A Computer Model to Estimate Commercial Aviation Fuel Consumption and
Emissions in the Continental United States

by
Zhihao Zou

Thesis submitted to the faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
IN
CIVIL ENGINEERING

Antonio A. Trani, Chair
Linbing Wang,
Montasir M. Abbas,

November 13, 2012
Blacksburg, Virginia

Keywords: Fuel Consumption, Emissions, TASM, BADA, Aircraft, Air Transportation

A Computer Model to Estimate Commercial Aviation Fuel Consumption and
Emissions in the Continental United States

Zhihao Zou

ABSTRACT

A comprehensive model is developed to estimate and predict the fuel consumption and emissions
by domestic commercial aviation in the Continental United States. Most of the existing fuel
consumption and emission models are limited in their ability to predict the annual fuel burn for
air transportation at the national level. For example, those models either require real track data or
are developed only to model single flight scenarios. The model developed in this thesis is part of
a software framework called the Transportation Systems Analysis Model (TSAM). The model
has the capability to estimate fuel consumption and emissions for millions of domestic flights in
a year in the continental U.S. TSAM is a nationwide, long-distance, multimodal travel demand
forecast model developed at Virginia Tech. The model enables TSAM to quantify fuel and

emission metrics for various modes of transportation.

The EUROCONTROL Base of Aircraft Data (BADA) is employed as the Aircraft Performance
Model to simulate individual flight profiles and calculate fuel burn rates. Fuel consumption on
the ground (taxi mode) is estimated separately. Different operational conditions like wind states,
terminal area detour, cruise altitude and airport elevation are considered in the model. Emissions
of HC, CO, NOx and SOx are computed inside the Landing/Take-off (LTO) cycle based on the
fuel consumption estimate, while greenhouse gas of CO; is calculated for the complete flight
cycle.

ACKNOWLEDGEMENTS

| must first thank Dr.Trani for offering me the opportunity to work at his lab, guiding me and
supporting me through my graduate study at Virginia Tech. His patience and humbleness have
left an everlasting impression. | would also like to thank Dr.Abbas and Dr.Wang for being my

committee members and providing me suggestion in the research.

Second, I would like to thank Maria Rye, a student in Aerospace Engineering. Her contributions
in the initial stages of the model development are greatly appreciated. Additionally, | want to

thank my lab mate Saloni Chirania especially for helping me with my English language skills.

Finally, I am grateful to my family. Without your support, | cannot have done so many things
and | could not complete my graduate studies in the United States. | am always indebted to you.
This work is also dedicated to my aunt and uncle who died when | was studying in the United

States. | missed the chance to see you last time, but you are in my memory forever, R.I.P.

ATTRIBUTION

Maria Rye, a student in Aerospace Engineering, has helped in the development of this model.

Following is a brief description of her contributions to the research project.
Section 3.4: Flight Profile Generation

Maria developed the code to create climb and descent profiles in flight profile generation. She
also created a custom Runge Kutta 4™ order ODE solver to integrate the wind vectors into flight

profile.
Section 3.7: Wind Effect Analysis

She developed a function in MATLAB to calculate the wind vector at the given coordinates and

altitude.
Section 3.8: Analysis of Terminal Area Detour Factor

She did the cluster analysis for the airports in the region where PDARS data are available. She

created the mechanism and developed the code to extract detour factor for each airport.

Table of Contents

LIST Of FIGURES ...ttt bbbttt bbbt viii
I IS 0 1A = I TR X
1. INTRODUCTION ...ttt ettt bbb b et s et e b sbenbe b ebenreas 1
IR = - Tod (o {00 o OSSR 1

1.2 TSAM OVEIVIBW......oiuiiiiieiiieie ettt sttt sttt saeesteestesreesbeentesseesteenaesneenneesens 3

1.3 RESEAICH SCOPE . .eiiieiiiiie ettt et e st e et e e e sreeneeneenreente s 6

1.4 ReSEArCh ODJECLIVEcceeiice et e re e 7

2. LITERATURE REVIEW ...ttt ettt na e ans 8
2.1 OVEIVIBW ...ttt bbbttt et bbbttt b b e s et e b nbe et e nbenreenes 8

2.2 Existing Fuel Consumption and Emissions Estimation Model...............c.cccooeinennene 8
2.2.1 Fuel Consumption MOEL...........coccoiiiiiiiiiiee e 8

2.2.2 EMISSION MOGEL........oiiiiiiiiiiiceseee e 10

2.3 Base of Aircraft Data (BADA)ccvoiieece e 11

3. METHODOLOGY ..ottt ettt sttt neanaesa et enaesaesaestennennaaneas 13
K 201 A 101 oo [Tod 1 o o SRR 13

3.2 MOGEI STFUCKUIE ..ottt st eneas 13

3.3 Application of BADA MOUEL.........coeiiiiiiiiiiiieeee e 15

1 T8 250 N 101 1 oo [FTox 1 oo IS 15

3.3.2 BADA Thrust Specific Fuel Consumption Modelccccccveveivevninnenne. 15

3.3.3 BADA Airline Procedures Modelcccooveviiiniieni i 17

3.3.4 AIMOSPEriC MO ..o 22

3.4 Flight Profile GENErationcccccveiiiiiieiie ittt 24

3.5 Stochastic Assignment of Cruise AITITUAEc.ooerieiiiiiiiii 26

3.5.1 CrOSSOVEN POINTiiviiiieiisiie st eie et eie ettt e e sra et eneesne e e eneenns 29

3.5.2 Regression Analysis for the Boundaryc.ccocveviviiieii i 31

3.5.3 Empirical CDF for Cruise AItITUAES.cccoviriiiiinieieiee s 32

3.6 FHGht Track WaYPOINTSccviiiiiieieie e 36

3.7 WINd EFfeCt ANAIYSIS....ccciiiiieiiiiecie et 37

3.8 Analysis of Terminal Area Detour FaCIOrcccoreriieniiinicieiee e 43

3.9 Ground Fuel Consumption EStIMationccoceveiiniienininineee e 47

3.10 EMISSION IMOGEL ... e 49

4. MODEL RESULTS AND VALIDATION ..ottt 52

4.1 Fuel Consumption Results and Validationcccccevviieiieiieie e 52
4.2 Comparison of Fuel Flow Rates between BADA Data and Model Output............. 55
5. CONGCLUSION ..ottt sttt sttt e et be s be et e e seese e e e saesbesresnearaaneas 59
6. RECOMMENDATIONS......cotiitiitiit ettt bbbt bbb be e eneas 61
6.1 Terminal Area Flight Profile..........coooiiiii i 61
6.2 WING STALES ...ttt sttt st nb et nreenteenee e 61
6.3 Ground Fuel Consumption and EMISSIONSccccceveereiiieieerie e seese e 62
REFERENGCESottt bbbt bbb bbbt bbbt ean e 63
APPENDIX A: Model FIOWCNAITS........coiiiiiieieec e 66
A.L FUNCLION DEPENAEBNCYoveeveeie ettt ettt ettt e sra e re e steeee s 66
A.2 Flight Profile GeNEratorccocviiiiiiie e 67
A.3 Flight_Profile_RANA_FLcccooiiiieiiie e 68
YN O 1 (ol U] = OSSPSR 69
A.5 Generate CHMD _Profilecccooviiiiieic e 70
AB F _ClIMBD _COBT ...t 71
A.7 Speed_Calculator CHMDccooiiiice e 72
A8 ROC _CalCUIALONccueeiiiieiieecie ettt sreesre e sreenae s 73
A.9 FuelFlow_Calculator_ CHMD.........ccoooiiieiieece e 74
ALLO WING_CAlCUIALON ...ttt ee s 75
ALLL TKASYS oottt ettt ettt e et e et e ra e be e te e e nreenreenaenreeee s 76
A.12 Generate_DesSCeNnt _Profilecooveiiieiieeee e 77
F N B e I 1Tl o1 o | PSSR UUR PRSI 78
A.14 Generate_Cruise_Profile_COef ..o 79
A.15 FUuelFIow_CalCulator _CrUISEcccveiueiierierieeiesieesie e e sie e stee e e sneeseesnaesneeneens 80
APPENDIX B: MATLAB SOUICE COUEcuveuveieieciecie ettt ans 81
B.1 Flight Profile GENEratorcccoieiiieieiccie et 81
B.2 Flight_Profile_RaNd_FL.M .ooiiiiiieicc e 87
I O [N - (= I o SRS 94
B.4 Generate_ ClIMb_Profile.mcc.oooiiii e 96
o T e O 1T o T O =) o SR 100
B.6 Speed_Calculator CIMDB.IMooiiiiiieece e 106
B.7 ROC_CalCUIALOr.Miiiiiecie ettt 109
B.8 FuelFlow_Calculator CHMD.M......cc.ooieiieeie e 112

Vi

B.9 WiNd_CalCUlator.mooiiiiiieie e 115

BL10 TKASYS.IM ..t et a e reenae e 118
B.11 Generate_Descent Profile.m.........cccoeiiiiiiicii e 120
o e B L= od=T o I o PSR POTRRPP PR 124
B.13 Generate_Cruise_Profile_Coef.mcccooiiiiiiii e 128
B.14 FuelFlow_Calculator CrUISE.IMccveiiiiieiie e 134

vii

Figure 1.
Figure 2
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.
Figure 19.
Figure 20.

Figure 21.

Figure 22.
Figure 23.

LIST of FIGURES

Trend Of JEtAL Prices OVEr THe YEAIS......cccviieiiiie e 1
Percentage Of Fuel Expense In The Airline's Total Operating Cost...........cccocevvvervennns 2
SEIUCTUIE OF TSAM ...ttt bbbt b bbb ens 5
Structure And Components Of TSAM Fuel And Emissions Model.ccccuc....... 14
Flight Profile Of Airbus A320 From ATL TO LAX ..o 26
Airbus A320 ETMS Cruise Altitude ASSIgNMENL.ccoiiiiiiiiiicieec e 28
Crossover Point FOr AIrBUS A320.coiiiiiiiieieree e 30
Highest And Lowest Altitudes IN A BiN.cccooeiiiiieiecicceece e 31
Upper Bound And Lower Bound For The Cruise Altitudes For Airbus A320. 32
Sections Assignment For Airbus A320 Heading East............ccoovieiiiiicnencicice 33
Empirical CDFs For Cruise Altitude Assignment Of Airbus A320 Heading East. ... 34
Cruise Altitude Assignment Of Airbus A320 Flying East Generated By The Monte
(OF 14 [0 IST 100101 - 14 o] o U 35
3D View Of Airbus A320 Flies From ATL To LAX Generated By The Model....... 36
3-D Plot Of Annual Average Wind Effect At Different Pressure Levels. 38
Wind Vector Plot At 40°N, -95°W At Different Altitudes.cccooereveiiiieiiiinnns 39
Process For Combining The Wind And Aircraft Speed Vectors.ccocovvrvrennnne. 40
Different Flight Profiles Of A320 From PHX To ATL Under Wind And No-Wind
(070] 1o 11 1T 0SSOSO 41
Ground And Wind Speeds Of An A320 Flying From PHX To ATL With And
WIENOUE WING. ...ttt nneas 42
PDARS Installation In The U.S. AS Of 2004........cccoviiiieiesieseese e 44
GCD Tracks Compare To PDARS Tracks For Arrivals.cccooeviveveiieneeieseee, 45
Relationship Between Taxi-in Time And Number Of Arrivals At ASPM 77 Airport.
... 48
Comparison Of Modeled Fuel Consumption To The RITA Reported Number......... 53

Yearly Trend Of Fuel Consumption Estimated By Model And Reported By RITA. 54

viii

Figure 24.

Figure 25.

Figure 26.
Figure 27.

Comparison of Fuel Flow Rates for Airbus A320 Between BADA PTF and Model

O 111101 | S OO RUPRPIN 55
Comparison of Fuel Flow Rates for Boeing 737-300 Between BADA PTF and Model
OULPUL. ettt e b 56
Fuel Burn Trend FOr Airbus A320 ... 57
Fuel Burn Trend For Boeing 737-300.......ccccoeiieiieiieieeie e see e e see e 58

Table 1.
Table 2.
Table 3.

Table 4.
Table 5.
Table 6.
Table 7.

LIST of TABLES

Parameters Of BADA Airline Procedure Model For Airbus A320........ccccccevvieinenns 18
Incremental Variables For Speed Schedules. ... 20
Different Flight Profiles Of A320 From PHX To ATL With And Without Wind Effect.

.. 42
Variables In PDARS Dataset That Used In Cluster Analysis.cccccooevininiiienennnnn 46
Cluster Characteristics And Associated Detour Factor.cccocceveieniniienenieseeins 46
Sample Of Emission Factors For Some Aircraft Types Extracted From EDMS. 50
Model Outputs Compare To RITA Fuel Burn REPOIt.ccccevveviiiiieece e 53

1. INTRODUCTION

1.1 Background

High fuel prices have been a major concern for the aviation community for many years, which is
now a significant hurdle. As we can see in Figure 1, the price of JetAl fuel keeps at high levels

since 2005 (Bureau of Transportation Statistics, 2012).

Dollars per gallon

o

O

Mon-scheduled

3.50 -

3.00 -+

2.50 4

200 -

1.50 -

Scheduled
1O

0.50

i

0.00 : . : i i : ; ‘ :
Jan-02 Jan-04 Jan-08 Jan-08 Jan-10 Jam-12

Figure 1. Trend Of JetAl Prices Over The Years (Source: BTS 2012). Used Under Fair
Use, 2012.

It is also reported that jet fuel prices accounted for 25.6% of airline operating expenses in2010.

(Bureau of Transportation Statistics, 2012) Changes in fuel costs significantly affect ticket prices

and airline’s profitability. Figure 2 demonstrates the percentage of the fuel costs among airline’s

total operating cost from 2003 to 2012 (IATA, 2012).

ld=Percetage Of Fuel Cost In

32% Airlines Total Operating Cost i 33% i 33%
Wl 30%
Ll 28%
27%
Wl 26% ld Wl 26%
26%

22% W-22%
17% L-17%

Wl 14%
12% L] L] L] L] L] L] L] L] L] 1

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 2 Percentage Of Fuel Expense In The Airline's Total Operating Cost (Source:
IATA). Used Under Fair Use, 2012.

A desire for new aircraft that have better performance in speed, payload and range is limited by
the fuel efficiency. Aircraft manufacturers are focusing their effort in marketing fuel-efficient

and environment-friendly airliners. The unveiling of Boeing 787 Dreamliner is a good example.

Additionally, from the perspective of transportation mode choice, energy consumption is also of
more concern than ever with the constant increases in fuel prices. Reduced vehicle energy

consumption means lower travel cost for long distance travelers, resulting in a potential increase
demand for the air transportation mode. To predict the future demand and energy consumption, a
multimodal intercity model is needed to capture the effect of fuel consumption and emissions on

the market share of different transportation modes in United States.

The Transportation System Analysis Model (TSAM) is a multi-mode, national-level,
transportation framework developed at Virginia Tech using the classical four-step planning
process (Wing-Ho, 2008). TSAM currently evaluates demand for commercial airline, automobile
and high-speed rail. TSAM estimates county-to-county, nationwide demand for each mode of
transportation using county-level socio-economic data forecast available until 2040. With the
model presented in this thesis, TSAM is now able to estimate the energy consumption and
emissions for various modes of transportation there by allowing users to analyze the benefits of

technologies that could impact energy efficiency and the environment.

1.2 TSAM Overview

The transportation systems analysis model (TSAM) was developed to understand the
interrelationships among ground and air transportation systems in the United States (Trani,
2008). There are 3091 counties along with 443 commercial service airports modeled in TSAM
(Ashiabor, Baik and Trani, 2007). Each county is associated with n candidate airports including
the closest airports by driving distance, the cheapest airports by average fare and the airports
with the highest enplanements (Trani, 2008). TSAM forecasts annual person round-trips by air
taxi, commercial airline, rail and automobile between all counties in the U.S. The process of
demand estimation is separated into business and nonbusiness trip purposes and five household
income group levels (Trani, 2008). The mode choice model in TSAM outputs person round-trips
for each mode by trip purpose and household income group for all county pairs. The commercial
airline network assignment model in TSAM uses the origin-destination airport person round-trip
demand to calculate the number of passengers on each commercial airline route. TSAM employs
a multinomial logit model to calculate the probability of each commercial airline route being

selected by a traveler on the basis of travel time and airfare. With the demand on each

commercial airline route, it is possible to estimate the fuel consumption and emissions for the

commercial airline mode. The structure of TSAM is shown in Figure 3 (Chirania, 2012).

American Travel 1. Trip Woogi é\:oole
Survey (ATS Generation ooy
= (1995 — 2040) Database 2012

A

2. Trip
Distribution
(1995 — 2040)

Driving Distances
and Driving Times
(Microsoft Map Point)

Eurocontrol Base of
Alrcraft Data (BADA)
Database

Vehicle
Performance
< Models

z Business and Commercial
Vemge(;ost Aviation Magazine Aircraft
/ Cost Database
: O

Commercial Airport
to Airport Travel

Times ‘
Commercial Airline
Network

Train Station to
Station Travel
Time

Commercial
Airine Schedule

3. Mode
Choice
(1995 — 2040)

Federal Aviation
Administration (FAA)
Airport Database

Airport Choice
Model

Train Schedule .

Acela Station to
Station Travel

County to Station Driving
Distances and Times using

\ Train Station

Time

Choice Model :
| Train Network ! Meppon
| (including Acela 1 PR A s s et
] after 2000) |
! Commercial Airline
) Fares (DB1B)
] Amtrak Cost curves for 1
| different lines v
|
s i 8 4. Network Airport
Assignment (e Capacity and
(1995 — 2040) Delay Model
jm—————— y'/
I]
! Model Outputs ! Model Outputs:
| 1) Station Operations | 1) Airport O y
rport Operations
[} a) Nationwide Ridership] a) Commercial Airline
1 b) North East Ridership 1 b) Cargo Four-Step Model
| c) Future High Speed Rail Ridership |) VL)
2) Enroute Operations -
| | 3) Enplanements Support: Nodst
]] a) Domestic
O U e PR U SR SIS PR P S b) Intemnational ‘
4) Mobility benefits
5) Energy and fuel Impacts PR P —
‘-Proposed Addition |
e

Fuel Consumption and
lOIherAnaIyzlnnglmulallng Models |<— Emission Estimation Model

Figure 3. Structure Of TSAM (Chirania, 2012). Used With Permission Of Saloni
Chirania, 2012,

1.3 Research Scope

The main objective of the computer model presented is to estimate commercial aviation fuel and
emissions for all phases of flight. An accurate estimation of fuel and emissions will help to
analyze the benefits of each transportation mode in terms of energy efficiency and environmental
impacts. Additionally, the model developed can help policy makers to decide the future
investment and developments for each transportation mode. The scope of this research model can
be summarized as follows:

e Apply the BADA model along with other models and databases to estimate the fuel
consumption based on the flight demand produced by TSAM.

o Validate the model by using T100 data as model input (flight information) and
validate the result with Bureau of Transportation Statistics (BTS) airline fuel
consumption reports.

e Develop a sub-model to calculate the emissions by produced commercial airlines
based on the output of fuel consumption estimation model.

To reach these objectives, the EUROCONTROL BADA Aircraft Performance Model is used to
produce an aircraft flight profile. FAA Enhanced Traffic Management System (ETMS) data are
used to obtain flight waypoints and assign flown cruise altitudes. The performance Data Analysis
and Reporting System (PDARS) data is used to extract terminal area detour factors. The FAA
Aviation System Performance Metrics (ASPM) provides data for airport taxi out and taxi in time
which is essential for ground fuel consumption and estimation. Finally, wind states are also taken
into account in the model. The NCAR/NCEP database provides wind data for a given day for all
coordinates and altitudes in the continental US. To estimate emissions, we used the emission

factors database contained in the FAA Emissions and Dispersion Modeling System (EDMS).

1.4 Research Objective

The aim of the work is to develop a model to estimate current and future fuel consumptions and
emissions for the commercial airline demand predicted by TSAM. The model should be generic
to also be able to handle other input such as NASA ACES data or T100 data. Econometric
models use factors such as demography and social economics to predict the energy consumption
in the future. This work aims at developing a more realistic and comprehensive model based on
parameters like demand, change of the route, cruise altitude assignment, to name a few. Further,
another practical potential of the model is the sensitivity analysis to aid decision making for Air
Traffic Management. The current state of the model can perform sensitivity tests on parameters

like speed, take-off weight, and cruise altitude.

2. LITERATURE REVIEW

2.1 Overview

The fuel and emissions model developed has two sub-models: 1) a fuel consumption sub-model
and 2) an emissions sub-model. In this chapter, we present past efforts to model aviation fuel
consumption and emissions. Consulting companies, research institutes, governments and
international organizations have developed models and calculators to estimate fuel consumption
and emissions. However, most of the existing models are limited in their capability predict
annual fuel burn for air transportation at the national level. For example, those models either

require real track data or are developed only to model single flights.

2.2 Existing Fuel Consumption and Emissions Estimation Model

2.2.1 Fuel Consumption Model

In the early 1980s, B.P.Collins proposed an algorithm to predict aircraft fuel consumption
derived from the basic concept of energy balance which can be expressed as

(energy in) - (energy loss) = (energy change). When expressed in terms of aircraft
physical variables, f(E;) — f(Ep) = f(AKE) + f(APE) where E; is thrust energy, Ej, is drag
energy, and AKE and APE are the changes in kinetic and potential energies respectively (Collins,
1982). It is assumed that the changes in the consumption of fuel energy continuously balance the
energy losses and gains as a system during the aircraft flight. The only variables that need to be
considered in Collin’s algorithm are the aircraft configuration, weight, and path profile. The true

airspeed, altitude and time are employed to describe the aircraft path profile. In his model, the

total path profile is divided into increments of altitude for every 2000 feet during climb and
descent phase or 200 seconds of time increment during the cruise phase. The fuel estimation
accuracy of the algorithm has been verified using cockpit data and air traffic control en-route

data and terminal area radar data.

Wing-Ho and Trani developed a method to estimate fuel consumption using an artificial neural
network (Wing-Ho, 2004). The model was developed using the data extracted from aircraft
performance manual. The technique of neural network was introduced in their work and it could
be trained to estimate fuel consumption of example aircraft. In the model, the aircraft fuel
consumption data was obtained from flight performance manual of individual aircraft is imported
into the neural network. The network was trained using LMQ algorithms and the output of the
model was fuel flow. The data used in the artificial neural network model was applicable to the

Fokker 100 equipped with Rolls-Royce Tay 650 engines and the SAAB 2000 turboprop aircraft.

More recently, Chatterji proposed a way of fuel burn estimation using real track data (Chatterji,
2011). In his work, the BADA fuel consumption model is applied to determine the fuel flow rate.
It is developed in Chatterji’s model that the variables of altitude, airspeed and thrust are required
to estimate the fuel consumption. Airspeed is determined by latitude, longitude and altitude
which can be expressed as a function of time. The latitude, longitude, altitude is extracted from
flight trajectory data. Drag and lift which depends on estimated aircraft and wind states and
weight are calculated to estimate the aircraft engine thrust. Once the thrust, altitude and airspeed
are available, fuel flow rate can be estimated using BADA model. The model is validated by
comparing the result to the actual data from Flight Data Recorder (FDR). However, due to the

limit of aircraft types in BADA, the author compares the modeled aircraft of Bombardier Global

5000 to a Bombardier RJ-900 Regional Jet which can lead to some inconsistencies in

characteristics of aircraft performance.

Senzig presented a model for estimating terminal area airplane fuel consumption which is
integrated in FAA aviation environmental tool — the Aviation Environmental Design Tool
(AEDT) (Senzig, Fleming and lovinelli, 2009). In this model, a thrust specific fuel consumption

algorithm has been developed as follows:

TSFC/\NO = Ky + KM + Kzhys, + K,F/8, (1)

where 6 is the temperature ratio, M is the Mach number, hy,g; is the height above mean sea
level, F /& is the net corrected thrust, § is the pressure ratio. The coefficients K; are determined

for individual aircraft types. Similarly, the arrival TSFC algorithm is expressed as

TSFC/NO = a + By M + Bye~Ps(F/5/Fo) (2)

in the model, « is the arrival thrust specific fuel consumption constant coefficient, ; is the
arrival thrust specific fuel consumption Mach number coefficient, 3, is the arrival thrust specific
fuel consumption thrust term coefficient. B4 is the arrival thrust specific fuel consumption thrust
coefficient, F, is the static thrust at sea level standard conditions. A major disadvantage of this
model is that it requires data from the airplane manufacturer which limit the general application

of the model to many aircraft types.

2.2.2 Emission Model

Several models and calculators have been developed to estimate emissions. One such model is

the ICAO Carbon Emissions Calculator. The calculator employs a distance-based approach to

10

estimate fuel consumption first and then compute the carbon emission using a multiplicative
constant of 3.157, which represents the amount of CO, produced per ton of aviation fuel on
combustion (ICAO, 2010). In this model, a great circle distance is assumed for the flight distance
between the origin and destination airport. The fuel burn rate per kilometer is obtained from the
CORINAIR database. Many of the coefficients, factors and parameters are from databases

maintained by ICAO.

The ICAO Carbon Emissions Calculator only estimates the emission of greenhouse gas CO..
Other efforts have been done to estimate other emissions inside the Landing/Take-off (LTO)
cycle (ICAO, 2008). The FAA Emissions and Dispersion Modeling System (EDMS) is a model
that is capable of estimating emissions like CO, HC, NOx and SOx for a given aircraft inside the
LTO cycle (FAA, 2010; CSSI, 2010). In EDMS, the aircraft activities are classified into six
modes, approach, taxi-in, startup, taxi-out, takeoff and climb out. For each of the modes, an
emission factor is associated with a combination of aircraft type and engine. The emissions are
estimated based on the calculation of fuel consumption in the model and the emissions rate

database in the model.

2.3 Base of Aircraft Data (BADA)

The Base of Aircraft Data (BADA\) is an Aircraft Performance Model (APM) developed and
maintained by EUROCONTROL through active cooperation with aircraft manufactures and
operating airlines (EUROCONTROL, 2011). Some of the capabilities of BADA are designed to
calculate aircraft trajectory simulations and predictions as well as to better plan traffic flows,
reduce delays, operating costs, and minimize adverse environmental impact and environmental

studies.

11

BADA comprises of two components: model specifications and datasets. Model specifications
are the basic aerodynamic equations that characterize the motions of an aircraft in flight. BADA
uses a total energy model. The datasets contain model coefficients associated with each aircraft.
The model specifications apply to 90% of the current aircraft types operating in the European

Civil Aviation Conference (ECAC) airspace.

BADA provides three different kinds of datasets for each modeled aircraft type. The Operations
Performance Files (OPF) contains the thrust, drag and fuel coefficients with information on
aircraft weights, speeds and maximum altitude for the specified aircraft type. The Airline
Performance File (APF) presents a default operational climb, cruise and descent speed schedule
which is normally flown by airlines. The Performance Tables File (PTF) provides the nominal
performance of the modeled aircraft in the form of a look-up table. It enables the user to obtain
the aircraft average performance data directly without implementing the BADA Total Energy

Model.

Many aircraft types can be mapped to the 117 BADA aircraft types (Version 3.9) enabling

BADA to evaluate up to 339 different aircraft types.

12

3. METHODOLOGY

3.1 Introduction

This chapter describes the methodology used to estimate fuel and emissions. The application of
the BADA model for generating flight profiles is explained in this chapter. The modeling of
wind states, terminal area detours, airport taxi time and cruise altitude assignment are explained

in this chapter.

3.2 Model Structure

The model developed includes several modules and nested procedures. A flight profile is
modeled using equations and coefficients from the BADA database. Taxi fuel burn is estimated
by analyzing real airport taxi times contained in the FAA Airport Performance Metrics (APM)
Database. Operational conditions are considered in the model such as wind states, terminal area
detour effect, cruise altitude assignment, and airport elevation. Figure 4 shows the structure of
the model. The required model inputs are Origin-Destination (OD) pair information and the
aircraft type. The model treats each unique OD pair and aircraft type combination as one flight.
The model input can have hundreds of thousands flights in the form of a daily or yearly flight

schedule. The flight demand data is obtained from the TSAM’s mode choice model output.

13

OD Pair

_| Airport Data

Lat, Long
Coordinates;
Elevation

from OAG
Database

Extract Mapping to

BADA

Aircraft
Type

Aircraft
Type

Mapped to 117
BADA Types

A

Wind State Generate

Terminal

Analysis Flight Profile |

Calculate
En-route Fuel
Consumption
and Emission

A

Estimate
Departure
Taxi Out and
Arrival Taxi In
Times

A

Calculate
Ground Fuel
Consumption
and Emission

A

Effect
Analysis

Area Detour

Calculate
Total Fuel
Consumption
and Emissions

Figure 4. Structure And Components Of TSAM Fuel And Emissions Model.

14

3.3 Application of BADA Model

3.3.1 Introduction

In order to estimate the fuel consumption, we estimate the fuel flow rate for all flights conditions.
Fuel flow rate is a very dynamic parameter. Fuel flow rate is a function of atmospheric

parameters, speed and weight.

The BADA model provides a parameter called Thrust Specific Fuel Consumption (n
[kg/(min-KN)]) that helps calculate the fuel flow rate at different flying conditions. The model is
specified as a function of the true airspeed (TAS) for jet and turboprop engines. The BADA

model provides typical profiles for true airspeed.

3.3.2 BADA Thrust Specific Fuel Consumption Model

BADA specifies the thrust specific fuel consumption (n) as a function of the TAS for jet and

turboprop engines as shown in equations 3 — 4 (EUROCONTROL, 2011).

V.
Jet Aircraft: n==Cq X1+ CTAS

f2

) (3)

V. %
Turboprop Aircraft: n = Cpy X <1 - TAS) X (TAS) 4)

Cr,)~ 1000

Where C¢; and Cr, are model constants fuel flow factors, Vs is the true airspeed and 7 is the

thrust specific fuel consumption.

The true airspeed can be calculated by correcting calibrated airspeed (CAS) by density and

compressibility effects. BADA provides airline procedure models and parameters in the Airlines

15

Procedures File (APF) to calculate the aircraft calibrated airspeed in climb, cruise and descent

phases. All the fuel flow factors C can be obtained from the BADA Operational File (OPF).

The nominal fuel flow rate f,,,, IS applicable to all phases of flight except in idle descent and
cruise. f,om can then be calculated using the thrust Thr for jet and turboprop engine in Equation

5. For piston engines, f,.m 1S specified as a constant (Equation 6) (EUROCONTROL, 2011).
Jet/Turboprop Aircraft: frnom =N X Thr (5)
Piston Aircraft: frorm = Cr1 (6)

In the descent phase, idle thrust conditions are assumed and the minimum fuel flow rate f,;, is
the function of geopotential pressure altitude H,, [ft] for jet and turboprop engines (Equation 7).
For piston aircraft, an additional constant is used as shown in Equation 8 (EUROCONTROL,

2011).
. Hp
Jet/Turboprop Aircraft: fmin = Cr3(1 — T) (7)
£4

Piston Aircraft: fmin = Cr3 (8)

The cruise fuel flow in the BADA model is calculated using the thrust specific fuel consumption
n, the thrust Thr, and a cruise fuel flow factor Cr, for jet and turboprop engine aircraft
(Equation 9). For piston engine, the cruise fuel flow is obtained by multiplying the constant to

the cruise fuel flow factor which is shown in equation (10) (EUROCONTROL, 2011).

Jet/Turboprop: fer =0 X Thr X Cpep 9)

16

Piston: Jer = Cp1 X Cper (20)

Engine thrust is calculated using the coefficients and equations provided by BADA for three

different thrust levels: maximum climb and take-off, maximum cruise, and descent.

The model assumes that an aircraft climbs and descents using standard procedures. Additionally,
since it is impossible to know the takeoff weight for future flights, nominal mass conditions in

the BADA Performance Table File (PTF) are employed.

3.3.3 BADA Airline Procedures Model

As stated in the previous section, calibrated airspeed is required to calculate the true airspeed.
BADA provides an Airline Procedures Model to estimate CAS for three separate flight phases:
climb, cruise and descent. For each of these phases and each aircraft model, the Airline

Procedure Model requires the following information to determine the aircraft speed schedule.

l. BADA airline procedure default speeds which can be found in BADA Airline

Procedure File (APF).

Three values are obtained from APF. V; is the standard value of CAS [knots] below
10000 feet; V, is the standard value of CAS between 10000 feet and Mach transition

altitude; and M is the standard Mach number above the Mach transition altitude.

Table 1 shows the value of these variables for Airbus A320 in different phases of

flight extracted from BADA APF (EUROCONTROL, 2011).

17

Table 1. Parameters Of BADA Airline Procedure Model For Airbus A320.

Climb

Cruise

Descent

Between 10K ft

Between 10K ft

Between 10K ft

Below and Mach Below and Mach Below and Mach
10k ft transition 10k ft transition 10k ft transition
altitude altitude altitude
MASS CAS CAS MACH | CAS CAS MACH | CAS CAS MACH
Low 310 310 0.78 250 310 0.78 300 300 0.79
Average 310 310 0.78 250 310 0.78 300 300 0.79
High 310 310 0.78 250 310 0.78 300 300 0.79

18

Calculation of Mach transition altitude is described in Section 3.3.4.2.

Stall speeds for take-off and landing configurations are found in the BADA
Operations Performance File (OPF).

Minimum speed coefficients and speed schedules are also included.

Two minimum speed coefficients are specified in the user manual of the BADA
Model. One is the minimum speed coefficient for take-off (Cymin1o), the value of
which is 1.2. The other is the minimum speed coefficient for all other phases which is

set to a value of 1.3.

The BADA user manual states that “the speed schedules applicable below FL100 for
climb and descent are based on a factored stall speed plus increment valid for a
specified altitude range.” Table 2 lists the values of speed increments used in the

model for the climb and descent profile (EUROCONTROL, 2011).

19

Table 2. Incremental Variables For Speed Schedules.

Climb Descent
Variable Descrintion Value |Variable Descrintion Value
Name P [Kts] | Name P [Kts]
vd Climb Speed Increment 5 vd Descent Speed Increment 5
CL1 . H
below 1500 ft (jet) °%1 | below 1000 ft (jet/turboprop)
Climb Speed Increment Descent Speed Increment
Vde, . 10 | vd . 10
“* | below 3000 ft (jet) P%2 | below 1500 ft (jet/turboprop)
Climb Speed Increment Descent Speed Increment
Vda, . vd . 2
- below 4000 ft (jet) 30 P%3 | below 2000 ft (jet/turboprop) 0
Climb Speed Increment Descent Speed Increment
Vdc, . vd .
A below 5000 ft (jet) 60 P%4 | below 3000 ft (jet/turboprop) >0
Climb Speed Increment Descent Speed Increment
Vda, . 80 | vd . 5
“* | below 6000 ft (jet) bEs below 500 ft (piston)
Climb Speed Increment
Vdewe below 500 ft 20 | Vdoesg | DESCENtSpeedincrement |,
. below 1000 ft (piston)
(turbo/piston)
Climb Speed Increment
Ve below 1000 ft 30 | Vdosss De;;eo r\‘; Slzzzdﬂ'r('c'i'set”;:)"t 20
(turbo/piston) P
Climb Speed Increment
Vdcg below 1500 ft 35
(turbo/piston)

Having obtained these parameters, the speed schedule for climb, cruise and descent can then be

calculated using the Equations 11-48 (EUROCONTROL, 2011):

e CLIMB:

For jet aircraft:

From 0 to 1499 ft:
From 1500 to 2999 ft:
From 3000 to 3999 ft:
From 4000 to 4999 ft:

From 5000 ft to 5999 ft:

From 6000 ft to 9999 ft:

From 10000 ft to Mach transition
altitude:

Above Mach transition altitude:

Cmin ~ (Vsta)To + Va, , (11)
Cimin ~ (Vsta)To + Vi, , (12)
Cnin ~ (Vsta)To + Vi, , (13)
CVmin) (Vstall)TO + VdCL,4 (14)
CVmin) (Vstall)TO + VdCL,S (15)
min(V 1, 250 kt) (16)
Vc1,2 (17)

lv[cl (18)

20

For turboprop and piston aircraft:

From 0 to 499 ft:
From 500 to 999 ft:
From 1000 to 1499 ft:

From 1500 to 9999 ft:

From 10000 ft to Mach transition
altitude:

Above Mach transition altitude:

CRUISE
For jet aircraft:

From 0 to 2999 ft:

From 3000 to 5999 ft:

From 6000 to 13999 ft:

From 14000 ft to Mach transition
altitude:

Above Mach transition altitude:

For turboprop and piston aircraft:

From 0 to 2999 ft:

From 3000 to 5999 ft:

From 6000 to 9999 ft:

From 10000 ft to Mach transition
altitude:

Above Mach transition altitude:

DESCENT
For jet and turboprop aircraft:

From 0 to 999 ft:

From 1000 to 1499 ft:

From 1500 to 1999 ft:

From 2000 to 2999 ft:

From 3000 ft to 5999 ft:

From 6000 ft to 9999 ft:

From 10000 ft to Mach transition
altitude:

Above Mach transition altitude:

Cvmin * (Vstan)To + VdCL,6
Cymin * (Vsta)to + VdCL,7
Cvmin * (Vstan)To + VdCL,s

min(V 1, 250 kt)
Vc1,2
Mcl

min(Vg,,1,170 kt)
min(Ve, 1,220 kt)
min(Ve, 1, 250kt)

Ver,2
MCT‘

min(Vc, 1,150 kt)
min(V, 1, 180 kt)
min(Ve, 1,250 kt)

Vcr,z
M cr

CVmin * (Vstall)LD
CVmin * (Vstall)LD
CVmin * (Vstall)LD
CVmin * (Vstall)LD

+ Vdpesa
+ Vdpgs,,
+ Vdpess
+ Vdpesa

min(Vyes 1,220 kt)
min(Vges,1, 250 kt)

Vdes,z
Mdes

(19)
(20)
(21)
(22)
(23)
(24)

(25)
(26)
(27)
(28)

(29)

(30)
(31)
(32)

(33)
(34)

(35)
(36)
(37)
(38)
(39)
(40)

(41)
(42)

21

For piston aircraft:

From 0 to 499 ft: Cvmin * (Vstau)p + Vdpgss (43)

From 500 to 999 ft: Cvmin * Vstau)p + Vdpgse (44)

From 1000 to 1499 ft: Cvmin * (Vstau)p + Vdpgsy7 (45)

From 1500 to 9999 ft: Vdes 1 (46)

From 10000 ft to Mach tr:l??tllihoer: Voess (47)
Above Mach transition altitude: Mges (48)

3.3.4 Atmospheric Model

Conversion from CAS to TAS and Mach number requires several atmospheric parameters which

are a function of altitude.

3.3.4.1 International Standard Atmosphere (ISA)

The International Standard Atmosphere (ISA) published by the International Organization for
Standardization (ISO) is an atmospheric model of how the pressure, temperature, density, and
viscosity of the Earth’s atmosphere change over a wide range of altitudes (EUROCONTROL,

2011).

Mean Sea Level (MSL) Standard atmospheric conditions are those that occur in the ISA model at

the point where the geopotential pressure altitude Hy is zero. Sea level ISA values are:

Standard atmospheric temperature at MSL: T, = 288.15 [K]
Standard atmospheric pressure at MSL: po = 101325 [Pa]
Standard atmospheric density at MSL: po = 1.225 [kg/m®]
Speed of sound: ap = 340.294 [m/3]

Non-ISA atmospheric conditions follow the same model as the ISA atmosphere but differ in
temperature and pressure. AT represents the difference in atmospheric temperature at MSL

between a given non-standard atmosphere and ISA conditions. Similarly, Ap represents the

22

difference in atmospheric pressure at MSL between a given non-standard atmosphere and ISA

conditions.

3.3.4.2 ISA and Non-ISA Conversion

Some physical constants are defined in the conversion of atmospheric parameters between ISA

and non-ISA, they are:

Adiabatic index of air: k=14
Real gas constant for air: R = 287.05287 [m%/(Ks?)]
Gravitational acceleration: go = 9.80665 [m/s’]

ISA temperature gradient with

altitude below the tropopause: Pr.<=-0.0065 [K/m]

The subindex < denotes values below the tropopause and > denotes values above the tropopause

which is a layer located at a geopotential pressure altitude, Hyop 0f 11000 meters.

With these parameters, the temperature can be determined using the following equations:

T. = Ty + AT + BT,<Hp,< (49)
Tisatrop = To + Br.<Hp,trop (50)
Tirop = To + AT + Br< Hptrop (51)
Ts = Tirop (52)

The air pressure can be determined using the following equations:

T.— AT 9o
p< = po(——)Pr<R (53)
Tirop — AT 90
Ptrop = Po(TOZ.)T)ﬁT’<R (54)
g 0
0
D> = Ptrop€Xp[— m (Hp> — Hptrop)] (55)

Aiir density can be calculated using the pressure and the temperature at a given altitude:

p

=27 (56)

P

The speed of sound can be determined using the following expression:

23

a = VkRT (57)

Having the equations above, CAS can be converted to TAS using the standard Equation:

u
2
Vras = [;%{(1 (145 Vews?) - 1]) —uE 69)

(59)

Mach number can be obtained from TAS using Equation 60:

Vras = M X VkRT (60)
The Mach transition altitude is defined as the geopotential pressure altitude at which CAS and M

represent the same TAS value, and can be calculated as follows:

1000
Hy, trans = (m) “[To* (1= Oprans)] (61)

where 8,4, is the temperature ratio at the transition altitude,

Br<R

7o (62)

Htrans = (6trans)_

where &,4ns iS the pressure ratio at the transition altitude,

1+ ES D sz -1
Strans = k—1 0 K (63)
[1+ M2]e=1 — 1

2
3.4 Flight Profile Generation

The model uses a numerical integration approach to generate flight profiles to compute the fuel
consumption and emissions. The entire flight procedure is divided into increments of a variable
time changes in all phases of climb, cruise and descent. TAS, fuel flow rate, thrust and aircraft
weight are calculated in each iteration using the equations explained in the previous sections.
The aircraft position state along the track and altitude are calculated incrementally considering

the wind states.

24

In order to calculate the instantaneous parameters of altitude, distance and weight in each
iteration, an Ordinary Differential Equation (ODE) solver is required. Traditional ODE15s solver
takes about five seconds to complete this work which leads to an unacceptable model running
time. A customized Runge Kutta 4™ order (RK4) ODE solver has been developed to handle this

job. It takes only one second for the new solver to do the computation (Rye, 2010).

The RK4 solver takes inputs of derivatives of aircraft altitude, distance traveled, aircraft weight

and time span, and outputs the instantaneous values of those parameters.

For calculating the aircraft ground speed and total distance traveled, the customized RK4 solver

also runs to integrate the wind vector (Described in Section 3.7) into the aircraft true airspeed.

Before the generation of flight profiles, every flight is assigned a cruise altitude stochastically
based on the distance flown and aircraft type. The climb profile is nested in flight profile
generation when the altitude reaches the assigned cruise altitude in the calculation. The descent
profile is created as a second step as a reversed climb profile using descent parameters and
equations in the BADA model. The cruise profile is executed next for the distance left between

the climb and descent profile.

The total fuel consumed in the flight is obtained by subtracting the final aircraft weight from the
initial weight. Figure 5 demonstrates the flight profile of an Airbus A320 flying from Atlanta

(ATL) to Los Angeles (LAX) generated by the model.

25

ATL - LAX - A320__

Fuel Flow vs Distance

4 120 ; ;
| _oob T — _— _
3t W — : g
e \ % 80 ..
s | - <
g 2 _ 5 60 ..
< : g % 40 bt e s
1 L W _ =]
: \ B 20 J 4
: ; ; \ : *
0 : : . » 0 ' : '
0 1 2 3 4 0 500 1000 1500 2000
Time (hrs) Distance (Nautical Miles)
Speed vs Distance «10° Weight vs Time
500 1 . g 6.4 ! ; ,
5
- AQQ g s s i H vvvvvvvvvvv _ 174 B R s e G
§ 1 %) TR SV UOOOOUOOOE FUUPRRRRROTPOOOOT SO
= 300 ... 'S]
o) T 58
a Z
B 200 o BB ko smassmmmsarsasent oo S eiase
100 : : i 5.4 : ; :
0 500 1000 1500 2000 0 500 1000 1500 2000
Distance (Nautical Miles) Distance (Nautical Miles)

Figure 5. Flight Profile Of Airbus A320 From ATL To LAX.

3.5 Stochastic Assignment of Cruise Altitude

In the flight profile generation, each flight is assigned a cruise altitude stochastically. To prepare
the randomness observed in cruise altitude assignment, we use the Enhanced Traffic
Management System (ETMS) data as empirical reference. ETMS is a database of the Federal
Aviation Administration (FAA) developed to monitor air traffic operations both real-time and
off-line (FAA, 2012). The ETMS database contains flight waypoint information and cruise
altitude. In the analysis of cruise altitude assignment, the ETMS data are sorted for each unique

OD pair and aircraft type combination and segregated for different headings. The ETMS
26

database includes thousands of distinct aircraft. ETMS aircraft types are mapped to 117 BADA
aircraft types included in version 3.9. Figure 6 shows a sample cruise altitude assignment

trajectory for Airbus A320 extracted from the ETMS dataset.

27

FL (100s ft)

A320 - East

+
ﬂnb.o.m.o - s - !
- - -e
SR R IR B R SR R R e s s e e e -
“_- s o- RN e - . .
350 B e b L X L T T N
.- Ll
R it L - .- - LR L I B B R L
- B
- - e - . - .- - - - »
300 - . > »
e o . s ..
-
R AL - - - -
250 .o
. e -
.
- g
200
- s -
.. - -
150
.
100 .
-
- .
-
50 L A A A
0 500 1000 1500 2000
Distance (nm)
A320 - West
400 T v r T
- - -
SRR SRS SRR R SRR e e A
.- e . -
B MR SRR S AR S R R AR s R e e
350+ .. O
SRS B R S BRI S W s s B e B BRI R SRR AR .
- » -
LR I S LR S R L I R B e R R
- -
200+ B . T e S .
- . - . RS
-
250
-
.- -
-
200 - .
.-
Ry .
150
-
100+
-
-
S0
-
o L A A '
0 500 1000 1500 2000

Distance (nm)

Figure 6. Airbus A320 ETMS Cruise Altitude Assignment.

It is observed that flights tend to fly at FL350 and FL370 when heading east and FL340 and
FL360 when heading west for A320. Most of the flights that have a travel distance greater than
400 nautical miles flew above 24000 feet. A simulation technique employing an empirical

cumulative distribution function is used in order to replicate these tendencies.

3.5.1 Crossover Point

A Crossover Point is observed in the plots of ETMS cruise altitude data in figure 7. The
Crossover Point depicts the minimum flight distance when an aircraft can achieve the highest
flight level in the ETMS data for a specified aircraft type. Figure 7 demonstrates the concept of

Crossover Point in the plot.

29

Cross Point_High
&g A320 - East
‘m— T T T T
’ss.-;m;:::-sas; s B ¢
- - -.
' | B R .
L L L LR .-
350 ¢ B LI
.- R -
- e s - e A LR L L R R
.. :“ - . - - - .
e c.*u ¥ 4 - P
Cmee - - - -
e 250 - .4 [& .
§) ! Cross Point_Low
. s] -
= | ot |
T 200+ =
o | i -
- : : - -
150 - P
) !
! I
. | I
100+ g ! .
o
+ !)
’ ' i .
“ 1 l
w A A . H
0 o *. 500 1000 1500 2000
300 $00 Distance (nm)
Cross Point_High
-3 A320 - West
‘w T T T T
X -
SRR AR A SRR s e e v e
' L .. -
SN SRR A . R S SRR B R s A e e
380+ .. e
R e R R L R Rl I
'“-‘o:oo .- o: B R SRR R AR A T e
200 - [S ‘ooo- .ooo.’oo. L L L ..
FG - . .- -
. ,\
250 -
= '}" = Cross Point_Low
. e
]
8 20l ° § /-1
o .l -
e 1 =
~' -
150+ H :
« 1 1
1 1
100 - = 1
- :
1 1
50] 1
. ' l
! I
! I
o - A A 'S A
0 / \500 1000 1500 2000
200 400 Distance (nm)

Figure 7. Crossover Point For Airbus A320.

3.5.2 Regression Analysis for the Boundary

The cruise altitudes corresponding to a flight distance show an upper and a lower boundary. The

crossover point is accordingly split into two points denoted high and low crossover point.

Having identified the crossover points for each BADA aircraft type, a linear regression analysis

is performed to model the cruise altitude boundaries. Computationally, the distance flown is

divided into several bins with size of 50 nautical miles each. In each bin, the highest and lowest

altitudes are sorted out. The slope and intercept of upper bound and lower bound are calculated

using the highest and lowest altitude in each bin. Figure 8 shows an example of highest and

lowest altitude in a bin for an Airbus A320 heading east.

Highest Altitude A320 - East
400 _ |
350 ekt M oM I A BOK: SRR I IR SR SRR S RO ok H -k =
A+
e {sTo)| T ——— 1 _
= 250 e Skt : 3 A A A e A A A A S A S e A A s s e e oo =
G e Lowest Altitude
s | =31 *
— e Ml : ; :
i SO sl R e e S =l
#e K ; 5 : ; *
150 B SE AN RRS AT S 22
ok
100 L . | S * —
” : £ : .
* _ ; *
* : : é
50 1 | |
0] 50 NM 500 1000 1500 2500
Distance (nm) Flight Range

Figure 8. Highest And Lowest Altitudes In A Bin.

31

These upper and lower cruise altitude boundaries are used to generate a random cruise altitude

for each flight in the model. This process is a Monte Carlo Simulation. It is assumed that the

slope of the upper and lower bounds after the crossover point is 0. Figure 9 demonstrates the

upper and lower cruise altitude boundaries for Airbus A320 heading east.

Upper Boundary A320 - East
400 I T T T
#oe H—F :
ST NI : HE KK K Kk sie E: 3 *¥
: * ¥ ;
350 [PPN R
Slope N AT D ——
) : 3 :
Intercept e -y
300 R Rl S e gt _)K e BB T =
Fobke * ok kk
L%

T 250 | sttt o : N NS L . o T T |

- Lower Boundary : =

S 5 Assume slope = O -

d o To o oy R R B R B ... _
150)
100 B - i A e A R s R T A s Al * ... —

*
50 i i I |
0 500 1000 1500 2000 2500

Distance (nm)

Figure 9. Upper Bound And Lower Bound For The Cruise Altitudes For Airbus A320.

3.5.3 Empirical CDF for Cruise Altitudes

The generation of stochastic cruise altitudes is done using an inverse generation method. Figure

10 shows that for every aircraft type, four distance ranges are used to generate a cruise altitude.

32

The cruise altitude in every bin can be generated using simulation techniques following an

empirical cumulative distribution function (CDF) between the upper and lower bounds.

When assigning cruise altitude for the flights in the first section, a uniform distribution is used. A

CDF is not required for first section. Figure 10 shows the cruise flight level assignment for

Airbus A320 heading East.

400 T T
et s * : :
¥
350 [+H e mm— R B
Kk ok % ok A
300 R i o IoC Pt [2ot * S-S |
: * kK
Lk
Solbctiobkk St * * * *
E‘ 250 s v s P ... =
)
b * Kk *
= * *
S i ke
L_IL BB e i o fome oS v oy o oy tB e oo o e o e oy o el o e e et o g
e ¥ ¥
Sk * *
150 e o R R T e R T R R R A A A I A 1=
K
100 T T 71 R) SRS R S S SRR -
1st Section §2nd Section 3rd Sectioh 4th Section
50 | | |
0 500 1000 1500 2000

A320 - East

Distance (hm)

Figure 10. Sections Assignment For Airbus A320 Heading East.

The empirical CDF corresponding to the cruise altitude assignment for the Airbus A320 heading

east is shown in Figure 11.

33

2500

Empirical CDF (2nd Quantile) - A320 EAST

L e s |

T

l%EEI 280 300 320 340
Alttude (‘100 feet)

¥0 30 400

Fo)

09

08

07

06

04

03

02

01

Empirical CDF (3rd Quantile) A320 EAST

BRERT
_____ I

= - :
180 200 250 300 30 400

Altude (100 feet)

Empirical CDF (4th Quantile) A320 EAST

1| T TRt PR e Jossp

08

07F

06

Fo9)

04r

03F

012 bttt s

W owm w W
Altitude (*100

EE
feet)

Figure 11. Empirical CDFs For Cruise Altitude Assignment Of Airbus A320 Heading East.

Figure 12 shows the stochastic assignment of cruise altitudes for Airbus A320 generated by the

model.

34

400

45

35

ro
o

Cruise Altitude (feet)
o

05

B737_(EAST) Stochastic Cruise Altitudes Generation

00 OODERMWO 000 0 MBI 000N 000000 0000 0

0 OB O OB DU
@00 0D 00000 (O OMUO @ 0 O 00 00 @O B0 000 @ 00 WO 00 M 0 0 0:00 000 0

WD LT WANODO00 0D

UMD 0 00GND (B 00 ® O Lo 0 00 0 0

amnow o 00 00: 00 0

QOO

50 100 1400 20 20 il
Flight Distance (nm)

Figure 12. Cruise Altitude Assignment Of Airbus A320 Flying East Generated By The
Monte Carlo Simulation.

35

3.6 Flight Track Waypoints

Most of the commercial flights fly along prescribed waypoints which are part of a flight plan.
The waypoints determine not only the flight distance traveled but also the wind states that the
aircraft encounters as it moves. Beside the cruise altitude, the ETMS data also contains
waypoints for all of the commercial flights in the U.S. The ETMS data provides trajectory of the
commercial flight in the flight profile generation. Figure 13 demonstrates the trajectory of a
commercial flight flown by Airbus A320 from Atlanta to Los Angeles generated by the model

using the ETMS waypoints data in a 3D view.

ATL - LAX - A320__

5 -

Latitude

Longitude

Figure 13. 3D View Of Airbus A320 Flies From ATL To LAX Generated By The Model.

36

3.7 Wind Effect Analysis

As the aircraft moves through different latitude and longitude coordinates along its route and
climbs or descends, it passes through different wind vectors and flight levels. The states of wind
affect the true airspeed, hence affecting fuel consumption. In the developed model, wind effect is
analyzed at each coordinates corresponding to the time increment when generating the flight

profile.

To incorporate wind effect into flight profile analysis, NCEP/NCAR Climate Dataset for wind is
employed. The dataset provides wind vectors on 17 pressure levels above Continental US for
every 2.5 degree of longitude and latitude coordinates (NOAA, ESRL and PSD 2012). Figure 14

demonstrates the annual average direction and speed of wind above continental U.S.

37

™
!

o
!

Pressue Level (hPa)
-
!

60

Latitude ()

Longitude (<)

Figure 14. 3-D Plot Of Annual Average Wind Effect At Different Pressure Levels.

In the NCAR wind dataset, the U-wind component presents the East-West component of wind
whereas the V-wind presents the North-South component of wind. The U-wind and V-wind
components are combined in the analysis to determine the wind effects on the aircraft. Figure 15

shows the annual average wind vector at 40°N, -95°W at different altitudes.

38

Longitede East, degrees

Latitude, degrees

Figure 15. Wind Vector Plot At 40°

°W At Different Altitudes.

, =95

N

39

[Tx]
||||| = R
1 1 =
! 1
! 1
! 1
! 1
! 1
! 1
! 1
||||||||| 4 demmeed &2
! 1 =
1
l
! 1
1 1 F===A=-===;F==°=53°~°°-°
1 1 1 1 1 1
1 | 1 1 | |
1 1 1 1 1 1
1 1 i] ' 1 1 =
||||||||| A IRy ! 1 1 1
! w . v | | E
1 1 1 1
1 1 | |
1 1 1 1
1 1 | | f=)
il il e
[1 1 | | =
1 1 1 1
|||||||| (=] L 1 1]]
w0 E 1 v 1 1 .__—
1 1 | |
1 1 1 1
1 1 | |
1 1 2 1
£ 1 1]]
L] 1 1 1 1 =
.m O EEE RN I T E [
W o 1 1 1 1 1 1
-TT- T =1 1 v 1 1 ! 1
1 1 1 1 1 1
|_w 1 1 | | 1 |
1 1 1 1 1 1
1 1 | | 1 |
1 1 1 1 1 1
1 1 B | 1 |
1 1 1 1 1 1
1 1 | | 1 ' =
= | 1l -4 -
i 1] f f] 1 w
1 1 1 1 ! 1
1 1 | | 1 '
| 1 1 1
! [1 1 1
| 1 1 1]
1 | |
1 1 1
i 1 ¢ I
-] J =1
]] y y ua
] " . "
L i y 4
. . . 4
L . y 4
L 8 L .
] . y y
=) " 1
=x [[I I
o w - 3 =1
— — — —

(edy) [9nA8] anssald

S9a4b9p ‘1se3 apniie

Wind vector is projected on the speed vector of aircraft to determine the value of ground
speed. Figure 16 illustrates the process for combining the wind and the aircraft speed

vectors.

Aircraft Wind Aircraft
Course /* Speed Vector Speed
Angle Vector Vector
V-Wind
Component Wind
-Wind Vector \ /" projection of
Component Wind Vector
onto Aircraft
Speed Vector

Figure 16. Process For Combining The Wind And Aircraft Speed Vectors.

When generating the flight profile, the aircraft position coordinates are adjusted in order to

Add Wind
Projection and
Aircraft Speed
Vector

New TAS
Incorporating
Wind

account the wind vector. Ground speed is used to estimate travel time. Figure 17 shows different

flight profiles for an Airbus A320 flying from PHX to ATL with and without wind effects. Table

1 summarizes the differences of flight profiles under different wind conditions for the same

flight.

40

TAS (knots)

TAS (knots)

A320: PHX-ATL No Wind
Fuel Flow vs Distance

« 10*Altitude vs Time
4

: : E =
P N
o | - =
O 2F----- beem--- e R
E . . z
F—= 1 1
< qf-e---- R SR R -

! ! 3

1 1 LI_

D. h L L
0 1 2 3 4
Time |:I'_|r5}
TAS vs Distance
500 : ;
4001 oo S R 5
: : =
300f-------- Looooo-- SREEEEEEES =
; ; =
1 1 o
200-------- RREEEEEE tREEERE B8 =
100 : :
0 5040 10040 1500

Distance (Mautical Miles)

A320: PHX-ATL Wind

« 10*Altitude vs Time
4

150

100

50

1
1
1
1
1
L
1
1
1
1
1
L
1
T
1
1
1
L

I
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
L

1000

1500

00

Distance (Mautical Miles)

) « ¥eight vs Distance
82| - AR S

.
58 p-------- r -------- oo em
%0 500 1000

1500

Distance (Mautical Miles)

Fuel Flow vs Distance

F T 150 T T
] z s =
— 3f----- === - ' |
= ! : R P S R EEEREEE
o ! ' = : '
i e e : : s
=N T N s boooeeee foooeeee]
1 1 % 1 1
| ' = ' |
|:|| 3 1 |:| 1 L "'_J
1 2 0 500 1000 1500
Time |:I'_|r5} Dist_ann:e [Nautir::al Miles)
TAS vs Distance . ¥eight vs Distance
5":”] . T T - 54 T I
400 -------- L LR R P - S e LN
1 1 [} 1 1
' ' = ' |
300f-------- bomooooe- tREREEECEE e e Lo oo IRREEEEEEE
1 1 _Eu 1 1
1 1 |]-'| 1 1
200F-------- Fo--o--- {EREEEE SF = BBf-------- e i =hEbEEh
100 : : 5.6 : ’
0 S0 1000 1500 0 S00 1000 1500

Distance (Mautical Miles)

Figure 17. Different Flight Profiles Of A320 From PHX To ATL Under Wind And No-
Wind Conditions.

Distance (Mautical Miles)

41

Table 3. Different Flight Profiles Of A320 From PHX To ATL With And Without Wind

Effect.
Wind Average Wind Average . Distance
Condition Projection Ground Speed el Travelled o
No Wind 0 knots 433.2 knots 3:10 hrs 1376.7 nm 7267 kg
Tail Wind 19.19 knots 451.8 knots 3:02 hrs 1376.7nm 6980 kg

In Table 3 we observe that the projection of a tail wind vector increases the aircraft ground speed
compared to the no wind condition. This reduces travel time and saves fuel. Figure 18 shows
ground speed profiles for an Airbus A320 flying from Phoenix to Atlanta with and without wind

for the same flight. The wind state is also shown for reference.

Profile A320 PHX ATL: Spesed w. Distance
500 T T

et W iR
e Mz W ind

g
B 1 B T e TR, —
E IO f-------mmmmmmmmm e Fmmm T s mm s s mmm e mm e e b —
=3 -
g Airbus A320 : ;

e T N i EO e .

) .

1m 1 :

a 500 1000 1500
Distance {nmj
Wind Speed v . Dis tance

20 T T

Wind &pead (k nots)

a 500 1000 1500
Distance {nmj)

Figure 18. Ground And Wind Speeds Of An A320 Flying From PHX To ATL With And
Without Wind.

42

3.8 Analysis of Terminal Area Detour Factor

Traffic congestion in the terminal area affects fuel consumption. Sometimes an aircraft may be
instructed to “hold” at a pre-determined altitude or fly a detour for separation purposes. This is
especially true when operating in regions of heavy demand such as Los Angles, Atlanta and New
York. The extra travel time adds to the fuel burn due to the additional thrust utilized to keep the

aircraft straight and leveled and due to more circuitous tracks flown.

The terminal area detour distance for a flight and its effect in fuel burn are estimated by
analyzing historical radar data extracted from the Performance Data Analysis and Reporting
System (PDARS) across various airports. PDARS is a comprehensive set of software tools for
gathering aviation performance data to measure and baseline operations, helping design,
implement, and evaluate operational improvements (Browder, Gutterrud and Schade, 2010).
Figure 19 demonstrates the installation of PDARS system in the United States (Schroeder, 2011).
When an aircraft is 200-300 feet Above Ground Level (AGL) in the terminal area, radar data is
collected every 5 seconds. Three variables in PDARS data are of most interest to this modeling
process: 1) the airport name and type of operation; the flight path data including latitude and

longitude coordinates; and 3) the speed profile and aircraft type.

43

Legend
Data Source Sites ¥

Network

Administration Site <4
Client Sites 4+
Central Site *

Figure 19. PDARS Installation In The U.S. As Of 2004 (Schroeder, 2011). Used Under Fair
Use, 2012

A cluster analysis, based on departure and arrival frequency, proximity to other airports within
same TRACON, and proximity to major hub airport, has been done for processing the PDARS
data. The analysis allows detour factors to be matched from PDARS airports to OAG airports of
similar type that are used in fuel consumption estimation. In order to calculate the detour factor
for each individual PDARS track, the distance traveled within the TRACON according to the
PDARS data was divided by the Great Circle Distance between the same starting and ending
points as the PDARS data (Rye, 2011). Detour factors were then averaged for each airport (the
only distinction made was for departure or arrival status). Airport characteristics were observed
across all the PDARS airports to determine whether there was a correlation between these

44

characteristics and the airport detour factor. Figure 20 shows the comparisons between GCD

tracks and PDARS arrival tracks at some airports and the corresponding analyzed detour factors.

GCD Routes

ATL Arr - GCD Tracks

87 865 8 855 85 845 -84 835 83 825 82
3

AHN Arr - GCD Tracks

u: —TRAHN

T 87 85 8 855 85 845 84 835 83 825 &2
Longituds

JFK Arr - GCD Tracks

755 75 748 7 735 73 725 ER)
Longitude

HFD Arr - GCD Tracks

PDARS Routes

97 85 -8 855 85 845 -84 835 83 25 82
Longitude

JFK Arr - PDARS Tracks

Detour Factor

ATL Arrivals
(Atlanta TRACON)
Average Detour Factor: 1.4648
Number of Sample: 8047

AHN Arrivals
(Atlanta TRACON)
Average Detour Factor: 2.5247
Number of Sample: 103

JFK Arrivals
(New York TRACON)
Average Detour Factor: 1.9153
Number of Sample: 2647

HFD Aurrivals
(New York TRACON)
Average Detour Factor: 1.2278
Number of Sample: 210

Figure 20. GCD Tracks Compare To PDARS Tracks For Arrivals.

45

The PDARS variables considered in the cluster analysis are shown in Table 4.

Table 4. Variables In PDARS Dataset That Used In Cluster Analysis.

STATUS Departure/Arrival Boolean ‘Dep’, ‘Arr’

>=20 (greater than or equal

EESETEIE B8 Number of airports within 100 stat. mi. radius to 20 airports)

sr=eltl=en 4 Number of incoming/ outgoing aircraft per day <100 (less than 100 flights)

Distance to major hub (such as ATL, LAX,

TR) i G <2 (less than 2 degrees)

These variables were included, along with the airport code and its detour factor, in a list of all
PDARS airports. JMP statistical software was then used to sort all the airports into individual
clusters, depending on their characteristics and detour factors (Rye, 2011). Cluster

characteristics are defined in Table 5.

Table 5. Cluster Characteristics And Associated Detour Factor.

. o2 Avg Detour
Cluster No. Cluster Characterisitics 8
Factor

STATUS: 'Dep‘ -- LESS_100SM: <20 -- FREQUENCY: <100 --

DIST_TO_HUB: <2 1.132
STATUS: 'Dep’ -- LESS_100SM: >=20 -- FREQUENCY: <100 -- 1099
DIST_TO_HUB: <2
STATUS: ‘Arr” -- LESS_100SM: <20 -- FREQUENCY: <100 -- 1186
DIST_TO_HUB: <2
STATUS: ‘Arr’ - LESS_100SM: >=20 -- FREQUENCY: <100 -- 1128
DIST_TO_HUB: <2
STATUS: ‘Arr’ - LESS_100SM: <20 -- FREQUENCY: >=100 -- 1415
DIST_TO_HUB: <2
STATUS: ‘Arr’ - LESS_100SM: >=20 -- FREQUENCY: >=100 -- 1204
DIST_TO_HUB: <2
STATUS: ‘Dep’ -- FREQUENCY: >=100 -- DIST_TO_HUB: <2 1.122
FREQUENCY: <100 -- DIST_TO_HUB: >=2 1.148

46

It is observed that large hub airports have relatively moderate detour factors. Smaller airports
around large hubs have higher detour factors while those farther away from hubs have lower
factors. The reason is that air traffic patterns and procedures are organized around large hub
facilities and thus in some sense receive higher level of service when entering the complex
airspace. It also can be concluded that in most cases, detour factors are higher for arrivals

compared to departures (Rye, 2011).

3.9 Ground Fuel Consumption Estimation

The taxi-out and taxi-in operations contribute to the total fuel burn in commercial flights. This is
important at large hub airports. Pollutants emitted by aircraft on the ground are of concern. In
fuel consumption and emissions model, ground operations fuel consumption and emissions are
calculated by estimating taxi-out and taxi-in times at specific airports. Taxi times at different
airports are either extracted from FAA Aviation System Performance Metrics (ASPM) or
predicted through yearly number of departures and arrivals at the specific airport using

regression analysis.

The ASPM database provides both unimpeded and historical taxi-out and taxi-in times at 77
airports which handle the majority of the commercial flights every year (FAA, 2012). The actual
taxi time includes delays. As a result, the fuel consumption calculated based on taxi times

includes the fuel burn for ground delays.

For non-ASPM 77 airports, taxi times are predicted through regression analysis of the number of
operations reported in T100 data. Figure 21 shows a linear trend between taxi-in time and yearly

number of arrivals at the ASPM 77 airports.

47

Average Taxi In Time (Minutes)

12

11

10

w0

& TaxilnTime % & L4

@ | inear (Taxi In Time) @ 3
% v
¢ % -
< /
$ & ¢ ¢ : 3 -
L3 80 v
M- N B ®
W, y = IE-O5x + 3.9245 v

R?=0.6504

100000 200000 300000 400000

Yearly Number of Arrivals

500000

Figure 21. Relationship Between Taxi-in Time And Number Of Arrivals At ASPM 77
Airport.

A similar upward trend has also been observed in the relationship between taxi-out time and
number of departures. Assuming that smaller airports maintain the same trend, taxi time at

airports other than ASPM 77 can be predicted by the linear regression shown in Figure 21.

The BADA model does not provide fuel burn rate for taxi or ground maneuvering so an
alternative source is used to estimate ground fuel burn rates. The FAA Emission and Dispersion
Modeling System (EDMS) has been selected as the source of fuel burn data for ground
operations. Aircraft fuel burn rate at idle conditions in the EDMS dataset is used to calculate the

commercial flight fuel consumption for ground operations.

48

3.10 Emission Model

In the emission model, CO, HC, NOx and SOx emissions are calculated in the Landing/Take-off
(LTO) cycle which includes all activities near the airport that take place up to 3000ft AGL. The
calculation is simply the conversion of fuel consumption to emissions by multiplying the

emission factor of the pollutant to the computed fuel burn expressed in Equation 64.

Emission (g) = Fuel Burn (kg) X Emission Factor (g/kg fuel burn)
or (64)

Emission (g) = Fuel Flow (kg/s) X Operational Time (s)
X Emission Factor (g/kg fuel burn)

The emission factors for the emissions model are obtained from the FAA EDMS database which
provides factors of CO, HC, NOx and SOx for hundreds of aircraft types and engine
combinations. EDMS provides emission factors for takeoff, climb-out, approach, and idle
conditions. EDMS is a combined emissions and dispersion model for assessing air quality at
civilian airports and military air bases (FAA, 2011). EDMS 5 uses the same BADA data for
aircraft performance modeling which is consistent with previously stated flight profile analysis.
Table 6 demonstrates the emission factors for commonly used commercial aircraft types

extracted from the EDMS database.

49

Table 6. Sample Of Emission Factors For Some Aircraft Types Extracted From EDMS.

BADA Takeoff | Takeoff | Takeoff || Takeoff | Approach | Approach | Approach_ || Approach
Code co _HC NOXx SOx _Co _HC Nox _Sox
(/Kg) | (8/Kg) (8/Kg) (8/Kg) (8/Kg) (8/Kg) (8/Kg) (8/Kg)
A318 0.8 0.1 21.4 1 3.7 0.8 8.8 1
A319 0.57 0.041 24.5 1 2.6 0.062 8.7 1
A320__ 0.9 0.23 24.6 1 2.5 04 8 1
A333 0.05 0.04 28.72 1 1.85 0.11 12.66 1
A343 0.8 0.1 23.3 1 23.1 3.7 7.3 1
A345 0.02 0 4491 1 0.46 0 11.78 1
A346__ 0.02 0 44 .91 1 0.46 0 11.78 1
B734 0.9 0.04 20.7 1 3.1 0.08 8.7 1
B735 0.9 0.03 20.7 1 3.1 0.07 9.1 1
B737__ 0.4 0.1 25.3 1 2.2 0.1 10.1 1
B738 0.2 0.1 28.8 1 1.6 0.1 10.8 1
B739 0.2 0.1 30.9 1 1.4 0.1 11 1
B742__ 0.45 0.14 28.97 1 3.71 0.28 10.16 1
B743 0.45 0.14 28.97 1 3.71 0.28 10.16 1
B744 0.44 0.06 28.1 1 2 0.13 11.6 1
B752 0.33 0.02 29.41 1 1.95 0.11 9.77 1
B753 0.3 0.01 37.77 1 1.32 0.09 10.7 1
B762__ 1 0.3 29.6 1 2.8 0.45 10.8 1
B763__ 0.37 0.1 32.8 1 1.78 0.14 12 1
B764 0.05 0.05 27.38 1 1.93 0.11 12.63 1
B772__ 0.19 0.03 61 1 0.44 0.06 13.19 1
B773 0.19 0.03 61 1 0.44 0.06 13.19 1
B77W__ 0.19 0.03 61 1 0.44 0.06 13.19 1

The fuel consumption for take-off, climb, and descent up to 3000 feet above ground and taxi are

extracted from flight profile fuel burn data. Emissions are then calculated accordingly.

For CO,, a traditional way of calculating emission inventories for an aircraft in the LTO cycle is

using the ICAO Carbon Emissions Calculator. Since the fuel module has estimated the fuel

consumption for the complete flight cycle, CO, emissions can be converted from fuel burn data.

The model adopts the CO, emission factor of 3.157 (kg/kg fuel burn) which is a chemical

50

constant relating the mass of CO, produced by stoichiometric combustion of a known amount of

fuel (Jardine 2003).

51

4. MODEL RESULTS AND VALIDATION

4.1 Fuel Consumption Results and Validation

The model has been validated using T100 data from 2003 to 2010 as input to the model. The
model results are compared to the statistics of Certified Air Carrier Fuel Consumption and Travel
reported by the Bureau of Transportation Statistics (BTS), Research and Innovative Technology
Administration (RITA). The T-100 data is the Air Carrier Statistics database reported by RITA
as well. The T100 data contains domestic and international airline market and segment data. The
T-100 Domestic Segment (All Carriers) table is used in the model validation (RITA, 2012). The
table contains domestic non-stop segment data including origin, destination and aircraft type

which are three inputs required by the fuel and emissions model.

Each T-100 aircraft is mapped into one of 117 equivalent aircraft types available in version 3.9
of the BADA model. ETMS waypoints data are applied to T-100 origin-destination pair if a
flight between those OD pairs exists in ETMS data. Otherwise, GCD track data is assumed for

that flight.

National Transportation Statistics presents statistics on the U.S transportation system, including
its physical components, safety record, economic performance, human and natural environment,
and national security (RITA, 2012). Among all the datasets in the National Transportation
Statistics, Table 4-8, Certificated Air Carrier Fuel Consumption and Travel is used as baseline in

this validation effort.

Table 7 lists the fuel consumption and emission and other relevant parameters estimated by the

model along with the corresponding values reported by BTS for years 2003 to 2010.
52

Table 7. Model Outputs Compare To RITA Fuel Burn Report.

2003
2004
2005
2006
2007
2008
2009
2010

Total Yearly Mileage

Model
6,197
6,710
6,844
6,716
6,849
6,542
6,033
6,072

Total Fuel Burn

(Millions) (Million Gallons)

RITA Error Model RITA
5896 5.11% 12,318 13,082
6,366 540% 12,974 14,091
6,529 4.82% 12,923 13,976
6,423 4.56% 12,562 13,694
6,534 4.82% 12,752 13,682
6,247 4.73% 12,085 12,686
5757 4.79% 11,181 11,339
5,807 4.56% 11,193 11,256

Error
-5.84%
-7.93%
-7.54%
-8.27%
-6.80%
-4.74%
-1.39%
-0.56%

Figure 22 shows the comparison of modeled fuel consumption to the RITA Report.

Model Estimated Fuel Consumption

14500

14000

13500

13000

12500

12000

11500

11000

M Model Output
== Perfect Fit

d

e

d

2004

d

L

200
M 2007

Wl 2006

5

M 2003
W 2008

e

2010
2009

10500 /

10500

11000

11500 12000 12500 13000 13500
RITA Reported Fuel Consumption

14000

14500

Figure 22. Comparison Of Modeled Fuel Consumption To The RITA Reported Number.

53

It is observed that the model underestimates the fuel consumption. The errors are around 5%.
Consider that the average errors of BADA model (version 3.9) is about 3% (EUROCONTROL,
2011), the output of the model is satisfactory. Besides, the model captures the trend of fuel
consumption and mileage flown very well through all years. The errors for year 2009 and 2010

are down to within 1.5% of the values reported by BTS.

Fuel Consumption (Million Gallons)

Mileage (Million Miles)

16000
=pmRITA Fuel Report
sigmModel Fuel Report
14000 A= RITA Mileages Report

apm\Model Mileages Report

._.
S
8

10000

8000

6000

4000 T T T T T T y
2003 2004 2005 2006 2007 2008 2009 2010

Figure 23. Yearly Trend Of Fuel Consumption Estimated By Model And Reported By
RITA.

54

Fuel Flow Rate (kg/min)

4.2 Comparison of Fuel Flow Rates between BADA Data and Model Output

In the developed fuel consumption model, fuel flow rate is calculated using equations and
coefficients from BADA model specifications. The model computed fuel flow rates are validated
by comparing the value to the BADA Performance Table File (PTF). Figure 25 shows the

comparison for Airbus A320.

Comparison of Fuel Flow Rates for Airbus A320 Between BADA PTF and Model Qutput

o
(=

g

S
=

| | I | I | ! l
: : : : : : —+—BADA Climb Fuel Flow Rate (kgimin)
—¥—BADA Descent Fuel Flow Rate (kg/min)
: : : 5 : ; #—BADA Cruise Fuel Flow Rate (kg/min)
......................... e R A S A S S R onss| ~aBe=Model ClimbiUel Flow Refe (kafmin) 14
: 5 5 ; —E—Model Descent Fuel Flow Rate (kgmin)
-+ Model Cruise Fuel Flow Rate (kg/min)

20 ... —J
B Ay A e A A g g
0 | | | | | | |
0 05 1 15 2 25 3 35 4 45
Altitude (feet) 10"

Figure 24. Comparison of Fuel Flow Rates for Airbus A320 Between BADA PTF and
Model Output.

55

Fuel Flow Rate (kg/min)

Figure 26 shows the comparison for Boeing 737-300.

Comparison of Fuel Flow Rates for Boeing 737-300 Between BADA PTF and Model Output

120%’% | ; ! | ! —+—BADA Climb Fuel Flow Rate (kg/min)
v ; ; —+—BADA Descent Fuel Flow Rate (kg/min)
A"“%HH 3 +—BADA Cruise Fuel Flow Rate (kg/min)
\‘“A\ : s ——Model Climb Fuel Flow Rate (kg/min)
W0 messnineonieesives """""""""" \\A*\%\\ """"""""""""""""""" T —&—Model Descent Fuel Flow Rate (kgimin)
3 . ok 5 § ~—Model Cruise Fuel Flow Rate (kg/min)

TN e e ‘: E

(o]
=

o
(=

40

Alttude (feet | | -

Figure 25. Comparison of Fuel Flow Rates for Boeing 737-300 Between BADA PTF and
Model Output.

Same comparisons have been done for the other BADA aircraft types. All of the plots show that
model computed fuel flow rates have consistent trends compare to the values provided by BADA
PTF. Consider that the aircraft weight is decreasing when calculating the fuel flow rate in the

model, the fuel flow rate also reduces. In BADA PTF, the constant nominal weight is assumed to

56

Fuel Burn (kg)

obtain the fuel flow rate. This is the reason that the discrepancies between BADA PTF and

model output are observed in the Figures 24 and 25.

Additionally, the plot of fuel consumption against flight distance for each aircraft type also
shows reasonable trend. For example, Figure 26 shows the fuel burn trend for Airbus A320, and

Figure 27 shows the same plot for Boeing 737-300.

A320 _ Fuel Burnv.s. Flight Distance

14000 — o
QP
§@% 0 :
%4
o o 0 o8,
12000 . @?9 3)% 0y
o] ‘OOO o % o 3 Q 5 o]
g 98 08@“’ Oézé)%& 0
[08%0 80209 o 2
08 o
10000 .g-%ogg%@. "
o]
8000—
4000
2000
i | | | I |
0 500 1000 1500 2000 2500 300(

Track Distance (nm)

Figure 26. Fuel Burn Trend For Airbus A320

57

Fuel Burn (kg)

B733__ Fuel Burnv.s. Flight Distance

10000 R S %
; [0}
0 & ng o %o
58(9 . oozooo
0 ooo¢§ %%O&dag
0%
g O
6000._ S R R R e s s o R S R s i
4000_ e N A R Sy L S L T R T R T P A S DR S L T 8 R R A AN S S L R e S R T R AP A S
2000_ B R R s R s e R e
: | | | |
0 500 1000 1500 2000 2500

Track Distance (nm)

Figure 27. Fuel Burn Trend For Boeing 737-300

Non-linear trends are observed for the short distance flights. The short cruise distance for the

flights combined with the non-linear trend of fuel burn rate for climb, are the reasons for this.

For the long distance flights, two main branches appear in the plot. They explain the head and

tail wind effects projected on the aircraft when heading West and East.

58

5. CONCLUSION

A model to estimate fuel and emissions for commercial flights in the continental U.S. has been
developed. The model can work either as a stand-alone calculator or as a sub-module in TSAM -
the Transportation System Analysis Model. The addition of fuel computations in TSAM
provides the basis to study benefits of aviation technology in a multimode model from the
perspective of energy efficiency and environment impacts. The fuel and emissions model can

help NASA estimate the fuel consumption and emissions using other models such as ACES.

The fuel and emissions model developed employs the BADA aircraft performance model to
calculate fuel consumption considering operational conditions such as wind states, terminal area
detour factors, etc. The model serves as a decision tool where sensitivity analyses can be done
for various operational conditions to study the impact of new technologies on fuel and emission

metrics.

Unlike other existing models, fuel consumption and emissions on the ground are also considered
using the FAA EDMS database. The model fuel consumption output is an estimate of the

complete flight cycle and not just the en-route component.

Airlines and Air Traffic Controllers can use the model to run sensitivity analysis for the

aeronautic factors such as route and cruise level assignment, take-off weight and speed.

Considering the average errors of 3% for BADA model reported by EUROCONTROL
(EUROCONTROL, 2011), the validation results show that the model output is satisfactory in

estimating fuel consumption and has good performance in the generation of a flight profile.

59

This model has been programmed in MATLAB. The model can calculate fuel consumption and
emissions for a single flight in two to five seconds depends on the flight distance. The MATLAB
code is flexible to be embedded into other software or simulation tools. Integrated with TSAM,
the model is an effective and quick tool to predict the fuel consumption and emissions by

commercial air flights in the future.

60

6. RECOMMENDATIONS

This section provides some detail on potential improvements to the fuel and emissions model

developed.

6.1 Terminal Area Flight Profile

As stated in Section 3.3.2, an assumption has been made that all airplanes depart and arrive using
standard procedures which is defined in the BADA Airline Procedures Model. The effects of air
traffic management (ATM) in the terminal area on these operations are not modeled by the

BADA which can lead to discrepancies in estimating the fuel consumption and emissions.

Future work could involve developing an algorithm to model more details of an ATM-influenced
operation so that a better representation of terminal area operations can be provided. The model
could be enhanced to include procedures expected to be in place for the next generation
(NextGen). This could include tailored arrivals and continuous descent approaches. It is
recommended that this model adopts BADA version 4 coefficients. This will enable modeling

and simulating advanced concepts.

6.2 Wind States

Stated in Section 3.7, a tradeoff between program execution time and accuracy has been made.
Under current assumptions we estimate fuel and emissions using long-term averages of the wind
data. More efficient computer code could be developed to account for wind datasets with higher

fidelity, such as considering daily averages, without slowing down the program execution speed.

61

6.3 Ground Fuel Consumption and Emissions

Additional efforts can be placed in the estimation of the ground fuel consumption and emissions.
In the current model, activities such as stop and go operations are not fully modeled during the
ground taxi operation. Additionally, the taxi time estimated in the model is the OOOI time (gate
out, wheels off, wheel on, gate in) which does not include the time for the aircraft waiting at the
gate. This would add to the fuel consumption and emissions when the aircraft is at the gate with
the engines running. Further analysis of gate operational times can be carried out for different

aircraft types in the model.

62

REFERENCES

Ashiabor, Senanu, Hojong Baik, and Antonio A Trani. "Logit Models for Forecasting
Nationwide Intercity Travel Demand in the United States.”" Transportation Research
Record, 2007: 1-12.

Braven, den, and W S John. "Concept and Operation of the Performance Data Analysis and
Reporting System (PDARS)." 2003.

Browder, J, R Gutterrud, and J Schade. "Performance Data Analysis Reporting System (PDARS)
- A Valuable Addition to FAA Manager's Toolsets.” Managing the Skies - Journal of the
FAA Managers Association , 2010.

Bureau of Transportation Statistics. Domestic Airline Jet Fuel Prices. 2012.
http://www.bts.gov/publications/multimodal_transportation_indicators/april_2012/html/d
omestic_airline_jet fuel prices.html (accessed 2012).

Chatterji, Gano B. "Fuel Burn Estimation Using Real Track Data." 11th AIAA Aviation
Technology, Integration and Operations Conference. Virginia Beach, 2011.

Chirania, Saloni Ramesh. "Forecasting Model for High-Speed Rail In the United States."
October 2012.

Collins, Bela P. "Estimation of Aircraft Fuel Consumption." Journal of Aircraft, November
1982: 969.

EUROCONTROL. Base of Aircraft Data (BADA). 2011.
http://www.eurocontrol.int/services/bada (accessed 2012).

EUROCONTROL. "Model Accuracy Report For The Base of Aircraft Data (BADA) Revision
3.9." 2011.

EUROCONTROL. "User Manual for the Base of Aircraft Data (BADA) Revision 3.9." User
Manual, 2011.

Federal Aviation Administration (FAA). ASPM System Overview. October 17, 2012.
http://aspmhelp.faa.gov/index.php/ASPM_System_Overview (accessed 2012).

Federal Aviation Administration (FAA). Emissions and Dispersion Modeling System (EDMS).
Feburary 16, 2011.

63

http://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/edms_mo
del/ (accessed 2012).

Federal Aviation Administration (FAA). Enhanced Traffic Management System (ETMS). May
03, 2012. http://hf.tc.faa.gov/projects/etms.htm (accessed 2012).

Federal Aviation Administration (FAA), and CSSI Inc. "Emissions and Dispersion Modeling
System (EDMS) User's Manual.” User's Manual, Washington D.C, 2010.

Flightaware. Live Flight Tracker. 2012. http://flightaware.com/ (accessed 2012).

IATA. Fact Sheet: Fuel. 2012.
http://www.iata.org/pressroom/facts_figures/fact_sheets/pages/fuel.aspx (accessed 2012).

International Civil Aviation Organization (ICAQO). "ICAO Annex 16: Environmental Protection,
Volume Il -- Aircraft Engine Emissions." ICAO Annex, 2008.

International Civil Aviation Organization (ICAO). "ICAQO Carbon Emissins Calculator.”" Manual,
2010.

Jardine, Christian N. "Calculating The Carbon Dioxide Emissions Of Flights." Oxford, 2003.

NOAA, ESRL, and PSD. "NCEP/NCAR Reanalysis Monthly Means and Other Derived
Variables: Pressure Level." Earth System Research Laboratory. 2012,
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.pressure.html
(accessed 2012).

Oaks, Robert D, Hollis F Ryan, and Mike Paglione. "Prototype Implementation and Concept
Validation of a 4-D Trajectory Fuel Burn Model Application.” AIAA Guidance,
Navigation and Control Conference. Toronto: AIAA, 2010. AIAA 2010-8164.

Patterson, Judith, George J Noel, David A Senzig, Christopher J Roof, and Gregg G Fleming.
"Analysis of Departure and Arrival Profiles Using Real-Time Aircraft Data.” Journal of
Aircraft, 2009: Vol.46, No.4.

RITA, and BTS. Introduction. 2012.
http://www.bts.gov/publications/national _transportation_statistics/ntml/introduction.html
(accessed 2012).

RITA, and Bureau of Transportation Statistics (BTS). "T-100 Segment (All Carriers)."
TranStats. 2012. http://www.transtats.bts.gov/Fields.asp?Table _ID=293 (accessed 2012).

Rye, Maria. "Fuel Consumption and Emissions Model Whitepaper." Whitepaper, 2011.

Rye, Maria. "Fuel Consumption and Emissions Project Progress Report.” 2010.

64

Schroeder, Nataliya T. Analysis of Potential Wake Turbulence Encounters in Current and
NextGen Flight Operations. Master Thesis, Blacksburg: Virginia Tech, 2011.

Senzig, David A, Gregg G Fleming, and Ralph J lovinelli. "Fuel Consumption Modeling in
Support of ATM Environmental Decision-making." 8th USA/Europe Air Traffic
Management Research and Development Seminar, 2009.

Senzig, David A, Gregg G Fleming, and Ralph J lovinelli. "Modeling of Terminal-Area Airplane
Fuel Consumption.” Journal of Aircraft 46 (2009).

Trani, Antonio A, Hojong Baik, Howard Swingle, and Senanu Ashiabor. "Integrated Model for
Studying Small Aircraft Transportation System.” Transportaton Research Record, 2003:
1-10.

Trani, Antonio A., Nicolas Hinze, Howard Swingle, Senanu Ashiabor, and Anand Seshadri.
"Forecasting Model for Air Taxi, Commercial Airline, and Automobile Demand in the
United States.” Transportation Research Record, 2008: 9-20.

UNIQUE. Aircraft NOx-Emissions within the Operational LTO Cycle. Zurich: Unique
(Flughafen Zurich AG) , 2004.

Wikipedia. International Standard Atmosphere. July 12, 2012.
http://en.wikipedia.org/wiki/International _Standard Atmosphere (accessed 2012).
Wing-Ho, F C, Antonio A Trani, G Schilling, Hojong Baik, and A Seshadri. "A Neural Network
Model to Estimate Aircraft Fuel Consumption.” AIAA 4th Aviation Technology,

Integration and Operations Forum. Chicago, 2004.

65

APPENDIX A: Model Flowcharts

A.1 Function Dependency

(FIight_ProfiIe_For_TlOO.m / FIight_Profile_For_ACES.mj

—(Flight_Profile_Rand_FL.m / Flight_ProfiIe_Assn_FL.mj

—(Calculate_FL.mj
—(Generate_Climb_Profile.mj
—(F_Climb_Coef.mj

—(FuelFIow_CaIcuIator_Climb.mj
—(Wind_Calculator.mj
—(Generate_Descent_ProfiIe. mj

—(F_Descent.mj

—(Wind_Calculator.mj
—(custom_interp.mj
—(Generate_Cruise_ProfiIe_Coef.mj
—(Speed_CaIculator_Cruise.mJ
—(FuelFlow_CalcuIator_Cruise.mj
—(Wind_Calculator.mj

66

A.2 Flight Profile Generator

Define
Global Variables
Load Data

For Year =

» Start_Year :
\ End_Year

For Track Number =

(o)

1 : Number of Tracks

If Waypt is
Available from

Yes No
f ETMS Data 1
Generate Climb, Flight Flight
Cruise, Descent —» | Profile Rand » | Profile Assn
Profile FL FL

l——

Generate Climb,
Cruise, Descent
Profile

If Flight
Profile

Incorporate
PDARS
Detour
Factor

Calculate
Takeoff Fuel Burn

Year i

Next Track
Iteration

Next
Iteration Save
Flight_Profile
in Structure
File

!

Save Yearly
Flight_Profile
Data

A.3 Flight Profile_ Rand_FL

INPUT:
Aircraft;
Heading;
Track Distance;
Service Ceiling
Initial Weight

F

If Heading
= East

Extract East Data
from
Track_vs_Cruise
(ETMS Data)

Return

Flight Profile = [];
(Will use

light_Profile_Assn_FL,

No

If Data
available from
ETMS

Yes—w

Extract Empirical
Data of Cruise
Altitude Assignment
from
FL_Empirical_CDF

Fp

Stochastically
Assign Cruise
Altitude according
to the Flight
Distance

Il
False

If Heading
= West

True—w

False

Extract West Data
from Track vs
Cruise

If Data
available from
ETMS

Return

Flight Profile =[],
(Will use
Flight_Profile_Assn_FL

Extract Empirical
Data of Cruise
Altitude Assignment
from

Lol

FL_Empirical_CDF

Stochastically
Assign Cruise
Altitude according
to the Flight
Distance

Calculate
ATC
Standard
Flight Level
for Cruise

Generate
Climb Profile

v

Generate
Descent Profile

If Track distance >
Climb + Descent
Distance

Decrease Cruise
Flight Level

Y

True

v

Generate
Cruise Profile

f Cruise Profile
is Generated

Yes
(Break while Loop)

Return
Flight_Profile

68

A.4 Calculate_FL

Start

A
INPUT:
Raw_Cruise_FL;
Heading;
Max_Cruise_FL
LOAD:
Dist_FL_Relation

If Raw_Cruise _FL
<=30

'

Assigned FL =
Raw Cruise FL

If Cruise FL Y Assigned FL =
> 30 East Low FL
Assigned FL =
West Low FL
. !
Y
If Cruise FL Y Assigned FL =
> 410 East High FL
Assigned FL =
West High FL
A
il
Y
If Assigned FL Assigned FL =
> Max FL Y Max FL

\ 4

Return
Cruise_Altitude

69

A.5 Generate_Climb_Profile

Start

INPUT:
Aircraft Type;
Initial Weight

Get Aircraft Data

4

Correct BADA Performance
Parameters for Non-Zero Airport
Altitude;

Define Time Span = 1 Hour

F_Climb_Coef.m

rkdsys.m

Truncate Climb Profile to
stop at Top of Climb

Save Climb Profile

Return
Climb_Profile

70

A.6 F_Climb_Coef

Start

4

INPUT:
Time;
Rate Equations
(Aircraft Altitude;
Aircraft Weight;
Distance Traveled);
Boolean for RK4 to run

A

LOAD Global Variables:
BADA_Aircraft_Coeff.mat

If initial step

False
4 v
Correct Index for
Correct Index for Wapoints;
Wapoints; Calculate Heading;
Calculate Heading Calculate
Coordinates
v v
Calculate Initial Wind Calculate Wind
Projection Projection

(Wind_Calculator.m)

(Wind_Calculator.m)

Get ODE Variables:

Speed_Calculator_Climb.m

ROC_Calculator.m

FuelFlow_Calculator_Climb

Return
yprime
(Rate of Climb,
Fuel Flow Rate,
True Airspeed)

71

A.7 Speed_Calculator_Climb

Start

INPUT:
Aircraft Type;
Altitude;
Aircraft Weight;
BADA Performance Coefficients

Define Parameters

Calculate Calibrated

Airspeed according

to BADA Model and
Coefficents

Convert Calibrated
Airspeed to True
airspeed

Return

True Airspeed

72

A.8 ROC_Calculator

Start

4

INPUT:
Aircraft Type;
Altitude;
True Airspeed,;
Aircraft Weight;
BADA Performance Coefficients

Define BADA
Parameters

Calculate Drag

Calculate Thrust

Define Maximum
Rate of Climb

Calculate Reduced
Climb Power

Return
Rate of Climb

73

A.9 FuelFlow_Calculator_Climb

Start

INPUT:
Aircraft_Type;
Altitude;
True Airspeed;
BADA Performance Coefficients

Define Parameters

Calculate Thrust using
BADA Equations

Calculate FuelFlow using
BADA Equations

Return

Fuel Flow Rate

74

A.10 Wind_Calculator

INPUT:
Direction; Altitude;
Lat; Lon

v

Define:
Pressure_0, GO, Temp_O, L,
Alt_0, R, Geopotential_Alt

If Altitude <

Pressure = Pressure_0 *
((Temp_O+L*
Geopotential_Alt) /
Temp_0) * (-g0/(L*R))

Pressure = Pressure_0 *
exp(-g0*(Geopotential_Alt
—Alt_0)/ (R * Temp_0))

Extract:
Lat_Index, Lon_Index,
Level_Index

v

Index = find(Indices =
Wind_Parameter Indices)

v

Uwind = Wind(Index).Uwind
Vwind = Wind(Index).Vwind

v

Direction_Vector =
[cos(Direction),sin(Direction)]

v

Wind_Vector = [Uwind, Vwind]

Wind_proj = dot(Direction_vector,Wind_Vector) /
[norm(Direction_vector)*norm(Wind_vector)] *
Direction_vector

v

OUTPUT
Wind_proj

75

A.11 rk4sys

Start

INPUT:
External Function to
Evaluate the ODE;
Limits of Integration;
Initial Consition;
Other Arguments

Y

Y

while
Independent Variable
< Maximum Independent
Variable

Run RK4

Equations

v

Return

76

A.12 Generate_Descent_Profile

INPUT:
Aircraft Type;
ClimbProfile

Get BADA Aircraft Data
Get Cruise Flight Level

v

Correct BADA Performance
Parameters for Non-Zero Airport
Altitude;

Define Time Span = 1 Hour

v

F_Descent.m

rkdsys.m

v

Truncate Descent Profile to
stop at Top of Descent

v

Save Descent
Profile

A 4

Return
Climb_Profile

77

A.13 F_Descent

Start

y

INPUT:
Time;

Rate Equations
(Aircraft Altitude;
Aircraft Weight;
Distance Traveled);
Boolean for RK4 to run

y

LOAD Global Variables:
BADA_Aircraft_Coeff.mat

Calculate Heading

If initial step

False

v

Correct Index for
Wapoints;
Calculate Heading;
Calculate
Coordinates

v

Calculate Initial Wind
Projection
(Wind_Calculator.m)

Calculate Wind
Projection
(Wind_Calculator.m)

Get ODE Variables
(custom_interp.m)

Return
yprime
(Rate of Climb,
Fuel Flow Rate,
True Airspeed)

78

A.14 Generate_Cruise_Profile_Coef

=

.

INPUT:
Aircraft_Type;
Altitude;
BADA Performance_Coefficients

.

Define Parameters

i

Calculate
Calibrated
Airspeed
according to BADA
Model and
Coefficents

i

Convert Calibrated
Airspeed to True
airspeed

Return
True Airspeed

A.15 FuelFlow_Calculator_Cruise

INPUT:
Aircraft_Type;
Altitude;
True Airspeed;
Aircraft Weight;
BADA Performance Coefficients

‘

Define Parameters

‘

Calculate Thrust
using BADA
Equations

.

Calculate
FuelFlow using
BADA Equations

Return
Fuel Flow Rate

80

APPENDIX B: MATLAB Source Code

B.1 Flight Profile Generator

% THIS M-FILE GENERATES FLIGHT PROFILES FOR SPECIFIC FLIGHT TRACKS

time = clock;

monthl = time(2); datel = time(3); yearl = time(1);

hourl = time(4); minutesl = time(5); secondsl = time(6);
fprintf('\n%.0f/%.0f/%.0f\t%.0f:%02.0f:%02.0f\n',month1, datel, yearl, hourl, minutesl, secondsl)
%

global BADA_Aircraft_ Data BADA_Aircraft_List ETMS_BADA _List Dist FL_Relation FL_Empirical CDF
BADA_Aircraft_Coef

global Origin_Airport_Altitude Destination_Airport_Altitude Assn_Cruise_FL

global FeetinNauticalMiles Track _vs_Cruise Course Waypoints

global Wind_Boolean Wind Wind_Parameters % Month

global time_increment Aircraft_Index

global true_air_speed rate_of _desc fuel_flow

% NAUTICAL MILES TO FEET

FeetinNauticalMiles = 6076.11549;

time_increment = 1; % THE DESIRE STEP SIZE WHEN GENERATING CLIMB, CRUISE AND DESCENT
PROFILE (in minute)

%

load BADA_Aircraft_Data.mat

load BADA_Aircraft_List.mat

% load conus.mat

load Dist_FL_Relation.mat

load ETMS_Tracks.mat

load ETMS_Info.mat % variable name: Dept_Arr_AC
load Track_vs_Cruise.mat

load ETMS_BADA_List.mat

load Wind.mat

load Wind_Parameters.mat

load FL_Empirical_CDF

load BADA_Aircraft_Coef.mat

%

%Output_Dir ='D:\fuelconsumption_and_emissions\Output2';
%BADA _Dir ='D:\fuelconsumption_and_emissions\bada_3 9\bada_39";
%Figures_Dir = 'D:\fuelconsumption_and_emissions\Figures3';
%

% true = WIND; false = NO WIND
Wind_Boolean = true;

Month = 7; % TEST OF PROGRAM
%

% Remove Unused Wind Months
Months_To_Remove = Wind.Time ~= Month;
Wind.Time(Months_To_Remove) =[];
Wind.Level(Months_To_Remove) = [J;
Wind.Lat(Months_To_Remove) = [];
Wind.Lon(Months_To_Remove) = [];
Wind.Uwind(Months_To_Remove) = [];
Wind.Vwind(Months_To_Remove) = [];

Start_Year = 1995;
End_Year = 2008;

for Year_As_Num = Start_Year : End_Year

Year = int2str(Year_As_Num);

disp('Loading T100_Tracks...")

T100_Tracks_To_Load = sprintf('T100_Tracks_%s',Year);
load(T100_Tracks_To_Load)

disp('Finished Loading T100_Tracks.")

%

% LOAD PDARS DETOUR FACTOR INFO
load(['Airport_Status DF ', Year,"mat)

[NOT,Number_Of Track Entries] = size(T100_Tracks);

ETMS_Waypoints = 0; % Count how many flights use ETMS_Waypoints
Great_Circle_Points = 0; % Count how many flights use GCD_Points

%
% FLIGHT PROFILE LOOP
%

for Track_Number = 1:Number_Of Track Entries

disp(Track_Number)

%
%

% BEGIN STOPWATCH
tic

% DISPLAY PROGRESS EVERY 100 TRACKS

if mod(Track_Number,100) ==
disp([num2str(Track_Number),"/',num2str(Number_Of_Track_Entries)])

end

Aircraft_Index = stremp(T100_Tracks(Track_Number).BADA Code,BADA_Aircraft_List);
Current_Aircraft_Type = char(BADA_Aircraft_List(Aircraft_Index));

if isempty(Aircraft_Index) ==
continue
end

Max_Cruise_FL = max(BADA_Aircraft_Data(Aircraft_Index).FL);
Initial_Weight_kg = BADA_Aircraft_Data(Aircraft_Index).Nominal_Mass;

%

% ORIGIN AIRPORT

Origin = T100_Tracks(Track_Number).Origin_Airport_ID;
Origin_Airport_Altitude = T100_Tracks(Track_Number).Origin_Airport_Altitude;
Airport_Origin_Longitude =T100_Tracks(Track_Number).Airport_Origin_Longitude;
Airport_Origin_Latitude =T2100_Tracks(Track_Number).Airport_Origin_Latitude;

% DESTINATION AIRPORT

Destination =T2100_Tracks(Track_Number).Destination_Airport_ID;
Destination_Airport_Altitude =T100_Tracks(Track_Number).Destination_Airport_Altitude;
Airport_Destination_Longitude =T2100_Tracks(Track_Number).Airport_Destination_Longitude;
Airport_Destination_Latitude = T100_Tracks(Track_Number).Airport_Destination_Latitude;
%

% EXTRACT AIRPORT INFO FROM ETMS DATA
Dept_Airport_Comp = strcmp(Origin, Dept_Arr_AC(:,1));
Arr_Airport_Comp = strcmp(Destination, Dept_Arr_AC(:,2));

Find_Airport = find(Dept_Airport_Comp == 1 & Arr_Airport_Comp == 1, 1, 'first’);

% FIND DISTANCE BETWEEN AIRPORTS
if isempty(Find_Airport) ==

% USE ETMS DATA FIRST

Course = ETMS_Tracks(Find_Airport).Course;

Track_Distance_nm = ETMS_Tracks(Find_Airport).Waypoint_Distance_nm;

Waypoints = [ETMS_Tracks(Find_Airport).Latitude, ETMS_Tracks(Find_Airport).Longitude];

83

ETMS_Waypoints = ETMS_Waypoints + 1;

if isempty(Waypoints) ==
% FALL BACK ON GC CALCULATIONS IF THERE ARE NO ETMS WAYPOINTS
[Course Track_Distance_nm] = legs([Airport_Origin_Latitude Airport_Destination_Latitude],...
[Airport_Origin_Longitude Airport_Destination_Longitude], 'gc");

[lat, lon] =
gcwaypts(Airport_Origin_Latitude,Airport_Origin_Longitude,Airport_Destination_Latitude,Airport_Destination_L
ongitude);

Waypoints = [lat,lon];

GCD_Great_Circle_Points = Great_Circle_Points + 1;

end

else

% FALL BACK ON GC CALCULATIONS IF THERE IS NO ETMS DATA
[Course Track_Distance_nm] = legs([Airport_Origin_Latitude Airport_Destination_Latitude]....
[Airport_Origin_Longitude Airport_Destination_Longitude], 'gc";

[lat, lon] =
gcwaypts(Airport_Origin_Latitude,Airport_Origin_Longitude,Airport_Destination_Latitude,Airport_Destination_L
ongitude);

Waypoints = [lat,lon];

GCD_Great_Circle_Points = Great_Circle_Points + 1;

end

% ASSIGN COURSE TO NAVIGATIONAL DIRECTION
if Course>=0 && Course<180
Heading = 'EAST";
elseif Course>=180 && Course<360
Heading = '"WEST";
end
%

%
% GENERATE FULL FLIGHT PROFILE
%

[Climb_And_Descent_Distance Flight_Profile] =
Flight_Profile_Rand_FL(Aircraft_Index,Heading, Track_Distance_nm,Max_Cruise_FL,Initial_Weight_kg);

if isempty(Flight_Profile) ==
[Climb_And_Descent_Distance Flight_Profile] =
Flight_Profile_Assn_FL(Aircraft_Index,Heading, Track_Distance_nm,Max_Cruise_FL,Initial_Weight_kg);
end

%

% SEPARATE PROFILES

Climb_Profile = Flight_Profile.Climb_Profile;
Cruise_Profile = Flight_Profile.Cruise_Profile;
Descent_Profile = Flight_Profile.Descent_Profile;
%

84

% CALCULATE TAKEOFF FUEL BURN
Takeoff_Fuel _Burn_kg = Takeoff Fuel Calculator(Current_Aircraft Type);
%

Dep_Index = find(strcmp(Airport_Status_DF(:,4),[Origin,'Dep'])==1);
Arr_Index = find(strcmp(Airport_Status_DF(:,4),[Origin,'Arr'])==1);
Climb_DF = cell2mat(Airport_Status DF(Dep_Index,3));
Descent_DF = cell2mat(Airport_Status_ DF(Arr_Index,3));

Climb_Profile.Total_Fuel kg = Climb_Profile.Total_Fuel_kg*Climb_DF;
Climb_Profile.Distance_For_Climb_nm = Climb_Profile.Distance_For_Climb_nm*Climb_DF;
Descent_Profile.Total_Fuel_kg = Descent_Profile.Total_Fuel_kg*Descent_DF;
Descent_Profile.Distance_For_Descent_nm = Descent_Profile.Distance_For_Descent_nm*Descent_DF;

Flight_Profile.Climb_Profile. Total_Fuel_kg = Flight_Profile.Climb_Profile. Total_Fuel_kg*Climb_DF;
Flight_Profile.Climb_Profile.Distance_For_Climb_nm =

Flight_Profile.Climb_Profile.Distance_For_Climb_nm*Climb_DF;

Flight_Profile.Descent_Profile.Total_Fuel_kg = Flight_Profile.Descent_Profile.Total_Fuel_kg*Descent_DF;
Flight_Profile.Descent_Profile.Distance_For_Descent_nm =

Flight_Profile.Descent_Profile.Distance_For_Descent_nm*Descent_DF;

Profile_Track Distance = Climb_Profile.Distance_For_Climb_nm + Cruise_Profile.Cruise_Distance_nm +

Descent_Profile.Distance_For_Descent_nm;

%

[0 ——

% SAVE PROFILES IN STRUCTURE

[0 ——

Tracks_Profile(Track_Number).Origin_Airport = Origin;
Tracks_Profile(Track_Number).Destination_Airport = Destination;
Tracks_Profile(Track_Number).Aircraft_Type = Current_Aircraft_Type;
Tracks_Profile(Track_Number).Climb_Profile = Climb_Profile;
Tracks_Profile(Track_Number).Cruise_Profile = Cruise_Profile;
Tracks_Profile(Track_Number).Descent_Profile = Descent_Profile;

Tracks_Profile(Track_Number).Takeoff_Fuel_Burn_kg = Takeoff_Fuel_Burn_Kkg;

Total_Fuel = Flight_Profile.Climb_Profile.Total_Fuel_kg + Flight_Profile.Cruise_Profile. Total_Fuel_kg +

Flight_Profile.Descent_Profile. Total_Fuel_kg + Takeoff_Fuel_Burn_kg;

Tracks_Profile(Track_Number).Yearly_Frequency =T100_Tracks(Track_Number).Yearly_Frequency;

Tracks_Profile(Track_Number).Fuel_Consumption_kg = T100_Tracks(Track_Number).Yearly_Frequency *
Total_Fuel,

Tracks_Profile(Track_Number).Track_Distance_nm = Profile_Track_Distance;

%

Tracks_Profile(Track_Number).Waypt_Latitude = ETMS_Tracks(Find_Airport).Latitude;
Tracks_Profile(Track_Number).Waypt_Longitude = ETMS_Tracks(Find_Airport).Longitude;
Tracks_Profile(Track_Number).Heading = Heading;

%

close all

% END STOPWATCH

85

% toc

end % for Track_Number = 1:Number_Of Track_Entries
%

save (['Tracks_Profile',' ', Year, "mat"], 'Tracks_Profile");

end % for Year_As_Num = Start_Year : End_Year
%

time = clock;

month2 = time(2); date2 = time(3); year2 = time(1);

hour2 = time(4); minutes2 = time(5); seconds2 = time(6);

fprintf('\nStart Time:\n%.0f/%.0f/%.0f\t%.0f:%02.0f:%02.0f\n',month1, datel, yearl, hourl, minutesl, secondsl)
fprintf("\nEnd Time:\n%.0f/%.0f/%.0f\t%.0f:%02.0f.%02.0f\n',month2, date2, year2, hour2, minutes2, seconds2)
%

86

B.2 Flight Profile. Rand_FL.m

% This function runs through the flight profile of the aircraft/airport

% combination by assigning a random cruise altitude

%

% [Climb_And_Descent_Distance, Flight_Profile] =
Flight_Profile_Rand_FL(Aircraft_Index,Heading, Track_Distance_nm,Max_Cruise_FL)
%

% INPUT:

% Aircraft_Index = index of AC/AP combo from T100 tracks structure
% Heading = general direction of path, EAST/WEST

% Track_Distance_nm = distance along track

% Max_Cruise_FL = aircraft possible altitude

%

% OUTPUT:

% Climb_And_Descent_Distance = track distance minus the cruise distance
% Flight_Profile = profile of aircraft/airport combo

function [Climb_And_Descent_Distance, Flight_Profile] =
Flight_Profile_Rand_FL(Aircraft_Index,Heading, Track_Distance_nm,Max_Cruise_FL,Initial_Weight_kg)

Current_Aircraft_Type = char(BADA_Aircraft_List(Aircraft_Index));
ETMS_BADA_Match = find(strcmp(Current_Aircraft_Type(1:4), ETMS_BADA _List) == 1);

% ROUND TRACK DISTANCE TO NEAREST TEN FOR USE WITH ETMS DATA
Rounded_Track_Dist = round(Track_Distance_nm/10)*10;
%

if isempty(ETMS_BADA_Match) == 1;
Flight_Profile = [];
Climb_And_Descent_Distance = [];
return

end

%

% VERY SHORT DISTANCE FLIGHT

%

if Track_Distance_nm <=5.1;
Flight_Profile = [J;
Climb_And_Descent_Distance = [];
return

end

%

% EAST/WEST DIRECTIONS RESULT IN DIFFERENT CRUISE ALTITUDES
if stremp('EAST',Heading) == 1 % HEADING EAST
% EXTRACT DATA FROM ETMS
East Track = Track_vs_Cruise(ETMS_BADA_ Match).East_Track;
East_Track Pts = Track_vs_Cruise(ETMS_BADA_Match).East_Track_Pts;
East Min_FL_Pts = Track_vs_Cruise(ETMS_BADA_ Match).East Min_FL_Pts;
East Max_FL_Pts = Track_vs_Cruise(ETMS_BADA_Match).East Max_FL_Pts;
% LOAD EMPIRICAL CDF FROM FL_EMPIRICAL_CDF.MAT (EXTRACTED FROM ETMS DATA,
MANUALLY MAINTAINED)
East FL_2nd_Normalized = FL_Empirical CDF(1,2).East FL_Normalized; % Normalized Fligh Levels
East F 2nd = FL_Empirical CDF(1,2).East_F; % CDF Corresponding to the Normalized Fligh Levels
East FL_3rd Normalized = FL_Empirical CDF(1,3).East FL_Normalized,;
East_F_3rd = FL_Empirical_CDF(1,3).East_F;
East_FL_4th_Normalized = FL_Empirical_CDF(1,4).East_FL_Normalized;
East_F_4th = FL_Empirical_CDF(1,4).East_F;

%%

if isempty(East_Track_Pts) ==
Flight_Profile =[];
Climb_And_Descent_Distance = [];
return

elseif Rounded_Track_Dist < East_Track_Pts(1) || Rounded_Track_Dist > East_Track_Pts(end)
Flight_Profile = [];
Climb_And_Descent_Distance = [];
return

%
% TRACK DISTANCE IS IN FIRST QUARTILE, USE UNIFORM DISTRIBUTION
elseif Track_Distance_nm <= 500
% GET RANDOM FLIGHT LEVEL BY UNIFORM DISTRIBUTION
Index ETMS_FL = find(Rounded_Track Dist == East_Track_Pts);
Min_FL = East_Min_FL_Pts(Index_ETMS_FL);
Max_FL = East_Max_FL_Pts(Index ETMS_FL);
if Min_FL > Max_FL
Raw_Cruise_FL = randi([round(Max_FL) round(Min_FL)]);
else
Raw_Cruise_FL = randi([round(Min_FL) round(Max_FL)]);
end
if Raw_Cruise_FL > Max_Cruise_FL
Raw_Cruise_FL = Max_Cruise_FL;
end
%

% TRACK DISTANCE IS IN SECOND QUARTILE, USE THE SECOND SECTION OF EMPIRICAL CDF
DISTRIBUTION
elseif Track_Distance_nm <= 1000
% GET RANDOM FLIGHT LEVEL BY EMPIRICAL CDF DISTRIBUTION IN 2ND QUARTILE
East_FL_2nd = East_FL_2nd_Normalized .* Max_Cruise_FL;
Random_Number = rand(1);
East_FL_2nd_idx = find(East_F_2nd>=Random_Number,1,'first’);
Raw_Cruise_FL = East_FL_2nd(East_FL_2nd_idx);
% Raw_Cruise_FL_temp = round(East_FL_2nd(East FL_2nd_idx)/10)*10;
% if mod(Raw_Cruise_FL_temp,20) ==
% Raw_Cruise_FL = Raw_Cruise_FL_temp + 10;

88

% else
% Raw_Cruise_FL = Raw_Cruise_FL_temp;
% end
if Raw_Cruise_FL > Max_Cruise_FL
Raw_Cruise_FL = Max_Cruise_FL;
end

% TRACK DISTANCE IS IN THIRD QUARTILE, USE THE THIRD SECTION OF EMPIRICAL CDF
DISTRIBUTION
elseif Track_Distance_nm <= 1500
% GET RANDOM FLIGHT LEVEL BY EMPIRICAL CDF DISTRIBUTION IN 3RD QUARTILE
East FL_3rd = East FL_3rd_Normalized .* Max_Cruise_FL;
Random_Number = rand(1);
East FL_3rd_idx = find(East_F_3rd>=Random_Number,1,first’);
Raw_Cruise_FL = East_FL_3rd(East_FL_3rd_idx);
% Raw_Cruise_FL_temp = round(East_FL_3rd(East FL_3rd idx)/10)*10;
% if mod(Raw_Cruise_FL_temp,20) ==

% Raw_Cruise_FL = Raw_Cruise_FL_temp + 10;
% else

% Raw_Cruise_FL = Raw_Cruise_FL_temp;

% end

if Raw_Cruise_FL > Max_Cruise_FL
Raw_Cruise_FL = Max_Cruise_FL;
end

% TRACK DISTANCE IS IN FOURTH QUARTILE, USE THE FOURTH SECTION OF EMPIRICAL CDF
DISTRIBUTION
else
% GET RANDOM FLIGHT LEVEL BY EMPIRICAL CDF DISTRIBUTION IN 4TH QUARTILE
East_FL_4th = East_FL_4th_Normalized .* Max_Cruise_FL;
Random_Number = rand(1);
East FL_4th_idx = find(East_F_4th>=Random_Number,1,first’);
Raw_Cruise_FL = East_FL_4th(East_FL_4th_idx);
% Raw_Cruise_FL_temp = round(East_FL_4th(East_FL_4th_idx)/10)*10;
% if mod(Raw_Cruise_FL_temp,20) ==

% Raw_Cruise_FL = Raw_Cruise_FL_temp + 10;
% else

% Raw_Cruise_FL = Raw_Cruise_FL_temp;

% end

if Raw_Cruise_FL > Max_Cruise_FL
Raw_Cruise_FL = Max_Cruise_FL;
end
end

elseif stremp('WEST',Heading) == 1 % HEADING WEST

% EXTRACT DATA FROM ETMS

West_Track = Track_vs_Cruise(ETMS_BADA_Match).West_Track;

West_Track_Pts = Track_vs_Cruise(ETMS_BADA_Match).West_Track_Pts;

West_Min_FL_Pts = Track_vs_Cruise(ETMS_BADA_Match).West_Min_FL_Pts;

West_Max_FL_Pts = Track_vs_Cruise(ETMS_BADA_Match).West Max_FL_Pts;

% LOAD EMPIRICAL CDF FROM FL_EMPIRICAL_CDF.MAT (EXTRACTED FROM ETMS DATA,
MANUALLY MAINTAINED)

West_FL_2nd_Normalized = FL_Empirical_CDF(1,2).West_FL_Normalized;

89

West_F_2nd = FL_Empirical_ CDF(1,2).West_F;
West_FL_3rd_Normalized = FL_Empirical_CDF(1,3).West_FL_Normalized;
West_F_3rd = FL_Empirical_CDF(1,3).West_F;
West_FL_4th_Normalized = FL_Empirical_CDF(1,4).West_FL_Normalized,;
West_F_4th = FL_Empirical_CDF(1,4).West_F;
%%
if isempty(West_Track_Pts) ==
Flight_Profile = [J;
Climb_And_Descent_Distance = [];
return
elseif Rounded_Track_Dist < West_Track _Pts(1) || Rounded Track_Dist > West_Track_Pts(end)
Flight_Profile = [];
Climb_And_Descent_Distance = [];
return

%
% TRACK DISTANCE IS IN FIRST QUARTILE, USE UNIFORM DISTRIBUTION
elseif Track_Distance_nm <= 500
% GET RANDOM FLIGHT LEVEL BY UNIFORM DISTRIBUTION
Index ETMS_FL = find(Rounded_Track_Dist == West_Track_Pts);
Min_FL = West_Min_FL_Pts(Index_ETMS_FL);
Max_FL = West_Max_FL_Pts(Index_ETMS_FL);
if Min_FL > Max_FL
Raw_Cruise_FL = randi([round(Max_FL) round(Min_FL)]);
else
Raw_Cruise_FL = randi([round(Min_FL) round(Max_FL)]);
end
if Raw_Cruise_FL > Max_Cruise_FL
Raw_Cruise_FL = Max_Cruise_FL;
end

%

% TRACK DISTANCE IS IN SECOND QUARTILE, USE THE SECOND SECTION OF EMPIRICAL CDF

DISTRIBUTION
elseif Track_Distance_nm <= 1000
% GET RANDOM FLIGHT LEVEL BY EMPIRICAL CDF DISTRIBUTION IN 2ND QUARTILE
West_FL_2nd = West_FL_2nd_Normalized .* Max_Cruise_FL;
Random_Number = rand(1);
West_FL_2nd_idx = find(West_F_2nd>=Random_Number,1,first);
%Raw_Cruise_FL = West_FL_2nd(West_FL_2nd_idx);
Raw_Cruise_FL_temp = round(West_FL_2nd(West_FL_2nd_idx)/10)*10;
if mod(Raw_Cruise_FL_temp,20) ~=0
Raw_Cruise_FL = Raw_Cruise_FL_temp + 10;
else
Raw_Cruise_FL = Raw_Cruise_FL_temp;
end
if Raw_Cruise_FL > Max_Cruise_FL
Raw_Cruise_FL = Max_Cruise_FL;
end

% TRACK DISTANCE IS IN THIRD QUARTILE, USE THE THIRD SECTION OF EMPIRICAL CDF

DISTRIBUTION
elseif Track_Distance_nm <= 1500
% GET RANDOM FLIGHT LEVEL BY EMPIRICAL CDF DISTRIBUTION IN 3RD QUARTILE

West_FL_3rd = West_FL_3rd_Normalized .* Max_Cruise_FL;
Random_Number = rand(1);

90

West_FL_3rd_idx = find(West_F_3rd>=Random_Number,1,first’);
Raw_Cruise_FL =West FL_3rd(West_FL_3rd_idx);
% Raw_Cruise_FL_temp = round(West_FL_3rd(West_FL_3rd_idx)/10)*10;
% if mod(Raw_Cruise_FL_temp,20) ~=0

% Raw_Cruise_FL = Raw_Cruise_FL_temp + 10;
% else

% Raw_Cruise_FL = Raw_Cruise_FL_temp;

% end

if Raw_Cruise_FL > Max_Cruise_FL
Raw_Cruise_FL = Max_Cruise_FL;
end

% TRACK DISTANCE IS IN FOURTH QUARTILE, USE THE FOURTH SECTION OF EMPIRICAL CDF
DISTRIBUTION
else
% GET RANDOM FLIGHT LEVEL BY EMPIRICAL CDF DISTRIBUTION IN 4TH QUARTILE
West_FL_4th = West_FL_4th_Normalized .* Max_Cruise_FL;
Random_Number = rand(1);
West_FL_4th_idx = find(West_F_4th>=Random_Number,1,'first’);
Raw_Cruise_FL = West_FL_4th(West_FL_4th_idx);
% Raw_Cruise_FL_temp = round(West_FL_4th(West_FL_4th_idx)/10)*10;
% if mod(Raw_Cruise_FL_temp,20) ~=0

% Raw_Cruise_FL = Raw_Cruise_FL_temp + 10;
% else

% Raw_Cruise_FL = Raw_Cruise_FL_temp;

% end

if Raw_Cruise_FL > Max_Cruise_FL
Raw_Cruise_FL = Max_Cruise_FL;
end
end
end
%

Assn_Cruise_FL = Calculate_FL(Raw_Cruise_FL, Heading, Max_Cruise_FL);

% CONVERT FL TO FEET
Assn_Cruise_FL = Assn_Cruise_FL * 100;
%

% GENERATE DESCENT PROFILE

91

Climb_And_Descent_Distance = Climb_Profile.Distance_For_Climb_nm +
Descent_Profile.Distance_For_Descent_nm;
Cruise_Distance_nm = Track_Distance_nm - Climb_And_Descent_Distance;

% CHECK THAT CRUISE DISTANCE EXISTS
if sign(Cruise_Distance_nm) == -1
if Assn_Cruise_FL < 3000
Assn_Cruise_FL = Assn_Cruise_FL - 500;
elseif Assn_Cruise_FL >= 41000
Assn_Cruise_FL = Assn_Cruise_FL - 4000;
else
Assn_Cruise_FL = Assn_Cruise_FL - 2000;
end
continue
end

Cruise_Profile = Generate_Cruise_Profile_Coef(Aircraft_Index, Climb_Profile, Descent_Profile,
Cruise_Distance_nm);
%

if isempty(Cruise_Profile) ==
break
else
if Assn_Cruise_FL < 3000
Assn_Cruise_FL = Assn_Cruise_FL - 500;
elseif Assn_Cruise_FL >= 41000
Assn_Cruise_FL = Assn_Cruise_FL - 4000;
else
Assn_Cruise_FL = Assn_Cruise_FL - 2000;
end
end
%

end % while(1)

%

[0 ——

% CORRECT DESCENT PROFILE

[0 ——

Initial_Descent_Weight = Cruise_Profile.Weight_kg(end);

Descent_Profile. Weight kg = Descent_Profile.Weight_kg + Initial_Descent_Weight;
Descent_Profile.Time_hrs = Descent_Profile.Time_hrs + Cruise_Profile.Time_hrs(end);
Descent_Profile.Distance_nm = Descent_Profile.Distance_nm + Cruise_Profile.Distance_nm(end);

Descent_Profile.Distance_nm_For_Speed = Descent_Profile.Distance_nm_For_Speed +
Cruise_Profile.Distance_nm(end);
%

92

Flight_Profile.Climb_Profile = Climb_Profile;
Flight_Profile.Cruise_Profile = Cruise_Profile;
Flight_Profile.Descent_Profile = Descent_Profile;
%

return

93

B.3 Calculate_FL.m

% This function calculates the cruise flight level of an aircraft depending

% on its heading and track distance between two airports

%

% [Assn_Cruise_FL Cruise_FL] = Calculate_FL(Track_Distance_nm, Heading, Aircraft, Max_Cruise_FL)
%

% INPUT:

% Track Distance_nm = distance along track

% Heading = general direction of path, EAST/WEST
% Aircraft = BADA aircraft being considered

% Max_Cruise_FL = aircraft possible altitude

%

% OUTPUT:

% Assn_Cruise_FL = the assigned cruise FL, rounded

% Cruise_FL = the unrounded or maximum aircraft FL

function Assn_Cruise_FL = Calculate_FL(Raw_Cruise_FL, Heading, Max_Cruise_FL)

% Field List:

% Field 1: Aircraft

% Field 2: EAST_Total_Dist

% Field 3: EAST_Max_FL

% Field 4;: EAST_Dist_Max_FL
% Field 5: EAST_Slope

% Field 6: WEST_Total_Dist

% Field 7: WEST_Max_FL

% Field 8: WEST_Dist_Max_FL
% Field 9: WEST _Slope

BADA_AC = Dist_FL_Relation{1};
EAST_Slope = Dist_FL_Relation{5};
WEST _Slope = Dist_FL_Relation{9};

Flight_Assn_East_Lo = [30;50;70;90;110;130;150;170;190;210;230;250;270;...
290;310;330;350;370;390;410];

Flight_Assn_West_Lo = [30;40;60;80;100;120;140;160;180;200;220;240;260;...
280;300;320;340;360;380;400];

Flight_Assn_East_Hi = [410;450;490;530;570;610];

Flight_Assn_West_Hi = [400;430;570;510;550;590];

%

% AC_Index = strmatch(Aircraft, BADA_AC, 'exact);

% % GET HEADING

% if Course>=0 && Course<180

% Slope = EAST_Slope(AC_Index);
% Heading = 'EAST,

% elseif Course>=180 && Course<360
% Slope = WEST_Slope(AC_Index);
% Heading = 'WEST",

% end

% %

if Raw_Cruise_FL <= 30
Assn_Cruise_FL = Raw_Cruise_FL;
elseif Raw_Cruise_FL > 30
if stremp('EAST', Heading) ==
[no, Row] = min(abs(Flight_Assn_East_Lo - Raw_Cruise_FL));
Assn_Cruise_FL = Flight_Assn_East_Lo(Row);
elseif strcmp('WEST', Heading) ==
[no, Row] = min(abs(Flight_Assn_West_Lo - Raw_Cruise_FL));
Assn_Cruise_FL = Flight_Assn_West_Lo(Row);
end
elseif Raw_Cruise_FL > 410
if strcemp('EAST', Heading) ==
[no, Row] = min(abs(Flight_Assn_East_Hi - Raw_Cruise_FL));
Assn_Cruise_FL = Flight_Assn_East_Hi(Row);
elseif strcmp('WEST', Heading) ==
[no, Row] = min(abs(Flight_Assn_West_Hi - Raw_Cruise_FL));
Assn_Cruise_FL = Flight_Assn_West_Hi(Row);
end
end
%

if Assn_Cruise_FL >= Max_Cruise_FL
Assn_Cruise_FL = Max_Cruise_FL;
end

if Assn_Cruise_FL <0
Assn_Cruise_FL =0;

end

%

return

95

B.4 Generate_Climb_Profile.m

% This function generates the climb profile of the aircraft/airport

% combination being called

%

% Climb_Profile = Generate_Climb_Profile(Aircraft_Index)

%

% INPUT:

% Aircraft_Index = index of AC/AP combo from T100 tracks structure
%

% OUTPUT:

% Climb_Profile = motion profile of aircraft's climb

function Climb_Profile = Generate_Climb_Profile(Aircraft_Index, Initial_Weight_kg)

global BADA_Aircraft_Data rocTable CLIMB_TAS Altitude_Table CLIMB_FUEL_NOM
global FeetInNauticalMiles Time Assn_Cruise_FL Distance

global Current_Lat Current_Lon i Origin_Airport_Altitude Wind_Proj

global Waypoints Initial_Lat Initial_Lon BADA_Aircraft_Coef

global j true_air_speed rate_of climb fuel_flow

ftpsecTOknots = 0.592483801,;
%

%load BADA_Aircraft_Data

CLIMB_TAS =BADA_Aircraft_Data(Aircraft_Index).CLIMB_TAS;

CLIMB_FUEL_NOM = BADA_Aircraft_Data(Aircraft_Index).CLIMB_FUEL_NOM,;
Altitude_Table = BADA_Aircraft_Data(Aircraft_Index).FL * 100; % IN FEET

rocTable = BADA_Aircraft_Data(Aircraft_Index).CLIMB_ROC_NOM; % RATE OF CLIMB
%

if Origin_Airport_Altitude >0
% USE HYDROSTATICS TO GET DENSITY RATIO
h = Origin_Airport_Altitude*0.3048; % IN METERS ABOVE SEALEVEL
L =-.0065; % LAPSE RATE IN TROPOSHERE< IN (KELVIN/METER)
T_SL =288.15; % SEA LEVEL TEMPERATURE IN KELVIN, ACCORDING TO BADA
g0 =9.81; % BASE GRAVITATIONAL CONSTANT, IN m/s"2
R =287.0368; % GAS CONSTANT, IN N.m/kg.K

T_h=T_SL + L*h; % TEMPERATURE AT AIRPORT ALTITUDE, IN KELVIN
sigma = (T_h/T_SL)M-(90/(L*R)+1)); % DENSITY RATIO, rho_h/rho_SL

% CORRECT ALTITUDE TABLE TO START AT ABOUT AIRPORT ALTITUDE

96

[~,Data_Fix_Index,~] = find(Altitude_Table>floor(Origin_Airport_Altitude),1);
temp_TAS = CLIMB_TAS(Data_Fix_Index:end);

temp_FUEL = CLIMB_FUEL_NOM(Data_Fix_Index:end);

temp_ROC =rocTable(Data_Fix_Index:end);

temp_ALT = Altitude_Table(Data_Fix_Index:end);

CLIMB_TAS_new =temp_TAS;

CLIMB_FUEL_NOM_new =temp_FUEL,;

rocTable_new =temp_ROC,;

Altitude_Table_new =temp_ALT;

% REPLACE DATA WITH DENSITY RATIO-CORRECTED VALUES
Length = length(CLIMB_TAS_new);

CLIMB_TAS new = CLIMB_TAS(1:Length)/sigma;
CLIMB_FUEL_NOM_new = CLIMB_FUEL_NOM(1:Length)*sigma;
rocTable_new = rocTable(1:Length)*sigma;

% FOR ALTITUDES ABOVE 20000 FT, USE ORIGINAL BADA DATA
[~,Index_Old_Data,~] = find(Altitude_Table == 20000);
[~,Index_New_Data,~] = find(Altitude_Table_new == 20000);

CLIMB_TAS_new(Index_New_Data:end) = CLIMB_TAS(Index_Old_Data:end);
CLIMB_FUEL_NOM_new(Index_New_Data:end) = CLIMB_FUEL_NOM(Index_Old_Data:end);
rocTable_new(Index_New_Data:end) = rocTable(Index_Old_Data:end);

Altitude_Table = Altitude_Table_new;

CLIMB_TAS = CLIMB_TAS_new;
CLIMB_FUEL_NOM = CLIMB_FUEL_NOM _new;
rocTable = rocTable_new;

end
%

% INITIAL LATITUDE AND LONGITUDE
Initial_Lat = Waypoints(1,1);
Initial_Lon = Waypoints(1,2);

% DEFINE TIME SPAN (ONE HOUR IN LENGTH)
Time_lInitial = 0.0; % INITIAL TIME (SECONDS)
Time_Final =3600.0; % FINAL TIME (SECONDS)
Time_Span = [Time_lnitial Time_Final]; % SPAN TIME

% DEFINE INITIAL MASS
Aircraft_Mass_Initial = Initial_Weight_kg; % KG

% DEFINE INITIAL STATE VARIABLES

yClimb_Initial =[Origin_Airport_Altitude Aircraft_Mass_Initial 0];
% y(1) - ALTITUDE (FEET)

% y(2) - WEIGHT (KG)

% y(3) - DISTANCE TRAVELLED (FEET)

% DEFINE INITIAL F_Climb VARIABLES
i=0;
=0

97

Current_Lat = 0;
Current_Lon = 0;
Distance = 0;
Time =0;
Wind_Proj = 0;
%

[Climb_Time,Climb_Data] = rkdsys('F_Climb_Coef', Time_Span, yClimb_Initial, 60, []);

% FIND INDEX FOR REACHING CRUISE FLIGHT LEVEL
Altitude_ft = Climb_Data(:,1);
Index_To_Reach_MaxFL = find(Altitude_ft >= Assn_Cruise_FL, 1, 'first");
if isempty(Index_To_Reach_MaxFL) ==
Index_To_Reach_MaxFL = length(Altitude_ft)-1; % GET INDEX OF LAST ITEM IF NOTHING TO
TRUNCATE
end

true_air_speed = true_air_speed(1:Index_To_Reach_MaxFL);
rate_of climb =rate_of _climb(1:Index_To_Reach_MaxFL);
fuel_flow = fuel_flow(1:Index_To_Reach_MaxFL);

% TRUNCATE CLIMB PROFILE TO STOP AT CRUISE FLIGHT LEVEL,; CONVERT DATA

Altitude_ft = Altitude_ft(1:Index_To_Reach_MaxFL);

Distance_nm = Climb_Data(1:Index_To_Reach_MaxFL,3)/FeetinNauticalMiles;
Time_hrs =Climb_Time(1:Index_To_Reach_MaxFL) / 3600;

Weight_kg = Climb_Data(1:Index_To_Reach_MaxFL,2);

Rate_of Climb_ftmin = rate_of_climb’;

Speed_knots = true_air_speed';%(Distance_nm(2:end) - Distance_nm(1:end-1)) ./ (Time_hrs(2:end) -

Time_hrs(1:end-1));

FuelFlow_kgmin = fuel_flow";%-(Weight_kg(2:end) - Weight_kg(1:end-1)) ./ (Time_hrs(2:end) -
Time_hrs(1:end-1)) / 60;

Distance_nm_For_Speed = (Distance_nm(2:end) + Distance_nm(1:end-1)) / 2;

Total_Fuel kg = Weight_kg(1) - Weight_kg(end);
Latitude_Pts = Current_Lat(1:Index_To_Reach_MaxFL);
Longitude_Pts = Current_Lon(1:Index_To_Reach_MaxFL);
Wind_Vectors = Wind_Proj(1:Index_To_Reach_MaxFL);
%

Climb_Profile.Distance_For_Climb_nm = max(Distance_nm);
Climb_Profile.Time_For_Climb_hrs = max(Time_hrs);

Climb_Profile.Total_Fuel_kg = Total_Fuel_Kkg;
Climb_Profile.Altitude_ft = Altitude_ft;
Climb_Profile.Distance_nm = Distance_nm;
Climb_Profile.Time_hrs = Time_hrs;
Climb_Profile.Weight_kg = Weight_kg;

Climb_Profile.Rate_of Climb_ftmin = Rate_of Climb_ftmin;

98

Climb_Profile.Speed_knots = Speed_knots;
Climb_Profile.FuelFlow_kgmin = FuelFlow_kgmin;
Climb_Profile.Distance_nm_For_Speed = Distance_nm_For_Speed;

Climb_Profile.Latitude_Pts = Latitude_Pts;
Climb_Profile.Longitude_Pts = Longitude_Pts;
Climb_Profile.Wind_Vectors_knots =Wind_Vectors * ftpsecTOknots;
%
return

99

B.5 F_Climb_Coef.m

% This function generates points for the climb profile of the
% aircraft/airport combination

%

% yprime = F_Climb(t,y,Add)

%

% INPUT:

% t =time

% y =rate equations

% y(1) = Aircraft altitude (feet)

% y(2) = Aircraft weight (kilograms)

% y(3) = Distance traveled along the path (feet)
% Add = boolean for RK4 to run F_Climb

%

% OUTPUT:

% yprime = derivative of y (rate equations)

function yprime = F_Climb_Coef(t,y,Add)

global rocTable Altitude_Table CLIMB_TAS CLIMB_FUEL_NOM
global Waypoints i Distance FeetinNauticalMiles Assn_Cruise_FL
global Current_Lat Current_Lon Wind_Boolean Wind_Proj Month
global Initial_Lat Initial_Lon BADA_Aircraft_Coef Aircraft_Index

global j true_air_speed rate_of _climb fuel_flow azimuth_vec

pmTops = 1/60; % CONVERT FROM FEET PER MINUTE TO FEET PER SECOND

knotsTofps = 1.6874; % CONVERT KNOTS TO FEET PER SECOND

mpsTofps = 3.2808; % CONVERT WIND SPEED FROM METERS PER SECOND TO FEET PER SECOND
mpsToknots = 1.94384449; %convert wind speed from m/s to knots.

%

if i ==0% CALCULATE INITIAL WIND PROJECTION
i =i+1; % COUNTER
Distance(i,:) = y(3);
% INITIAL LAT/LON POINTS
Current_Lat(i,:) = Initial_Lat; %Waypoints(1,1);
Current_Lon(i,:) = Initial_Lon; %Waypoints(1,2);

[~,Index] = min(abs(Current_Lat(i,:) - Waypoints(:,1)) + abs(Current_Lon(i,:) - Waypoints(:,2))); % Find index of
Waypoints corresponding to lat/lon

100

% WAYPOINTS OF INDEX MUST BE FARTHER ALONG THAN CURRENT LAT/LON TO

% AVOID BACKTRACKING
if Index == length(Waypoints)
Index = Index - 1;

elseif Index <= length(Waypoints) - 1 % FOR INDICES BEFORE END OF WAYPOINTS

% DETERMINE IF WAYPOINTS IS INCREASING OR DECREASING IN SIZE

if Waypoints(Index+1,1) > Waypoints(Index,1)
if Current_Lat(i,;) >= Waypoints(Index,1)
Index = Index + 1;
end
elseif Waypoints(Index+1,1) < Waypoints(Index,1)
if Current_Lat(i,:) <= Waypoints(Index,1)
Index = Index + 1;
end
end

if Index ~= length(Waypoints)
if Waypoints(Index+1,2) > Waypoints(Index,2)
if Current_Lon(i,:) >= Waypoints(Index,2)
Index = Index + 1;
end
elseif Waypoints(Index+1,2) < Waypoints(Index,2)
if Current_Lon(i,:) <= Waypoints(Index,2)
Index = Index + 1;
end
end
end

else % FOR INDICES APPROACHING END OF WAYPOINTS
if Waypoints(Index,1) > Waypoints(Index-1,1)
if Current_Lat(i,:) >= Waypoints(Index,1)
Index = Index + 1;
end
elseif Waypoints(Index,1) < Waypoints(Index-1,1)
if Current_Lat(i,:) <= Waypoints(Index,1)
Index = Index + 1;
end
end

if Index == length(Waypoints)
if Waypoints(Index,2) > Waypoints(Index-1,2)
if Current_Lon(i,:) >= Waypoints(Index,2)
Index = Index + 1;
end
elseif Waypoints(Index,2) < Waypoints(Index-1,2)
if Current_Lon(i,:) <= Waypoints(Index,2)
Index = Index + 1;
end
end
end

101

end

% CORRECT INDEX IF GREATER THAN WAYPOINTS LENGTH
if Index > length(Waypoints(:,1))
Index = length(Waypoints(:,1));
end
%

Azimuth = azimuth(Current_Lat(i,:), Current_Lon(i,:), Waypoints(Index,1), Waypoints(Index,2)); %
INSTANTANEOUS ANGLE OF HEADING

% INITIAL WIND PROJECTION
if Wind_Boolean == true

Wind_Proj(i,:) = Wind_Calculator(Azimuth, Month, y(1), Current_Lat(i,:), Current_Lon(i,:))*mpsToknots;
end

elseif Add == true % RUN THIS CODE ONLY WHEN F_CLIMB IS CALLED THE FOURTH TIME BY THE
rk4sys ODE FUNCTION

i =i+1; % COUNTER

Distance(i,:) = y(3);

% FIND INDEX OF WAYPOINTS CORRESPONDING TO CURRENT LAT/LON POINTS

Change_in_Distance = (Distance(i,:) - Distance(i-1,:))/FeetinNauticalMiles;

[~,Index] = min(abs(Current_Lat(i-1,:) - Waypoints(:,1)) + abs(Current_Lon(i-1,:) - Waypoints(:,2))); % Find
index of Waypoints corresponding to lat/lon

% WAYPOINTS OF INDEX MUST BE FARTHER ALONG THAN CURRENT LAT/LON TO
% AVOID BACKTRACKING
if Index == length(Waypoints)
Index = Index - 1;
elseif Index <= length(Waypoints) - 1 % FOR INDICES BEFORE END OF WAYPOINTS

% DETERMINE IF WAYPOINTS IS INCREASING OR DECREASING IN SIZE

if Waypoints(Index+1,1) > Waypoints(Index,1)
if Current_Lat(i-1,:) >= Waypoints(Index,1)
Index = Index + 1;
end
elseif Waypoints(Index+1,1) < Waypoints(Index,1)
if Current_Lat(i-1,:) <= Waypoints(Index,1)
Index = Index + 1;
end
end

if Index ~= length(Waypoints)
if Waypoints(Index+1,2) > Waypoints(Index,2)
if Current_Lon(i-1,:) >= Waypoints(Index,2)
Index = Index + 1;
end
elseif Waypoints(Index+1,2) < Waypoints(Index,2)

102

if Current_Lon(i-1,:) <= Waypoints(Index,2)
Index = Index + 1;
end
end
end

else % FOR INDICES APPROACHING END OF WAYPOINTS
if Waypoints(Index,1) > Waypoints(Index-1,1)
if Current_Lat(i-1,:) >= Waypoints(Index,1)
Index = Index + 1;
end
elseif Waypoints(Index,1) < Waypoints(Index-1,1)
if Current_Lat(i-1,:) <= Waypoints(Index,1)
Index = Index + 1;
end
end

if Index == length(Waypoints)
if Waypoints(Index,2) > Waypoints(Index-1,2)
if Current_Lon(i-1,:) >= Waypoints(Index,2)
Index = Index + 1;
end
elseif Waypoints(Index,2) < Waypoints(Index-1,2)
if Current_Lon(i-1,:) <= Waypoints(Index,2)
Index = Index + 1;
end
end
end

end

while (1)
[~,Dist_to_Next Waypt] = legs([Current_Lat(i-1,:) Waypoints(Index,1)], [Current_Lon(i-1,:)
Waypoints(Index,2)]);
if Dist_to_Next_Waypt < Change_in_Distance
Index = Index + 1;
if Index >= length(Waypoints)
Index = length(Waypoints)-1;
break
end
else
break
end
end

% CORRECT INDEX IF GREATER THAN WAYPOINTS LENGTH
if Index > length(Waypoints(:,1))
Index = length(Waypoints(:,1));
end
%

Azimuth = azimuth(Current_Lat(i-1,:), Current_Lon(i-1,:), Waypoints(Index,1), Waypoints(Index,2)); %
INSTANTANEOUS ANGLE OF HEADING

103

%

Change_in_Degrees = nm2deg(Change_in_Distance); % CONVERT DISTANCE NM TO DEGREES FOR USE
IN RECKON FUNCTION

[Current_Lat(i,:),Current_Lon(i,:)] = reckon(Current_Lat(i-1,:),Current_Lon(i-1),Change_in_Degrees,Azimuth);

%

if Wind_Boolean == true
Wind_Proj(i,:) = Wind_Calculator(Azimuth, Month, y(1), Current_Lat(i,:), Current_Lon(i,:))*mpsToknots;
end
%
end

% WIND VS NO WIND

if Wind_Boolean == false
Wind_Proj(i,:) = 0;

end

%

% if Current_Altitude < min(Altitude_Table)

% vtas = custom_interp(fliplr(Altitude_Table),fliplr(CLIMB_TAS),Current_Altitude) * knotsTofps +
Wind_Proj(i,:)*knotsTofps; % SPEED IS TRUE AIRSPEED (TAS) IN FPS

% rateOfClimb = custom_interp(fliplr(Altitude_Table),fliplr(rocTable),Current_Altitude) * pmTops;

% IN FEET PER SECOND UNITS

% fuelFlow = custom_interp(fliplr(Altitude_Table),fliplr(CLIMB_FUEL_NOM),Current_Altitude) * pmTops;
% KILOGRAMS PER SECOND

% else
% vtas = custom_interp(Altitude_Table,CLIMB_TAS,Current_Altitude) * knotsTofps +
Wind_Proj(i,:)*knotsTofps; % SPEED IS TRUE AIRSPEED (TAS) IN FPS

% rateOfClimb = custom_interp(Altitude_Table,rocTable,Current_Altitude) * pmTops;

% IN FEET PER SECOND UNITS

% fuelFlow =custom_interp(Altitude_Table,CLIMB_FUEL_NOM,Current_Altitude) * pmTops;
% KILOGRAMS PER SECOND

% end

% %

vtas_kts = Speed_Calculator_Climb(Aircraft_Index, Current_Altitude, y(2), BADA_Aircraft_Coef);

vtas = vtas_kts * knotsTofps + Wind_Proj(i,:)*knotsTofps; % SPEED IS TRUE AIRSPEED (TAS) IN FPS
rateOfClimb = ROC_Calculator(Aircraft_Index, Current_Altitude, vtas_kts, y(2), BADA_Aircraft_Coef) * pmTops;
% IN FEET PER SECOND UNITS

fuelFlow = FuelFlow_Calculator_Climb(Aircraft_Index, Current_Altitude, vtas_kts, BADA_Aircraft_Coef) *
pmTops; % KILOGRAMS PER SECOND

%

104

if Add == true
i=itL
true_air_speed(j) = vtas/knotsTofps;
rate_of_climb(j) = rateOfClimb/pmTops;
fuel_flow(j) = fuelFlow/pmTops;
azimuth_vec(j) = Azimuth;

end

% CHECK IF CRUISE ALTITUDE IS REACHED
if y(1) < Assn_Cruise_FL
yprime(1) = rateOfClimb;
else
yprime(1) = 0; % ZERO RATE OF CLIMB (FEET/S)
end

% MASS FLOW RATE (KG/S)
yprime(2) = - fuelFlow;

% DISTANCE TRAVELLED ALONG FLIGHT PATH (FEET)
yprime(3) = vtas;

% TRANSPOSE THE ARRAY GOING OUT
yprime = yprime’;

%
return

105

B.6 Speed_Calculator_Climb.m

% Speed_Calculator

% IMPORTANT: currently configured only for CRUISE conditions
%

% [VTAS] = Speed_Calculator(Aircraft_Index, Altitude)

%

% INPUT:

% Aircraft_Index = index of current aircraft in BADA

% Altitude = current altitude of aircraft <ft>

% AC_Mass = current mass of aircraft <kg>

% BADA_Aircraft_Coef = structure of BADA coefficients from APF file for
% aircraft

%

% OUTPUT:

% VTAS = current true airspeed <kts>

function [VTAS] = Speed_Calculator_Climb(Aircraft_Index, Altitude, AC_Mass, BADA_Aircraft_Coef)
% global BADA_Aircraft_Coef

% Convert
kts2m_s = 0.514444444444; % kts to m/s
ft2m = 0.3048; % ft to m

% Deviations from ISA for now assumed to be zero:
delta_pres = 0;
delta_temp = 0;

temp_0 = 288.15; % standard temperature at MSL <K>
pres_0 = 101325; % standard pressure at MSL <Pa>
dens_0 = 1.225; % standard density at MSL <kg/m"3>
a_0=340.294; % speed of sound at MSL <m/s>

%

gamma = 1.4; % adiabatic index of air (kappa in BADA User Manual)

R = 287.05287; % real gas constant for air <m”"2/K.s"2>

g0 = 9.80665; % gravitational acceleration <m/s"2>

beta = -0.0065; % ISA temerature gradient below tropo (lapse rate L) <K/m>
r_earth = 6.371e+6; % RADIUS OF EARTH

%

Altitude_m = ft2m * Altitude;
Hp = (r_earth / (r_earth + Altitude_m)) * Altitude_m; % geopotential altitude <m>
Hp_tropo = 11000; % geopotential alt at tropopause <m>

Hp = Altitude_m;

106

% MEAN SEA LEVEL (MSL)

if Hp < Hp_tropo
temp =temp_0 + delta_temp + beta*Hp;
pres = pres_0*((temp - delta_temp)/temp_0)"*(-g0/(beta*R));
elseif Hp == Hp_tropo
temp = temp_0 + delta_temp + beta*Hp_tropo;
pres = pres_0*((temp - delta_temp)/temp_0)"*(-g0/(beta*R));
elseif Hp > Hp_tropo
temp_tropo = temp_0 + delta_temp + beta*Hp_tropo;
pres_tropo = pres_0*((temp_tropo - delta_temp)/temp_0)"(-g0/(beta*R));
temp_ISA _tropo = temp_0 + beta*Hp_tropo;
temp = temp_tropo;
pres = pres_tropo * exp(-g0/(R*temp_ISA_tropo)*(Hp-Hp_tropo));
end
dens = pres/(R*temp);
%

% MINIMUM SPEED COEFFICIENT
Cv_min=1.3;

% CLIMB SPEED INCREMENTS <KCAS>
Vd_cll =5;

Vd_cl2 =10;

Vd_cl3 =30;

Vd_cl4 = 60;

Vd_cl5 = 80;

Vd_cl6 = 20;

Vd_cl7 = 30;

Vd_cl8 = 35;

%

eng_type = BADA_Aircraft_Coef(Aircraft_Index).AC_Type.eng_type;

V_cll = BADA_Aircraft_Coef(Aircraft_Index).Procedures.V_cl1;

V_cl2 = BADA_Aircraft_Coef(Aircraft_Index).Procedures.V_cl2;

M_cl = BADA_Aircraft_Coef(Aircraft_Index).Procedures.M_cl;

m_ref = BADA_Aircraft_Coef(Aircraft_Index).Mass.m_ref * 1000; % tonnes to kg
V_stall_TO_ref = BADA_Aircraft_Coef(Aircraft_Index).Aero.V_stall_ TO;

% ACTUAL V_STALL_TO FOR AC_Mass
V_stall_TO =V _stall_ TO_ref * sqrt(AC_Mass/m_ref);

% CALCULATE MACH TRANSITION ALTITUDE

V_cl2_m_s =kts2m_s * V_cl2;

delta_trans = ((1+(gamma-1)/2*(V_cl2_m_s/a_0)"2)"(gamma/(gamma-1))-1)...
/((1+(gamma-1)/2*M_cl"2)"(gamma/(gamma-1))-1);

theta_trans = (delta_trans)”(-beta*R/g0);

Hp_trans = (-1/(ft2m*beta))*(temp_0*(1-theta_trans));

107

mu = (gamma-1)/gamma;
Altitude_trans = Hp_trans*r_earth/(r_earth-Hp_trans);

% CAS SCHEDULE
if stremp(eng_type,'Jet’) ==
if Altitude < 1500
VCAS = Cv_min*V_stall_ TO + Vd_cl1;
elseif Altitude >= 1500 && Altitude < 3000
VCAS = Cv_min*V _stall_ TO +Vd_cl2;
elseif Altitude >= 3000 && Altitude < 4000
VCAS = Cv_min*V_stall_ TO + Vd_cl3;
elseif Altitude >= 4000 && Altitude < 5000
VCAS = Cv_min*V_stall_TO + Vd_cl4;
elseif Altitude >= 5000 && Altitude < 6000
VCAS = Cv_min*V_stall_TO + Vd_cl5;
elseif Altitude >= 6000 && Altitude < 10000
VCAS = min(V_cl1,250);
elseif Altitude >= 10000 && Altitude < Altitude_trans
VCAS =V _cl2;
elseif Altitude >= Altitude_trans
M =M _cl;
end
else
if Altitude < 500
VCAS = Cv_min*V_stall_TO + Vd_cl6;
elseif Altitude >= 500 && Altitude < 1000
VCAS = Cv_min*V_stall_TO + Vd_cl7;
elseif Altitude >= 1000 && Altitude < 1500
VCAS = Cv_min*V_stall_TO + Vd_cl8;
elseif Altitude >= 1500 && Altitude < 10000
VCAS = min(V_cl1,250);
elseif Altitude >= 10000 && Altitude < Altitude_trans
VCAS =V _cl2;
elseif Altitude >= Altitude_trans
M =M _cl,
end
end
%

if Altitude < Altitude_trans
VCAS_m_s = kts2m_s * VCAS;
VTAS = 1/kts2m_s * (2/mu*pres/dens*((1+pres_0/pres*((1+mu/2*dens_0/pres_0*VCAS_m_s"2)(1/mu)-
1))"mu-1))(1/2);
else
VTAS = 1/kts2m_s*M*sqgrt(gamma*R*temp);
end
%

108

B.7 ROC_Calculator.m

% ROC Calculator

%

% [ROC] = ROC_Calculator(Aircraft_Index, Altitude, VTAS, AC_Mass, BADA_Aircraft_Coef)
%

% INPUT:

% Aircraft_Index = index of current aircraft in BADA

% Altitude = current altitude of aircraft <ft>

% VTAS = current true airspeed <kts>

% AC_Mass = current mass of aircraft <kg>

% BADA_Aircraft_Coef = structure of BADA coefficients from APF file for
% aircraft

%

% OUTPUT:

% ROC = current rate of climb <ft/min>

function [ROC] = ROC_Calculator(Aircraft_Index, Altitude, VTAS, AC_Mass, BADA_Aircraft_Coef)

% DEVIATIONS FROM ISA FOR NOW ASSUMED TO BE ZERO:
delta_temp =0;
ESF = 1; % energy share factor

% CONVERT
kts2m_s = 0.514444444444; % kts to m/s
ft2m = 0.3048; % ftto m

temp_0 = 288.15; % standard temperature at MSL <K>
pres_0 = 101325; % standard pressure at MSL <Pa>
dens_0 = 1.225; % standard density at MSL <kg/m"3>
a_0=340.294; % speed of sound at MSL <m/s>

%

gamma = 1.4; % adiabatic index of air (kappa in BADA User Manual

R = 287.05287; % real gas constant for air <m”"2/K.s"2>

g0 = 9.80665; % gravitational acceleration <m/s"2>

beta = -0.0065; % ISA temerature gradient below tropo (lapse rate L) <K/m>
r_earth = 6.371e+6; % RADIUS OF EARTH

C_Tcr =0.95; % BADA-defined maximum cruise thrust coefficient for all aircraft
%

Altitude_m = ft2m * Altitude;
% Hp = (r_earth / (r_earth + Altitude_m)) * Altitude_m; % geopotential altitude <m>
Hp_tropo = 11000; % geopotential alt at tropopause <m>

Hp = Altitude_m;

109

% MEAN SEA LEVEL (MSL)

if Hp < Hp_tropo
temp =temp_0 + delta_temp + beta*Hp;
pres = pres_0*((temp - delta_temp)/temp_0)"*(-g0/(beta*R));
elseif Hp == Hp_tropo
temp = temp_0 + delta_temp + beta*Hp_tropo;
pres = pres_0*((temp - delta_temp)/temp_0)"*(-g0/(beta*R));
elseif Hp > Hp_tropo
temp_tropo = temp_0 + delta_temp + beta*Hp_tropo;
pres_tropo = pres_0*((temp_tropo - delta_temp)/temp_0)"(-g0/(beta*R));
temp_ISA _tropo = temp_0 + beta*Hp_tropo;
temp = temp_tropo;
pres = pres_tropo * exp(-g0/(R*temp_ISA_tropo)*(Hp-Hp_tropo));
end
dens = pres/(R*temp);
%

eng_type = BADA_Aircraft_Coef(Aircraft_Index).AC_Type.eng_type;

S = BADA _Aircraft_Coef(Aircraft_Index).Aero.S; % planform area <m”2>
VTAS_m_s =kts2m_s * VTAS;

C_L =2*AC_Mass*g0/(dens*VTAS_m_s"2*S);

C_DO0_CR = BADA_Aircraft_Coef(Aircraft_Index).Aero.C_DO0_CR,;
C_D2_CR = BADA_Aircraft_Coef(Aircraft_Index).Aero.C_D2_CR,;
C_D=C_D0_CR+C_D2 CR*C_L"2;

Drag = 1/2*C_D*dens*VTAS_m_s"2*S;
%

% MAX CLIMB THRUST

C_Tcl = BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tcl,;
C_Tc2 = BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc2;
C_Tc3 =BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc3;
C_Tc4 = BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc4;
C_Tc5 =BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc5;

Hp_ft = Altitude;%(r_earth / (r_earth + Altitude)) * Altitude;

if strcmp(eng_type,'Jet’) ==

Thrust_max_cl_ISA=C_Tcl*(1 - Hp_ft/C_Tc2 + C_Tc3*Hp_ft"2);
elseif strcmp(eng_type, Turboprop’) ==

Thrust_max_cl_ISA=C_Tcl/VTAS*(1 - Hp_ft/C_Tc2) + C_Tc3;
elseif strcmp(eng_type,'Piston’) ==

Thrust_max_cl_ISA = C_Tcl*(1 - Hp_ft/C_Tc2) + C_Tc3/VTAS;
end

% IF NOT ISA:

110

if delta_temp ~=0

delta_temp_eff = delta_temp - C_Tc4;

Thrust_max_cl = Thrust_max_cl_ISA* (1 - C_Tc5*delta_temp_eff);
else

Thrust_max_cl = Thrust_max_cl_ISA,;
end

% % MAX POSSIBLE CRUISE THRUST
% Thrust_max_cr = C_Tecr * Thrust_max_cl;

Thrust = Thrust_max_cl;
%

h_MO = BADA_Aircraft_Coef(Aircraft_Index).Flight Env.h_MO;

h_max = BADA_Aircraft_Coef(Aircraft_Index).Flight_ Env.h_max;
G_t=BADA_Aircraft_Coef(Aircraft_Index).Flight Env.G_t;

C_Tc4 = BADA_Aircraft_Coef(Aircraft_Index). Thrust.C_Tc4;

G_w = BADA_Aircraft_Coef(Aircraft_Index).Mass.G_w;

m_min = BADA_Aircraft_Coef(Aircraft_Index).Mass.m_min*1000;

m_max = BADA_Aircraft_Coef(Aircraft_Index).Mass.m_max*1000; % from tonnes to kg

Max_Alt_Actual_m = min(h_MO,h_max+G_t*(C_Tc4)+G_w*(m_max-AC_Mass))*ft2m,;
if Hp < (0.8*Max_Alt_Actual_m)

if strcmp(eng_type,'Jet’) ==
C_red =0.15;

elseif strcmp(eng_type, Turboprop’) ==1
C_red =0.25;

elseif strcmp(eng_type, Piston’) ==
C red=0;

end

C_pow_red =1 - C_red * (m_max-AC_Mass)/(m_max-m_min);
dh_dt = dh_dt*C_pow_red;

end

%

ROC = dh_dt*60/ft2m; % convert from <m/s> to <ft/min>

111

B.8 FuelFlow_Calculator_Climb.m

% Fuel Flow Calculator

% IMPORTANT: currently configured only for CRUISE conditions
%

% [VTAS] = Speed_Calculator(Aircraft_Index, Altitude)

%

% INPUT:

% Aircraft_Index = index of current aircraft in BADA

% Altitude = current altitude of aircraft <ft>

% VTAS = current true airspeed <kts>

% AC_Mass = current mass of aircraft <kg>

% BADA_Aircraft_Coef = structure of BADA coefficients from APF file for
% aircraft

%

% OUTPUT:

% Fuel_Flow = current fuel flow <kg/min>

function [Fuel_Flow] = FuelFlow_Calculator_Climb(Aircraft_Index, Altitude, VTAS, BADA_Aircraft_Coef)

% DEVIATIONS FROM ISA FOR NOW ASSUMED TO BE ZERO:
delta_temp =0;

% CONVERT

kts2m_s = 0.514444444444; % kts to m/s
ftam = 0.3048; % ft to m

[0 ———

% MSL STANDARD CONDITIONS

temp_0 = 288.15; % standard temperature at MSL <K>
pres_0 = 101325; % standard pressure at MSL <Pa>
dens_0 = 1.225; % standard density at MSL <kg/m"3>
a_0=340.294; % speed of sound at MSL <m/s>

%

gamma = 1.4; % adiabatic index of air (kappa in BADA User Manual

R =287.05287; % real gas constant for air <m”2/K.s"2>

g0 = 9.80665; % gravitational acceleration <m/s"2>

beta = -0.0065; % ISA temerature gradient below tropo (lapse rate L) <K/m>
r_earth = 6.371e+6; % RADIUS OF EARTH

C_Tcr =0.95; % BADA-defined maximum cruise thrust coefficient for all aircraft
%

% Altitude_m = ft2m * Altitude;

% % Hp = (r_earth / (r_earth + Altitude_m)) * Altitude_m; % geopotential altitude <m>
% Hp_tropo = 11000; % geopotential alt at tropopause <m>

%

% Hp = Altitude_m;

%

112

% % MEAN SEA LEVEL (MSL)

%

% if Hp < Hp_tropo

% temp =temp_0 + delta_temp + beta*Hp;

% pres = pres_0*((temp - delta_temp)/temp_0)"(-g0/(beta*R));

% elseif Hp == Hp_tropo

% temp =temp_O + delta_temp + beta*Hp_tropo;

% pres = pres_0*((temp - delta_temp)/temp_0)"(-g0/(beta*R));

% elseif Hp > Hp_tropo

% temp_tropo =temp_0 + delta_temp + beta*Hp_tropo;

% pres_tropo = pres_0*((temp_tropo - delta_temp)/temp_0)"(-g0/(beta*R));
% temp_ISA tropo =temp_0 + beta*Hp_tropo;

% temp = temp_tropo;

% pres = pres_tropo * exp(-g0/(R*temp_ISA_tropo)*(Hp-Hp_tropo));
% end

% dens = pres/(R*temp);

% % -

eng_type = BADA_Aircraft_Coef(Aircraft_Index).AC_Type.eng_type;

% MAX CLIMB THRUST - PTF tables don't consider this??

C_Tcl =BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tcl;
C_Tc2 =BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc2;
C_Tc3 =BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc3;
C_Tc4 = BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc4;
C_Tc5=BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc5;

Hp_ft = Altitude;%(r_earth / (r_earth + Altitude)) * Altitude;

if strcmp(eng_type,'Jet’) ==

Thrust_max_cl_ISA=C_Tcl*(1 - Hp_ft/C_Tc2 + C_Tc3*Hp_ft"2);
elseif strcmp(eng_type, Turboprop’) ==1

Thrust_max_cl_ISA=C_Tcl/VTAS*(1 - Hp_ft/C_Tc2) + C_Tc3;
elseif strcmp(eng_type,'Piston’) == 1

Thrust_max_cl_ISA=C_Tcl*(1 - Hp_ft/C_Tc2) + C_Tc3/VTAS;
end

% IF NOT ISA:
if delta_temp ~=0
delta_temp_eff = delta_temp - C_Tc4;
Thrust_max_cl = Thrust_max_cl_ISA * (1 - C_Tc5*delta_temp_eff);
else
Thrust_max_cl = Thrust_max_cl_ISA;
end

% % MAX POSSIBLE CRUISE THRUST
% Thrust_max_cr = C_Tecr * Thrust_max_cl;

Thrust = Thrust_max_cl;
%

% FUEL FLOW

113

C_f1 = BADA_Aircraft_Coef(Aircraft_Index).Fuel.C_f1;
C_f2 = BADA_Aircraft_Coef(Aircraft_Index).Fuel.C_f2;
C_fcr = BADA_Aircraft_Coef(Aircraft_Index).Fuel.C_fcr;

% THRUST SPECIFIC FUEL CONSUMPTIONS
if stremp(eng_type,'Jet’) ==

TSFC = C_f1*(1+VTAS/C_f2);
elseif strcmp(eng_type, Turboprop’) ==

TSFC = C_f1*(1-VTAS/C_f2)*(VTAS/1000);
end

% FUEL FLOW
Thrust_kN = Thrust/1000; % convert thrust from <N> to <kN>

if strcmp(eng_type,'Piston’) == 1
f cr=C_f1,
else
f_cr =TSFC * Thrust_kN;
end
%

Fuel Flow =f cr;

end

114

B.9 Wind_Calculator.m

% This function calculates the magnitude of the wind vector projected onto
% the direction vector, as well as the sign of the wind relative to the
% direction

%

% wind_proj = Wind_Calculator(Course, Month, Altitude, Latitude, Longitude)
%

% INPUT:

% Course = general direction of aircraft, in degrees from north

% %Month = month of flight, to reference in wind data

% Altitude = current altitude of aircraft in flight

% Latitude = current latitude coordinate of aircraft in flight

% Longitude = current longitude coordinate of aircraft in flight

%

% OUTPUT:

% wind_proj = magnitude and sign of wind vector to be added (or
% subtracted) from direction vector, unit in meters per

% second

% Coded by Maria Rye, Modified by Nicolas Hinze

function wind_proj = Wind_Calculator(Course, Altitude, Latitude, Longitude)

% COURSE ANGLES CANNOT BE USED TO COMPARE DIRECTION COMPONENTS WITH WIND
% COMPONENTS

% SOUTH IS (+) (DIRECTION = 90 DEGREES)

% EAST IS (+) (DIRECTION = 0 DEGREES)

if Course >= 0 && Course <= 180

Direction = Course - (180 - 2*(180 - Course));
elseif Course > 180 && Course < 360

Direction = Course + (180 + 2*(180 - Course));
end
%

% CORRECT LONGITUDE SIGN
Longitude = Longitude + 360;

[~, Lat_Index] = min(abs(Latitude - Wind_Parameters.Lat));
[~, Lon_Index] = min(abs(Longitude - Wind_Parameters.Lon));
%

115

m_to_ft = 3.2808399;

R =287; % Nm/kgK

g =9.81; % m/s"2

Pa_to_mbar = .01; % WIND DATA IS IN MILLIBARS, CONVERT TO PASCALS
r_earth = 6.357e+6; % RADIUS OF EARTH

Altitude = Altitude/m_to_ft; % CONVERT TO METERS FOR EASIER USE

Geopotential_Alt = (r_earth / (r_earth + Altitude)) * Altitude;
% CONVERT ALTITUDE TO GEOPOTENTIAL HEIGHT FOR USE IN ATMOSPHERIC
% HYDROSTATIC EQUATIONS

%

if Altitude < 11019 %m
% DEFINE SEA LEVEL CONSTANTS
Pressure_0 =1.0131e+5; % Pa
Temp_0 =288.16; % K
L =-.0065; % K/m
Pressure = Pressure_0 * ((Temp_0 + L*Geopotential _Alt) / Temp_0) * (-g/(L*R)); % Pa
Pressure = Pressure * Pa_to_mbar; % CONVERT FROM Pa TO MILLIBARS
else
% DEFINE TROPOSPHERIC END VALUES (TROPOPAUSE INITIAL CONDITIONS)
Temp_0=216.5; % K
Alt_0=11000; % m
Pressure_0 = 22632; % Pa
Pressure = Pressure_0 * exp(-g * (Geopotential_Alt - Alt_0) / (R*Temp_0)); % Pa
Pressure = Pressure * Pa_to_mbar; % CONVERT FROM Pa TO MILLIBARS

end
%

[~,Level_Index] = min(abs(Pressure - Wind_Parameters.Level));

Index_Level = find(Wind.Level == Level_Index);

Index_Lat = find(Wind.Lat(Index_Level) == Lat_Index);

Index_Lon = Wind.Lon(Index_Level(Index_Lat)) == Lon_Index;

% Index_Time = find(Wind.Time(Index_Level(Index_Lat(Index_Lon))) == Month);
% Index = Index_Level(Index_Lat(Index_Lon(Index_Time)));

Index = Index_Level(Index_Lat(Index_Lon));

Uwind = Wind.Uwind(Index);

Vwind = Wind.Vwind(Index);

116

%

% FIND PROJECTION OF WIND ONTO DIRECTION UNIT VECTOR

Direction_Vector = [cosd(Direction), sind(Direction)];

Wind_Vector = [Vwind, Uwind];
% BE AWARE OF ORDER OF COMPONENTS: Vwind WILL BE THE X-COMPONENT, Uwind
% WILL BE THE Y-COMPONENT. THIS IS COMPATIBLE WITH THE Direction ANGLE
% CALCULATED ABOVE

% PROJECTION ONTO Direction_vector
wind_proj = dot(Direction_Vector, Wind_Vector) / (horm(Direction_Vector));
%

return;

117

B.10 rk4sys.m

% Solution of 1st order ODE using Runge Kutta 4th order with adaptive step

% size

%

% dy/dt = dtdt(tp,yp)
%

% [tp,yp] = rkdsys(dydt,tspan,y0,h,varargin)

%

% INPUT:

% dydt = name of external function to evaluate the solution of the ODE

% tspan = limits of integration
% y0 =initial condition

% h =initial stepsize

% varargin= other arguments
%

% OUTPUT:

% [tp,yp] = solution vectors

function [tp,yp] = rk4sys(dydt,tspan,y0,h,varargin)

n = length(tspan);
ti = tspan(1); tf = tspan(n);

if n==2,
t=(ti:h:tf)"; n = length(t);

if t(n) < tf
t(n+1) =tf;
n=n+l;
end

else
t = tspan;
end

tt="ti; y(1,:) = y0;

" = 15 () = 16 Yp(,) = y(L.)
1=1;

while(1)
tend = t(np+1);
hh = t(np+1)-t(np);
if hh>h, hh=h; end

while(1) % Run RK4 equations
if tt+hh>tend, hh=tend-tt;end

kl=feval(dydttt,y(i,:),false)’;

ymid = y(i,:)+k1.*hh/2;

k2 = feval(dydt,(tt+hh/2),ymid,false)’;
ymid = y(i,:)+k2.*hh/2;

k3 = feval(dydt,(tt+hh/2),ymid,false)';
yend = y(i,:)+k3.*hh;

k4 = feval(dydt,(tt+hh),yend,true)";

118

phi = (k1+2*(k2+k3)+k4)/6;
y(i+1,:) = y(i,:)+phi*hh;

tt = tt+hh;

i=i+1;

if tt>=tend,break,end % Break while loop when independent variable is greater than max indep. var.
end

np = np+1; tp(np,:)=tt; yp(np,:) = y(i,);
if tt>=tf break,end

end

119

B.11 Generate_Descent_Profile.m

% This function generates the descent profile of the aircraft/airport

% combination being called

%

% Descent_Profile = Generate_Descent_Profile(Aircraft_Index, Climb_Profile)
%

% INPUT:

% Aircraft_Index = index of AC/AP combo from T100 tracks structure
% Climb_Profile = inputs climb information for reference in descent
%

% OUTPUT:

% Climb_Profile = motion profile of aircraft's climb

function Descent_Profile = Generate_Descent_Profile(Aircraft_Index, Climb_Profile)

global BADA_Aircraft_Data rodTable DESCENT_TAS Altitude_Table DESCENT_FUEL
global FeetinNauticalMiles Time Assn_Cruise_FL Distance Waypoints
global Current_Lat Current_Lon i Destination_Airport_Altitude Wind_Proj

global j true_air_speed rate_of desc fuel_flow

ftpsecTOknots = 0.592483801;
%

DESCENT_TAS =BADA _Aircraft_Data(Aircraft_Index).DESCENT_TAS;

DESCENT_FUEL =BADA_Aircraft_Data(Aircraft_Index).DESCENT_FUEL;

Altitude_Table = BADA_Aircraft_Data(Aircraft_Index).FL * 100; % IN FEET

rodTable = =BADA_Aircraft_Data(Aircraft_Index).DESCENT_ROD; % RATE OF DESCENT
%

if Destination_Airport_Altitude >0
% USE HYDROSTATICS TO GET DENSITY RATIO
h = Destination_Airport_Altitude*0.3048; % IN METERS ABOVE SEALEVEL
L =-.0065; % LAPSE RATE IN TROPOSHERE< IN (KELVIN/METER)
T_SL =288.15; % SEA LEVEL TEMPERATURE IN KELVIN, ACCORDING TO BADA
g0 =9.81; % BASE GRAVITATIONAL CONSTANT, IN m/s"2
R =287.0368; % GAS CONSTANT, IN N.m/kg.K

T h=T_SL + L*h; % TEMPERATURE AT AIRPORT ALTITUDE, IN KELVIN
sigma = (T_h/T_SL)*(-(90/(L*R)+1)); % DENSITY RATIO, rho_h/rho_SL

% CORRECT ALTITUDE TABLE TO START AT ABOUT AIRPORT ALTITUDE
[~,Data_Fix_Index,~] = find(Altitude_Table>floor(Destination_Airport_Altitude),1);
temp_TAS = DESCENT_TAS(Data_Fix_Index:end);

temp_FUEL = DESCENT_FUEL (Data_Fix_Index:end);

120

temp_ROD = rodTable(Data_Fix_Index:end);
temp_ALT = Altitude_Table(Data_Fix_Index:end);
DESCENT_TAS_new =temp_TAS;
DESCENT_FUEL_new = temp_FUEL;
rodTable_new = temp_ROD;

Altitude_Table _new =temp_ALT;

% REPLACE DATA WITH DENSITY RATIO-CORRECTED VALUES
Length = length(DESCENT_TAS_new);

DESCENT_TAS new = DESCENT_TAS(1:Length)/sigma;
DESCENT_FUEL_new = DESCENT_FUEL(1:Length)*sigma;
rodTable_new = rodTable(1:Length)/sigma;

% FOR ALTITUDES ABOVE 20000 FT, USE ORIGINAL BADA DATA
[~,Index_Old_Data,~] = find(Altitude_Table == 20000);
[~,Index_New_Data,~] = find(Altitude_Table_new == 20000);

DESCENT_TAS_new(Index_New_Data:end) = DESCENT_TAS(Index_Old_Data:end);
DESCENT_FUEL_new(Index_New_Data:end) = DESCENT_FUEL(Index_OId_Data:end);
rodTable_new(Index_New_Data:end) = rodTable(Index_Old_Data:end);

Altitude_Table = Altitude_Table_new;
DESCENT_TAS = DESCENT_TAS_new;
DESCENT_FUEL = DESCENT_FUEL_new;
rodTable = rodTable_new;

end
%

% DEFINE TIME SPAN (ONE HOUR IN LENGTH)
Time_lInitial = 0.0; % INITIAL TIME (SECONDS)
Time_Final =3600.0; % FINAL TIME (SECONDS)
Time_Span =[Time_lInitial Time_Final]; % SPAN TIME

% DEFINE INITIAL MASS
Aircraft_Mass_lInitial = 0; % KG

% DEFINE INITIAL STATE VARIABLES

yDescent_Initial = [Destination_Airport_Altitude Aircraft_Mass_Initial 0];
% y(1) - ALTITUDE (FEET)

% y(2) - WEIGHT (KG)

% y(3) - DISTANCE TRAVELLED (FEET)

% FLIP WAYPOINTS TO DO BACKWARDS CALCULATIONS FOR DESCENT PROFILE
Waypoints = flipud(Waypoints);

% DEFINE INITIAL F_Climb VARIABLES
i=0;

j=0;

Current_Lat = 0;

Current_Lon = 0;

Distance = 0;

Time =0;

121

Wind_Proj = 0;
%

[Descent_Time,Descent_Data] = rk4sys('F_Descent', Time_Span, yDescent_lInitial, 60, []);

% CORRECT ORDER OF WAYPOINTS BACK TO TRUE ORDER
Waypoints = flipud(Waypoints);

% FIND INDEX FOR REACHING CRUISE FLIGHT LEVEL
Altitude_ft = Descent_Data(;,1);
Index_To_Reach_MaxFL = find(Altitude_ft >= Assn_Cruise_FL, 1, 'first");
if isempty(Index_To_Reach_MaxFL) ==
Index_To_Reach_MaxFL = length(Altitude_ft)-1; % GET INDEX OF LAST ITEM IF NOTHING TO
TRUNCATE
end

true_air_speed = true_air_speed(1:Index_To_Reach_MaxFL);
rate_of desc =rate_of desc(1:Index_To_Reach_MaxFL);
fuel_flow = fuel_flow(1:Index_To_Reach_MaxFL);

% TRUNCATE DESCENT PROFILE TO STOP AT CRUISE FLIGHT LEVEL; CONVERT DATA

Altitude_ft = Altitude_ft(1:Index_To_Reach_MaxFL);

Distance_nm = Descent_Data(1:Index_To_Reach_MaxFL,3)/FeetInNauticalMiles;

Time_hrs = Descent_Time(1:Index_To_Reach_MaxFL) / 3600;

Weight_kg = Descent_Data(1:Index_To_Reach_MaxFL,2);

Rate_of Descent_ftmin =rate_of desc'

Speed_knots = true_air_speed';%(Distance_nm(2:end) - Distance_nm(1:end-1)) ./ (Time_hrs(2:end) -
Time_hrs(1:end-1));

FuelFlow_kgmin = fuel_flow";%-(Weight_kg(2:end) - Weight_kg(1:end-1)) ./ (Time_hrs(2:end) -

Time_hrs(1:end-1)) / 60;
Distance_nm_For_Speed = (Distance_nm(2:end) + Distance_nm(1:end-1))/ 2;

Total_Fuel kg = Weight_kg(1) - Weight_kg(end);
Latitude_Pts = Current_Lat(1:Index_To_Reach_MaxFL);
Longitude_Pts = Current_Lon(1:Index_To_Reach_MaxFL);
Wind_Vectors = Wind_Proj(1:Index_To_Reach_MaxFL);

%

Descent_Profile.Distance_For_Descent_nm = max(abs(Distance_nm));
Descent_Profile.Time_For_Descent_hrs = max(abs(Time_hrs));

Descent_Profile.Total_Fuel_kg = Total_Fuel_Kkg;

Descent_Profile.Altitude_ft = flipud(Altitude_ft);

Descent_Profile.Distance_nm = -1*(flipud(Distance_nm) - max(Distance_nm));
Descent_Profile.Time_hrs = Time_hrs;

Descent_Profile.Weight_kg = -1*((flipud(Weight_kg) - min(Weight_kg)));

Descent_Profile.Rate_of Descent_ftmin = flipud(Rate_of Descent_ftmin);

122

Descent_Profile.Speed_knots = flipud(Speed_knots);
Descent_Profile.FuelFlow_kgmin = flipud(FuelFlow_kgmin);
Descent_Profile.Distance_nm_For_Speed = -1*(flipud(Distance_nm_For_Speed) -
max(Distance_nm_For_Speed));

Descent_Profile.Latitude_Pts = flipud(Latitude_Pts);
Descent_Profile.Longitude_Pts = flipud(Longitude_Pts);

Descent_Profile. Wind_Vectors_knots = flipud(Wind_Vectors) * ftpsecTOknots;
%

return

123

B.12 F Descent.m

% This function generates points for the descent profile of the
% aircraft/airport combination

%

% yprime = F_Descent(t,y,Add)

%

% INPUT:

% t =time

% y =rate equations

% y(1) = Aircraft altitude (feet)

% y(2) = Aircraft weight (kilograms)

% y(3) = Distance traveled along the path (feet)
% Add = boolean for RK4 to run F_Descent

%

% OUTPUT:

% yprime = derivative of y (rate equations)

function yprime_d = F_Descent(t,y,Add)

global rodTable Altitude_Table DESCENT_TAS DESCENT_FUEL Assn_Cruise_FL
global Waypoints i Distance FeetInNauticalMiles Destination_Airport_Altitude
global Current_Lat Current_Lon Wind_Boolean Wind_Proj Month

global j true_air_speed rate_of desc fuel_flow
pmTops = 1/60; % CONVERT FROM FEET PER MINUTE TO FEET PER SECOND

knotsTofps = 1.6874; % CONVERT KNOTS TO FEET PER SECOND
metersTofps = 3.280839895; %CONVERT METERS PER SECOND TO FEET PER SECOND

%

ifi==0% CALCULATE INITIAL WIND PROJECTION
i =i+1; % COUNTER

% INITIAL LAT/LON POINTS
Current_Lat(i,:) = Waypoints(1,1);
Current_Lon(i,:) = Waypoints(1,2);

% INITIAL HEADING
Azimuth = azimuth(Current_Lat(i,:), Current_Lon(i,:), Waypoints(2,1), Waypoints(2,2));

% INITIAL WIND PROJECTION

124

Wind_Proj(i,:) = Wind_Calculator(Azimuth, Month, y(1), Current_Lat(i,:), Current_Lon(i,:));

elseif Add == true % RUN THIS CODE ONLY WHEN F_DESCENT IS CALLED THE FOURTH TIME BY THE
rk4sys ODE FUNCTION

i =i+1; % COUNTER

Distance(i,:) = y(3);

% FIND INDEX OF WAYPOINTS CORRESPONDING TO CURRENT LAT/LON POINTS

Change_in_Distance = (Distance(i,:) - Distance(i-1,:))/FeetinNauticalMiles;

[no,Index] = min(abs(Current_Lat(i-1,:) - Waypoints(:,1)) + abs(Current_Lon(i-1,:) - Waypoints(:,2))); % Find
index of Waypoints corresponding to lat/lon

% WAYPOINTS OF INDEX MUST BE FARTHER ALONG THAN CURRENT LAT/LON TO AVOID
BACKTRACKING
if Index == length(Waypoints)
Index = Index - 1;
elseif Index <= length(Waypoints) - 1 % FOR INDICES BEFORE END OF WAYPOINTS

% DETERMINE IF WAYPOINTS IS INCREASING OR DECREASING IN SIZE

if Waypoints(Index+1,1) > Waypoints(Index,1)
if Current_Lat(i-1,:) >= Waypoints(Index,1)
Index = Index + 1;
end
elseif Waypoints(Index+1,1) < Waypoints(Index,1)
if Current_Lat(i-1,:) <= Waypoints(Index,1)
Index = Index + 1;
end
end

if Index ~= length(Waypoints)
if Waypoints(Index+1,2) > Waypoints(Index,2)
if Current_Lon(i-1,:) >= Waypoints(Index,2)
Index = Index + 1;
end
elseif Waypoints(Index+1,2) < Waypoints(Index,2)
if Current_Lon(i-1,:) <= Waypoints(Index,2)
Index = Index + 1;
end
end
end

else % FOR INDICES APPROACHING END OF WAYPOINTS
if Waypoints(Index,1) > Waypoints(Index-1,1)
if Current_Lat(i-1,;) >= Waypoints(Index,1)
Index = Index + 1;
end
elseif Waypoints(Index,1) < Waypoints(Index-1,1)
if Current_Lat(i-1,:) <= Waypoints(Index,1)
Index = Index + 1;
end
end

125

if Index == length(Waypoints)
if Waypoints(Index,2) > Waypoints(Index-1,2)
if Current_Lon(i-1,:) >= Waypoints(Index,2)
Index = Index + 1;
end
elseif Waypoints(Index,2) < Waypoints(Index-1,2)
if Current_Lon(i-1,:) <= Waypoints(Index,2)
Index = Index + 1;
end
end
end

end

% CORRECT INDEX IF GREATER THAN WAYPOINTS LENGTH
if Index > length(Waypoints(:,1))
Index = length(Waypoints(:,1));
end
%

Azimuth = azimuth(Current_Lat(i-1,:), Current_Lon(i-1,:), Waypoints(Index,1), Waypoints(Index,2)); %
INSTANTANEOUS ANGLE OF HEADING
%

Change_in_Degrees = nm2deg(Change_in_Distance); % CONVERT DISTANCE NM TO DEGREES FOR USE
IN RECKON FUNCTION

[Current_Lat(i,:),Current_Lon(i,:)] = reckon(Current_Lat(i-1,:),Current_Lon(i-1),Change_in_Degrees,Azimuth);

%

% SINCE DESCENT PROFILE IS NOT IN DIRECTION OF ORIGIN, MULTIPLY BY -1

Wind_Proj(i,:) = Wind_Calculator(Azimuth, Month, y(1), Current_Lat(i,:), Current_Lon(i,:)) * -1;

%
end

% WIND VS NO WIND
if Wind_Boolean == false
Wind_Proj(i,:) =0;

end
%
[————
% GET ODE VARIABLES
[————
if Current_Altitude < min(Altitude_Table)
vtas = custom_interp(fliplr(Altitude_Table),fliplr(DESCENT_TAS),Current_Altitude) * knotsTofps +

Wind_Proj(i,:) * metersTofps; % SPEED IS TRUE AIRSPEED (TAS) IN FPS

126

rateOfdescent = custom_interp(fliplr(Altitude_Table),fliplr(rodTable),Current_Altitude) * pmTops;

% IN FEET PER SECOND UNITS

fuelFlow = custom_interp(fliplr(Altitude_Table),fliplr(DESCENT_FUEL),Current_Altitude) * pmTops;

% KILOGRAMS PER SECOND

else
vtas = custom_interp(Altitude_Table, DESCENT_TAS,Current_Altitude) * knotsTofps + Wind_Proj(i,:) *
metersTofps; % SPEED IS TRUE AIRSPEED (TAS) IN FPS

rateOfdescent = custom_interp(Altitude_Table,rodTable,Current_Altitude) * pmTops;

% IN FEET PER SECOND UNITS

fuelFlow = custom_interp(Altitude_Table, DESCENT_FUEL,Current_Altitude) * pmTops;

% KILOGRAMS PER SECOND
end
%

if Add == true
J=i+L
true_air_speed(j) = vtas/knotsTofps;
rate_of desc(j) = rateOfdescent/pmTops;
fuel_flow(j) = fuelFlow/pmTops;

end

% CHECK IF CRUISE ALTITUDE IS REACHED
if y(1) < Assn_Cruise_FL
yprime_d(1) = rateOfdescent;
else
yprime_d(1) = 0; % ZERO RATE OF DESCENT (FEET/S)
end

% MASS FLOW RATE (KG/S)
yprime_d(2) = - fuelFlow;

% DISTANCE TRAVELLED ALONG FLIGHT PATH (FEET)
yprime_d(3) = vtas;

% TRANSPOSE THE ARRAY GOING OUT
yprime_d = yprime_d';
%

return

127

B.13 Generate_Cruise_Profile_Coef.m

% This function generates the cruise profile of the aircraft/airport
% combination being called

%

% Cruise_Profile = Generate_Cruise_Profile(Aircraft_Index, Climb_Profile, Descent_Profile, Cruise_Distance_nm)
%

% INPUT:

% Aircraft_Index = index of current aircraft in BADA

% Climb_Profile = inputs climb info for initial conditions of cruise

% Descent_Profile = inputs descent info for final conditions of cruise

% Cruise_Distance_nm = Track distance minus climb and descent distances

%

% OUTPUT:

% Cruise_Profile = motion profile of aircraft's cruise

function Cruise_Profile = Generate_Cruise_Profile_Coef(Aircraft_Index, Climb_Profile, Descent_Profile,
Cruise_Distance_nm)

global BADA_Aircraft_Data BADA_Aircraft_Coef Assn_Cruise_FL
global i Waypoints Wind_Boolean Month

ftpsecTOknots = 0.592483801;
mpsToknots = 1.94384449; %convert wind speed from m/s to knots.
%

% REMOVE WAYPOINTS
Start_Lat_Lon = [Climb_Profile.Latitude_Pts(end) Climb_Profile.Longitude_Pts(end)];
End_Lat Lon = [Descent_Profile.Latitude_ Pts(1) Descent_Profile.Longitude_Pts(1)];
[no,Index_Start] = min(abs(Start_Lat_Lon(:,1) - Waypoints(:,1)) + abs(Start_Lat_Lon(:,2) - Waypoints(:,2)));
[no,Index_End] = min(abs(End_Lat_Lon(:,1) - Waypoints(:,1)) + abs(End_Lat_Lon(:,2) - Waypoints(:,2)));
if Index_Start == Index_End
Cruise_Waypoints = [Start_Lat Lon;End_Lat _Lon];
else
Cruise_Waypoints = Waypoints;
Cruise_Waypoints(Index_Start,:) = Start_Lat_Lon;
Cruise_Waypoints(Index_End,:) =End_Lat_Lon;
Cruise_Waypoints = Cruise_Waypoints(Index_Start:Index_End,:);
end

if isempty(Cruise_Waypoints) ==
Cruise_Profile =[];
return

end

%

128

% DEFINE INITIAL MASS
Initial_Cruise_Weight_kg = Climb_Profile.Weight_kg(end); % KG
Current_Aircraft Weight = Initial_Cruise_Weight_kg;

% DEFINE TIME INTERVAL
deltaTime_hrs = 2/60; % INTERVAL OF 2/60 HOUR =2 MINUTES

% DEFINE INITIAL LOOP VARIABLES

i=0;
Distance_nm = 0;
Time_hrs = 0;

Current_Lat = 0;
Current_Lon = 0;
Wind_Proj = 0;
Ground_speed_knots = 0;
FuelFlow_kgmin = 0;
Weight_kg = 0;
Current_Distance_nm = 0;
Azimuth = 0;

%

Max_Climb_Altitude_ft = Climb_Profile.Altitude_ft(end);
Cruise_Altitude_ft = min(Assn_Cruise_FL, Max_Climb_Altitude_ft);
%

% GET CRUISE SPEED % put in while loop if Altitude changes

[0 ———

Cruise_Speed_knots = Speed_Calculator_Cruise(Aircraft_Index, Cruise_Altitude ft, BADA_Aircraft_Coef);
%

while Current_Distance_nm < Cruise_Distance_nm

% COUNTER
i=i+1;

ifi==
Time_hrs(i,:) = 0;
else
Time_hrs(i,:) = Time_hrs(i-1,:) + deltaTime_hrs;
end
%

129

Distance_nm(i,;) = 0;

else
Change_In_Dist = Ground_speed_knots(i-1) * (Time_hrs(i) - Time_hrs(i-1));
Distance_nm(i,:) = Distance_nm(i-1) + Change_In_Dist;

end

Current_Distance_nm = Distance_nm(i,:);

%

ifi ==1% CALCULATE INITIAL WIND PROJECTION

% INITIAL LAT/LON POINTS
Current_Lat(i,;) = Cruise_Waypoints(1,1);
Current_Lon(i,:) = Cruise_Waypoints(1,2);

% INITIAL HEADING
Azimuth(i,:) = azimuth(Current_Lat(i,:), Current_Lon(i,:), Cruise_Waypoints(2,1), Cruise_Waypoints(2,2));

% INITIAL WIND PROJECTION
if Wind_Boolean ==
Wind_Proj(i,:) = Wind_Calculator(Azimuth(i,:), Month,Cruise_Altitude_ft, Current_Lat(i,:),
Current_Lon(i,:))*mpsToknots;
end

else % CALCULATE REMAINING WIND PROJECTIONS

% FIND INDEX OF WAYPOINTS CORRESPONDING TO CURRENT LAT/LON POINTS

Change_in_Distance = (Distance_nm(i,:) - Distance_nm(i-1,:));

[no,Index] = min(abs(Current_Lat(i-1,:) - Cruise_Waypoints(:,1)) + abs(Current_Lon(i-1,:) -
Cruise_Waypoints(:,2)));

% WAYPOINTS OF INDEX MUST BE FARTHER ALONG THAN CURRENT LAT/LON TO
% AVOID BACKTRACKING
if Index == length(Cruise_Waypoints)
Index = Index - 1;
elseif Index <= length(Cruise_Waypoints) - 1 % FOR INDICES BEFORE END OF WAYPOINTS

% DETERMINE IF WAYPOINTS IS INCREASING OR DECREASING IN SIZE

if Cruise_Waypoints(Index+1,1) > Cruise_Waypoints(Index,1)
if Current_Lat(i-1,:) >= Cruise_Waypoints(Index,1)
Index = Index + 1;
end
elseif Cruise_Waypoints(Index+1,1) < Cruise_Waypoints(Index,1)
if Current_Lat(i-1,:) <= Cruise_Waypoints(Index,1)
Index = Index + 1;
end
end

if Index ~= length(Cruise_Waypoints)
if Cruise_Waypoints(Index+1,2) > Cruise_Waypoints(Index,2)

130

if Current_Lon(i-1,:) >= Cruise_Waypoints(Index,2)
Index = Index + 1;
end
elseif Cruise_Waypoints(Index+1,2) < Cruise_Waypoints(Index,2)
if Current_Lon(i-1,:) <= Cruise_Waypoints(Index,2)
Index = Index + 1;
end
end
end

else % FOR INDICES APPROACHING END OF WAYPOINTS
if Cruise_Waypoints(Index,1) > Cruise_Waypoints(Index-1,1)
if Current_Lat(i-1,:) >= Cruise_Waypoints(Index,1)
Index = Index + 1;
end
elseif Cruise_Waypoints(Index,1) < Cruise_Waypoints(Index-1,1)
if Current_Lat(i-1,:) <= Cruise_Waypoints(Index,1)
Index = Index + 1;
end
end

if Index == length(Cruise_Waypoints)
if Cruise_Waypoints(Index,2) > Cruise_Waypoints(Index-1,2)
if Current_Lon(i-1,:) >= Cruise_Waypoints(Index,2)
Index = Index + 1;
end
elseif Cruise_Waypoints(Index,2) < Cruise_Waypoints(Index-1,2)
if Current_Lon(i-1,:) <= Cruise_Waypoints(Index,2)
Index = Index + 1;
end
end
end

end

while (1)
[~,Dist_to_Next Waypt] = legs([Current_Lat(i-1,:) Cruise_Waypoints(Index,1)], [Current_Lon(i-1,:)
Cruise_Waypoints(Index,2)]);
if Dist_to_Next_Waypt < Change_in_Distance
Index = Index + 1;
if Index >= length(Cruise_Waypoints)
Index = length(Cruise_Waypoints)-1;
break
end
else
break
end
end

% CORRECT INDEX IF GREATER THAN WAYPOINTS LENGTH
if Index > length(Cruise_Waypoints(:,1))
Index = length(Cruise_Waypoints(:,1));
end
%

131

% CALCULATE HEADING

Azimuth(i,:) = azimuth(Current_Lat(i-1,:), Current_Lon(i-1,:), Cruise_Waypoints(Index,1),
Cruise_Waypoints(Index,2)); % Instantaneous angle of heading

% CORRECT ANGLE IF IT POINTS IN OPPOSITE DIRECTION OF AIRCRAFT
% DIRECTION

% if Azimuth(i,:) > (Azimuth(i-1,:)+100) || Azimuth(i,:) < (Azimuth(i-1,:)-100)

% Azimuth(i,:) = Azimuth(i-1);

% end
%

Change_in_Degrees = nm2deg(Change_in_Distance); % CONVERT DISTANCE NM TO DEGREES FOR
USE IN RECKON FUNCTION

[Current_Lat(i,:),Current_Lon(i,:)] = reckon(Current_Lat(i-1,:),Current_Lon(i-
1),Change_in_Degrees,Azimuth(i,:));

%

if Wind_Boolean ==
Wind_Proj(i,:) = Wind_Calculator(Azimuth(i,:), Month,Cruise_Altitude_ft, Current_Lat(i,:),
Current_Lon(i,:))*mpsToknots;
end
%

end

% WIND VS NO WIND

if Wind_Boolean == false
Wind_Proj(i,:) = 0;

end

%

ifi==
Weight_kg(i,:) = Initial_Cruise_Weight_kg;
else
Weight_kg(i,;) = Weight_kg(i-1,:) - FuelFlow_kgmin(i-1,:)*deltaTime_hrs*60; % weight change over entire
delta t
end
%

132

% GENERATE FUEL CONSUMPTION

FuelFlow_kgmin(i,:) = FuelFlow_Calculator_Cruise(Aircraft_Index, Cruise_Altitude_ft, Cruise_Speed_knots,
Weight_kg(i,:), BADA_Aircraft_Coef);

%
[
% GENERATE ALTITUDE
[
Altitude_ft(i,;) = Cruise_Altitude_ft;
%
end % while Current_Distance_nm < Cruise_Distance_nm
%
[/ —
% EXTRACT FINAL PROFILE POINTS
[—

Weight_kg(i,:) = Weight_kg(i-1,:) - FuelFlow_kgmin(i-1,:);

FuelFlow_kgmin(i,:) = FuelFlow_Calculator_Cruise(Aircraft_Index, Cruise_Altitude_ft, Cruise_Speed_knots,
Weight_kg(i,:), BADA_Aircraft_Coef);

Distance_nm(i,;) = Cruise_Distance_nm;

Time_hrs(i,:) = Time_hrs(i-1,:) + (Distance_nm(i)-Distance_nm(i-1))/Ground_speed_knots(i);
Total_Fuel kg = Weight_kg(1) - Weight_kg(end);

%

[0 —

% SAVE CRUISE PROFILE IN STRUCTURE

[0 ———

Cruise_Profile.Cruise_Distance_nm = Cruise_Distance_nm;
Cruise_Profile.Cruise_Time_hrs = Time_hrs(end) - Time_hrs(1);
Cruise_Profile.Total_Fuel kg = Total_Fuel_kg;
Cruise_Profile.Cruise_Speed_knots = Distance_nm(end)/Time_hrs(end);
Cruise_Profile.Altitude_ft = Altitude_ft;

% GET LAST STEP

Cruise_Profile.Distance_nm = (Distance_nm + Climb_Profile.Distance_nm(end));
Cruise_Profile. Time_hrs = (Time_hrs + Climb_Profile.Time_hrs(end));
Cruise_Profile.Weight_kg = Weight_kg;

Cruise_Profile.FuelFlow_kgmin = FuelFlow_kgmin;

Cruise_Profile.Ground_speed_knots = Ground_speed_knots;

Cruise_Profile.Latitude_Pts = Current_Lat;
Cruise_Profile.Longitude_Pts = Current_Lon;
Cruise_Profile.Wind_Vectors_knots = Wind_Proj;
%

return

133

B.14 FuelFlow_Calculator_Cruise.m

% Fuel Flow Calculator

%

% [VTAS] = Speed_Calculator(Aircraft_Index, Altitude)
%

% INPUT:

% Aircraft_Index = index of current aircraft in BADA

% Altitude = current altitude of aircraft <ft>

% VTAS = current true airspeed <kts>

% AC_Mass = current mass of aircraft <kg>

% BADA_Aircraft_Coef = structure of BADA coefficients from APF file for
% aircraft

%

% OUTPUT:

% Fuel_Flow = current fuel flow <kg/min>

function [Fuel_Flow] = FuelFlow_Calculator_Cruise(Aircraft_Index, Altitude, VTAS, AC_Mass,
BADA _Aircraft_Coef)

% DEVIATIONS FROM ISA FOR NOW ASSUMED TO BE ZERO:
delta_temp =0;

% CONVERT

kts2m_s = 0.514444444444; % kts to m/s
ftam = 0.3048; % ft to m

[0 ———

% MSL STANDARD CONDITIONS

temp_0 = 288.15; % standard temperature at MSL <K>
pres_0 = 101325; % standard pressure at MSL <Pa>
dens_0 = 1.225; % standard density at MSL <kg/m"3>
a_0=340.294; % speed of sound at MSL <m/s>

%

gamma = 1.4; % adiabatic index of air (kappa in BADA User Manual

R =287.05287; % real gas constant for air <m”2/K.s"2>

g0 = 9.80665; % gravitational acceleration <m/s"2>

beta = -0.0065; % ISA temerature gradient below tropo (lapse rate L) <K/m>
r_earth = 6.371e+6; % RADIUS OF EARTH

C_Tcr =0.95; % BADA-defined maximum cruise thrust coefficient for all aircraft
%

Altitude_m = ft2m * Altitude;
Hp = (r_earth / (r_earth + Altitude_m)) * Altitude_m; % geopotential altitude <m>
Hp_tropo = 11000; % geopotential alt at tropopause <m>

Hp = Altitude_m;

134

% MEAN SEA LEVEL (MSL)

if Hp < Hp_tropo
temp =temp_0 + delta_temp + beta*Hp;
pres = pres_0*((temp - delta_temp)/temp_0)"*(-g0/(beta*R));
elseif Hp == Hp_tropo
temp = temp_0 + delta_temp + beta*Hp_tropo;
pres = pres_0*((temp - delta_temp)/temp_0)"*(-g0/(beta*R));
elseif Hp > Hp_tropo
temp_tropo = temp_0 + delta_temp + beta*Hp_tropo;
pres_tropo = pres_0*((temp_tropo - delta_temp)/temp_0)"(-g0/(beta*R));
temp_ISA _tropo = temp_0 + beta*Hp_tropo;
temp = temp_tropo;
pres = pres_tropo * exp(-g0/(R*temp_ISA_tropo)*(Hp-Hp_tropo));
end
dens = pres/(R*temp);
%

eng_type = BADA_Aircraft_Coef(Aircraft_Index).AC_Type.eng_type;

% % % MAX CLIMB THRUST - PTF tables don't consider this??

% % C_Tcl = BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tcl,;

% % C_Tc2 = BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc2;

% % C_Tc3 = BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc3;

% % C_Tc4 = BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc4;

% % C_Tc5 = BADA_Aircraft_Coef(Aircraft_Index).Thrust.C_Tc5;

% %

% % Hp_ft = (r_earth / (r_earth + Altitude)) * Altitude;

% %

% % if strcmp(eng_type,Jet) == 1

% % Thrust_max_cl ISA=C_Tcl*(1 - Hp_ft/C_Tc2 + C_Tc3*Hp_ft"2);
% % elseif strcmp(eng_type, Turboprop’) == 1

% % Thrust_max_cl ISA=C_Tcl/VTAS*(1 - Hp_ft/C_Tc2) + C_Tc3;
% % elseif strcmp(eng_type,'Piston’) == 1

% % Thrust_max_cl_ISA=C_Tcl*(1 - Hp_ft/C_Tc2) + C_Tc3/VTAS;
% % end

% %

% % % IF NOT ISA:

% % if delta_temp ~=0

% % delta_temp_eff = delta_temp - C_Tc4;

% % Thrust_max_cl = Thrust._max_cl_ISA * (1 - C_Tc5*delta_temp_eff);
% % else

% % Thrust_max_cl = Thrust_max_cl_ISA,;

% % end

% %

% % % MAX POSSIBLE CRUISE THRUST

% % Thrust_max_cr = C_Tcr * Thrust_max_cl;

% THRUST = DRAG IN CRUISE
S = BADA_Aircraft_Coef(Aircraft_Index).Aero.S; % planform area <m”2>
VTAS_m_s = kts2m_s * VTAS;

C_L =2*AC_Mass*g0/(dens*VTAS_m_s"2*S);

135

C_DO0_CR =BADA _Aircraft_Coef(Aircraft_Index).Aero.C_D0_CR,;
C_D2_CR =BADA _Aircraft_Coef(Aircraft_Index).Aero.C_D2_CR,;
CcDb=C

DO_CR+C_D2_CR*C_L"2;
Drag = 1/2*C_D*dens*VTAS_m_s"2*S;
Thrust_drag = Drag;
Thrust = Thrust_drag;

% Thrust = min(Thrust_drag, Thrust_max_cr);
%

C_f1 = BADA_Aircraft_Coef(Aircraft_Index).Fuel.C_f1;
C_f2 = BADA_Aircraft_Coef(Aircraft_Index).Fuel.C_f2;
C_fcr = BADA_Aircraft_Coef(Aircraft_Index).Fuel.C_fcr;

% THRUST SPECIFIC FUEL CONSUMPTIONS
if strcemp(eng_type,'Jet") ==

TSFC = C_f1*(1+VTAS/C_f2);
elseif strcmp(eng_type, Turboprop’) ==1

TSFC = C_f1*(1-VTAS/C_f2)*(VTAS/1000);
end

% FUEL FLOW
Thrust_KN = Thrust/1000; % convert thrust from <N> to <kN>

if strcmp(eng_type,'Piston’) == 1
f_cr=C_f1*C_fcr;
else
f cr=TSFC * Thrust_ kN * C_fcr;
end
%

Fuel Flow =f cr;

end

136

