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Analysis of the BiCG Method

Marissa Renardy

(ABSTRACT)

The Biconjugate Gradient (BiCG) method is an iterative Krylov subspace method that
utilizes a 3-term recurrence [7]. BiCG is the basis of several very popular methods, such
as BiCGStab [16]. The short recurrence makes BiCG preferable to other Krylov methods
because of decreased memory usage and CPU time. However, BiCG does not satisfy any
optimality conditions and it has been shown that for up to n

2
− 1 iterations, a special choice

of the left starting vector can cause BiCG to follow any 3-term recurrence [8]. Despite this
apparent sensitivity, BiCG often converges well in practice. This paper seeks to explain why
BiCG converges so well, and what conditions can cause BiCG to behave poorly. We use tools
such as the singular value decomposition and eigenvalue decomposition to establish bounds
on the residuals of BiCG and make links between BiCG and optimal Krylov methods.



The dedication is left to the reader as an exercise.
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Chapter 1

Introduction

Krylov subspace methods are a class of iterative methods for solving linear systems that
find approximate solutions in successively larger Krylov subspaces. Solutions xi are found
by a projection that is defined by orthogonalization of the residual b − Axi against some
subspace of the same dimension as the search space. For the purposes of this paper, we are
concerned with three such methods: the Generalized Minimal Residual Method (GMRES),
Full Orthogonalization Method (FOM), and Biconjugate Gradient Method (BiCG) [14], [12],
[7]. The analysis of BiCG will be our main focus. Each of these methods utilizes a different
subspace to define the projection, which leads to different convergence behaviors. The con-
vergence behavior of GMRES and FOM are relatively well-understood. GMRES is optimal
in the sense that it minimizes the 2-norm of the residual at each step. FOM is not optimal
in general, but uses a similar projection space as GMRES. It has been shown that when
GMRES is converging well, FOM exhibits similar behavior. In an iteration where GMRES
makes no or very little progress, the FOM residual can be undefined or grow significantly
[2].

BiCG does not minimize the residual nor the error and hence satisfies no optimality
condition. However, BiCG can be preferable because the projection utilized in BiCG results
in a 3-term recurrence rather than a full orthogonalization as in GMRES and FOM. Hence,
in the cases where BiCG converges, it is often far less expensive computationally. However,
the convergence behavior of BiCG is still not well understood. In theory, it has been shown
that BiCG can be made to behave almost arbitrarily through the special choice of a left
starting vector [8]. In practice, however, with a randomly chosen left starting vector, BiCG
has been seen to converge well in most cases. We seek to explain the convergence behavior
of BiCG through a theoretical analysis of the method.
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Chapter 2

Background

2.1 Iterative Methods

Suppose we are given a large linear system Ax = b. If we choose to solve this system directly,
for instance by Gaussian elimination, we are theoretically guaranteed to find an exact solution
(if it exists) in a finite number of steps. For large systems, however, direct methods are
usually too expensive. Iterative methods provide a cheaper alternative. An iterative method
continues to approximate the solution until it satisfies a convergence criterion. The main
motivation for iterative methods is usually to reduce computer storage and CPU time [17,
Chapter 3]. In this paper, we are concerned with a class of iterative methods called Krylov
subspace methods.

2.2 Krylov Subspace Methods

The Krylov subspace of dimension i, generated by a matrix A and a vector v, is defined as

Ki(A; v) = span(v, Av, ..., Ai−1v).

Krylov subspace methods are iterative methods for solving linear systems Ax = b where
A ∈ Cn×n. At each step i, a Krylov subspace method seeks an approximation xi in the
subspace x0 + Ki(A; r0), where x0 is an initial guess and r0 denotes the initial residual
r0 = b − Ax0. In essence, Krylov methods seek to solve an n-dimensional problem through
a sequence of lower dimensional problems [15, Lecture 32]. The dimension of the Krylov
subspace increases with each iteration until a satisfactory solution is reached.

It is important to note that since the vectors Air0 tend toward the direction of the
dominant eigenvector, Krylov subspace methods do not use the basis {r0, Ar0, ..., Ai−1r0}.
Instead, these methods most commonly use the Arnoldi method with modified Gram-Schmidt
or the Lanczos method to build more suitable bases for the Krylov spaces. These methods
will be described in the next section.

There are four types of Krylov subspace methods, as presented in [17, Chapter 3]:

1. The Ritz-Galerkin approach: Construct the xi for which b− Axi ⊥ Ki(A; r0).

2
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2. The minimum norm residual approach: Identify the xi in Ki(A; r0) for which ‖b−Axi‖2
is minimal.

3. The Petrov-Galerkin approach: Find an xi so that b−Axi is orthogonal to some other
suitable i-dimensional subspace.

4. The minimum norm error approach: Determine xi in ATKi(AT ; r0) for which ‖xi−x‖2
is minimal, where x denotes the true solution.

For Hermitian positive definite matrices, the Ritz-Galerkin approach is optimal in the sense
that it minimizes the A-norm of the error. This leads to the conjugate gradients (CG)
method, which is the most prominent Krylov method [9]. For general matrices, the Ritz-
Galerkin approach leads to FOM, the minimum norm residual approach leads to GMRES,
and the Petrov-Galerkin approach leads to BiCG. In this paper, we will not discuss the
minimum norm error approach.

2.3 The Arnoldi and Lanczos Iterations

Given a matrix A, the Arnoldi iteration is used to compute a unitary matrix V and a
Hessenberg matrix H such that A = V HV ∗ [1]. This is done using modified Gram-Schmidt
orthogonalization with the condition

Avi = h1,iv1 + ...+ hi,ivi + hi+1,ivi+1 (2.1)

[15, Lecture 33]. The algorithm is shown below.

Algorithm 1 Arnoldi Iteration [15, Lecture 33]

1: Choose v1 with ‖v1‖2 = 1.
2: for m = 1, 2, ... do
3: v = Avm
4: for j = 1, ...,m do
5: hj,m = v∗j v
6: v = v − hj,mvj
7: end for
8: hm+1,m = ‖v‖
9: vm+1 = v/hm+1,m

10: end for

At the ith step of the Arnoldi iteration, we obtain a partial reduction AVi = Vi+1Hi+1,i

where Vi consists of the first i columns of V and Hi+1,i is the (i+ 1)× i upper left section of
H. This partial reduction is utilized in Krylov methods such as GMRES and FOM, which
will be discussed in the next section.

When A is Hermitian, then it follows from H = V ∗AV that H is Hermitian. Then since
H is also upper Hessenberg, H must be tridiagonal. Thus, (2.1) is replaced by

Avi = hi−1,ivi−1 + hi,ivi + hi+1,ivi+1 (2.2)



Marissa Renardy Chapter 2 4

This reduces the Arnoldi iteration to a 3-term recurrence, resulting in the Lanczos iteration
[11]. The partial reductions resulting from the Lanczos iteration are utilized in the CG
method. Denoting the diagonal elements of H by α1, ..., αn and the super-diagonal elements
by β1, ..., βn−1, we obtain Algorithm 2.

Algorithm 2 Lanczos Iteration [15, Lecture 36]

1: Choose v1 with ‖v1‖2 = 0. Set β0 = 0 and v0 = 0
2: for j = 1, 2, ... do
3: v̂ = Avj
4: αj = v∗j v̂
5: v̂ = v̂ − βj−1vj−1 − αjvj
6: βj = ‖v̂‖
7: vj+1 = v̂/βj
8: end for

When A is not Hermitian, the Lanczos iteration can be extended to the “nonsymmet-
ric” Lanczos iteration, which builds two biorthogonal sequences instead of one orthogonal
sequence [11]. The nonsymmetric Lanczos iteration builds biorthogonal bases for the Krylov
subspaces Ki(A; v1) and Ki(A∗;w1). This is utilized in BiCG. The process for building these
bases is shown in Algorithm 3.

Algorithm 3 Nonsymmetric Lanczos Iteration [13, Chapter 7]

1: Choose v1, w1 such that w∗1v1 = 1.
2: β0 = δ0 = 0, v0 = w0 = 0
3: for j = 1, 2, ... do
4: αj = w∗jAvj
5: v̂j+1 = Avj − αjvj − βjvj−1
6: ŵj+1 = A∗wj − ᾱjwj − ¯betajwj−1
7: δj+1 = |ŵ∗j+1v̂j+1|1/2. If δj+1 = 0, stop.
8: βj+1 = ŵ∗j+1v̂j+1/δj+1

9: wj+1 = ŵj+1/βj+1

10: vj+1 = v̂j+1/δj+1

11: end for

2.4 GMRES and FOM

Via the Arnoldi iteration, we can obtain an orthonormal basis {v1, ..., vi+1} for Ki+1(A; r0)
that satisfies AVi = Vi+1Hi+1,i where Hi+1,i is upper Hessenberg and Vi =

[
v1 ... vi

]
is a

basis for Ki(A; r0) [17, Chapter 3].
GMRES seeks to compute xi ∈ Ki(A; r0) such that the residual norm ‖ri‖2 is minimized.

Since xi ∈ Ki(A; r0), we can write xi = Viy for some y. Then

ri = r0 − Axi = r0 − AViy = r0 − Vi+1Hi+1,iy = Vi+1(‖r0‖2e1 −Hi+1,iy). (2.3)
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So minimizing ‖r0 − Axi‖2 is equivalent to minimizing ‖Vi+1(‖r0‖2e1 − Hi+1,iy)‖2. This is
further equivalent to minimizing ‖‖r0‖2e1 − Hi+1,iy‖2. GMRES solves this least squares
problem for y and then computes xi = Viy. This is demonstrated in Algorithm 4.

Algorithm 4 Generalized Minimal Residual Method (GMRES) Algorithm [13]

1: Compute r0 = b− Ax0, β = ‖r0‖2, and v1 = r0/β.
2: for m = 1, 2, ... until convergence do
3: Define the (m+ 1)×m matrix Hm = {hi,j}1≤i≤m+1,1≤j≤m. Set Hm = 0.
4: for j = 1, 2, ...,m do
5: wj = Avj.
6: for i = 1, ..., j do
7: hi,j = v∗iwj
8: wj = wj − hi,jvi
9: end for
10: hj+1,j = ‖wj‖2. If hj+1,j = 0, perform 13-15 and stop.
11: vj+1 = wj/hj+1,j

12: end for
13: Compute ym to minimize ‖βe1 −Hmy‖2.
14: xm = x0 + Vmym
15: rm = r0 − Vm+1Hm+1,mym
16: end for

This results in an orthogonal projection method with projection space AKi(A; r0), as
shown in Theorem 2.2. First, we need the following lemma.

Lemma 2.1. Let U be an inner product space with inner product 〈·, ·〉α, let V be a subspace
of U , and let x̂ ∈ U . Then x ∈ V minimizes ‖x̂ − x‖α if and only if 〈x̂ − x, v〉α = 0 for all
v ∈ V.

Proof. See Section 8.9 of [5].

Theorem 2.2. xi ∈ Ki(A; r0) minimizes ‖ri‖2 if and only if ri ⊥ AKi(A; r0).

Proof. Note that since xi ∈ Ki(A; r0), Axi ∈ AKi(A; r0). Then letting V = AKi(A; r0) and
r0 = x̂ in the above lemma, we see that Axi ∈ V minimizes ‖ri‖2 = ‖r0 − Axi‖2 if and
only if ri = r0 − Axi ⊥ AKi(A; r0). Hence xi ∈ Ki(A; r0) minimizes ‖ri‖2 if and only if
ri ⊥ AKi(A; r0).

Hence, solving the least squares problem min ‖r0 − Axi‖2 in GMRES is equivalent to
finding xi ∈ Ki(A; r0) such that ri = r0 − Axi ⊥ AKi(A; r0). This projection space distin-
guishes GMRES from FOM and BiCG. For our analysis in the following chapters, we will
identify GMRES by this projection.

FOM is an oblique projection method based on the Ritz-Galerkin condition r0 − Axi ⊥
Ki(A; r0). It utilizes a similar process as GMRES, but with this slightly different projection
space. Letting v1 = r0/‖r0‖2 in the Arnoldi iteration, we get V ∗i AVi = Hi and V ∗i r0 =
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V ∗i (‖r0‖2v1) = ‖r0‖2e1. Then writing xi = Viyi,

V ∗i (r0 − AViyi) = V ∗i r0 − V ∗i AViyi
= ‖r0‖2e1 −Hyi.

Hence V ∗i (r0−Axi) = 0 if and only if Hyi = ‖r0‖2e1, so the solution to the Galerkin condition
is given by xi = Viyi where yi = H−1i ‖r0‖2e1, assuming Hi is nonsingular [13, Chapter 6].

Since FOM does not minimize the residual or the error for general A, FOM is not consid-
ered optimal. However, it has been shown that when GMRES converges, FOM converges at
nearly the same rate. More precisely, letting r̂i denote the ith residual in the FOM iteration
and ri the ith residual in the GMRES iteration,

‖r̂i‖2 =
‖ri‖2√

1− (‖ri‖2/‖ri−1‖2)2
(2.4)

in exact arithmetic [2]. Hence, the norm of the FOM residual is determined by the conver-
gence of GMRES. In every iteration where GMRES makes reasonable progress, ‖ri‖2/‖ri−1‖2
is small and FOM is roughly equivalent to GMRES. The FOM residual only becomes large
when GMRES (nearly) stagnates.

Algorithm 5 Full Orthogonalization Method (FOM) Algorithm [13]

1: Compute r0 = b− Ax0, β = ‖r0‖2, and v1 = r0/β.
2: for m = 1, 2, ... until convergence do
3: Define the m×m matrix Hm = {hi,j}i,j=1,...,m; Set Hm = 0.
4: for j = 1, 2, ...,m do
5: wj = Avj.
6: for i = 1, ..., j do
7: hi,j = v∗iwj
8: wj = wj − hi,jvi
9: end for
10: hj+1,j = ‖wj‖2. If hj+1,j = 0, perform 13-14 and stop.
11: vj+1 = wj/hj+1,j.
12: end for
13: ym = H−1m (βe1)
14: xm = x0 + Vmym.
15: end for

At step m, the residuals rm and r̂m for GMRES and FOM, respectively, satisfy

GMRES rm = r0 −Qmym ⊥ Qm ⇐⇒ ym = Q∗mr0
FOM r̂m = r0 −Qmŷm ⊥ Q̂m ⇐⇒ ŷm = (Q̂∗mQm)−1Q̂∗mr0

(2.5)

where Qm and Q̂m are any matrices whose columns form orthonormal bases for AKm(A; r0)
and Km(A; r0) respectively. We assume that (Q̂∗mQm)−1 exists.
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2.5 BiCG

If the matrix A is Hermitian positive-definite, then Hi+1,i (as defined above) is tridiagonal,
giving us a 3-term recurrence rather than a full orthogonalization for computing new ap-
proximations. Using the projection space Ki(A; r0), this 3-term recurrence results in the
conjugate gradient (CG) method. In the case that A is Hermitian positive-definite, CG
and FOM are equivalent. For non-Hermitian matrices, however, we cannot maintain both
orthogonality of the columns of Vi and tridiagonality of Hi+1,i except in very special cases
[6]. In BiCG, we sacrifice the orthogonality of the column vectors vj to find a tridiagonal
matrix Ti+1,i such that the Lanczos relations

AVi = Vi+1Ti+1,i (2.6)

hold. BiCG utilizes the nonsymmetric Lanczos iteration to build Vi and a matrix Wi, whose
columns form a basis for Ki(A∗; r̃0), where r̃0 is chosen such that r̃∗0r0 6= 0, such that the
columns of Vi and Wi are biorthogonal and analogous Lanczos relations hold for Wi:

A∗Wi = Wi+1Si+1,i (2.7)

where Si+1,i is tridiagonal [15, Lecture 39].
Essentially, BiCG solves the system Ax = r0 by solving both Ax = r0 and A∗x̃ = r̃0

simultaneously (we may assume x0 = 0) [13, Chapter 7]. At each step, BiCG computes
xi ∈ Ki(A; r0) such that W ∗

i (r0 − Axi) = 0, i.e. ri ⊥ Wi. The solution to this equation is
given by xi = Viy where y satisfies Ti,iy = ‖r0‖2e1. This ri becomes the next basis vector
for Ki+1(A; r0), so Vi+1 =

[
Vi ri

]
. Simultaneously, BiCG finds x̃i ∈ Ki(A∗; r̃0) such that

r̃i ⊥ Vi to build the next basis vector for Ki+1(A∗; r̃0), so Wi+1 =
[
Wi r̃i

]
. As a result,

the jth column of Vi and Wi are rj and r̃j, respectively, and the sequences {rj} and {r̃j} are
biorthogonal.

This projection allows a more abstract definition of BiCG. At step m, the residual rm of
BiCG satisfies

rm = r0 −Qmym ⊥ Q̃m ⇐⇒ ym = (Q̃∗mQm)−1Q̃∗mr0 (2.8)

where Qm is as in (2.5) and Q̃m is any matrix whose columns form an orthonormal basis for
Km(A∗; r̃0).

Since the columns of Wi and Vi are biorthogonal, we may write

W ∗
i Vi = ∆ (2.9)

for some diagonal matrix ∆ = diag(δi). BiCG breaks down if δi = 0 since, in such cases,
the recurrence coefficient αi in Algorithm 6 cannot be computed. At such a step, Q̃∗mQm is
singular and the projection in (2.8) is undefined. Such breakdowns can be avoided by using
a lookahead strategy or a restart of the algorithm [17, Chapter 7].

In general, BiCG does not minimize the error or the residual. Hence, BiCG is not an
optimal method. In fact, it has been shown that a special choice of the left starting vector
r̃0 can cause BiCG to follow any 3-term recurrence for up to n

2
− 1 iterations [8]. Thus, the

convergence behavior of BiCG can be almost arbitrarily controlled. In practice, however,
when the left starting vector is chosen randomly, the method tends to converge well regardless
of this choice. This paper seeks to explain why BiCG converges so well in practice despite
the potential for it to behave poorly.
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Algorithm 6 Biconjugate Gradient (BiCG) Algorithm [4]

1: Compute r0 := b− Ax0. Choose r̃0 such that r̃∗0r0 6= 0.
2: for j = 0, 1, 2, ... until convergence do
3: δj = r̃∗j rj
4: αj = r̃∗jArj/δj
5: βj−1 = γj−1(δj/δj−1)
6: γj = −αj − βj−1
7: rj+1 = γ−1j (Arj − αjrj − βj−1rj−1)
8: r̃j+1 = γ̄−1j (A∗r̃j − ᾱj r̃j − β̄j−1r̃j−1)
9: xj+1 = −(αj/γj)xj − (βj−1/γj)xj−1 − γ−1j rj
10: end for



Chapter 3

BiCG in Eigenspace – Diagonalizable
Case

If A is diagonalizable, then we can write A = XΛX−1 and A∗ = Y Λ̄Y −1, where the columns
of X are unit right eigenvectors of A, the columns of Y are unit left eigenvectors of A, and Λ is
the diagonal matrix with the corresponding eigenvalues of A on the diagonal. Furthermore, X
and Y can be chosen such that Y ∗X = D, where D is diagonal with positive real coefficients
[4]. Then D induces an inner product given by 〈x, y〉D = y∗Dx.

3.1 BiCG in Eigenvector Basis

Letting ρm = X−1rm and ρ̃m = Y −1r̃m, we can express BiCG with respect to this eigenvector
basis using the D-inner product:

ρj+1 = X−1rj+1

= X−1γ−1j (Arj − αjrj − βj−1rj−1)
= γ−1j (X−1Arj − αjX−1rj − βj−1X−1rj−1)
= γ−1j (Λρj − αjρj − βj−1ρj−1)

ρ̃j+1 = Y −1r̃j+1

= Y −1γ̄−1j (A∗r̃j − ᾱj r̃j − β̄j−1r̃j−1)
= γ̄−1j (Y −1A∗r̃j − ᾱj r̃j − β̄j−1r̃j−1)
= γ̄−1j (Λ̄ρ̃j − ᾱj ρ̃j − β̄j−1ρ̃j−1)

where
δj = r̃∗j rj = ρ̃∗jDρj (3.1)

and
αj = r̃∗jArj/δj = ρ̃∗jDΛρj/(ρ̃

∗
jDρj). (3.2)

This gives us the same 3-term recurrences that we saw in Algorithm 6. Hence, solving
Ax = r0 with BiCG in the standard basis is equivalent to solving Λξ = ρ0 in the eigenvector

9
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basis using the D-inner product. This implicit BiCG in the eigenvector basis will help explain
some of the properties of BiCG. The residual ρm in the eigenvector basis satisfies

ρm = ρ0 −Qmzm ⊥D Q̃m ⇐⇒ zm = (Q̃∗mDQm)−1Q̃∗mDρ0

where the columns of Qm form an orthonormal basis for ΛKm(Λ; ρ0) and the columns of Q̃m

form an orthonormal basis for Km(Λ̄; ρ̃0).
To see the effect of D, it is useful to consider the same problem in the Euclidean inner

product with a special starting vector ρ̃0 = DY −1r̃0.

Theorem 3.1. In the eigenvector basis, solving Λξ = ρ0 with BiCG in the D-inner product
is equivalent to solving Λξ = ρ0 with BiCG in the Euclidean inner product, but with the left
starting vector ρ̃0 = DY −1r̃0 [4].

Proof. Let ρ̂0 = Y −1r̃0 be the left starting vector for BiCG in the eigenvector basis and let
ρ̂m denote the mth residual. Note that the ρ̂m = pm(Λ̄)ρ̂0 for some polynomial pm. Then
since D commutes with Λ̄,

ρ̂∗mD = (pm(Λ̄)ρ̂0)
∗D

= ρ̂∗0pm(Λ̄)D

= ρ̂∗0Dpm(Λ̄)

= (pm(Λ̄)Dρ̂0)
∗.

By replacing ρ̂0 by ρ̃0 = Dρ̂0, we get that ρ̃m = pm(Λ̄)ρ̃0 = pm(Λ̄)Dρ̂0 = Dpm(Λ̄)ρ̂0 = Dρ̂m.
Then δm = ρ̃∗mρm and βm = ρ̃∗mΛρm/ρ̃

∗
mρm. So the relations (3.1) and (3.2) are now in the

Euclidean inner product. Hence, in the eigenvector basis, BiCG with the D-inner product
is equivalent to BiCG in the Euclidean inner product with a special starting vector ρ̃0 =
DY −1r̃0.

Thus, a small coefficient in D is equivalent to the damping of the corresponding left
eigenvector component in ρ̃0. This is analyzed further in the following sections.

3.2 How BiCG Approximates FOM

Note that Λ and Λ̄ have the same eigenvalues (up to complex conjugation), and the right
and left eigenvectors are the same and form orthogonal bases. How quickly an eigenvector
converges in Km(Λ; ρ0) or Km(Λ̄; ρ̃0) depends mainly on the position of the corresponding
eigenvalue in the spectrum. Thus the left and right eigenvectors of Λ corresponding to the
same eigenvalue should converge in Km(Λ̄; ρ̃0) and Km(Λ; ρ0) (respectively) at roughly the
same rate (see Figure 3.1). Since the left and right eigenvectors are the same, Km(Λ̄; ρ̃0) and
Km(Λ; ρ0) approximate the same vectors, and hence these spaces converge to each other.
Thus, as long as the components in D are not too small, BiCG in the eigenvector basis
approximates a FOM iteration [4]. The effect of small coefficients in D is demonstrated in
Figures 3.1 and 3.2. Some consequences of this result are discussed in more detail in Chapter
5.
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3.3 Convergence Bounds

Viewing BiCG in the eigenvector bases, convergence properties become more clear. For
instance, we see that as the left eigenvectors converge in Km(A∗, r̃0), the corresponding
right eigenvectors are removed from the residual rm. Similarly, as the right eigenvectors
converge in Km(A; r0), the corresponding left eigenvectors are removed from r̃m [3]. This is
demonstrated in the following two theorems.

Theorem 3.2. Let xk, yk be the kth columns of X and Y , respectively (so xk is a right
eigenvector and yk is a left eigenvector). If yk ∈ Km(A∗; r̃0), then the BiCG residual rm has
no component in the direction xk, i.e. (ρm)k = 0. Similarly, if xk ∈ Km(A; r0) then r̃m has
no component in the direction yk.

Proof. Suppose yk ∈ Km(A∗; r̃0). Then since yk ⊥ xj for j 6= k,

0 = y∗krm = y∗kXρm = y∗kxk(ρm)k

So (ρm)k = 0 and hence rm = Xρm has no component in xk. If we suppose xk ∈ Km(A; r0),
then the proof that (ρ̃m)k = 0 is analogous.

We now present a more general result in the case that yk is almost (but not fully)
contained in Km(A∗; r̃0).

Theorem 3.3. Suppose yk = (1 − ε2)1/2v1 + εv2 where v1 ∈ Km(A∗; r̃0), v2 ⊥ Km(A∗; r̃0),

and ‖v1‖ = ‖v2‖ = 1. Then |(ρm)k| ≤ ε‖rm‖
dk

.

Proof.
y∗krm = (1− ε2)1/2v∗1rm + εv∗2rm = εv∗2rm

and
y∗krm = y∗kXρm = y∗kxk(ρm)k.

So y∗kxk(ρm)k = εv∗2rm, and (ρm)k =
εv∗2rm
y∗kxk

. Hence,

|(ρm)k| =
ε|v∗2rm|
y∗kxk

=
ε

dk
|v∗2rm| ≤

ε

dk
‖v2‖‖rm‖ =

ε‖rm‖
dk

.

Hence if dk is not too small relative to ε, then xk is nearly removed from rm. However,
if some of the eigenvalues are ill-conditioned, then the corresponding coefficients in D will
be small. As a result, rm and r̃m may not decrease in the directions of the corresponding
eigenvectors. In the next chapter, we will state analogous results for generalized eigenvectors
in the case that A is nondiagonalizable.
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Figure 3.1: BiCG and FOM applied to a convection-diffusion problem with a randomly
chosen left starting vector. Left: BiCG residual (red) and FOM residual (grey). Right:
Singular values of Q̃∗mQ̂m. These are the cosines of the principal angles between projection
spaces for FOM and BiCG (discussed further in Chapter 5). Note the singular values are not
systematically small, so the principal angles are not close to π/2 and hence the projection
spaces are close.
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Figure 3.2: BiCG and FOM applied to the same problem as in Figure 3.1, but with the 25
absolute largest eigenvalue components removed from the left starting vector r̃0. Left: BiCG
residual (red) and FOM residual (grey). Right: Singular values of Q̃∗mQ̂m. Note that these
are much smaller than in the previous figure, hence the principal angles are closer to π/2.



Chapter 4

BiCG in Eigenspace –
Nondiagonalizable Case

In the previous chapter we saw that when A is diagonalizable, there is an equivalent BiCG in
the eigenvector basis. We now show that similar results hold when A is not diagonalizable.
To do so, we use the Jordan decomposition with bases X and Y of right and left general-
ized eigenvectors, respectively, such that Y ∗X = D where D is diagonal with positive real
coefficients. Throughout this section, chains of right and left generalized eigenvectors corre-
sponding to a Jordan block J are indexed by xi = (A− λI)m−ixm and y∗i = y∗1(A− λI)i−1,
respectively, where xm and y∗1 are generalized eigenvectors of degree m.

4.1 Generalized Eigenvectors

First, we establish some basic properties of chains of generalized eigenvectors.

Lemma 4.1. Let {xi}, {yi} be chains of right and left generalized eigenvectors, respectively,
corresponding to a Jordan block J of dimension m with eigenvalue λ. Then the following
properties hold:

1. for 1 ≤ i, j < m, y∗i xj = y∗i+1xj+1;

2. for 1 ≤ j < i ≤ m, y∗i xj = 0

(i.e. if Y =
[
y1 ... ym

]
and X =

[
x1 ... xm

]
, then Y ∗X is upper triangular and

constant along diagonals).

Proof. Suppose 1 ≤ i, j < m where m denotes the dimension of the Jordan block. Then
by definition, y∗i xj = y∗1(A − λI)i−1(A − λI)m−jxm = y∗1(A − λI)m+i−j−1xm and y∗i+1xj+1 =
y∗1(A− λI)i(A− λI)m−(j+1)xm = y∗1(A− λI)m+i−j−1xm. So y∗i xj = y∗i+1xj+1.

Let 1 ≤ j < i ≤ m. Then since i − j ≥ 1, we have m + i − j − 1 ≥ m. So (A −
λI)m+i−j−1xm = 0 and y∗i xj = y∗1(A− λI)m+i−j−1xm = 0.

Using these properties, we can build biorthogonal bases of right and left generalized
eigenvectors corresponding to J .

13
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Theorem 4.2. Let J be a Jordan block of dimension m with eigenvalue λ. Then we can
choose a basis of left generalized eigenvectors Y =

[
y1 ... ym

]
and a basis of right gen-

eralized eigenvectors X =
[
x1 ... xm

]
corresponding to J such that the {yi} and {xi}

form chains of generalized eigenvectors and Y ∗X = γI for some real, positive constant γ.

Proof. Let {x1, x2, ..., xm} and {y∗1, y∗2, ..., y∗m} be chains of generalized eigenvectors, where
xi = (A− λI)m−ixm and y∗j = y∗1(A− λI)j−1. Write γ̃ = y∗1x1. We want to build a left chain
{ỹ∗1, ỹ∗2, ..., ỹ∗m} biorthogonal to {x1, x2, ..., xm}.

Let ỹ∗1 =
∑m

i=1 αiy
∗
i with α1 6= 0. Then ỹ1 is a left generalized eigenvector of degree m and

we can define the αi recursively such that ỹ∗1 generates a chain biorthogonal to {x1, x2, ..., xm}:

ỹ∗1x1 =
m∑
i=1

αiy
∗
i x1

= α1y
∗
1x1 = α1γ̃ 6= 0

ỹ∗1x2 =
m∑
i=1

αiy
∗
i x2

= α1y
∗
1x2 + α2y

∗
2x2

= α1y
∗
1x2 + α2γ̃.

So we can choose α2 = −α1

γ̃
y∗1x2 to make ỹ1 ⊥ x2.

ỹ∗1x3 = α1y
∗
1x3 + α2y

∗
2x3 + α3y

∗
3x3

= α1y
∗
1x3 + α2y

∗
2x3 + α3γ̃.

So we can choose α3 = − 1
γ̃
(α1y

∗
1x3 + α2y

∗
2x3) to make ỹ1 ⊥ x3. Similarly, for any k > 1 we

get

ỹ∗1xk =
k∑
i=1

αiy
∗
i xk

=
k−1∑
i=1

αiy
∗
i xk + αkγ̃.

So we can choose αk = − 1
γ
(
∑k−1

i=1 αiy
∗
i xk) to make ỹ1 ⊥ xk.

Then ỹ1 ⊥ x2, ..., xm. Consider the chain {ỹ∗1, ỹ∗2, ..., ỹ∗m} generated by ỹ1, and let Y =[
ỹ1 ... ỹm

]
and X =

[
x1 ... xm

]
. Since {ỹ∗1, ..., ỹ∗m} is a chain, Y ∗X is upper tri-

angular and constant along diagonals. Since ỹ∗1 ⊥ x2, ..., xm, the first row of Y ∗X is zero
except for the first entry. So Y ∗X is diagonal. So the chains {ỹ∗1, ..., ỹ∗m} and {x1, ..., xm} are
biorthogonal. In particular, Y ∗X = γI where γ = ỹ∗1x1 = α1γ̃. We can choose γ to be real
and positive by scaling α1.

We need to generalize this result to the case of multiple Jordan blocks. To do so, it is
sufficient to show that the right generalized eigenvectors of one Jordan block can be chosen
to be orthogonal to the left generalized eigenvectors of any other Jordan block.
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Lemma 4.3. Let J1 and J2 be distinct Jordan blocks with corresponding eigenvalues λ1 and
λ2 respectively (λ1 and λ2 need not be distinct). Let y be a left generalized eigenvector of A
corresponding to J1 and x a right generalized eigenvector of A corresponding to J2. Then
y ⊥ x.

Proof. We may assume that, in the case of repeated eigenvalues, we have already chosen
the left and right eigenvectors to be biorthogonal. If there are no repeated eigenvalues, then
biorthogonality of the left and right eigenvectors is automatically satisfied. So the invariant
subspaces corresponding to J1 and J2 are already determined.

Let y be a left generalized eigenvector corresponding to J1 and x a right generalized
eigenvector corresponding to J2. Let X be a matrix whose columns form an orthonormal
basis for the right invariant subspace associated with J2, so x ∈ R(X). Then we can find Z
such that

[
X Z

]
is unitary and as a result

[
X Z

]∗
A
[
X Z

]
=

[
L H
0 M

]
,

where L and M are upper triangular. Note that the eigenvalues of M are the eigenvalues
of A (except for λ2), with the same multiplicities, so we may assume M contains all Jordan
blocks of A other than J2. Further, if v is a left generalized eigenvector of M then Zv is a left
generalized eigenvector of A corresponding to some Jordan block other than J2. Conversely,
if u is a left generalized eigenvector of A not corresponding to J2, then u = Zv for some left
generalized eigenvector v of M . So y = Zv for some v, so y ∈ R(Z) ⊥ R(X). Then since
x ∈ R(X), we have y ⊥ x.

We can now prove the general result:

Theorem 4.4. Let A be any square matrix. Then there exist bases X =
[
x1 ... xn

]
and

Y =
[
y1 ... yn

]
such that A = XJX−1 and A∗ = Y J ∗Y −1 are Jordan decompositions

and Y ∗X = D where D is diagonal. Further, D is constant on the blocks corresponding to
Jordan blocks of J .

Proof. Suppose J consists of k Jordan blocks J1, ...,Jk. For each block Ji, construct bases
Xi and Yi of right and left generalized eigenvectors as in Theorem 4.2. Then Y ∗i Xi = diI
for some real constant di and by the previous lemma, Y ∗i Xj = 0 for i 6= j. Let Y =[
Y1 ... Yk

]
and X =

[
X1 ... Xk

]
. Then Y ∗X = D where D is diagonal and constant

on the blocks corresponding to distinct Jordan blocks.

In particular, we can scale the yi and xi so that D is positive definite, so D induces an
inner product.

4.2 BiCG in Generalized Eigenvector Basis

Let A = XJX−1 and A∗ = Y J ∗Y −1 be Jordan decompositions satisfying the conclusions of
Theorem 4.4. Let ri = Xρi, r̃i = Y ρ̃i, and D = Y ∗X. We may assume D is real, diagonal,
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and positive definite. Note that the block constant structure of D means that D and J
commute. Then

rm = γ−1m−1(Arm−1 − αm−1rm−1 − βm−2rm−2)
= γ−1m−1(XJ ρm−1 − αm−1Xρm−1 − βm−2Xρm−2)
= Xγ−1m−1(J ρm−1 − αm−1ρm−1 − βm−2ρm−2).

So ρm = X−1rm = γ−1m−1(J ρm−1 − αm−1ρm−1 − βm−2ρm−2). Similarly,

r̃m = γ̄−1m−1(A
∗r̃m−1 − ᾱm−1r̃m−1 − β̄m−2r̃m−2)

= γ̄−1m−1(Y J ∗ρ̃m−1 − ᾱm−1Y ρ̃m−1 − β̄m−2Y ρ̃m−2)
= Y γ̄−1m−1(J ∗ρ̃m−1 − ᾱm−1ρ̃m−1 − β̄m−2ρ̃m−2).

So ρ̃m = Y −1r̃m = γ̄−1m−1(J ∗ρ̃m−1 − ᾱm−1ρ̃m−1 − β̄m−2ρ̃m−2) where

αm−1 = r̃∗m−1Arm−1/δm−1

= (ρ̃m−1Y
∗XJX−1Xρm−1)/(ρ̃∗m−1Dρm−1)

= (ρ̃m−1DJ ρm−1)/(ρ̃∗m−1Dρm−1)
δm−1 = r̃∗m−1rm−1 = ρ̃m−1Y

∗Xρm−1

= ρ̃∗m−1Dρm−1.

Thus the standard BiCG is equivalent to solving J ζ = ρ0 and J ∗ζ̃ = ρ̃0 in the bases of
generalized eigenvectors with the D-inner product. By the same argument as in Theorem
3.1, this is also equivalent to solving J ζ = ρ0 and J ∗ζ̃ = ρ̃0 in the bases of generalized
eigenvectors using the standard inner product with starting vector ρ̃0 = DY −1r̃0.

4.3 Convergence Bounds

We can now state results analogous to those in Section 3.3.

Theorem 4.5. Let xk, yk be as in Theorem 4.4. If yk ∈ span(r̃0, ..., r̃m−1), then xk is removed
from rm. Similarly, if xk ∈ span(r0, ..., rm−1), then yk is removed from r̃m.

Proof. Suppose yk ∈ span(r̃0, ..., r̃m−1). Since yk ⊥ xj for j 6= k,

0 = y∗krm = y∗kXρm = y∗kxk(ρm)k

Then since y∗kxk = dk 6= 0, we must have (ρm)k = 0. So rm = Xρm has no component
in xk. If we suppose xk ∈ span(r0, ..., rm−1), then the proof that yk is removed from r̃m is
analogous.

A more general result holds when yk is almost (but not fully) contained in span(r̃0, ..., r̃m−1).

Theorem 4.6. Suppose yk = (1−ε2)1/2v1+εv2 where v1 ∈ span(r̃0, ..., r̃m−1), v2 ⊥ span(r̃0, ..., r̃m−1),

and ‖v1‖ = ‖v2‖ = ‖yk‖. Then |(ρm)k ≤ ε‖rm‖
dk
‖yk‖.
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Proof. Since rm ⊥ span(r̃0, ..., r̃m−1), v
∗
1rm = 0. Then

y∗krm = (1− ε2)1/2v∗1rm + εv∗2rm = εv∗2rm.

Furthermore, since yk ⊥ xj for j 6= k,

y∗krm = y∗kXρm = y∗kxk(ρm)k.

Thus y∗kxk(ρm)k = εv∗2rm, and (ρm)k =
εv∗2rm
y∗kxk

. Then

|(ρm)k| =
ε|v∗2rm|
y∗kxk

=
ε

dk
|v∗2rm| ≤

ε

dk
‖v2‖‖rm‖ =

ε‖rm‖
dk
‖yk‖.

So if ε is small and dk is not too close to zero, then xk is nearly removed from rm.

We now generalize these results to invariant subspaces. Let Ŷk = [yi]i∈B, B ⊆ {1, 2, ..., n},
be an n× k matrix whose columns form a basis for a left-invariant subspace of A. Let X be
the matrix of right generalized eigenvectors of A.

Theorem 4.7. If range(Ŷk) ⊆ span(r̃0, ..., r̃m−1), then Xk = [xi]i∈B is removed from rm.

Proof. Let D̂ = diag(di)i∈B and ρ̂ = [(ρm)i]i∈B. Then since yi ⊥ xj for i 6= j,

0 = Ŷ ∗k rm = Ŷ ∗k Xρm = D̂ρ̂.

Then (ρm)i = 0 for all i ∈ B, and the corresponding subspace Xk is removed from rm.

We now suppose Ŷk is not fully contained in span(r̃0, ..., r̃m−1), but that Ŷk is contained
up to some components of small length σi.

Theorem 4.8. Let Yk = ŶkZ be an orthonormal matrix whose columns span the same sub-
space as Ŷk. Let V be a matrix whose columns form an orthonormal basis for span(r̃0, ..., r̃m−1),
and let V ∗Yk = ΦΩΨ∗ be an SVD. Define σ1 ≥ 0 such that ωi = (1 − σ2

i )
1/2. Then

‖Z∗D̂ρ̂‖ ≤ σ‖rm‖ where D̂ = diag(di)i∈B, ρ̂ = [(ρm)i]i∈B, and σ = maxi(σi).

Proof. Rewriting V ∗Yk = ΦΩΨ∗, we get Φ∗V ∗YkΨ = (V Φ)∗(YkΨ) = Ω. Then

YkΨ = V ΦΩ +WΣ.

where W is n × k with orthonormal columns, Σ = diag(σi), and W ∗V = 0. Write Ỹk =
YkΨ, V1 = V Φ and V2 = W . Then

Ỹ ∗k rm = (V1Ω + V2Σ)∗rm

= Ω∗V ∗1 rm + Σ∗V ∗2 rm

= Σ∗V ∗2 rm
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and

Ỹ ∗k rm = (ŶkZΨ)∗rm

= Ψ∗Z∗Ŷ ∗k rm

= Ψ∗Z∗Ŷ ∗k Xρm

= Ψ∗Z∗D̂ρ̂

So Σ∗V ∗2 rm = Ψ∗Z∗D̂ρ̂. Equivalently, Z∗D̂ρ̂ = ΨΣ∗V ∗2 rm. Then

‖Z∗D̂ρ̂‖ ≤ ‖Σ‖‖rm‖ = σ‖rm‖

where σ = maxi(σi), i.e. (1− σ2)1/2 is the smallest singular value of V ∗Yk.

So if σ is small, then so is ‖Z∗D̂ρ̂‖. If Z∗D̂ is well-conditioned, then ‖ρ̂‖ will be small.
Hence Xk will be nearly removed from rm.



Chapter 5

Angles Between Krylov Spaces

We have seen that if the projection spaces are close, then methods will approximate one
another. For instance, in Section 3.2 we explained that BiCG in the eigenvector basis ap-
proximates a FOM iteration if the coefficients inD = Y ∗X are not too small, as demonstrated
in Figure 3.1. We now quantify this effect by analyzing the residuals of BiCG, GMRES, and
FOM based on the principal angles between the corresponding projection subspaces.

As established in Chapter 2, the residuals at the mth iteration of GMRES, BiCG, and
FOM satisfy the following:

GMRES r = r0 −Qmy ⊥ Qm y = Q∗mr0.

BiCG r̃ = r0 −Qmỹ ⊥ Q̃m ỹ = (Q̃∗mQm)−1Q̃∗mr0.

FOM r̂ = r0 −Qmŷ ⊥ Q̂m ŷ = (Q̂∗mQm)−1Q̂∗mr0.

where Qm, Q̃m, and Q̂m are any convenient matrices whose columns form orthonormal bases
for AKm(A; r0), Km(A∗; r0), and Km(A; r0), respectively [4]. We assume that (Q̃∗mQm)−1

and (Q̂∗mQm)−1 exist. This chapter is concerned with establishing relationships based on the
principal angles between Qm, Q̃m, and Q̂m. Some of these relations are stated in [4] without
proof, and the proofs are presented here.

5.1 Relations in the Euclidean Inner Product

Since Km(A; r0) ∩ AKm(A; r0) = AKm−1(A; r0), we can construct Qm and Q̂m such that
Qm−1 = Q̂m−1 is an orthonormal basis for AKm−1(A; r0) so that

q̂m =
r0 −

∑m−1
i=1 〈r0, q̂i〉q̂i

‖r0 −
∑m−1

i=1 〈r0, q̂i〉q̂i‖
and qm =

Amr0 −
∑m−1

i=1 〈Amr0, qi〉qi
‖Amr0 −

∑m−1
i=1 〈Amr0, qi〉qi‖

α

with |α| = 1 and q∗mq̂m = ωm ∈ R > 0. Here, qi and q̂i denote the ith columns of Qm and
Q̂m respectively.

Theorem 5.1. r − r̃ = QmUΣ−1(I − Σ2)1/2C∗r =
m∑
i=1

Qmui(c
∗
i r tan(φi)) where Q∗mQ̃m =

UΣV ∗ is a singular value decomposition, Q̃mV = QmUΣ+C(I−Σ2)1/2, and φi = arccos(σi)
are the principal angles between Qm and Q̃m [4].

19
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Proof.

r − r̃ = Qmỹ −Qmy

= Qm(Q̃∗mQm)−1Q̃∗mr0 −QmQ
∗
mr0

= Qm((Q∗mQ̃m)∗)−1Q̃∗mr0 −QmQ
∗
mr0

= Qm((UΣV ∗)∗)−1Q̃∗mr0 −QmQ
∗
mr0

= Qm(V ΣU∗)−1Q̃∗mr0 −QmQ
∗
mr0

= QmUΣ−1V ∗Q̃∗mr0 −QmQ
∗
mr0

= QmUΣ−1(Q̃mV )∗r0 −QmQ
∗
mr0

= QmUΣ−1(QmUΣ + C(I − Σ2)1/2)∗r0 −QmQ
∗
mr0

= QmUΣ−1(ΣU∗Q∗m + (I − Σ2)1/2C∗)r0 −QmQ
∗
mr0

= QmQ
∗
mr0 +QmUΣ−1(I − Σ2)1/2C∗r0 −QmQ

∗
mr0

= QmUΣ−1(I − Σ2)1/2C∗r0

= QmUΣ−1(I − Σ2)1/2C∗r (since C∗Qm = 0 and r = r0 −Qmy)

=
m∑
i=1

Qmui

(
c∗i r

(1− σ2)1/2

σ

)
=

m∑
i=1

Qmui(c
∗
i r tan(φi)). (5.1)

Hence, if the principal angles between Qm and Q̃m are relatively small (i.e. the singular
values σi are not close to zero), the BiCG residual is not far from the GMRES residual. If we
look only at the principal angles, however, we get a pessimistic bound. This is demonstrated
in the following figure.
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Figure 5.1: Left: BiCG residual (red) and GMRES residual (grey) for a convection-diffusion
problem. Right: Tangents of principal angles between Qm and Q̃m.

The following theorem relates the residuals of BiCG and FOM.
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Theorem 5.2. r̃− r̂ = tan(θm)qm(g∗mr)−

(
m∑
i=1

Qmui(c
∗
i r tan(φi))

)
where gm is a unit vector

and θm = arccos(ωm) where ωm = q∗mq̂m.

Proof.

Q∗mQ̂m =

[
I(m−1)×(m−1) 0

0 ωm

]
= Ω = IΩI∗.

Q̂m = QmΩ +G(I − Ω2)1/2.

whereG =
[
g1 g2 ... gm

]
has orthonormal columns. By Theorem 5.1, r−r̃ = QmUΣ−1(I−

Σ2)1/2C∗r =
m∑
i=1

Qmui(c
∗
i r tan(φi)), and

r − r̂ = QmΩ−1(I − Ω2)1/2G∗r

= Qm

[
0(m−1)×(m−1) 0(m−1)×1

01×(m−1)
(1−ω2

m)1/2

ωm

] g∗1r
...

g∗mr


= qm

(1− ω2
m)1/2

ωm
g∗mr. (5.2)

As a result, ‖r̂ − r‖ =
(

1−ω2
m

ω2
m
‖G∗r‖2

)1/2
and so

‖r̂‖ =

(
‖r‖22 +

1− ω2

ω2
‖G∗r‖2

)1/2

=

(
‖r‖2 +

1− ω2
m

ω2
m

‖r‖2
)1/2

=

(
1

ω2
m

‖r‖2
)1/2

=
1

ωm
‖r‖.

This leads to (2.4), but with a different derivation than presented in [8]. (5.1) and (5.2) are
combined to obtain

r̃ − r̂ = (r − r̂)− (r − r̃)

= qm
(1− ω2

m)1/2

ωm
g∗mr −QmUΣ−1(I − Σ2)1/2C∗r

= tan(θm)qm(g∗mr)−

(
m∑
i=1

Qmui(c
∗
i r tan(φi))

)
where θm = arccos(ωm) is the angle between qm and q̂m.
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Referring back to Figures 3.1 and 3.2, we see that the BiCG and FOM residuals are close
when the singular values of Q̃∗mQ̂m are bounded away from zero, i.e. the principal angles
are bounded away from π/2. In Figure 3.1, the singular values are mostly near 1, with the
smallest singular value only as small as 10−4. In this case, the residuals are close. In Figure
3.2, the singular values systematically get much smaller, some as small as 10−15. Hence, the
principal angles are close to π/2 and the projection spaces are far from each other. In this
case, the BiCG residual does not converge, while the FOM residual does.

Theorem 5.3. If we construct Qm and Q̂m such that Qm−1 = Q̂m−1, then the first m − 1
singular values of Q∗mQ̃m are bounded below by the smallest singular value of Q̂∗mQ̃m.

Proof. Since Qm−1 = Q̂m−1, we have that Q∗m−1Q̃m = Q̂∗m−1Q̃m. The singular values µi of

Q∗m−1Q̃m and σi of Q∗mQ̃m satisfy σ1 ≥ µ1 ≥ σ2 ≥ ... ≥ σm−1 ≥ µm−1 ≥ σm ≥ 0. The

singular values γi of Q̂∗mQ̃m satisfy γ1 ≥ µ1 ≥ ... ≥ µm−1 ≥ γm [10, Section 7.3]. Then σk
is bounded below by γk+1 for all 1 ≤ k ≤ m − 1. In particular, if the γi are bounded away
from zero, then so are the σi except possibly for σm.

Consequently, if all but a few of the γi or µi converge to 1, then we have the same for the
σi. This implies that if BiCG well-approximates FOM, then BiCG must also approximate
GMRES up to a possible large error in one direction.

5.2 Relations in the D-Inner Product

In Chapters 3 and 4, we discussed an implicit BiCG in the D-inner product where D was a
diagonal matrix with positive real coefficients. Thus it is helpful to analyze the effect of this
inner product on the above results. In this section, we generalize the results from Section
5.1 to the case of the D-inner product.

For any diagonal matrix D with positive real coefficients, 〈x, y〉D = y∗Dx defines an
inner product. Redefining orthogonality and normalization with this D-inner product, we
can compute Qm and Q̃m such that Q∗mDQm = I and Q̃∗mDQ̃m = I. If we define GMRES
and BiCG with respect to the D-inner product, the residuals satisfy

GMRES r = r0 −Qmy ⊥D Qm y = Q∗mDr0.

BiCG r̃ = r0 −Qmỹ ⊥D Q̃m ỹ = (Q̃∗mDQm)−1Q̃∗mDr0.

Let Q∗mDQ̃m = W∆Z∗ be a singular value decomposition. So W ∗W = I, Z∗Z = I, and the
diagonal coefficients δi of ∆ are nonnegative real numbers.

Lemma 5.4. Assume m < n
2
. Then Q̃mZ = QmW∆ + J(I −∆2)1/2 where J∗DQm = 0 and

J∗DJ = I, i.e. J is orthonormal in the D-inner product.
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Proof. Set C = Q̃mZ −QmW∆. Then for all 1 ≤ k ≤ m,

‖ck‖D = ‖Cek‖D = ‖(Q̃mZ −QmW∆)ek‖D
= ‖Q̃mzk −Qmwkδk‖D
= ((Q̃mzk −Qmwkδk)

∗D(Q̃mzk −Qmwkδk))
1/2

= ((z∗kQ̃
∗
m − δkw∗kQ∗m)D(Q̃mzk −Qmwkδk))

1/2

= (z∗kQ̃
∗
mDQ̃mzk − z∗kQ̃∗mDQmwkδk − δkw∗kQ∗mDQ̃mzk

+δkw
∗
kQ
∗
mDQmwkδk)

1/2

= (z∗kzk − z∗kZ∆W ∗wkδk − δkw∗kW∆Z∗zk + δkw
∗
kwkδk)

1/2

= (1− e∗k∆ekδk − δke∗k∆ek + δ2k)
1/2

= (1− δ2k − δ2k + δ2k)
1/2

= (1− δ2k)1/2.

Then ck = jk(1− δ2)1/2 for some unit vector jk. Note that if δk = 1, then ck = 0 and we can
choose jk freely such that jk is a unit vector. Hence, C = J(I −∆2)1/2 for some J with unit
columns. Thus,

Q̃mZ −QmW∆ = J(I −∆2)1/2

Q̃mZ = QmW∆ + J(I −∆2)1/2

and

(J(I −∆2)1/2)∗DQm = (Z∗Q̃∗m −∆W ∗Q∗m)DQm

= Z∗Q̃∗mDQm −∆W ∗Q∗mDQm

= Z∗Z∆W ∗ −∆W ∗

= ∆W ∗ −∆W ∗

= 0.

Therefore, 0 = (J(I−∆2)1/2)∗DQm = (I−∆2)1/2J∗DQm. For ease of discussion, we will first
assume that δk < 1 for all k. Then (I−∆2)1/2 is nonsingular, and therefore J∗DQm = 0 and
J is D-orthogonal to Qm. For the next step, we need the following result: Since Z∗Z = I,

(Q̃mZ)∗D(Q̃mZ) = Z∗Q̃∗mDQ̃mZ = Z∗Z = I.

This yields

I = (Q̃mZ)∗D(Q̃mZ)

= (QmW∆ + J(I −∆2)1/2)∗D(QmW∆ + J(I −∆2)1/2)

= ∆W ∗Q∗mDQmW∆ + ∆W ∗Q∗mDJ(I −∆2)1/2 +

(I −∆2)1/2J∗DQmW∆ + (I −∆2)1/2J∗DJ(I −∆2)1/2

= ∆2 + ∆W ∗(J∗DQm)(I −∆2)1/2 + (I −∆2)1/2(J∗DQm)W∆

+(I −∆2)1/2J∗DJ(I −∆2)1/2

= ∆2 + (I −∆2)1/2J∗DJ(I −∆2)1/2

⇐⇒ I −∆2 = (I −∆2)1/2J∗DJ(I −∆2)1/2

⇐⇒ I = J∗DJ.
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Hence, J is a D-orthonormal matrix.
Suppose δk = 1 for some k. Let jk denote the kth column of J . Since m < n

2
, there are

less than n
2

other columns vectors in J and less than n
2

column vectors in Qm. Since we are
working in a vector space of dimension n, there exists a unit vector D-orthogonal to all other
column vectors in J as well as to Qm. Then since jk can be chosen freely, we can choose jk
to be this vector. The same reasoning can be used for any number of δi = 1. Then we can
construct J such that J∗DQm = 0 and J∗DJ = I.

We can now establish a relationship between the residuals of GMRES and BiCG.

Theorem 5.5. If m < n
2
, then the residuals at the mth iteration satisfy

r − r̃ = QmW∆−1(I −∆2)1/2J∗Dr =
m∑
i=1

Qmwi(j
∗
iDr tan(ψi))

where ψi = arccos(δi).

Proof.

r − r̃ = Qmỹ −Qmy

= Qm(Q̃∗mDQm)−1Q̃∗mDr0 −QmQ
∗
mDr0

= Qm((Q∗mDQ̃m)∗)−1Q̃∗mDr0 −QmQ
∗
mDr0

= Qm((W∆Z∗)∗)−1Q̃∗mDr0 −QmQ
∗
mDr0

= Qm(Z∆W ∗)−1Q̃∗mDr0 −QmQ
∗
mDr0

= QmW∆−1Z∗Q̃∗mDr0 −QmQ
∗
mDr0

= QmW∆−1(Q̃mZ)∗Dr0 −QmQ
∗
mDr0

= QmW∆−1(QmW∆ + J(I −∆2)1/2)∗Dr0 −QmQ
∗
mDr0

= QmW∆−1(∆W ∗Q∗m + (I −∆2)1/2J∗)Dr0 −QmQ
∗
mDr0

= QmQ
∗
mDr0 +QmW∆−1(I −∆2)1/2J∗Dr0 −QmQ

∗
mDr0

= QmW∆−1(I −∆2)1/2J∗Dr0.

Since J∗DQm = 0, we have

J∗Dr = J∗D(r0 −Qmy)

= J∗Dr0 − J∗DQmy

= J∗Dr0.

So

r − r̃ = QmW∆−1(I −∆2)1/2J∗Dr0

= QmW∆−1(I −∆2)1/2J∗Dr

=
m∑
i=1

Qmwi(j
∗
iDr tan(ψi)).

where ψi = arccos(δi).

So BiCG will approximate GMRES in theD-inner product if the δi are close to 1, provided
m < n

2
.



Chapter 6

Conclusions

In this thesis we seek to explain the convergence behavior of BiCG through a theoretical
analysis of the method. We find that the BiCG residual will be close to the GMRES residual if
the angles between the respective projection subspaces are relatively small, as demonstrated
in Figure 5.1. However, the BiCG residual may not converge if some of the canonical angles
are systematically close to π/2, i.e. the projection spaces are far from one another. These
results hold in both the Euclidean and the D-inner product.

Furthermore, there is an equivalent BiCG in the (generalized) eigenvector basis using the
D-inner product, or using the Euclidean inner product with a special left starting vector.
Viewing BiCG in this basis makes several mathematical properties more clear. We see that
small components in D = Y ∗X are equivalent to damping the corresponding left eigenvector
components in the left starting vector. Such small components can prevent BiCG from con-
verging because it prevents the damping of the corresponding right eigenvector components
in the residual. Moreover, we see that as left eigenvectors converge in the left Krylov space,
the corresponding right eigenvectors are removed from the residual. More generally, as left
invariant subspaces converge in the left Krylov space, components in the corresponding right
subspaces are removed from the residual. When a left eigenvector/invariant subspace is al-
most contained in the left Krylov space, then the residual component in the direction of the
corresponding right eigenvector/subspace is bounded. This bound depends mainly on the
coefficients in D.

For future work, we would like to further explore the convergence of invariant subspaces
discussed in Section 4.3 and explore the properties of Z∗D in Theorem 4.8.
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