STEADY STATE ANALYSIS OF BOOLEAN MOLECULAR NETWORK
MODELS VIA MODEL REDUCTION AND COMPUTATIONAL ALGEBRA.
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EXAMPLE

Here we show an example of how our algorithm works. We use the Th-cell differentiation model

from [1]:
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The wiring diagram is shown in Figure 1. The AND-NOT representation' of this Boolean
network is shown in Figure 2 and the reduced AND-NOT network is shown in Figure 3.
The polynomial representation of the reduced AND-NOT network is

fi = 1290 + 71,

Jo2 = T1T92 + T
To compute the steady states we need to solve

T1 = T1T22 + X1,

Too = T1To + Taa,

IThe AND-NOT representation is not unique and this particular representation was selected by hand for an
easier comparison between the original Boolean network and its AND-NOT representation.
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FI1GURE 2. Wiring diagram of the AND-NOT network representation.
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FiGUuRrE 3. Wiring diagram of the reduced AND-NOT network.
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that is,
0 = 21299,

which is clearly satisfied for (z1,292) = (0,0),(0,1),(1,0). Now that we have the steady states
of the reduced network, we can use backwards substitution to obtain the steady states of the
larger AND-NOT network and then project on the variables of the original Boolean network;
we obtain x = 00000000000000000000000, 00011000000000001000010, 10000110000110000010100
(parenthesis were omitted). The first steady state corresponds to the “naive” Th-cell and the other
two steady states correspond to the so-called Th-1 and Th-2 cells in charge of proinflammatory
and anti-inflammatory responses in the immune system, respectively [1].
To use our code, the Boolean network has to be written in the form

(x1 | x21 ) & 1x22

0

x2

(x14 | x16 | x20 | x22 ) & 'x19
x4

x1

x6

0

x8 & !'x21
0

x10 & !x21
x1 & !x18
x12 & 'x17
x11

x5 & !x17
x23

x18 | x22
x3 | x15
x7

x9 & !'x1
x13

(x18 | x22 ) & 'x1
0

and one can simply run

./BNReduction.sh input_file
where input_file is the file shown above (all steps and “piping” are done automatically). The steady
states will be printed in a file named input_file.fp:

user@computer:~$ ./BNReduction.sh input_file; cat input_file.fp
00000000000000000000000
00011000000000001000010
10000110000110000010100

COMMENTS ABOUT PERFORMANCE OF REDUCTION AND POLYNOMIAL ALGEBRA

In the manuscript we combined two main methods: (AND-NOT) network reduction and com-
putational algebra [2, 3, 4, 5]. Also, in order to use the reduction of AND-NOT networks, we had
to use the intermediate step of transforming a Boolean network into an AND-NOT network [6].
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The reduction method by itself does not provide any means for computing steady states, it only
guarantees that the reduced AND-NOT network has fewer variables. The reduction algorithm has
to ensure that the number of steady states is preserved, so in many cases even the reduced AND-
NOT network is too large to analyze by exhaustive search. For example, for Kauffman networks
with £ = 3 and n = 100, about 40% of the reduced AND-NOT networks had more than 50
variables. Using polynomial algebra allows to fill the gap and complete steady state computation
(Table 2 in manuscript).

The polynomial algebra approach does provide a way to compute steady states, but it has
trouble handling a large number of variables. For example, even with 500 variables and Kauffman
networks with £ = 2, the timings were 80s on average; for larger networks the timings are worse.
However, by using the reduction method as a preprocessing step, the polynomial algebra approach
can handle thousands of variables (Table 1 in manuscript).
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