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Example

Here we show an example of how our algorithm works. We use the Th-cell differentiation model
from [1]:

x1 = GATA3 , f1 = (x1 ∨ x21) ∧ ¬x22;
x2 = IFN − β , f2 = 0;
x3 = IFN − βR , f3 = x2;
x4 = IFN − γ , f4 = (x14 ∨ x16 ∨ x20 ∨ x22) ∧ ¬x19;
x5 = IFN − γR , f5 = x4;
x6 = IL− 10 , f6 = x1;
x7 = IL− 10R , f7 = x6;
x8 = IL− 12 , f8 = 0;
x9 = IL− 12R , f9 = x8 ∧ ¬x21;
x10 = IL− 18 , f10 = 0;
x11 = IL− 18R , f11 = x10 ∧ ¬x21;
x12 = IL− 4 , f12 = x1 ∧ ¬x18;
x13 = IL− 4R , f13 = x12 ∧ ¬x17;
x14 = IRAK , f14 = x11;
x15 = JAK1 , f15 = x5 ∧ ¬x17;
x16 = NFAT , f16 = x23;
x17 = SOCS1 , f17 = x18 ∨ x22;
x18 = STAT1 , f18 = x3 ∨ x15;
x19 = STAT3 , f19 = x7;
x20 = STAT4 , f20 = x9 ∧ ¬x1;
x21 = STAT6 , f21 = x13;
x22 = T − bet , f22 = (x18 ∨ x22) ∧ ¬x1;
x23 = TCR , f23 = 0.

The wiring diagram is shown in Figure 1. The AND-NOT representation1 of this Boolean
network is shown in Figure 2 and the reduced AND-NOT network is shown in Figure 3.

The polynomial representation of the reduced AND-NOT network is

f1 = x1x22 + x1,

f22 = x1x22 + x22.

To compute the steady states we need to solve

x1 = x1x22 + x1,

x22 = x1x22 + x22,

1The AND-NOT representation is not unique and this particular representation was selected by hand for an
easier comparison between the original Boolean network and its AND-NOT representation.
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Figure 1. Wiring diagram of original Boolean network.
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Figure 2. Wiring diagram of the AND-NOT network representation.
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Figure 3. Wiring diagram of the reduced AND-NOT network.
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that is,

0 = x1x22,

which is clearly satisfied for (x1, x22) = (0, 0), (0, 1), (1, 0). Now that we have the steady states
of the reduced network, we can use backwards substitution to obtain the steady states of the
larger AND-NOT network and then project on the variables of the original Boolean network;
we obtain x = 00000000000000000000000, 00011000000000001000010, 10000110000110000010100
(parenthesis were omitted). The first steady state corresponds to the “naive” Th-cell and the other
two steady states correspond to the so-called Th-1 and Th-2 cells in charge of proinflammatory
and anti-inflammatory responses in the immune system, respectively [1].

To use our code, the Boolean network has to be written in the form

(x1 | x21 ) & !x22

0

x2

(x14 | x16 | x20 | x22 ) & !x19

x4

x1

x6

0

x8 & !x21

0

x10 & !x21

x1 & !x18

x12 & !x17

x11

x5 & !x17

x23

x18 | x22

x3 | x15

x7

x9 & !x1

x13

(x18 | x22 ) & !x1

0

and one can simply run

./BNReduction.sh input_file

where input file is the file shown above (all steps and “piping” are done automatically). The steady
states will be printed in a file named input file.fp:

user@computer:~$ ./BNReduction.sh input_file; cat input_file.fp

00000000000000000000000

00011000000000001000010

10000110000110000010100

Comments about performance of reduction and polynomial algebra

In the manuscript we combined two main methods: (AND-NOT) network reduction and com-
putational algebra [2, 3, 4, 5]. Also, in order to use the reduction of AND-NOT networks, we had
to use the intermediate step of transforming a Boolean network into an AND-NOT network [6].
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The reduction method by itself does not provide any means for computing steady states, it only
guarantees that the reduced AND-NOT network has fewer variables. The reduction algorithm has
to ensure that the number of steady states is preserved, so in many cases even the reduced AND-
NOT network is too large to analyze by exhaustive search. For example, for Kauffman networks
with k = 3 and n = 100, about 40% of the reduced AND-NOT networks had more than 50
variables. Using polynomial algebra allows to fill the gap and complete steady state computation
(Table 2 in manuscript).

The polynomial algebra approach does provide a way to compute steady states, but it has
trouble handling a large number of variables. For example, even with 500 variables and Kauffman
networks with k = 2, the timings were 80s on average; for larger networks the timings are worse.
However, by using the reduction method as a preprocessing step, the polynomial algebra approach
can handle thousands of variables (Table 1 in manuscript).
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