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ABSTRACT 

 

 

 
The need for modern electricity infrastructures and more capable grid components brings 

attention to distributed energy storage systems because of their bidirectional power flow 

capability. This dissertation focuses on three different aspects of distributed energy storage 

system applications in distribution networks. It starts with flywheel energy storage system 

modeling and analysis for application in microgrid facilities. Then, a market-based optimal 

controller is proposed to enhance the operational profit of distributed energy storage devices in 

distribution networks. Finally, impact of multiple distributed energy storage devices on harmonic 

propagation in distribution networks is investigated. 

This dissertation provides a comparison between batteries and flywheels for the ride-through 

application in critical microgrid facilities like data centers. In comparison with batteries, the 

application of FES for power security is new. This limits the availability of experimental data. 

The software tool developed in this dissertation enables analysis of short-term, ride-through 

applications of FES during an islanded operation of a facility microgrid. As a result, it can 

provide a guideline for facility engineers in data centers or other types of facility microgrids to 

design backup power systems based on FES technology. 

This dissertation also presents a real-time control scheme that maximizes the revenue 

attainable by distributed energy storage systems without sacrificing the benefits related to 



 iii 

improvements in reliability and reduction in peak feeder loading. This optimal control algorithm 

provides a means for realizing additional benefits by utilities by taking advantage of the 

fluctuating cost of energy in competitive energy markets. The key drivers of the economic 

optimization problem for distributed energy storage systems are discussed. 

In this dissertation, the impact of distribution network topology on harmonic propagation due 

to the interaction of multiple harmonic sources is investigated. Understanding how multiple 

harmonic sources interact to increase or decrease the harmonic distortion is crucial in distribution 

networks with a large number of Distributed Energy Resources. A new index, Index of Phasor 

Harmonics (IPH), is proposed for harmonic quantization in multiple harmonic source cases. The 

proposed IPH index presents more information than commonly used indices. With the help of the 

detailed distribution network model, topological impacts of harmonic propagation are 

investigated. In particular, effects of mutual coupling, phase balance, three phase harmonic 

sources, and single phase harmonic sources are considered. 
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Chapter 1 : Introduction 

1.1. Introduction 

Environmental concerns, global warming and fossil fuel prices along with demand growth create a 

shift in the expectations of consumers and utilities to move toward renewable energy resources, electric 

vehicles, and higher qualitative electricity supplies. The advent of Smart Grid is an answer to the need for 

reform in power systems. The smart grid aims to create high penetration levels of renewable energy 

resources to create a more sustainable energy supply. It appreciates electric vehicle adoption and efficient 

components [1]. Generally speaking, smart grid seeks to make the grid reliable, secure and efficient [2].  

However, there are number of challenges in addition to the offered opportunities with smart grid. 

Renewable energy resources are intermittent and non-dispatchable. The inability to control output of 

renewable resources results in operational challenges in power systems. Moreover, the rising share of 

electric vehicles in the automotive market increases stress on distribution networks. Moreover, grid 

reliability requirements need investment and retrofitting of conventional power systems.  

Recently, demand response programs came to help conventional grids transition to the smart grid. 

Demand response is load control approaches to decrease peak [3]. It is performed by customers and in 

some cases by utilities. Demand Response programs are highly dependent on customer demand behavior 

and their participation in such programs [4]. However, many customers are not willing to decrease their 

convenience or invest efforts in changing their behavior to alleviate utilities challenges. Demand 

Response alone will not allow penetrating high levels of intermittent renewable energy resources into the 

grid. Moreover, in terms of major problems in supply side or outages, demand response cannot help. 

Therefore, they are not an ultimate solution for reliable and secure operation of distribution networks. 

These operational challenges can be addressed by energy storage systems. Energy storage systems 

can be used to control the effect of intermittent renewable energy resources. Furthermore, energy storage 

systems are applied for ancillary services, peak reduction, mitigating contingencies in distribution and 

transmission networks, and improve power systems reliability and flexibility. This dissertation is shaped 

around energy storage system applications in distribution networks. It includes modeling and simulation, 

optimal economic operation, and harmonic impacts of such systems on distribution networks. However, 

the algorithms and impact studies are expandable to other Distributed Energy Resources (DER) inside the 

distribution network.  
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1.2. Background Information  

1.2.1. Energy Storage Systems for Distribution Networks, Cons and Pros 

Distribution network enhancements via the smart grid concept in addition to advent of the Microgrids 

bring generation sources near customers. Distributed energy resources, more sensitive electronic loads, 

and large numbers of power electronic interfaces create more stress and limitations for distribution 

network planning and operation. Renewable energy resource integration, power quality, power flow re-

distribution, network restoration, supply and demand control, and electricity market-based operation are 

areas that have recently gained attention of power system experts. It is worthwhile to mention that 

distributed energy resources, along with new technologies for supply and demand control in distribution 

networks, help in central station generation and transmission capacity utilizations and expansion plans. 

Energy storage systems are applicable in all areas. The challenges in the distribution network need 

specific types of analysis and technologies fitted for the distribution network with solutions that can 

extend up to customer houses. Distributed Energy Storage systems have come to realize the critical need 

for energy buffering and control at distribution levels. Energy storage units add more degrees of freedom 

to the power system with bi-directional power flow capabilities. Distributed energy storage systems 

represent a new class of power grid components and require new algorithms, standards, economics, 

planning and operation paradigms. 

The bi-directional capability of energy storage systems means the power supply and demand can be 

detached as far as the energy storage capacity allows. The reserve capacity of energy storage units 

provides immediate energy for back-up power, ancillary services and quick response applications [5]. 

Energy storage systems offer economic advantages by regulating charging and discharging to capitalize 

on fluctuating electricity prices or regulating line loading and demand to optimize power system 

utilization. At the transmission level, energy storage improves the effective capacity of lines. At the 

distribution level, it improves power factor and efficiency. From the power system planning point of 

view, energy storage applications can mitigate the need for more transmission or generation capacities. 

Energy storage systems defer investments for distribution network expansion by reducing power system 

flows needed to supply peak loads.  

Wind and solar energy resources usually have their own maximum at hours different from the peak 

load. Energy storage systems in addition to renewable firming, add dispatchability to such intermittent 

energy resources. The renewable resource dispatchability provides ancillary service benefits for 

distribution and transmission network stockholders. The similar economic incentives are provided by 
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energy storage owned by customers for small scale renewable resources integration and demand control 

purposes. Figure  1-1 illustrates energy storage benefits for utilities under two categories, service-based 

benefits and market-based benefits [6]. 

 

Figure ‎1-1 , Service based and market-based benefits of energy storage systems 

The main challenge of energy storage systems is reducing overall cost of the batteries, especially for 

small scale applications. However, battery manufacturers are utilizing different materials and 

manufacturing techniques to cut down energy storage cost. Increased interest in intermittent renewable 

resources and dynamic prices of electricity provide more incentives for using batteries. Also, reusing 

electric vehicle (EV) batteries for grid support applications has potential for economic benefits. 

Allocating EV batteries for second-use applications leads to environmental benefits by delaying disposing 

and recycling of EV batteries [7]. The financial benefits of energy storage systems can be highlighted in 

Figure 1.2.   
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Figure ‎1-2. Economic Benefits of Energy Storage Systems 

1.2.2. Energy Storage System Applications 

Energy storage system (ESS) technologies are available in a wide selection of capacity and 

discharging times. Energy storage delivers many benefits to electric power systems at the generation, 

transmission, and distribution levels. At the generation and transmission levels, one of the potential 

benefits of storage systems is the ability to defer new generation capacity and transmission line upgrades. 

Storage can be installed at or near load centers often easier than generating units. It can also operate in 

conjunction with demand response programs.  

At the distribution level, storage can be used in substations to enhance power factor and improve 

system reliability [5]. At the load level, it can be implemented to perform peak shaving and load 

balancing. It can store energy from distributed renewable energy resources until it is needed for off-grid 

or grid connected conditions. Figure  1-2 shows different applications of energy storage systems [6]. Each 

application needs specific battery capacity and ranges of discharge times. 

1.2.3. Energy Storage Technologies 

There are many energy storage technologies for power system applications. Different technologies 

have different characteristics, which result in different advantages and disadvantages. Pumped hydro 

facilities and lead acid batteries have been successful examples for many years. Other technologies 
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require advancements to become practical and economic for applications. The electricity storage systems 

can be divided into four main categories [8]: 

 Mechanical energy storage systems (Flywheels, Compressed air, Hydroelectric) 

 Electrical energy storage systems (Super Capacitors, Super conductors) 

 Electrochemical energy storage systems (Batteries, Hydrogen) 

 Thermal energy storage systems (Ice, Molten salt) 

Figure  1-3 represents various storage technologies published by Electricity Storage Association 

(ESA) in terms of total power and energy capacity time [6].   

 

Figure ‎1-3, Different applications of energy storage systems with corresponded capacity and discharge time 

(Courtesy Electricity Storage Association) [6] 
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Figure ‎1-4, Different technologies of energy storage systems in term of rated power and discharge time (Courtesy 

Electricity Storage Association) [6] 

A number of energy storage technologies that are more common for utility scale applications are 

presented as follows: 

Sodium Sulfur Batteries: 

Since 1984, Tokyo Electric Power Company (TEPCO) and NGK Insulators Ltd (NGK) began a joint 

program to develop the Sodium Sulfur (NaS) battery energy storage systems for load leveling and power 

grid stabilization. In a NaS battery cell, sodium is used as a negative electrode and sulfur is used as 

positive electrode. There is a metal container inside the beta alumina tube to prevent over current and 

internal temperature rise for safety purposes. The NaS battery operates between 300
◦
C and 360

◦
C with an 

equipped electrical heater to maintain the temperature [9]. The battery temperature increases during the 

discharging and standby status and decreases during charging. Cells inside the module are anchored in 

place by filling and solidifying them with sand, which is used to prevent fires and as a means of lateral 
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support [10]. The commercially available NaS batteries are designed to discharge as long as 7 hours. For 

quick discharge applications, they can provide power up to 5 times the rated power for some minutes. 

 Flow Batteries: 

Flow batteries are emerging energy storage devices that can serve many purposes in energy delivery 

systems. They operate like conventional batteries, storing and releasing energy through a reversible 

electrochemical reaction with an almost limitless number of charging and discharging cycles. They differ 

from a conventional battery in two ways; 1) the reaction occurs between two electrolytes, rather than 

between an electrolyte and an electrode and 2) the two electrolytes are stored in external containers and 

the electrolytes are circulated through the cell stack as required. The flow battery is scalable to any power 

and energy. More cell stacks create a greater power rating and more electrolyte volume leads to higher 

energy capacity. They operate in ambient temperature [11]. One of the advantages of flow batteries is that 

their construction is based on plastic components in reactor stacks, piping, and tanks for holding the 

electrolytes. Therefore, the batteries are relatively light in weight and have a long life [12]. 

Lead Acid Batteries: 

The lead acid batteries are the oldest battery technology. They have the lowest cost because of their 

technology maturity. The amount of energy (kWh) that a lead-acid battery can deliver is not fixed and 

depends on its rate of discharge. They are used in power plants for back-up power as a black start source. 

They are ideal for applications with low duty cycles. The research and efforts on advanced lead acid 

battery technologies target the life cycle expansion for these types of batteries [13]. 

Lithium-Ion Batteries: 

The Lithium-Ion (Li-Ion) battery technology can be applied in different sizes and shapes to fit in 

available space [12]. They are lighter in terms of energy density. The Li-Ion battery development for 

PHEV applications result in lower prices and better performance. Li-Ion batteries will benefit from 

economy of scale over the next years because of variety of their applications [14]. 

Flywheels: 

The flywheel is one of the oldest technologies in human hands. It is a rotating disk which can store 

kinetic energy. The stored energy can be used to produce electricity. Flywheels have a specific spinning 

time based on its natural momentum. Nowadays, many designs are available for flywheels and some of 

them are developed for use as Flywheel Electricity Storage Systems (FESS). Generally, flywheels can be 
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classified as either low speed or high speed. The speed of former is in thousands revolutions per minute 

(rpm), while that of the latter is at tens of thousands rpm [15].   

Thermal Storage: 

Thermal storage devices are usually designed to deploy in commercial or residential buildings. Ice 

storage devices can make ice during off-pick hours at nights and used for air cooling during the peak 

hours of the next day. In cold climates, ceramic heat sinks can capture thermal energy during off-peak 

hours and power the heating system during peak hours [3]. 

Other Storage Technologies: 

Pump storage and compressed air storage technologies are considered large-scale storage systems. 

There are over 90 GW of pumped storage in operation worldwide, which is about 3 % of global 

generation capacity. Pumped storage plants are characterized by long construction times and high capital 

expenditure. Pumped storage is the most widespread energy storage system in use on power networks. Its 

main applications are for energy management, frequency control and energy reserves. 

1.2.4. Distribution Network Simulation and Analysis Platform  

The Distributed Engineering Workstation (DEW) software is used in this dissertation for power 

system analysis and system integration. It is the object oriented software based on the generic analysis 

approach. It is developed more than 20 years ago at Virginia Tech [16].  

The Generic Analysis approach is a combination of physical network modeling and generic 

programming. The physical network modeling is developed for both steady-state and dynamic analysis of 

system models. Generic programming is one step beyond object oriented programming. It is based on the 

use of iterators that access and manipulated objects. In DEW, iterators are referred to as topology 

iterators, and are used to access and manipulate network objects in respect to physical connections. The 

topology iterator represents a graph-based approach that does not need to maintain or use matrices in 

analysis [17].  It eliminates very large system matrix updates following changes in system topology 

created by such things as sectionalizing device operations or equipment failures. With topology iterators, 

after any topological change model updates will operate only at the local component topology in constant 

time [17, 18]. The network solution approach used in DEW is also referred to as Graph Trace Analysis 

(GTA). Research on GTA has been conducted for many years at Virginia Tech [18, 19].  
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Figure ‎1-5, Major functional parts of DEW software  

In DEW the analysis approach uses one model for all types of analysis. The technology is referred to 

as Integrated System Model (ISM). The scope of ISM includes transmission and distribution networks 

through customer loads. It easily displays and manipulates GIS system data [20]. Currently, 

commercialized power system software packages often use different models for different applications 

[21]. The ISM allows using a common model for different aspects of smart grid like planning, reliability, 

substation engineering, operation, and load forecasting. Figure  1-5 shows the major functional parts of the 

DEW software. 

1.3. Dissertation Objectives and Research Questions 

The advent of smart grid brings new trends to power systems, like distributed renewable energy 

resource integration, electric vehicles, decentralized management and control, and deregulation of 

electricity markets. The need for modern electricity infrastructures and more capable grid components 

brings attention to distributed energy storage systems because of their bidirectional power flow capability. 

The objective of this dissertation is to model, simulate and analyze energy storage systems in distribution 

networks with insights into the electricity market, economic benefits, reliability, efficiency and power 

quality. This dissertation is classified into three sections. It starts with distributed energy storage system 

modeling and application to microgrid facilities. Then, a market-based optimization algorithm is proposed 
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to enhance the operational value of energy storage devices in distribution networks. A Distributed Energy 

Resources (DER) harmonic impact study is also presented. This study considers the interactive impacts of 

multiple harmonic sources on each other, proposing new measurement indices and visualization 

approaches. The distribution network topology and phase balance impact on harmonic propagation are 

investigated.   

This dissertation investigates a number of challenging questions related to smart grid energy storage. 

Major tasks performed along with the questions and subtasks associated with each task are now 

presented:  

Task 1: Modeling and simulation of distributed energy systems for critical microgrid facilities  

In this research, the selected technology for the critical microgrid application is the flywheel.  

Q.1.1. What type of energy storage technology is a better fit for critical microgrid applications, 

such as data centers? What are the challenges for conventional battery-based back-up power 

sources in data centers? 

   Subtask 1.1. Compare flywheels and batteries for critical microgrid facilities applications 

Q.1.2. How can flywheel technology be used for ride-through applications in microgrids? 

Subtask 1.2. Develop flywheel energy storage detailed model and model evaluation 

Subtask 1.3. Analyze flywheel energy storage system performance in critical microgrids  

Task 2: Economic control and optimization of Community Energy Storage (CES) systems in 

competitive electricity markets 

The research is part of the Department of Energy smart grid demonstration project to implement 

community energy storage systems for grid support. The research questions and their associated 

dissertation objectives are as follows: 

Q.2.1. What are the potential advantages of community energy storage systems in distribution 

networks? 
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Subtask 2.1. Investigate potential benefits of Community Energy Storage for distribution 

networks operators 

Q.2.2. How can the community energy storage system operational profits be enhanced in 

distribution networks? 

Subtask 2.2. Design hierarchical real-time control and optimization architecture for CES units to 

increase their operational profits  

Q.2.3. What is the multi-objective optimal solution for using distributed energy storage systems 

simultaneously considering dynamic market price, reliability, and network efficiency? 

Subtask 2.3. Develop market-based economic optimization algorithm for CES application 

Subtask 2.4. Analyze different trade-offs for CES economic operation 

Q.2.4. What economic benefits can be realized by using energy storage systems to take 

advantage of real-time and day ahead dynamic market prices? 

Subtask 2.5. Analyze impact of real-time and day ahead LMP price differences on operational 

profits 

Q.2.5. How can the detailed three-phase distribution network model in this dissertation improve 

the simulation and analysis results in comparison to previous studies?  

Subtask 2.6. Apply the detailed multiphase model for distribution network for more realistic 

investigation of CES adoption on distribution networks 

Subtask 2.7. Calculate the aggregated impact of a fleet of CES units on the distribution network 

Subtask 2.8. Analyze the impact of CES on renewable energy resources integration in 

distribution networks 
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Subtask 2.9. Alleviate electric vehicle adoption impact on distribution transformer overloading 

through the CES system operation 

Task 3: Harmonics interaction from Multiple Distributed Energy Resources on Distribution 

Networks  

The harmonic impact of different DER resources in distribution networks and the effect of such DER 

sources on each other from the harmonic perspective are analyzed in this task.  The research questions 

and objectives associated with this task are as follows: 

Q.3.1. What are the impacts of multiple inverter-based distributed energy resources like PV and 

community energy storage systems on harmonic distortion in distribution networks? 

Subtask 3.1. Investigate harmonic impact from multiple sources on distribution networks 

Q.3.2. What are the challenges of common harmonic measurement indices?  

Subtask 3.2. Calculate the harmonic impact with commonly used indices and investigate how 

these indices predict distortion for distribution networks with multiple harmonic sources 

Q.3.3. Are new indices for harmonic distortion that involve interacting harmonic sources 

needed? 

Subtask 3.3. Investigate new harmonic measurement indices for interactive harmonic 

propagation assessment 

Q.3.4. How do harmonics generated from multiple harmonic sources interact? 

Subtask 3.4. Create the structure to simulate the interactive harmonic propagation in distribution 

networks 

Subtask 3.5. Conduct sensitivity analysis to find the effect of each harmonic source’s magnitude 

and phase angle on the total harmonic emission  
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Q.3.5. How can phase balance affect the harmonic distortion in distribution networks? 

Subtask e 3.6. Perform simulation to show effect of phase balance on interactive harmonic 

propagation   

Q.3.6. How does distribution network topology impact the harmonic propagation? 

Subtask 3.7. Analyze impact of network topology on harmonic propagation through different 

case studies 

Subtask 3.8. Study the impact of interactive harmonic sources on the customer side and at the 

substation 

Subtask 3.9. Simulate single phase harmonic current propagation through other phases than the 

injection phase to quantize impact of mutual coupling on harmonic propagation 

 

1.4. The Contents of Dissertation  

The rest of this dissertation chapters are organized as follows. Chapter 2 covers literature review. 

Chapter 3 presents flywheel energy storage ride-through application for critical microgrids. A comparison 

between the new flywheel energy storage (FES) technology and the conventional battery energy storage 

technology for data centers is presented in this chapter. Then, the detail FES model is applied for case 

study analysis. In chapter 4, Community Energy Storage (CES) systems are introduced for distribution 

network support. This chapter provides a multi objective economic optimization algorithm to provide 

more profit for distribution network operators. Chapter 5 presents the interactive multiple harmonic 

analysis and impact study. It investigates the harmonic propagation through the novel and common 

harmonic assessment indices.  In chapter 6, the impact of distribution network topology on harmonic 

propagation is investigated. The last chapter, chapter 7, is the conclusion of conducted researches in this 

dissertation. 
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Chapter 2 Literature Reviews  

In this chapter, previous works related to the research questions presented in section 1.3 are 

presented. The knowledge gaps related to those questions and the dissertation novelty are presented. 

Literature reviews are classified under three main tasks as follows: 

2.1.1. Modeling and simulation of distributed energy systems for critical microgrid 

facilities. 

Q.1.1. What type of energy storage technology is a better fit for critical microgrid applications, 

such as data centers? What are the challenges for conventional battery-based back-up power 

sources in data centers? 

The rapid increase in electricity demand in data centers has resulted in a number of research efforts. 

Many previous publications in this area focus on topics related to power management, which are 

approaches for determining demand reduction [22] or minimizing total electricity costs using selected 

optimization techniques and demand response [4, 23]. There are not many publications that address issues 

of back-up power and energy storage units in data centers. These systems are crucial for maintaining 

continuous operation of a data center microgrid and can provide ride-through capability for sensitive 

loads.  

Traditionally, energy storage systems in data centers are battery-based [24]. Available literatures in 

this field are related to the energy storage modeling and analysis for stand-alone power systems or 

uninterruptable power sources. Authors in [25, 26] discuss different control approaches for battery-based 

back-up power systems.  

There are a considerable number of studies on different energy storage technologies. [27] presents life 

cycle cost analysis for batteries. In [28], life cycle cost information are presented for a large scale 

flywheel. [29] shows flywheels have higher energy efficiency than batteries without the need for air 

conditioning system. From environmental point of view, creation, maintenance and disposing of batteries 

have dramatic effects on natural environment [27] . However, there is not any literature that specifically 

compares flywheel and battery energy storage technologies for ride-through applications in data centers. 

This dissertation compares batteries and flywheels for back-up power system application in data centers 

and similar facility microgrids.   
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While most of data center energy storage technologies are based on batteries, flywheels have gained 

more attention in recent years as they can provide ride-through capability for critical loads in a data 

center. Batteries are mature technologies, but flywheels have better characteristics in terms of higher 

efficiency, compactness, footprint, and operation temperature for data center applications. Batteries are 

less efficient than flywheels. They have less energy density, so they require a larger footprint than 

flywheels. To economically compare batteries and flywheels, life cycle cost analysis, including both 

capital and maintenance costs, should be used. This is to account for the fact that the life of flywheels is 

estimated at 20 years, whereas that of batteries is estimated at three to five years.  

The conducted analysis in this dissertation shows flywheel advantages in comparison to batteries for 

data center applications from different aspects which are not addressed in previous literatures.   

Q.1.2. How can flywheel technology be used for ride-through applications in microgrids? 

Previous works on modeling and analysis of flywheel applications are available in the literature [30]. 

Some have applied flywheels to prevent voltage sag and improve power quality [31]. Authors in [32] 

propose a rotary uninterruptable power supply (UPS) system based on the flywheel energy storage (FES) 

unit. Authors in [33] introduce appropriate electric machines to drive flywheels. Authors in [34] present 

new designs for the power electronics interface of FES. There are also papers focusing on the mechanical 

aspects of FES [28, 29]. Existing literatures on flywheels do not provide an insight into how FES can be 

used to provide ride through applications in critical microgrids.   

This dissertation proposes a detailed model for Flywheel Energy Storage (FES) as a capable 

distributed energy storage technology for critical microgrid facilities like data centers. Moreover, a 

software tool based on MATLAB/SIMULINK
®
 is presented to simulate and analyze the flywheel 

application for data center back-up power systems.  

2.1.2. Economic control and optimization of Community Energy Storage (CES) 

systems in competitive electricity markets 

Distributed energy storage devices may improve reliability by providing standby power when 

equipment outages would otherwise force customer interruptions. Distributed Energy Storage systems are 

the second aspect covered in the dissertation.  

Q.2.1. What are the potential advantages of community energy storage systems in distribution 

networks? 



18 
 

The authors in [35] present a comprehensive review of battery technologies and their impact on 

power systems. [36] discusses different energy storage applications in the smart grid. [37] discusses 

success stories of commercialized energy storage projects. The authors in [38, 39] analyze energy storage 

systems (EES) for utility scale applications. In [6] authors review different applications of energy storage 

in distribution networks. They proposed energy storage devices can reduce equipment loading during 

peak hours, thereby allowing the utility to delay equipment upgrades and to decrease pre-mature aging in 

network components. Authors in [40] use energy storage for power quality enhancement. Frequency 

regulation and spinning reserve control are addressed in [41]. Authors in [42, 43] review ESS applications 

in automotive industries. 

In [44-46], authors show EES can also help with renewable energy resource integration into 

distribution networks. Based on their findings, volt-var control, frequency regulation, and demand 

response program support are among other benefits of distributed energy systems for utilities. Authors in 

[47] investigate islanding issues for distributed energy storage systems. 

Distributed, controllable energy storage devices offer several significant benefits to electric power 

system operations. Reliability improvement, power quality enhancement, ancillary services, demand 

response program support, and renewable energy resource firming are among them.  

The Community Energy Storage (CES) is a new architecture of distributed energy storage systems 

that is considered in this dissertation. The CES units are located at the secondary of distribution 

transformers. CES provides the most reliable service to customers, since the primary system may be 

compromised, even to the point of distribution transformer failure, and the energy storage system may 

still serve the customer.  

This dissertation presents a means of realizing additional benefits for utilities by taking advantage of 

the fluctuating costs of energy in competitive energy markets which is not addressed in previous 

literatures. These benefits are so great that they sometimes outweigh the high cost of installing the energy 

storage devices and the communication infrastructure to support them. By combining electricity market 

information with real-time control of energy storage devices, utilities may enjoy year-round economic 

benefits from the storage devices in addition to the benefits mentioned above. 

Q.2.2. How can the community energy storage system operational profits be enhanced in 

distribution networks? 
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Many researchers have focused on large scale energy storage applications [48], but fewer have 

attempted to realize year-round benefits from distributed energy storage systems. The authors of [49-51] 

looked at the problem from the perspective of controlling customer-owned storage devices that integrate 

other generation sources. Authors in [52] focused on the voltage fluctuation issue due to high penetration 

of photovoltaic panels in commercial buildings. The customer owned ESS provides voltage regulation in 

exchange for subsidies from utilities to cover battery costs. The authors in [53] proposed a stochastic 

optimal load management for a residential customer with DER and ESS. However, the proposed approach 

minimized the electricity cost in a real-time manner without considering the system’s day ahead behavior.  

The presented optimization algorithm in this dissertation is the multi-objective economic solution for 

community energy storage systems operation. It brings more profit for distribution network operators 

considering electricity market prices in addition to reliability and stand-by energy capacity. The multi-

objective problem solving algorithm, the market-based optimization approach, and the energy storage 

system hierarchical architecture which are presented in this dissertation are not addressed in previous 

studies. 

Q.2.3. What is the multi-objective optimal solution for using distributed energy storage systems 

simultaneously considering dynamic market price, reliability, and network efficiency? 

Studies that are more relevant to this dissertation are [54, 55]. [54] presented a load management 

approach for a large load aggregator to determine the electricity price for participation in the day ahead 

market. A lumped load was considered with grid scale energy storage, and distribution level system 

topology was not considered. In [55] a distributed energy storage system is applied to minimize the 

forecasting error of DER generation and to decrease the uncertainty in electricity markets without 

considering cost benefits and efficiency issues.  

The sizing and placement optimization problem for systems with DER and energy storage systems 

have been well-researched [56, 57]. However, operations of energy storage systems in the competitive 

energy markets in conjunction with customer service reliability and network efficiency have not been 

addressed in available literatures. This dissertation presents a real-time control and optimization scheme 

that maximizes the revenue attainable by energy storage systems without sacrificing the occasional 

benefits related to improvements in reliability and reduction in peak feeder loading.  

This dissertation introduces the multi-objective mathematical approach and its associated constraints 

(at CES battery level and at feeder level) to achieve the maximum economic profit. The day-ahead load 

forecasting and day-ahead market prices are considered in the optimization algorithm presented here.  
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This dissertation applies the optimization solver developed in DEW environment by EDD Inc. that has 

short computational time even for a large distribution network. 

In this dissertation, a novel combination of trade-offs related to transformer loading, feeder loss, and 

LMP price prediction is considered that are not addressed in previous literatures. The correlation of real-

time and day-ahead LMP price has a direct impact on the cost savings potential. This observation and its 

ramifications are not addressed in previous studies. 

Q.2.4. What economic benefits can be realized by using energy storage systems to take 

advantage of real-time and day ahead dynamic market prices? 

The increasing adoption of intermittent renewable energy resources (DER) and the technologic merit 

for batteries in recent years bring more attention to energy storage systems (ESS) as viable solutions [45, 

58, 59]. In [58] authors use a fuzzy clustering optimization approach while considering system security 

constraints to maximize the renewable energy utilization integrated with a pumped storage unit. Authors 

in [59] explored sodium–sulfur battery application for ancillary services in electricity markets. Reference 

[45] provides a general overview to load leveling with solar power generation and storage under a Time 

of Use (TOU) price scheme. However, the electricity market and the effect of time varying loads were not 

considered in that reference.  

In this dissertation, the price of energy at future hours is needed to determine the optimal charging 

and discharging schedule for the CES units. The presented dissertation applies a unique combination of 

day ahead Local Marginal Prices (LMP) and real-time LMP in addition to the distribution network load 

forecast. The proposed CES scheduling algorithm determines optimal hours for charging and discharging 

based on the day ahead LMP and modifies the schedule with real-time LMP continually.  

Since the real-time Local marginal Price (LMP) is not known in advance, the utility may use the day-

ahead LMP. It may use its own LMP forecast too. The other novelty of this dissertation is analyzing the 

impact of day ahead LMP and real-time LMP differences on attainable profit from the CES operation.  

The distribution network load forecast is the other primary driver of the economic optimization. Load 

forecasting estimates the load profile for each distribution transformer for the next 24 hours. The 

distribution transformer loading is necessary for each battery’s day ahead schedule. 

Q.2.5. How can the detailed three-phase distribution network model in this dissertation improve 

the simulation and analysis results in comparison to previous studies?  
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Most papers related to distribution use single line model for distribution networks [60]. However, 

they ignore three phase phenomena like loading and balancing. A large group of previous studies use 

lumped load models for simplification purposes or they apply Norton equivalent model for the 

distribution network [61, 62].  

This dissertation applies a detailed, multi-phase model of the distribution network that considers all 

circuit components, including distribution transformers and secondary distribution. The detailed network 

model is needed to schedule community energy storage (CES) units based on the customer loads and the 

distribution transformers connected to each CES unit. This detailed model provides more realistic analysis 

results than previous studies.   

2.1.3. Impact of Interactive Harmonics from Multiple Distributed Energy Resources on 

Distribution Networks 

Q.3.1. What are the impacts of multiple inverter-based distributed energy resources like PV and 

community energy storage systems on harmonic distortion in distribution networks? 

The harmonics related to DER and CES inverters raise concerns for power system engineers and 

operators. The harmonics generated by inverter interfaced devices and Plug-in Electric Vehicles (PEV) 

can cause distortion in power system voltages and currents. In addition to the power quality issues, 

harmonics can have economic impacts on distribution networks. Harmonics can decrease efficiency, 

create thermal losses and may overload network components. These effects cause premature aging and 

failure in power system devices. The harmonic impact study for a single harmonic source is a well-

researched topic. Harmonic measurement and filtering are discussed in plenty of literatures. However, 

conventional researches mostly consider harmonics as a local phenomenon with local effects [63, 64].  

This dissertation investigates harmonic propagation and interactions of multiple harmonic sources in 

the distribution network as compared with many literatures that investigate harmonics locally and at the 

device-level.  

Q.3.2. What are the challenges of common harmonic measurement indices?  

In terms of harmonic distortion quantization, the Total Harmonic Distortion (THD) is the most 

common index in standards and literature [65, 66], but THD is based only on the magnitude of the 

distorted waveforms. 
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In this dissertation a new index is proposed that considers phase angles and in some instances to be 

discussed provides more insight into harmonics. 

Q.3.3. Are new indices for harmonic distortion that involve interacting harmonic sources 

needed? 

In this dissertation a new index is introduced that is called the Index of Phasor Harmonics (IPH).  IPH 

incorporates both magnitude and phase angle information in evaluating distorted waveforms resulting 

from the interaction of multiple harmonic sources. The advantages of IPH as compared to common 

harmonic indices (THDV and THDI) are illustrated. 

Q.3.4. How do harmonics generated from multiple harmonic sources interact? 

There are few papers that demonstrate harmonics produced by DER sources like PV and energy 

storage devices [67-69]. Even fewer papers study harmonic effects on large scale distribution networks 

[60, 62, 70]. However, the interactive effect of harmonics produced by multiple DER sources on each 

other and their aggregated effect on the distribution system are not addressed in previous literatures.   

In this dissertation, the aim is simulating and analyzing multiple harmonic source interactions. As 

harmonics from different harmonic sources propagate and interact, the interactions can result in 

harmonics being reduced or increased. This dissertation seeks to provide further insight into such 

interactions which are not addressed in previous literature. 

Q.3.5. How can phase balance affect the harmonic distortion in distribution networks? 

Published studies on phase balance and harmonics have focused on particular devices, such as 

transformers, or inverters [71, 72]. The other novelty of this dissertation is due to the consideration of the 

impact of phase balance on harmonic propagation thoughout the distribution network itself. 

Q.3.6. How does distribution network topology impact the harmonic propagation? 

Even less literature demonstrate the impact of harmonic propagation in distribution networks. Authors 

in [61] proposed a method to find harmonic source locations in distribution networks. However, the 

authors use the Norton equivalent model for the distribution network. [73] analyzes harmonic distortion in 

different distribution transformer types. [74] conducts the sensitivity analysis to find vulnerable buses in 

distribution networks for placing harmonic filters, but the authors use the Thevenin equivalent model at 

each bus instead of the topological model of the circuit. [60, 62] show the impact of aggregated 
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harmonics from Distributed Generation units in distribution networks; however, they use single-phase 

equivalent line models and do not consider three phase line models.  

The proposed approach in this dissertation benefits from the detailed distribution network model. This 

detail of distribution system modeling is not addressed in previous harmonic analysis literature. This 

dissertation seeks to more precisely investigate the impact of distribution network topology and conductor 

phase couplings on harmonic propagation. 

This detailed circuit model used in the work here provides for more realistic harmonic propagation 

simulations. Multiphase and unbalanced load models help to demonstrate realistic harmonic propagation 

in distribution networks. 
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Chapter 3 : Modeling and Simulation of Flywheel 

Energy Systems for Critical Microgrid Facilities 

3.1. Introduction 

Flywheel energy storage (FES) devices are appearing as viable alternatives to other types of battery 

storage technologies for securing critical loads during momentary power interruptions. Flywheel refers to 

a rotating mass that stores energy in the form of kinetic energy. It can serve as a short-term backup power 

source when the main energy source fails. The FES has been deployed in many applications, which 

include – but are not limited to – space systems, telecommunications, and data centers. 

This chapter discusses specifically the application of FES in a data center microgrid. Due to the 

proliferation of the Internet and web-based activities together with cloud computing, data centers have 

become a significant and growing power consumer. Data centers cannot tolerate even a momentary 

interruption. Therefore, backup power is a vital part of such microgrids.  

Conventionally, backup power units consist of batteries and diesel generators. Batteries handle 

critical loads before diesel generators startup. Batteries are mature technologies, but flywheels have better 

characteristics in terms of higher efficiency, compactness, footprint, and operation temperature for data 

center applications [75].  

This chapter focuses on developing a software tool to model, analyze and simulate the use of FES 

units in a facility microgrid. The proposed tool includes a library of selected commercial FES systems. A 

user can also create any customer-defined flywheels by entering certain parameters. The tool is developed 

in the MATLAB/SIMULINK
®
 environment with a user friendly Graphical User Interface (GUI). 

MATLAB/SIMULINK
®
 is a powerful simulation environment that has the ability to model and simulate 

different power systems. Therefore, the developed FES model can be integrated into different microgrid 

architectures. It is expected that the proposed software tool can compensate for the lack of real data of 

FES through modeling and simulation.  

Section 3.2 discusses review of previous work. Section 3.3 describes the competitiveness of FES as 

compared to traditional battery energy storage in a facility microgrid.  Section 3.4 discusses mathematical 

formulation of FES in MATLAB/SIMULINK®. The FES simulation model is discussed in section 3.5, 

together with the model validation. The case study of a facility microgrid, based on a data center, is 
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presented in section 3.6 to demonstrate how a FES can help improve the load serving capability during an 

islanded operation of a microgrid.  

3.2. Overview of Previous Works 

Along with the rapid increase in electricity demand in data centers, many previous publications focus 

on topics related to their power management, which are, for example, approaches for determining demand 

reduction [22] or minimizing total electricity costs using selected optimization techniques and demand 

response [4, 23]. There are not many publications that address issues of back-up power and energy 

storage units in data centers. These systems are crucial for maintaining continuous operation of a data 

center microgrid and can provide ride-through capability for sensitive loads.  

Traditionally, energy storage systems in data centers are battery-based [24]. Available literatures in 

this field are related to energy storage modeling and analysis for stand-alone power systems or 

uninterruptable power sources. Authors in [25, 26] discuss different control approaches for battery-based 

back-up power systems. While most of data center energy storage technologies are based on batteries, 

flywheels have gained more attention in recent years as they can provide ride-through capability for 

critical loads in a data center.  

Previous works on modeling and analysis of flywheel applications is available in the literature. Some 

have applied flywheels to prevent voltage sag and improve power quality  [31]. Authors in [32] propose a 

rotary uninterruptable power supply (UPS) system based on the flywheel storage unit. Authors in [33] 

introduce appropriate electric machines to drive flywheels. Authors in [34] present new designs for the 

power electronics interface of FES. There are also papers focusing on the mechanical aspects of FES [28, 

29]. Existing literatures on flywheels do not provide an insight into how FES can be used to provide ride 

through applications in data centers.   

3.3. Comparison of Flywheels and Batteries 

Flywheels are emerging technology with specific characteristics that make them viable energy storage 

system in comparison to batteries. This section investigates the competitiveness of flywheels against 

batteries. Flywheels have higher efficiency. They can cause overall energy cost reduction in data centers 

[75]. Flywheels have higher life cycle with little decrease in efficiency [76]. Flywheel has fewer 

footprints and generates less heat than batteries. Also, flywheels operate in ambient temperature. These 

factors can result in the tremendous less cooling system requirements. Furthermore, battery rooms need 

separate ventilation system for toxic gases evacuation [77].   
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Above all, batteries are susceptible to undetectable internal failures, even with regular maintenance 

[77]. Such these unnoticeable failures are the reason for 20% of battery based energy storage failures in 

data centers. The research on flywheel and battery systems' operation indicates that the failure possibility 

of lead-acid battery is seven times more than that of the flywheel [78]. From environmental point of view, 

creation, maintenance and disposing of batteries have dramatic effects on natural environment. Flywheel 

is a large step toward green data centers [27]. 

Although flywheels have many advantages over traditional battery systems, there are some challenges 

for deployment of flywheels in facility microgrids. Firstly, flywheels can only serve loads for a short 

period of time, i.e. in tens of seconds. They should therefore be used in conjunction with other types of 

power generation to serve the loads for longer period of time. Secondly, flywheels involve a more 

complex installation because they are new on the technology horizon. Furthermore, there are no 

established standards for operation, safety regulations for flywheels. The lack of historical operational 

data is also another challenge for flywheel performance analysis. 

To economically compare batteries and flywheels, life cycle cost analysis, including both capital and 

maintenance costs, should be used. This is to account for the fact that the life of flywheels is estimated at 

20 years [79], whereas that of batteries is estimated at three to five years. Therefore, batteries will need to 

be replaced every three to five years. The internal stand-by power consumption is 0.01 % of capacity for 

battery and it is 1% of capacity for flywheel [80]. Based on the operational cost analysis by California 

Energy Commission presented in [81] -- for a lead acid battery and a flywheel that have the same capacity 

of 250 kW (note that the battery system has 15-minutes backup time, while the flywheel can serve loads 

for 20 seconds at its rated capacity) -- although the initial capital cost of the flywheel is more that of the 

battery of equivalent size, the 20-year life cycle cost calculation shows that flywheels have less 

cumulative ownership cost than batteries after three to four years. 

3.4. Short-Term vs. Long-Term Energy Storage Systems for a Data Center 

Microgrid 

To provide power for continuous operation during a utility outage, data centers typically deploy diesel 

generators coupled with a battery UPS system. Critical loads (IT and some lighting loads) are connected 

to the battery UPS, and backed up with diesel generators. At the moment of outage, UPS will handle the 

transient and momentary interruption until the diesel generator output achieves proper voltage and 

frequency. The recommended ride-through time for a battery UPS system is 15 minutes. Alternatively, a 

backup power system can be designed with less ride-through time using a more reliable storage 
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technology, like flywheels, in combination with back-up generators [82]. A flywheel unit can typically 

serve connected loads at its rating for 10-20 seconds depending on its specifications. This is enough time 

for a diesel generator to startup.  

This section focuses on the idea that 15 seconds energy storage is enough for data center applications. 

In fact, the 15-minute ride-through time of batteries is superfluous for the following reasons: Firstly, 1 

minute was assumed for a “soft shutdown” of protected computer loads. However, for a data center a 

“soft shutdown” is intolerable [78]. Secondly, it is not logical to perform a “second crank” on a standby 

diesel generator after waiting 15 minutes. In the rare case that the engine does not start during the first 5-6 

seconds, it is unlikely it will start in the next 15 minutes [82]. Finally, the 15-minute ride-through time 

has a destructive impact on the thermal runaway in the servers. After outage, IT loads have the highest 

priority to serve with batteries. Therefore, cooling system shutdowns and it cause dramatically 

temperature increase in servers. The research on data centers [78] shows that in a reliable designed 

backup power system, diesel generators should start within 5-6 seconds after outage to avoid thermal 

runaway in servers. Therefore, backup generators starts in case of any failure and emergency without 

considering the type of energy storage system. The 15-second flywheel operation time should provide 

sufficient starting up time for diesel generators. 

3.5. Mathematical Formulation of Flywheel Energy Storage (FES)  

The FES consists of a flywheel and a machine that acts both as a motor and a generator. During 

normal operation, the flywheel system converts electrical energy from the grid to kinetic energy using the 

motor. The kinetic energy is stored in the spinning flywheel. During outages or emergencies, the stored 

kinetic energy is converted back into the electrical energy by the generator. This energy is then 

transferred to the connected electrical loads. Table 3.1 shows the nomenclature for the presented 

formulations. 

Table ‎3-1 Flywheel formulation nomenclature 

E : Energy of flywheel (kW-sec) 

Estored : Stored energy in flywheel (kW-sec) 

P : Power of flywheel (kW) 

m : Rotating mass (kg) 

v : Linear speed (m/sec) 

ω : Angular speed (rad/sec) 

ωmax : Maximum angular speed (rad/sec) 

r : Radius  of flywheel(m) 

J : Polar moment of inertia (kg.m
2
) 

ρ : Density of rotating mass (kg/ m
2
) 



28 
 

l : Length  of flywheel (m) 

K0 : Torque conversion factor 

ηfw : Efficiency  of flywheel 

 

In this chapter, the flywheel model is developed based on the mathematical equations for kinetic 

energy in a rotating mass. Two components affect the flywheel performance: the polar moment of inertia 

and the rotational speed [83, 84]. (3-1) represents the kinetic energy formula. This is the equation to 

calculate the stored energy in a body of mass m moving in a straight line with the velocity v [83]: 

v
2m

2

1
E        (3-1) 

The above formula implies that a body of mass m can store more energy within a higher velocity. A 

flywheel is a rotating mass; therefore, (1) can be rewritten based on the angular speed ω, as shown in (3-

2). The flywheel radius is r: 

  r
2

m
2

1
E       (3-2) 

The other important factor used to model the flywheel energy storage is the polar moment of inertia J. 

It has the unit of mass multiplied by the radius squared. For the straight solid cylinder with radius r, the 

polar moment of inertia is [84]: 

          r
2mdmr

2J      (3-3) 

Flywheel mass m with density ρ and length l can be represented as: 

     r
2lm         (3-4) 

Substituting (3-4) into (3-3), polar moment of inertia can be represented as (3-5). 

    r
4lJ        (3-5) 

Considering (3-2), (3-4), and (3-5) the stored kinetic energy in a flywheel can be achieved from (3-6), 

where J is the polar moment of inertia and ωmax is the maximum angular speed of flywheel. 
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
2
maxJ

2

1
Estored        (3-6) 

ωmax depends on the material characteristics of the flywheel and is available from flywheels 

datasheets. For design purposes, ωmax can be calculated from (3-7). In (3-7), σ is tensile strength; ρ is the 

density of flywheel rotor material; s is safety margin for flywheel healthy operation which is also 

available from manufacturers’ datasheets [85].  




 

r

1
smax      (3-7) 

Equation (3-8) shows that the angular speed during a discharge period yields to a piecewise-defined 

function[34]. Flywheel discharging has two regions: the constant speed and exponential reduction speed.   














Tte
t

J

K0

max

Ttmax
)t(





      (3-8) 

K0 is the torque conversion factor from mechanical to electrical energy. T is the time duration of 

flywheel rotation in the ωmax speed. For commercial flywheels, T is available in datasheets. To find T in 

design cases, the engineering rule of thumb is applied in (3-9) [86]. The Pmax is the maximum nominal 

power of the flywheel. 







Pmax2

max
2

J
T


      (3-9) 

The flywheel discharging characteristic is explained with the (3-10) and (3-11) [34].  Replacing  in 

(3-6) with (t) from (3-8) leads to (3-10): 

)t(
2

J
2

1
E        (3-10) 

The power of flywheel at exponential region is the derivative of energy in (3-9) with respect to the 

time: 
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      (3-11) 
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The ηfw is efficiency of flywheel. This factor takes into account the required energy in order to keep 

the flywheel spinning, or the flywheel standby loss. The full load standby loss of a flywheel is from 0.2% 

to 2% of the total capacity depending on manufacturers [87]. Flywheel UPS consists of the flywheel and 

the power electronics components. According to the literature and the manufacturers’ data sheets, 

flywheel UPS efficiency is in the range of 95% to 98% [88].  

 

3.6. FES Modeling and Simulation Tool 

3.6.1. Overview of the FES Simulation Tool 

The (3-10) and (3-`11) are the basis for the proposed flywheel modeling and simulation tool. The tool 

is developed in the MATLAB/SIMULINK
®
 environment with a user friendly GUI. Several commercially 

available flywheels have been modeled as a part of the proposed FES simulation tool. Users have two 

choices for FES simulation, either to use commercial FES models in the developed flywheel library or to 

customize their own FES. 

Figure  3-1 illustrates the generic block diagram of the FES model developed in 

MATLAB/SIMULINK
®
. As shown, the FES model is composed of two subsystems, namely the flywheel 

subsystem and the generator/motor subsystem. Inputs to the FES simulation tool are: voltage and current 

measurements at the load bus which are the signal to control flywheel power output. For a customized 

flywheel model, additional flywheel characteristics are required as user-defined inputs, including 

flywheel maximum and minimum rotating speeds (rad/sec), power capacity (kW), energy capacity 

(kW*sec), efficiency,  charging duration, discharge duration at maximum power (sec), and discharge 

duration at half of maximum power (sec). Outputs of this model are the flywheel power output (kW), 

energy output (kW-sec) and rotating speed (rad/sec). 

 

Figure ‎3-1 Generic block diagram of the proposed FES model in  MATLAB/SIMULINK® . 
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3.6.2. The Flywheel Subsystem 

The typical discharge time of a flywheel ranges from 10 to 30 seconds [88-90]. Flywheel charging 

from the totally discharged point to the totally charged point needs 1 to 10 minutes, depending on FES 

technologies and manufacturer designs [90, 91].  

The control of FES is based on the balance of power supply and demand. If the available power is 

more than the load, flywheel starts charging to absorb the excess power. During a utility disturbance or 

lack of power, the flywheel is discharged to handle critical loads. Then, after diesel generators start and 

the system voltage and frequency are stabilized (ramp-in time), flywheels are recharged from the diesel 

generators. Figure  3-2 depicts flywheel charging and discharging cycles.  

 

Figure ‎3-2 Flywheel control signal for charging and discharging modes. 

The flywheel subsystem consists of the discharge and charge sections. The exponential function 

shown in (3-11) is the basis for the calculating the charging and discharging power. Figure  3-3 and 

Figure  3-4 represent the implementation of power discharging and charging functions, respectively, in the 

MATLAB/SIMULINK
®
 environment.  

The discharging section consists of the mathematical function in (3-11) and a switch that is controlled 

by the external signal from the load bus. The discharging of FES is activated when the voltage and current 

measurements on the load bus indicate shortage of power.  
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Figure ‎3-3 Discharging section of the flywheel model. 

The charging power calculation is presented in Figure  3-4. This part of the model consists of the 

mathematical function (3-11) and a switch that is controlled by the signal from the load bus. The charging 

of FES is activated when the voltage and current measurements on the load bus indicate excess power. 

 

Figure ‎3-4 Charging section of the flywheel model. 
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The flywheel rotational speed can be calculated based on (3-6), which is shown in (3-12).  

)123(
2


J

E
  

On the right hand side of (3-12), the flywheel energy E can be determined from the output of the 

developed FES model. The polar moment of inertia J can be calculated using (3-5) based on the 

manufacturer supplied information. 

3.6.3. Motor Generator Subsystem 

Different types of electric machines can be used in an FES. The most common types are induction 

machines, and permanent magnet synchronous machines (PMSM) [92]. They have higher torque to 

current ratio and higher power density than other machines [93]. In this chapter PMSM is used for the 

FES model. The standard PMSM model provided in the MATLAB/SIMULINK
®
 library is used with 

some modifications. The model of diesel engine is presented in Figure  3-5.   

 

Figure ‎3-5 MATLAB/SIMULINK® model of a synchronous motor/generator unit. 

3.6.4. FES Simulation Results and Model Validation 

To validate the proposed FES model, authors have developed four flywheel models of different sizes, 

following the specifications of four commercial flywheels available from different manufacturers: (i) a 

120kW flywheel unit, (ii) a 150kW flywheel unit, (iii) a 160kW flywheel unit, and (vi) a 250kW flywheel 

unit. 

 The model outputs are compared with the manufacturers’ data as presented in Figure  3-6. The dashed 

lines are the manufacturers’ data, while the solid lines are the simulation results.  Figure  3-6 indicates that 

simulation results are consistent with the flywheel’s experimental data from the manufacturers. These 

four flywheel units are built-in into the flywheel library as mentioned earlier. Based on (3-11), flywheel 
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discharging has two operation regions. In the first region, output power is constant. In the second region, 

output power has exponential decreasing trend.   

 

Figure ‎3-6 Flywheel discharging characteristics for four different flywheel units. 

 

Figure ‎3-7 Different running times for different numbers of 250 kW flywheel units connected in parallel. 
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 Each flywheel unit has a specific running time. If there is a need for a longer running time, more 

flywheel units can be paralleled. The design tool developed and presented in this chapter also helps the 

user to find a sufficient number of flywheels for a specific running time. The tool can demonstrate the 

output of multiple flywheel units connected in parallel. It calculates the running time for each case. 

Figure  3-7 illustrates how additional flywheels in parallel can meet the load for a longer time. In this case, 

to achieve 750 kW power for 20 seconds, at least three 250 kW flywheels should be paralleled. Four 250 

kW flywheels can serve the 750 kW load for 33.4 seconds. 

3.7. The Case Study 

The developed FES model is coupled with a diesel generator in the case study of a data center, as 

described below. This case study aims at demonstrating the impact of flywheel on the load serving 

capability and frequency of a data center power system during a utility disturbance. 

3.7.1. The System Specification  

To analyze the impact of a flywheel operated in parallel with a diesel generator to provide backup 

power for data center loads, a realistic set of specifications from a data center in Virginia is taken into 

account. Table  3-2 presents electrical specifications of the case study [94].  

Since the power system configuration of any data center is confidential, the N+1 power system 

architecture, available in the IEEE 493-2007 standard [95], is used to allow modeling and simulation of 

the FES in a data center presented in this study. See Figure  3-8. In this system, the primary system 

voltage is 34.5 kV, and the secondary voltage is 480 Volts. 

Table ‎3-2 Specifications of A Data Center 

PEAK LOAD 1.55 MW 

BACKUP SYSTEM • Flywheel UPS 

COOLING SYSTEM • Evaporative chilled water system 

POWER 

• Secured from two substations 

• Northern Virginia Electric Cooperative 

(NOVEC) supplies power 

ELECTRICAL 

INFRASTRUCTURE 

• N+1 system 

• 2x2.1 MW diesel generators 

• Primary voltage: 34.5 kV 

• Secondary voltage: 480 V 

• Multiple power and cooling paths 

• 120 hours diesel fuel storage at full load 
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As shown in Figure  3-8, there are two parallel diesel generators that connect to the generator 

switchboard to provide backup power for a data center. One of the two generators operates in emergency 

conditions (Ngen+1, Ngen=1). The other generator serves as a backup. There are four parallel flywheel 

systems and at any given time. Three of them are connected to sensitive loads (NFW+1, NFW=3) and one is 

an extra unit; therefore it has the N+1 architecture. “G” represents diesel generator, “ATS” represents 

automatic transfer switch and “PDU” is power distribution unit. 
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Figure ‎3-8  (N+1) backup power architecture for a data center in accordance to the IEEE 493-2007 [95]. 

3.7.2. Scenario Description 

Of all data center loads, the HVAC loads - which constitute about 50% of the total load - can be 

interrupted momentarily. On the other hand, all IT and computing hardware, such as computers, servers, 

routers, storage devices, telecom devices and some lighting loads, need uninterruptible power supply. 

These critical loads constitute approximately the other 50% of the total data center loads. Therefore, the 

size of flywheels should be designed accordingly to cover all critical loads in the data center, which is 

750kW (three out of four 250 kW units operating at the same time) during back-up generator startup in 

the test case being studied.  
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During a disturbance, the FES systems operate to support critical loads. If the outage lasts for more 

than five seconds, the diesel generator will start and take over all data center loads. This time is typically 

10 seconds [96] [97]. After the electricity is restored, the diesel generator should be operated for extra 5 to 

15 minutes. This extra operation time helps the generator to have the “cool-down period” before shutting 

down [96]. The cool-down period is vital for the diesel generator life cycle. Additionally, the flywheel 

will be charged by the generator during this time, if needed. 

3.8. Simulation Results   

Figure  3-9 illustrates the simulation results, showing the operation of the flywheels and the diesel 

generator when a utility outage occurs at t=0 sec. The solid line is the total load of the system (kW) and 

the dashed line is the diesel generator power output (kW). At the time of the power outage (t=0), 

flywheels operate to provide ride-through capability for the critical loads (750kW). Since the outage is 

longer than 5 seconds, the diesel generator starts (t=5 sec). After the diesel generator has synchronized 

with the system (t=17 sec), the rest of the data center loads are served, and the flywheel changes from its 

discharging mode to its charging mode.  

 

Figure ‎3-9 Snapshot of electrical power (kW) at the load bus after the outage.  

At this time, the load served (the solid line) is the total data center load plus the flywheel charging. 

The generator output (dashed line) matches both the data center load and the flywheel charging load. 

Once the flywheel is fully charged (t > 190 sec – not shown), the diesel generator output will decrease to 

the total data center load level. 
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Figure ‎3-10 Flywheel speed during charging and discharging periods: D-Ch and Ch indicate flywheel discharging 

and charging periods, respectively. 

Figure  3-10 shows the flywheel speed during its operation. During the first 5 seconds, the flywheels 

discharge to serve the critical loads and the flywheels’ speed decreases. The system waits for 5 seconds to 

confirm that it is the real power outage before starting the diesel generator. Once the generator starts at 

t=5 sec, it takes some time – as shown in the simulation results – before it can fully synchronize with the 

system and serve the loads at t=17 sec. After picking up the loads, the generator charges the flywheels 

until t=190 sec. The flywheels charging time is in accordance with the charging range, 2-3 minutes, 

indicated by the flywheel manufacturer [36]. During the charge period, the flywheels speed increases, as 

indicated in Figure  3-10.  

In addition to providing continuous power supply, flywheels also stabilize the frequency at the load 

bus. Figure  3-11 presents frequency deviation at the load bus during the simulation. The solid line 

represents frequency response of the system with flywheels. The dashed line shows frequency response of 

the diesel generator after it starts at t=5 sec. Note that the frequency is stabilized at around t=16 sec before 

the diesel generator synchronizes with the system at t=17 sec.    
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Figure ‎3-11 The frequency deviations after the power outage with flywheels (solid) and without flywheels (dashed). 

Figure  3-11 indicates that flywheels can significantly decrease the system frequency deviation. 

During its startup (t=5-17 sec), the generator frequency goes down as low as 59.75 Hz. This results in the 

system frequency deviation of 0.25 Hz from the nominal frequency of 60Hz. With the flywheels, the 

maximum frequency deviation decreases to 0.06 Hz. This deviation meets the maximum allowable 

frequency deviation for sensitive loads of 0.12 Hz or 0.2% of the normal frequency [95]. 

3.9. Chapter Conclusions 

This chapter presented a tool for modeling and simulation of a flywheel energy storage (FES) system 

in a microgrid environment. The FES model was validated by comparing simulation results with 

manufacturer supplied data. To demonstrate the use of the developed FES model, a case study of a facility 

microgrid based on a data center application was presented. This study showed the operation of the FES 

coupled with a diesel generator to serve the data center’s critical loads during a utility outage. Results 

indicated that the FES, coupled with the generator, can deliver secure and resilient power to support 

critical loads during a utility outage. Since FES applications to provide power security and resiliency for a 

mission-critical facility are new on the horizon, there is a lack of experimental data for use in microgrid 

studies. The proposed software tool bridges this gap by enabling facility engineers and system designers 

to run several what-if analysis scenarios -- that is, to analyze the operation of a facility microgrid with the 

incorporation of a FES system coupled with traditional fuel-based generators as a backup power source.  
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Chapter 4 Economic control and optimization of 

Community Energy Storage (CES) systems in 

competitive electricity markets 

4.1. Introduction 

Distributed energy storage devices may improve reliability by providing standby power when 

equipment outages would otherwise force customer interruptions. Additionally, energy storage devices 

can reduce equipment loading during peak hours, thereby allowing the utility to delay equipment 

upgrades and to decrease pre-mature aging in network components [39]. They can also help with 

renewable energy resource integration into distribution networks. Volt-Var control, frequency regulation, 

and demand response program support are among other benefits of distributed energy systems for utilities 

[44-46]. These benefits are so great that they sometimes outweigh the high cost of installing the energy 

storage devices and the communication infrastructure to support them [44].  

This chapter presents a means of realizing additional benefits for utilities by taking advantage of the 

fluctuating costs of energy in competitive energy markets. By combining electricity market information 

with real-time control of energy storage devices, utilities may enjoy year-round economic benefits from 

the storage devices in addition to the occasional benefits mentioned above. 

The increasing adoption of intermittent renewable energy resources (DER) into the power grid and 

technologic merit for batteries in recent years brings more attention to energy storage systems (ESS) as 

viable solutions [45, 58, 59]. In [58] authors used a fuzzy clustering optimization approach while 

considering system security constraints to maximize the renewable energy utilization integrated with a 

pumped storage unit. Authors in [59] explored sodium–sulfur battery application ancillary services in an 

electricity market. Reference [45] provides a general overview to load leveling with solar power 

generation and storage under a Time of Use (TOU) price scheme. However, the electricity market and the 

effect of time varying loads were not considered.  

Many researchers have focused on large scale energy storage applications [48], but fewer have 

attempted to realize year-round benefits from distributed energy storage systems. The authors of [49-51] 

looked at the problem from the perspective of controlling customer-owned storage devices that integrate 

other generation sources. Authors in [52] focused on the voltage fluctuation issue due to high penetration 
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of photovoltaic panels in commercial buildings. The customer side ESS provided voltage regulation in 

exchange for subsides from utilities to cover battery costs. The authors in [53] proposed a stochastic 

optimal load management for a residential customer with DER and ESS. However, the proposed approach 

minimized the electricity cost in a real-time manner without considering the system’s day ahead behavior.  

Studies that are more relevant to this chapter are [54, 55]. [54] presented a load management 

approach for a large load aggregator to determine the electricity price for participation in the day ahead 

market. A lumped load was considered with grid scale energy storage, and distribution level system 

topology was not considered. In [55] a distributed storage system is applied to minimize the forecasting 

error of DER generation and to decrease the uncertainty in electricity markets.  CES is addressed in the 

Department of Energy Smart Grid recovery act of 2009 [98]. 

The sizing and placement optimization problems for systems with DER and ESS have been well-

researched. However, the operations of ESS in the competitive energy markets in conjunction with 

customer service reliability and distribution network efficiency have not been addressed. Moreover, 

energy storage systems placed on the secondary of distribution transformers have not been investigated 

thoroughly. This chapter presents a real-time control scheme that maximizes the revenue attainable by 

energy storage systems without sacrificing the occasional benefits related to improvements in reliability 

and reduction in peak feeder loading. The day ahead load forecasting and day ahead market prices are 

considered in the optimization algorithm presented here. In this chapter, a novel combination of trade-offs 

related to transformer loading, feeder loss, and LMP price prediction is considered that is not addressed in 

other literatures.  

The chapter is organized as follows: section 4.2 is a discussion concerning CES infrastructure. 

Section 4.3 describes the CES service requirements. Section 4.4 presents the control and optimization 

algorithm. In sections 4.5 and 4.6 case studies and simulation results are discussed. 

4.2. Community Energy Storage (CES) Infrastructure 

CES units may be more flexible than large substation batteries [99]. While the smaller size 

appropriate for secondary-level power does not take advantage of economies of scale, researchers have 

proposed means of reducing production costs [36, 100, 101]. Perhaps more important than cost, such 

placement provides the most reliable service to customers, since the primary system may be 

compromised, even to the point of distribution transformer failure, and the energy storage system may 

still serve the customer. This chapter supposes that the CES units are owned and operated by an electric 
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utility and thus may be aggregated for optimal operation. CES can increase capacity, efficiency and 

reliability of distribution circuits due to the functions illustrated in Figure  4-1. 

 
Figure ‎4-1 DES advantages at grid and customer levels. 

There are several key factors that affect the successful deployment of CES systems. The high cost of 

batteries, lack of standards, and infrastructure needed for controlling DER units seem to be barriers. Some 

strategies can help to provide a sustainable growth for DER adoption and CES deployment. Reusing 

Plug-in Electric Vehicle (PEV) batteries for stationery energy storage purposes enables battery 

manufacturers to increase the production and decrease the price of batteries with the expanding market 

[101]. Other business models involving third-party ownership such as “battery leasing” and “battery as a 

service” may result in reduced DES prices. Moreover, standardizing the CES units can effectively keep 

manufacturing costs down [36]. 

The CES units operate under a hierarchical control system, as illustrated in Figure  4-2. Each 

individual unit is controlled by a local controller, called the CES Control Unit (CCU), which manages 

secondary voltage and serves the load when islanded. When not islanded, the CCU controls the CES to 

charge or discharge based on commands sent from a Group CES Control Unit (GCU) whose set point is 

given by a centralized Distribution Control Center (DCC) [102] or directly controlled by the DCC as part 

of the utility DMS. 

The algorithm presented here runs in the DCC, where the LMP data, forecasted load, and operational 

alerts, such as storm predictions, are available. Each CCU sends local information, such as the stored 
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energy and transformer loading, back to the DCC by means of the GCU, so that the data may be used by 

the control algorithm. Due to the required infrastructure for the smart grid demonstration, it is assumed 

that the distribution network has appropriate communication facilities for such data harvesting and 

transmission. 

 
Figure ‎4-2 CES system control layout 

4.3. CES Service Requirements 

Since the CES units are located on the secondary sides of transformers, load management involves, at 

the secondary level, preventing transformer overloads and low voltages, and, at the feeder level, 

preventing primary overloads and low voltages. The secondary level constraints (particularly transformer 

loading) are integrated into the economic scheduling for each CES unit, while the primary level 

constraints are handled at the feeder level, which involves operating many CES units in a coordinated or 

aggregated manner. Such constraints are described in more detail in section 4.5. 

The reliability benefits also take precedence over the energy cost savings. While the utility could 

decide to keep the CES units at maximum storage or above some fixed storage level (static reserve 

capacity) so as to be able to sustain the maximum possible outage durations, such lengthy outages may be 

extremely uncommon, thus resulting in under-utilization of the CES units. Rather than using a static 
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reserve capacity, the CES units can be managed with a dynamic reserve capacity, meaning that the stored 

energy is kept at a sufficient level to serve an outage for a given duration (HR). For example, suppose that 

customers on a given feeder may be restored through manual switching efforts which require two hours 

(HR = 2) to complete. In this case the CES unit only needs to keep enough energy to serve an outage at 

that transformer for two hours. During peak load conditions the full capacity of the battery may be needed 

to provide energy for two hours, but during light load conditions the battery may need only a small 

percentage of its maximum capacity. If storm information is available to the DCC, the reserve capacity 

may be modified in anticipation of longer restoration times. The modeling of the dynamic reserve 

capacity will be discussed in detail in the next section.  

The load management constraints and the reserve capacity constraints may be in conflict. Preventing 

an overload may require violating the dynamic reserve requirement.  Here it is assumed better to prevent 

outages at the present time than to prepare for potential future outages. 

4.4. Control and optimization Algorithm 

4.4.1. Energy Cost Savings 

The objective of the control algorithm is to optimize energy cost savings over time. However, the 

reliability requirements and components capacity are forced as constraints in this optimization problem. 

When a CES unit charges, the utility incurs the cost of the energy entering into the unit (RtCh < $0), and 

when the CES unit discharges, the utility saves the cost of the energy supplied by the unit (RtDch > $0). 

The utility is thus accounting for the difference in energy costs in its own balance sheet as a cost savings. 

In addition to the energy going into or out of the CES units, the utility may also count the change in 

feeder losses in its cost savings calculation. That is, when the CES unit is charging, the load has 

increased, and there will be greater losses in the feeder and substation due to the increased current. 

Similarly, when the CES unit discharges, the losses on the feeder decrease and the CES control may take 

“credit” for such cost savings. Combined with the cost savings due directly to the CES output energy, this 

net cost savings will be termed “revenue” when taken separately (RtCh, RtDch), and “operating profit” or 

“profit” when combined (Ch/Dch Pairprofit, Schprofit).  

4.4.2. Principle Drivers of CES Optimization 

Since the goal is to maximize profit by taking advantage of CES stored energy in excess of the 

reserve energy, the two primary drivers of the optimization algorithm are the LMP prediction (cost of 

energy) and the load forecast (availability of energy). 
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In regulated electric energy markets the Locational Marginal Price (LMP) is computed in real-time 

based on bids from energy producers, losses and line congestion. These prices are called the real-time 

LMPs and represent the incremental cost to supply load to a given region at a given time [103]. In 

addition to the real-time LMP market, there is a day-ahead LMP market, wherein energy producers bid 

their expected costs one day ahead [104]. 

In order to determine the optimal charging and discharging schedule for the CES units, the price of 

energy at future hours is needed. Since the real-time LMP price is not known in advance, the utility may 

use either the day-ahead LMP, or, if it has a better prediction of its own costs based on generators that it 

operates, it may use its own LMP forecast. The simulation reported here uses the day-ahead LMP price 

and compares the profit with that attainable from an ideal prediction (ie, a prediction that exactly matches 

the LMP prices that occur over the next 24 hours). 

The distribution network load forecast is the other primary driver of the economic optimization. Load 

forecasting helps to find how much load will be on each distribution transformer for the next 24 hours. 

The distribution transformer loading is necessary for each battery’s day ahead schedule. The 24-hour load 

forecast for each transformer is based on the “load research statistics” load estimation method that is 

developed in [105, 106]. The real-time demand at each distribution transformer with a CES unit is 

metered locally and provided to the DCC for use in the optimization algorithm to refine the load forecast. 

Weather data may also be used to refine the load forecast [107]. 

4.4.3. CES Optimization Formulation 

In real-time control the optimization algorithm first calculates the optimal charge/discharge schedule 

for each CES unit for the next 24 hours, and then issues the commands through the DCC for the first 

hour’s optimum operation. Each CES unit is scheduled independently using the same formulation, but the 

constraints will be set up differently as the corresponding measurements differ.  Table  4-1 shows the 

nomenclature for CES formulation. 

Table ‎4-1 CES Formulation nomenclature 

Schprofit : CES Scheduling profit ($) 

Pt
CESout

 : Output power of the CES in hour t (kW) 

Pt
FeedLossRed

 : Reduction in feeder losses in hour t (kW) 

Pt
CESLoss

 : CES loss function (kW) 

Pmax
Ch

 : Maximum charge rate (kW) 

Pmax
DCh

 : Maximum discharge rate (kW) 

PMinPri : Minimum CES power for primary issues (kW) 

PMaxPri : Maximum CES power for primary issues (kW) 
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Pmax
Trans

 : kVA rating of the transformer 

Pmax
Trans

 : Load in hour t (kW) 

ΔCt : Change in stored energy in hour t (kWh) 

ΔCt
(i) 

: Change in ΔCt decided upon in iteration i 

Cmax : Maximum CES capacity (kWh) 

Cmin : Minimum CES capacity (kWh) 

CRsv t : CES reserve capacity at hour t (kWh) 

SSMax : Maximum iteration step size (kW) 

NT : Number of time points 

Ch/DchPairprofit :CES Charging and Discharging pairs 

at, bt, ct : Interpolation coefficients 

Kconfig : Battery cell configuration coefficient 

Rcell : Battery cell internal resistance 

L : Transformer loading 

RtCh : Charging Revenue (Cost) in hour t 

RtDch : Discharging Revenue (Cost) in hour t 

HR : Outage duration (Hours) 

 

Mathematically, the objective function then has 24 independent variables—the kW outputs at each 

hour—and one dependent variable (the total profit). Thus, the objective function to be optimized is given 

in (4-1) per the definitions provided in the Nomenclature section. 

      


23

0t

dFeedLossRe

t

CESout

ttprofit )P(PLMPmaxSch        (4-1) 

Pt
CESout

 stands for CES power output between the t
th
 and 

tth-1
 hours. The sign convention used here 

associates a positive Pt
CESout

 with discharging and a negative Pt
CESout

 with charging. Similarly, Pt
FeedLossRed

 

is negative when the losses increase.  

As noted, the total feeder losses do not need to be calculated for each output; rather, only the change 

in feeder losses needs to be calculated accurately. Since feeder losses are quadratic for radial distribution 

systems, the change in losses due to any given CES unit’s output are computed by interpolating a 

quadratic polynomial defined by three points relating CES output to feeder losses. 

t

CESout

tt

CESout

tt

dFeedLossRe

t cPb)(PaP 2         (4-2) 

The coefficients at, bt, and ct are calculated in advance using power flow calculations on the feeder for 

three different output levels for each battery. Thus, rather than running a power flow computation on the 

entire feeder at every iteration in the scheduling algorithm, only three power flow runs per battery are 

required. 
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Since the CES outputs are assumed to be constant for the entire hour, the conversion of output power 

(kW) to stored energy (kWh) involves only the identity function. However, the CES units do not operate 

at perfect efficiency and the losses incurred during both charging and discharging must be considered. 

Equation (4-3) relates the actual CES output power to the change in stored energy ΔCt, where the internal 

losses Pt
CESLoss

 are a function of the CES internal resistance which is provided by battery manufacturer. 

)P(PPC CESout

t

CESLoss

t

CESout

tt                              (4-3) 

Any model may be used to compute the CES internal losses, but the algorithm may not converge to 

the correct solution if the loss function Pt
CESLoss

 (Pt
CESout

) is non-convex. For a simple model consisting of 

a constant voltage source in series with a resistor, the CES loss function becomes that in (4-4). 

 
2CESout

t2

cell

cellconfigCESLoss

t )P(
V

)temp(RK
P 


       (4-4) 

The Kconfig is the configuration coefficient. It depends on the number of series and parallel battery 

cells in the CES module. Vcell is the battery cell output voltage. Rcell(temp) is the internal resistance of a 

single cell, and is a function of the cell temperature. 

As mentioned in the CES Service Requirements, section III, the operation of the CES units includes 

both secondary (local) and primary (fleet) constraints. Each CES unit has responsibility first to meet the 

local constraints, such as preventing a distribution transformer overload, and then to serve with other CES 

units in a fleet to meet primary constraints, such as preventing an overload at the substation exit cable. 

Even before the secondary power system constraints are imposed upon the schedule, the physical 

constraints of the CES units must be met, per the manufacturer’s specifications. These constraints include 

power output (kW) constraints and stored energy (kWh) constraints. 

The output power constraint in each hour is given in (4-5). The negative sign in front of Pmax
Ch

 

reflects the sign convention used here, where charging is “negative output.” 

         23t0PP P DCh

max

CESout

t

Ch

max                    (4-5) 

The CES stored energy constraints are modeled in (4-6). Cmin and Cmax are the minimum and 

maximum levels of energy that can be stored in the CES unit, per the manufacturer’s operating 

recommendations. It prevents the battery from full drainage. 
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 23t0CC C maxtmin                               (4-6) 

Once the physical CES constraints have been computed, the power system primary and secondary 

constraints must be computed. The local loading measurements and load forecast are first used to set 

bounds on the CES unit outputs so as to prevent transformer overloads. These constraints take the form 

shown in (4-7). 

 
Trans

max

CESout

t

Load

t PPP         (4-7) 

Pmax
Trans

 may be set equal to the kVA rating of the transformer. Although the reactive component of 

the load will add to the total kVA loading on the transformer, the CES unit may supply power to the 

system through an inverter, and that inverter may supply VARs up to a certain limit. Since transformer 

ratings are not firm ratings (a transformer may be slightly overloaded with minimal impact on reliability 

and transformer life), this approximation was deemed appropriate. 

Together with the availability of stored energy in the CES unit, the transformer loading constraint is 

used to calculate the CES availability for primary-level control. Power flow analysis is then used to check 

for primary-level overloads and low voltages. If such primary-level problems exist, the CES fleet will be 

used to attempt to alleviate those problems. These changes create additional constraints, as described in 

(4-8), to be placed upon the economic optimization. 

23t0P PP MaxPri

CESout

tMinPri                  (4-8) 

While the formulation of this algorithm focuses on individual CES units independent of other CES 

units, additional CES units may greatly affect the participation each unit plays in resolving primary-level 

constraints. Each CES schedule is different because each transformer has a different loading pattern. 

Figure  4-3 depicts how these constraints are implemented. While the formulation of this algorithm 

focuses on individual CES units independent of other CES units, additional CES units may greatly affect 

the participation each unit plays in resolving primary-level constraints. Each CES schedule is different 

because each transformer has a different loading pattern as before. 
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Figure ‎4-3  Primary and secondary constraint handling. 

As mentioned in section III, the reserve capacity may be either static or dynamic. If static, the user 

specifies CRsv t0 directly. If dynamic, then the reserve capacity may be calculated by 





R0

0

0

Ht

t

tRsv dt)t(LdC          (4-9)  

where the loading on the transformer Ld(t) is based on typical customer load curves [16-17] modified 

based on recent measurements and available load forecast information at that location. 

Recall that each CES unit is placed at a different transformer; placing multiple CES units at the same 

transformer would require scheduling the two units together as a single optimization problem. The reserve 

energy is therefore constrained by (4-10) below. 

 23t0CC C maxttRsv                             (4-10) 

4.4.4. CES Optimal Control Algorithm 

 Once the constraints and the interpolation points for the feeder loss functions have been computed, 

the CES units may be scheduled for optimal profit. The algorithm, depicted in Figure  4-4, first identifies 
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the schedule with minimum charging and discharging that satisfies the various constraints at each hour. If 

there are any infeasible constraints, the reserve capacity constraints will be violated before the 

transformer loading constraint is violated. Then, starting from the initial schedule, the algorithm proceeds 

to add equal amounts (kWh) of charging and discharging at each iteration, moving toward an optimal 

schedule. 

Mathematically this algorithm may be viewed as a modified version of the gradient method for 

solving optimization problems. The “gradient” is the marginal cost of increasing a unit of energy stored or 

released during a given hour. This unit of energy ΔCt
(i)

 is called the step size. The maximum step size 

SSMax is chosen by the user based on the level of accuracy required and the amount of execution time 

available. 

23t0SSC Max

)i(

t                              (4-11) 

The revenue Rt corresponding to a given unit of energy is expressed in (4-12). Note that Rt will be 

negative when charging and positive when discharging. 

)PP(LMPR dFeedLossRe

t

CESout

ttt            (4-12)  

At each iteration, charging is added to only one hour and discharging is added to another hour, based 

on the charge/discharge pair with the maximum profit as given by 

DchCh

Dch

Ch

ttprofit

tt

,23t0

,23t0

)RRmax(PairDch/Ch
DchCh









      (4-13) 

The charging and discharging added at each iteration maintain a consistent time-integrated amount of 

energy stored inside the CES unit, which means that, due to internal losses in the batteries and inverter, 

the actual output and input seen external to the CES unit will be slightly different.  
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Figure ‎4-4 Economic optimization flowchart for each CES unit.  

The algorithm developed here is more “greedy” than a normal gradient method. Once a certain 

charging or discharging amount has been scheduled for an hour, it does not scale back charging or 

discharging amounts in any hour during any iteration. When a constraint is reached in (4-10), the actual 

step size at that time slot ΔCt may be smaller than SSMax, but that time slot is then no longer considered in 

future iterations. Because of this “greedy” characteristic, the maximum number of steps required to find 

the optimal schedule for each CES unit can be calculated by 

)NT(*)SS(

)P,Pmax(
MaxSteps

Max

DCh

max

Ch

max          (4-14) 
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,where NT is the number of time points. As long as both the function for the losses internal to the 

CES unit and the function for feeder losses are convex in all dimensions (as, for example, when the CES 

losses are modeled by a quadratic function dependent on a modeled internal resistance), the objective 

function as a whole is convex, so the algorithm converges to the optimal solution as the step size is 

reduced, where reasoning similar to the proof in [108] may be used. 

0)SchSch(lim profitoptprofit
0SSmax




       (4-15) 

Finally, as a practical matter, the algorithm will only schedule charging and discharging when it can 

make greater than a certain minimum profit per kWh on the charge/discharge cycle. Since charging and 

discharging activity reduces the battery’s life, the utility will set the minimum profit margin based on the 

CES unit’s cost and life cycle information from the battery manufacturer. 

23t0Minprofit
C*2

PairDch/Ch

t

tprofit



             (4-16)  

Thus, the algorithm will either stop when all time slots have been scheduled to a constraint or when 

the maximum charge/discharge pair profit is less than or equal to the minimum profit.  

Finally, the algorithm should be run as frequently as the LMP prices or demand measurements 

change. Essentially, then, the 24-hour schedule is only used to decide what to do at the present time. The 

algorithm may be run again in another five or ten minutes to revise the current operation as the loading 

and energy costs have changed. Because of how quickly load and LMP prices change, it would be foolish 

to operate the CES units based on information that is almost 24 hours old—and often, it is foolish to 

operate based on information that is only 15 minutes old, as the LMP price is subject to occasional spikes. 

It is continuous process, when the time the “end of the day” arrives, the algorithm is already looking 

ahead to the end of the next day and adjusting the schedule accordingly. 

Not only does the LMP price change rapidly but also the load forecasting may be very inaccurate 24-

hours in advance. Again, by re-running the CES control algorithm every five or ten minutes with an 

updated load forecast, the CES units will be able to respond more quickly to changes in load. 

4.5. Simulation Parameters 

While the algorithm described above may be used with many varieties of storage technologies 

differing in rated output, storage capacity, and losses, the simulation presented here considers CES units 
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with Lithium-Ion cells as recommended in [46] with the following capabilities: 50kWh energy storage, 

maximum discharge rate of 25kW, and Rcell = 0.003Ω with 167 cells in parallel. Lithium-Ion battery self-

discharge is neglected in this chapter. Table  4-2 shows the specifications of the DES units considered 

here. The DES unit has to provide the rated power and energy level after 1000 cycles in 25 ˚C ambient 

temperature. 

During islanding, the DES has the capability to discharge up to 2.5 times the rated capacity for 3 

seconds to serve motor inrush current. The minimum isolating contactor current rating of DES should be 

400 Amps. The fault tolerance of DES unit restricts operation to transformer sizes less than or equal to 

100KVA [20]. 

Table ‎4-2 CES Specification 

Item Unit Default 

Battery Type -  Li-Ion 

Power kW 25 

Capacity kWh 50 

Min AC Voltage V 115 

Max AC Voltage V 125 

Normal AC Voltage V 117 

Charging Rate kW 25 

Discharging Rate kW 12.5 

 

The load research data, customer billing information, and measurements from the primary sides of the 

distribution transformers are applied to model time varying loads in the Distributed Engineering 

Workstation (DEW) software [109]. The “profit” term in the following sections refers to the CES unit’s 

operational cost saving. 

4.6. Simulation and Trade-Off Analysis 

4.6.1. LMP Prediction Accuracy 

Not surprisingly, the accuracy of the price forecast has a significant impact on the cost savings 

potential. The real-time price will often deviate from the day-ahead bids. In such cases, if the CES unit is 

charged when the price dips or discharged when the price rises, it is unable to take advantage of these 

fluctuations in price. The mature electricity markets normally have less LMP volatility in comparison to 

young electricity markets [110].   Figure  4-5 shows the difference between real time and day ahead LMP 

for the peak day of July 2009. 
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Figure ‎4-5 Real-Time and Day ahead LMP price for peak day in July 2009 with battery capacity for each price. 

Smaller differences between real time and day ahead LMP market prices creates more benefits from 

DES economic scheduling because the charging and discharging of batteries are based on the electricity 

price prediction for the next 24 hours. 

Table  4-3 shows the total profit for one month’s operation calculated using the day-ahead prices as 

well as the total profit that could have been achieved if the real-time prices were known 24-hours in 

advance (an “ideal prediction”). Thus, there is a great incentive for utilities to revise the LMP forecast 

[111] when possible as equipment and loading data are updated. It is worth mentioning that the day ahead 

and the real time LMP prices are dictated by Independent System Operators (ISO) to utilities. Utilities do 

not determine the LMP prices. The difference of day ahead and real time LMP is because of unforeseen 

changes in generation capacity, transmission constraints or total demands in the ISO pricing software 

systems. 

Table ‎4-3 LMP Accuracy Analysis 

 PROFIT 

Day-Ahead LMP $101 

Ideal Prediction $185 

4.7. Transformer Loading and Reserve Capacity 

When the load is higher, more energy must be saved in case of an outage, so there is lower 

availability for participation in the energy market, resulting in smaller profits. On the other hand, when 

the system load is higher, the energy prices tend to be higher, resulting in higher profits. The simulation 

presented here uses the month of July, when both the load and the prices tend to be highest. 
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Since a higher load means less energy is available for market participation, a greater profit can be 

realized by placing the CES units on more lightly loaded transformers. Figure  4-6 illustrates this tradeoff, 

plotting the profit (cost savings) against the transformer loading. However, the CES placement does not 

only depend on the transformer loading. Sometimes utilities place CES in areas with more outages. Thus, 

with a heavily loaded transformer the utility is trading off operating profit for improved reliability.  

 
Figure ‎4-6 CES Operation profit vs. distribution transformer loading. 

The dynamic reserve capacity is dependent not only on the load, but also on the number of hours’ 

worth of load that the CES unit is expected to be able to serve in case of an outage. Figure  4-7 illustrates 

the tradeoff between the profit potential of the CES unit and the number of hours of reserve capacity. 

Utilities must decide how much reliability they are willing to risk to realize increased savings. Utilities 

with performance based rates (PBR) could use a plot like the one in Figure  4-7 to identify where the 

tradeoff between profit and reliability matches their PBR [112]. 
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Figure ‎4-7 CES operational profit vs. number of hours for supporting loads following an outage. 

For comparison, a static reserve margin is also assessed. Figure  4-8 compares the use of a static 

reserve capacity with a dynamic reserve capacity, where the static reserve capacity is fixed at the 

maximum capacity used by the dynamic reserve capacity. The static reserve capacity benefit is 39% less 

than the dynamic reserve capacity method at 80% transformer loading.  In this curve a residential load is 

used; customers with different load shapes would see different variations between dynamic and static 

reserve capacity. 

 
Figure ‎4-8 CES dynamic and static reserve operational benefits 
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Figure  4-9 shows the tradeoff between profit and fixed (static) reserve capacity. While a dynamic 

reserve margin offers a greater potential cost savings, computing the dynamic reserve margin depends 

heavily on accurate load forecasting. A utility with a poor load forecasting capability may be limited to 

using a static reserve capacity. Similarly, a customer with a constant load profile has a static reserve 

capacity. 

Alternatively, Figure  4-9 can be understood as depicting the tradeoff between energy storage size and 

cost savings, as opposed to reliability and cost savings. 

 
Figure ‎4-9 CES Operational profit vs. different fixed reserved capacity of a CES. 

The cost savings potential is not only limited by the reserve capacity (stored energy) but also by the 

output power required to prevent overloads on a transformer.  

4.7.1. Feeder Losses 

The significance of feeder losses is presented in Table  4-4. The profit is calculated for a single month 

for a single CES unit far from the substation on a moderately loaded feeder. Two approaches are used to 

schedule the CES charging/discharging. The first approach includes feeder loss reduction as a part of the 

objective function, see (1), as well as the internal battery losses. The second approach ignores the feeder 

losses in optimization, but still incorporates internal battery losses. Note that an ideal LMP “prediction” is 

used to isolate the effects of the increased accuracy in the objective function from the effects of 

inaccuracy in the LMP prediction. 
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Table ‎4-4 Profits For a CES Unit in One Month 

Objective Function Profit ($) 
Computational 

Time (Sec) 

LMP Price + Loss Function 185 337 

LMP Price 182 90 

 

Table  4-4 shows that the feeder losses have a very small impact on the total cost savings attainable by 

optimization, but the computational time to calculate feeder losses is almost three times the total 

computational time for maximizing the objective function. The quality of the price forecast and the 

internal battery losses both outweigh the feeder losses in determining the optimal schedule. 

4.7.2. Optimization Step Size 

Table  4-5 shows the effects of changing the optimization step size on the profit achieved by the 

algorithm, where the optimization is performed for an entire month for the LMP price case (second case 

in Table  4-4). Since most of the cost savings comes from hours with unusually high or unusually low 

LMP prices, changing the step size has relatively little impact on the cost savings realized by the 

algorithm, but it has a significant impact on the computational time. Note that the actual step size used in 

each iteration depends also on the constraints – even if the step size is 5 kWh, if the battery only has 2 

kWh remaining stored energy in a given hour, the step size effectively becomes 2 kWh for that iteration. 

Table ‎4-5 CES Optimization Step Size 

Step Size (% of Max 

Battery Capacity) 

Computational 

Time  for One 

Month (sec) 

Profit for One 

Month ($) 

2 90 101 

5 65 101 

10 57 101 

20 55 100 

 

4.7.3. CES Units Aggregated Response 

The circuit used for case study is in a residential area with a 1769 kVA annual peak load on 13.2 kV 

distribution lines. 20 CES units are located on the circuit with total capacity of 1MWh. CES places are 

shown in Figure  4-10. The CES units are located beside the lightest loaded transformers to have more 

potential profit. 
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Figure ‎4-10 Case study circuit schematic 

Figure  4-11 depicts the aggregated 20 CES units scheduling effect on the feeder loading for a day in 

July. It shows the consistency of CES scheduling with the real time LMP price. During LMP low price 
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hours (6AM - 9 AM), CES units charge to store energy. At the peak hour and more expensive LPM 

prices, CES units discharge to make a profit and decrease peak load. 

 
Figure ‎4-11 Feeder load profile for aggregated 20 CES units.  

4.8. CES Application Analysis 

4.8.1. CES and Electric Vehicle Adoption 

Plug-in electric vehicles (PEV) refer to a class of vehicles that can use both fuel and electricity, 

independently or dependently. PEV can be considered as a Battery Electric Vehicle supplied with an 

internal combustion engine to increase the vehicle driving range. Moreover, PEV is like a conventional 

Hybrid Electric Vehicle with an extended electric driving range and battery charging capability [113]. 

PEV are classified based on the all-electric range (AER) that they can be driven only on battery. PEV-X 

is a representation for X miles AER [114]. The PEV-20, which is used in case study, refers to a PEV with 

20 miles driving range on battery. To evaluate the impact of PEV on distribution circuits, the availability 

of grid connected electrical vehicles to the grid must be taken into account. The duration of PEV 

availability can be determined based on the National Household Travel Survey (NHTS) database. With 

time information about the departure and arrival times of vehicles, it is possible to estimate where, when, 

and how long PEV are connected to the grid. One of the factors extracted from the NHTS survey is the 

daily miles driven by each vehicle. The most common daily travel in the US is in the range of 25-30 

miles. Figure  4-12 shows the percentage of vehicles vs. daily travel distance in US [114]. 
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Figure ‎4-12 Distribution of daily trip distance in US based on NHTS survey[113]. 

The other important factor in the PEV load profile is the charging start time. Some literature assumes 

that owners will start to charge PEV once they arrive home [115, 116]. An average vehicles home arrival 

time can be extracted from the NHTS survey. With the help of Monte Carlo simulations on the census 

data and the average of arrival time to home, a probability distribution of the PEV charging start time is 

achieved (see Figure  4-13) [117]. 

 
Figure ‎4-13 Probability distribution of start time for PEV charging[116]. 

The type of PEV has a major effect on the load profile. The 2001 NHTS user guide classified vehicles 

to seven vehicle type groups [118]. Most cars in residential areas are among types 1 to 4. Same 
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classification is used for PEVs (see Table  4-6). To clarify required energy for each type of PEV, the total 

battery capacity for different types of PEV-20 are presented in Table  4-6 [119]. 

Table ‎4-6 PEV Types and Capacity[118] 

Vehicle Type Description Capacity (kWh) 

1 Car 6.5 

2 Van 7.5
 

3 SUV 8.7 

4 Truck
 

10.1 

   

There are a number of charging levels in previous research [120]. This research uses the level 1 

charging with 110V/15A /1.44 kW in accordance to the National Electric Code (NEC) standard [121], 

because the 110V/15A outlets are available in all houses. Based on the level one charging and PEV 

capacity (Table  4-6), typical charging scenarios for all PEV types are illustrated in Figure  4-14. It is 

assumed that the battery is fully discharged at the start of charging time.   

 
Figure ‎4-14 Typical charging profile for different types of electric vehicles[120]. 

The PEV type 3 is considered for simulation (blue column) in this chapter, because this type (SUV) is 

more popular than the PEV type 4 (Truck) in most residential areas and type3 cars have larger capacity 

than type 1 and type 2 [114].  

Figure  4-15 depicts the effects of the transformer loading constraint on the DES charging/discharging 

schedule. In Figure  4-15, a high PEV adoption level creates a very large load between 5 and 9 P.M on an 

otherwise lightly loaded transformer. The CES constraints ensure that the battery retains sufficient charge 
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before and during this time frame to be able to prevent a transformer overload during the entire four-hour 

period in which the PEVs are being charged. 

The PEV loads therefore affect the charge/discharge schedule in two ways. First, the overload caused 

by the PEVs causes the reserve capacity constraints to be overridden (the CES unit discharges, even 

though discharging will reduce the amount of time that the CES unit could supply the load if there were 

an outage). Additionally, the requirement to discharge during these hours limits the profit that could 

otherwise be gained by discharging the battery during more profitable hours. 

 
Figure ‎4-15 Load profile for different PEV adoption levels. Black line is the load profile with CES.  

In Figure  4-16 the real-time prices are plotted together with the CES output and the internal capacity. 

Although the CES might have sold the energy between 2 and 4 P.M. to make a higher profit, it was 

forbidden from discharging so that enough capacity could be maintained to prevent the overload between 

5 and 9 P.M. Of course, the LMP values are still higher between 5 and 9 P.M. than earlier in the day when 

the CES unit was charged, so the system is still achieving an operating profit while preventing the 

overload. 



64 
 

 
Figure ‎4-16 CES capacity with LMP price and load profile. 

Since transformer overloading will impact CES profit potential, it is worth evaluating what levels of 

PEV adoption will cause such overloads. Table  4-7 shows the PEV adoption effects on overloading of 

distribution transformers spread throughout the circuit. 

Table ‎4-7 PEV Adoption Effect on Distribution Transformers 

Adoption % 0 10 20 30 40 50 

Number of Overloaded 

Transformers 
0 3 10 14 18 22 

 

4.8.2. CES and Distributed Photovoltaic Sources Adoption  

In this research three levels of Distributed Photovoltaic (DPV) sources adoption are considered in 

three scenarios. The aggregated PV capacities on the secondary of distribution transformer are Case 1- 0 

kW, Case 2- 5 kW, Case 3- 10 kW and Case 4- 15 kW. Figure  4-17 shows the PV panel aggregated 

output at the peak day (July 5 2011). 

The solar power generation data is based on the National Renewable Energy Laboratory (NREL) data 

from “In My Backyard” (IMBY) [122] and the “PVWatts” online tools [123]. These online PV power 

calculation tools use solar irradiation, metrological data and PV performance parameters to produce 
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hourly PV power data for any location in the United States.  For this case study, the 1 kW PV panel 

outputs for the peak load day (July 5) is considered. 

 
Figure ‎4-17 Different levels of aggregated PV panel output. 

 Figure  4-18 shows the results of DPV integration with aggregated residential loads, five houses, for 

the peak day. The yellow line represents the aggregated load of the five houses without DPV. 

 
Figure ‎4-18 Aggregated load with different levels of DPV adoption (Case1 to 4). 

The CES optimal control outputs for different DPV adoption levels are presented in Figure  4-19. 

From 5 AM to 9 AM the LMP price is low and demand is not high, therefore the battery charges to its 

maximum capacity during this period. From 9 AM to 6 PM, the battery keeps its capacity for peak hours, 

6 PM to 9 PM. During the peak hours the battery starts to discharge to serve loads and decrease the peak 
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to avoid buying expensive electricity. At 9 PM the LMP has reached the highest price. Thus, the CES 

sells power to the grid at 9PM. The negative sign of load at 9 PM shows the reverse power flow from the 

CES to the grid. 

 
Figure ‎4-19 CES Optimal Control system output for different levels of DPV adoption. The dashed line represents the 

LMP price. 

In Figure  4-20, the LMP price is plotted with the battery capacity and load profile for the 15 kW PV 

case. From 12 AM to 2 AM and from 10 PM to 12 AM the battery waits for the cheaper LMP prices. 

Therefore, it does not charge up to its maximum capacity. As mentioned in the previous figure, the battery 

keeps its maximum capacity for discharging during peak hours. 
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Figure ‎4-20 Battery capacity vs. real-time LMP price (Case 4). 

In this chapter the CES units are owned by the utility company. Therefore, the CES operation benefits 

belong to the utility company. To calculate the DPV adoption effect on the CES operation benefits, four 

cases are considered. Case 1 is CES without DPV on the circuit. Cases 2, 3, and 4 have 5 kW, 10 kW, and 

15 kW DPV capacity, respectively. Figure  4-21 presents the optimization results for these cases. As the 

DPV capacity increases at distribution transformers downstream, higher benefits are achieved by the CES 

operation. In case four, each CES unit makes $ 82.5 benefit over month of July 2011.   
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Figure ‎4-21 CES optimal control economic benefits (Case 1 to 4).  

This chapter assumes DPV units are owned by customers. From the customer point of view, DPV 

installation allows serving part of their loads avoiding buying power from the utility company. Moreover, 

they can increase DPV revenue by selling PV active power to the grid. To calculate the customer benefit 

for all cases, the average electricity price in the New York state is considered to be 0.175 $/kWhr [124]. 

Figure  4-22 illustrates the electricity price for the aggregated load under the case study’s transformer.  

 
Figure ‎4-22 Electricity price for the aggregated load during different DPV adoption levels (Case 1 to 4) . 

Figure  4-22 shows the trend of benefit growth based on the DPV size increase. Table  4-8 represents 

the average monthly benefit for each house based on three different distributed PV panel sizes for July 

2011. 
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Table ‎4-8 Average benefit of DPV for each household for July 2011 

Case # Panel Size 

(kW) 

Average Benefit 

($/kW) 

Case2 1 28.7 

Case3 2 57.1 

Case4 3 85.4 

 

This chapter focuses on the operational cost of CES and DPV system in distribution networks. Based 

on the information in sections 3-A and 3-B, the CES and the DPV capital costs are still high. Therefore, 

business models involving third-party ownership such as “battery leasing” and “battery as a service” in 

conjunction with the tax reduction and governmental incentives may result in reduced CES and DPV 

installation costs. Designing such a business model is part of the future works. Furthermore, technologic 

advancements, market developments and enthusiasm of customers for green energy make the steady 

decline in PV and storage prices in near future [101]. 

4.9. Chapter Conclusions 

This chapter presents utilities with a means of gaining year-round benefits from the control of 

community energy storage (CES) units. This dissertation presents a means of realizing additional benefits 

for utilities by taking advantage of the fluctuating costs of energy in competitive energy markets. By 

combining electricity market information with real-time control of energy storage devices, utilities may 

enjoy year-round economic benefits from the storage devices in addition to the occasional benefits 

mentioned above. 

A mathematical formulation is presented for calculating the optimal charge/discharge schedule 

subject to a number of constraints. Analysis of some of the parameters and tradeoffs involved in operating 

distributed energy storage devices is presented, which provides insight into such considerations as 

inaccuracies in LMP price forecasts, transformer loading, reserve capacity, and feeder losses. The 

analysis shows the benefit is highly dependent on the accuracy of the LMP prediction and load 

forecasting. In the trade-off between accuracy and computational time, incorporating the feeder losses in 

the objective function has a rather small impact on the total profit, but a rather large impact on the 

computational time. While CES installations help meet power system reliability and capacity 

requirements, proposed optimal operating strategy further increases the value of the CES. 

To demonstrate advantages of proposed optimal control algorithm for CES units, a number of case 

studies are considered in simulations. In case of high levels of Plugged-in Electric Vehicles (PHV) 
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adoption, CES supports the distribution transformers from overloading.  CES brings more flexibility to 

the distribution networks. Moreover, Distributed Photovoltaic (DPV) sources penetration are addressed in 

case studies. The proposed optimal control system can improve the distribution network flexibility and 

reliability with combination of DPV and CES. The proposed algorithm for CES makes more benefits for 

utilities who operate CES with higher DPV installation and at the same time CES units decrease the stress 

on  distribution transformers due to high level of solar power adoption.  
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Chapter 5 : Harmonic Impact Study for Multiple 

Harmonic Sources in Distribution Networks 

5.1. Introduction 

Smart Grid realization involves a steady increase in inverter-based components like Distributed 

Energy Resources (DER), energy storage systems, and plug-in electric vehicles. The harmonics related to 

DER inverters and the spread of power electronic devices raises concerns for power system engineers and 

operators. The harmonics generated by DER devices and Plug-in Electric Vehicles (PEV) can cause 

distortion in power system voltages and currents. In addition to the power quality issues, harmonics can 

have economic impacts on distribution networks. Harmonics can decrease efficiency, create thermal 

losses and may overload network components. These effects cause premature aging and failure in power 

system devices. 

The harmonic impact study for a single harmonic source is a well-researched topic. Harmonic 

measurement and filtering are discussed in plenty of literatures. However, conventional researches mostly 

consider harmonic as a local phenomenon with local effect [63, 64]. There are few papers that 

demonstrate harmonics produced by DER sources like PV and energy storage [67-69]. Even fewer papers 

study harmonic effects on large scale distribution networks [60, 62, 70]. However, the interactive effect of 

harmonics produced by multi DER sources on each other and their aggregated effect on the distribution 

system are not addressed in previous literatures. The other uniqueness of this dissertation is application of 

the detailed multi-phase model of the distribution network that considers all circuit components, including 

distribution transformers and secondary distribution. Here harmonics are calculated for each phase 

throughout the multi-phase system, taking into account the mutual impedances among the phases. This 

detailed model provides for a more realistic analysis.  

Published studies on phase balance and harmonics   have focused on particular devices, such as 

transformers, or on three-phase unbalanced loads [71, 72]. In this dissertation, the effect of three phase 

balance on harmonic distortion at the distribution network level is addressed. 

This dissertation discusses harmonics produced from multiple DER sources such as solar, wind and 

energy storage systems. The aim is simulating and analyzing multi-source produced harmonic interactions 

that could lead to concern in distribution networks from the view point of voltage and current harmonic 
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content and total harmonic distortion (THD). Traditionally, THD is the most used index for harmonics 

evaluation in standards and literatures [65, 66], but THD is only based on the harmonic magnitude. In this 

chapter a new index is proposed to consider the impact of interactive multisource phase angle on the 

harmonic distortion. The proposed index is called Index of Phasor harmonics (IPH). The sensitivity 

analysis is conducted to show the impact of each harmonic source magnitude and angle on overall 

distortion in the distribution network.  

The chapter is organized as follows: section II is discusses harmonics phenomena in distribution 

networks. Section III describes the principle factors for harmonic analysis in distribution networks. 

Section IV presents simulations and results.  

5.2. Harmonics Characteristics in Distribution Networks 

5.2.1. Harmonics and Distribution Network Malfunctions 

High level adoptions of distributed generation technologies like solar, wind, fuel cells and 

microturbines in addition to energy storage, PEVs, and power electronics based components, all within 

close proximity of one another, create concerns of how harmonics generated by one set of devices may 

interact with harmonics generated by other devices.  

Harmonics can result in various malfunctions and failures in distribution networks. Transformer and 

conductor overheating and pre-mature aging, neutral conductor overloading, capacitor bank overstressing, 

abnormalities in protection system operation, thermal effects in electric machines, and control system 

errors  are among the challenges for distribution network operation under harmonics emission [66, 125].  

From an economic perspective, the harmonics resultant loss will increase the network operational 

cost. The pre-mature aging of network components caused by harmonics results in higher maintenance 

costs [126]. Moreover, harmonic distortion can affect energy metering equipment and decrease metering 

accuracy that can change electricity market transactions [127, 128]. 

5.2.2. Harmonic Measurements and Assessments 

The AC electricity supply should ideally be a perfect sinusoidal voltage and current signal to every 

customer. The deviation from the perfect sinusoidal waveform is expressed in distortion terms. 

Harmonics in voltage and current waveforms can be represented as sinusoidal components with higher 

integer multiples of the fundamental frequency. A distorted voltage and current waveform are expressed 

by Fourier series as given by 
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where ITotal and VTotal are the nonsinusoidal current and voltage at the measurement point. Ih and Vh 

are current and voltage r.m.s values for the hth harmonic order. θh and φh are harmonic current and 

voltage phase angles. ω0 is the fundamental angular frequency and h is the harmonics order. 

Total harmonic Distortion (THD) is an index that is widely used for power quality assessment in 

distribution and transmission networks. THD is defined for current and voltage respectively as [129]: 
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where THDI and THDV are THD values for current and voltage, respectively. I1 and V1 are the current 

and voltage r.m.s values for the fundamental frequency.  

The Individual Harmonic Distortion (IHD) index presents the percentage ratio of current or voltage in 

the hth harmonic order with respect to the fundamental value. IHDI and IHDV are the IHD for current 

and voltage respectively as given by 
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Harmonics is a challenging and serious problem in distribution networks. However, interactive 

harmonic effects of DERS can intensify the problem.  The Total Harmonic Distortion (THD) index is 

only based on signal magnitude. To help quantify the distortion caused by multiple harmonic source 

interactions, there is a need to consider phase angles of current and voltage waveforms. 
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In this dissertation, the Index of Phasor Harmonics (IPH) is proposed. The IPH is obtained by 

dividing the real part sums of the phasor harmonic waveforms by the algebraic sum of harmonic 

waveform magnitudes. Let us define 
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where   
   and   

   are phasor representation of current and voltage. The IPH equations are: 
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where IPHI and IPHV are Index of Phasor Harmonics for current and voltage waveforms. 

When considering harmonic distortion, the conventional definition of power factor is modified to 

account for the contribution of higher frequencies on the power factor [66]. The modified power factor is 

called Total Power factor (TPF). Equation (11) shows the relationship between TPF and THD [126, 130]: 

    
   (  )

√       
                                                                                                                                   (  ) 

where δ1 is the angle between voltage and current at the fundamental frequency. The cos(δ1) called 

displacement power factor and the factor 1/√1+THDI
2
 is called distortion power factor. 

5.2.3. Harmonics and Standards Perspective 

Harmonic emissions are addressed in a number of standards and recommendations. The most 

widespread harmonic standards in the United States and the European Union are issued by IEEE and IEC. 

The harmonics standards can be classified into three categories: 1) standards related to power quality in 

distribution networks, 2) standards related to devices and harmonic sources, and 3) standards related to 

distribution network equipment installation and operation [126]. 

The IEEE-519, IEC-61000-6 and EN-50160 belong to the first group of standards. The IEEE-519 

presents a joint approach for customers and utilities to limit nonlinear load harmonics [65]. The EN-
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50160 focuses on voltage characteristics of public electricity distribution networks [131]. The IEC-61000-

6 is mostly focused on harmonic limits for power quality at the planning level [132].   

The IEC-61000-3-2 and IEC-61000-3-12 are subsets of the second group. They advocate harmonic 

limitations for low-voltage equipment [133]. 

The IEEE-1547-4.3 and IEC-61000-2 are classified under the third group of standards. The IEEE-

1547 defines the requirements for distributed resource (DR) interconnections including harmonic 

distortions in DR applications [134]. The IEC-61000-2 defines harmonic limits for equipment immunity 

in LV and MV installations [135]. Figure  5-1 shows the voltage distortion limits from two different IEEE 

standards. The IEEE-1547 has more restricted limits in comparison to the older standards (IEEE-519). 

 
Figure ‎5-1 Harmonic current limits in accordance to IEEE519 and IEEE1547   

5.3. Principle Factors for Harmonics Analysis in Distribution Networks 

5.3.1. Architecture of Harmonic Analysis 

In order to conduct harmonic analysis in power systems, the harmonic current propagation in circuits 

needs to be calculated. The fundamental frequency power flow analysis is the base for harmonic 

calculations. The power flow study provides steady-state circuit performance under the normal operating 

condition.  
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In addition to the power flow, the harmonic power flow is conducted to determine harmonic current 

and voltage emissions in the circuit for higher frequencies than the fundamental frequency. The harmonic 

power flow calculation helps in designing harmonic filters to avoid resonance conditions in distribution 

network. 

 To represent harmonic currents in equation (1), harmonic current sources, including magnitude and 

phase angle, are applied. These current sources inject harmonic currents at the location of the harmonic 

source. They are superimposing harmonic currents on top of the fundamental current waveform. The 

degree of voltage distortion depends on the harmonic current source characteristics and current 

propagation inside the distribution network. Harmonic current flow is affected by inductive and capacitive 

impedances, transformers and conductor configurations. 

The major steps of harmonic analysis power flow algorithm used here are as follows: 

Step 1: Initialize the distribution circuit parameters 

Step 2: Run power flow for the fundamental frequency 

Step 3: Modify the circuit for next higher harmonic calculation (change impedances) 

Step 4: Run power flow for higher harmonic order (harmonic power flow) 

Step 5: Store  all power flow results for current harmonic order  

Step 6: Check if the specified maximum harmonic order has been reached. If not, go Step 3.  

If yes, quit. 

Step 7: Calculate harmonic indices 

For the power flow calculation, the Distributed Engineering Workstation software package is used.  

Figure  5-2 depicts the algorithm for the harmonic analysis.  
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Figure ‎5-2 Harmonic Analysis Algorithm  

5.3.2. Physical Network Model and Circuit Topology 

One of the important factors in harmonic propagation is circuit topology. The harmonic simulation 

results are highly dependent on the circuit model. In this study, the circuit is 13.2 kV, Y-connected with 

329 residential and commercial customers. The peak load is 9.5 MVA. The circuit model includes 

unbalanced, multiphase and single phase loads. The circuit contains two sets of three phase harmonic 

sources. Fig. 2 presents the circuit model. 
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Figure ‎5-3 Schematic of distribution network model 

5.4. Simulations, Results, and Discussions 

Harmonic current emission through the distribution network is influenced by a number of factors 

related to the harmonic source and circuit characteristics. In this section, multiple harmonic source 

interactions based on different values of harmonic source magnitudes and angles are analyzed. To 

investigate three phase circuit loading effects on harmonic distortion, two case studies for unbalanced and 

balanced circuit are presented. 

5.4.1. Simulation Assumptions 

There are two 3-phase harmonic sources in the circuit which represent inverters connected to DER 

sources. It assumed that all three phase have the same current magnitudes. The configuration of three 

phase angle sequences used in the analysis is presented in Table  5-1 [129].  
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The inverter technology and DER type are not considered in this research. The research aim is the 

harmonic impact study apart from the harmonic source technology.  

The dominant current and voltage harmonic observed through the simulation are of the 3ed, 5th, 7th, 

9th and 11th orders. Harmonics of higher orders are neglected via their small values. 

Table ‎5-1 Three Phase harmonic Angle Sequence 

Order Frequency Sequence 

0 60 + 

3 180 0 

5 300 - 

7 420 + 

9 540 0 

11 660 - 

 

+ 

B

AC

 

- 

B A

C

 

0 

 

 

5.4.2. Impact of Multiple Harmonic Source Magnitudes 

To show the effects of harmonic current source magnitude on the THD at the substation level, the 

simulation is conducted for different current magnitudes in the range from zero to ten (0, 2, 4, 6, 8, 10) 

amperes for both harmonic sources. The angles follow the sequences in Table  5-1. 

Figure  5-4 and Figure  5-5 show respectively the variation of phase B THDI and THDV at the 

substation as a function of variation of the harmonic current source magnitudes. The HS in plots means 

harmonic source. 
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Figure ‎5-4 Multiple harmonic source THDV for different current magnitudes 

 
Figure ‎5-5 Multiple harmonic source THDI for  different current magnitudes  

Figure  5-4 and Figure  5-5 illustrate that the THD increases with increasing harmonic source 

magnitudes, and that the two sources act together to increase the THD. In Figure  5-4 and Figure  5-5, the 

surface cuts along the X (HS1) and Y (HS2) axes showing the rate of THDI and THDV increase versus 

magnitude of each harmonic source. The HS1 and HS2 slopes for THDI are 2.46 and 2.38 respectively. 

This means HS1 has more impact on total THDI at substation. The HS1 and HS2 slopes for THDV are 
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0.06 and 0.055 respectively. It is similar to the slopes observed with THDI. The IPHV for phase B is 

illustrated in Figure  5-6.  

 
Figure ‎5-6 Multiple harmonic source IPHV for  different current magnitudes  

Figure  5-7 depicts the total power factor calculated values from equation (5-11). The surface in 

Figure  5-7 is descending gradually to lower power factor values as harmonic source magnitudes increase. 

Higher total power factor values mean less loss in the distribution network. 

 
Figure ‎5-7 Multiple harmonic source total power factor for phase A for different current magnitudes 
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The presented results show how two harmonic source magnitudes increment interactively increases 

the total harmonic distortion and energy loss in distribution networks. Simulation results for phase B and 

phase C show the similar trend for THDV, THDI, IPHV and TPF. 

5.4.3. Impact of Multiple Harmonic Source Angles 

In systems with multiple harmonic sources, the injected harmonic current from each source add 

vectorally. Therefore, it is crucial to study the impact of each harmonic source phase angle on the total 

harmonic distortion. To perform a sensitivity analysis against phase angle values, a number of harmonic 

simulations were performed with the phase angles steps for both harmonic sources being varied as 

follows: (0°, 15°, 30°, 45°, 60°, 75°, 90°). These angles steps are added to the phase angle sequences 

presented in Table  5-1. When varying the angles of the harmonic sources, the magnitudes of both 

harmonic sources are maintained at 4 amps. Figure  5-8, Figure  5-9 and Figure  5-10 depict the THDV for 

different phase angle values. 

 

Figure ‎5-8 Harmonic source 1 and 2 THDV for phase A 
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Figure ‎5-9 Harmonic source 1 and 2 THDV for phase B  

 

Figure ‎5-10 Harmonic source 1 and 2 THDV for phase  C 
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Figure  5-8, Figure  5-9 and Figure  5-10 present THDV for each of the three phases. As may be seen 

from these figures, the THDV vs. angle plot for each phase is significantly different than the other phases. 

Reasons for this are the different phase loadings (see Table  5-2), the three phase mutual couplings (see 

Table  5-3), and network topology. Moreover, the portion of single phase lines and underground cables in 

the distribution network affect the harmonic emissions because of the capacitance characteristics of such 

conductors.  

Table ‎5-2 Unbalanced Circuit Loading 

 Ph. A Ph. B Ph. C 

Connected Load (kW) 818.25 429.58 476.29 

Connected Load (kVar) 468.53 254.45 273.17 

Current Flow (Amps) 126.86 67.31 73.29 

 

The distribution network is unbalanced. Its phase loading at the substation is presented in Table  5-2. 

The values are achieved from the power flow analysis at the fundamental frequency. Table  5-2 shows the 

network sequential Thevenin impedance as seen by harmonic source 1 and the harmonic source 2 in the 

circuit. 

Table ‎5-3 Network Thevenin Impedance as Seen by Harmonic Sources 

  0 1 2 

Harmonic 

Source 1 

0 0.8063+ 2.9308j -0.0102+ 0.0138j 0.0086+ 0.0155j 

1 0.0086+ 0.0155j 0.8063+ 2.9308j -0.0102+ 0.0138j 

2 -0.0102+ 0.0138j 0.0086+ 0.0155j 0.8063+ 2.9308j 

Harmonic 

Source 2 

0 1.0368+ 3.6547j -0.0122 +0.0155j 0.0098+ 0.0179j 

1 0.0098+ 0.0179j 1.0368 + 3.6547j -0.0122+ 0.0155j 

2 -0.0122+ 0.0155j 0.0098 + 0.0179j 1.0368+ 3.6547j 
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The THDV surface shapes are similar to the hyperbolic geometrical functions. Figure  5-8 shows the 

THDV for phase A. It is a semispherical cliff with the minimum values at zero phase angles for both 

sources. The maximum values achieved with 90 ° phase angle in both sources (THDV=1.27). Figure  5-9 

presents THDV for phase B. It is a saddle-shaped surface with saddle point at 45° phase angle in both 

sources (THDV=0.799), the maximum THDV values happen in 0° and 90° angles for both sources. 

Figure  5-10 is similar to a hemispherical plane with its maximum at 45° phase angle for both sources 

(THDV=1.1). 

Figure  5-11, Figure  5-12, and Figure  5-13show the THDI surfaces for the phases at the substation for 

the variation over the harmonic source phase angles.  

 

Figure ‎5-11 THDI for phase A for different angles 



86 
 

 

Figure ‎5-12 THDI for phase B for different angles 

 

Figure ‎5-13 THDI for  phase  C for different angles 

Figure  5-11 especially has interesting characteristics. There is a canyon on the surface where the 

THDI values are almost zero. In those near zero points, the harmonic sources cancel out each other and 
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cause the minimum current harmonic distortion. It is an important observation for harmonic distortion 

cancelation in mutli-source harmonic analysis. Table  5-4 shows the near zero points (minimum THDI 

points) for phase A that the canyon in Figure  5-11 passes through. 

Table ‎5-4 THDI Cancelation for Phase A with Different Phase Angles 

 
H Source 1. 

Angle (Deg) 

H Source 2. 

Angle (Deg) 

Delta 

Angle 
THDI (%) 

Min THDI 1 30 90 - 60 0.074 

Min THDI 2 45 75 - 30 0.049 

Min THDI 3 60 60 00 0.042 

Min THDI 4 75 45 + 30 0.039 

Min THDI 5 90 30 + 60 0.043 

 

Figure  5-12 is THDI for phase B. It has semi- hemispherical plane with its maximum at 45° phase 

angle for both sources (THDI=17.23). Figure  5-13 is a semispherical cliff with the minimum values at 

(source 1 phase angle 90° – source 2 phase angle 0°) and (source 1 phase angle 0° – source 2 phase angle 

90°) with THDI = 9.95. The maximum values achieved with 90° phase angle in both sources 

(THDV=16.13). 

The THDV and THDI observations show the maximum distortion values are around 0°, 45°, and 90° 

phase angles.  For these harmonic source angles, the maximum THDV versus phase angle has the 

following trend: (Max THDV- Phase A at 90°, Max THDV-Phase B at 0°, Max THDV- Phase C at 45°). 

A similar trend for THDI is: (Max THDI-Phase A at 0°, Max THDI-Phase B at 45°, Max THDI-Phase C 

at 90°). The presented THD sensitivity analysis shows the harmonic sources’ critical angles for voltage 

and current distortion. It is a helpful tool for harmonic minimization and harmonic control purposes. 

Figure  5-14, Figure  5-15, and Figure  5-16 show the proposed Index of Phase Harmonic for Voltage 

(IPHV) which is defined in (5-10). Because of the contribution of the phase angle in the IPH numerator, 

IPH contains more information than THD. The IPH values are smaller or equal to 1, because of the 

“Triangle Inequality” property in a vector space.  
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Figure ‎5-14 Phase A multiple harmonic source IPHV for different angles 

 

Figure ‎5-15 Phase B multiple harmonic source IPHV for different angles 
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Figure ‎5-16 Phase C multiple harmonic source IPHV for different angles 

Comparing the IPHV surfaces in and THDI and THDV surfaces shows an interesting relationship 

between IPHV, THDV and THDI geometrical representations for each phase. (Compare Figure  5-14 with 

Figure  5-8 plus Figure  5-11), (Compare Figure  5-15 with Figure  5-9 plus Figure  5-12) and (Compare 

Figure  5-16 with Figure  5-10 plus Figure  5-13). The IPHV surface geometry is similar to the summation 

of THDI and THDV surfaces with a different scale.  

Figure  5-14 presents IPHV for phase A. It shows IPHV increases with phase angle increase in both 

sources. The trend is less curvy than the THDV. In Figure  5-15, higher IPHVs occur in smaller phase 

angles.  Its geometrical shape is a mix of THDV and THDI. Figure  5-16 depicts the IPHV for phase C. It 

shows the highest IPHV happens at a 45° phase angle for both harmonic sources. The IPHV observations 

illustrate that IPH has more information than THDI and THDV, because it contains phase and magnitude 

values.  It simultaneously quantifies aspects of the THDI and THDV characteristics in one index. 

Figure  5-17 shows the total power factor (TPF) for phase A. The surface has a semi-hilltop form. 

Higher total power factors means less loss which leads to more profit for distribution network operator.  
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Figure ‎5-17 Multiple harmonic source total power factor for phase A  for different current phase angles 

The maximum total power factor points are presented in Table  5-5. 

Table ‎5-5 Maximum TPF Points for Phase A with Different Phase Angles 

 
H Source 1. 

Angle (Deg) 

H Source 2. 

Angle (Deg) 

Delta 

Angle 
TPF 

Max TPF 1 30 90 - 60 0.871 

Max TPF 2 45 75 - 30 0.871 

Max TPF 3 60 60 00 0.871 

Max TPF 4 75 45 + 30 0.871 

Max TPF 5 90 30 + 60 0.871 

 

Figure  5-18 illustrates TPF for phase B. The TPF plot is similar to a semi-spherical surface with 

minimum value at 30° phase angle for both harmonic sources (TPF=0.8406). The maximum TPF happen 

at (0°, 90°) and (90°, 0°) points with TPF=0.846. 
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Figure ‎5-18 Multiple harmonic sources total power factor_phase B  for different current phase angles 

Figure  5-19 shows TPF values for phase C. It has a saddle-shaped surface. The maximum TPF points 

occurs at (0°, 90°) and (90°, 0°) points with TPF=0.865. 

 
 Figure ‎5-19 Multiple harmonic sources total power factor_phase C  for different current phase angles 
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The presented observations show that considering Total Power Factor (TPF) in addition to the Total 

Harmonic Distortion (THD) provides a better picture of multiple-harmonic sources impacts and 

interactions. The impact of phase angle variation on interactive multiple source harmonic distortion is 

especially helpful for harmonic distortion minimization and power factor improvement.  Any 

improvement in power factor via the multiple harmonic sources’ control has economic value for 

distribution network operators and stockholders.  

It is worthwhile to mention that the presented investigation on harmonic source phase angle variations 

aims to show how phase angle of each harmonic source can impact the overall harmonic distortion at the 

substation (or other locations in distribution network). However, the inverter control and active filter 

design are not subjected in this research. To implement harmonic controller, the power electronic 

constraints for harmonic control and active filter design considerations should be taken into account. 

5.5. Chapter Outcomes and Conclusions  

The domain of harmonic propagation in distribution networks needs to be extended due to the steady 

increase in inverter based components in the smart grid.  In this chapter, the authors evaluate 

multiplesource harmonic distortions with the help of a detailed distribution network model with 

secondary system customer loading modeled. Moreover, a new index, Index of Phasor Harmonics (IPH), 

is proposed for harmonic analysis in multiple harmonic source cases. Several simulations and analysis 

were performed on the distribution network model based on commonly used harmonic indices and the 

proposed IPH index. The main outcomes of this chapter are as follows. 

1) The proposed IPH index presents more information than THD because it incorporates phase angle 

information in addition to the harmonic source magnitudes, which is crucial in multiple harmonic source 

cases. The geometrical visualization approach is used to show the effectiveness of IPH in comparison 

with THDI and THDV.  

2) Multiple harmonic source magnitudes act together to change the harmonic distortion in the circuit. 

In the case of harmonic source magnitude increases, the distortion increases at the substation with 

increases in the harmonic source magnitudes. The harmonic source that is closer to the substation has 

more impact.  

3) Multiple harmonic source phase angles have a more complex impact on harmonic propagation 

because of the vectorial impact of injected harmonic currents. The way that phase angles act together is 

highly dependent on the network topology, mutual conductor impedances and phase balance. The 
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resultant harmonic distortion in the distribution network can increase or decrease due to the deviation of 

phase angles in different harmonic sources. In some cases, phase angles can result in canceling out the 

interactive multiple harmonic source distortion. Moreover, the phase angles that apparently boost 

harmonic distortion need to be observed precisely. In this chapter, the THD and IPH indices along with 

the geometrical data visualization show how phase angle variations affect harmonic distortion. 

4) Phase balance is a significant factor for harmonic emission in distribution networks. In this chapter 

it is demonstrated that phase balance can help reduce harmonic distortion.  

Finally, multiple-source harmonic impact studies can help distribution network planners and 

operators have a better picture of the potential effects of harmonic interactions. 
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Chapter 6 : Topological Assessment of Interactive 

Harmonics from Distributed Energy Resources 

6.1. Introduction 

The advent of Smart Grid is bringing a steady increase in inverter-based components like Distributed 

Energy Resources (DER), energy storage systems, and plug-in electric vehicles. The resultant harmonics 

from DER inverters and the spread of power electronic-based appliances create concerns for power 

system operators and engineers. Harmonic propagation causes distortion in voltage and current 

waveforms in different parts of distribution networks. Harmonics generated by different harmonic sources 

can interact to either increase or decrease the effects of harmonics. 

The harmonic impact on power systems is a well-researched topic. Harmonic measurement and 

filtering in power systems are discussed in [136, 137]. However, existing research mostly considers 

harmonics as a local phenomenon with local effects [64, 138]. There are a few papers that focus on DER 

harmonics [67-69]. Authors in [96, 139] focus on harmonic filter design for DER units. However, the 

proposed solutions are local approaches for controlling each inverter. 

Even less literature investigates the impact of harmonic propagation in distribution networks. Authors 

in [61] proposed a method to find harmonic source locations in distribution networks. However, the 

authors use the Norton equivalent model for the distribution network. [73] analyzes harmonic distortion in 

different distribution transformer types. [74] conducts a sensitivity analysis to find vulnerable buses in 

distribution networks. But, the authors use the Thevenin equivalent model at each bus instead of the full 

topological model of the circuit. [60, 62] show the impact of aggregated harmonics from Distributed 

Generation units in distribution networks. However, they use single-phase equivalent line models and do 

not consider multi-phase line models.  
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The harmonic investigation in this dissertation benefits from the detailed distribution network model 

employed. The model employed has large numbers of single phase, multi-phase, and unbalanced 

equipment and loads.  This detailed model provides for more realistic harmonic propagation simulations. 

This detail of distribution system modeling is not addressed in previous harmonic analysis literature. This 

dissertation seeks to investigate the impact of distribution network topology and phase couplings on 

harmonic propagation more precisely and realistically. 

This dissertation also seeks to investigate the interactions of multiple harmonic sources. The way 

DER inverters can work together to either decrease or increase harmonic distortion throughout the 

distribution network is investigated.  

There are a few papers that consider the impact of phase balance on harmonics [71, 72, 140]. 

However, they are all at the device level. That is, they focus on harmonic and load balancing in 

transformers and inverters. The other novelty of this dissertation is analyzing the impact of phase balance 

on harmonic distortion. 

In terms of harmonic distortion quantization, the Total Harmonic Distortion (THD) is the most 

common index in standards and literature [65, 66]. But, THD is based only on the magnitude of the 

distorted waveforms. In this dissertation a new index is proposed called the Index of Phasor Harmonics 

(IPH).  IPH incorporates both magnitude and phase angle information in evaluating distorted waveforms 

resulting from the interaction of multiple harmonic sources. The advantages of IPH as compared to 

common harmonic indexes are illustrated in case studies. As harmonics from different harmonic sources 

propagate and interact, the interactions can result in harmonics being reduced or increased. This 

dissertation seeks to provide further insight into such interactions.  

The chapter is organized as follows: Section 2 discusses harmonics analysis. Section 3 describes the 

analysis of harmonic propagation from multiple sources and topology and loading effects on harmonics. 

Section 4 presents simulations and results. 
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6.2. Harmonic Analysis Architecture 

The ISM architecture for the harmonic analysis is illustrated in Figure  6-1. 
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Figure ‎6-1. Architecture of Harmonic Analysis 

The data layer contains data interfaces for the distribution network model. The measurements, 

component parameters, customer information, and operational signals, like distribution network operator 

commands, are attached to the ISM model. The ISM is explained in section 2.1. The customer 

information includes customers’ class and time varying load data.  

The harmonic assessment algorithm first uses power flow analysis to calculate the fundamental 

voltage and current waveforms. Then, the circuit is modified to represent the next higher frequency to be 

analyzed. The circuit modifications involve revising the network component impedances and the 

harmonic current injections for the harmonic order to be analyzed. Next the power flow runs to determine 

the harmonic current and voltage emissions in the circuit for the given harmonic order. This type of 

analysis is continued until all harmonic orders to be analyzed are completed. 

Harmonics are affected by configuration, impedance, and loading of conductors, transformers, and 

other circuit components. Figure  6-2 illustrates the flow of the harmonic assessment algorithm. 
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Figure ‎6-2. Flow chart for Harmonic Assessment   

For the power flow calculation, the Distributed Engineering Workstation (DEW) software package is 

used. The “Power Flow Data Storage” stores fundamental and higher order harmonic power flow results 

that are used to calculate harmonic assessment indices. In the work here, hmax is 11 and the odd 

harmonic orders are taken into account.   

6.3. Topological Analysis of Harmonic Propagation from Multiple Sources 

Harmonic propagation in distribution networks with a number of harmonic sources, like DERs, 

depend on a number of factors related to harmonic sources and distribution network characteristics. In this 

section the impact of harmonic source phase angle on harmonic propagation with multiple sources is 

addressed. In addition, how network topology, variations in harmonic phase angle injections, and load 

balance impact harmonic propagation are investigated.  
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6.3.1. Salient Features of Simulation 

The research objective is the harmonic impact study apart from the harmonic source technology.  

There are two 3-phase harmonic sources in the distribution network.  All phases of the harmonic sources 

have the same magnitudes. The harmonic magnitudes are based on measurement data from field tests as 

shown in Figure 6-3.  The dominant current and voltage harmonic observed through the simulation are of 

the 3rd, 5th, 7th, 9th and 11th orders. Harmonics of higher orders are neglected due to their small values.  

The phase rotation sequences of the harmonic source phase angles are presented in Table  6-1, where 

positive, zero, and negative sequence rotations are indicated with +, 0, and -, respectively. 

 
Figure ‎6-3. Harmonic source magnitudes from field measurement data 

Table ‎6-1 Three Phase harmonic Angle Sequences 

Order Frequency Sequence 

0 60 + 

3 180 0 

5 300 - 

7 420 + 

9 540 0 

11 660 - 
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In this chapter, a geographically based, full-topology model is applied as shown in Figure  6-4. The 

circuit is 13.2 kV with 329 residential and commercial customers. The peak load is 9.5 MVA. The model 

contains unbalanced, single phase and multi-phase loads, and includes distribution transformers. The two 

harmonic sources studied are indicated with triangular symbols. The harmonic calculations are presented 

at two points indicated by arrows in Figure 1. The first point is the substation, and the second point is at 

the secondary of a distribution transformer between the two harmonic sources. 

 

Figure ‎6-4. Schematic of distribution network model used for studying interactions of multiple harmonic sources,  

Triangle indicate locations of harmonic sources and arrows indicate locations where harmonics are evaluated. 

6.3.2. Impact of Phase Angle Variation on Harmonic Emission Interactions 

In systems with multiple harmonic sources, the harmonic distortion interactions are impacted by the 

vectorial characteristics of the injected harmonic currents. The impact of each harmonic source’s phase 

angle is investigated in this section. For sensitivity analysis purposes, harmonic source phase angles vary 

as follows: (0°, 15°, 30°, 45°, 60°, 75°, 90°). These steps in angle are added to the phase angle sequences 
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presented in Error! Reference source not found.. When varying the phase angles of the harmonic 

sources, the magnitudes of both harmonic sources are maintained as given in Figure  6-3. Figure  6-5 

shows THDV for different phase angle values at the substation point for each of the three phases. 

As illustrated in Figure  6-5, there are significant differences between THDV for the different phases. 

One reason for the variation of THDV is the different phase loading as presented in . Three phase mutual 

coupling is another reason for the difference in the harmonic current propagations. Also, the network 

topology impacts the harmonic propagation. For example, the portion of single phase lines and 

underground cables in the distribution network affects the harmonic emissions because of the capacitance 

characteristics of such conductors. The impact of network topology will be discussed in following 

sections. 

Table ‎6-2. Unbalanced circuit loading at substation 

 Ph. A Ph. B Ph. C 

Connected Load (kW) 818.25 429.58 476.29 

Connected Load (kVar) 468.53 254.45 273.17 

Current Flow (Amps) 126.86 67.31 73.29 

 

The THDV surface plots in Figure  6-5 are similar to hyperbolic geometrical functions. Figure  6-5-A 

shows THDV for phase A with a semispherical cliff with the minimum values at zero phase angle for 

both sources. The maximum values are achieved with 90° phase angle for both sources (THDV=1.596). 

For Phase B, Figure  6-5-B, the saddle-shaped surface has the saddle point at 45° phase angle in both 

sources (THDV=0.873), and the maximum THDV values occur at 0° and 90° for both sources. Phase C 

has a hemispherical plane with its maximum at 45° phase angle for both sources (THDV=1.484). 

Observations show that the phase angles of the two harmonic sources affect the minimum and maximum 

THDV points at the substation. 
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(A) 

 
(B) 

  
(C) 

Figure ‎6-5. THDV for phase A (fig. A), B (fig. B), and  C (fig. C) as a function of harmonic source 1 (HS1) and 

harmonic source 2 (HS2) phase angles. 
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The THDI surfaces in Figure 6.6 illustrate that the first harmonic source has a larger impact on the 

harmonic current distortion at the substation. This observation reflects that the first harmonic source is 

closer to the substation than the second harmonic source. In Figure 6.6-A, the maximum THDI occurs at 

0° for the first harmonic source and 90° for the second harmonic source. There is a canyon on the THDI 

surface for points with minimum THDI values at 45° for the first harmonic source. Finding points with 

minimum harmonic current distortion is important for harmonic control. At these points, the harmonic 

source contributions cancel each other out and cause the minimum current harmonic distortion. The 

THDV and THDI sensitivity analysis shows that the extreme points occur around 0°, 45°, and 90° phase 

angles. 

The THDI and THDV minimum and maximum points are different, as are shown in Figure  6-5 and 

Figure 6.6. Relying on THDI and THDV brings more complexity to harmonic control in terms of 

focusing on voltage or current distortion. THDI and THDV are only based on harmonic source 

magnitudes.  The IPHV index (equation 9) results are presented in Figure  6-7. 

The IPHV geometrical variations for all phases show more correlation with the THDV surfaces in 

Figure  6-5 and THDI surfaces in Figure 6.6. However, the maximum IPHV area for each phase is shifted 

slightly from the high THDV area to the high THDI area. Because the IPHV incorporates phase angle 

information, it is based on more information than THDV or THDI and this is reflected in the figures.  
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(D) 

 
(E) 

 
(F) 

Figure ‎6-6.THDI for phase A (fig. A), phase B (fig. B), and phase (fig. C) as a function of harmonic source 1 (HS1) 

and harmonic source 2 (HS2) phase angle. 
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(A) 

 

(B) 

 

(C) 

Figure ‎6-7, IPHV values for harmonic source 1 and 2 for different phase angles: Phase A (fig.A), Phase B (fig.B), and 

Phase C (fig. C). 
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The IPHV observation for phase A, Figure  6-7-A, shows more distortion around 90° phase angle for 

both harmonic sources. In phase B, Figure  6-7-B, the higher distortion area is extended to 0°-45° for both 

harmonic sources. The IPHV for Phase C, Figure  6-7-C, shows high distortion near 90° for both harmonic 

sources, as is in the THDI. 

6.3.3. Impact of Network Immittance on Harmonic Interactions 

Distribution network multi-phase structures, connection types, unbalanced loading and variety of 

equipment in some ways make for more complexity than transmission networks. The Thevenin equivalent 

impedance as seen by harmonic sources is applied in this section for sensitivity analysis purposes. 

The Phase Thevenin Matrix (PTM) is a 3x3 matrix. It is derived by numerical approaches presented 

in [141]. To achieve the PTM, a test load is attached between phase and ground in grounded nodes and 

between two phases in ungrounded nodes. For each test load attachment, power flow is calculated to 

obtain voltage and current changes caused by the coupling between the phases and the connection point 

phase. The PTM is  

 [

   
   
   

]  [

         
         
         

 ]   [

   
   
   

]                                                    (   ) 

  ̅         ̅                                                                                (   ) 

where the diagonal elements represent, zii, self-impedance of each phase and off-diagonal elements, zij, 

represent coupling between phases i and j. Equation (13) is the matrix form of (12). The PTMn is the 

calculated Thevenin impedance at node n. I and V are the three phase current and voltage vectors. The 

Thevenin impedance matrixes in this section are in the form of ABC impedances. The PTM impedance 

seen by harmonic sources are as follows: 

       [

                                              
                                             
                                             

 ] 
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       [

                                              
                                             
                                             

 ] 

 

As illustrated in Figure  6-4, the second harmonic source is farther from the substation. Figure  6-8 

shows a schematic of the three-phase system equivalent PTM.  
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Figure ‎6-8. Three-phase system PTM equivalent 

The PTM depends on network topology and three phase coupling. To analyze the impacts of three 

phase network impedance on harmonic propagation, the PTM is calculated for four cases. The first case 

neglects the admittance terms in conductor lines. The shunt admittance of overhead lines is usually small 

and can be neglected [29]. The second case neglects mutual coupling elements in the PTM impedance. 

The PTM impedance matrix is diagonal in this case. The PTM impedance calculation in this case reduces 

the impact of topology on the harmonic propagation. The third case considers balanced impedance values 

for three phases. The last case calculates the PTM without the previously mentioned simplifications. 

Table  6-3 shows the PTM impedance as seen by the first harmonic source for the four cases. 

Figure  6-9 shows the THDV for the four cases of Table  6-3 at the substation. The phase angle for 

harmonic source 1 varies from 0° to 90° and phase angle for the second harmonic source is maintained at 

0°. Figure  6-9 shows that case 2, which ignores mutual coupling, has less voltage distortion than the other 



107 
 

cases. Cases 1 and 3 have very close THDV results. However, case 4, the complete model, has slightly 

less THDV values than cases 1 and 3. 

Table ‎6-3, PTM values for different cases 

Case  Description PTM for HS1 

1 
Neglect Shunt 

Admittance 
[

                                              
                                              
                                             

 ] 

2 
Neglect Mutual 

Coupling 
[

                  
                 
                 

 ] 

3 
Force Balanced 

Impedances 
[

                                              
                                             
                                             

 ] 

4 
Complete Model 

Values 
[

                                              
                                             
                                             

 ] 

 

Figure  6-10 shows the THDI for presented cases in Table  6-3, PTM values for different cases. For 

THDI values, case 2 has the highest THDI. Similar to the THDV values, cases 1 and 3 have very close 

THDI values. However, case 4 is less than cases 1 and 3. The presented THDV and THDI values show 

that for this circuit ignoring admittance to simplify the PTM calculation does not make a big change in 

THDI and THDV values. Moreover, forcing balanced values for the three phases impedance matrix as in 

case 3 does not make a big change, because harmonic source 1 is connected to the three phase line and the 

three phase conductors from the harmonic source to the substation have similar specifications in terms of 

length and conductivity.  But case 2 shows that the phase coupling values cannot be ignored due to the 

considerable differences from the original case (case 4) in THDV and THDI achieved in the case 2 

simulations. 
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(A) 

 
(B) 

 
(C) 

Figure ‎6-9.  THDV for phase A (A), phase B (B), phase C (C) for different Thevenin impedance calculation cases 
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(A) 

 
(B) 

 
(C) 

Figure ‎6-10. THDV for phases A (A), B (B), and C (C) for different Thevenin impedance calculation cases 
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6.3.4. Single Phase Harmonic Sources and Mutual Coupling Effects 

In this section, harmonic sources attached to one phase are analyzed to determine the impact on other 

phases.  The single phase harmonic sources are located at the same place as the three phase harmonic 

sources (see Figure  6-4).   THDV and THDI are calculated at the substation. With harmonic current 

injections in only one phase, THDV and THDI indices for the other phases than the phase with the 

harmonic source are almost zero. However, mutual couplings do cause distortion in coupled voltage and 

current waveforms, but these are not reflected in the THDV and THDI indices. The IPHI index does 

provide non-zero harmonic distortion values for coupled phases.  

Figure  6-11 depicts the statistical comparison of IPHI at the substation for the three phase harmonic 

source and the harmonic source considered in each phase separately.  In Figure  6-11, the IPHI values for 

different phase angles (0° to 90°) of both harmonic sources are classified as a data set presented in the 

form of a Box Plot. The Box Plots show minimum, maximum, mean, and median values of IPHI 

calculated over the different phase angles. In Figure  6-11-A, IPHI is measured in phase A. For cases of 

three phase harmonic sources and phase A harmonic sources, the IPHI values are very similar. IPHI 

values for phase B and phase C are less than phase A, however they are not zero. In Figure  6-11-B and C 

there is a similar situation for phases B and C, respectively. The greater distance between the minimum 

and maximum values of IPHI  in phase C shows that phase C has more sensitivity than the other phases to 

the harmonic source phase angle variations.   

These types of sensitivity analyses are not possible with THDV and THDI indices because of the 

extremely small values of THD in the coupled phases that do not contain the harmonic source. 
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(A) 

  
(B) 

 
(C) 

Figure ‎6-11. BoxPolt for IPHI values with different harmonic source phase angles. Figure A is for the harmonic 

source injections in only phase A, Figure B is for the harmonic source injections in only phase B, and Figure C is for the 

harmonic source injections in only phase C. 
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6.3.5. Phase Balance and Harmonic Propagation 

Phase balance affects harmonic propagation due to the change in power flow and the interphase 

couplings [30]. Phase balancing results in neutral current reduction and a decline in third harmonic 

currents [31]. In this section the impact of phase balancing on harmonic distortion is analyzed with the 

help of THDV, THDI and IPHV indices. Table 6-4 shows the substation loading before and after phase 

balancing. 

Table ‎6-4. Three phase lording in substation level before and after phase balance 

Currents at Substation 
Ph. A 

(Amp) 

Ph. B 

(Amp) 

Ph. C 

(Amp) 

Before Phase balance 126.86 67.31 73.29 

After Phase balance  93.52 84.03 90.46 

 

The phase balancing in this study includes re-phasing single-phase or double-phase laterals in the 

case study circuit model. After performing phase balancing, part of phase A lateral branches moved to 

phase B and C. There are totally 9 phase moves to balance the circuit. Figure  6-12 depicts phase moves 

and their location in the distribution network. Phases are indicated in the figure with different colors. 

Locations in the circuit where phase moves occurred are numbered, and the associated graphic indicates 

the phase move that occurred at each numbered location.  The arrows represent phase movements in 

different branches of the circuit. The arrows are colored based on phase changes (phase A -> green, phase 

B -> blue, phase C-> yellow). 



113 
 

 
Figure ‎6-12. Phase movements for circuit phase balance 
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The substation THDV comparison of balanced and unbalanced circuit is presented in Figure  6-13. 

The THDV shows a small decrease for the balanced circuit.  

 
Figure ‎6-13.  THDV for balanced and unbalanced circuit 

The THDI calculations are presented in Figure  6-14. There is a decline in THDI for phases B and C, 

but phase A has an increase in THDI. However, the maximum THDI for the unbalanced case is 16.79 in 

phase B, and for the balanced case the maximum THDI is 13.42 in phase A.  Thus, the maximum THDI 

over all of the phases decreased from the unbalanced case to the balanced case. 

 
Figure ‎6-14.  THDI for balanced and unbalanced circuits 
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As illustrated in Figure  6-13 and Figure  6-14 , THDV and THDI have different trends in phase 

balance. The visual observation of THDI could create doubts about the positive impact of phase balance 

on harmonic distortion.  Table  6-5 presents the IPHV calculation for the balanced and unbalanced circuit.  

Table ‎6-5.  IPHV calculations for balanced and unbalanced cases 

IPHV Ph. A Ph. B Ph. C 

Balanced Circuit 0.99990 0.51432 0.50107 

Unbalanced Circuit 0.99994 0.51608 0.49953 

Δ IPHV (Bal- UnBal) - 0.00004 - 0.00176 + 0.00154 

Σ (Δ IPHV) = - 0.00026    

 

Table  6-5 shows that the change in IPHV from the balanced case to the unbalanced case for Phase A 

and phase B have a negative IPHV, and phase C has a positive IPHV. The sum of the changes in IPHV 

shows a net decrease in harmonic distortion. Such a calculation cannot be performed with THDV and 

THDI.    

6.3.6. Harmonic Distortion Levels at Customer Loads 

To demonstrate the harmonic distortion at different locations of the circuit, harmonic calculations are 

conducted at a customer load (secondary of distribution transformer) in this section. The measurement 

point is illustrated in Figure  6-4. The customer side measurement point is between the harmonic sources. 

Figure  6-15 shows THDV values at the substation and at a customer load.  

Figure  6-16 presents the THDI values at the substation and at a customer load. It shows the substation 

experiences more distortion in current than the customer load. However, the customer load is exposed to 

higher harmonic voltage distortion. To explain these results, Figure  6-17 depicts the equivalent circuit 

with measurement points and harmonic sources. 
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(A) 

 
(B) 

 
(C) 

Figure ‎6-15. THDV at the substation and a customer load point for each of the phases 
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(D) 

 
(E) 

 
(F) 

Figure ‎6-16. THDI at the substation and a customer load point for each of the three phases 



118 
 

Since the impedance looking back into the substation is much smaller than the customer load 

impedance, a higher portion of harmonic currents flow to the substation than to the customer site. 

Therefore, the substation has more THDI. In this case study, the voltage distortion is larger at the 

customer load. Voltage is the product of impedance and current. The customer load impedance is much 

larger than the impedance of the path to the substation. The current through the load side is less, but the 

product of current and impedance for the customer side is higher than for the substation side. Therefore, 

more voltage distortion is realized at the customer side. This observation is illustrated in Figure  6-17. 
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Figure ‎6-17.  The harmonic current distribution between load and substation 

6.3.7. Chapter Conclusions and Observations 

In this dissertation, the impact of distribution network topology on interactive harmonic distortion 

from multiple harmonic sources is investigated. A detailed model of the distribution network is employed 

in the harmonic analysis. Several simulations and sensitivity analyses are presented that consider 

commonly used harmonic indices and a new proposed index that takes into account information 

concerning angle differences. The major outcomes and uniqueness of this dissertation are: 
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1) Understanding the way that multiple harmonic sources interact to increase or decrease the 

harmonic distortion is crucial to minimizing harmonic problems in distribution networks and microgrids 

with large numbers of Distributed Energy Resources. 

 2) The new proposed index, IPH, provides more information than THDV and THDI in the sensitivity 

analysis conducted in this chapter. IPH considers the phase angles of the distorted voltage and current 

waveforms in the harmonic quantization, and the phase angle plays a significant role in the interactions of 

the harmonic sources. 

3) Phase angles of harmonic sources have complex impacts on the overall harmonic distortion 

because of the vectorial summation of the injected harmonic currents. The phase angle impacts also vary 

with the distribution network topology and components characteristics. In some cases, phase angle 

variations of different harmonic sources result in reduced harmonic impacts. However, phase angle 

variations that increase harmonic distortion need to be understood.   

4) The detailed circuit model employed paves the ground for the topological sensitivity analysis 

performed. Single phase, multiphase, and unbalanced loads in addition to the three phase conductors’ 

model help to demonstrate realistic harmonic propagation in distribution networks.  

5) The impact of phase balance on harmonic propagation in the distribution network is analyzed via a 

number of simulations. The results demonstrate that phase balancing can have a positive impact on 

harmonic reduction in distribution networks. 

6) In quantizing the impact of single phase harmonic sources on other phases than its own phase, 

THDV and THDI values are very small. But, the equivalent Thevenin impedance analysis shows that the 

mutual coupling creates harmonic propagation in all phases. The proposed IPHI index is helpful in 

quantizing harmonic distortion in all phases with single phase harmonic sources present. 
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7) Harmonic impacts on customer loads and at the substation are evaluated. The THD observation 

shows more current distortion at the substation than at the customer load.  However, more harmonic 

voltage distortion is experienced at the customer load. In harmonic studies and in making harmonic 

measurements, harmonic values should be considered throughout the circuit. 
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Chapter 7 : Conclusions and Future Work 

7.1. Conclusions  

The advent of smart grid brings new trends to power systems, like distributed renewable energy 

resource integration, electric vehicles, decentralized management and control, and deregulation of 

electricity markets. The need for modern electricity infrastructures and more capable grid components 

brings attention to distributed energy storage systems because of their bidirectional power flow capability. 

This dissertation focuses on three different aspects of distributed energy storage system applications in 

distribution networks. It starts with flywheel energy storage system modeling and analysis for application 

in microgrid facilities. Then, a market-based optimal controller is proposed to enhance the operational 

profit of distributed energy storage devices in distribution networks. Finally, impact of multiple 

distributed energy storage devices on harmonic propagation in distribution networks is investigated. 

The first task of the dissertation (Chapter 3) is devoted to investigating energy storage technologies 

for ride-through applications in facility microgrids, and in particular comparing batteries with flywheels. 

The major outcomes of this section can be summarized as follows: 

 This dissertation presents a comparison between batteries and flywheels for critical microgrid 

facilities like data centers. Literatures and manufacturer documents show flywheels have 

higher efficiency, less footprint and longer life cycle than batteries. This is to account for the 

fact that the life of flywheels is estimated at 20 years, whereas that life of batteries is 

estimated at three to five years [79]. Although the initial capital cost of the flywheel is more 

that of the battery of equivalent size, the 20-year life cycle cost calculation shows that 

flywheels have less cumulative ownership cost than batteries after three to four years.   

 Conventionally, backup power units consist of batteries and diesel generators. Batteries 

handle critical loads before diesel generators startup. The conducted simulations demonstrate 
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that, flywheels in combination with micro generators, are a better fit for critical microgrid 

facilities in spite of their shorter discharging time. The 15-minute ride-through time of 

batteries is not needed because the common practice in data centers is that micro generators 

start within 5-6 seconds after an outage. Therefore, a flywheel with 15-30 seconds ride-

through time is sufficient for data center applications.  

 The conducted simulations demonstrate how a 750kW FES in conjunction with a diesel 

generator improves the load serving capability, providing a highly reliable ride-through 

capability for a data center in Virginia. Data centers cannot tolerate even a momentary 

interruption. The analysis shows flywheels can handle critical loads in milliseconds which is 

faster than equivalent size batteries. Moreover, simulations show that flywheels can 

significantly decrease the system frequency deviation during diesel engine start-up. 

 In comparison with batteries, the application of FES for power security is new. This limits the 

availability of experimental data. The software tool developed in this dissertation enables 

analysis of short-term ride-through applications of FES during an islanded operation of a 

facility microgrid. As a result, it can provide a guideline for facility engineers in data centers 

or other types of facility microgrids to design their backup power systems based on FES 

technology. The proposed tool includes a library of available commercial FES systems. The 

user can also create any customer-defined flywheels by entering appropriate mechanical and 

electrical parameters. 

 

The second task of the dissertation (Chapter 4) focused on optimal economic operation of community 

energy storage systems. The outcomes of this task are: 

 CES has the potential to improve capacity, efficiency and reliability of distribution circuits. 

Since, CES units are located at the secondary of distribution transformers, they provide more 

controllability and quality of services for utilities. Peak shaving and renewable energy 
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resource firming are also of financial interest. This dissertation presents a real-time control 

scheme that maximizes the revenue attainable by energy storage systems without sacrificing 

the benefits related to improvements in reliability and reduction in peak feeder loading.  

 This dissertation presents a means of realizing additional benefits for utilities by taking 

advantage of the fluctuating cost of energy in competitive energy markets. By combining 

electricity market information with real-time control of energy storage devices, utilities may 

enjoy year-round economic benefits from the CES market-based operation. Simulations using 

real-time LMP pricing show market-based operation of CES units can provide up to $180 per 

month profit per CES unit for utilities in addition to the reliability and grid support benefits.  

 In this dissertation, a novel combination of trade-offs related to transformer loading, feeder 

loss, and LMP price prediction is considered that is not addressed in other literature. In terms 

of distribution transformer loading associated with a CES unit, the conducted analyses shows 

that greater profits can be realized by placing the CES units on more lightly loaded 

transformers. When the load is higher, more energy must be saved in case of an outage, so 

there is lower availability for participation in the electricity market, resulting in smaller 

profits. The simulations show that increasing transformer loading from 10% to 40% leads to a 

50% drop in monthly benefit for each CES unit operation. 

 The dissertation analysis shows that the CES operational profit is highly dependent on the 

accuracy of the LMP prediction and load forecasting. If market operators provide more 

accurate day-ahead market prices, CES is able to take more advantage of fluctuations in 

market prices. The analysis presented in this dissertation shows that the monthly profit of 

each CES unit can improve up to 45% with accurate LMP forecasting. 

 The conducted simulations illustrate dependency between reliability requirements and CES 

operational profits. The utility can achieve longer outage recovery with storing more energy 

in CES units. The reserve capacity of CES units can be based on a fixed reserve energy level 

(static reserve capacity) or specific time duration of outage serving (dynamic reserve 
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capacity). The presented optimization solution shows that higher reserved energy in CES 

units for outage recovery means less energy is available for market participation. Based on 

analysis for static reserve capacity, increasing reserve energy from 10 kWh to 20 kWh in 

each CES units can result in a 15% decline in monthly operational profits for each CES unit. 

For dynamic reserve capacity, analysis shows that increasing the number of supported hours 

from 2 to 5 hours decreases the CES monthly profit around 35%. 

 This dissertation uses a detailed, multi-phase model of the distribution network that considers 

all circuit components, including distribution transformers and secondary distribution. The 

detailed network model is needed to schedule community energy storage (CES) units based 

on the customer loads and the loading of transformers associated to each CES unit. This 

detailed model provides more realistic analysis results than previous studies. Moreover, the 

detailed model helps to investigate the advantage of the proposed optimal control algorithm 

for CES in circuits with a high adoption of Plugged-in Electric Vehicles (PEV) and 

Distributed Photovoltaic (DPV) sources. In the case of high levels of PEV adoption, CES 

prevents the distribution transformers from overloading. Moreover, DPV source penetration 

are addressed in case studies. The results show that the proposed optimal control system can 

improve the distribution network operational profit with a combination of DPV and CES 

adoptions. 

The third task of the dissertation (Chapters 5 and 6) investigates harmonic interactions from multiple 

inverter-based Distributed Energy Resources (DER) like PV and CES. The outcomes of this part of 

dissertation are as follows: 

 In this dissertation, the impact of distribution network topology on harmonic propagation due 

to the interaction of multiple harmonic sources is investigated. Understanding how multiple 

harmonic sources interact to increase or decrease the harmonic distortion is crucial in 

distribution networks with a large number of Distributed Energy Resources. Through a 
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number of analyses, this dissertation shows how harmonic distortion at substations or at the 

customer side can go beyond the standard levels or can drop due to multiple harmonic source 

interactions. 

 In this dissertation, a new index, Index of Phasor Harmonics (IPH), is proposed for harmonic 

analysis in multiple harmonic source cases. The proposed IPH index presents more 

information than Total Harmonic Distortion (THD) and Individual Harmonic Distortion 

(IHD) because the IPH incorporates phase angle information in addition to the harmonic 

source magnitudes. A number of simulations and analyses are performed on the distribution 

network model to show IPH advantages in comparison with conventional harmonic 

quantization indices. For example, mutual coupling causes distortion in coupled voltage and 

current waveforms, but these are not reflected in the THDV and THDI indices. The IPHI 

index does provide non-zero harmonic distortion values for coupled phases. 

 This dissertation investigates the correlation between magnitude and phase angle variations of 

harmonic sources and overall harmonics propagation. The analysis shows that multiple 

harmonic sources act together to change the harmonic distortion in the circuit. In the case of 

harmonic source magnitudes, the harmonic distortion increases at a different rate than that of 

each of the harmonic source magnitude rates. Phase angles of harmonic sources have 

complex impacts on the overall harmonic distortion due to the vectorial summation of the 

injected harmonic currents. Phase angle impacts also vary with the distribution network 

topology and component characteristics. In some cases, phase angle variations of different 

harmonic sources result in reduced harmonic impacts. However, phase angle variations that 

increase harmonic distortion need to be understood. 

 The simulations demonstrate that the substation and customers experience different impacts 

from the interactions of multiple harmonic sources. THD observations show more current 

distortion at the substation than at the customer load.  However, more harmonic voltage 

distortion is experienced at the customer load.  
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 The impact of three phase balance on harmonic propagation in the distribution network is 

analyzed in this dissertation. The THD and IPH calculations show that phase balance has a 

positive impact on harmonic reduction in distribution networks. 

 The detailed circuit model employed in the analysis paves the ground for the topological 

sensitivity analysis performed. It provides for more realistic harmonic propagation analysis. 

The detailed mode helps in investigating harmonic propagation between phases in different 

locations of the circuit. Moreover, the applied model facilities impact studies based on phase 

balance.   

 

7.2. Future Work 

The presented results and observations in this dissertation are starting points for further research and 

investigations related to distributed energy resource adoption and operation in distribution networks. The 

research is a combination of distribution network modeling and topology, energy storage, optimization 

and control techniques, electricity market-based operation, distributed energy resources and harmonic 

propagation. This dissertation points to future work as follows: 

1) Flywheel technology application in distributed energy storage system for ancillary services in 

distribution networks 

2) Analyzing the field test data for community energy storage to improve the capability of economic 

operation in real condition for islanding and grid connected modes 

3) Participating in day ahead market bidding with aggregated community energy storage systems 

4) Considering reliability cost in the objective function for CES optimal operation 
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5) Investigating the impact of volt-var control devices like voltage regulator and switchable capacitor 

banks on harmonic propagation  

6) Developing an active harmonic filtering system for each DER to minimize overall harmonics at the 

substation  
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