃k,i

(2.6)

These packet scheduling algorithms do not consider optimizing the utility across all users for multi-

ple carriers. However, all of these packet scheduling algorithms attempt to distribute the load across

all carriers, and some consider improving the performance across the users including throughput

across the network. Because throughput does not necessarily translate directly to utility on the net-

work, it is unknown whether these algorithms would provide each user with its required data rates

for all applications. This paper will introduce a method that maximizes utility, while considering

utility maximization across multiple carriers.

2.8.2 User Grouping

User Grouping is another scheduling algorithm that has been considered specifically for the case

of carrier aggregation [22]. In this algorithm, the scheduling is based on first grouping all users

on the network based on the number of carriers they are able to aggregate. This grouping can be

determined several ways.

The first criteria for grouping users is based on the each user’s equipment capability. Release

8/9 devices are not capable of carrier aggregation, so they would be placed in the single carrier

grouping. Release 10 devices would be placed in categories according to the number of carriers

they were able to support [22]. This means a user with two RF chains would be placed into one

group, while a user with three RF chains would be placed into another group.

Another criteria when determining user groupings is the number of users within each carrier’s

coverage area [22]. This means users capable of carrier aggregation would be grouped also based

on their proximity to each carrier’s base station and the relative coverage areas. An illustration of
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this grouping is provided in Figure 2.10 [22]. Once users are grouped appropriately based on the

Figure 2.10: User Grouping Example [22]

number of carriers they are able to use, the scheduling part of the User Grouping algorithm can take

place. The goal of this algorithm is to maximize the ratio of achievable instantaneous data rate over

the average received data rate [22]. This is computed based on resource blocks and the average rate

per user. The user that achieves the highest ratio for a given resource block is assigned the Physical

Resource Block (PRB). Equation (2.7) represents this user grouping scheduling condition [22],

where the resource block n is allocated to user i∗ that achieves the highest ratio of instantaneous

to average rate. The instantaneous rate for user i on resource block n is defined as ri(n, s). The

average rate for user i is defined as R̄i(s).

i∗ = arg max
i

ri(n, s)

R̄i(s)
(2.7)

Although the user grouping resource allocation method is advertised as a proportionally fair allo-
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cation [22], users with consistently higher ratios may be not be assigned Resource Blocks enough

of the time to provide a minimum QoS. The probability of access for a given user is directly re-

lated to the instantaneous and average rates for each user. Like the packet scheduling methods,

user grouping only seeks to maximize the data rate or essentially the throughput of the network

itself [22]. The utility based on rate assigned to the users is again not considered in this resource

allocation method. User grouping could result in a low overall network utility. This paper at-

tempts to consider utility maximization across all users on the network as a method for optimally

allocating resources.

2.8.3 Utility Maximization

The final category of previous resource allocation work for carrier aggregation is a method that

considers maximizing the utility across the network. In this method, maximizing the utility is

approximated to maximizing the increase in utility based on user resource allocation [27]. An

important assumption made in this method is that each user utility function can be approximated

by a simple diminishing returns model and the network utility is simply the summation of all the

user utility functions as seen in Equation (2.8) [27], where U(t) is the total network utility as a

function of time, t. The network utility represents the sum of all K user utility functions. A utility

function for user k is defined as lnR(k, t) at time t.

U(t) =
K∑
k=1

lnR(k, t) (2.8)

Since the network utility is being maximized, differentiation across the sum of user utility func-

tions is considered in this method. Equation (2.9) represents differentiation of the network utility

function and Equation (2.10) represents the scheduling condition [27], where r(k, n,m, t) is the

expected throughput for a user k on the nth component carrier, the mth PRB, at time t, and R(k, t)

is the average throughput for user k at time t. This formulation is similar to the packet scheduling

formulation presented earlier in this paper. In this construct user k′ is assigned the mth PRB on
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the nth carrier. The assumption is made that the utility of a user can be defined as a function of

throughput and that throughput is defined by information capacity of a given user [27].

∆U ≈
K∑
k=1

R(k, t+ 1)−R(k, t)

R(k, t)
(2.9)

k′ = arg max
k

r(k, n,m, t)

R(k, t)
(2.10)

This algorithm assumes that expected throughput for a given user can be provided by the user or

is known by the network. The assumption is also made that the utility is defined as a function of

time [27]. This would be true in the case of a user closing and opening applications over time.

However, maximizing the change in utility over time does not necessarily maximize utility over a

static user utility function. This utility maximization is completed similar to the packet scheduling

presented in terms of throughput.

This paper generalizes resource scheduling that maximizes utility across multiple carriers. Unlike

the utility maximization method, the utility functions for users can be different and are not nec-

essarily a member of the diminishing returns model. Also, the modified Frank Kelly algorithm

proposed in this paper allows the users to maximize their individual utility functions by bidding on

resources. This iterative solution allows the user to dictate to a point the amount of resources it is

allocated. This method of scheduling across multiple carriers also allows for a tractable, practical

solution, taking into account the primary and secondary carriers present in the 4G LTE-Advanced

3GPP standard.



Chapter 3

Algorithms and Simulation Setup

As mentioned in Chapter 1, the utility functions of smart phones are based on the utility function of

the applications that require network resources. These application level utility functions belong to

both the elastic traffic group and inelastic traffic grouping. The utility function of the device can be

described as a sum of these utility functions with priorities given to the application utility functions

by the user device. The motivation of the first part of this research is to determine how to use these

inelastic sums of application utility functions in order to determine the appropriate rate allocation

through a modified version of the Frank Kelly algorithm. Since a strictly elastic, or concave, utility

function is used when allocating rates in wireless networks, this paper will also serve to compare

the results of the inelastic utility function to its concave approximation, determined through curve

fitting.

The second purpose of this paper is to determine rate allocation as it pertains to the carrier aggre-

gation scenario. Previous work has proposed packet scheduling and resource allocation methods

based on round robin, user grouping, and network utility maximization. This paper aims to add

another method of utility maximization across multiple carriers to this list of algorithms. All

previously described base station scenarios are considered in this paper and results such as rate

allocation to users and shadow prices for each carrier will be considered in the results.

30
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3.1 Utility Function Set-up

As mentioned in a previous chapter, application utility functions can be fit into three different

categories: strictly inelastic utility functions, strictly elastic utility functions, and an inelastic utility

function that has elastic qualities after a minimum data rate. For the purpose of this paper, it is

assumed that a user will have one of each of these types of utility functions, each with randomly

assigned priorities for importance.

In order to make the results realistic, several assumptions were made about the categories of utility

functions. It is assumed that the strictly inelastic, step function response for a utility function

represents a voice call application, which can be said to have a codec requirement between 16 and

64 kbps [23]. For the simulations performed, a codec requirement was randomly chosen between

these two limits and a step function was assumed. By nature of the step function, the derivative

of this function is a delta function at the defined codec data requirement. Equations (3.1) and

(3.2) represents the utility function of the voice application and its derivative, where Uvoice(r) is

the utility function, U ′voice(r) is its derivative and r is the rate allocated to the application. In both

equations, rmin, voice is the minimum data rate required for a particular voice codec. It should be

noted that application data rates are provided in Table 2.1 [23].

Uvoice(r) = u(r − rmin, voice) (3.1)

U ′voice(r) = δ(r − rmin, voice) (3.2)

The second type of application that was considered is strictly elastic, or strictly concave, for a

defined rate interval. In this case, it was assumed that the strictly elastic application was email or

social media messages. Emails can vary in size and be MB in size, but since these items can be

downloaded one bit at a time, as detailed in Section 2.1, there are a strictly concave nature to the

function. Equations (3.3) and (3.4) represent the email utility function and its derivative, where

Uemail(r) is the utility function for email, U ′email(r) is the derivative of the utility function, and r is
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the rate allocated to the application. The function femail is assumed to be a concave function. The

possible concave functions are presented in Table 3.1.

Uemail(r) = femail(r) (3.3)

U ′email(r) = f ′email(r) (3.4)

The third type of utility function is the inelastic utility function that exhibits concave behavior af-

ter a minimum required data rate. As describe in Section 2.1, this can be representative of video

streaming or online gaming. The example of video streaming was assumed. Given the technologi-

cal capabilities of current smart phones, there are two logical options for video streaming require-

ments, standard definition video streaming and high-definition video streaming. One of these two

options is randomly chosen in each Monte Carlo instantiation. In order to represent the varying

required minimum data rates required within these two video streaming categories, the minimum

date rate required was randomly determined between the limits detailed in Table 2.1. Equations

(3.5) and (3.6) represent the video application utility function and its derivative, where Uvideo(r)

is the utility function, U ′video(r) is the derivative, and r is the rate allocated to the application. In

each equation, rmin, video is the minimum rate required for a given video application. Again, f is

assumed to be a strictly concave function and possible concave functions are provided in Table 3.1.

Uvideo(r) =

 0 r ≤ rmin, video

f(r − rmin, video) r > rmin, video

(3.5)

U ′video(r) =

 0 r ≤ rmin, video

f ′(r − rmin, video) r > rmin, video

(3.6)

Another consideration that was made in this paper was the need to normalize each of these appli-

cation utility functions before combining multiple application utility functions into a total utility
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function. It was important the maximum normalized utility function for each application was

equal to one. This is because any application that dominates before prioritization of applications

in terms of the utility function will always dominate no matter its prioritization. This means that

each function was scaled by its maximum utility in the simulation. Example application utility

functions are given in Figure 3.1. Equation (3.7) represents a normalized email utility function,

where Uemail, final(r) is an example utility function and Uemail(rmax) is the maximum of the utility

function at the maximum rate achievable, rmax. In this case, the maximum rate is considered to be

the maximum rate possible for a given user. Simplistically, each carrier is assumed to be 20 MHz.

Since only an aggregation of two carriers is assumed, the maximum rate for any user is 40 MHz in

the carrier aggregation case. In the case of no carrier aggregation, the maximum rate is assumed to

be 20 MHz.

Uemail, final(r) =
Uemail(r)

Uemail(rmax)
(3.7)

Priorities were randomized in MATLAB and the utility function was scaled to allow for the ex-

Figure 3.1: Example Application Utility Functions

ploration of applications running the background as opposed to applications be currently utilized

by any given user. An example composite utility function is provided in Figure 3.2. It is easy

to see the three discontinuous points in the utility function. Since the discontinuous points in the

utility functions will also cause discontinuities in the derivative, there will be multiple solutions

to consider when determining optimal rate allocations. The symbolic representation of the total
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utility function is given in Equations (3.9) - (3.10), where α is the vector of application priorities,

rand is the random number generator for uniformly distributed random variables, Utotal(r) is the

linear combination of prioritized application level utility functions, and U ′total(r) is the derivative

of the total utility function. In both the total utility function and its derivative, the application level

utility functions represnt their normalized application utility functions introduced previously. The

number of applications is fixed in this paper, but it is expected that users may have a differing

number of applications, all of different types and utility functions.

α = rand(1, 3) (3.8)

Utotal(r) = α(1) ∗ Uvoice, final(r) + α(2) ∗ Uemail, final(r) + α(3) ∗ Uvideo, final(r) (3.9)

U ′total(r) = α(1) ∗ U ′voice, final(r) + α(2) ∗ U ′email, final(r) + α(3) ∗ U ′video, final(r) (3.10)

Future sections detail how the Frank Kelly algorithm has been modified to handle these optimal

Figure 3.2: Total Utility Function Example

rate solutions and any requirements for the utility functions.
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3.2 Elastic Utility Function Approximation

In order to justify the use of this new utility function that is a sum of the individual application

utility functions, it is necessary to compare the rate allocation results to its concave fit counterpart.

There are a few assumptions made in this paper in order to achieve a concave, elastic fit utility

function that allows for the rate allocation.

One of these assumptions, perhaps the most important assumption, is the fact that the y-intercept

of the concave fit should be zero. This ensures that there is no negative point of the utility function.

This is done through the use of polyFitZero, which is available through the Mathworks community

[14].

Another important assumption is that the best fit can be defined as the concave function that

provides the smallest Mean Squared Error (MSE). Equation (3.11) represents MSE mathemati-

cally [5], where MSE is the mean square error, x is the actual vector, x̂ is the approximate vector,

and n is the number of values compared. The table of concave fit functions along with their

derivatives is provided in Table 3.1. Each of these functions was tested and the minimum MSE

determined the best concave fit function.

MSE =
1

n

∑
n

(x− x̂)2 (3.11)

3.3 Cost Function Assumptions

It was mentioned in the Chapter 2 that there are multiple inputs to the cost function from the

user perspective including network resource cost, energy costs, and latency costs. For simplicity,

it is considered that the network resource cost is the only cost that is a concern for the user. In

future work, energy costs as well as latency based on frequency band should be considered. The
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Table 3.1: Concave Fit Functions

Concave Function Derivative
lnx 1

x

log10 x
1

x ln 10

log2 x
1

x ln 2

√
x 1√

x

network resource cost is assumed to be linear and is determined by the shadow price of the network.

Equation (3.12) represents the cost function [10], where c(r) is the cost at a rate allocation of r,

and pshadow is the network shadow price.

c(r) = pshadowr (3.12)

3.4 Modified Frank Kelly Algorithm

The traditional Frank Kelly algorithm, described in Section 2.3, assumes a strictly concave func-

tion, or inelastic utility function when maximizing the utility through proportionally fair resource

allocation across the network. The implication of this assumption requires each user to have only

one optimal rate based on a network defined resource price. Without a single optimal solution,

the user must have a way to choose between multiple solutions in order to achieve optimal rate

allocation and shadow prices within a reasonable number of iterations.

The modification of the Frank Kelly algorithm presented in this paper deals with the case of mul-

tiple solutions and arbitrary utility functions. Multiple solutions arise from the discontinuities in

the summation of application utility functions to make a device utility function. Equation (3.13)

represents the required utility function, where Utotal is the total utility function for a given user, and

UN(r) is the utility function of the N th application. The number of applications is arbitrary in this
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instantiation. However, in this paper, as described in the previous section, the number of applica-

tions will be three for each user. The total utility function must have concave properties for at least

one interval. Equation (3.14) represents the requirement for a user utility function, where [a, b]

represents any interval between defined rate interval, [0, rMAX] and α and β represent arbitrary real

values. Without this requirement, the rate allocation for a given user should be completed through

water-filling and cannot be done through an iterative approach like the Frank Kelly algorithm. The

assumption of a concave region or regions within the utility function is valid given the assumption

of users with smart phones, or devices running multiple applications.

Utotal = U1(r) + U2(r) + ...+ UN(r) (3.13)

∃[a, b] ∈ [0, rMAX] : Utotal(αr + βr) ≥ αUtotal(r) + βUtotal(r) (3.14)

As described in the Chapter 2, the Frank Kelly algorithm is an iterative approach that starts with

initial bids from the users. These initial bids determine the shadow price for the network resources

and the resource allocated to the user initially. The user then compares this allocated rate to what

it considers to be its optimal rate based on the shadow price. Assuming user utility functions

with multiple solutions, it is necessary to now choose between multiple solutions. This is where

the modification to the Frank Kelly algorithm was made. Equations (3.16) - (3.17) represent the

change made to the Frank Kelly algorithm, where ri,opt is the optimal rate allocation as determined

by user i given p as the network shadow price and Ui and U ′i as the utility function and its derivative

for user i. In this case, there are multiple solutions for the optimal rate allocation, and the final

solution for ri,opt is determined to be the solution closest to the network allocated rate ri for user i.

The change represents the logic required to decide which of the multiple solutions represents the
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single optimal rate allocation solution.

ri,opt = arg max[Ui(ri,opt)− ri,optp] (3.15)

U ′i(ri,opt) = p (3.16)

ri,opt = arg min(|ri,opt − ri|) (3.17)

Including this adjustment to the remainder of the Frank Kelly algorithm gives the modified algo-

rithm seen in the following pseudo-code.

wi = initial bid of user i

p =
∑n

i=1 wi

R

ri = wi

p
= wi∑n

j=1 wj
B

max[Ui(ri)− rip]

U ′i(ri,opt) = p

while ri 6= ri,opt do

wi = ri,optp

p =
∑n

i=1 wi

R

ri = wi

p
= wi∑n

j=1 wj
B

max[Ui(ri)− rip]

U ′i(ri,opt) = p

ri,opt = arg min(|ri,opt − ri|)

end while

In order to deal with multiple solutions, the user finds all intersections of the shadow price and the

derivative of its utility function and then chooses between the multiple solutions based on the rate

that has already been allocated. The condition used in this modified algorithm for choosing the

optimal solutions from multiple solutions is to determine the solution closest to the rate already

allocated by the network. This choice can be rationalized through supply and demand. If a user

chooses a rate that is far away from the rate already allocated to it by the network, his bid will



Rebecca L. Kurrle Chapter 3. Algorithms and Simulation Setup 39

change dramatically. The result will be a large change in demand on the network for resources.

This change in demand will yield a change in resource allocation and will start the iterative process

again [4].

Similar to the original Frank Kelly algorithm, the users bidding on network resources are not

required to have knowledge of the available resources. The bids of the users merely reflect how

much rate they would like to receive from the network. The network is the only party required

to have knowledge of the amount of resources are available. This is a valid assumption given the

network controls resource allocation for a given portion of frequency.

There are some limitations to the method for dealing with multiple solutions. The initial bid made

by each user determines the convergence speed as well as the initial rate allocated to each user.

Any given initial rate will influence which of the unique solutions is chosen to be the optimal user

rate allocated. For this paper, it is assumed that each user will input the same first initial bid and

the bid will be somewhat dependent on the number of users on the network (relative demand). This

will allow for reasonable convergence. In the results section, the effect of a starting bid for several

different numbers of users is examined.

3.5 Rate Allocation Across Multiple Carriers

The addition of multiple carriers adds additional complexity to the rate allocation problem. From

a user perspective, the utility to the device does not change based on which carrier the network

resource allocates the resources. What changes for the user is the cost. By adding another carrier,

the network resources cost is dependent on which carrier allocates the rate to the users, the energy

consumption cost rises if another RF chain needs to be added, and latency cost changes based on

required modulation schemes.

As mentioned in Section 3.3, only the cost of network resources is considered in this paper. Energy

consumption and latency costs should be considered in future work. Since each user’s utility
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function is not bivariate and is dependent only on the sum of the rates from both carriers, it is

not practical to determine a joint solution at the current time for multiple carrier rate allocation.

In order to implement a solution, each carrier’s resources are allocated in a specified order. As

mentioned in the Chapter 2, the current implementation of carrier aggregation designates a primary

carrier for both the uplink and downlink channels. This means that scheduling of resources will

occur through one carrier including multiple, if available, secondary carriers. By ordering the

carriers in terms of availability, frequency band of choice, or other such criteria, the solution for

allocation across multiple carriers can be simplified.

This solution can also be justified with practical implementation concerns. It is assumed that in

some scenarios, the secondary carriers will have much less coverage, availability based on higher

priority uses, or will have unfavorable frequency bands of operation. In these cases, the user

will want to optimize equipment performance based on energy consumption and the amount of

overhead time required in order to achieve a limited amount of network resources. In this case,

it would make the most sense for the user to rank the carriers and in doing so gaining the most

reliable network resources for carrier aggregation.

In addition to these operational concerns, the purpose of carrier aggregation is to augment the

current bandwidth available to mobile wireless devices. Augmentation of allocated resources to

a given user implies the utility to the user will be marginally improved as carriers and network

resources are added. For these reasons, a primary carrier and one secondary carrier are assumed

here. The primary carrier allocates its resources first and then the secondary carrier allocates its

resources. All users within the coverage areas of the primary and secondary carrier will adjust

their utility functions when bidding on secondary carrier resources. This adjustment shifts the

utility function in the resource domain and the starting point in rate is equal to the rate allocated to

a given user by the primary carrier. By ordering all available carriers, this method can be scaled

to more than two carriers. Equation (3.18) represents the adjustment of the utility function for a

user j, where Utotal, Carrier 2,j(r) is the resulting utility function for user j on carrier 2, Utotal,j is

the total utility function for user j and rallocated, Carrier 1,j is the rate already allocated to user j on
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carrier 1.

Utotal, Carrier 2,j(r) = Utotal,j(r + rallocated, Carrier 1,j) (3.18)

Equation (3.19) represents the generalized form of this utility function adjustment for user j,

where Uallocated, Carrier k,j(r) is the utility function for user j for rate allocation on carrier k, and∑k−1
i=1 rallocated, Carrier i,j is the rate previously allocated on all carriers through k − 1. Equation

(3.20) extends this utility function to its derivative, where U ′total, Carrier k,j(r) is the derivative of the

total utility function for user j on carrier k. This concept of marginal utility can also be represented

graphically in Figure 3.3. As mentioned previously, the independent axis is moved to represent the

rate that has already been allocated to a user.

Figure 3.3: Marginal Utility Example

Uallocated, Carrier k,j(r) = Utotal,j(r +
k−1∑
i=1

rallocated, Carrier i,j) (3.19)

U ′total, Carrier k,j(r) = U ′total(r +
k−1∑
i=1

rallocated, Carrier i,j) (3.20)

For these scenarios, two carriers are assumed. Using the utility function representations introduced
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above, the multiple carrier rate allocation is represented in the following pseudo-code, where m is

the total number of users, frankKellyModified is the modified Frank Kelly algorithm, U ′total,j is the

derviative of the total utility function for user j, and wi is the vector of user bids for carrier i.

ratesCarrier 1 = frankKellyModified(U ′total, Carrier 1(r), w1)

for j = 1 : m do

U ′total, Carrier 2,j(r) = U ′total,j(r + rallocated, Carrier 1,j)

end for

ratesCarrier 2 = frankKellyModified(U ′total, Carrier 2(r), w2)

For an arbitrary number of carriers, k, the resource scheduling algorithm for carrier aggregation

can be generalized to the following pseudo-code.

for i = 1 : k do

ratesCarrier i = frankKellyModified(U ′total, Carrier i(r), wi)

for j = 1 : m do

U ′total, Carrier i,j(r) = U ′total,j(r +
∑i−1

l=1 rallocated, Carrier i,j)

end for

end for

In the event that no rate was allocated to a given user by any carrier, no adjustment will be made

to the utility function for that user. Unlike algorithms introduced in Section 2.8, this algorithm

seeks to maximize utility as well as complete resource allocation across multiple carriers with

an arbitrary user utility function. The sequential, instead of joint, solution fits within the control

specifications of 4G LTE-Advanced 3GPP standard for carrier aggregation [8]. In addition to

its practicality, it avoids the need for a completely informed network controller, like the utility

maximization result introduced in Section 2.8.3. By allowing the user to bid on resources, any user

can choose to achieve higher resource allocation if desired. This is important when considering a

capitalistic approach to wireless resources. This novel approach to rate allocation in the presence

of carrier aggregation provide methods that can be implemented within the current construct of
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the 3GPP standard. This algorithm will be tested for each of the scenarios described in the carrier

aggregation section. A reasonably large number of users will be used to ensure realistic results for

resource allocation across many users.

3.6 Scenario Considerations and Simulation Set-up

All scenarios in Figures 2.6 are implemented in MATLAB. Users will be evenly distributed within

the primary carrier coverage area, which will remain constant throughout the scenarios. The num-

ber of users within each of the carrier coverage areas will be determined and the rate allocation

will be completed on the primary carrier then the secondary carrier.

Starting bids should be approximately correct based on the demand of the network in order to cause

convergence to the optimal network solution in a timely manner. The method for determining the

correct starting bid is not considered, but through simulation it appears that more users required

a lower starting bid to converge. The starting bid for different numbers of users was considered

in the first section of results and these simulation results carried forward to the carrier aggrega-

tion scenarios. The number of users on a given cellular network will vary, so a number of cases

are considered in this paper. To provide a complete comparison between linear combinations of

application-level utility functions to their concave approximations, simulations with 5, 10, and 50

users were considered. For the scenarios, it was assumed that the number of users would be high,

given the demand on current cellular networks. In these simulations, approximately 50 users were

distributed within the limits of the primary carrier.

Examples of the MATLAB scenarios are provided in Figures 3.4 - 3.7. The primary carrier in these

cases does not change. It should be noted that the distances are in kilometers. These simulations

merely attempt to describe the results of carrier aggregation and resource allocation with carrier

coverage areas relative to each other.
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Figure 3.4: Example MATLAB Scenario 1

Figure 3.5: Example MATLAB Scenario 2
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Figure 3.6: Example MATLAB Scenario 3

Figure 3.7: Example MATLAB Scenario 4



Chapter 4

Simulation Results

The results of this paper are separated into two sections. The first section describes the results of

the modified Frank Kelly algorithm for non-concave, piecewise functions as compared to strictly

concave utility functions. The second section describes the results of the modified Frank Kelly

algorithm as applied to rate allocation of two carriers. This also means that the algorithm for rate

allocation across multiple carriers in sequence is tested.

4.1 Results of Modified Frank Kelly Algorithm

In this section, a comparison of convergence, user resource allocation, and network shadow prices

is made for the modified Frank Kelly algorithm is made between utility functions representing a

sum of application level utility functions to the best fit concave function. As described in previous

sections, the minimum MSE is used to determine the best concave fit from a pre-defined list of

concave functions. This best fit concave function is used for comparisons in all results to follow.

The convergence properties of an iterative solution are important to consider. In this case, the com-

parison will be made between the linear combination of the application level utility functions to

their concave utility function approximations. When running the simulations, the maximum num-

46



Rebecca L. Kurrle Chapter 4. Simulation Results 47

ber of iterations was set to 500 in order to allow for a sufficient number of iterations to converge.

However, 500 iterations is not desirable when determining the convergence properties of an iter-

ative solution in real-time or near real-time. In the results of this section, convergence below 100

iterations is considered to be a result that converges in a timely manner. For comparisons between

concave and non-concave utility function results, only cases that resulted in a converged solution

were considered. Results that did not converge were removed from consideration.

The first set of results, considers the rate of convergence of the modified Frank Kelly algorithm

for non-concave utility functions as compared to its non-concave counterpart. A range of initial

bids and number of users was considered. It is assumed that initial bids will be the same across

all users. Since utility functions of all the users are not identical, all users may not have the same

initial bid in a real-world scenario. In future work, it will be important to consider optimal bids on

a per user basis. The first case that will be considered is the case of 5 users. Initial bids of 0.01, 0.1,

and 1 were considered in this case. The percentage of cases that converge over 1000 trials can be

seen in Table 4.1. The rate of convergence is represented in Figure 4.1 (concave fit utility function)

Table 4.1: Fraction of Cases that Converge, 5 Users

Initial Bid Concave Fit Function Non-Concave Utility Function
0.01 0.99 0.94
0.1 0.99 0.99
1 1 0.94

and Figure 4.2 (non-concave utility function). From Table 4.1 and the following figures it can be

concluded that the concave fit results always converge at a rate faster than their non-concave utility

function counterparts. Examining the concave fit results only, it can be concluded that the starting

bid has very little to do with the rate of convergence and changes by a factor of 10 in the initial

starting bid do not drastically change results.

However, when the non-concave utility function results are considered, results show dependence

of the rate of convergence on the initial starting bid. This sensitivity can be explained by the fact
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that the non-concave utility functions may have multiple solutions in the construct of the modified

Frank Kelly algorithm. The choice between these solutions is dependent on the rate allocation

given to the network from each user and thus the initial bid of each user. If the initial bid is incor-

rectly chosen, there may be oscillation between the multiple possible solutions. In future work, the

optimal starting bids for non-concave utility functions should be considered in order to cause fast

convergence comparable to concave function convergence time. When considering previous work

on rate allocation, the assumption of a concave function will simplify both an iterative solution and

an algebraic solution. These concave results may not capture the detail of application level utility

functions. From Figure 4.2, it can be seen that the best convergence occurs with the initial bids
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Figure 4.1: Concave Fit Utility Function Convergence, 5 Users

0.01 and 0.1. These bids essentially create the same convergence behavior. Choosing 0.01 to be

the optimal bid in the case of 5 users, the rate allocation results and shadow price results can be

compared across non-concave utility functions and the concave fit utility functions.

Figure 4.3 represents the final shadow price of network resources for the case of 5 users and an

initial bid of 0.01. Figure 4.4 represents the shadow price of network resources in the case of the
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Figure 4.2: Non-Concave Utility Function Convergence, 5 Users

non-concave utility functions for the same starting bid and number of users. It can be seen that the

concave fit function results in a much lower network resource price when compared to the non-

concave utility function results. This difference is on the order of 100 times different. This can

be explained by the fact that the concave fit function has no discontinuities. With discontinuities,

because of individual application utility functions, the non-concave utility function has the possi-

bility for higher optimal rates and therefore will bid higher to achieve higher data rates. It should

be noted that shadow prices represent the portion of spectrum given to each user. Future work

should work to scale these shadow prices by the amount of information a given user can transmit

across the network given an allocation of resource blocks in frequency. The next important com-

parison is the error in rate allocation when using a concave fit function to approximate a utility

function that is a sum of application level utility functions. Figure 4.5 represents the error for one

of the 5 users on the network as an example. Table 4.2 summarizes the results for all users on this

network and the mean across all networks. These errors should be considered in terms similar to

noise power, since, as expected, they are zero mean. In the case of 5 users, the error of user rate
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Figure 4.3: Shadow Prices for Concave Fit Functions, 5 Users
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Figure 4.4: Shadow Prices for Non-Concave Utility Function, 5 Users
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allocation error is on average 2.5 MHz. This was determined through an average of user errors in

Table 4.3. Similar to the difference in shadow price, the rate allocation error is due to the fact that

there are multiple distinct concave regions. These multiple solutions allow the user to choose to

bid for more resources causing a discrepancy in the rate allocated to a different user. Since it is

important for a user to bid and be allocated rate based on applications requiring network resources,

these discrepancies can be used to argue against traditional concave utility function based methods

as presented in previous rate allocation work. In the cases of 10 and 50 users, the results are

Table 4.2: Resource Allocation Error, 5 Users

User Number Rate Allocation Error (Mbps)
1 2.3
2 2.5
3 2.5
4 2.6
5 2.8

−15 −10 −5 0 5 10 15
0

100

200

300

400

500

MHz

F
re

qu
en

cy

User Rate Allocation Error, User 1
Initial Bid = 0.01, Number of Users = 5

Figure 4.5: Example Resource Allocation Error, 5 Users (User 1)

similar to the previous 5 user results. The convergence results for the cases of 10 and 50 users



Rebecca L. Kurrle Chapter 4. Simulation Results 52

are seen in Figures 4.6 - 4.9. In the results, it is interesting to note that 10 users shows similar

convergence behavior as 5 users. Interestingly enough, the concave results for 50 users shows

worse convergence based on initial bids. However the ideal bid of 0.0001 for 50 users shows faster

convergence in the case of concave utility functions. The shadow price results show similar
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Figure 4.6: Concave Fit Convergence, 10 Users

behavior as the 5 user scenario as well. Figures 4.10 - 4.13 show these results. It should be

noted that, as expected, the network price increases with the number of users. This is because the

demand increases with the number of users. Where the results change dramatically based on the

number of users is the error in rate allocation. Figures 4.14 - 4.15 show example rate allocation

errors for 10 and 50 users. It can be seen that with an increase in the number of users, the rate

allocation error decreases dramatically. This can be explained by the fact that a higher number of

users on the network means less allocation to all users. Since less rate is allocated, less error is

expected. So as the number of users increases, it can be seen that even though the rate allocations

approach the results for concave approximations, the shadow prices are still incorrectly calculated.

The reason for this is most likely the fact that the discontinuities still prompt the user to demand
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Figure 4.7: Non-Concave Utility Function Convergence, 10 Users
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Figure 4.8: Concave Fit Convergence, 50 Users
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Figure 4.9: Non-Concave Utility Function Convergence, 50 Users
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Figure 4.10: Shadow Price, Concave Fit Utility Function, 10 Users
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Figure 4.11: Shadow Price, Non-Concave Utility Function, 10 Users
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Figure 4.12: Shadow Price, Concave Fit Utility Function, 50 Users
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Figure 4.13: Shadow Price, Non-Concave Utility Function, 50 Users

more resources. This higher demand on the network yields a higher shadow price. Even though

Table 4.3: Resource Allocation Error, All Cases

Number of Users Average Resource Allocation Error (Mbps)
5 2.5

10 1.4
50 0.2

rate allocation error may decrease with an increase in the number of users, network resource prices

seem to be vastly different between concave fit functions and non-concave utility functions. This

means that concave approximations incorrectly represent the demand on the network and the fact

that multiple applications with varying priorities require different minimum rates and have dif-

ferent diminishing return behaviors. The rate allocation methods demonstrated in this section are

capable of maximizing network utility while maintaining the fidelity of application level utility

functions. The rate allocation error decreases with the number of users, but the shadow prices do

not converge to the same answer. In order to correctly represent the demand on the network it is
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Figure 4.14: Rate Allocation Error Example, User 1, 10 Users Case
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Figure 4.15: Rate Allocation Error Example, User 1, 50 Users Case
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important to add the fidelity of application level utility functions to rate allocation methods.

The next section’s focus is on rate allocation across multiple carriers in different base station sce-

narios. The sum of application level utility functions is used to represent user level utility functions.

4.2 Results of Rate Allocation for Multiple Carriers

In this section, the base station scenarios presented earlier in this paper will be used in determining

the rate allocation for a network where two carriers are available for scheduling. In the case of

carrier aggregation, it is proposed in this paper that the practical way to schedule rates on each

carrier is to order the carrier based on a primary and secondary carrier structure. In this paper, only

two carriers are assumed, one being the primary carrier and one being the secondary carrier.

Similar to the concave fit comparison results, the initial bid is paramount when determining rate

allocation with non-concave utility functions. The initial bid for each carrier was determined to

be satisfactory at 0.01 or 0.001, based on the non-concave results for 50 users shown previously.

For this section a value of 0.01 was used. For the second carrier, the initial bid was determined by

testing a range of initial bids, each separated by a factor of ten. Since the method for determining

an optimal bid is not discussed in this paper, the best convergence rate was chosen from the range of

tested secondary carrier initial bids. Table 4.4 details the fraction of iterations where convergence

was achieved for each scenario and the associated initial bid. For this section, the number of users

was 50 in all cases. These users are uniformly distributed and a varying amount of users will

fall within the primary and secondary carriers. There were also 100 iterations completed for each

scenario.
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Table 4.4: Convergence of Base Station Scenarios

Scenario Fraction of Converged Secondary Carrier Initial Bid
1 0.98 0.001
2 1 0.001
3 0.99 0.001
4 0.65 0.001

4.2.1 Scenario 1

The shadow prices for carrier 1 and 2 are shown in Figures 4.16 and 4.17, respectively. It can be

seen that carrier 1 has a shadow price for network resources when compared to carrier 2. This

result can be explained by the fact that based on the general diminishing returns of each user utility

function, the added utility provided by the second carrier will be less than that of the primary

carrier. Therefore the demand from the user will be less and thus a lower network price will be set.

This can also be explained in terms of the secondary carriers that will be available in carrier aggre-

gation scenarios and the perspective of the user. Secondary carriers may be comprised of available

space within the current band, but based on network demands, these carriers may be on-demand

carriers and will not always be available to users. From a user perspective, these additional re-

sources will not be expected, but will be ”nice to have”. Considering the results from this perspec-

tive, this rate allocation scheme across multiple carriers is logical in the construct of primary and

secondary carriers.

4.2.2 Scenario 2

The second scenario shows very similar results to the first scenario. In this scenario, the second

carrier has a slightly smaller range of coverage, but the same directionality as the primary carrier.

This means that the second carrier will have slightly smaller demand, but possibly only a few less

users. This would show very little difference in the shadow prices of the network, but, similar to
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Figure 4.16: Shadow Price of Scenario 1, Carrier 1
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Figure 4.17: Shadow Price of Scenario 1, Carrier 2
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the first scenario, the second carrier price is less than the primary carrier given the diminishing

returns. This again is due to the fact that these resources provide small additional utility, hence

they are secondary carriers. Figure 4.18 and 4.19 show results in terms of shadow prices for

scenario 2.

The effect of the smaller coverage area of carrier two is not discernible. This may be due to the fact

that the coverage range is not small enough to affect network resource prices. It can be expected

that the smaller the coverage area, the lower the price given the lower demand on the network.
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Figure 4.18: Shadow Price of Scenario 2, Carrier 1

4.2.3 Scenario 3

As expected, the third scenario results also closely resemble the results of the first and second

scenario. The results for this scenario are found in Figures 4.20 and 4.21. The coverage of the

second carrier is, in this case, offset in angle, but represents the same coverage area and therefore

the same number of users. Similar to the first and second scenario, the lower shadow price for the
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Figure 4.19: Shadow Price of Scenario 2, Carrier 2

secondary carrier is due to the fact that a marginal amount of utility is added for users capable of

carrier aggregation. This is true for scenarios 1, 2, and 3.

An important caveat when considering these results is the fact that there is no assumption made on

frequency capability of the user handset. If, for instance these carriers were distinct in frequency,

then the number of users capable of using the primary carrier versus the secondary carrier will

change. This consideration should be made in future work on this topic, since user equipment

capabilities is an important consideration.

4.2.4 Scenario 4

The final scenario shows the most interesting results. Since, in this case, the coverage area of the

secondary carrier is representative of the relay base station, there is significantly less coverage area

for the secondary carrier. This means with less demand on this secondary carrier, the shadow price

can be expected to be much lower in this case. The result in Figures 4.22 and 4.23 show a result
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Figure 4.20: Shadow Price of Scenario 3, Carrier 1
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Figure 4.21: Shadow Price of Scenario 3, Carrier 2
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matching predictions, where the shadow price of the secondary carrier resources are much less

than that of the primary carrier.

These results show, unlike Scenario 2, the effect of coverage area on network resource prices.

With an increase in the number of relays, the price can be expected to go up based on a higher

network demand. One interesting consideration is the orientation of these relays or femptocells.

If the distribution of relay nodes is non-uniform, or the concentration of users is non-uniform in

the relays, the resource prices will become more difficult to determine. A summary of scenario
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Figure 4.22: Shadow Price of Scenario 4, Carrier 1

Table 4.5: Summary of Carrier Aggregation Results

Scenario Carrier 1 Shadow Price (Median, Mbps) Carrier 2 Shadow Price (Median, Mbps)
1 0.0518 0.0261
2 0.0518 0.0227
3 0.0521 0.0295
4 0.0509 0.0058

network shadow prices is provided in Table 4.5.
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Figure 4.23: Shadow Price of Scenario 4, Carrier 2

4.3 Additional Result Considerations

The results presented deal with start-up scenarios where all users are joining the network at one

time. There is also the case where the network is in a steady-state and a few users leave or join

the network. This represents two classes of solutions that should be considered. In addition to

steady-state and start-up solutions, the general consideration of sub-optimal solutions should be

considered. This section discusses each of these type of results.

4.3.1 Start-up and Steady-State Solutions

A practical consideration when talking about convergence properties is the difference between

steady-state convergence and start-up convergence. This paper considers start-up convergence. In

practical terms, start-up convergence considers a network with no users currently on the network.

Determining the network resource prices in this case requires more iterations to achieve conver-

gence, since the initial state is determined by the initial bids of the users. In real world scenarios,
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these start-up cases can be thought of as the case where cell towers are being restarted after outages

or new towers are being added to the network. The other case that is not considered is steady-state

convergence properties.

Steady-state convergence is the case where there exists a network with a given resource price and

resource allocation solution. In this case, adding or removing a small amount of users requires

a fewer number of iterations to determine a new network resource allocation and shadow price.

This is because the demand of the network will only change due to the statistically small number

of users being added or removed from the current network. The smaller change in demand points

to a faster convergence. The users can be added and removed from the network based on the fact

that users will be moving in and out of coverage areas. The mobile nature of the users effectively

homogenizes the network. This means the demand will effectively remain the same on the network

once it is in steady-state based on the fact users will be consistently entering and leaving the carrier

coverage areas. This case of stead-state convergence should be considered in future work.

4.3.2 Sub-optimal Solutions

In cases where there is no convergence, a solution for network resource allocation and shadow

prices is still required in a practical sense. Non-convergence implies the resource allocation pro-

vided to the users does not match the optimal solution as determined the users utility functions

and the prescribed network shadow price. In this case, using the non-convergent solution will pro-

vide a sub-optimal solution, where the error is an unknown. This unknown error can be addressed

depending on the scenario.

The simplest case is representative of the steady-state case, where a few users are either being

added or removed from the demand. In this case, it is simple to use the previous steady-state

network resource price as the basis for each users bid and ultimately the resources allocated from

the network. From the construct of the original and modified Frank Kelly algorithm, these bids are

used relative to each other in order to determine the rate allocation. This means that the network
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resources that are allocated will never provide a solution within the Pareto inefficient region or

in the infeasible space, or the network will never under or over subscribe the network resources.

Because the change to the network demand is minimal, this suboptimal solution will be effectively

a solution delayed in time. This means the network price and resource allocation will reflect the

optimal resource price at a previous point in time, but not severely delayed. This type of sub-

optimal solution will also occur at each time step based on the mobile nature of users and the time

delay in determining the network resource price. Based on the fact that these sub-optimal solutions

occurs with small changes to the network and the fast changing nature of a mobile network, these

sub-optimal solutions should not cause much error across the network. However, this should be

explored in future work.

The more challenging case of non-convergence is the case of start-up scenarios, where the network

demand and supply is changing by a statistically significant amount. In this case, as considered in

this paper, approximately one to five percent of the cases do not converge even with approximately

optimal starting bids. As mentioned previously, these scenarios still require a solution from a

network perspective. In these cases, the amount of error could be large considering the dependence

on an initial starting bid. So, in order to determine a solution, it may be necessary to think of these

start-up scenarios in terms of a control system. When a control system does not converge on an

optimal solution, it is considered to be in oscillation. In this case, a restart of the control system

adjusting necessary parameters is usually considered to achieve a stable solution. In this case, the

bids of the users can be adjusted to achieve a convergent solution. In future work, the necessary

starting bids should be considered and the method for achieving convergent solutions in the case

of start-up scenarios.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this paper, two new algorithms are considered. The first algorithm is a modified Frank Kelly

algorithm that allows for the use of piecewise, concave utility functions representing a sum of

underlying application utility functions. The second algorithm is the use of this modified Frank

Kelly algorithm and network resource pricing algorithm when applied to the scenario of carrier

aggregation through sequential scheduling.

The results of the modified Frank Kelly algorithm support the notion that there is error induced

in the rate allocation and especially the shadow price as a result of approximating a users utility

function via a strictly concave, diminishing returns model. The convergence properties of non-

concave, piecewise utility functions is highly dependent on the initial starting bid made by users.

This paper does not attempt to explain the requirements that should be placed on these initial bids

in order to gain convergence, but future work should be done to determine the limitations. In

addition to determining the convergence properties of this modified Frank Kelly algorithm, it is

important to consider scenarios where each user will have a different starting bid based on the

expected value of the demand on the network and its desired amount of resources.

68
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The resource allocation and network shadow price determination in the presence of two carriers

also presented some interesting results. Since the network resources are scheduled first on the

primary carrier and then on the secondary carrier, the utility function is adjusted to consider only

the added utility of the second carrier. Since the utility functions have an approximate diminishing

returns model, the network resource prices on the secondary carrier will always be less. This is

what was seen in all scenarios, even those scenarios where secondary and primary carriers operated

the same coverage areas. It can be expected that every additional carrier if scheduled in order will

have an ever decreasing network price. The expansion of these results to include the price of energy

consumption for secondary carriers and any latency costs may cause an even steeper decrease in

network prices on secondary carriers.

5.2 Future Work

Energy and latency costs of each carrier, both primary and secondary, should be made in future

work. Current results only consider network resource coses. Unlike network resource costs, the

energy and latency costs represent a more complex cost structure. Energy costs should be consid-

ered in terms of battery life costs for the user. In other words, with additional carriers, the energy

costs to the user will increase.

The additional energy cost on a per carrier basis is effected by the user hardware implementation

as well as the transmit power required given proximity to the carrier and the frequency band of

a given frequency band. A user implementation with only one RF chain is representative of the

case where the only additional energy required is used for the transmit power required for a second

carrier. In this case the transmit power required for the primary and secondary carrier is essentially

the same based on the fact a single RF chain can service only one band with current user hardware.

The more complex case is user hardware that allows for interband carrier aggregation through the

employment of multiple, independent RF chains. With this case, the energy of a second user is a
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function of the energy required to operate an additional RF chain as well as the transmit power.

The energy cost of running a second RF chain is essentially the same as the energy cost for the first

RF chain. The transmit power will either be less or more than the power required for the primary

carrier depending if is lower or higher in frequency. The energy cost can be simply represented as

a step function and in order for a user to utilize a second carrier, the utility would need to exceed

the cost to the user in energy. This means the energy costs would need to be transformed to a dollar

cost to represent similar units.

Similar to the energy costs, the latency cost also requires more in depth consideration given its

complexity. One factor in determining the latency is the bandwidth efficiency of the carrier. As

introduced in earlier sections, the modulation and coding schemes determine the bandwidth effi-

ciency, or the ratio of the number of information bits sent relative to the total number of bits sent

across the network. One way to account for this latency is adjusting the independent axis to rep-

resent the amount of information bits being passed across the network. This means for a given

space in frequency and channel parameters, the amount of information across of the network for a

given user and a given carrier will change, which will measure the latency across the network due

to bandwidth efficiency. Another form of latency is specific to base station scenarios introduced in

Section 4.2. More specifically, the scenario with relays or femptocells will have a different form

of latency. In these scenarios, there is a wired back haul to the main carrier that requires a static

two-way time to travel. This form of latency can be represented by a step function. Similar to

energy costs, logic can be placed to ensure the utility exceeds the additional latency costs as well

as energy and network resource costs. Both energy and latency costs require further investigation,

since their representation is more complex than the traditional network resource block cost.

This paper makes the assumption that the secondary carrier will always be the same for all users.

This is not necessarily the case given energy consumption, latency, and utility of each user. It is

interesting to consider the case where the cost of the second carrier will always be substantially less

than that of the primary carrier. An example of this case would be the case where the secondary

carrier is provided by way of a relay or femptocell. In this case, the coverage area of the secondary
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carrier, so the demand on the carrier will practically never match that of the demand on the primary

carrier. This means a user within the relay coverage may choose to use this carrier as its primary

carrier to maximize its utility less its cost. The network resource cost will not change based on

the small amount of users utilizing the relays or femptocells. This provides an example of the

complicated, user specific ordering of carriers.

In addition to network resource cost, energy costs, and latency costs, the availability, and reliability

of the carriers is important to consider when ordering the carriers for resource scheduling. In the

case of non-traditional bands it is important to think about the fact that service may be intermittent.

For example, traditionally reserved band, like military or public radio, will prioritize cellular users

after the bands traditional users. This means when military or public radio users require the use

of the band, cellular users will be denied service. Effectively the probability of availability of a

given carrier is important when considering utilizing more overhead costs to schedule resources

on a given carrier. Future work should consider methods for prioritizing carriers for resource

scheduling in the scenario of multiple carriers.

Overall, this paper serves to introduce the complexities of scheduling network resources for smart

phones with many applications in the presence of carrier aggregation. With the advent of carrier

aggregation, it is important to consider the utility functions as a sum of application utility func-

tions in order to achieve the best results for network pricing and resource allocation. This allows

the users to achieve optimal QoS and therefore distribute required rate to its many applications

optimally.



Appendix A

Program Source

f u n c t i o n [ u s e r R a t e s , shadowPr ice , numI t s ] = f r a n k K e l l y V e c t o r i z e d (
u t i l i t y F u n c t i o n s D i f f , r a t e s , i n i t i a l W e i g h t s , maxRate )

% Th i s f u n c t i o n d e t e r m i n e s t h e shadow p r i c e t h a t a c h i e v e s i d e a l
r a t e

% a l l o c a t i o n s f o r a r b i t r a r y u s e r s and t h e i r u t i l i t y f u n c t i o n s

% Frank K e l l y a l g o r i t h m d e n o t e s i d e a l r a t e s t o be r e l a t i v e t o t h e

% d e r i v a t i v e o f each u t i l i t y f u n c t i o n s .

% Number o f u s e r s

numUsers = s i z e ( u t i l i t y F u n c t i o n s D i f f , 1 ) ;

% Check t o make s u r e t h e r e a r e enough w e i g h t s

i f l e n g t h ( i n i t i a l W e i g h t s ) ˜= numUsers

d i s p ( ’ Number o f w e i g t h s must be e q u a l t o t h e number o f u s e r s
’ )

r e t u r n ;

end
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% I n i t i a l i z e based on f i r s t b i d s

u s e r W e i g h t s = i n i t i a l W e i g h t s ;

shadowPr i ce = sum ( u s e r W e i g h t s ) . / maxRate ;

u s e r R a t e s = u s e r W e i g h t s . / shadowPr i ce ;

t h r e s h o l d = 1e−8;

[ u s e r R a t e s O p t ] = s o l v e F o r S o l u t i o n s ( u t i l i t y F u n c t i o n s D i f f , r a t e s ,
shadowPr ice , u s e r R a t e s , t h r e s h o l d ) . ’ ;

numI t s = 1 ;

w h i l e sum ( abs ( u s e r R a t e s O p t − u s e r R a t e s ) ) > 1 e3 && numI t s < 500

% numI t s

w e i g h t s = u s e r R a t e s O p t .∗ shadowPr i ce ;

shadowPr i ce = sum ( w e i g h t s ) . / maxRate ;

u s e r R a t e s = w e i g h t s . / shadowPr i ce ;

[ u s e r R a t e s O p t ] = s o l v e F o r S o l u t i o n s ( u t i l i t y F u n c t i o n s D i f f ,
r a t e s , shadowPr ice , u s e r R a t e s , t h r e s h o l d ) . ’ ;

numI t s = numI t s + 1 ;

end

f u n c t i o n [ o p t R a t e ] = s o l v e F o r S o l u t i o n s ( u t i l F u n c t i o n s , r a t e s ,
shadowPr ice , c u r r e n t S o l u t i o n , t h r e s h o l d )
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% u t i l F u n c t i o n s i s a 2−D a r r a y ( mxn )

% shadowPr i ce i s a 1x1 −−> p r i c e

% t h r e s h o l d i s a u s e r d e f i n e d t h r e s h o l d f o r a l l u s e r s (1 x1 )

% c u r r e n t S o l u t i o n i s 1−D a r r a y ( mx1 )

%

% m = number o f u s e r s

% n = l e n g t h o f u t i l f u n c t i o n s

% Dete rmine d i s t a n c e t o shadowPr i ce

d i s t = ( u t i l F u n c t i o n s −shadowPr i ce ) ;

mPosThresh = ( abs ( d i s t ) < t h r e s h o l d ) . ∗ ( d i s t >=0) ;

mPosThresh = d i f f ( mPosThresh , 1 , 2 ) ;

[ iXPos , iYPos ] = f i n d ( mPosThresh ==−1) ;

mNegThresh = ( abs ( d i s t ) < t h r e s h o l d ) . ∗ ( d i s t <0) ;

mNegThresh = d i f f ( mNegThresh , 1 , 2 ) ;

[ iXNeg , iYNeg ] = f i n d ( mNegThresh ==1) ;

iYNeg = iYNeg + 1 ;

i X F i n a l = [ iXPos ; iXNeg ] ;
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i Y F i n a l = [ iYPos ; iYNeg ] ;

mMask = z e r o s ( s i z e ( r a t e s ) ) ;

% i d x F i n a l = s u b 2 i n d ( s i z e ( mMask ) , i X F i n a l , i Y F i n a l ) ;

% mMask ( i d x F i n a l ) = 1 ;

f o r k = 1 : l e n g t h ( iXNeg )

mMask ( iXNeg ( k ) , iYNeg ( k ) ) = 1 ;

end

f o r k = 1 : l e n g t h ( iXPos )

mMask ( iXPos ( k ) , iYPos ( k ) ) = 1 ;

end

% Dete rmine r a t e d i s t a n c e s t o c u r r e n t r a t e

mDi f fRa te s = abs ( r a t e s−c u r r e n t S o l u t i o n ’∗ ones ( 1 , s i z e ( r a t e s , 2 ) ) ) ;

% Mask o f f r a t e s t h a t a r e n o t s o l u t i o n s

mDi f fRa te s ( mMask == 0) = i n f ;

% Find s m a l l e s t v a l u e i n each row − o p t i m a l s o l u t i o n

[Y, I ] = min ( mDif fRates , [ ] , 2 ) ;
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% D ef in e o p t i m a l r a t e s f o r each u s e r

o p t R a t e = z e r o s ( s i z e ( r a t e s , 1 ) , 1 ) ;

f o r k = 1 : l e n g t h ( I )

i f ˜ i s i n f (Y( k ) )

o p t R a t e ( k ) = r a t e s ( k , I ( k ) ) ;

e l s e

[ va l , idxMin ] = min ( abs ( d i s t ( k , : ) ) ) ;

o p t R a t e ( k ) = r a t e s ( k , idxMin ) ;

end

end

f u n c t i o n [ c o n c a v e F i t R e s u l t s , n onC on cav eRe su l t s ] =
r a t e A l l o c a t i o n M o n t e C a r l o ( numUsers , n u m I t e r a t i o n s , i n i t i a l B i d s )

% % % Thi s s c r i p t s e t s up and compares t h e r e s u l t s o f Frank K e l l y
Algo r i t hm

% % % wi th complex u t i l i t y f u n c t i o n s wi th t h e i r f i t t e d convex
p a i r s

% %

% % c l e a r a l l ;

s e t ( 0 , ’ D e f a u l t A x e s F o n t S i z e ’ , 1 6 )

s e t ( 0 , ’ D e f a u l t T e x t F o n t S i z e ’ , 1 6 )

s e t ( 0 , ’ D e f a u l t L i n e L i n e W i d t h ’ , 2 )
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%S i m u l a t i o n P a r a m e t e r s

% Th i s assumes one of t h r e e t y p e s o f a p p l i c a t i o n s

% ( 1 ) Voice C a l l s

% 16 t o 64 kbps

minVoiceRate = 1 6 ; % kbps

maxVoiceRate = 6 4 ; % kbps

% ( 2 ) Video (HD or SD)

% SD − 2 t o 4 Mbps

% HD − 6 t o 8 Mbps

minVideoSDRate = 2 ;

maxVideoSDRate = 4 ;

minVideoHDRate = 6 ; % Mbps

maxVideoHDRate = 8 ; % Mbps

% ( 3 ) Email / S o c i a l Media

% No Minimum
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% Set−up Monte C a r l o S i m u l a t i o n s

M = n u m I t e r a t i o n s ; % Number o f
i t e r a t i o n s

N = numUsers ; % Number o f u s e r s

n u m A p p l i c a t i o n s = 3 ; % Wi l l e v e n t u a l l y make t h e
a p p l i c a t i o n s randomized as w e l l

maxRate = 20 e6 ;

r a t e s = 0 : 1 e3 : maxRate ;

% r a t e s = r a t e S t a r t : 1 e3 : ( r a t e S t a r t + maxRate ) ;

u t i l i t y F u n c t i o n s = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

u t i l i t y F u n c t i o n s D i f f = z e r o s (N, l e n g t h ( r a t e s ) ) ;

u t i l i t y F u n c t i o n s F i t = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

u t i l i t y F u n c t i o n s F i t D i f f = z e r o s (N, l e n g t h ( r a t e s ) ) ;

f o r kk = 1 :M

M−kk

v o i c e U t i l i t y F u n c t i o n = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

v i d e o U t i l i t y F u n c t i o n = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

e m a i l U t i l i t y F u n c t i o n = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;
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v o i c e U t i l i t y F u n c t i o n D i f f = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

v i d e o U t i l i t y F u n c t i o n D i f f = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

e m a i l U t i l i t y F u n c t i o n D i f f = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

f o r mm = 1 :N

% Dete rmine t h e u t i l i t y f u n c t i o n o f one u s e r

% P r i o r i t i e s

p r i o r i t i e s = [ r and ( 1 , 3 ) ] ;

% ( 1 ) Voice C a l l s

vo iceRa teReq = round ( ( maxVoiceRate − minVoiceRate ) ∗ r and
( 1 ) + minVoiceRate ) ∗1 e3 ;

i d x V o i c e = f i n d ( r a t e s == vo iceRa teReq ) ;

v o i c e U t i l i t y F u n c t i o n D i f f ( 1 , i d x V o i c e ) = p r i o r i t i e s ( 1 ) . ∗ 1 ;

i d x V o i c e = f i n d ( r a t e s >= vo iceRa teReq ) ;

v o i c e U t i l i t y F u n c t i o n ( 1 , i d x V o i c e : end ) = p r i o r i t i e s ( 1 ) . ∗ 1 ;

% ( 2 ) Video S t r e a m i n g A p p l i c a t i o n s

% choose HD or SD a t random

i f r and ( 1 ) < 0 . 5

% HD

minVideoRateReq = round ( ( maxVideoSDRate −
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minVideoSDRate ) ∗ r and ( 1 ) + minVideoSDRate ) ∗1 e6 ;

e l s e

% SD

minVideoRateReq = round ( ( maxVideoHDRate −
minVideoHDRate ) ∗ r and ( 1 ) + minVideoHDRate ) ∗1 e6 ;

end

idxVideo = f i n d ( r a t e s > minVideoRateReq ) ;

v i d e o U t i l i t y F u n c t i o n D i f f ( 1 , idxVideo ) = p r i o r i t i e s ( 2 )
. ∗ ( 1 . / ( r a t e s ( idxVideo ) − minVideoRateReq ) ) . / l o g ( r a t e s (
end ) − minVideoRateReq ) ;

v i d e o U t i l i t y F u n c t i o n ( 1 , idxVideo ) = p r i o r i t i e s ( 2 ) . ∗ l o g (
r a t e s ( idxVideo ) − minVideoRateReq ) . / l o g ( r a t e s ( end ) −
minVideoRateReq ) ;

% ( 3 ) Email / S o c i a l Networks A p p l i c a t i o n s

minEmailRateReq = 0 ;

i d x E ma i l = f i n d ( r a t e s > minEmailRateReq ) ;

e m a i l U t i l i t y F u n c t i o n D i f f ( 1 , i d x E m a i l ) = p r i o r i t i e s ( 3 )
. ∗ ( 1 . / ( l o g ( 1 0 ) . ∗ ( r a t e s ( i d x E m a i l ) − minEmailRateReq ) ) )
. / l og10 ( r a t e s ( end ) − minEmailRateReq ) ;

e m a i l U t i l i t y F u n c t i o n ( 1 , i d x E m a i l ) = p r i o r i t i e s ( 3 ) . ∗ l og10 (
r a t e s ( i d x E m a i l ) − minEmailRateReq ) . / l og10 ( r a t e s ( end ) −

minEmailRateReq ) ;

u t i l i t y F u n c t i o n s D i f f (mm, : ) = v o i c e U t i l i t y F u n c t i o n D i f f +
v i d e o U t i l i t y F u n c t i o n D i f f + e m a i l U t i l i t y F u n c t i o n D i f f ;

% Find t h e concave f i t
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u t i l i t y F u n c t i o n s = v o i c e U t i l i t y F u n c t i o n +
v i d e o U t i l i t y F u n c t i o n + e m a i l U t i l i t y F u n c t i o n ;

c o n c a v e F u n c t i o n s = { ’ log ’ , ’ log10 ’ , ’ log2 ’ , ’ s q r t ’ } ;

c o n c a v e F u n c t i o n s D i f f C o e f f = { ’ 1 ’ , ’ 1 / l o g ( 1 0 ) ’ , ’ 1 / l o g ( 2 )
’ , ’ 1 / 2 ’} ;

c o n c a v e F u n c t i o n s D i f f P o w e r = { ’−1 ’ , ’−1 ’ , ’−1 ’ , ’−1/2 ’} ;

f i t E r r o r = i n f ;

f o r nn = 1 : l e n g t h ( c o n c a v e F u n c t i o n s )

e v a l ( [ ’ x F i t = ’ c o n c a v e F u n c t i o n s {nn} ’ ( r a t e s ) ; ’ ] )

p = p o l y f i t Z e r o ( x F i t ( 2 : end ) , u t i l i t y F u n c t i o n s ( 2 : end )
, 1 ) ;

e v a l ( [ ’ u t i l i t y F u n c t i o n s F i t T m p = p ( 1 ) ∗ ’
c o n c a v e F u n c t i o n s {nn} ’ ( r a t e s ) +p ( 2 ) ; ’ ] )

% d e t e r m i n e t h e e r r o r (MSE)

f i t E r r o r T m p = mean ( ( u t i l i t y F u n c t i o n s F i t T m p −
u t i l i t y F u n c t i o n s ) . ˆ 2 ) ;

i f f i t E r r o r T m p < f i t E r r o r

u t i l i t y F u n c t i o n s F i t = u t i l i t y F u n c t i o n s F i t T m p ;

i d x F i t = nn ;

p F i t = p ;

end

end

e v a l ( [ ’ u t i l i t y F u n c t i o n s F i t D i f f (mm, : ) = p F i t ( 1 ) .∗ ’
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c o n c a v e F u n c t i o n s D i f f C o e f f { i d x F i t } ’ . ∗ ( r a t e s ) . ˆ ’
c o n c a v e F u n c t i o n s D i f f P o w e r { i d x F i t } ’ ; ’ ] )

end

ra tesTmp = repmat ( r a t e s , N, 1 ) ;

% % Use F i t s t o c o m p l e t e Frank K e l l y

i n i t i a l W e i g h t s = i n i t i a l B i d s ;

[ u s e r R a t e s , shadowPr ice , numI t s ] = f r a n k K e l l y V e c t o r i z e d (
u t i l i t y F u n c t i o n s F i t D i f f , ra tesTmp , i n i t i a l W e i g h t s , maxRate
) ;

u s e r R a t e s F i n a l F i t ( kk , : ) = u s e r R a t e s ;

s h a d o w P r i c e F i n a l F i t ( kk ) = shadowPr i ce ;

n u m I t s F i n a l F i t ( kk ) = numI t s ;

% Solve U t i l i t y F u n c t i o n s u s i n g Frank K e l l y

i n i t i a l W e i g h t s = i n i t i a l B i d s ;

[ u s e r R a t e s , shadowPr ice , numI t s ] = f r a n k K e l l y V e c t o r i z e d (
u t i l i t y F u n c t i o n s D i f f , ra tesTmp , i n i t i a l W e i g h t s , maxRate ) ;

u s e r R a t e s F i n a l ( kk , : ) = u s e r R a t e s ;

s h a d o w P r i c e F i n a l ( kk ) = shadowPr i ce ;

n u m I t s F i n a l ( kk ) = numI t s ;

end
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c o n c a v e F i t R e s u l t s . u s e r R a t e s = u s e r R a t e s F i n a l F i t ;

c o n c a v e F i t R e s u l t s . shadowPr i ce = s h a d o w P r i c e F i n a l F i t ;

c o n c a v e F i t R e s u l t s . numI t s = n u m I t s F i n a l F i t ;

no nCo nca veR esu l t s . u s e r R a t e s = u s e r R a t e s F i n a l ;

no nCo nca veR esu l t s . shadowPr i ce = s h a d o w P r i c e F i n a l ;

no nCo nca veR esu l t s . numI t s = n u m I t s F i n a l ;

f u n c t i o n [ n onC onc ave Res u l t s ] =
r a t e A l l o c a t i o n M o n t e C a r l o T w o C a r r i e r s ( numUsers , n u m I t e r a t i o n s ,
numUsers1 , numUsers2 , i n i t i a l B i d s 1 , i n i t i a l B i d s 2 )

% % % This s c r i p t s e t s up and compares t h e r e s u l t s o f Frank K e l l y
Algo r i t hm

% % % wi th complex u t i l i t y f u n c t i o n s wi th t h e i r f i t t e d convex
p a i r s

% %

% % c l e a r a l l ;

s e t ( 0 , ’ D e f a u l t A x e s F o n t S i z e ’ , 1 6 )

s e t ( 0 , ’ D e f a u l t T e x t F o n t S i z e ’ , 1 6 )

s e t ( 0 , ’ D e f a u l t L i n e L i n e W i d t h ’ , 2 )

%S i m u l a t i o n P a r a m e t e r s
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% Thi s assumes one of t h r e e t y p e s o f a p p l i c a t i o n s

% ( 1 ) Voice C a l l s

% 16 t o 64 kbps

minVoiceRate = 1 6 ; % kbps

maxVoiceRate = 6 4 ; % kbps

% ( 2 ) Video (HD or SD)

% SD − 2 t o 4 Mbps

% HD − 6 t o 8 Mbps

minVideoSDRate = 2 ;

maxVideoSDRate = 4 ;

minVideoHDRate = 6 ; % Mbps

maxVideoHDRate = 8 ; % Mbps

% ( 3 ) Email / S o c i a l Media

% No Minimum

% Set−up Monte C a r l o S i m u l a t i o n s

M = n u m I t e r a t i o n s ; % Number o f
i t e r a t i o n s
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N = numUsers ; % Number o f u s e r s

n u m A p p l i c a t i o n s = 3 ; % Wi l l e v e n t u a l l y make t h e
a p p l i c a t i o n s randomized as w e l l

maxRate = 20 e6 ;

r a t e s = 0 : 1 e3 : ( 2 ∗ maxRate ) ;

% r a t e s = r a t e S t a r t : 1 e3 : ( r a t e S t a r t + maxRate ) ;

u t i l i t y F u n c t i o n s = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

u t i l i t y F u n c t i o n s D i f f = z e r o s (N, l e n g t h ( r a t e s ) ) ;

u t i l i t y F u n c t i o n s F i t = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

u t i l i t y F u n c t i o n s F i t D i f f = z e r o s (N, l e n g t h ( r a t e s ) ) ;

f o r kk = 1 :M

% M−kk

v o i c e U t i l i t y F u n c t i o n = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

v i d e o U t i l i t y F u n c t i o n = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

e m a i l U t i l i t y F u n c t i o n = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

v o i c e U t i l i t y F u n c t i o n D i f f = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

v i d e o U t i l i t y F u n c t i o n D i f f = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;
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e m a i l U t i l i t y F u n c t i o n D i f f = z e r o s ( 1 , l e n g t h ( r a t e s ) ) ;

f o r mm = 1 :N

% Dete rmine t h e u t i l i t y f u n c t i o n o f one u s e r

% P r i o r i t i e s

p r i o r i t i e s = [ r and ( 1 , 3 ) ] ;

% ( 1 ) Voice C a l l s

vo iceRa teReq = round ( ( maxVoiceRate − minVoiceRate ) ∗ r and
( 1 ) + minVoiceRate ) ∗1 e3 ;

i d x V o i c e = f i n d ( r a t e s == vo iceRa teReq ) ;

v o i c e U t i l i t y F u n c t i o n D i f f ( 1 , i d x V o i c e ) = p r i o r i t i e s ( 1 ) . ∗ 1 ;

i d x V o i c e = f i n d ( r a t e s >= vo iceRa teReq ) ;

v o i c e U t i l i t y F u n c t i o n ( 1 , i d x V o i c e : end ) = p r i o r i t i e s ( 1 ) . ∗ 1 ;

% ( 2 ) Video S t r e a m i n g A p p l i c a t i o n s

% choose HD or SD a t random

i f r and ( 1 ) < 0 . 5

% HD

minVideoRateReq = round ( ( maxVideoSDRate −
minVideoSDRate ) ∗ r and ( 1 ) + minVideoSDRate ) ∗1 e6 ;

e l s e

% SD
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minVideoRateReq = round ( ( maxVideoHDRate −
minVideoHDRate ) ∗ r and ( 1 ) + minVideoHDRate ) ∗1 e6 ;

end

idxVideo = f i n d ( r a t e s > minVideoRateReq ) ;

v i d e o U t i l i t y F u n c t i o n D i f f ( 1 , idxVideo ) = p r i o r i t i e s ( 2 )
. ∗ ( 1 . / ( r a t e s ( idxVideo ) − minVideoRateReq ) ) . / l o g ( r a t e s (
end ) − minVideoRateReq ) ;

v i d e o U t i l i t y F u n c t i o n ( 1 , idxVideo ) = p r i o r i t i e s ( 2 ) . ∗ l o g (
r a t e s ( idxVideo ) − minVideoRateReq ) . / l o g ( r a t e s ( end ) −
minVideoRateReq ) ;

% ( 3 ) Email / S o c i a l Networks A p p l i c a t i o n s

minEmailRateReq = 0 ;

i d x E ma i l = f i n d ( r a t e s > minEmailRateReq ) ;

e m a i l U t i l i t y F u n c t i o n D i f f ( 1 , i d x E m a i l ) = p r i o r i t i e s ( 3 )
. ∗ ( 1 . / ( l o g ( 1 0 ) . ∗ ( r a t e s ( i d x E m a i l ) − minEmailRateReq ) ) )
. / l og10 ( r a t e s ( end ) − minEmailRateReq ) ;

e m a i l U t i l i t y F u n c t i o n ( 1 , i d x E m a i l ) = p r i o r i t i e s ( 3 ) . ∗ l og10 (
r a t e s ( i d x E m a i l ) − minEmailRateReq ) . / l og10 ( r a t e s ( end ) −

minEmailRateReq ) ;

u t i l i t y F u n c t i o n s D i f f (mm, : ) = v o i c e U t i l i t y F u n c t i o n D i f f +
v i d e o U t i l i t y F u n c t i o n D i f f + e m a i l U t i l i t y F u n c t i o n D i f f ;

% Find t h e concave f i t

u t i l i t y F u n c t i o n s = v o i c e U t i l i t y F u n c t i o n +
v i d e o U t i l i t y F u n c t i o n + e m a i l U t i l i t y F u n c t i o n ;

end
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% Solve U t i l i t y F u n c t i o n s u s i n g Frank K e l l y

i n i t i a l W e i g h t s = i n i t i a l B i d s 1 ;

ra tesTmp = repmat ( r a t e s , N, 1 ) ;

d i s p ( ’ C a r r i e r 1 ’ )

% Need t o h a n d l e t h e c a s e where t h e u s e r 1 i s s m a l l e r t h a n
u s e r 2

[ u s e r R a t e s , shadowPr ice , numI t s ] =
f r a n k K e l l y V e c t o r i z e d ( u t i l i t y F u n c t i o n s D i f f ( 1 : numUsers1 , : ) ,

r a tesTmp ( 1 : numUsers1 , : ) , i n i t i a l W e i g h t s , maxRate ) ;

i f numUsers1 >= numUsers2

u s e r R a t e s F i n a l C a r r i e r 1 ( kk , : ) = u s e r R a t e s ;

s h a d o w P r i c e F i n a l C a r r i e r 1 ( kk ) = shadowPr i ce ;

n u m I t s F i n a l C a r r i e r 1 ( kk ) = numI t s ;

e l s e

u s e r R a t e s F i n a l C a r r i e r 1 ( kk , : ) = [ u s e r R a t e s z e r o s ( 1 ,
numUsers2−numUsers1 ) ] ;

s h a d o w P r i c e F i n a l C a r r i e r 1 ( kk ) = shadowPr i ce ;

n u m I t s F i n a l C a r r i e r 1 ( kk ) = numI t s ;

end

% C a r r i e r 2

d i s p ( ’ C a r r i e r 2 ’ )
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u t i l i t y F u n c t i o n s D i f f C a r r i e r 2 = nan ( s i z e ( u t i l i t y F u n c t i o n s D i f f )
) ;

% ra tesTmp = nan ( ra tesTmp ) ;

f o r nn = 1 :N

[ va l , i d x S t a r t ] = min ( abs ( r a t e s − u s e r R a t e s F i n a l C a r r i e r 1 (
kk , nn ) ) ) ;

u t i l i t y F u n c t i o n s D i f f C a r r i e r 2 ( nn , 1 : l e n g t h (
u t i l i t y F u n c t i o n s D i f f ( nn , i d x S t a r t : end ) ) ) =
u t i l i t y F u n c t i o n s D i f f ( nn , i d x S t a r t : end ) ;

end

% Choose t h e f i r s t numUsers2 f o r t h e second c a r r i e r

i f numUsers2 > 0

u t i l i t y F u n c t i o n s D i f f C a r r i e r 2 =
u t i l i t y F u n c t i o n s D i f f C a r r i e r 2 ( 1 : numUsers2 , : ) ;

ra tesTmp = ra tesTmp ( 1 : numUsers2 , : ) ;

i n i t i a l W e i g h t s = i n i t i a l B i d s 2 ;

idxMax = f i n d ( r a t e s == maxRate ) ;

[ u s e r R a t e s , shadowPr ice , numI t s ] = f r a n k K e l l y V e c t o r i z e d (
u t i l i t y F u n c t i o n s D i f f C a r r i e r 2 ( : , 1 : idxMax ) , ra tesTmp
( : , 1 : idxMax ) , i n i t i a l W e i g h t s , maxRate ) ;

u s e r R a t e s F i n a l C a r r i e r 2 ( kk , : ) = u s e r R a t e s ;

s h a d o w P r i c e F i n a l C a r r i e r 2 ( kk ) = shadowPr i ce ;

n u m I t s F i n a l C a r r i e r 2 ( kk ) = numI t s ;

e l s e

u s e r R a t e s F i n a l C a r r i e r 2 ( kk , : ) = NaN ;
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s h a d o w P r i c e F i n a l C a r r i e r 2 ( kk ) = NaN ;

n u m I t s F i n a l C a r r i e r 2 ( kk ) = NaN ;

end

end

no nCo nca veR esu l t s . u s e r R a t e s C a r r i e r 1 = u s e r R a t e s F i n a l C a r r i e r 1 ;

no nCo nca veR esu l t s . s h a d o w P r i c e C a r r i e r 1 = s h a d o w P r i c e F i n a l C a r r i e r 1 ;

no nCo nca veR esu l t s . n u m I t s C a r r i e r 1 = n u m I t s F i n a l C a r r i e r 1 ;

no nCo nca veR esu l t s . u s e r R a t e s C a r r i e r 2 = u s e r R a t e s F i n a l C a r r i e r 2 ;

no nCo nca veR esu l t s . s h a d o w P r i c e C a r r i e r 2 = s h a d o w P r i c e F i n a l C a r r i e r 2 ;

no nCo nca veR esu l t s . n u m I t s C a r r i e r 2 = n u m I t s F i n a l C a r r i e r 2 ;
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