Photophysical Properties of Anthracenic Metal Organic Frameworks

Jennifer Marie Hay

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science
In
Chemistry

Amanda J. Morris, Chair
Karen J. Brewer
Brian E. Hanson

September 24th, 2014
Blacksburg, VA

Keywords: Luminescence, Metal Organic Frameworks, Photophysics
Photophysical Properties of Anthracenic Metal Organic Frameworks

Jennifer Marie Hay

Abstract: Luminescent metal organic frameworks (MOFs) are promising new materials with applications as sensors, photocatalysts, and other luminescent devices. Although MOFs retain the chemical and physical properties of their constituents, the properties of the MOF are often altered from those of its building blocks, making rational design and synthesis difficult.

Anthracene is a polycyclic aromatic hydrocarbon whose photophysical properties have been found to be easily tuned through structural modifications. The tunability of anthracene makes it an ideal candidate for use in luminescent devices, such as photoprobes and organic light emitting diodes.

MOFs designed with π conjugated molecules like anthracene ligands possess similar photophysical properties such as absorption and fluorescence in the UV and visible spectrum. In hopes of better understanding how the photophysical properties of the organic ligand is altered upon incorporation into a MOF, the spectroscopic properties of anthracenedicarboxylic acids were studied before and after integration into zinc based MOFs.

Steady state and time resolved measurements were performed on three anthracenedicarboxylic acids: 9,10-anthracenedicarboxylic acid, 2,6-anthracendicarboxylic acid, and 1,4-anthracenedicarboxylic acid. The position of the carboxylic acid groups on anthracene was found to effect the position and structure of the absorption and emission spectra. The difference in the spectra is attributed to the
perturbation by the acid groups on certain electronic transitions with dipole moments across two of the three axes of anthracene. The position of the acid groups had different effects on the fluorescence quantum yields and lifetimes of the three anthracenic acids studied.

Two of the linkers were synthesized into MOFs through a solvothermal reaction with zinc nitrate, to form PCN-13, from 9,10-anthracenedicarboxylic acid, and [Zn(C16H8O4)(H2O)]n, from 2,6-anthracenedicarboxylic acid. The luminescent properties of the two MOFs were studied and compared to those of the free based linker. Incorporation of the luminescent anthracenedicarboxylic acids into Zn based MOFs were found to either increase or decrease the luminescent properties of the ligands.
Author’s election of Open Access Publishing PLUS as the Type of Publishing confirms Author’s choice to have ProQuest/UMI publish the Work according to the Open Access Publishing PLUS option described here.

Open Access Publishing PLUS. In addition to the rights granted under Section I of this UMI® Publishing Agreement, ProQuest/UMI may reproduce, distribute, display and transmit the Work in electronic format in the ProQuest Dissertations & Theses database, where it may be made available for free download. A subset of the ProQuest Dissertations & Theses database, currently known as PQDT Open, may be accessed by the academic community as well as through major search engines and open access harvesters. ProQuest/UMI may also provide an electronic copy of the Work to Author’s degree-granting institution where it may also be posted for free open access. Learn more: http://www.proquest.com/en-us/products/dissertations/opa.shtml

Copy Sales. ProQuest/UMI and its agents and distributors may offer copies of the Work for sale in tangible media, including but not limited to microform, print and CD-ROM, as well as in electronic format either individually or as part of its electronic database and reference products and services. No royalties shall be due to Author.

Publishing Fees. Author’s payment of the additional Open Access Publishing PLUS fee is a one-time, up-front fee in addition to the UMI® dissertation or thesis publishing fee. Author’s institution may assess additional fees to be collected along with the Open Access and publishing fee.

Section III. Publishing Options & Signature

Select the publishing options below that best fit your interests and scholarly publishing obligations.

Traditional Publishing
- I want to make my work widely available and I want to be eligible to receive royalties on the sale of my work.
 - I understand that I must maintain a current mailing address with ProQuest/UMI in order to be eligible to receive royalties.
 - I understand that the ProQuest/UMI fee for Traditional Publishing is $25 for Master’s thesis and $25 for Doctoral dissertations.
 - I understand that my graduate institution may pay all or a portion of the total fee as well as may require additional fees in association with my submission to ProQuest/UMI.

Open Access Publishing PLUS
- I want the broadest possible dissemination of my work, and I want to provide free global access to the electronic copy of my work via the Internet.
 - I understand that I will not be eligible to receive royalties.
 - I understand that the ProQuest/UMI fee for Open Access Publishing PLUS of Master’s thesis is $120 and for Dissertations is $120, and that my graduate institution may pay all or a portion of the total fee as well as may require additional fees in association with my submission to ProQuest/UMI.

SELECT PUBLISHING OPTIONS

I want my work to be available as soon as it is published
- Yes
- No – I would like access to the full text of my work to be delayed for the following period of time:
 - 6 month embargo
 - 1 year embargo
 - 2 year embargo

Note: Most institutions have delayed release (embargo) policies, please consult with your Graduate School/Program, if you need to delay the release of your work. Access to the full-text of your work will be delayed for the time period specified above, beginning from the date that we receive your manuscript at ProQuest/UMI. During this time, only your citation and abstract will appear in the ProQuest Dissertations & Theses Database (PQDT).

I want major search engines (e.g. Google, etc...) to discover my work. Learn more: http://www.proquest.com/en-us/products/dissertations/google.shtml
- Yes
- No

I want my graduate work to be sold by third party retailers in addition to ProQuest/UMI. (Note: If Traditional Publishing is chosen above, all sales are eligible to accrue royalties.)
- Yes
- No

Acknowledgment: I have read, understand and agree to this UMI® Publishing Agreement, including all rights and restrictions included within the publishing option chosen by me as indicated above.

REQUIRED Author’s signature ___________________________ Date 10/31/2014
(Print Name) ___________________________

Institution conferring degree: Virginia Polytechnic Institute and State University

Questions: Our Author Relations Team is available by phone at (800) 521-0600 ext.7020 or by email at disspub@proquest.com

Need help selecting a subject heading? Contact our editors at (800)-521-0600 ext. 4883 (Social Sciences/Humanities) or ext. 2209 (Sciences/Engineering)
Dissertation/Master's Thesis Submission Form

Please print clearly in block letters

Personal Information

Last Name Hay
First Name Jenny
Middle Name or Initial Marie
Country (ies) of Citizenship United States

Degree & Dissertation Information

Title of Dissertation/Thesis Photophysical Properties of Anthracene Metal Organic Frameworks
Institution conferring degree Virginia Polytechnic Institute and State University
College, School, or Division College of Science
Department or Program Chemistry
Advisor/Committee Chair Amanda J. Morris
Committee Member Karen J. Brewer
Committee Member Brian E. Hanson

Language of manuscript English
Primary Subject Category: Enter the 4-digit code and category name from Guide 2 that most closely describes the disciplinary area of your research. Code 0485 Category Chemistry

You may suggest two additional subject categories that may aid in the discovery of your work in our digital database.

Code Category
Code Category

You may suggest two additional subject categories that may aid in the discovery of your work in our digital database.

Luminescence Metal Organic Frameworks Photophysics

Current Contact Information

Street Address (line 1) 241 Fairfax Rd.
Street Address (line 2)
City Blacksburg
State/Province VA
Postal Code 24060
Daytime Phone
Evening Phone 434-965-7390

Permanent Contact Information

Street Address (line 1) 425 Cedar Grove Rd.
Street Address (line 2)
City Blacksburg
State/Province VA
Postal Code 22948
Future Phone N/A
Alternate Phone

THIS PAGE MUST ACCOMPANY YOUR MANUSCRIPT AND THE REST OF YOUR SUBMISSION MATERIALS
Attach additional, separate copies of your Title Page and Abstract to this form