STEADY STATE ANALYSIS OF BOOLEAN MOLECULAR NETWORK MODELS VIA MODEL REDUCTION AND COMPUTATIONAL ALGEBRA.

ALAN VELIZ-CUBA, BORIS AGUILAR, FRANZISKA HINKELMANN, REINHARD LAUBENBACHER

EXAMPLE

Here we show an example of how our algorithm works. We use the Th-cell differentiation model from [1]:

x_1	=	GATA3		f_1	=	$(x_1 \lor x_{21}) \land \neg x_{22}$:
$\frac{x_1}{x_2}$	_	$IFN - \beta$	7	f_{2}	_	$(a_1 \cdot a_{21}) \cdot a_{22},$
$\frac{\omega_{\perp}}{r_{o}}$	_	$IFN - \beta R$,	$\int dz$	_	r_{2}
$\frac{x_3}{r}$	_	$IFN = \gamma$,	J3 f.	_	$(x_1, y/x_2, y/x_2, y/x_2) \land \neg x_2$
x_4	_	$IFN = \gamma$,	J4 1	_	$(x_{14} \lor x_{16} \lor x_{20} \lor x_{22}) \land \neg x_{19},$
x_5	=	$IFN - \gamma R$,	J_5	=	$x_4;$
x_6	=	IL - 10	,	f_6	=	$x_1;$
x_7	=	IL - 10R	,	f_7	=	$x_6;$
x_8	=	IL - 12	,	f_8	=	0;
x_9	=	IL - 12R	,	f_9	=	$x_8 \wedge \neg x_{21};$
x_{10}	=	IL - 18	,	f_{10}	=	0;
x_{11}	=	IL - 18R	,	f_{11}	=	$x_{10} \wedge \neg x_{21};$
x_{12}	=	IL-4	,	f_{12}	=	$x_1 \wedge \neg x_{18};$
x_{13}	=	IL - 4R	,	f_{13}	=	$x_{12} \wedge \neg x_{17};$
x_{14}	=	IRAK	,	f_{14}	=	$x_{11};$
x_{15}	=	JAK1	,	f_{15}	=	$x_5 \land \neg x_{17};$
x_{16}	=	NFAT	,	f_{16}	=	$x_{23};$
x_{17}	=	SOCS1	,	f_{17}	=	$x_{18} \lor x_{22};$
x_{18}	=	STAT1	,	f_{18}	=	$x_3 \lor x_{15};$
x_{19}	=	STAT3	,	f_{19}	=	$x_7;$
x_{20}	=	STAT4	,	f_{20}	=	$x_9 \wedge \neg x_1;$
x_{21}	=	STAT6	,	f_{21}	=	$x_{13};$
x_{22}	=	T-bet	,	f_{22}	=	$(x_{18} \lor x_{22}) \land \neg x_1;$
x_{23}	=	TCR	,	f_{23}	=	0.

The wiring diagram is shown in Figure 1. The AND-NOT representation¹ of this Boolean network is shown in Figure 2 and the reduced AND-NOT network is shown in Figure 3.

The polynomial representation of the reduced AND-NOT network is

 $f_1 = x_1 x_{22} + x_1,$ $f_{22} = x_1 x_{22} + x_{22}.$

To compute the steady states we need to solve

$$x_1 = x_1 x_{22} + x_1,$$

$$x_{22} = x_1 x_{22} + x_{22},$$

¹The AND-NOT representation is not unique and this particular representation was selected by hand for an easier comparison between the original Boolean network and its AND-NOT representation.

FIGURE 1. Wiring diagram of original Boolean network.

FIGURE 2. Wiring diagram of the AND-NOT network representation.

FIGURE 3. Wiring diagram of the reduced AND-NOT network.

that is,

$$0 = x_1 x_{22},$$

To use our code, the Boolean network has to be written in the form

```
(x1 | x21 ) & !x22
0
x2
(x14 | x16 | x20 | x22 ) & !x19
x4
x1
x6
0
x8 & !x21
0
x10 & !x21
x1 & !x18
x12 & !x17
x11
x5 & !x17
x23
x18 | x22
x3 | x15
x7
x9 & !x1
x13
(x18 | x22 ) & !x1
0
and one can simply run
```

./BNReduction.sh input_file

where input_file is the file shown above (all steps and "piping" are done automatically). The steady states will be printed in a file named input_file.fp:

Comments about performance of reduction and polynomial algebra

In the manuscript we combined two main methods: (AND-NOT) network reduction and computational algebra [2, 3, 4, 5]. Also, in order to use the reduction of AND-NOT networks, we had to use the intermediate step of transforming a Boolean network into an AND-NOT network [6].

4 ALAN VELIZ-CUBA, BORIS AGUILAR, FRANZISKA HINKELMANN, REINHARD LAUBENBACHER

The reduction method by itself does not provide any means for computing steady states, it only guarantees that the reduced AND-NOT network has fewer variables. The reduction algorithm has to ensure that the number of steady states is preserved, so in many cases even the reduced AND-NOT network is too large to analyze by exhaustive search. For example, for Kauffman networks with k = 3 and n = 100, about 40% of the reduced AND-NOT networks had more than 50 variables. Using polynomial algebra allows to fill the gap and complete steady state computation (Table 2 in manuscript).

The polynomial algebra approach does provide a way to compute steady states, but it has trouble handling a large number of variables. For example, even with 500 variables and Kauffman networks with k = 2, the timings were 80s on average; for larger networks the timings are worse. However, by using the reduction method as a preprocessing step, the polynomial algebra approach can handle thousands of variables (Table 1 in manuscript).

References

- Luis Mendoza and Ioannis Xenarios. A method for the generation of standardized qualitative dynamical systems of regulatory networks. *Theoretical Biology and Medical Modelling*, 3(1):13, 2006.
- [2] A. Veliz-Cuba, R. Laubenbacher, and B. Aguilar. Dimension reduction of large AND-NOT network models. arxiv.org/abs/1311.6868, 2013.
- [3] A. Veliz-Cuba, A. Jarrah, and R. Laubenbacher. Polynomial algebra of discrete models in systems biology. Bioinformatics, 26(13):1637–1643, 2010.
- [4] Franziska Hinkelmann, Madison Brandon, Bonny Guang, Rustin McNeill, Grigoriy Blekherman, Alan V. Cuba, and Reinhard Laubenbacher. ADAM: Analysis of discrete models of biological systems using computer algebra. BMC Bioinformatics, 12(1):295+, 2011.
- [5] D. Grayson and M. Stillman. Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
- [6] A. Veliz-Cuba, K. Buschur, R. Hamershock, A. Kniss, E. Wolff, and R. Laubenbacher. AND-NOT logic framework for steady state analysis of Boolean network models. *Applied Mathematics and Information Sciences*, 4(7):1263–1274, 2013.