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1. INTRODUCTION

Given the function f : IRp → IR and ℓ, u ∈ IRp, ℓ < u, the problem under

consideration is

min
x∈B

f(x)

over the box B = {x ∈ IRp | ℓ <
= x <

= u}. The types of functions of interest are

where f is either stochastic (f itself, or observations of f(x)) or deterministic but

noisy (having large local total variation). Although the algorithm here (QNSTOP)

was conceived for stochastic optimization, it has two features that make it attrac-

tive for globally optimizing noisy deterministic objectives. First, because QNSTOP

smooths (by regression) observed responses to construct semilocal approximations,

it automatically filters high-frequency oscillations in the objective. Second, if the

designs used by QNSTOP to obtain information in the current ellipsoidal design

region Ek(τk) are space-filling (QNSTOP elects to draw random samples from a uni-

form distribution on Ek(τk), then edits them to increase the minimum interpoint

distance between the proposed design sites), then QNSTOP may serendipitously

discover unexpectedly small objective values within the semilocal region Ek(τk)

used for smoothing. Plausible competitors to QNSTOP are Spall’s Simultaneous

Perturbation Stochastic Approximation (SPSA) algorithm [Spall 1987, 1992, 1998],

which constructs gradient estimates from just two function evaluations, and Kel-

ley’s implicit filtering algorithm [Gilmore and Kelley 1995], which relies on coarse

stencil-based finite differencing to construct a descent direction. Both of these are

philosophically quite different from QNSTOP, as explained in detail later.

The following sections provide background, discuss varying philosophies of

stochastic optimization, describe QNSTOP in detail, and provide some performance

data on difficult systems biology problems.

2. STOCHASTIC OPTIMIZATION BACKGROUND

Stochastic optimization is optimization when function evaluation is uncertain, i.e.,

corrupted by the presence of random noise. For example, suppose that one seeks

to minimize µ : IRp → IR. Given x ∈ IRp, one would like to observe µ(x); instead,

one observes µ(x) + ǫx, where ǫx is a random variable. This is the case of additive

random noise. In this case, the underlying objective function µ is often called

the regression function (in the stochastic approximation literature) or the response

surface (in the response surface methodology literature).

One typically imposes various assumptions on the ǫx. The assumption E(ǫx) = 0,

from which it follows that the expected value of an observation is the true

value of the objective function, is inevitable. One might also assume that ǫx ∼
Normal(0, σ2

x) (normality), that Var(ǫx) = σ2
x does not depend on x (homoscedas-

ticity), and that the ǫx are independent (white noise). The preceding set of as-

sumptions is referred to as the standard example.

Random noise may not be additive. Because there is no elegant way to catalog

the many random mechanisms by which a deterministic objective function might be

corrupted, the concept of optimizing in the presence of random noise is somewhat
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elusive. The usual approach is to begin with what one observes, not with what one

seeks to optimize. Given x ∈ IRp, suppose that one observes a random variable

Yx. One then defines the objective function to be µ(x) = EYx. However, there

are a number of meaningful optimization problems for which function evaluation is

uncertain that are more naturally expressed in a slightly different setting.

Let

P = {P (·; x) | x ∈ C ⊆ IRp}

denote a family of probability distributions indexed by x. Assume that the P (·; x)

are completely unknown or analytically intractable, but that one can sample from

any specified P (·; x). The first case might arise as one varies the prescribed op-

erating characteristics of a manufacturing facility in search of an optimum. This

is a typical concern of response surface methodology. In this case, observations

are generated by a physical process for which a formal mathematical description is

not available. The second case might arise when one is tuning the parameters of

a simulated stochastic process, searching for settings that produce simulated data

sets that resemble an actual data set. This is a useful approach to parameter esti-

mation when the statistical model is defined implicitly, i.e., in terms of a generating

stochastic mechanism rather than by specifying a parametric family of probability

distributions. See, for example, Diggle and Gratton [1984] and Thompson [2000].

In neither case can one manipulate the P (·; x) as mathematical objects; instead one

must rely on random sampling to obtain information about them.

Now let T : P → IR and let f(x) = T (P (·; x)). One seeks local solutions of

min
P∈P

T (P ), (1)

or, equivalently, of

min
x∈C

f(x). (2)

Additional smoothness assumptions are imposed on T or f , as needed.

As stated, Problems (1) and (2) are unambiguous, deterministic optimization

problems. They become stochastic when one cannot manipulate the P (·; x) as

mathematical objects. When one must estimate f(x) = T (P (·; x)) from a random

sample

ω1(x), . . . , ωn(x) ∼ P (·; x), (3)

then function evaluation is uncertain and Problems (1) and (2) are stochastic opti-

mization problems.

Given an independent and identically distributed random sample (3), let

P̂n(·; x) =
n∑

i=1

1

n
δωi(x)
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denote the empirical distribution of the sample, i.e., the discrete probability distri-

bution that assigns probability 1/n to each ωi(x). In the case of univariate proba-

bility distributions, the empirical distribution is usually identified as the empirical

cumulative distribution function (cdf), i.e., the function (of y)

P̂n (ω(x) ≤ y; x) =
#{ωi(x) ≤ y}

n
.

Let Tn(ω1(x), . . . , ωn(x)) denote a statistic, i.e., a real-valued quantity calculated

from the sample. Then von Mises [1947] observed that many useful statistics are

of the form

Tn (ω1(x), . . . , ωn(x)) = T
(
P̂n(·; x)

)
,

in which context T is often called a statistical functional. The theory of statistical

functionals provides an elegant and useful framework in which to consider stochastic

optimization.

Example 1. To recover the standard example from this new perspective, let

µ : IRp → IR and σ > 0 be fixed but unknown. Let

P =
{
P (·; x) = Normal

(
µ(x), σ2

)
| x ∈ IRp

}

and let

T (P ) =

∫ ∞

−∞

ωP (dω).

Then

f(x) = T (P (·; x)) =

∫ ∞

−∞

ωP (dω; x) = µ(x),

as desired. One cannot evaluate µ(x), but one can draw a random sample (3) and

use it to estimate µ(x), e.g., by computing the sample mean,

ω̄n(x) =
1

n

n∑

i=1

ωi(x).

In fact, because √
n [ω̄n(x) − µ(x)] ∼ Normal(0, σ2),

one can estimate µ(x) as accurately as one pleases by choosing n sufficiently large.

Notice that T is a classic example of a statistical function:

T
(
P̂n(·; x)

)
=

∫ ∞

−∞

ωP̂n(dω; x) =
1

n

n∑

i=1

ωi(x) = ω̄n(x).

Example 2. There is special interest in stochastic optimization problems that arise

when estimating the parameters of a stochastic process that is easily simulated but
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analytically intractable. For example, Atkinson, Bartoszynski, Brown, and Thomp-

son [1983] modeled two possible mechanisms for tumor recurrence, metastasis (tu-

mors that grow from cells that break off from a primary tumor and lodge elsewhere

in the body) and a systemic mechanism that generates multiple primary tumors.

Assume the following:

1. Each tumor originates from a single cell and grows exponentially at rate θ1.

2. Occurrence of systemic tumors is a Poisson process with rate θ2.

3. Detection of tumor j is a nonhomogeneous Poisson process with rate θ3Yj(t),

where Yj(t) is the size of tumor j at time t.

4. Until the removal of the primary tumor, metastasis is a nonhomogeneous Poisson

process with rate θ4Y0(t).

Let Time ∼ P (·; θ) denote the time from detection of the first tumor to detection

of the second tumor, where θ =
(
θ1, θ2, θ3, θ4

)
. P (·; θ) is (nearly) intractable, but

easily sampled by stochastic simulation. The random variable Time was observed for

116 breast cancer patients. Let Q̂ denote the empirical distribution of these times

and let ∆ denote a measure of discrepancy between two probability measures, e.g.,

the Kolmogorov-Smirnov criterion or the Cramér-von-Mises criterion. One would

like to estimate θ by minimum distance estimation, i.e., by minimizing

f(θ) = T (P (·; θ)) = ∆
(
P (·; θ), Q̂

)
,

but evaluation of f is intractable. Instead, estimate f(θ) with

f̂n(θ) = T
(
P̂n(·; θ)

)
= ∆

(
P̂n(·; θ), Q̂

)
,

where P̂n is the empirical distribution of a simulated sample. With this substitu-

tion, the problem of minimum distance estimation becomes a problem of stochastic

optimization. Furthermore—and this is the very point that motivated Atkinson et

al.—the objective function is sufficiently complicated that it is best treated as a

black box.

Example 3. Engineers increasingly rely on computer simulation to develop new

products and to understand emerging technologies. In practice, this process is per-

meated with uncertainty: manufactured products deviate from designed products;

actual products must perform under a variety of operating conditions. Most of

the computational tools developed for design optimization ignore or abuse the is-

sue of uncertainty, whereas traditional methods for managing uncertainty are often

prohibitively expensive.

Robust design optimization (RDO) requires the simultaneous manipulation of

design variables and noise variables. Using ideas from statistical decision theory, the

problem of robust design can be formulated as an optimization problem. Consider

loss functions of the form L : A×B → ℜ, where a ∈ A represents decision variables,

inputs (designs) controlled by the engineer; b ∈ B represents uncertainty, inputs

not controlled by the engineer; and L(a; b) quantifies the loss that accrues from
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design a when conditions b obtain. The (unattainable) goal is to find a∗ ∈ A such

that, for every b ∈ B,

L (a∗; b) ≤ L(a; b) ∀ a ∈ A.

The unsolvable problem of finding a∗ ∈ A that simultaneously minimizes L(a; b)

for each b ∈ B is the central problem of statistical decision theory: find a decision

rule that simultaneously minimizes risk for every possible state of nature. A stan-

dard way of negotiating this problem is to replace each L(a; ·) with a real valued

attribute of it. Thus, Bayes principle results in the optimization problem

min
a∈A

f(a) =

∫

B

L(a; b)p(b) db, (4)

where p denotes a probability density function on B. If f is evaluated by Monte

Carlo integration, then (4) becomes a stochastic optimization problem. In previous

work, Kugele, Trosset, and Watson [2008] attempted to solve (4) using traditional

algorithms for numerical optimization and concluded that they were ineffective.

This RDO example has directly available gradient information, which would be

used in lieu of the gradient estimation algorithm built into QNSTOP. Thus QN-

STOP would have to be modified slightly for problems where gradient information

is directly available.

The theory of statistical functionals provides a way to extend many features of

the standard example. In what follows, the univariate probability distributions

P (·; x) and P̂n(·; x) are identified with their corresponding cumulative distribution

functions. Let

Dn = sup
y

∣∣∣P̂n (ω(x) ≤ y; x) − P (ω(x) ≤ y; x)
∣∣∣ .

The Glivenko-Cantelli Theorem states that P (Dn → 0) = 1; hence, if T is contin-

uous in a suitable sense, then one should find that

T
(
P̂n (·; x)

)
P→ T (P (·; x)) .

This says that one can consistently estimate f(x) = T (P (·; x)) by sampling from

P (·; x). In fact, one can usually say considerably more. The theory of statistical

functionals is primarily concerned with connecting the differentiability of T to the

asymptotic normality of T (P̂n(·; x)). See, for example, Fernholz [1983].

2.1 Stochastic Approximation Versus Response Surface Methodology

There are two fundamental approaches to solving stochastic optimization problems,

stochastic approximation (SA) and response surface methodology (RSM). Both SA

and RSM originated in the early 1950s. For SA, the seminal papers are Robbins

and Monro [1951], Kiefer and Wolfowitz [1952], Blum [1954], and Dvoretsky [1956].

See Kushner and Yin [1997], Spall [2003], and Marti [2005] for modern surveys. For
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RSM, the seminal paper is Box and Wilson [1951]. See Myers and Montgomery

[1995] for a modern survey.

Both SA and RSM evolved from attempts to adapt the method of steepest de-

scent for numerical optimization. Both approaches construct local models (typically

linear, but occasionally quadratic) of the objective function. Because the objective

function cannot be manipulated directly, derivatives are not available and cannot

be used to construct the local models. SA constructs local models from estimated

derivatives, obtained by finite differencing. RSM constructs local models directly,

from designed regression experiments.

In numerical optimization, the magnitude of the differences used in finite dif-

ferencing schemes is extremely small. When function evaluation is corrupted by

random noise, trends in the objective function cannot be detected with such small

differences. Furthermore, once a descent direction has been estimated, line searches

cannot reliably determine an optimal step length. As a result, SA relies on predeter-

mined decreasing sequences of differences and step length multipliers. Convergence

to a local solution is guaranteed by controlling the behavior of these sequences. Tra-

ditionally, the differences are O(1/k3) and the step length multipliers are O(1/k),

where k is the iteration counter.

SA relies on averaging. The models constructed for individual iterations may be

quite crude (Spall’s simultaneous perturbation stochastic approximation (SPSA)

algorithm estimates a gradient from just two function evaluations); SA succeeds by

taking a large number of steps. For fixed budgets, it may be better to choose n = 1

in (3) and take a great many steps than to choose n ≫ 1 and settle for fewer steps

of higher quality. One of the most significant advances in SA is due to Polyak and

Juditsky [1992], who demonstrated that convergence could by accelerated by using

larger step length multipliers and averaging the sequence of iterates.

In contrast, RSM typically takes a small number of carefully chosen steps.

Whereas SA has produced a huge literature on asymptotic convergence theory,

RSM has produced a huge literature on experimental design. There is virtually no

overlap between the SA and RSM literatures.

3. QUASI-NEWTON METHODS FOR STOCHASTIC OPTIMIZATION

Both RSM and SA mimic the method of steepest descent, but numerical optimiza-

tion has advanced dramatically since the 1950s and the method of steepest descent

is no longer the state of the art. Quasi-Newton methods for stochastic optimiza-

tion (QNSTOP) synthesize ideas from RSM (semilocal approximations constructed

from designed experiments by regression, confidence sets for constrained minimiz-

ers, ridge analysis) and SA (convergence analysis), combining them with ideas from

modern numerical optimization (trust regions, secant updates).

QNSTOP is distinct from, but closely related to, three previous trust region meth-

ods for stochastic optimization. First, Lawera and Thompson [1993] described a

response surface method based on ideas in [Box and Hunter 1957]. Significant in-

novations include adaptive experimental designs and quasi-trust region step length

control.
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Second, Deng and Ferris [2006] proposed three novel modifications to Powell’s

[2002] UOBYQA (unconstrained optimization by quadratic approximation) algo-

rithm for numerical optimization, endeavoring to adapt it for stochastic optimiza-

tion. Their algorithm observes the response at each design site multiple times and

interpolates the mean responses. A heuristic is used to determine how many ob-

servations should be taken at each design site so that the quadratic model and

the constrained minimizer are stable. The constrained minimizer of the quadratic

model is computed in the same way as in UOBYQA; however, a novel heuristic is

used to decide whether to update the current iterate with the minimizer or leave it

unchanged. They also describe termination criteria specific to the stochastic setting

based upon having similar mean responses amongst a large portion of sites on the

boundary of the trust region.

Finally, Chang, Hong, and Wan [2007] and Chang and Wan [2009] proposed the

STRONG and STRONG-X algorithms. STRONG assumes normally distributed

function evaluation errors, while STRONG-X relaxes this assumption to additive

errors with bounded variance. Both algorithms adapt the standard two-phase RSM

approach and utilize trust regions to control progress. The first phase constructs a

linear model fit partially by least squares to multiple observations at design sites

in an appropriate design (the authors recommend a fractional factorial or factorial

design plus the current iterate). A line search is used in the direction of negative

gradient within the trust region to choose the subsequent iterate. The second phase

constructs a quadratic model by least squares. If sufficient progress is made, the

algorithm steps to the Cauchy point, i.e., the minimizer of the quadratic in the

direction of steepest descent subject to the trust region constraint. Heuristics are

used to determine whether sufficient progress was obtained in each phase.

QNSTOP is a class of quasi-Newton methods originally developed for stochastic

optimization, but which can also be used for deterministic global optimization with

minor variations at certain steps. Both uses supported by the code are described

simultaneously in what follows. In iteration k, QNSTOP methods compute the

gradient vector ĝk and Hessian matrix Ĥk of a quadratic model

m̂k(X − Xk) = f̂k + ĝT
k (X − Xk) +

1

2
(X − Xk)T Ĥk (X − Xk) , (5)

of the objective function f centered at Xk, where f̂k is generally not f(Xk).

In the unconstrained context, QNSTOP methods progress by

Xk+1 = Xk −
[
Ĥk + µkWk

]−1

ĝk, (6)

where µk is the Lagrange multiplier of a trust region subproblem and Wk is a scaling

matrix. In the case where the feasible set Θ is a convex subset of IRp, consider an

algorithm of the form

Xk+1 =

(
Xk −

[
Ĥk + µkWk

]−1

ĝk

)

Θ

,



Algorithm XXX: QNSTOP • 9

where (·)Θ denotes projection onto Θ.

3.1 Estimating the Gradient

Following a response surface methodology approach, QNSTOP designs regression

experiments in a region of interest containing the current iterate. QNSTOP uses

an ellipsoidal design region centered at the current iterate Xk ∈ IRp. Let

Wγ =
{
W ∈ Rp×p : W = WT , det(W ) = 1, γ−1Ip � W � γIp

}

for some γ ≥ 1 where Ip is the p × p identity matrix. A typical value for γ is 20.

The elements of the set Wγ are valid scaling matrices that control the shape of

the ellipsoidal design regions with eccentricity constrained by γ. Let the ellipsoidal

design regions

Ek(τk) =
{
X ∈ IRp : (X − Xk)

T
Wk (X − Xk) ≤ τ2

k

}

where Wk ∈ Wγ . In the deterministic case τk = τ0 > 0 is fixed if there is no gain,

otherwise for gain ζ > 0 (an input parameter)

τk =
ζ

ζ + k
τ0.

In the stochastic case, the convergence theory requires that τk be decayed according

to the formula τk = a(k + 1)−b, where a > 0 and b ∈ (0, 0.5).

In each iteration, QNSTOP methods choose a set of Nk design sites {Xk1, . . .,

XkNk
} ⊂ Ek(τk) ∩ Θ. In this implementation N = Nk is fixed for each k = 1, 2,

. . . and Xk1, . . ., XkN ∈ Ek(τk) ∩ Θ are uniformly sampled in each iteration.

Let Yk = (yk1,. . .,ykN )T denote the N -vector of responses where yki = F (Xki) +

noise. The response surface is modeled by the linear model yki = f̂k + XT
kiĝk + ǫki

where ǫki accounts for lack of fit. Let X̄k = N−1
∑N

i=1 Xki. The least squares

estimate of the gradient ĝk, ignoring the estimate for f̂k, is obtained by observing

the responses and solving (
DT

k Dk

)
ĝk = DT

k Yk (7)

where

Dk =





(
Xk1 − X̄k

)T

...(
XkN − X̄k

)T



 .

3.2 Updating the Model Hessian Matrix

In the stochastic context, QNSTOP methods constrain the Hessian matrix update

to satisfy

−ηIp � Ĥk − Ĥk−1 � ηIp (8)
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for some η ≥ 0. Conceptually, this prevents the quadratic model from changing

drastically from one iteration to the next. A variation of the SR1 (symmetric, rank

one) update Ĥk that satisfies this constraint is computed as the solution to the

problem

min
H∈Rp×p

∥∥H
(
Xk − Xk−1

)
−

(
ĝk − ĝk−1

)∥∥2

subject to H = HT , rank
(
H − Ĥk−1

)
= 1, −ηIp � H − Ĥk−1 � ηIp.

This problem has an easily computed explicit solution. However, the constraint (8)

is simply relaxed in the deterministic case and the BFGS update is used, i.e., with

the Hessian matrix updated according to

Ĥk = Ĥk−1 −
Ĥk−1sksT

k Ĥk−1

sT
k Ĥk−1sk

+
νk νT

k

νT
k sk

,

where sk = Xk − Xk−1, νk = ĝk − ĝk−1.

3.3 Step Length Control

QNSTOP methods utilize an ellipsoidal trust region concentric with the design

region for controlling step length. In the deterministic case, the trust region ellip-

soid radius ρk is taken equal to the design ellipsoid radius τk, and the following

optimization problem is solved:

min
X∈Ek(ρk)

ĝT
k (X − Xk) +

1

2
(X − Xk)T Ĥk (X − Xk) . (9)

The solution to (9) is on the arc

X(µ) = Xk −
[
Ĥk + µWk

]−1

ĝk. (10)

It remains to estimate µk such that X(µk) solves (9). Using Lemma 6.4.1 from

[Dennis and Schnabel 1983] and a little manipulation, it can be established that

there is a unique µk ≥ 0 such that ‖X(µk)−Xk‖Wk
= ρk, unless ‖X(0)−Xk‖Wk

≤
ρk in which case µk = 0. Estimating µk is difficult, but well understood. Chapter

7 in [Conn, Gould, and Toint 2000] is a comprehensive treatment. In particular,

Algorithm 7.3.6 in [Conn, Gould, and Toint 2000] is robust and easily implemented.

In the stochastic case, the trust region ellipsoid radius ρk is different from the

design ellipsoid radius τk, but rather than updating the trust region radius ρk

and then solving for the Lagrange multiplier µk from (10), µk is directly updated,

thereby defining the trust region radius implicitly rather than explicitly. Specifi-

cally, fix c ≥ 0 and d > ηγ, set µk = d(c + k + 1), and solve (6) to obtain Xk+1, the

next iterate. Then ρk = ‖Xk+1 −Xk‖Wk
is indirectly defined by µk. This strategy
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is dictated by the convergence theory of Castle [2012] that requires control of the

Lagrange multipliers.

3.4 Updating the Experimental Design Region

The QNSTOP approach to constructing the ellipsoidal design regions is now de-

scribed. To motivate the approach, consider Example 1 with µ quadratic and the

problem of minimizing µ subject to an ellipsoidal constraint. If a quadratic model

is estimated by least squares regression, then the method of Stablein et al. [1983]

can be used to derive a nonlinear inequality that characterizes a confidence set

for the constrained minimizer of µ. The confidence set itself is intractable, but a

convenient ellipsoidal approximation of it is available.

QNSTOP mimics the construction described above to construct a new ellipsoid

from an ellipsoidal trust region subproblem.. Because QNSTOP constructs a lin-

ear model by least squares regression, then updates the model Hessian matrix by

a secant update, the interpretation of the ellipsoid as a confidence set is some-

what more tenuous. Regardless, the approximation for the covariance matrix of

∇m̂k(Xk+1 − Xk),

Vk = 4σ2(DT
k Dk)−1, (11)

is computed, where σ2 is the ordinary least squares estimate of the variance. Then

Ek+1(χp,1−α) =
{
X ∈ IRp : (X − Xk+1)

T Wk+1(X − Xk+1) ≤ χ2
p,1−α

}
,

where

Wk+1 =
(
Ĥk + µkWk

)T

V −1
k

(
Ĥk + µkWk

)

and χ2
p,1−α is the 1 − α quantile of a chi-squared distribution with p degrees of

freedom.

Castle [2012] discovered that strict use of the above updates for Wk+1 can lead to

degenerate ellipsoids. To ensure useful design ellipsoids and guarantee convergence,

the constraints γ−1Ip � Wk+1 � γIp and det(Wk+1) = 1 are enforced by modifying

the eigenvalues—hence, the definition of Wγ ∋ Wk+1.

3.5 Algorithm Summary

The Fortran code takes as optional arguments all the parameters mentioned above,

as well as a few more not mentioned (e.g., one can bound the eccentricity of Vk in

(11)). The only required arguments are those defining the problem and a mode—

global deterministic or stochastic. Optional arguments not defined default to rea-

sonable values. In both modes it is generally desirable to run QNSTOP from

multiple start points, and the code provides several different ways to acquire these

start points. The algorithm described below is repeated for each start point.

Step 0 (initialization): Given a function evaluation budget B̃ per start point and

operating mode (deterministic or stochastic), set values for τ0 > 0, µ0 > 0, γ ≥ 1,

η ≥ 0, ζ ≥ 0, N , X0, k : = 0, W0 : = Ĥ0 : = Ip.
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Step 1 (regression experiment): Depending on the mode, compute τk. Uni-

formly sample {Xk1, . . ., XkN} ⊂ Ek(τk) ∩ Θ. Observe the response vector

Yk = (yk1, . . ., ykN )T . Compute ĝk by solving (7).

Step 2 (secant update): If k > 0, compute the model Hessian matrix Ĥk using

BFGS (deterministic) or SR1 variant (stochastic) update.

Step 3 (update iterate): Compute µk depending on the mode as described in

Section 3.3, solve [Ĥk + µkWk]sk = −ĝk, and compute Xk+1 =
(
Xk + sk

)
Θ
.

Step 4 (update subsequent design ellipsoid): Compute Wk+1 ∈ Wγ using the

approach described in Section 3.4.

Step 5: If (k + 2)(N + 1) + 1 < B̃ then increment k by 1 and go to Step 1.

Otherwise, the algorithm terminates. (f is also observed at each ellipsoid center

Xk.)

As a practical matter to deal with variable scaling, the feasible set (box) Θ =

B = {x ∈ IRp | ℓ <
= x <

= u} is mapped to the unit hypercube [0, 1]p internally by the

code, and the algorithm effectively operates on [0, 1]p. All input and output is in

the original problem coordinate system.
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Fig. 1. A typical QNSTOP progression.

Figure 1 shows a typical progression of QNSTOP over 20 iterations, from a

difficult biomechanics problem described in [Radcliffe et al. 2010, Easterling et al.

2014]. The solid line represents the lowest value found among 200 design sites for

that iteration, while the dotted line represents the corresponding minimum found

by the minimizer of the quadratic model. Note that while at times the model will

give an imperfect minimum, the overall downward trend is significant.

3.6 Convergence Theory

The convergence theory for QNSTOP [Castle 2012] requires certain assumptions

(stated precisely below) and certain conditions on the various parameters (stated

earlier in this section in reference to the “stochastic case”). These assumptions
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are typical in the analysis of stochastic approximation algorithms [Castle 2012].

Precisely, using the notation in Sections 2 and 3, assume

(1) the decaying τk and increasing µk have the earlier stated forms for the stochas-

tic case;

(2) the gradient estimate ĝk used in the quadratic model m̂k is independent of the

gradient estimate ǧk used to construct Ĥk (achieved by having two observed

responses at each design site Xki — ĝk = ǧk has been used in practice with no

apparent ill effects);

(3) for each k and design points {Xk1, . . ., XkN} ⊂ Ek(τk) ∩ Θ, the scaled design

matrix

1

2τkγ1/2





(
Xk1 − X̄k

)T

...(
XkN − X̄k

)T





has singular values bounded below by Π > 0;

(4) f(x) = T
(
P (·; x)

)
with observations f̂n(x) = T

(
P̂n(·; x)

)
= T

(
P (·; x)

)
+ ǫx;

(5) the objective function f is twice continuously differentiable, bounded from

below, and ‖∇2f(x)‖ ≤ L < ∞ for some L and all x ∈ IRp;

(6) the observed errors have zero mean and finite variance, i.e., E[ǫx] = 0 and

E[ǫ2x] ≤ cǫ;

(7) the objective function has a unique minimizer θ∗,

inf
‖x−θ∗‖>φ

‖∇f(x)‖ > 0,

and

inf
‖x−θ∗‖>φ

‖f(x) − f(θ∗)‖ > 0

for some φ > 0.

Then the iterates Xk generated by QNSTOP converge almost surely to the unique

minimizer θ∗ of f .

The multivariate Kiefer-Wolfowitz algorithm for stochastic approximation is

θk+1 = θk − bk

2ck




f̂1(θk + cke1) − f̂1(θk − cke1)

...
f̂1(θk + ckep) − f̂1(θk − ckep)



 ,

where e1, . . ., ep are unit vectors in the coordinate directions, ck > 0 controls the

width of the finite differencing interval, and bk > 0 controls step length. Choosing

µk = 1/bk, η = 0 (entailing Ĥk = Ĥ0), γ = 1 (entailing Wk = Ip, which results

in spherical experimental regions), and N = 2p design sites at θk ± ckei yields

Kiefer-Wolfowitz as a special case of QNSTOP. Allowing γ > 1 and placing the

2p design sites at the endpoints of the resulting ellipsoid’s axes permits simulation
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experiments that investigate the value of replacing spherical design regions with

elliptical regions that adapt to the contours of the objective function. Allowing

η > 0 permits simulation experiments that investigate the value of using (some)

second-order information. Castle’s [2012] simulation experiments suggest that both

innovations have virtue.

4. PARALLEL IMPLEMENTATION

QNSTOP, unlike, say, the massively parallel direct search code VTDIRECT95

[Jones et al. 1993, Jones 2001, Deng and Ferris 2007, He et al. 2009], requires

no exotic data structures or sophisticated communication management. There are

just three potentially significant sources of parallelism: the individual function eval-

uations f(Xki), the loop (i = 1, . . ., N) over the samples in an experimental design,

and the loop over the start points (of size NSTART). These three levels are nested.

If each evaluation f(Xki) were a large scale parallel simulation using MPI, then

a master-slave paradigm with the master farming out points Xki to the slaves for

evaluation is a reasonable approach entirely based on MPI. If the distributed mem-

ory nodes are multicore, then a mixed programming model makes sense, but the

shared memory (OpenMP) component would be within the function evaluations,

not at the level of the two outer loops. On a large shared memory machine, there

will be ample parallelism at the two outer loops, motivating an OpenMP approach.

Due to the exception handling limitations of OpenMP threads, the logical flow

of the parallel driver subroutine QNSTOPP is significantly different from that of the

serial (without OpenMP directives) driver subroutine QNSTOPS. Consequently the

serial version QNSTOPS execution is more efficient than the parallel version QNSTOPP

execution with a single thread. This is the justification for providing both serial

and parallel subroutines, even though in principle the OpenMP code QNSTOPP can

be run serially.

The parallel (OpenMP) implementation of QNSTOP has four choices for paral-

lelization, controlled by an optional argument to the Fortran subroutine QNSTOPP:

(1) serial (no parallelization at all, the default), (2) parallelize only the outer loop

over the start points, (3) parallelize only the second outermost loop over the ex-

perimental design samples, or (4) do both (2) and (3). The choice (4), because

of nesting, could generate a very large number of threads, so should be used with

care. Figures 2–4 show speedup results for a eukaryotic cell cycle model problem

[Oguz et al. 2013] from the systems biology literature. The model is a system of

26 stiff ODEs with 149 parameters. There is experimental data on 119 mutants,

each of which corresponds to a modification of the base (or “wild type”) system

of ODEs, and the optimization problem is to estimate the 149 parameters so as

to best fit the experimental data for all the mutants. Each mutant is classified as

“viable”, “inviable”, or “neither”, and the objective function value at a particular

149-dimensional parameter vector is simply the (negative) count of how many mu-

tants’ behavior is matched by the model. One objective function evaluation f(X)

on a single PowerPC G4 processor typically takes about 15 s, but can take an order
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Fig. 2. Speedup of the parallel QNSTOPP over the serial QNSTOPS for the cell cyle problem
with OMP = 1 (parallel loop over start points). The mean speedup is plotted with error
bars at one standard deviation.
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Fig. 3. Speedup of the parallel QNSTOPP over the serial QNSTOPS for the cell cyle problem
with OMP = 2 (parallel loop over design ellipsoid sample points). The mean speedup is
plotted with error bars at one standard deviation.
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Fig. 4. Speedup of the parallel QNSTOPP over the serial QNSTOPS for the cell cyle problem
with OMP = 3 (both OMP = 1 and OMP = 2, nesting). The mean speedup is plotted with
error bars at one standard deviation.
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of magnitude more depending on the parameter vector, due to the different ODE

trajectories (being tracked with LSODAR).

The optional argument OMP, referenced in Figs. 2–4, defining the parallel de-

composition has the values 1, 2, 3 corresponding to dynamically scheduled loop

parallelization over the start points, design ellipsoid sample points, or both, re-

spectively. For these experiments, the number of start points is NSTART = 64 and

the number of design ellipsoid sample points (at which the objective function is

observed) is N = 256. Each data point represents the mean of three runs (for which

the variance is so small that the point is shown without error bars) or five runs

(point shown with error bars). It is not surprising that OpenMP nesting (OMP = 3)

performs significantly better than no nesting, since there are fewer threads (square

root of the total number of threads) at each level of parallelism. The speedup plots

(Figs. 2–4) are consistent with Amdahl’s Law, and show the limitations of coarse

grained parallelization (even with dynamic loop scheduling) when there is limited

problem parallelism and the function evaluation times are highly variable (typical

of optimization problems with black box simulation function values).

5. PERFORMANCE

The systems biology literature on cell cycle models contains a parameter vector X0

(called the TL set) obtained by biochemistry knowledge and manual twiddling, con-

sidered in the ballpark of the correct values. Searches for the optimal parameter

vector generally are conducted in a box defined by X0 plus or minus some per-

cent of X0, say 20%, 40%, 90% defining the boxes [0.8 X0, 1.2 X0], [0.6 X0, 1.4 X0],

[0.1 X0, 1.9 X0], respectively. For the particular model known as “Oak’s determin-

istic model” [Oguz et al. 2013], the best known value of f(X) is −110 (obtained

using LSODAR, or −111 obtained using a less accurate fixed step Euler method as

done by Oguz et al. [2013]), where f(X0) = −73. Using NSTART = 84 and N = 225

(from the statistical rule of thumb that at least 1.5p data points are needed to

estimate p parameters, and the model gradient ĝk here has dimension p = 149),

Figs. 5–7 show the iteration histories for three start points (out of 84) for each of

the three ±20%, ±40%, ±90% boxes, running QNSTOP in deterministic global op-

timization mode with the other relevant algorithm parameters shown in the figure

legends. These legends list the subroutine QNSTOP[P|S] arguments: N is the number

of design ellipsoid sample points; TAU is the initial ellipsoid radius τ0; GAIN is the

gain ζ (cf. §3.1); [LB, UB] is the feasible box; SWITCH controls how start points are

provided, with values 1, 2, 3, 4 corresponding to a single start point XI, a given

list of start points, an automatically generated Latin hypercube design (containing

XI) of start points, adaptive generation of a sequence of start points (beginning
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Fig. 5. Execution traces of QNSTOP in deterministic mode for three start points in the
±20% box. One trace starts at the center of the box (where f(X) = −73) and another trace
contains the best point of the entire run (where f(X) = −98). Another run with TAU = 2.2
(scaled from TAU = 10.0 for the ±90% box) yielded a best value of −97.

Deterministic
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Fig. 6. Execution traces of QNSTOP in deterministic mode for three start points in the
±40% box. One trace starts at the center of the box (where f(X) = −73) and another trace
contains the best point of the entire run (where f(X) = −105). Another run with TAU = 4.4
(scaled from TAU = 10.0 for the ±90% box) yielded a best value of −104.

with XI) by a user provided procedure, respectively; NSTART is the number of start

points (for SWITCH = 3 or 4); XI is the initial specified start point.

The trajectories for all start points are similar to the general downward trend of

the three start point trajectories shown. The best values found for f(X) during the
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Fig. 7. Execution traces of QNSTOP in deterministic mode for three start points in the
±90% box. One trace starts at the center of the box (where f(X) = −73) and another trace
contains the best point of the entire run (where f(X) = −112).

Table I. Statistics for Best f(X) Value Found with Each of the 84 Starting Points, for Each
of the ±20%, ±40%, ±90% Boxes.

box min median max σ̄ mode

±20% −98 −92 −88 1.97 G

±40% −105 −100 −95 2.19 G

±90% −112 −105 −55 7.42 G

±90% −109 −101 −55 18.88 S

three runs for the ±20%, ±40%, ±90% boxes were −98, −105, −112, respectively,

improving on the best known value in the literature. For the runs depicted in

Figs. 5–7, Table I gives the statistics for the best f(X) value found with each of

the 84 starting points. The global deterministic (stochastic) mode is denoted by

‘G’ (‘S’).

Figure 8 shows a trace plot for the stochastic mode (S) for the ±90% box similar

to Fig. 7 for the global deterministic mode (G), and the statistics for that stochastic

mode run are included in Table I. Execution traces and statistics for the stochastic

mode for the ±20% and ±40% boxes are what would be expected for these smaller

boxes, and thus are omitted. Since the stochastic mode has to protect against

unknown random fluctuations, the convergence is much slower than for the global

deterministic mode (for this deterministic cell cycle problem). Castle [2012] reports

results for QNSTOP in stochastic mode applied to a truly stochastic tumor growth

model.

Comparison of QNSTOP to other algorithms, both deterministic and nonde-

terministic, is not done here since that has already been done in the literature

[Easterling et al. 2014] for some very hard “noisy” scientific optimization problems.



Algorithm XXX: QNSTOP • 19

Stochastic
N=225, TAU=10.0, GAIN=5.0, ETA=0.7

LB�UB=H1±0.9L TL_Set

SWITCH=3, NSTART=84

FMIN=-109.0

Solid: XI=TL_Set

Dotted: Point obtaining FMIN

Dashed: First point in LHS

0 10 20 30 40 50
-110

-100

-90

-80

-70

-60

-50

k

fH
X

kL

Fig. 8. Execution traces of QNSTOP in stochastic mode for three start points in the ±90%
box. One trace starts at the center of the box (where f(X) = −73) and another trace
contains the best point of the entire run (where f(X) = −109).
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