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Abstract 

Monitoring and protection of power systems is a task that has manifold objectives. Amongst others, it 

involves performing data mining, optimizing available resources, assessing system stresses, and doing 

data conditioning. The role of PMUs in fulfilling these four objectives forms the basis of this dissertation. 

Classification and regression tree (CART) built using phasor data has been extensively used in power 

systems. The splits in CART are based on a single attribute or a combination of variables chosen by CART 

itself rather than the user. But as PMU data consists of complex numbers, both the attributes, should be 

considered simultaneously for making critical decisions. An algorithm is proposed here that expresses 

high dimensional, multivariate data as a single attribute in order to successfully perform splits in CART. 

In order to reap maximum benefits from placement of PMUs in the power grid, their locations must be 

selected judiciously. A gradual PMU placement scheme is developed here that ensures observability as 

well as protects critical parts of the system. In order to circumvent the computational burden of the 

optimization, this scheme is combined with a topology-based system partitioning technique to make it 

applicable to virtually any sized system.  

A power system is a dynamic being, and its health needs to be monitored at all times. Two metrics are 

proposed here to monitor stress of a power system in real-time. Angle difference between buses 

located across the network and voltage sensitivity of buses lying in the middle are found to accurately 

reflect the static and dynamic stress of the system. The results indicate that by setting appropriate 

alerts/alarm limits based on these two metrics, a more secure power system operation can be realized. 

A PMU-only linear state estimator is intrinsically superior to its predecessors with respect to 

performance and reliability. However, ensuring quality of the data stream that leaves this estimator is 

crucial. A methodology for performing synchrophasor data conditioning and validation that fits neatly 

into the existing linear state estimation formulation is developed here. The results indicate that the 

proposed methodology provides a computationally simple, elegant solution to the synchrophasor data 

quality problem.  
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Chapter 1: Introduction 

The invention of phasor measurement units (PMUs) has revolutionized the world of power systems. Also 

called synchrophasors, PMUs are devices that measure phasors that are synchronized in time. They have 

made possible the measurement of voltages and currents at diverse locations in the power grid at the 

same time. This provision of time-stamping has enabled system operators and planners to measure the 

state of the electrical system and manage power quality. This synchronization in time is facilitated 

through the use of global positioning system (GPS) satellites. As these measurements are truly 

synchronized, they can be used to assess system conditions in real-time. Fig. 1.1 shows the block 

diagram of a typical PMU whereas Fig. 1.2 shows how they are utilized in power systems. 

 

Fig. 1.1: Block Diagram of a phasor measurement unit (PMU) 
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Fig. 1.2: PMU Utilization in a Power System 

PMUs have been used for a variety of applications in power systems [1]. Collectively called wide area 

measurement system (WAMS)-based applications, these can be broadly classified into three categories 

(as shown in Fig. 1.2): 

 Monitoring 

 Protection 

 Control 

They are described in more details as follows. 

Monitoring: Under the category of monitoring, PMUs have been primarily used in post-event analysis 

and state estimation. When the first commercial PMUs became available, because of their high cost, 

they were only used for post event monitoring. As more and more companies started manufacturing 

PMUs in accordance with the standards [2]-[4], the quality of the phasors produced by the PMUs 

improved significantly and so did their applicability. The monitoring capabilities of PMUs proved 

especially useful in performing quick and accurate post-mortem analysis of the 1996 U.S. West Coast 

blackout and the 2003 Northeastern U.S. blackout. Accordingly, one of the recommendations from the 

United States–Canada Task Force on the 14 August 2003 blackout was to “require use of time 

synchronized data recorders” to all utilities [5]. This and other recommendations led to the creation of 

the Eastern Interconnection Phasor Project (EIPP), now known as North American SynchroPhasor 

Initiative (NASPI). The use of PMUs for performing post-event analysis has increased considerably since 

then. 
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State Estimation of the power system from real-time measurements is one of the most important 

elements of modern energy management systems (EMSs). The state of the power system is defined as 

the collection of voltages of all the network buses obtained simultaneously. The technology of state 

estimation currently in use is primarily based on unsynchronized measurements obtained from the 

supervisory control and data acquisition (SCADA) system. This results in a nonlinear equation that must 

be solved iteratively to estimate the system state. Due to low scanning rates and relatively slow 

computations, present technology is incapable of providing information about the dynamic state of the 

power system. Synchronized phasor measurements enable a recast of the entire state estimation 

process. PMUs are capable of providing measurements as often as once per cycle of the power 

frequency. These measurements can become the basis for developing a coherent picture (state) of the 

network. Knowing the network state in turn makes stability and vulnerability assessments possible [6]. 

Thus, with the use of this technology, much of the delay inherent in the present state estimation 

systems can be removed, and the utilities can move on to advanced static and dynamic contingency 

analyses of their network in real-time.  

Protection: Synchronized phasor measurements enhance the effectiveness of power system protection 

by offering solutions to a number of complex protection problems. This involves equipment and system 

protection, as well as remedial action schemes. For example, the status of certain circuit-breakers and 

switches, power flows in key transmission lines, voltages at critical buses, power output of key 

generators, etc., measured by PMUs, could be used to formulate a strategy of responses if these 

parameters should fall within ‘dangerous’ patterns [7]. In this way, PMU measurements have the 

potential to limit the damage that can be caused to the power system by catastrophic events [8]. 

In general, phasor measurements are particularly effective in improving protection functions which have 

relatively slow response times. For such protection functions, the latency of communicating information 

from remote sites is not a significant issue. A few examples of protection systems that could benefit 

from remote phasor measurements information include control of backup-protection of distance relays; 

protection functions concerned with angular voltage stability of networks; security-dependability based 

adaptive voting schemes, etc. [9]-[12]. A number of other WAMS-based protection improvements can 

be found in [13]. 

Control: The traditional controllers used in power systems like power system stabilizers (PSSs), High 

Voltage DC (HVDC) links, and Flexible AC Transmission Systems (FACTS) were designed to act so that the 

defined control objective functions are optimized. However, prior to the introduction of synchronized 
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phasor measurements, these types of controls were essentially local. Therefore, because of the “local” 

nature of the control, in its efforts to damp a local mode of oscillation, a controller could negatively 

damp an inter-area mode of oscillation and vice-versa [14]. The introduction of PMUs prevents these 

kinds of occurrences as they offer the possibility of a control based on measurements obtained from 

remote areas (WAMS-based control).  

A WAMS-based control brings in the remote measurements of the system state vector to the controller, 

and thus removes from the control loop, the uncertainty associated with the mathematical model. As a 

result, in its implementation the controller becomes primarily feedback-based rather than model-based. 

Latency of the phasor measurements is an issue, but as many of the processes (like inter-area 

oscillations) are in the low frequency range, the effect of latency-related problems is less. Moreover, 

since the phasor data is time-tagged, the control is based on the actual state of the system, albeit, a 

short time in the past (quasi-real time). Thus, these measurements can effectively integrate control 

actions of different controllers present in the system. Such a coordinated control scheme for damping 

inter-area oscillations has been developed in [15] and applied to a 4000+ bus Enhanced California model 

of the Western Electricity Coordinating Council (WECC) in [16], [17]. 

Thus, the use of PMUs has elevated the standards of power system monitoring, protection, and control. 

They have facilitated innovative solutions to traditional utility problems and have offered power system 

engineers a whole range of potential benefits like – 

 Improved post-disturbance analyses because of precise snapshots of the system states obtained 

through GPS synchronization 

 Precise estimates of the power system state obtained at frequent intervals, enabling dynamic 

phenomena to be observed from a central location 

 Implementation of advanced protection schemes based upon synchronized phasor 

measurements for improving overall system response to catastrophic events 

 Improving controller performance through advanced control using remote feedback 

PMU-based applications for the improved monitoring and protection of power systems forms the basis 

of the work contained herein. In the course of this dissertation, the four objectives of performing more 

accurate data mining, optimizing PMU locations to reap maximum benefits out of their placement, 

assessing static and dynamic stress of a power system in real-time, and doing conditioning and 

validation of PMU data, will be met.  
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1.1 Decision making using PMU data 

PMUs, when placed at a bus, provide time synchronized measurements of the voltage phasor and the 

branch current phasors of all the branches emerging from that bus. Therefore, the “phasors” that a 

traditional PMU measures are: 

 Voltage magnitude and angles/real and imaginary components of voltages 

 Current magnitude and angles/real and imaginary components of currents 

Complex voltages and/or currents being the primary entities based on which decisions are made in a 

power system, the ability of PMUs to directly measure them, gives PMUs an enormous edge over other 

telemetry devices. As the power system has evolved, it has been observed that a combination of these 

phasors makes better “sense” for decision-making than an individual phasor. For instance, in [12] 

voltage angles were combined with real and imaginary currents to classify the system as safe or 

stressed. Similarly, a trajectory of an individual phasor measured over a period of time can be more 

reliable for decision-making than its value at a particular instant. Furthermore, the decisions being made 

may not always be “binary” – like classifying the system as “safe” or “stressed” or “stable” or “unstable”. 

PMU data can also be used to identify events, like the type of fault that has taken place. Thus, PMU 

data, in general, will be high dimensional (complex numbers/trajectory of complex numbers) and can be 

used for making multi-class decisions. An algorithm is proposed in this dissertation that uses Fisher’s 

Linear Discriminant (FLD) to make multi-class splits involving high-dimensional synchrophasor data.  

1.2 Optimal PMU Placement 

Before benefits can be reaped from the placement of PMUs in the power grid, the criterion of “site 

selection” with respect to their placement must be addressed. The placement sites are restricted by the 

available communication facilities, the costs of which are often higher than that of the PMUs 

themselves. To optimize cost and intended applications, it is necessary to choose PMU locations 

judiciously. Therefore, the path to be followed is to progressively deploy PMUs at select locations within 

the network to eventually observe the whole system [18]-[20]. The concept of optimal PMU placement 

has been a highly researched topic since PMUs came to be used commercially [21], [22]. Primarily, there 

have been two methods followed by power engineers for addressing this issue [18]: 

 Development of a prioritized list of placement sites based essentially on observability, and 

 Placement of PMUs to correctly represent critical dynamics of the system 
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However, the first approach does not take into account the transient and dynamic stability of the 

system, whereas the second approach does not consider complete observability as one of its priorities. 

The net outcome is that for the same system different “optimal” PMU placement sets are created 

depending on the methodology followed. As it is not possible for any utility to implement all the 

schemes that are proposed, either transient/dynamic stability, observability, or often both are 

compromised. In this dissertation, a PMU placement scheme is presented that combines both the 

methodologies. Binary integer programming and “depth of unobservability” [19] are used to find the 

relevant PMU placement set. The computational burden of the optimization appeared to be a limitation 

for applying this scheme to big systems (> 500 buses). In order to circumvent this problem, the proposed 

scheme was combined with a topology-based system partitioning technique to make it applicable to 

virtually any sized system.  

1.3 Phasor Measurement based Stress Assessment Metrics 

Courtesy the deregulation of power systems many tie-lines between control areas have come to operate 

near their maximum capacity, especially the ones serving heavy load centers. Such stressed operating 

conditions have increased inter-area oscillations between different control areas and even led to major 

disturbances [23]-[26]. In this chapter, two metrics are proposed for assessing static and dynamic 

stresses present in a power system. The base loading of the system constitutes static stress. It refers to 

the normal/pre-contingency state of the system. Dynamic stress refers to the event/contingency that 

the system is subjected to. Angle difference between buses located across the network and voltage 

sensitivity of buses lying in the middle were two metrics that were found to accurately reflect the static 

and dynamic stress of the system. The results indicate that with the aid of PMUs and modern software 

tools, it is now possible to assess metrics like these for large systems (10,000+ buses) in real-time. 

1.4 Synchrophasor Data Conditioning and Validation and Possible Applications 

A three-phase PMU-only (linear) state estimator has been created for Dominion Virginia Power’s (DVP’s) 

500kV network as part of a DOE (Department Of Energy) Demonstration Project. The estimator will 

update every 1/30th of a second with time-tagged measurements of high voltage buses as its outputs. 

However, the raw data obtained from these PMUs is not suitable for many of the applications for which 

they are expected to be used. As such, there is an imminent need to “clean” the raw synchrophasor data 

so that correct decisions can be made using these measurements.  
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A technique to predict the next voltage measurement from a history of previous estimates was 

developed in [27]. Using this technique, a methodology to “clean” raw synchrophasor data is proposed 

here. This process can be used to detect bad data by using an observation residual as well as to smooth 

data by using subsequent measurements to obtain a better estimate (a technique for supplying missing 

data). In this work, the data conditioning and validation process has been integrated with the linear 

state estimator (LSE) developed for DVP [28]. However, even if a state estimator is not desired, the 

proposed data conditioning algorithm can be used as a stand-alone tool for detecting bad data, finding 

the best estimate, and increasing the observability of the network. The use of conditioned and validated 

data in calibrating positive sequence instrument transformers is also touched upon. 

1.5 Overview of the Dissertation 

This dissertation is organized as follows: 

Chapter 1 gives a brief overview of the different applications of synchrophasor measurements in the 

domain of power systems. It explains the decision making process involving complex synchrophasor 

data. It presents a PMU placement scheme that ensures real-time monitoring of important buses of the 

network while gradually enhancing system observability. It also shows how the proposed PMU 

placement scheme can be combined with a partitioning scheme to further increase its applicability to 

large systems. Then, it proposes two metrics for assessing stress in a modern power system network. 

Finally, it describes a methodology to clean raw synchrophasor data in real-time and suggests possible 

applications of the conditioned data.  The chapter concludes by outlining the contents of the following 

chapters. 

Chapter 2 begins with an overview of classification and regression tree (CART), a decision tree algorithm 

that is commonly used in power system applications. Next, it outlines some of the problems faced by 

the traditional CART logic with regards to synchrophasor data, thereby highlighting the potential 

applications of the proposed technique – Fisher’s Linear Discriminant applied to Synchrophasor Data 

(FLDSD). The chapter concludes with simple examples to demonstrate the superiority of the proposed 

approach to other techniques that have been developed previously to address this problem.  

Chapter 3 illustrates the application of the FLDSD technique to solve power system problems. In the first 

problem, it is applied to a detailed model of the California power system, where it is used for developing 

an adaptive protection scheme. This example illustrates the ability of the FLDSD technique to efficiently 

handle large data sets. In the second problem, it is applied to the IEEE 118-bus system, where it is used 



8 
 

to classify dynamic events based on trajectories of voltage measurements obtained from PMUs. This 

example highlights the technique’s ability to make decisions involving high-dimensional, multi-class 

synchrophasor data.  

Chapter 4 presents a PMU placement scheme called critical bus based binary integer optimization 

(CBBBIO) that provides real-time monitoring of key buses of the network. High voltage lines, substations 

relevant for transient and dynamic stability of the network, and buses with high connectivity are given 

maximum priority while placing the PMUs. Binary integer programming and “depth of unobservability” 

are combined to find the relevant PMU placement set. The placement scheme is tested on the IEEE 118-

bus system, IEEE 300-bus system, a 283-bus model of the Central American Power Transmission System, 

and a complex 996-bus network describing the Northern and the Eastern power grids of India. The 

results indicate that the CBBBIO technique will be useful to utilities that want to initially protect the 

most important buses of their system on their way to attaining complete observability. 

Chapter 5 extends the CBBBIO technique developed in the previous chapter by combining it with a 

community-based partitioning approach for computing PMU placement schemes in very large power 

system models. A bound is also developed to compute for the maximum error from an optimal solution. 

The technique developed here is applied to standard IEEE systems as well as on more realistic power 

system networks. The partitioning logic appears to provide a considerable reduction in computational 

burden of the optimization without significantly changing the system structure/topology. 

Chapter 6 introduces two metrics for static and dynamic stress assessment in a modern power system. 

The base loading of the system constitutes static stress. It refers to the normal/pre-contingency state of 

the system. Dynamic stress refers to the event/contingency that the system is subjected to. Angle 

difference between buses located across the network and voltage sensitivity of buses lying in the middle 

were found to accurately reflect the static and dynamic stress of the system. A 10,000+ bus model of the 

WECC system is used as a test system for this analysis. The results indicate that by doing data mining on 

these two parameters and setting appropriate alerts/alarm limits, a more secure power system 

operation can be realized. 

Chapter 7 delves upon a methodology to perform data conditioning and validation of phasor data 

obtained from a PMU-only state estimator.  A PMU only state estimator is intrinsically superior to its 

SCADA analogue with respect to performance and reliability. However, ensuring the quality of the data 

stream which leaves the linear estimator is crucial before establishing it as the front end of an EMS. This 
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can be done by pre-processing the phasor data before it arrives at the linear estimator and by using the 

estimator itself as a means to clean the data. This chapter presents an algorithm for synchrophasor data 

conditioning and validation that fits neatly into the existing linear state estimation formulation. The 

results indicate that the proposed technique provides a computationally simple, elegant solution to the 

synchrophasor data quality problem. Its use in the calibration of positive sequence instrument 

transformers is also discussed. 

Chapter 8 summarizes the dissertation and suggests possible topics that can be explored in the future. 

The references and appendices are provided in Chapter 9 and Chapter 10, respectively.  
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Chapter 2: Decision Trees for Complex Synchrophasor Data 

Wide area measurement system (WAMS) using synchronized phasor measurement units (PMUs) have 

been extensively used in power system networks all over the world. PMU-based measurements provide 

new methods for achieving real-time control, stability enhancement, and transfer capacity improvement 

of the power network. Especially, in the developed nations, these measurements have been widely used 

for state estimation, protection, and control based on situational awareness for operational decision 

making. Various data mining techniques have been employed by power engineers to make decisions 

based on this information [29]-[33], with decision trees (DTs) being the most popular approach [34].  

Decision trees (DTs) extract information from large sets of data and intuitively represent the gained 

knowledge through a series of if-else statements. And because DTs use if-else logic, they can be 

programmed and implemented very easily in the field. Decision trees have been used extensively in 

power systems for performing different types of analysis. A security-dependability based adaptive 

protection scheme separately using voltage angles and current magnitudes is developed in [12]. In [35], 

a real-time transient stability prediction scheme using voltage angles and decision trees is investigated. 

Voltage angles are again used in decision tree processing for response-based discrete event control [36]. 

A fast online voltage security monitoring scheme using PMU measurements with decision trees built 

using voltage angles is developed in [37]. Phasor magnitude and angle have (separately) been used for 

real-time transient instability detection [38]. In [39], power system security assessment is done using 

decision trees built from voltage angles obtained from PMUs. A wide-area response-based control using 

phasor measurements and decision trees based on voltage angles is developed in [40]. Splitting of 

decision trees on a single attribute is done in [41]-[43]. Voltage angles have again been used for power 

system transient stability forecasting in [44]. 

Classification and regression tree (CART) is a binary decision tree that is constructed by splitting the 

parent node and subsequent nodes into two child nodes repeatedly, beginning with the root node that 

contains the whole learning sample. The logic is based on choosing the best split among all possible 

splits at each parent node so that the child nodes are purest. The CART algorithm initially grows a 

decision tree as large as possible and then selectively prunes it upwards. Cost complexity criterion is 

used in the pruning process. The objective is to attain a minimum sized tree with minimized cost 

complexity. Cost complexity criterion and number of branches vary depending on the application. More 

details about the computational aspects of the CART methodology – splitting criteria, structural 
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complexity, etc. can be found in [45]. A commercial implementation of this technique (CART) has also 

been developed by Salford Systems [46].  

Being a non-parametric decision tree learning technique, CART is especially suited to power systems 

because of the latter’s complex, and non-linear behavior [47], [48]. A typical classification and regression 

tree is trained by a large number of cases called the “Learning Set” (LS) which is a sample of pre-

classified states and a list of attributes. The tree splits the data into two subsets at each node so as to 

get maximum purity in the generated subsets. The tree not only finds the optimal attribute required for 

partitioning, but also computes the optimal value of that attribute. The tree will stop growing when 

either of the two terminal criteria is met: 

 The class of a terminal node is “sufficiently” pure, or  

 The accuracy cannot be improved by further partitioning 

A set of “Testing Set” (TS) is then used to test the accuracy of the tree that has been built. To get a 

reliable and unbiased estimate, the test data set needs to be large. The CART logic explores the 

underlying mechanism based on which the data was created and uses binary recursive splitting to 

partition the sample space. Classification is used to analyze categorical type data while regression is 

used to analyze continuous type data [45].  

The popularity of CART is because of its apparent robustness and efficiency of use. It requires little data 

for its preparation, works well even if some of the assumptions made during data generation are 

violated and performs very well with large data in a comparatively short time [49]. Moreover, the 

resulting model is easy to understand and implement. The advantages of CART over other data mining 

techniques like Automatic Interaction Detection (AID), Chi-square Automatic Interaction Detection 

(CHAID), and C5.0 (a commercial decision-tree and rule-learning package developed by RuleQuest 

Research) are briefly summarized below [46]: 

 Optimal tree creation due to superior predictive accuracy 

 Assessing goodness of fit of solution via cross-validation 

 Ability to use same variable in different parts of the tree 

 Resistance to presence of outliers 
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2.1 Illustration of the problem 

CART data is in the form of an array with rows being the events/outcomes and columns being the 

measurements. In its simplest form, CART picks one measurement at a time for performing the splits. 

While this is very effective in handling data having univariate attributes, difficulties are observed where 

the predictors are multivariate. Multi-modal classification problems involve pattern recognition from 

disjoint regions in feature space. Synchrophasor data are an example of a multi-modal classification 

problem in the domain of power systems.  

PMU measurements are generally complex. When CART picks one column, it uses either the real or the 

imaginary part of the measurement, but not both. Thus, it is not able to address the complete phasor in 

a single split. This also creates problems when there is a change of reference [50]. Moreover, although 

CART allows splitting on Linear Combinations (LCs) involving as many as 6 attributes, these are chosen as 

“p chooses d” [51]. Hence, for performing the split, CART is not particularly likely to select a linear 

combination that includes both the real and the imaginary part of the same complex number. 

This drawback of CART (inability to perform an optimum split at a single node when applied on data 

having many attributes) limits its applicability to solve power system problems to a great extent. In most 

of the applications mentioned previously, decisions were being made based on one measurement 

obtained from a PMU. As such, CART was making decisions based on a single attribute. However, a PMU 

placed on a bus records the complete voltage phasor (magnitude and angle) and the complete branch 

current phasor (real and imaginary components) of all the branches emerging from that bus. Although 

using one attribute (for instance, voltage angle) works at times, it is not always a good strategy. As will 

be illustrated in this dissertation, on many occasions, it is more appropriate to use all the data that is 

made available through the placement of the PMU for making decisions, rather than just one attribute. 

Moreover, since the complex number (synchrophasor data) is a single entity (voltage, current, apparent 

impedance, etc.), it should be treated as such. Splitting only on the real or only on the imaginary 

component of a PMU measurement does not address the complete phasor.  

Similarly, a linear combination involving the real part of one variable and the imaginary part of another 

variable is not physically meaningful and is inefficient for placing PMUs. For instance, if complex currents 

are considered separately then CART might choose to do a split based on the real current flowing 

through one line and the imaginary current flowing through a different line, in which case at least two 

PMUs would be needed for measuring the currents. However, if the complex currents are treated as a 
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single entity, then CART will decide based on the real and imaginary components of the current 

simultaneously and so even a single PMU might suffice. Thus, it can be inferred that there is a need to 

examine in greater detail the splits made by decision trees that use complex synchrophasor data. 

2.2 Previous Approach – Rotation along a reference 

The challenge that is encountered in making a split involving complex data is that two or more groups of 

high-dimensional quantities have to be separated by a single entity. This means that the multi-

dimensional data has to be represented in a manner that a single dimensional variable is able to 

distinguish patterns present in that data. In the domain of power systems, [50] describes a way to make 

decisions concerning complex synchrophasor data by rotating along a reference. Their approach is 

described as follows. 

In [50], Garlapati and Thorp studied the problem of splitting on the real or imaginary part of a complex 

quantity for a decision tree built using real-time data. Their logic is based on the fact that complex 

synchrophasor measurements have a reference angle associated with them. For instance, if a load flow 

is used to generate the data, the angle of the swing bus can be used as the reference. However, the 

actual application requires a physical reference as the measured angles would have the reference angle 

subtracted from them. That becomes a problem when the reference is changed. Typically this occurs 

when the PMU on the reference bus fails or when the utility decides to install the needed PMU 

elsewhere. Performing the split on the real or the imaginary part of a complex measurement would then 

result in the performance of the tree to degrade significantly. 

This being the motivation for their work, Garlapati and Thorp proposed rotating along a reference as a 

potential solution to the problem. To illustrate their logic, let us assume a variety of load flow 

simulations have been performed for a system of   buses. For the load flow data that is generated, the 

utility swing bus, say bus  , is the reference. Therefore, the angle of bus   will be zero for all the cases. 

Now, if the utility places a PMU at bus  , then its angle will be used as the reference for all 

synchrophasor measurements and no change has to be made to the load flow data. However, if the 

utility decides to place the PMU at some other bus, say bus  , where     and    , then in order to 

use the new bus   as the reference, the angle of bus   has to be subtracted from all the other angles of 

the data set. Thus, bus   will now be at an angle of zero and all the angles will be referenced to it 

(instead of bus  ). Graphically, this can be thought of as rotating all the data points by the angle 

difference between bus   and bus  . The following example illustrates this concept.  
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Fig. 2.1 denotes a randomly generated set of 40 data points. Without any loss of generality, it can be 

assumed that the X-axis depicts the real voltages in p.u. whereas the Y-axis depicts the imaginary 

component of the voltages also in p.u., when referenced to the swing bus of an arbitrary system for 

some simulated experiment. The blue circles can then correspond to the stable voltages while the red 

circles will denote the unstable voltages. The dotted line shows the single column splitter obtained 

when this set of complex voltage measurements is fed into CART. However, from the figure it becomes 

clear that by splitting in this way, two blue points which are supposed to be above the line are below it 

resulting in a misclassification of 5%.  

 

Fig. 2.1: Best split obtained by using the swing bus as reference 

Now based on the logic developed in [50], one can shift the reference from the swing bus to other buses 

of this arbitrary system to get different splits. By successively making three other buses say bus  , bus   

and bus   as the reference (where buses  ,   and   are not the initial swing bus) one can obtain plots 

such as the ones shown in Figs. 2.2-2.4. From these figures it becomes clear that the reference used in 

Fig. 2.3 i.e. bus   is the best reference for performing the split for the said experiment.  
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Fig. 2.2: Best split obtained by using bus   as reference 

 

Fig. 2.3: Best split obtained by using bus   as reference 
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Fig. 2.4: Best split obtained by using bus   as reference 

The approach proposed in [50] is impressive because it not only provides a possible solution to the 

problem of using complex measurements for decision making, but also can be used to find out the most 

suitable reference bus for a given application. Out of the buses selected by the decision tree, the bus 

that results in the least number of misclassifications will be the best bus to be used as a reference. The 

only thing that needs to be done is to try different buses as the reference to see which bus best suits the 

need.   

2.3 Proposed Algorithm – Fisher’s Linear Discriminant applied to Synchrophasor Data (FLDSD) 

The technique that is presented in [50] is one way in which splits can be performed for decision making 

using complex synchrophasor data. However, it is not the most optimal way of addressing this issue. The 

drawbacks of the approach developed in [50] are identified as follows: 

 It does not necessarily produce the best possible results 

 It’s a very “manual process” and cannot be easily applied to large and complex power system 

problems 

 It cannot be extended to data having more than two-dimensions 
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 It cannot make multi-class distinctions 

In order to implement the logic developed in [50] the reference has to be moved from one bus to the 

other in order to find the reference that is best suited for the given application. But there is no 

guarantee that there “will” be a reference bus that will give the optimum split in all situations. Similarly, 

the transfer of the reference from one bus to the other is a very “manual process” because it requires 

“checking” for the bus that gives the least number of misclassifications and then “choosing” that bus for 

decision making. Therefore it becomes very difficult to apply this logic directly to large and complex 

power system problems. Finally, the logic developed in [50] cannot be extended to data having more 

than two attributes, nor can it make distinctions between multiple classes. The technique developed in 

this chapter called Fisher’s Linear Discriminant applied to Synchrophasor Data (FLDSD) overcomes all the 

aforesaid drawbacks.  

2.3.1 Strategy for making two-class classification of high dimensional data  

Consider a set of observations  ⃗⃗  for each sample of an event with known classes    and   ; the 

subscripts   and   denoting the “blue” and “red” data sets which are to be separated. The objective of 

the classification problem is to then find a good predictor for the class   of any sample given only an 

observation  ⃗⃗ . By performing simulations and analyzing the results, it was realized that for similar 

distributions (skewed or otherwise), a simple and efficient way of doing the split was by making the two 

distributions spherical. This is based on the logic of linear discriminant analysis (LDA) which is a 

simplification of Fisher’s Linear Discriminant (FLD) [52]. This is done by multiplying the individual 

distributions with the Cholesky-Decomposition [53] of the inverse of its covariance matrix. This results in 

the new distributions becoming spherical with an identity covariance matrix. The advantage is that the 

perpendicular bisector of the line joining the two centroids of the new (spherical) distributions then 

becomes the optimum split between the two data sets. 

Let the two classes of observations have centroids  ⃗⃗   
 and  ⃗⃗   

 and covariance   . Then the optimum 

split for this new distribution is obtained by solving for  ⃗⃗     such that,  

 ( ⃗⃗   
  ⃗⃗   

)
 
 ( ⃗⃗⃗     

( ⃗⃗      
  ⃗⃗      

)

 
)                                                                                                  

Where, 
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 ⃗⃗      
   ⃗⃗   

 

 ⃗⃗      
   ⃗⃗   

      
       

                                                                                                                                                                  

It is to be noted here that  ⃗⃗⃗     defines the hyper-plane which perpendicularly bisects the line joining 

the two new centroids. Therefore, (2.1) holds true in the new co-ordinate system where the two 

distributions are spherical with identity covariance matrices. The data points to be segregated are now 

projected onto  ⃗⃗⃗    . For example, let  ⃗⃗⃗     be parameterized by a linear equation in 3-d space as 

shown in (2.3), 

 ⃗⃗⃗                                                                                                                                                        

Then, if    ⃗⃗  ⃗             be the     data point belonging to the set of observations  ⃗⃗ , then the shortest 

distance from   ⃗⃗  ⃗ to the hyperplane defined by              is given by, 

     
             

√        
                                                                                                                                        

The split can now be performed on the following basis – 

           

           
                                                                                                                                                                 

From (2.3)-(2.5) it becomes clear that, since the distance vector will be a one-dimensional quantity 

irrespective of the number of dimensions the hyperplane has, this logic can be extended to address high 

dimensional data with ease. 

When the two distributions are very different, an optimum split can be performed by adding the 

covariances of the two data sets and using it on both the data (based on traditional FLD). Let the two 

classes of observations have centroids  ⃗⃗   
 and  ⃗⃗   

 and experimental covariances    
 and    

. Then, 

FLD defines a performance index   which maximizes the projected class differences relative to the sum 

of the projected within-class variability [52], [54]. Mathematically, this is stated as – 

              
( ⃗⃗⃗  ( ⃗⃗   

  ⃗⃗   
))

 

 ⃗⃗⃗  (   
    

) ⃗⃗⃗ 
                                                                                                                       

Where the vector  ⃗⃗⃗  is the normal to the discriminant hyper-plane 
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On solving (2.6), it is realized that the maximum separation occurs when, 

 ⃗⃗⃗  (   
    

)
  

(  ⃗⃗   
  ⃗⃗   

)                                                                                                                               

If  ⃗⃗    
 (   

    
)
  

 ⃗⃗   
 and  ⃗⃗    

 (   
    

)
  

 ⃗⃗   
, then any vector perpendicular to  ⃗⃗⃗  and 

passing through its mid-point is given by, 

 

 
( ⃗⃗    

  ⃗⃗    
)   ⃗⃗⃗                                                                                                                                                    

In (2.8)   is the optimizing variable. In order to find the optimum hyper-plane, we have to minimize: 

‖ ⃗⃗  
 

 
( ⃗⃗    

  ⃗⃗    
)   ⃗⃗⃗  ‖

 

                                                                                                                                  

On solving (2.9) using weighted least squares (WLS) algorithm, we get the expected value of   as, 

 ̂    ⃗⃗⃗   ⃗⃗⃗      ⃗⃗⃗   ( ⃗⃗  
 

 
( ⃗⃗    

  ⃗⃗    
))                                                                                                         

Using this value of  ̂, we obtain the splitting variable   as: 

  [   ⃗⃗⃗   ⃗⃗⃗   ⃗⃗⃗     ⃗⃗⃗  ] ( ⃗⃗  
 

 
( ⃗⃗    

  ⃗⃗    
))                                                                                              

From (2.11), it can be inferred that the original multivariate data can be replaced in CART by the single 

variable  . It is also easy to show that the hyperplane perpendicularly bisecting the line joining the two 

centroids in the new co-ordinate system is equivalent to a rotation of the hyperplane perpendicularly 

bisecting the line joining the two centroids in the original co-ordinate system, thereby making it no 

longer perpendicular. This is the geometric interpretation of Fisher’s algorithm. Therefore, for any 

unknown distribution a direct application of FLD is sufficient for performing an optimum split. As such, a 

suitable name for this method is Fisher’s Linear Discriminant applied to Synchrophasor Data (FLDSD). 

2.3.2 Strategy for making multi-class classification of high dimensional data 

In the previous sub-section, it was proved that the proposed approach is able to perform binary splits on 

high-dimensional data. However, this method could also be used to separate multiple classes, by taking 

two classes at a time. In order to do so, distances of the data points from all the hyperplanes must be 
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initially computed. Taking two classes at a time, (2.11) is used to compute for the distances. For  -class 

distribution, we have,  

                        
       

 
                                                                                                          

The distances to the hyperplanes must then be fed into CART for selecting the optimum distance 

variable for performing the split. Since all the input variables have single attributes, CART can directly 

select the distance variable that will result in the best possible split. By selecting two classes at a time, 

and proceeding until all the class combinations have been covered, even a tree of depth     can 

successfully separate   data classes. The flowchart of the proposed algorithm is shown in Fig. 2.5, while 

the pseudo-code describing its application to an example problem is given in Appendix A. The next sub-

section demonstrates the application of this logic to typical synchrophasor data. 

2.4 Illustrating application of FLDSD to synchrophasor data 

Since PMU data are usually complex numbers, the goal is to express such multivariate data by a single 

entity. This single entity/variable would be used for performing the split in CART. But real-time PMU 

measurements offer some challenges of their own. It was observed that data sets often had very 

skewed distributions (as seen in Fig. 2.6). The reason for this was that voltage magnitudes and steady 

state currents expressed in “per unit” were near unity, but the angles expressed in degrees and 

transient current values were not so. Thus, when such diverse measurements were combined together 

to make decisions, the resulting cloud became ellipsoidal in shape. This issue was addressed by 

transforming the ellipsoid into a sphere using the proposed algorithm as shown in Fig. 2.7. It becomes 

obvious from Fig. 2.7 that this technique has resulted in the two distributions becoming circular 

(spherical, for higher dimensions) from their earlier elliptical (ellipsoidal, for higher dimensions) shapes. 

This was further verified by computing the covariances of the new distributions, both of which were 

found to be identity. 

Another problem was the apparent randomness in some of the distributions when, for example, a fault 

occurred in the system. Similar to what is seen in Fig. 2.8; it was observed that such distributions 

followed no set pattern. The application of the proposed approach to the example in Fig. 2.8 is shown in 

Fig. 2.9. It becomes obvious from Fig. 2.9 that using this method a perfect split between the data points 

has been obtained. The next sub-section illustrates how a split performed using FLDSD compares with 

that performed using the traditional CART algorithm. 
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Find means and compute 
covariances of all the distributions

Taking two distributions at a time, 
multiply them by inverse of the 

sum of the covariances

Compute the equation of the line 
joining the centroids of the 

resulting distributions

Solve for the optimal hyperplane 
perpendicular to the line joining 

the centroids

Replace data of original 
distributions by distances of 
individual points from this 

optimally selected hyperplane

All distribution 
pairs covered

Yes

No

Set the resulting distance 
variables as inputs to CART for 

training the tree

Given an actual event, compute 
distances to the relevant 

hyperplanes and follow the tree to 
the corresponding terminal node

 

Fig. 2.5: Flowchart of Proposed Algorithm 
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Fig. 2.6:  Dotted line shows best first single column split 

 

Fig. 2.7:  Dotted Line shows the optimal first split 
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Fig. 2.8:  Dotted line shows best first single column split  

 

Fig. 2.9:  Dotted Line shows the optimal first split  
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2.5 Comparison of FLDSD with the traditional CART algorithm 

In the previous sub-section, the application of FLDSD to split randomly generated synchrophasor data 

was demonstrated. From the results, it was clear that the proposed logic is able to perform a better split 

than the one obtained using data from a single column. In this sub-section, a direct comparison of this 

algorithm (used as a preprocessing step) is made with the traditional CART algorithm to show its ability 

to solve general power system problems.     

Let there be a hypothetical 3-bus system as shown in Fig. 2.10. The three buses (A, B, and C) are 

connected to each other by three transmission lines (1, 2, and 3). Six transient stability simulations were 

run on this system with the first three resulting in a stable system whereas the remaining three resulting 

in the system losing stability. The current (real and imaginary) flowing in the three lines for the six cases 

is as shown in Table 2.1. In the table, the rows denote the event (stable/unstable) while the columns 

denote the corresponding measurements (real and imaginary currents).   

 

Fig. 2.10: A generic 3-bus system 

Table 2.1: Original currents flowing in the lines to be fed as inputs to CART 

 

Data

Event

Stable 3.45 0.46 1.15 0.05 2.65 0.45

Stable 3.40 0.35 1.20 0.02 2.55 0.42

Stable 3.52 0.57 1.11 0.10 2.80 0.46

Unstable 4.00 0.50 1.10 0.15 2.85 0.60

Unstable 3.53 0.30 1.00 0.05 2.60 0.47

Unstable 3.75 0.45 1.05 0.06 2.75 0.50
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Since CART can pick only one measurement at a time for performing binary splits, it will choose either 

the real or the imaginary part of the complex current measurement for performing the split. In 

agreement with this logic, when the data shown in Table 2.1 was fed into CART, it generated a decision 

tree as shown in Fig. 2.11. From the figure, it becomes clear that the real current in line 1, the imaginary 

current in line 3 and the real current in line 2 are needed by the decision tree to make a successful 

prediction. Correspondingly, it can be inferred that PMUs must be placed on all the three lines. 

Therefore, three PMUs will be needed for making real-time transient stability predictions for this 

system. By treating the complex number as a single entity using FLDSD, it will be shown that a better 

result can be obtained both in terms of accuracy and speed of prediction. 

 

Fig. 2.11: Decision Tree created by CART when the original currents were fed as inputs 

According to the proposed algorithm (FLDSD), the complex currents have to be represented by a single 

entity. In order to do so, the means and covariances of the three currents were initially computed. The 

mean of the currents for the stable and unstable cases were found as follows: 
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It is to be noted here that in (2.13), the abscissa denotes the real part of the complex current whereas 

the ordinate denotes the imaginary part. Similarly the covariances of the three currents for the stable 

and unstable cases were found to be: 
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Then, for the three currents, the equation of the straight line joining the means and passing through the 

mid-point of the means was computed using the formula: 

       
 (

   
    

   
    

)(       
)                                                                                                            

In (2.15), (   
    

)     (    
    

) are the means for the stable and unstable current values of the     

line, while (      
      

) were computed as shown below: 

     
 

   
    

 

     
 

   
    

 

                                                                                                                                                           

The three lines obtained as outcomes of (2.15) were rotated by the sum of the covariances of the 

respective lines; the covariances having been obtained as shown in (2.14). Then, if    
 denotes the 

slope of the     line, then the slope of the hyperplane perpendicular to that line (denoted by    
) will be 

given by, 
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 Therefore, the equation of the hyperplane for the current distribution of the     line passing through 

the point (      
      

) and having a slope    
 will be given by, 

       
    

(       
)                                                                                                                                      

On computing the distances of the respective data points from their corresponding hyperplane, we get 

the new splitting variables as seen in Table 2.2. The distance variable    corresponds to the complex 

currents of the first line, the distance variable    for the second line, and the distance variable    for 

the third line. When these new variables were fed as inputs to CART, it generated a decision tree as 

shown in Fig. 2.12.     

Table 2.2: Distances to the hyperplanes obtained by applying FLDSD technique 

 

By comparing Fig. 2.12 with Fig. 2.11, it can be realized that by using the proposed approach (FLDSD), a 

smaller decision tree is able to perform the split perfectly. The advantages of a smaller decision tree are 

numerous. In terms of placement of PMUs, instead of monitoring real current in line 1, imaginary 

current in line 3, and real current in line 2, we only need to measure the complex currents in lines 1 and 

3. Since when a PMU placed on a line automatically measures the real and imaginary currents flowing in 

that line, for the given system, two PMUs (instead of three as computed previously) are sufficient for 

making a successful decision regarding transient stability. Therefore, by using the proposed technique, 

the installation and maintenance cost of one PMU device has been recovered. Furthermore, since the 

decision tree shown in Fig. 2.12 is smaller than the one shown in Fig. 2.11, in terms of real-time 

implementation, it is implied that the tree obtained using FLDSD will give results more quickly than the 

one created without it. Although some amount of “time” will be consumed in computing the distance 

variable from the measured currents, it is hypothesized that the reduction in “time” occurring due to the 
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smaller tree size will more than compensate for the “time consumed in pre-processing”. All things 

considered, it can be implied that the proposed approach is an efficient technique for decision making 

involving complex synchrophasor data.   

 

Fig. 2.12: Decision Tree created by CART after incorporating FLDSD 

2.6 Conclusion 

An algorithm titled “Fisher’s Linear Discriminant applied to Synchrophasor Data” (FLDSD) is developed in 

this chapter to make decisions involving complex PMU data. When only the real or the imaginary 

attribute of the phasor is used for making the split, the result is not optimal as the complete phasor is 

not considered. Others who have tried to solve this problem have done so by rotating the axes along a 

reference, but that approach does not provide a guarantee for a successful result in all situations. In the 

proposed algorithm, by using FLD, complex numbers are represented by a single variable which is then 

used for performing the splits. The simulations performed indicate that the technique developed here is 

simple, fast, and robust. Its applicability to solve problems occurring in large and complex power system 

networks is studied in the next chapter.     
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Chapter 3: Application of FLDSD in Power Systems 

With the advent of phasor measurement units (PMUs) in power systems, it is now possible to monitor 

behavior of the system in real-time. A variety of techniques make use of this real-time PMU data for 

operational decision making. These techniques include fuzzy-logic based approaches, artificial neural 

network (ANN) based approaches, support vector machine (SVM) based approaches [55]-[58], etc. 

However, in recent years, decision trees (DTs) has emerged as the most popular data mining technique 

in power systems [34]. In the previous chapter, an algorithm was developed that makes decision 

involving complex synchrophasor data. CART (Classification and regression tree), which is a non-

parametric decision tree learning technique, was used in the development of this algorithm. The results 

indicated that the proposed algorithm (FLDSD) had potential for solving large-scale and complex power 

system problems. This “indication” is explored in more details in this chapter.  

Fisher’s Linear Discriminant applied to Synchrophasor Data (FLDSD), illustrated in the previous chapter, 

showed how the CART algorithm can be used to make decisions while considering measurements having 

multiple attributes in a single split without needing a reference.  Since it is only the inputs to CART which 

were modified, and not the algorithm on which CART operates, this technique can be readily applied to 

any engineering problem which involves decision making based on multivariate data. As such, the 

proposed method is expected to find use in the areas of –   

 Adaptive Protection Schemes  

 Event Classification 

 Real-time power system transient stability/instability predictions  

 Development of Islanding schemes 

 Online voltage security monitoring  

 Online dynamic security assessment  

 Response based control using phasor measurements  

 Optimal PMU placement, etc. 

In this chapter, the proposed methodology is implemented on two systems – a detailed model of the 

California power system where it is used for developing an adaptive protection scheme, and the IEEE 

118-bus system where it is used to classify dynamic events based on trajectories of voltage 

measurements obtained from PMUs. The MATLAB implementation of CART (classregtree.m) has been 

used for performing both the analysis. Studies employing the proposed technique for transient stability 
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predictions [59], [60] and islanding detection and classification [61] have been done. But those studies 

are not included in the present scope of work. 

3.1 An adaptive protection scheme for the California power system 

In [12], an algorithm was developed which used CART to categorize a system as “safe” or “stressed” 

based on data collected from PMUs. Two scenarios of the California power system, heavy winter (HW) 

and heavy summer (HS) were used for the study. The main goal of that algorithm was to partition the 

power system state space intelligently in order to develop decision rules to adjust security/dependability 

balance of relay protection schemes. It was argued that the likelihood of hidden failures and potential 

cascading events could be significantly reduced by adjusting the security/dependability balance of 

protection systems to better suit prevailing system conditions. In [12], Emanuel et al. used decision trees 

to classify the power system state and to predict the optimal security/dependability bias of a critical 

protection scheme. Using [12] as a case study, classifications based on measurements having two 

attributes is discussed here. 

3.1.1 Security/Dependability based adaptive protection scheme 

The adaptive protection scheme that Emanuel et al. proposed works as follows. PMUs placed at critical 

locations in the network provide information regarding the “state” of the power system. Using that 

information, the system is classified as “safe” or “stressed”. A “safe” system is biased towards 

dependability whereas a “stressed” system is biased towards security. As defined by IEEE [62], 

dependability is “the degree of certainty that a relay or relay system will operate correctly”, i.e., it is a 

measure of the certainty that the relays will operate correctly for all the faults for which they are 

designed to operate [63]. On the other hand, security “relates to the degree of certainty that a relay or 

relay system will not operate incorrectly”. Although, traditionally, protection systems were biased 

towards dependability, it was demonstrated in [12] that under stressed system conditions, a favorable 

bias towards security is more beneficial.  

As shown in Fig. 3.1, in [12], Emanuel et al. proposed an adaptive voting scheme to alter the security-

dependability balance in accordance with the “current” system state. The voting scheme consists of a 

set of three independent and redundant relays. Based on PMU measurements, if the system state is 

found to be “safe”, then in the case of a fault, voting is disabled and any of the three relays can trip the 

line (biased towards dependability). However, if the PMU measurements indicate that the system is in a 

“stressed” condition, then the voting scheme is enabled and the line will trip only if two or more relays 
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see the fault (biased towards security). Emanuel et al. also identified the critical locations where the 

PMUs should be placed (nodes of the decision trees), as well as the attributes that the PMUs should 

monitor (bus voltage angles and line currents). Figs. 3.2a and 3.2b show the decision trees that they 

obtained for the HW and HS scenarios, respectively [12], [64]. 

 

Fig. 3.1: Security/Dependability based adaptive protection scheme 

(Courtesy of Dr. Emanuel E. Bernabeu) [64] 
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Fig. 3.2a: Decision tree for heavy winter (HW) case as obtained by Emanuel 

(Courtesy of Dr. Emanuel E. Bernabeu) [64] 
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Fig. 3.2b: Decision tree for heavy summer (HS) case as obtained by Emanuel 

(Courtesy of Dr. Emanuel E. Bernabeu) [64] 

3.1.2 Using FLDSD technique for classifying system state  

The adaptive voting scheme developed in [12] required the system to be classified as “safe” or 

“stressed” based on measurements obtained from PMUs. However, as highlighted in black ovals in Fig. 

3.2, in their analysis Emanuel et al. considered the complex quantities separately. The splits in Fig. 3.2 

were based on either the real or the imaginary component of the complex currents. Since it was proved 
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in the previous chapter that such a partitioning does not yield optimal results, their study became a 

suitable choice for the application of the proposed algorithm. FLDSD technique was applied on both the 

heavy winter (HW) as well as the heavy summer (HS) scenarios. The total number of training cases in the 

HW case was 4150, whereas in the HS case it was 11367. The total number of “out-of-sample” cases was 

660 for the HW case and 1155 for the HS case. 

The data presented to the CART implementation program in MATLAB (classregtree.m) were all the 

500kV voltage angles and currents present in the system – a total of 42 voltage angle and 90 complex 

current measurements. Every 500kV current was measured as a complex number and each complex 

number was treated as a single entity. Ten-fold cross-validation was done to improve the accuracy of 

the prediction. In selecting the splitting nodes CART picked the substations where PMUs would be 

placed. Thus, it was the CART algorithm which chose the nodes that would result in an optimum split as 

seen in Figs. 3.3 and 3.4. Fig. 3.3 depicts the decision tree obtained for the HW case. An overall accuracy 

of 99.46% was obtained for this case with          and     denoting currents and/or voltage angles of 

specific lines and buses. Fig. 3.4 depicts the decision tree for the HS case. It had an overall accuracy of 

99.38%. The results indicate that PMUs placed on lines and buses selected by the tree can classify the 

system as “safe” (blue) or “stressed” (reds) with very high accuracy. 

 

Fig. 3.3: Decision tree for heavy winter (HW) case using FLDSD technique 
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Fig. 3.4: Decision tree for heavy summer (HS) case using FLDSD technique 

In Figs. 3.5-3.8, real buses and lines are denoted as Bus X and Line Y respectively, where X and Y are 

natural numbers. This is done in accordance with the restrictions imposed by FERC: CEII (Federal Energy 

Regulatory Commission: Critical Energy Infrastructure Information). Fig. 3.5 shows the first splitting node 

(   ) chosen by CART for the HW case. The blue circles denote a “safe” system whereas the red dots 

denote a “stressed” system. In the actual system, node     corresponds to the total current flowing in 

line 1104. Accordingly, Fig. 3.5 shows the plot of the real vs. imaginary current components of line 1104. 

The plot denoting the distance variable   for this distribution is given in Fig. 3.6. Similarly, Fig. 3.7 shows 

the first splitting node (   ) chosen by CART for the HS case. In the actual system, node     

corresponds to the total current flowing in line 735, whose real and imaginary components are depicted 

in Fig. 3.7. The corresponding plot of   is shown in Fig. 3.8. From the plots shown in Figs. 3.5 and 3.7 

respectively, it becomes clear that a single line parallel to the X-axis or the Y-axis will not be able to 

provide an optimum split. However, by using the proposed technique, it is observed in Figs. 3.6 and 3.8 

respectively that the new distance variable   is able to easily differentiate between the two classes.  
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Fig. 3.5: First splitting node for heavy winter (HW) case 

 

 

 Fig. 3.6: Distance D for the first splitting node of the heavy winter (HW) case  
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Fig. 3.7: First splitting node for heavy summer (HS) case 

 

 

Fig. 3.8: Distance D for the first splitting node of the heavy summer (HS) case 

Table 3.1 compares the results obtained here with those obtained in [12]. From the table, it is realized 

that by using FLDSD, a smaller tree (faster decision with lesser number of PMUs) is able to provide 
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higher classification accuracy. Table 3.2 compares the performance of the decision trees obtained using 

this technique with that obtained by rotating along a reference as was done in [50]. From Tables 3.1 and 

3.2, it becomes clear that the proposed methodology is more accurate in making decisions involving 

complex synchrophasor data. There are applications where only the voltage angle, for example, is 

relevant for making decisions. However, relaying in particular deals with complex quantities and the 

technique developed here is necessary for making an optimal split. Simulation cases developed in [12] 

were used here because it provided a real system that was big enough to test the robustness of this 

technique. In this analysis, FLDSD was used to perform splits on high-dimensional, two-class data. In the 

next example, application of this technique to high-dimensional, multi-class data is illustrated. 

Table 3.1: Comparing size of decision trees (for training purposes) 

Scenario 

Using algorithm developed in [12] Using Proposed Algorithm 

Number of Nodes 
Misclassification 

Rate (%)  
Number of Nodes 

Misclassification 

Rate (%) 

Heavy Winter 6 1.00 3 0.14 

Heavy Summer 6 1.00 3 0.20 

 

Table 3.2: Comparing overall (training and testing) performance of decision trees 

Scenario 
Number 

of Cases 

Using a Reference for Rotation [50] Using Proposed Algorithm 

Number of Errors Accuracy (%) Number of Errors Accuracy (%) 

Heavy Winter 4810 48 99.00 26 99.46 

Heavy Summer 12522 172 98.63 78 99.38 

 

3.2 Dynamic power system state estimation using synchrophasor measurements 

One of the conclusions of the report on the 1965 Northeast blackout was that, at that point, power 

system operators had insufficient information about the system they were controlling. State estimation 

and the modern EMS were created to deal with these problems. The state of the power system is the 

collection of all of the complex bus voltages. The calculation of the state in conventional estimators 

involved iteratively solving large numbers of nonlinear equations. The computational complexity 
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combined with the data scan across the system made the process slow and new estimates could only be 

obtained every few minutes [65], [66]. The result was that the picture that was provided to the 

operators about the state of their system was delayed both in time as well as in space. Faster computers 

and improved communication have reduced minutes to seconds over the decades but even with a 4 sec. 

interval the static assumption is still a poor approximation. 

From the beginning of synchronized phasor measurements it was clear that PMU measurements would 

be an important addition to state estimation. Today, many commercial state estimators have PMU 

inputs. However, since these mixed estimators still “poll” SCADA measurements, they are non-linear and 

iterative [67]. A three phase PMU only estimator has already been developed for Dominion Virginia 

Power’s (DVP’s) 500kV network. This linear state estimator updates every 1/30 of a second. Only 

complex voltages are measured and time tagged (IEEE C37.118), and so the calculation is the solution of 

a set of over-defined (more measurements than states) linear equations. Moreover, no iterations are 

involved. Assuming the system topology remains unchanged, the column of time-tagged data is 

multiplied by a pre-computed matrix to compute the estimate of the states. A topology processor 

developed as part of the estimator accounts for system changes. Time tagged breaker statuses and 

measured voltages sense changes in network topology and the pre-computed matrix is altered 

accordingly [28]. 

This linear estimator being built for Dominion’s 500kV network is the world’s first three-phase PMU-only 

state estimator. Since the events captured by this estimator will have never been seen previously 

(relaying action, remote backup, transient swings, etc.), there is an imminent need to understand its 

outputs. Similar to a conventional estimator, the PMU-only state estimator not only detects bad/missing 

data, but also identifies the exogenous events that it has captured. Detection of discrepancies in the 

data is done through an Auto-Regressive (AR) model [27] that is described in sub-section 3.2.1, while the 

identification of dynamic events is done using the FLDSD technique which is illustrated in sub-section 

3.2.2.  

3.2.1 Dynamic state prediction based on an Auto-Regressive (AR) model 

The idea of a three phase linear state estimator using only synchrophasor data that is being 

implemented in DVP’s 500kV network was originally proposed in [28]. However, this model of the state 

estimator was not a tracking state estimator as it considered each new frame as a separate problem. 

Therefore, it was impossible to detect/identify bad data using that model. The idea of tracking the state 
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of the power system is not new. Even before the introduction of phasor measurements, a Kalman filter 

like process for tracking the system state was suggested in [68]. The difficulty then and now is that the 

number of measurements is inadequate to produce a successful estimate. Dominion has approximately 

4,000 buses but only about 30 EHV (500kV) buses. As such, the Kalman filter based technique would 

need to solve a state equation based on all the states of the 4000 bus network which would not be a 

practical approach. Since it is believed that in the foreseeable future PMUs will only be placed at the 

high voltage and extra-high voltage buses of the network, there is a need to develop a mechanism to 

predict the next measurement for this small section of buses using their previous measurements. A 

method to do so was developed in [27] and is briefly summarized below. 

Auto-Regressive (AR) modeling [69] is a time-series analysis widely applied to forecasting areas, such as 

signal processing, state estimation, control, pattern recognition, etc. A general AR model of the order   

is denoted by       and is defined in 3.1. 

                                                                                                                  

In (3.1),            are the time-series data,   is the order of the AR model,            are the 

corresponding coefficients of the AR model, and    is white noise. When the load is increased linearly at 

constant power factor, the behavior of the power system can be illustrated as shown in Fig. 3.9. 

 

Fig. 3.9: One-line diagram of a model power system 

In Fig. 3.9,   is the transmission line reactance, and    is the load increased linearly with time   at 

constant power factor. Now,    is also given by, 

      
                                                                                                                                                                          

From Fig. 3.8 and (3.2), we have, 



41 
 

      (
      

   
)                                                                                                                                     

Equating real and imaginary components of (3.3), we get (3.4) and (3.5), 

                                                                                                                                                           

                                                                                                                                                                                 

In (3.4) and (3.5),   and   are constant real numbers. The solution of (3.4) is, 

  
  √            

 

 
                                                                                                                                     

On writing a Taylor series expansion for (3.6) it is realized that for the linear load increase, the voltages 

follow an approximately quadratic trajectory as shown in (3.7), where          are complex numbers. If 

more precision is needed the order of the polynomial can be further increased. 

                
                                                                                                                                               

Equation (3.7) is a polynomial of degree     as seen in (3.8a), and which can be interpolated [70] and 

expressed in the form shown in (3.8b).   
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In (3.8a) and (3.8b),              are constant coefficients. Equation (3.8b) can be re-written as 

                                                                                                                                                                                   

In (3.9),   is the well-known Vandermonde matrix [71]. Now, if   [           ] denotes 

the first row of    , then on pre-multiplying both sides of      with  , we get (3.10a) in which      

equals   , in accordance with (3.8a).  

                                                                                                                 

Finally (3.10a) can be rearranged and written as (3.10b). 



42 
 

      
    

  
       

    

  
         

  

  
                                                                   

Pascal’s triangle [72] is a two-dimensional triangular array representing the coefficients of the binomial 

expansion,        where   varies from zero to positive-infinity. Pascal’s triangle shown in Fig. 3.10 

actually indicates the magnitudes of the coefficients of the AR model that is obtained from the inversion 

of the Vandermonde matrix.  

 

Fig. 3.10: Pascal’s Triangle 

Since for a linear increase in load, the voltages follow a quadratic trajectory, corresponding to the third 

row of the Pascal’s triangle. Thus, the quadratic AR model for predicting the next set of voltage 

measurements will be based on three prior estimates as shown in (3.11), where          

                 are complex bus voltages.  

                                                                                                                                     

Now, when this logic is integrated with the fact that the measurements will be made at a very high 

speed (for example, 30 times a second), the limitation of the applicability of (3.11) on only quadratic 

trajectories can be removed. The reason for this is that the data taken at such high speeds will satisfy 

the locally quadratic behaviors even without the assumption that the load is changing linearly. This is 

because in the extremely small time increment, the load is seen as linear because the system loads do 

not change that quickly. Equation (3.11) can be expressed in the Kalman filter notation as, 
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 ̂          ̂        ̂           ̂                                                                                   

In (3.12),  ̂ (read as y-hat) denotes the estimated value of the state  , while the symbol   is the “given” 

operator. Thus,  ̂      reads as y-hat of   given   and is the expected value of      given that      is 

known. The discovery of this “quadratic” dependence of the estimate of the future state on the 

estimates of the three previous states gives one the ability to detect data inconsistencies. By using the 

three prior estimates of a particular measurement, its future measurement can be predicted. Next, by 

comparing this estimate with the actual measurement, an observation residual can be computed. 

Finally, by comparing the observation residual with a pre-defined threshold, discrepancies in the 

incoming data can be detected. More details about this prediction model can be found in [27].  

3.2.2 Classification of dynamic events based on voltage measurements obtained from PMUs 

In the previous sub-section, a quadratic model was developed to predict the next measurement and 

thereby detect anomalies in the data. However, the quadratic model is not able to identify the event 

that has caused the anomaly. The FLDSD technique developed in the previous chapter appears to 

alleviate this concern. By treating trajectories of complex voltages as a single entity, classification of 

dynamic events is illustrated as follows. Since FERC: CEII regulations makes it difficult to do thesis work 

and publish results on real systems, the IEEE 118-bus system is used here as the test system. This system 

was chosen amongst others because it was similar in structure to the DVP system. The IEEE 118 bus 

system [73] is shown in Fig. 3.11 with its 345kV network highlighted in red. The system has 118 buses, 

186 branches, and 11 345kV buses. In order to make the analysis more realistic, it is assumed that PMUs 

are installed on the eleven 345kV buses, and voltage magnitude and angle measurements are obtained 

at 30 times a second. By doing so, a direct comparison of the results obtained from the two systems 

(IEEE 118-bus system and DVP system) can be made.  

The typical output of the PMU only state estimator for the IEEE 118-bus system for a dynamic event (a 

three-phase fault on line 26-30 followed by an unsuccessful high speed reclose) is shown in Fig. 3.12. 

The figure shows the trajectories of the eleven complex voltages (positive sequence), for one second. 

The display has been split into four windows for clarity. From Fig. 3.12 it can be realized that unless a 

label is provided to the plots that the estimator generates, it will be very difficult to identify, just by 

looking at the plots, the event that has occurred. The FLDSD algorithm provides a solution to this 

problem by treating the trajectory of complex numbers as a single attribute which is then used for 

classifying different dynamic events. 
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Fig. 3.11: IEEE 118-bus system with 345 kV lines highlighted in red 
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Fig. 3.12: Typical 345 kV bus voltage trajectories of IEEE 118-bus system after a fault 

The primary difference between the simulations done in this example in comparison to the one analyzed 

previously (adaptive protection scheme) with respect to the application of the FLDSD technique, lies in 

the dimension of the data that is being handled as well as the number of classes in which the 

partitioning is being done. For the California power system, although the system was fairly large and 

complex, the analysis was relatively simple. The system had to be classified into two states (“safe” or 

“stressed”) by analyzing voltage angles and complex currents for different system conditions. Hence, it 

was a two-class classification (safe or stressed) of three-dimensional data (one dimension for the voltage 

angle, one for the real component of current, and one for the imaginary component of current). 

However, in this example, where classification of dynamic events is done on the basis of voltage 

trajectories, the dimension of the data and the number of class partitions depend on the topology of the 

network. Hence, for this case, although the system is relatively simple (IEEE 118-bus system), the 

analysis is fairly complex and therefore, should be explored in greater detail.  

3.2.2.1 Topology dependent dimension of the data 

Depending on the topology of the network, for a one second complex voltage trajectory at a data rate of 

30 samples per second, the dimension of the data can be computed as shown in Fig. 3.13. Fig. 3.13 is 

partitioned into four segments. In all four segments,  
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 The line marked in “red” (between bus 1 and 2) is the line-under-focus 

 The high-voltage buses (where PMUs are assumed to have been placed) are filled in blue, 

whereas the low-voltage/other buses are left unfilled 

 The lines joining two high-voltage buses are solid, whereas the line joining a high-voltage bus to 

a low-voltage bus are dashed 

In segment (a), bus 1 is at the terminal end of a radial line. Since the line-under-focus (1-2) is only 

connected to bus 3 on bus 2 side, and as all three buses are high-voltage buses, buses 1, 2 and 3 are the 

buses to be considered for event classification. Now, for a data rate of 30 samples per second, a one-

second trajectory would have 30 complex voltage measurements. Then, since every complex voltage 

measurement consists of two components, the dimension of the data for an individual bus is 30   2   

60. Thus, for segment (a), the dimension of the data will be 60   3   180.  

 

Fig. 3.13: Topology dependent dimension of the data 

In segment (b), bus 1 is connected to a low-voltage bus (bus 4), whereas bus 2 is connected to a high-

voltage bus (bus 3). In this case also, since there are only three high-voltage buses in the vicinity of the 

line-under-focus (1-2), the dimension of the data will be 60   3   180. The reason why bus 4 was not 

considered for analysis is that although it is connected to a high-voltage bus (bus 1), no PMUs are placed 

on bus 4 and so, complex voltage measurements at 30 times a second from bus 4 would not be 

available. Segment (c) is similar to segment (b), except that bus 2 is connected to two high-voltage buses 
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(bus 3 and bus 4) whereas bus 1 is connected to one low-voltage bus (bus 5). In this case, since there are 

four high-voltage buses in the vicinity of the line-under-focus (1-2), the dimension of the data will be 

60   4   240. In segment (d), both bus 1 and bus 2 are connected to high-voltage buses (via bus 5, and 

bus 3 and bus 4, respectively) and so the dimension of the data will be 60   5   300. On the basis of this 

analysis, the formula to be used for computing the dimension of the data for any network topology is 

given in (3.13). 

                                                                                                                                                  

In (3.13),     denotes the number of high-voltage buses that are one bus away from the terminal buses 

of the line-under-focus, and   is the data rate which is equal to 30. It should be noted here that (3.13) 

implies that if the data rate is changed from 30 samples per second to (say,) 60 samples per second, 

then the only difference that will occur will be that the dimension of the data will be doubled.  

3.2.2.2 Topology dependent classification of the data 

The dynamic events used for classification were single line-to-ground (SLG) fault, three phase-to-ground 

(TPG) fault and Zone II operation. The possible classes under line-to-ground faults and three phase-to-

ground faults are no-reclose (NR), successful high speed reclose (SHSR), and unsuccessful high speed 

reclose (USHSR). Zone II operation with an over-reach of up to 150% is assumed to occur because of a 

stuck breaker following a single sine-to-ground fault or a three phase-to-ground fault. As such, the 

possible classes under Zone II operation are single line-to-ground-Zone II (SLGZ2) and three phase-to-

ground-Zone II (TPGZ2). On the basis of the dynamic events that are selected for classification and using 

the topology of the network, the number of classes in which the data is to be partitioned is analyzed 

next. 

Similar to Fig. 3.13 which depicted the topology dependent dimensions of the data, Fig. 3.14 shows the 

topology dependent classifications of the data. In segment (a), since the line-under-focus (1-2) is only 

connected to bus 3 on bus 2 side, a Zone II operation for this topology is not meaningful. The reason for 

this being that the system will separate the instant a Zone II operation occurs and the voltages would 

drop down to zero. Therefore, for the topology shown in segment (a), there can be single line-to-ground 

with no-reclose (SLGNR), single line-to-ground with successful high speed reclose (SLGSHSR), single line-

to-ground with unsuccessful high speed reclose (SLGUSHSR), three phase-to-ground with no-reclose 

(TPGNR), three phase-to-ground with successful high speed reclose (TPGSHSR), and three phase-to-

ground with unsuccessful high speed reclose (TPGUSHSR) resulting in a 6-class classification. 
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Fig. 3.14: Topology dependent classification of the data 

In segment (b), contrary to segment (a), when a Zone II operation takes place, the system does not 

separate. However, since bus 1 is connected to a low voltage bus (bus 4), Zone II operation on 50% of 

line 1-4 is not detectable. Hence, Zone II operation is only possible on the bus 2 side (which is connected 

to a high voltage bus – bus 3). Therefore, for this topology, along with the three types of single line-to-

ground and three phase-to-ground faults, two types of Zone II operations are also possible – single line-

to-ground-Zone II at bus 2 end (SLGZ2_2) and three phase-to-ground-Zone II at bus 2 end (TPGZ2_2) 

resulting in an 8-class classification. Similar to segment (b), in segment (c) also, Zone II operation is only 

detectable on bus 2 side and so, for the topology described in segment (c), an 8-class classification of the 

data will take place.  

For the topology shown in segment (d), Zone II operation is detectable on both bus 1 as well as bus 2 

side. Hence for this segment the number of classifications of the data will be: single line-to-ground with 

no-reclose (SLGNR), single line-to-ground with successful high speed reclose (SLGSHSR), single line-to-

ground with unsuccessful high speed reclose (SLGUSHSR), three phase-to-ground with no-reclose 

(TPGNR), three phase-to-ground with successful high speed reclose (TPGSHSR), three phase-to-ground 

with unsuccessful high speed reclose (TPGUSHSR), single line-to-ground-Zone II at bus 1 end (SLGZ2_1), 

three phase-to-ground-zone II at bus 1 end (TPGZ2_1), single line-to-ground-Zone II at bus 2 end 

(SLGZ2_2), and three phase-to-ground-Zone II at bus 2 end (TPGZ2_2). Thus, for segment (d), the 

number of classifications in which the data can be partitioned is 10. 
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3.2.2.3 Simulation set-up and Results 

DSA Tools [74] was used for generating the data to train the trees. Since there were ten 345kV lines 

present in the IEEE 118-bus system, ten parallel decision trees were created (one tree for each line), 

with the time-tagged breaker statuses used to identify the relevant tree in the case of an event. For line-

to-ground faults and three-phase-to-ground faults, 270 cases were created for all the ten lines. The 

number of cases for Zone II operation varied from line to line (depending on how the line-under-test 

was connected to the rest of the system). A total of 6674 cases were created. Taking 345kV line between 

buses 38 and 65 as an example, the complex voltages (real and imaginary) of the two buses were 

obtained for different classes. Since both buses 38 and 65 were connected to other 345kV buses, Zone II 

operation could be detected on either end. A total of 722 cases were identified for this line which fell 

under 10 classes – three classes for line-to-ground fault, three classes for three phase-to-ground fault, 

two classes for Zone II operation on bus 38 end, and two classes for Zone II operation on bus 65 end. A 

second’s worth of data starting from the time of the fault was used for classification purposes. This 

resulted in a 10-class classification of 300-dimensional data for each of the 722 cases. The dimension of 

the data is based upon 30 complex (real and imaginary) voltages for five 345kV buses – 38, 65, 30 (which 

is connected to 38), 64 and 68 (which are connected to 65).  

The proposed algorithm was applied to this data to calculate the distances to the 45 ( 
         

 
) 

possible hyperplanes. These distances were fed into the CART implementation program in MATLAB 

(classregtree.m) for selecting the optimal distance variables for performing the splits. Ten-fold cross-

validation was done to improve the accuracy of the prediction. The resulting decision tree is shown in 

Fig. 3.15, where “    ” denotes the distance of the individual points from the hyperplane separating 

classes   and  . From the figure, it is observed that for line 38-65, CART chose the distances         

                 as the optimal variables for performing the splits. Given an actual event, the 

distances from each data point to the five hyper-planes need to be computed and the tree followed to 

the respective terminal node to identify the event that has been captured. Fig. 3.16 shows the 

percentage accuracy plot as a function of the cost vs. tree size for line 38-65. From this figure it becomes 

clear that with ten terminal nodes 100% accuracy (0% Cost) was realized for this line. 
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Fig. 3.15: Decision tree generated for a fault on line 38-65 using FLDSD 

 

Fig. 3.16: Plot of cost vs. tree size for faults on line 38-65 

Similar decision trees were obtained for the other nine lines. The decision trees for the other lines as 

well as the corresponding cost vs. tree size plots are shown in Figs. 3.17-3.34. The percentage accuracy 

obtained for classifying the data into   classes (where   is the number of classes into which data of that 

line is partitioned) by a tree of   terminal nodes for all the lines of the IEEE 118-bus system is given in 
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Table 3.3. From the plots and the table, it can be inferred that by using this technique events captured 

by the dynamic state estimator can be identified quickly and accurately.  

 

Fig. 3.17: Decision tree generated for a fault on line 8-9 using FLDSD 

 

Fig. 3.18: Plot of cost vs. tree size for faults on line 8-9 using FLDSD 
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Fig. 3.19: Decision tree generated for a fault on line 8-30 using FLDSD  

 

 

Fig. 3.20: Plot of cost vs. tree size for faults on line 8-30 using FLDSD 
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Fig. 3.21: Decision tree generated for a fault on line 9-10 using FLDSD 

 

 

Fig. 3.22: Plot of cost vs. tree size for faults on line 9-10 using FLDSD 
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Fig. 3.23: Decision tree generated for a fault on line 26-30 using FLDSD 

 

 

Fig. 3.24: Plot of cost vs. tree size for faults on line 26-30 using FLDSD 
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Fig. 3.25: Decision tree generated for a fault on line 30-38 using FLDSD 

 

 

Fig. 3.26: Plot of cost vs. tree size for faults on line 30-38 using FLDSD 
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Fig. 3.27: Decision tree generated for a fault on line 63-64 using FLDSD 

 

 

Fig. 3.28: Plot of cost vs. tree size for faults on line 63-64 using FLDSD 
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Fig. 3.29: Decision tree generated for a fault on line 64-65 using FLDSD 

 

 

Fig. 3.30: Plot of cost vs. tree size for faults on line 64-65 using FLDSD 
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Fig. 3.31: Decision tree generated for a fault on line 65-68 using FLDSD 

 

 

Fig. 3.32: Plot of cost vs. tree size for faults on line 65-68 using FLDSD 
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Fig. 3.33: Decision tree generated for a fault on line 68-81 using FLDSD 

 

 

Fig. 3.34: Plot of cost vs. tree size for faults on line 68-81 using FLDSD 
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Table 3.3: Performance of the FLDSD algorithm for multi-class classification of dynamic events in the 

IEEE 118-bus system 

Line 
Number 

of Cases 

Number of 

dimensions 

in the data 

Number of classes 

in which data is to 

be partitioned     

Accuracy of a 

tree of   

terminal nodes 

Number of terminal 

nodes needed for 

100% accuracy 

8-9 632 240 8 100% 8 

8-30 722 300 10 100% 10 

9-10 540 180 6 100% 6 

26-30 630 240 8 100% 8 

30-38 722 300 10 99.58% 11 

38-65 722 300 10 100% 10 

63-64 630 180 8 100% 8 

64-65 722 300 10 100% 10 

65-68 722 300 10 98.48% 11 

68-81 632 180 8 100% 8 

 

3.3 Conclusion 

PMU data have been used for making critical decisions for quite some time now, but the true potential 

of these devices has not yet been realized. When placed at a bus, they provide real-time measurements 

of voltages and currents connecting that bus with the rest of the system. But, being complex quantities, 

these measurements have not been addressed completely until the development of the FLDSD 

technique. In this chapter, using the FLDSD technique complex numbers/trajectory of complex numbers 

is represented by a single variable which is then used to perform optimal splits in CART.  

Two power system applications have been considered in this chapter. The first application is directed 

towards two scenarios of the California power system where it is used to classify the system as “safe” or 

“stressed” based on measurements obtained from PMUs. The results indicate that by using this 

approach, a smaller sized decision tree is able to do the classification more accurately. The second 

application is directed towards classification of events captured by a dynamic state estimator. The 

traditional static state estimator is able to detect and identify bad data and topology changes, and it is 

imperative that the dynamic state estimator is able to do that as well. A quadratic prediction model 
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based on three prior estimates is shown to be able to detect discrepancies in the data, while the 

proposed FLDSD technique is shown to be able to successfully identify the captured events. From these 

two studies it is realized that the proposed methodology of using the distance variable for separating 

high-dimensional, multi-class data is a logical approach that yields good solutions. By utilizing both the 

real and the imaginary components of the phasor data, a new understanding of PMU data is obtained. 

This approach will not only be useful for solving synchrophasor based problems, but it will also be useful 

in other engineering applications that involve decision making based on multivariate data.  
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Chapter 4: An Integrated PMU Placement Scheme 

Phasor measurement units (PMUs) provide synchronized measurements of real-time voltage and 

current phasors. The synchronization is done through simultaneous sampling of voltage and current 

waveforms using timing signals obtained from global positioning system (GPS) satellites. PMUs are 

capable of providing measurements as often as once per cycle of the power frequency. These 

measurements become the basis for developing a coherent picture (state) of the network. Knowing the 

network state in turn makes stability and vulnerability assessments possible. The use of PMUs has thus 

elevated the standards of power system protection, monitoring and control [6]. However, the criterion 

of site selection with respect to PMU placement needs to be addressed before its benefits can be reaped 

[75]. The placement sites are restricted by the available communication facilities, the costs of which are 

often higher than the PMUs themselves. To optimize cost and intended applications, it is necessary to 

choose PMU locations judiciously. Therefore, the path to be followed is to progressively deploy PMUs at 

select locations within the network to eventually observe the whole system [18]-[20]. 

The concept of optimal PMU placement has been a highly researched topic ever since PMUs came to be 

used commercially [21], [22]. Primarily, there have been two methods followed by power engineers for 

addressing this issue [18]: 

 Development of a prioritized list of placement sites based essentially on observability, 

 Placement of PMUs to correctly represent critical dynamics of the system 

References [76]-[83] have used the former method whereas [12], [37], [84], [85] have followed the 

latter approach. References [76]-[79] used Integer Linear Programming (ILP) techniques based on binary 

search algorithms for finding the optimal locations for placement of PMUs to ensure complete network 

observability. Reference [80] proposed a two indices approach involving the bus observability index and 

the system observability redundancy index. References [81], [82] used Integer Quadratic Programming 

and Genetic Algorithms, respectively, to achieve the twin objectives of minimizing the required number 

of PMUs and maximizing the measurement redundancy. Reference [83] developed a unified approach of 

preserving system observability, and lowest system metering economy. The second method has been 

extensively used for adaptive protection schemes [12], voltage security assessment [37], [84], and 

voltage stability analysis [85]. 
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Inspite of all the analysis that has been done with regards to PMU placement, the implementation of 

these ideas has been far from satisfactory. The 2012 blackout in India is the latest in a long list of power 

system failures that could have been averted, or its effects minimized, had proper measures been taken 

in time. The primary reason behind this inadequacy in implementation is attributed to the differences in 

the two methods described above. The first method does not take into account the transient and 

dynamic stability of the system, whereas the second approach does not consider complete observability 

as one of its priorities. The net outcome is that for the same system different “optimal” PMU placement 

sets are created depending on the methodology followed. As it is not possible for any utility to 

implement all the schemes that are proposed, either transient/dynamic stability, observability, or often 

both are compromised.  

This chapter addresses the topic of PMU placement for generic systems by combining both the 

aforementioned methodologies – ensuring observability as well as protecting critical parts of the 

system. As such, the proposed algorithm is expected to be useful to utilities that want to initially protect 

the most important buses of their system on their way to attaining complete observability. In order to 

integrate the two methodologies, a modified version of the concept of depth of unobservability 

originally introduced in [86] is combined with the binary integer programming technique, along with 

some more constraints. The next section describes the depth of unobservability idea that has been used 

in this work as well as the incidence matrix based binary integer programming method that was 

developed in [13].  

4.1 Theoretical Background 

The traditional depth of unobservability concept was a systematic step-by-step approach that was 

proposed in [86] and later expanded in [19] for attaining complete observability through improved 

monitoring of the network at each stage of implementation. Unobservability level ends at depth   which 

represents complete observability. A depth of one unobservability placement refers to the process of 

placing PMUs that strives to create depth of one unobservable bus in the system. Similarly, a depth of 

two unobservability condition exists when two observed buses bound two adjoining unobserved buses, 

and so on. Figs. 4.1 and 4.2 show how the traditional definition of depth of unobservability of a system 

varies with the placement of PMUs. The arrows indicate power injections. Comparing Fig. 4.1 with Fig. 

4.2, it is realized that for the same system, by moving the PMUs from bus 2 to bus 1, the depth of 

unobservability of the system changed from 1 to 2. 
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Fig. 4.1: Example illustrating traditional depth of unobservability equal to 1 

 

Fig. 4.2: Example illustrating traditional concept of depth of unobservability equal to 2 

4.1.1 Modified depth of unobservability concept 

The concept of depth of unobservability can be interpreted in a number of ways. The traditional 

definition of depth of unobservability was developed for computing incomplete observability using 

spanning trees. It worked well for radial systems but its use for handling more complex, inter-connected 

networks was limited due to the complexity of its definition. This was highlighted in [87]. In [87], Altman 

proposed an alternate definition for the depth of unobservability. He defined it as the addition of the 

minimum distances of any two differently observable buses from the furthest unobserved bus. This 
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meant computing the shortest path going through each unobserved bus that is bounded by two 

PMUs for every bus, and then choosing the longest of these shortest paths as the depth of 

unobservability of the system. Mathematically, this is defined as, 
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In (4.1) and (4.2),         is the depth of unobservability of the     bus,   is the set of observable 

buses,   and   are different observable buses,   is the set of all buses present in the system, and 

          is the depth of unobservability of the whole system. A closer look at Altman’s formulation 

reveals that for developing a simple yet robust definition for the concept of depth of unobservability, 

there is no need to compute the “sum of path lengths” of an unobservable bus from two different 

observable buses. A simpler definition would be to express depth of unobservability as only the “path 

length” rather than the “sum of path lengths”. Thus, the modified definition of depth of unobservability 

that has been used in this work is that it is the highest distance that an unobserved bus has from an 

observed bus when all unobserved buses are considered. Mathematically, this means, 
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In (4.3),   is the set of all buses present in the system,   is a bus belonging to the set  ,   is the set of 

directly observable buses,   is a bus belonging to the set  , and           is the depth of 

unobservability of the whole system. The path length is an attractive definition for depth of 

unobservability because by this definition, the depth of unobservability would never exceed the 

“maximum number of unknowns for a given set”. In order to illustrate the proposed definition, the 

system depicted in Figs. 4.1 and 4.2 is shown again in Figs. 4.3 and 4.4. In Fig. 4.3, the PMU is placed 

only at bus 1. In such a scenario, buses 5 and 6 are at a distance of three paths (5-4-3-2 and 6-7-3-2, 

respectively) from the observed bus (bus 2) and so for a PMU placed at bus 1, the depth of 

unobservability of the system would be three. This is equal to the “maximum number of unknowns 

for each set” which must be “known” (in this case, three unknowns for the two sets – voltages at 5, 

4, 3 and 6, 7, 3, respectively) so as to make the system completely observable. In Fig. 4.4, the PMU 

is moved to bus 3. In such a scenario, buses 1, 5 and 6 are at a distance of one path (1-2, 5-4 and 6-

7, respectively) from the observed buses (bus 2, bus 4, bus 7) and so for a PMU placed at bus 3, the 
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depth of unobservability of the system would be one. This is again equal to the “maximum number 

of unknowns for each set” which must be “known” (in this case, one unknown for the three sets – 

voltages at 1, 5 and 6, respectively) so as to make the system completely observable. It should also 

be noted here that the proposed concept of depth of unobservability gives the same results when 

applied to the PMU placement configurations shown in Figs. 4.1 and 4.2. However, the proposed 

definition is easier to implement as will be shown in the next sub-section. 

 

Fig. 4.3: Example illustrating proposed concept of depth of unobservability equal to 3 

 

Fig. 4.4: Example illustrating proposed concept of depth of unobservability equal to 1 
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4.1.2 Incidence matrix based binary integer programming 

As was in the case with the traditional definition of depth of unobservability, for the proposed 

definition also, the objective is to reduce the depth of unobservability to zero. A further constraint 

which must be imposed on this minimization is the fact that once a PMU is placed at a bus at a 

higher depth of unobservability, in subsequent depths, that PMU cannot be removed from that bus. 

Thus, the two objectives of the optimization are: 

 Minimize depth of unobservability with every step 

 PMUs once placed at a bus cannot be removed in subsequent steps 

A simple way to perform this optimization is described in this sub-section.  

In [19], [86], the authors had used simulated annealing for computing the (traditional) different depths 

of unobservability. Enumerating trees for a large system can become a computationally over-whelming 

problem. In his work, Altman had proposed an alternate definition for the depth of unobservability 

concept [87]. In the course of the work done here, it was realized that an even simpler approach 

(simpler than Altman’s) could be developed by defining the depth of unobservability as a measure based 

on the “path lengths” and not “sum of path lengths”. This “path lengths” based depth of unobservability 

concept can be implemented using incidence matrix based binary integer programming as done in [13]. 

A brief overview of that methodology is presented below. 

The problem of computing the minimum number of PMUs required for complete observability (depth 

zero) of a network is stated as an integer programming problem [88] of the form, 

   
 

                                                                                                                                                                            

                                                                                                                                                                        

In (4.4) and (4.5),   is the     incidence matrix of a   bus system,   is a     matrix composed of 

ones and zeroes with ones depicting the buses where PMUs must be placed for complete observability, 

and   is a     matrix of ones. In order to compute higher depths of unobservability, the matrix   has 

to be replaced by sign of the higher powers of  . This is in accordance with the following Theorem [89]: 

Theorem: The    entry in the     power of the incidence matrix for any graph or diagraph is exactly equal 

to the number of different paths of length  , beginning at vertex   and ending at vertex  .   
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This theorem implies that, for instance, if the incidence matrix is raised to the power two and its sign 

taken, then every bus of this new network (whose incidence matrix is sign of   ) will be directly 

connected to one bus away of the original network, and so on. In order to illustrate this with an 

example, let us again consider the 7-bus system given in Figs. 4.1-4.4 which is re-drawn for convenience 

in Fig. 4.5. The incidence matrix of this system is, 
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The sign of the square of the incidence matrix given in (4.6) is, 
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The system whose incidence matrix is given by (4.7) is shown in Fig. 4.6 with the dotted lines indicating 

the new branches formed. On comparing Figs. 4.5 and 4.6, it becomes clear that the new branches that 

were created in Fig. 4.6 corresponded to the joining of buses that were previously one-bus-away from 

each other. This, then, fits in directly with our definition for the concept of depth of unobservability 

because the power to which the incidence matrix is raised in order to change the    entry from 0 to 1 

corresponds to the number of “path lengths” between   and  . Thus, to compute for the     depth of 

unobservability, the integer problem formulation becomes [13], 
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Fig. 4.5: The 7-bus system whose incidence matrix is   as given in (4.6) 

 

Fig. 4.6: The 7-bus system whose incidence matrix is    as given in (4.7) 

The signum function used in (4.9) is defined as follows: Let   be a real matrix of order     where the 

element in the     row and     column is denoted by       . Then             is a real matrix of 

order     whose element in the     row and     column, denoted by       , is 
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The PMU placement algorithm described in this section only improves the observability of the network. 

It is not concerned with the other benefits (improving transient/dynamic stability and better control) 

that placing a PMU on specific buses will deliver. It also does not provide redundancy to any of the 

measurements. An algorithm is developed in the next section, based on the modified concept of depth 

of unobservability described and binary integer programming that has been described in this section, to 

ensure protection of relevant portions of the system while moving towards complete observability 

without exorbitantly increasing the total number of PMUs required.  

4.2 A PMU placement scheme ensuring real-time monitoring of critical buses of the network 

One way to ensure that the critical dynamics of the system is addressed is by adding more importance to 

the relevant buses. This can be done by designating those buses as more “critical” than other buses. The 

“critical” buses can be chosen based on the topology of the network, as well as on the basis of transient 

and dynamic stability studies that have been performed on the system. An alternate way to select 

“critical nodes” based only on transient stability studies was developed in [90]. However, a much more 

comprehensive methodology for selecting “critical” buses is developed here. The buses identified as 

critical form the starting set. The concept of depth of unobservability described in Section 4.1.1 is then 

used to determine the final PMU placement set. The next sub-section defines the term critical as is used 

in this context, and describes the process for selecting such buses. 

4.2.1 The concept of Criticality 

PMUs when placed at a bus provide time synchronized measurements of the voltage phasor and the 

branch current phasors of all the branches emerging from that bus. This information can be used for 

making a variety of decisions. Power engineers all over the world have used PMUs for dynamic security 

assessment, transient stability/instability predictions, adaptive protection schemes, etc. Under such 

circumstances, defining an optimal PMU placement scheme for a general network becomes subject to 

the required needs and the available facilities. One important factor which contributes towards PMU 

placement but is very different from its other applications is the concept of observability. A power 

system is called completely observable when all of its states can be uniquely determined [91], [92]. This 

is also an essential criterion for performing accurate state estimation. Therefore, along with catering to 
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the relevant system dynamics, an optimal PMU placement scheme must also satisfy the observability 

constraint. In such a scenario, traditional methods based only on transient/dynamic stability study or 

topological observability, are not sufficient. The concept of “criticality” developed in this sub-section 

helps in coming up with a PMU placement set that integrates both the requirements. In the proposed 

scheme, buses are defined to be “critical” if they satisfy one or more of the following conditions: 

 High voltage buses 

 High connectivity buses 

 Buses relevant to transient/dynamic stability 

 Potential small signal control buses 

From the utility point of view, the high voltage network is the backbone of the system. For 

measurement and protection purposes it is necessary to monitor this network continuously. Therefore, 

it is practical to have the high voltage buses in the list of critical buses. Buses with high connectivity not 

only allow monitoring of a large number of lines from one location, but they are also the substations 

which have good communication facilities and are typically located in areas where 

expansions/installations can be easily carried out. Since the associated costs for placing a PMU at a 

substation may exceed the cost of the PMU itself, it is logical to place them at substations where these 

costs can be kept to a minimum. However, the criteria for selecting high connectivity is very subjective 

and system specific. The buses relevant to the transient/dynamic stability of the system are selected 

based on their significance in preventing voltage collapses; minimizing impacts of faults; and/or for their 

participation towards damping inter area oscillations. Potential small signal control buses are the buses 

where controllers are placed. They include locations of Flexible AC Transmission Systems (FACTS) 

devices, energy storage devices (ESDs), HVDC terminals, etc. The definition of criticality can also be 

extended to include pricing and utility preferences. However, care must be taken to ensure that too 

many buses are not selected as critical as doing so will dilute the very definition of “criticality”.  

Another issue which needs to be addressed when computing for the optimal placement of PMUs in a 

network is the question of redundancy. The norm in the industry is to have a     contingency 

criterion in the system. A     contingency means that even if one PMU or transmission line goes 

down, the system remains observable. Different techniques have been employed by researchers to 

provide redundancy in measurement under the     contingency criterion.  Some of the most popular 

ones like Primary and Back-up Method [79], Integer Linear Programming-based method [80], Local 
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Redundancy Method [83] have been cited in the literature. But from the studies performed, it has been 

realized that for a system to have complete PMU-based observability and redundancy of all the buses 

present under the     contingency criterion, a very large number of PMUs will be required. In the 

absence of conventional measurements, the number of PMUs required could well be higher than half 

the total number of buses present. It is obvious that no utility will place that many PMUs in their system. 

However, by using the concept of criticality developed here, it can be argued that in practice, it is 

sufficient to provide redundancy in measurement to only the critical buses of the network. If the critical 

buses are selected carefully, then by providing redundancy to their measurements alone, the system can 

be made sufficiently secure with much less PMUs. The algorithm developed for doing this is described in 

the next sub-section. 

4.2.2 Proposed Algorithm – Critical Bus Based Binary Integer Optimization (CBBBIO) 

The technique developed in this section uses the concept of “criticality” described in the previous sub-

section with the depth of unobservability technique to determine the optimal scheme for PMU 

placement using binary integer programming. However, neither the traditional concept of depth of 

unobservability, nor the modified version that has been used in this work, “directly” take into account 

the redundancy in measurement of specific buses. This has to be done by modifying the constraints of 

the optimization. The number of PMUs needed for observing as well as providing redundancy in 

measurements of the critical buses, constitutes the starting set. That is, the number of PMUs in the 

starting set constitutes the highest depth of unobservability. To illustrate, if the number of PMUs in the 

starting set is  , then the proposed algorithm finds the depth of the bus that is farthest from the   buses 

where PMUs have been placed and assigns that depth to be the highest depth of unobservability. In 

subsequent steps, more PMUs are added to attain lower depths of unobservability until complete 

observability is eventually achieved. 

The methodology proposed for determining the optimal PMU set is based on the extension of the binary 

integer optimization technique developed in [20]. For a system represented by its     incidence 

matrix  , the 1–norm of a     length binary integer matrix   must be minimized, where the nonzero 

elements of   denote the PMU locations. Two      matrices are also defined: the initialization matrix 

      having only zero and unity as its elements of which the unity elements correspond to those buses 

where PMUs must be placed even at the highest depth of unobservability (that is, the starting set), and 

a matrix   all of whose elements are unity. 
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The starting set is created by following these steps: 

1. Identify the critical buses of the network based on the logic developed in Section 4.2.1 and set 

the corresponding elements       of to one 

2. Check if the first critical bus is connected to at least one other critical bus 

3. If the critical bus is not connected to at least one other critical bus, then place a PMU at an 

adjoining bus and set the corresponding element of       to one 

4. Repeat Steps 2 and 3 until all critical buses are connected to at least one other bus that has a 

PMU on it, thereby making the other bus critical as well 

5. If all critical buses are connected to at least one other bus with a PMU on it, then the number of 

buses thus selected constitutes the starting set; terminate the process 

Next, a matrix    is defined such that, 

                                                                                                                                                                        

In (4.12), the scalar weight   has the function of guaranteeing priority in placement of PMUs on the 

critical buses. Any integer value of   greater than one will ensure priority to the critical buses. That is, as 

long as    , the final solution will not be sensitive to the numerical value selected for  . The 

minimization criterion is now specified as: 

   
 

(  
   )                                                                                                                                                                     

Equation (4.13) utilizes the scalar product to ensure that all the critical bus locations are preserved in 

the final solution as they have higher contribution towards the minimization. The constraints further 

imposed on (4.13) are: 

                                                                                                                                                                               

                                                                                                                                                                           

In (4.14) and (4.15), 
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Equation (4.14) implies that each bus is observed by atleast one PMU [1], while (4.15) ensures that each 

critical bus will be assigned a PMU. Equations (4.13)-(4.16) are used to find the number of PMUs 

required for complete observability. In order to compute the number of PMUs required for higher 

depths of unobservability, (4.13)-(4.16) is used again, but with the following modifications, 

               

             
   

                               

                                                                                                                                                   

In (4.17),      is the optimal allocation matrix found for the         depth of unobservability. Finally, 

the total number of PMUs required for an unobservability of depth   is given by,  

                                                                                                                                                   

The numerical value of the elements in      denotes the number of trajectories that link pairs of buses. 

However, for the placement of PMUs, this multiplicity is irrelevant [13]. As stated previously, the signum 

function eliminates path multiplicities and generates an equivalent incidence matrix valid for 

subsequent depths of unobservability [89]. This reduction in path multiplicity greatly reduces the 

inherent computational complexity of the optimization. Also, in (4.17),     and     are updated so that 

the equality constraint warrants no additional PMUs than those determined from previous depths of 

unobservability. Fig. 4.7 shows the flowchart of the proposed algorithm while the pseudo-code for 

performing the optimization is explained with an example in Appendix B. PMU allocation using this 

technique is found to provide real-time monitoring of the critical buses of the network with redundancy, 

as well as ensure complete system observability with reduced computational complexity. Since this 

methodology integrates the idea of critical buses with the binary integer programming logic, a suitable 

name for this technique was found to be Critical Bus Based Binary Integer Optimization (CBBBIO).  

4.3 Simulations Performed 

For testing the performance of the CBBBIO technique proposed in this chapter, a variety of power 

system networks were selected for analysis. The first set of simulations was performed on standard IEEE 

systems like the IEEE 118-bus system and the IEEE 300-bus system. A 283-bus model of the Central 

American Power Transmission System was analyzed next. The final simulation was performed on a 1196-

bus network describing the Northern and the Eastern power grids of India. The results obtained on 

applying the proposed approach on these systems form the basis of this sub-section. 
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Fig. 4.7:  Flowchart for the CBBBIO Technique 
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4.3.1 Standard IEEE Systems 

The proposed algorithm was applied to the IEEE 118-bus and the IEEE 300-bus systems. For the first 

illustration, only the highest voltage buses were considered critical. By expressing the voltages in kV 

rather than in p.u., the highest voltage buses were identified directly from the system data. As these 

buses were connected to one another, redundancy under the     contingency criterion was 

automatically ensured. In both systems, 345kV is found to be the highest voltage level present. The IEEE 

118-bus system has eleven 345kV buses (8, 9, 10, 26, 30, 38, 63, 64, 65, 68, and 81), while the IEEE 300-

bus system has fourteen 345kV buses (4, 16, 28, 33, 36, 40, 68, 169, 173, 174, 198, 210, 216, and 242). 

Therefore, the minimum number of PMUs required for complete observability of the two systems was 

11 and 14 respectively. This became the starting set for the proposed PMU placement technique.  

Table 4.1 gives a comparison of the number of PMUs required at different depths of unobservability 

without and with the consideration of critical buses. In Table 4.1, the traditional method used for 

computing the number of buses on which PMUs must be placed for different depths of unobservability 

is based on the algorithm developed in [13]. The computations were performed on an Intel (R) Core™ i5 

Processor having a speed of 2.40 GHz and an installed memory (RAM) of 5.86 GB. The advantage of 

using the signum function in the proposed algorithm was also realized during this simulation.  It was 

observed that when the signum function was removed from (4.6), the time required for computing the 

sixteen depths of unobservability for the IEEE 118-bus system (given in Table 4.1) was 23.29 seconds 

instead of the 0.73 seconds that the same machine took when the signum function was in place. Thus, it 

was confirmed that by removing the path multiplicities using the signum function, the inherent 

computational complexity of the optimization is greatly reduced. 

For the second illustration, along with the highest voltage buses, the buses having high connectivity 

were also considered critical. As stated in Section 4.2.1, the criteria for selecting high connectivity buses 

is subjective and system specific. It can include buses which are connected to many other buses, 

substations where communication related expansions can be easily carried out, as well as buses that 

cater to utility preferences. For these two systems, it was assumed that the cost for developing 

communication facilities was equal for all the buses and that there were no utility specific preferences. 

Therefore, the high connectivity buses were selected purely on the basis of the number of connections 

that the buses had. 
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Table 4.1: Comparison of proposed algorithm with the traditional method when only high voltage buses 

are considered critical 

Depths of 

Unobservability 

IEEE 118-Bus System IEEE 300-Bus System 

Not Considering 

any bus as Critical 

[13] 

Considering 

highest voltage 

buses as critical 

Not Considering any 

bus as Critical 

[13] 

Considering highest 

voltage buses as 

critical 

0 32 39 87 96 

1 16 23 47 55 

2 8 17 34 41 

3 7 13 19 29 

4 4 13 14 24 

5 3 12 9 20 

6 2 11 8 18 

7 2  7 16 

8 2  5 15 

9 2  3 15 

10 1  3 15 

11   3 14 

12   2  

13   2  

14   2  

15   2  

16   1  

 

CPU Time 

(in seconds) 
0.73 0.40 4.04 4.42 

 

From a study of the incidence matrix for the IEEE 118-bus system, it was observed that ten buses had six 

or more connections; whereas, only four buses had seven or more connections. Therefore, it was logical 

to define the number of buses having seven or more connections as the critical high connectivity buses. 

Thus, 12, 49, 80 and 100 were identified as high connectivity buses resulting in the total number of 



78 
 

critical buses for this system becoming 15. In order to provide redundancy in measurements to these 

high connectivity buses, PMUs were added to buses 11, 66 and 92. Although other buses would have 

sufficed, these three were chosen because they had high connectivity (like bus 11), they were connected 

to two different critical buses (like bus 66), they had generators on them (which was important from 

control perspectives), or a combination of the above (like bus 92). It is to be noted here that the 

criterion of “best” adjoining bus to place a PMU has been intentionally kept flexible so as to incorporate 

a wide variety of practical constraints. Thus, the minimum number of PMUs for the starting set for the 

IEEE 118-bus system was 18.  

On doing a similar analysis for the IEEE 300-bus system, nine buses were found to have seven or more 

connections; whereas, only four buses had eight or more connections. Thus, the four buses which had 

eight or more connections (31, 109, 190 and 268) were considered critical high connectivity buses with 

15, 147, 177 and 272 acting as the buses providing redundancy to those measurements. Thus, the 

minimum number of PMUs for the starting set for the IEEE 300-bus system became 22. Table 4.2 shows 

the number of PMUs required at different depths of unobservability for the two systems in accordance 

with the proposed scheme. 

Table 4.2: Number of PMUs at different depths of unobservability when high voltage and high 

connectivity buses are considered critical 

Depths of Unobservability IEEE 118-Bus System IEEE 300-Bus System 

0 41 97 

1 26 59 

2 22 43 

3 18 34 

4  30 

5  25 

6  24 

7  22 

 

CPU Time (in seconds) 0.29 2.36 
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From Tables 4.1 and 4.2, it can be inferred that an increase in the number of PMUs required for 

complete observability corresponding to an increase in the number of critical buses, is an almost linear 

relationship. That is, a small increase in the number of critical buses does not result in a large increase in 

the number of PMUs required for complete observability. This is a very important observation because it 

ensures that even if the number of critical buses is increased, the minimum number of PMUs required 

would not increase exponentially.  

Table 4.3 compares the total number of PMUs required for complete observability of the IEEE 118-bus 

system in absence of conventional measurements using the proposed methodology and other similar 

algorithms. For the comparison done in Table 4.3, Zero Injection (ZI) buses were considered for PMU 

placement. ZI buses are those buses that are present in the system, but from which no power is injected 

into the system. In the proposed approach, unless the ZI bus was a critical bus, it was removed from the 

system and the incidence matrix was updated accordingly. The ZI buses for the IEEE 118-bus system are: 

5, 9, 30, 37, 38, 63, 64, 68, 71, and 81. Out of these ten buses, as buses 5, 37 and 71 do not fall in the list 

of critical buses identified previously, in the proposed approach, these three buses were removed from 

the system. 

Table 4.3: Minimum number of PMUs for complete observability under     criterion, in absence of 

conventional measurements for IEEE 118-bus system 

 
Primary and Back-up 

Method [79] 

Integer Linear 

Programming [80] 

Local Redundancy 

Method [83] 
CBBBIO Technique 

Number 

of PMUs 
65 64 61 39 

 

In the proposed approach, redundancy is provided to the measurements of only the critical buses (high 

voltage and high connectivity buses). This is the reason for the significant difference in the total number 

of PMUs required. Thus, from Table 4.3 it becomes clear that by using the proposed approach, an 

intelligent choice of critical buses can provide an optimal cost-benefit ratio with respect to PMU 

placement. In the next sections, more diverse methods for selecting the critical buses are explored. Two 

real-life models – a reduced order model of the Central American power transmission system and a 

1196-bus model of the North and East Indian power transmission network are used for the analysis. 
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4.3.2 Central American Power Transmission Network 

The Central American region has an inter-connected transmission system that links the electrical power 

systems of six countries, namely, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica and Panama. 

This transmission corridor is presently operating at a voltage level of 230kV. Recently, a transmission line 

at 400 kV has been established between Guatemala and Mexico, and another high voltage line between 

Panama and Colombia is under study [93]. Fig. 4.8 shows the 230kV transmission system which is the 

backbone of the Central American Power System (CAPS) [94]. This network consists of 1,588 nodes, and 

handles around 6,400 MW in a deregulated regional energy market, coordinated by the Regional 

Operating Entity (EOR). The geography of the Central American isthmus forces the regional transmission 

grid to have an inherently radial topology, comprising approximately 1,900 km in a single transmission 

line trajectory from the North to the South [20]. 

This system had several outages in the past decade mainly due to loss of generation blocks and from 

tripping of critical tie-lines. The loss of a 200 MW generator block in Honduras on June 13, 2010 resulted 

in a multi-national blackout [95]. The loss of two 230 kV lines due to a lightning-strike on September 9, 

2010 caused a severe power outage in Honduras, Nicaragua and El Salvador [96]. Currently the CAPS has 

no PMUs installed at any of its buses. This lack of synchronized measurements makes it very difficult for 

the system to cope with such contingencies. The implementation of PMUs can solve many of the 

problems that the CAPS currently suffers from.  Small signal, inter-area oscillations can be better 

damped by re-tuning the PSSs using remote measurements. Voltage collapses in non-metered radial 

substations can be prevented by intelligent load shedding schemes. Accurate transmission line models 

using synchronized measurements of strategic buses can give rise to correct state estimations. 

Bottlenecks can be monitored to ensure optimal use of the transmission capabilities, and the settings for 

protection and control systems can be precisely determined based on realistic system models. This role 

that PMUs can play in solving and/or mitigating different exigencies of the CAPS is described below. 

 Erroneous Tripping: It is expected that in the event of a sudden loss of a block of generation or 

load in a particular country, the tie-lines that connect the affected system to the neighboring 

systems will become stressed. This will result in an increase in power flow through some of the 

lines which will cause them to be over-charged for certain periods of time. If this over-charge is 

below the threshold limit of the lines, it should be endured under the existing contingency 

conditions to prevent cascade tripping and subsequent outage of larger portions of the system. 
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In such a situation, PMU measurements can be used to develop an adaptive protection scheme 

aimed at reducing the likelihood of manifestation of hidden failures and potential cascading 

events by adjusting the security/dependability balance of protection systems [12]. 

 Voltage Collapse: Although the tie to Mexico has helped in stabilizing the system, under critical 

conditions like the ones described in [95], [96], it has been observed that the increased power 

flow coming from Mexico, while crossing a country to supply the load unbalance of another 

country, has caused an increased consumption of reactive power in the country that is being 

crossed over. This causes a dramatic voltage drop of the country in the transfer path which 

forces that country to trip the tie-lines, in order to avoid its own voltage collapse. These 

circumstances can be prevented by applying intelligent load shedding schemes based on 

synchronized measurements obtained from PMUs.  

 Transient Instability: In Central America an important amount of generation comes from bunker 

plants. These machines usually possess low inertia constants, making them prone to loss-in-

synchronism under sudden losses of generation blocks. This out-of-step condition can be 

detected promptly by PMUs, which can then be used for generating appropriate actions so as to 

isolate the load-generation imbalances. Once stabilized, PMUs can help in bringing the isolated 

sections back to the system. 

 Small Signal Oscillations: The radial topology of the CAPS is prone to inadequate damping or 

negative damping of small signal, inter-area oscillations. In the past these kinds of oscillations 

have occurred between hydroelectric machines in Panama, Honduras and Guatemala, forcing 

the installation of PSSs in the participating generators. After the inter-connection with Mexico, 

new inter-area oscillations have emerged in the system. For handling such cases, PMUs can 

provide remote measurements which can be used for re-tuning the PSSs so as to improve their 

effectiveness. In future, WAMS can also be used for developing a coordinated type of control 

using PSSs, SVCs etc. to damp all low frequency oscillations as developed in [14]-[17], [97]. 

From the above description, it becomes clear that the computation of an optimal PMU placement 

scheme for CAPS is a multi-objective optimization function. This can be accomplished using the CBBBIO 

technique very effectively as shown below. In this system, the two highest voltage levels are 230kV and 

138kV. The transmission network also comprises of few 69kV elements, culminating in a total of 283 

buses and 365 links. The determination of critical buses for this system can be done based on the criteria 

outlined in Section 4.2.1. 
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Fig. 4.8: Backbone transmission links of the CAPS 
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The critical buses of the Central American Power System (CAPS) are: 

 High connectivity buses: Eight buses were labeled as critical buses for having the highest 

connectivity (comprising of 6 or more links to other buses). These buses were also found to have 

good communication facilities and high energy concentrations. 

 Buses relevant for transient stability: From a transient analysis point of view, those buses which 

were electrically closest to generation units and which lost synchronism when a three phase 

fault lasting for less than six cycles took place in any element of the network were considered 

critical. Three phase faults were simulated as they were the most severe of all transient events. 

A critical time of 100ms (six cycles) was assumed to be the typical time period needed to isolate 

the fault. Based on the list of contingencies provided in [98], it was found that only one 

contingency had a critical time of less than 6 cycles, which resulted in two generators being 

selected.  

 Buses relevant for small signal stability: After performing small signal analysis on this network, 

ten generators were found to have high participation factors and low damping ratios for the 

inter area modes of oscillation present in this system. The corresponding transmission buses 

were identified to be critical to facilitate PMU-based control applications. 

 Buses relevant for preventing voltage collapse: Four transmission buses having operational 

voltages below 0.95 p.u. were identified as critical buses for their facility to monitor potential 

voltage instability in radial areas. 

The total number of critical buses identified for the Central American system was 24. By initially placing 

PMUs on these 24 buses, it was observed that 19 critical buses already had redundancy in their 

measurements. PMUs were placed on five other buses to provide redundancy to the remaining critical 

buses resulting in a total of 29 critical or redundancy exclusive buses. Applying the algorithm developed 

in Section 4.1.2, and taking into consideration those 29 critical buses, 101 PMUs were found to be 

required for complete network observability with     redundancy of the critical buses. Table 4.4 

illustrates the number of PMUs required at different depths of unobservability for this network. From 

Table 4.4, it becomes clear that although 87 PMUs provide complete observability to the Central 

American Transmission System, they do not guarantee an optimal PMU placement as far as dynamics 

and practical constraints are concerned. However, by following the proposed approach and adding 

PMUs in select locations, one can make the Central American system much more robust. 
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Table 4.4: Number of PMUs required at different depths of unobservability when redundancy of critical 

buses is considered for the Central American Power Transmission Network 

Depths of 

Unobservability 

Central American Power System (283 buses) 

Not Considering any buses as Critical Considering critical buses with redundancy 

0 87 101 

1 61 67 

2 37 47 

3 24 37 

4 13 33 

5 11 32 

6 9 30 

7 8 30 

8 6 29 

9 5  

10 5  

11 5  

12 5  

13 4  

14 1  

 

CPU Time 

(seconds) 
3.07 2.27 

 

4.3.3 North and East Indian Power Transmission Network 

The map of the complete power transmission system of India is shown in Fig. 4.9 [99]. It is composed of 

five regional grids – the Northern region (NR) grid, the Eastern region (ER) grid, the North-Eastern region 

(NE) grid, the Western region (WR) grid, and the Southern region (SR) grid. In this study, PMU placement 

was analyzed for the power system networks of the Northern and the Eastern region grids (henceforth, 

called North and East Indian power system network). This system comprises of the power system 

networks located in the North and East of India and contains 1196 buses.  



85 
 

 

Fig. 4.9: Indian Power Transmission Network 
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Information about this system was made available in the form of PSS/E models [100]. As is typical of 

system information obtained from commercial packages, they include “virtual/dummy buses” that do 

not physically exist and/or are not practical locations to install metering devices [100]. Typical examples 

of such buses are tapped line buses, series capacitor nodes, disconnected buses, etc. Before performing 

any PMU placement study, such virtual/dummy buses must be removed from the available system 

models. The methodology followed for eliminating virtual buses from the model of the North and East 

Indian power transmission system is based on the logic developed in [102]. It is briefly described as 

follows – 

 Tapped lines: Tapped lines create a bus in the middle of a branch where there are no 

measurement facilities to monitor the signals. For a virtual bus at a tapped line, the bus created 

by the tapped line and the branches connecting the tap to rest of the system are removed and 

equivalent injections are added on the adjoining buses. 

 Virtual generators: These are equivalent generators connected to the system by a virtual (non-

existing) bus. Such virtual buses connecting equivalent generators to the rest of the system are 

removed and replaced by equivalent injections. 

 Shunt elements: For convenience of analysis, shunt circuits are often modeled as virtual buses. 

But since physically they are present on the actual bus, if a virtual bus connects to a shunt 

element, the virtual bus and the shunt element are removed and the combination is replaced by 

a corresponding injection on the actual bus.  

 Series capacitors: Series capacitors are modeled with virtual buses, which physically do not exist. 

Hence, if a virtual bus connects to a series capacitor (regardless of the capacitor line location) 

the bus and the two connecting branches are removed and the combination is replaced by an 

equivalent branch. 

 Distinction between bus and substation: During model-based analysis of a system, transformers 

separating different voltage levels are treated as separate buses. However, when placing PMUs, 

it is assumed that a PMU placed at a substation will monitor all the transformers at that 

substation. Therefore, at a given substation it is presumed that multiple-voltage levels/lines are 

monitored by a single PMU. This assumption is not a good assumption for practical installations 

and needs to be analyzed in greater depth. However, the study that needs to be done to better 

this assumption is beyond the scope of this work.  
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 Three winding transformers: Three winding transformers are typically modeled as three 2-

winding transformers with one side in common. In per unit, the three buses represent the same 

voltage and so could be monitored by a single PMU. Thus, if a virtual bus is the middle point of a 

three winding transformer, then the corresponding three winding transformer is replaced by a 

single bus. This bus is then connected to the buses originally connecting the middle and high 

voltage windings. 

 Disconnected buses: Some buses in the model are not connected to any other bus of the 

system. Such stand-alone buses are removed without making any other change in the network.  

On applying the above-mentioned virtual/dummy bus elimination logic to the North and East Indian 

Power Transmission Network, the total number of buses was reduced from 1196 to 996. The critical 

buses of this network were then found out based on the criteria outlined in Section 4.2.1 with the 

details highlighted as shown below –  

 Highest voltage buses: As 765kV was the highest voltage present in this network; all active buses 

having this voltage were selected as the relevant high voltage buses of the system. The total 

number of these buses was 19. 

 High connectivity buses: Buses having ten or more connections were identified as high 

connectivity buses. The total number of these buses was 16.  

 Buses relevant for small signal stability: Buses having high participation towards the control of 

the low frequency inter area modes of oscillation were considered critical for small signal 

stability analysis. The total number of these buses was 12. 

 Low voltage load buses: Load buses having voltages of less than 0.90 p.u. were identified as 

critical buses. The total number of these buses was 10. 

 Buses connected to DC lines: AC Buses connected to either ends of the DC lines were identified 

as important from control perspectives and were therefore considered to be critical buses for 

this analysis. The total number of these buses was 8. 

Once the critical buses of the system were identified, the size of the system was reduced further by 

eliminating the ZI buses present in the system. Similar to what was done for the IEEE 118-bus system in 

Table 4.3, unless the ZI bus of the North and East Indian system was a critical bus, it was removed from 

the system. The number of critical ZI buses was 27, while the number of ZI buses eliminated from the 

system was 246. Consequently, the system was reduced from a 996-Bus model to a 750-Bus model with 
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a total of 65 buses recognized as critical buses. 56 of these 65 critical buses were observed to be 

connected to atleast one other critical bus. PMUs were then placed on nine more buses to provide 

redundancy to the remaining critical buses resulting in a total of 74 critical buses. A total of 208 PMUs 

were found to be needed for this system to ensure complete observability with redundancy in 

measurement of the critical buses. Table 4.5 summarizes the placement of PMUs at different depths of 

unobservability for this system.  

Table 4.5: Number of PMUs required at different depths of unobservability when redundancy of critical 

buses is considered for the North and East Indian Power System 

Depths of 

Unobservability 

North and East Indian Transmission System (750 buses) 

Not Considering any buses as Critical Considering critical buses with redundancy 

0 161 208 

1 80 131 

2 41 92 

3 20 77 

4 9 74 

5 7  

6 3  

7 3  

8 2  

9 1  

 

CPU Time 

(seconds) 
3674.98 3675.58 

 

From Table 4.5 it can be realized that for the North and East Indian system, by adding 47 PMUs more 

than the ones needed for basic observability, one can ensure an optimum balance between cost and 

intended PMU applications. Moreover, from the results, it is also implied that by placing PMUs at 208 

locations of this system, one can effectively monitor and control the reduced 750-Bus system and 

through it, the entire 996-Bus network. Thus, by placing PMUs on less than one-third of the buses for 

the reduced system and approximately one-fifth of the buses of the full system, an excellent knowledge 
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of the state of the complete network can be obtained. The results obtained in this section indicate that 

irrespective of the way in which the critical buses are chosen, they can be incorporated into the 

proposed methodology to find an optimal PMU placement scheme that will ensure real-time monitoring 

of the key regions of any system. 

4.4 The 2012 Blackout in India 

In one of the worst blackouts in power system history, two separate events on 30 and 31 July, 2012 

resulted in over 620 million people of India losing power. The outages were spread across 22 states in 

Northern, Eastern, and North-Eastern regions with an estimated 48 GW of load being affected in its 

wake. The Northern Region (NR) grid was affected by the blackout on 30 July; whereas the Northern 

Region (NR) grid, Eastern Region (ER) grid, and the North-Eastern Region (NER) grid were affected by the 

blackout that occurred on 31 July. A map of the affected regions is provided in Fig. 4.10 [103].  

The initiating event on both occasions was the tripping of the 400kV Bina-Gwalior line on zone 3 

protection of distance relays. The corresponding rerouting of power resulted in cascade tripping of the 

tie-lines along the interfaces of the different regions. The eventual collapse of the grids in the individual 

regions due to multiple tripping was attributed to internal power swings, under frequency and 

overvoltage at different places [103]. Thus, the factors leading to the grid disturbance on both occasions 

can be grouped under: 

 Loss of balance between security and dependability [62] 

 Absence of real-time system visibility 

 Inadequate contingency analysis 

A brief sequence of events following the initiating event for both the days is provided as follows [103]. 

On 30th July, 2012, after the NR got separated from the WR due to tripping of the 400kV Bina-Gwalior 

line, the NR loads were met through WR-ER-NR route, which caused power swing in the system. Since 

the center of swing was in the NR-ER interface, the corresponding tie-lines tripped, isolating the NR 

system from the rest of the NEW grid system. The NR grid system collapsed due to under-frequency and 

further power swing within the region.  

On 31st July, 2012, after NR got separated from the WR due to tripping of 400kV Bina-Gwalior line, the 

NR loads were met through WR-ER-NR route, which caused power swing in the system. On this day the 

center of swing was in the ER, near ER-WR interface, and, hence, after tripping of lines in the ER itself, a 



90 
 

small part of ER (Ranchi and Rourkela), along with WR, got isolated from the rest of the NEW grid. This 

caused power swing in the NR-ER interface and resulted in further separation of the NR from the ER-NER 

system. Subsequently, all the three grids (NR, ER, and NER) collapsed due to multiple tripping attributed 

to the internal power swings, under-frequency and over-voltage at different places. 

 

Fig. 4.10: Map indicating the inter-regional links 

A PMU-based wide areas measurement system (WAMS) will play a key role in making the Indian grid 

smarter. It will improve visibility and provide real time monitoring, protection, and control of the system 

[104]. Intelligent load shedding schemes, modern dynamic security assessment techniques, and 
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security/dependability based adaptive protection schemes are some of the ways in which PMUs can 

improve the reliability of the Indian grid. Some of the PMU-based applications that could have saved the 

system from the July 2012 collapse are summarized below: 

 Measures to avoid misoperation/maloperation of protective relays: The blackouts followed 

immediately after a zone 3 operation on the Bina-Gwalior line. The implementation of a PMU-

based security/dependability adaptive protection scheme [12] would have prevented that from 

occurring. 

 Faster dynamic security assessment: The lack of proper frequency control processes was 

responsible for both the blackouts. An efficient deployment of PMUs could track frequency 

accurately across the network and generate alarms when the system starts becoming unstable. 

A variety of Remedial Action Schemes (RAS) based on PMU measurements can also be 

implemented. 

 Intelligent load shedding schemes: The implementation of frequency and       based load 

shedding schemes can be easily done using WAMS [105]. 

 Accurate state estimation: Imprecise state estimation played a central role in the blackouts. This 

can be greatly improved through the proposed PMU placement scheme using which 

measurements obtained from optimally located PMUs can be combined with traditional state 

estimators [67]. 

 Faster Island detection: The cascade tripping following outage of the Bina-Gwalior line resulted 

in the different regional grids separating from each other. Faster island detection schemes using 

PMUs [106] would allow for prompt island identification, stabilization of the islands formed and 

a more efficient system restoration. 

As [103] states, an appropriate deployment of PMUs is highly recommended to prevent events similar to 

the July 2012 India blackouts. This chapter provides guidelines for creating an effective and efficient 

PMU deployment strategy. By placing PMUs on generators which are more vulnerable to frequency 

swings and selecting locations which will quickly pick up on growing instabilities (when they occur), a set 

of critical buses can be identified. With these critical buses forming the starting set, the proposed 

methodology can be used to find an optimized PMU placement set that will prevent/minimize the 

effects of such events. 
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4.5 Conclusion 

A PMU placement scheme has been developed in this chapter which takes into account the monitoring 

and protection of important buses of the system while moving towards complete observability of the 

network. When applying analytical or graphical methods to determine the optimal number of PMUs for 

complete observability of a system, it is realized that not all buses possess the same degree of 

preference from the techno-economic perspective. In this sense, priority should be given to high voltage 

buses, high connectivity buses, buses with good communication facilities etc. Similarly, buses more 

relevant to the transient and dynamic stability of the system have higher priority than those with less 

relevance. This chapter uses this logic to create a set of critical buses where PMUs must be installed first 

before going for complete observability. The proposed scheme also provides redundancy in 

measurement of these selected buses under the     criterion. 

The proposed algorithm has been applied to two standard test systems as well as two real power system 

networks. The ways in which the proposed methodology might have avoided/ minimized the impact of a 

real-life blackout is also described. The buses identified as critical to the system are observed even at 

the highest depth of unobservability. The increased number of PMUs required for complete 

observability is more than compensated by the added benefit of providing redundancy in measurement 

to the critical buses of the system. The technique is simple, efficient and easily applicable to large power 

system problems. The methodology developed here is expected to provide flexibility to utilities in the 

implementation of their PMU placement scheme. The locations where PMUs have already been placed 

in the system based on previous studies and utility needs can be integrated into the proposed scheme 

under the definition of critical buses. Finally, the utilities are provided with the option that if they wish 

to remain at a certain depth of unobservability and not go for complete observability or delay their plans 

for it due to practical constraints; they are atleast assured that the vital segments of their system are 

protected. 
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Chapter 5: A Community-Based Partitioning Approach for PMU Placement in 

Large Systems 

In the previous chapter, a PMU placement methodology was developed for generic systems. It involved 

combining the “critical” bus concept with “depth of unobservability” and “binary integer programming” 

to compute for an optimal PMU placement scheme. The results indicated that using the CBBBIO 

technique a utility would be able to deploy PMUs at select locations within the network over some 

period of time so as to eventually observe the whole system. However, in the course of that analysis, it 

was also observed that the computational complexity of the optimization limits the applicability of such 

techniques to large power system networks.  

In this chapter, a PMU placement scheme is presented that ensures complete observability of large 

systems while reducing the computational burden of the optimization. The proposed methodology also 

provides redundancy in measurement of the critical buses of the network that are identified based on 

system studies/topologies. The community-based islanding approach used here initially partitions the 

system into smaller islands. Placement of PMUs in these islands is then computed using binary integer 

programming. A bound is also developed to compute for the maximum error from an optimal solution. 

The proposed technique has been applied to standard IEEE systems as well as on more realistic power 

system network models. The results show that the community-based partitioning approach enables the 

CBBBIO technique to be applied to any sized system. 

5.1 PMU placement in large systems 

Now that a synchrophasor-only state estimator is becoming a reality [28], it is clear that more and more 

PMUs will be installed in the power grid. It is believed that PMUs/dual purpose line relays in the order of 

thousands will be introduced in the US power system in the next few years [107]. China plans to have 

PMUs installed on all of its high voltage substations. The six countries in Central America are also 

installing PMUs in their inter-connected networks [20]. India plans to add many more PMUs to its 

national grids in the near future. With this over-abundance of PMUs in the network, it is essential to 

develop a technique that can efficiently compute PMU placements in large systems. 

As stated previously, a variety of mathematical tools have been proposed by researchers to perform the 

optimizations for computing an optimal PMU placement scheme for generic systems [76]-[86]. However, 
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the two primary problems which have led to the downfall of most of these techniques as far as 

implementation in large systems is concerned are: 

1. The diversity of applications, and 

2. The computational burden of the optimization 

Reference [18] states that on the basis of applications there are two methods followed by power 

engineers for placing PMUs in a system:  

a) Development of a prioritized list of placement sites based on observability, and 

b) Measurements are placed to correctly represent critical dynamics of the system 

However, as stated in the previous chapter, the first method is concerned with state estimation and so 

does not take into account transient and dynamic stability of the system, while the second approach 

does not consider complete observability as one of its priorities. The CBBBIO technique developed in the 

previous chapter reconciled these two approaches by initially placing PMUs on the critical buses of the 

network identified on the basis of system studies/topologies and then computing for the optimal 

number of PMUs required for complete system observability. However, the problem of heavy 

computational burden was still found to persist. This is particularly relevant for large power system 

networks (> 500 buses), because in such networks it’s computationally cumbersome to directly compute 

for an optimal PMU placement scheme using traditional methods. Moreover, if the locations are not 

chosen judiciously, then the large amounts of data that will be collected will cause network congestion 

in downstream applications [108]. 

This chapter tries to address the issue of PMU placement in large systems by introducing a community-

based islanding approach [109] that partitions the system into smaller islands. The concept of “critical 

buses” proposed in the previous chapter is then used to find the optimal PMU placement scheme in the 

resulting islands. A bound is also developed to compute the maximum error from an optimal solution. 

The proposed technique is initially applied to standard IEEE systems and then tested on larger and more 

realistic power system networks, such as a 283-bus model of the Central American system, a 1064-bus 

model of the Dominion Virginia Power (DVP) system, a 1133-bus model of the Indian system, and a 

1443-bus model of the Brazilian Power System. The results indicate that the methodology developed 

here is a logical approach that yields good solutions for large systems. 
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5.2 Community-based islanding 

An interesting analysis was done in [109] for finding and evaluating community structure in general 

networks. The dictionary definition of a “community” is a group of individuals living in a particular area 

and having a common interest [110]. In the world of graphs, this translates to a group of nodes inside a 

network within which the network connections are high, but between which, they are low. Examples of 

this in the power system will be different utilities operating under an independent system operator (ISO) 

or, regional grids belonging to distant geographic regions that are connected by tie-lines. Fig. 5.1 shows 

communities that can be present in a graph. In Fig. 5.1, the thicker black lines denote edges that connect 

different communities. The goal is to identify these inter-community edges so that by eliminating them, 

the network can be partitioned into islands. In this chapter it is shown how the methodology developed 

in [109] can be used to address the PMU placement problem.  

 

Fig. 5.1: Communities in a graph 

Developing an optimal PMU placement scheme in a large power system network is a computationally 

intensive task. Fig. 5.2 shows an example of how the computational burden can increase as the size of 

the system increases. In Fig. 5.2, X-axis denotes the number of buses present while the Y-axis depicts the 

time required (in seconds) for computing the optimization using the Integer Programming algorithm 

developed in [1]. The computations were performed on an Intel (R) Core™ i5 Processor having a speed 

of 2.40 GHz and an installed memory (RAM) of 5.86 GB. Power system networks ranging from 14 buses 
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to more than 1400 buses were analyzed to create the plot. It is believed that although other techniques 

used for computing optimal PMU placement will give different values, the general trend with respect to 

system size will remain the same for all of them. 

 

Fig. 5.2: Indication of the computational burden of the optimization 

The reason for the time vs. number of buses plot being an exponential one (as seen in Fig. 5.2) is that 

the algorithms tend to solve the problem by searching through all possible solutions for a given system 

model in order to find the optimal solution. For a   bus system such a brute force approach would 

require a worst-case time of      . The reason being that for every new node that is added, there will 

be two possibilities-whether it will have a PMU on it, or whether it will not. Moreover, since for both the 

possibilities, the rest of the nodes also need to be analyzed, the total worst-case time will 

become      . Therefore, as the size of the system increases, the required computational effort 

increases exponentially. A pre-processing method for effective PMU placement studies was developed 

in [111]. However, that approach resulted in the system losing its initial structure/topology to such an 

extent that it became almost impossible to accurately retrace the results back to the original system 

[13]. The technique developed in this chapter shows how PMU placement can be done in large systems 

without significantly affecting the system’s basic structure/topology.  

The idea of partitioning a system into smaller sub-systems provides an elegant solution to the PMU 

placement problem. The locations where PMUs must be placed are usually computed in the planning 

stages. But, for large systems, it is not practically feasible to directly compute for an optimal PMU 
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placement scheme. In order to circumvent this problem, engineers create reduced-order models of their 

networks (by making various assumptions), and then perform the optimization. However, by partitioning 

a large system into islands, PMUs can be placed at the desired locations without any pre/post-

processing or making any assumptions. Apart from facilitating placement of PMUs, another use of the 

community-based islanding approach could be in the placement of phasor data concentrators (PDCs). 

Since PDCs compile signals from several PMUs, by using the partitioning logic, a cluster of PMUs can be 

identified such that over-all latency and/or other communications issues are minimized. 

The community based partitioning logic is illustrated as follows. Let us have a network of   nodes. We 

now break this network into   sub-networks having at most   nodes each by removing a certain 

number of edges. Once we do that, we have   islands each having m nodes or less in them. Then, the 

optimization problem for the individual islands will have a worst-case time of      . Similarly, the 

worst-case time for computing the optimization for all the islands would be        . Now, as   can 

be made a lot smaller than   (by increasing the number of partitions  ), the worst-case time can be 

reduced by a significant amount. An example of this is provided in Fig. 5.3. In Fig. 5.3,       and so 

the worst-case time for computing for the optimal PMU placement in the created islands will be, 

               
(
 
 
)
                                                                                                                                                  

 

Fig. 5.3: Variation of worst-case time with number of nodes for different values of   
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In accordance with (5.1), Fig. 5.3 shows that while the original system takes more than 1000 seconds for 

a 10-node system, the same system when partitioned into five equal islands takes less than 100 seconds. 

Thus, by partitioning the system into islands (   ), the computation times can be greatly reduced. 

Another inference that is drawn from this analysis is that by partitioning the system into smaller islands, 

the increase in computational burden with increase in number of nodes is almost linear (and not 

exponential). This is realized from a study of the slopes for     (blue line) and     (magenta line). 

Thus, by partitioning the system into independent islands, computational advantage is attained without 

significant alteration of the structure of the original system. 

5.3 Computation of bound 

The community-based islanding approach provides a “shortcut” to the PMU placement problem. 

However, the cost of using this shortcut is the “distance” from an optimal PMU placement solution. 

When a system is partitioned into islands, it is done so by removing edges from the network. Removing 

an edge results in loss of “visibility” of the nodes between which the edge initially lay. Now, as more and 

more edges are removed to form islands, it is likely that nodes which might have been optimal locations 

for placing PMUs in the original network would no longer be optimal locations in the created islands. 

Therefore, it is possible that the total number of PMUs required for complete observability of the 

individual islands is more than the number of PMUs required for complete observability of the original 

system. This increase in the number of PMUs required is defined as the “distance” from an optimal 

solution. Under such circumstances, it becomes necessary to compute for a “bound” on the furthest 

“distance” from an optimal solution that will be achieved by partitioning the system. This is developed 

as follows. 

In order to find the reason behind the need for more PMUs in the created islands, the optimal PMU 

placement locations of the original system needs to be analyzed. In order to do that, let us start with a 

network of   nodes that needs the removal of an edge between node   and node   to form islands. 

Then, based on the optimal PMU placement scheme of the original system, the following four situations 

may arise – 

 Neither node   nor node   have PMUs on them 

 Both node   and node   have PMUs on them 

 One of the nodes (say node  ) has a PMU on it, but that PMU is not the only way in which the 

other node (node  ) is observed 
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 One of the nodes (say node  ) has a PMU on it, and that PMU is the only way in which the other 

node (node  ) can be observed 

For the first situation, since neither node   nor node   has PMUs on them, it can be inferred that both 

the nodes are observed by PMUs placed on neighboring nodes. In such a scenario, the edge between 

nodes   and   is a redundant one (as far as observability is concerned) and can be removed to create 

islands without increasing the total number of PMUs required. For the second situation, since both the 

nodes already have PMUs on them, even if the edge between them is removed, the observability of the 

system will not be affected in any way. Therefore, for this scenario also, the edge between nodes   and   

can be removed without causing any increment in the total number of PMUs required. For the third 

situation, since one node has a PMU on it but it is not needed for observing the other node, it can be 

inferred that the other node is observed by a neighboring PMU. So, in this scenario also, no extra PMUs 

will be required when the edge between nodes   and   is eliminated. Figs. 5.4-5.6 depict the first three 

scenarios for a 4-bus radial network (    ). In each of the figures, the nodes where PMUs have been 

placed for complete observability of the system are marked by  . In all three figures, the line between 

buses 2 and 3 is considered to be the edge that must be removed to partition the system into two 

islands (comprising of buses 1 and 2 and buses 3 and 4, respectively). As can be seen from the figures, 

the numbers of PMUs remain the same before and after partitioning. Moreover, there is no need to 

even rearrange the locations of the PMUs in the created islands in comparison to the original system. 

 

(a) 

 

(b) 

Fig. 5.4: Four-node network depicting the first scenario 
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(a) 

 

(b) 

Fig. 5.5: Four-node network depicting the second scenario 

 

(a) 

 

(b) 

Fig. 5.6: Four-node network depicting the third scenario 

In the fourth situation, since the only way to observe node   is by the PMU placed on node  , when the 

edge between nodes   and   is removed, a rearrangement of the placed PMUs needs to be done in order 

to observe the now “unobservable” node  . In such a scenario, there might be an increase in the total 

number of PMUs required. Thus, the fourth situation needs to be analyzed in more details and this is 

done so in the form of two illustrative examples as shown below.  

In Fig. 5.7a,     and the nodes where PMUs have been placed for complete observability of the 

system (nodes  ,   and  ) are marked by  . Next, the edge between nodes   and 5 is removed to create 
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two islands as shown in Fig. 5.7b. Since in the original system, the only way in which node   could have 

been observed is by the PMU on node   this scenario is an example of the fourth situation. Now that the 

edge between nodes   and 5 is absent, node   can no longer be observed by the PMU at node 5. 

Therefore a rearrangement of the placed PMUs needs to be done in the created islands. On doing that, 

the new locations for PMUs are found to be nodes  ,   and   as seen in Fig. 5.7c. Thus, in this case, 

although a rearrangement of the PMUs was done to observe all the nodes, the total number of PMUs 

required remained the same. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.7: Seven-node network depicting the fourth scenario 

In Fig. 5.8a, another example is considered in which     and the nodes on which PMUs have been 

placed for complete observability of the original system are  ,   and  . Similar to the previous example, 

the edge between nodes   and 5 is removed to create two islands having four nodes each as shown in 

Fig. 5.8b. Since the removal of the edge results in node   becoming unobservable, a rearrangement of 

the placed PMUs is done to make it observable again. On doing so, it is realized that one more PMU is 

needed for complete observability of the individual islands as shown in Fig. 5.8c. Thus, in this case, the 

removal of the edge has caused an increment by one in the total number of PMUs required.  
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(a) 

 

(b) 

 

(c) 

Fig. 5.8: Eight-node network depicting the fourth scenario 

Based on this analysis done here, a relationship can be defined between the number of edges removed 

to create the sub-networks and the number of extra PMUs required for complete observability of the 

created sub-networks. The relation can be expressed in the form of a Lemma as shown below:  

Lemma: If one edge is removed to create two sub-networks, then, irrespective of the structure/topology 

of the original network or the created sub-networks, at most only one more PMU will be needed for 

complete observability of the two sub-networks.  

In the above-mentioned lemma, “one more PMU” means that in the worst case-scenario, the total 

number of PMUs required for the complete observability of the two sub-networks will be one more than 

the optimal number of PMUs required for the complete observability of the original network. Therefore, 

if   branches are removed to create   islands, then the largest factor by which the number of PMUs 

required for complete observability of the created islands will exceed the optimal number of PMUs 

needed is limited by  . From the above analysis it can also be inferred that if equal likelihood for all the 

scenarios is assumed, then one extra PMU will be needed for every five branches that are removed. The 

reason for this is that only in one of the situations listed above is there a possibility of an extra PMU 

being needed. Thus, as long as the number of branches removed to create the islands is kept to a 
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minimum, the proposed approach is guaranteed to give near-optimal results. In accordance with this 

realization, an algorithm is developed in the next section that creates islands by eliminating least 

number of branches. 

5.4 Branch Elimination and PMU Placement (BEPP) scheme 

In the previous section, a bound was developed on the maximum error from an optimal PMU placement 

solution. However, in order for this bound to be effective, an algorithm is needed which can identify the 

minimum number of branches that must be removed for creating the desired number of islands. Based 

on the logic given in [109], an algorithm is developed here that not only creates islands by removing 

minimum number of branches but also computes for the optimal placement of PMUs in the created 

islands under different system constraints. 

The proposed Branch Elimination and PMU Placement (BEPP) scheme comprises of three stages. The 

first stage involves assigning weights to the different edges of the network. The logic followed for doing 

so is that branches that have the highest probability of connecting nodes from two different 

communities should have the highest weights. Although a variety of ways are possible for assigning 

weights to the edges the one used in [109] was used here because of its ability to create evenly-sized 

partitions while removing minimal number of edges. Once the branch with the highest weight is 

identified and removed, a clustering algorithm is used to check for presence of islands. The clustering 

algorithm identifies nodes that belong to the same community and groups them together. If all the 

nodes can be clustered under the same group, then it means that no island has been formed by the 

removal of the highest weight branch and the weighting scheme needs to be repeated to identify the 

next branch with the highest weight. Once the desired number of islands has been formed, the third 

stage involves using binary integer programming to compute for an optimal PMU placement in the 

created islands. Constraints like redundancy in measurement of the critical buses of the network are 

imposed at this stage. A flowchart of the BEPP scheme is provided in Fig. 5.9 while the pseudo-code for 

performing the optimization is illustrated with an example in Appendix C. The three stages are described 

in more details in the following sub-sections. 



104 
 

Enter Adjacency 
Matrix

Compute Depth, Vertex 
Number and Weight 

Matrices 

Eliminate edge with 
highest weight and 

update adjacency matrix

Feed adjacency matrix 
into Clustering algorithm 

and check for islands

Islands present

Desired number of 
islands formed

Identify critical nodes (if 
not considered, then skip 

step)

Compute for optimal 
PMU placement in 
individual islands

End

No

No

Yes

Yes

Weighting 
Scheme

Clustering 
Algorithm

Binary Integer 
Programming

 

Fig. 5.9: Flowchart of the BEPP Scheme 
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5.4.1 Weighting scheme 

The first stage of the proposed BEPP scheme involves identifying and eliminating least number of 

branches to create desired number of partitions. Since the partitioning of a network into islands requires 

the removal of the inter-community edges, for their successful identification and elimination, these 

edges must have the highest weights. One way to ensure that is by defining a measure for the number 

of times an edge is traversed when going by the shortest path from node   to node   for all   and  . On 

doing so, the following two cases arise: 

 Nodes   and   are in the same community 

 Nodes   and   are in different communities 

In the first case, for most networks, the inter-community edges will not be traversed. The reason being 

that inside a community it is more likely that the shortest path between two nodes will be through 

edges that lie in the community itself. However, for the second case, it is a must that the inter-

community edges are traversed. Now, as this process is repeated for all the nodes in the network, it can 

be surmised that the inter-community edges will be travelled more number of times than the intra-

community edges. The reason for this is that whenever nodes from two different communities would 

need to be connected, they would be done so by travelling through the inter-community edges. 

Therefore, by definition, the measure that is developed based on the number of times an edge is 

traversed will be highest for the inter-community edges. 

The above-mentioned concept is implemented in a three step process. In the first step, a symmetric 

matrix called the “Depth” matrix   is created whose element        denotes the “distance” of node   

from node  . This “distance” is the minimum number of branches that have to be traversed to reach 

node   starting from node  . If node   cannot be reached from node  , then        is equal to zero. 

Similarly, the distance of node   from itself is also zero. After the computation of the Depth matrix, the 

next step is to define a “Vertex Number” matrix   whose element        denotes the number of 

shortest paths that have to be traversed to reach node   from node  . The Vertex Number matrix is also 

a symmetric matrix and can be computed from the Depth matrix. The third step is the creation of the 

“Weight” matrix. This is the most crucial step because it provides a measure for comparing one branch 

to another. With the aid of Depth and Vertex Number matrices, the Weight matrix is created using the 

script given in Fig. 5.10. In Fig. 5.10,   denotes the  -dimensional adjacency matrix of the network,   

denotes the source node,   denotes the destination node, and   denotes a node which lies in between   
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and  . The ratio               is the index that measures the number of times an edge has been 

traversed. The variable         ensures that the weight of the node furthest from   is the least and it 

increases progressively as we move closer towards  . The gradual increase is quantified by the sum of all 

the weights of the downstream edges plus one to account for the decreasing depth, whole multiplied by 

the ratio of the vertex numbers. Once the Weight matrix is computed, the edge having the highest 

weight is removed from the network and the resulting adjacency matrix is set as an input to the 

clustering algorithm described next. 
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Fig. 5.10: Script for computing the Weight matrix 

5.4.2 Clustering algorithm 

The second stage of the BEPP scheme is the clustering algorithm. Its function is to detect and identify 

created islands. It starts with the first element of the adjacency matrix and identifies the non-zero 

elements present in the first row (or column). A non-zero entry in the       position of the adjacency 

matrix implies that there is a direct path from   to   and so both   and   belong to the same island. Once 

it comes across a non-zero entry, it travels along the corresponding column (or row) to search for other 

non-zero entries. In this way, if all the nodes can be reached from the first node, it means that no islands 

have been formed by the removal of the branch identified in the previous sub-section and that the 

weighting scheme has to be repeated to identify the next branch to be eliminated.  
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However, if there are nodes that cannot be reached from the first node by following the above-

mentioned process, then it means that an island is present. Then, in order to identify the nodes present 

in the island, the smallest numbered node which could not be reached by the first node is set as the first 

node of the new island and the clustering approach is repeated to identify other nodes which can be 

reached from this new “first” node. This process is repeated until all the islands have been identified. If 

the number of islands formed is less than the number of islands desired, then the weighting scheme is 

run again to identify more edges that have to be removed. However, if the desired number of islands 

has been formed, then the created islands along with the nodes present in each of them are set as 

inputs to the binary integer optimization technique described next. 

5.4.3 Binary integer programming 

A methodology was developed in the previous chapter that ensured observability of the most important 

buses of the network under     contingency criterion. This was achieved by providing more “weights” 

to the nodes that were “critical”. High voltage buses, high connectivity buses, buses relevant to 

transient/dynamic stability, and/or potential small signal control buses were recognized as “critical” 

nodes for this study. Since the “weighting scheme” described in section 5.4.1 does not affect the relative 

importance of the nodes of the system, the CBBBIO technique can be smoothly integrated with the 

proposed scheme. This is done by following a five-step process as shown below: 

Step 1: Identify critical nodes of the original system.  

Step 2: For the     island, identify the critical nodes present in it. Define a null vector        having the 

same length as the number of nodes in the     island. Set the locations of the critical buses as one 

in       . 

Step 3: Define a vector    such that, 

                                                                                                                                                                          

In (5.2),    is a vector of ones having the same length as        and   is a scalar having any value greater 

than one. The scalar weight   ensures priority in placement of PMUs on the critical nodes.  

Step 4: The optimization criteria is defined as, 

   
  

(  
    )                                                                                                                                                                      
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The constraints imposed on (5.3) are 

                                  

      
        (      

)
                                                                                                                                                

In (5.4),    is the incidence matrix of the     island and        is the number of non-zero elements in 

vector  . The incidence matrix is the same as the adjacency matrix except that its diagonal elements are 

unity instead of zeroes.  

Step 5: If a critical node is not connected to any other node that has PMU on it, then define the node 

immediately next to that critical node as a critical node and repeat Steps 2 to 4.  

By following these five steps for each of the created islands, an optimal PMU placement scheme can be 

realized that guarantees redundancy in measurement of all the critical buses of the network. It is to be 

noted here that the BEPP scheme developed in this chapter focuses only on complete observability 

(depth zero) whereas the CBBBIO technique described in the previous chapter also computed higher 

depths of unobservability. If need be, the higher depths of unobservability can be computed by using 

(4.17) on the individual islands. 

Since the community-based partitioning technique has a worst-case time of       for sparse graphs 

[109], the maximum worst-case time for partitioning a system into   islands is  (      
(
 

 
)
), which 

is considerably less than       for all      and    . Thus, by combining binary integer optimization 

with the community-based islanding approach, a simple PMU allocation technique is developed that 

provides real-time monitoring of critical buses of the network as well as ensures complete system 

observability with reduced computational burden. A variety of power system networks were analyzed to 

assess the utility of this scheme. Its application to the IEEE 14-bus system is described in great details in 

the next section, while the results obtained on applying the BEPP scheme to larger and more 

complicated power systems are summarized in Section 5.6. 

5.5 Illustration of BEPP scheme 

In this section, the application of the BEPP scheme is demonstrated on the IEEE 14-bus system. It 

consists of 14 buses and 20 lines as shown in the equivalent graph in Fig. 5.11. The objective here is to 

create two islands in this network based on the proposed scheme. The adjacency matrix of the original 

network is shown in Fig. 5.12. The elements of the adjacency matrix indicate which buses are adjacent 
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to one another. For instance, since bus 1 is only connected to buses 2 and 5, only (1, 2), (2, 1), (1, 5), and 

(5, 1) elements of the first row and first column of the adjacency matrix are unity (rest of the entries in 

the first row and first column are zeroes). A similar logic is followed for obtaining the entries of the 

remaining rows and columns.  

 

Fig. 5.11: Graph of the IEEE 14-bus system 

 

Fig. 5.12: Original Adjacency matrix of the IEEE 14-bus system 

 

Bus Num
bers

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

2 1 0 1 1 1 0 0 0 0 0 0 0 0 0

3 0 1 0 1 0 0 0 0 0 0 0 0 0 0

4 0 1 1 0 1 0 1 0 1 0 0 0 0 0

5 1 1 0 1 0 1 0 0 0 0 0 0 0 0

6 0 0 0 0 1 0 0 0 0 0 1 1 1 0

7 0 0 0 1 0 0 0 1 1 0 0 0 0 0

8 0 0 0 0 0 0 1 0 0 0 0 0 0 0

9 0 0 0 1 0 0 1 0 0 1 0 0 0 1

10 0 0 0 0 0 0 0 0 1 0 1 0 0 0

11 0 0 0 0 0 1 0 0 0 1 0 0 0 0

12 0 0 0 0 0 1 0 0 0 0 0 0 1 0

13 0 0 0 0 0 1 0 0 0 0 0 1 0 1

14 0 0 0 0 0 0 0 0 1 0 0 0 1 0
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When this matrix is fed into the weighting scheme, the Depth, the Vertex Number and the Weight 

matrices obtained as outputs are shown in Figs. 5.13-5.15. The elements of the Depth matrix indicate 

the minimum number of branches that must be traversed to reach one bus from another. For instance, 

bus 2 is directly connected to bus 1 and so the elements (1, 2) and (2, 1) of the Depth matrix are equal to 

one, while bus 3 is connected to bus 1 via bus 2 and so the elements (1, 3) and (3, 1) of the Depth matrix 

are equal to two. It is to be noted here that the Depth matrix gives an indication of the depth of 

unobservability of a network as defined in Chapter 4, Section 4.1.1. This is based on the fact that the 

largest entry in a particular row (or column) of the Depth matrix indicates the depth of unobservability 

of the system if a PMU is placed on that row (or column) number. That is, if a PMU is placed at bus 2 (or 

4, or 5, or 9) in the original network of the IEEE 14-bus system, the depth of unobservability of the 

system will be three.   

 

Fig. 5.13: Original Depth matrix of the IEEE 14-bus system 

 

Bus Num
bers

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 1 2 2 1 2 3 4 3 4 3 3 3 4

2 1 0 1 1 1 2 2 3 2 3 3 3 3 3

3 2 1 0 1 2 3 2 3 2 3 4 4 4 3

4 2 1 1 0 1 2 1 2 1 2 3 3 3 2

5 1 1 2 1 0 1 2 3 2 3 2 2 2 3

6 2 2 3 2 1 0 3 4 3 2 1 1 1 2

7 3 2 2 1 2 3 0 1 1 2 3 4 3 2

8 4 3 3 2 3 4 1 0 2 3 4 5 4 3

9 3 2 2 1 2 3 1 2 0 1 2 3 2 1

10 4 3 3 2 3 2 2 3 1 0 1 3 3 2

11 3 3 4 3 2 1 3 4 2 1 0 2 2 3

12 3 3 4 3 2 1 4 5 3 3 2 0 1 2

13 3 3 4 3 2 1 3 4 2 3 2 1 0 1

14 4 3 3 2 3 2 2 3 1 2 3 2 1 0
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Fig. 5.14: Original Vertex Number matrix of the IEEE 14-bus system  

 

 

Fig. 5.15: Original Weight matrix of the IEEE 14-bus system 

 

Bus Num
bers

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 2 1 1 2 2 2 3 1 1 1 3

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 2 2 1 1 1 1 3 2 3 1

4 2 1 1 1 1 1 1 1 1 1 2 1 2 1

5 1 1 2 1 1 1 1 1 1 2 1 1 1 2

6 1 1 2 1 1 1 1 1 3 1 1 1 1 1

7 2 1 1 1 1 1 1 1 1 1 1 2 1 1

8 2 1 1 1 1 1 1 1 1 1 1 2 1 1

9 2 1 1 1 1 3 1 1 1 1 1 1 1 1

10 3 1 1 1 2 1 1 1 1 1 1 1 2 1

11 1 1 3 2 1 1 1 1 1 1 1 1 1 2

12 1 1 2 1 1 1 2 2 1 1 1 1 1 1

13 1 1 3 2 1 1 1 1 1 2 1 1 1 1

14 3 1 1 1 2 1 1 1 1 1 2 1 1 1

Bus Num
bers

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 9.33 0 0 16.67 0 0 0 0 0 0 0 0 0

2 9.33 0 8.33 17.33 14.33 0 0 0 0 0 0 0 0 0

3 0 8.33 0 17.67 0 0 0 0 0 0 0 0 0 0

4 0 17.33 17.67 0 32.33 0 26 0 30.67 0 0 0 0 0

5 16.67 14.33 0 32.33 0 46.67 0 0 0 0 0 0 0 0

6 0 0 0 0 46.67 0 0 0 0 0 22.67 18 18.67 0

7 0 0 0 26 0 0 0 26 22 0 0 0 0 0

8 0 0 0 0 0 0 26 0 0 0 0 0 0 0

9 0 0 0 30.67 0 0 22 0 0 26.67 0 0 0 30.67

10 0 0 0 0 0 0 0 0 26.67 0 18 0 0 0

11 0 0 0 0 0 22.67 0 0 0 18 0 0 0 0

12 0 0 0 0 0 18 0 0 0 0 0 0 8 0

13 0 0 0 0 0 18.67 0 0 0 0 0 8 0 22

14 0 0 0 0 0 0 0 0 30.67 0 0 0 22 0
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The elements of the Vertex Number matrix denote the number of shortest path that must be traversed 

to reach one bus from another. For instance, there is only one shortest path between buses 1 and 3 (3-

2-1) and so the elements (1, 3) and (3, 1) of the Vertex Number matrix are equal to one, while there are 

two shortest paths between buses 1 and 4 (4-2-1 and 4-5-1) and so the elements (1, 4) and (4, 1) of the 

Vertex Number matrix are equal to two. Next, the Weight matrix is created by following the logic 

outlined in Fig. 5.7. The elements of the Weight matrix are a measure of the frequency that a particular 

path has been traversed when travelling from one node to another node for all the nodes present in the 

system. From the Weight matrix obtained (Fig. 5.15), it is realized that branch 5-6 has the highest weight 

(highlighted in red), and that it should be the first branch that must be removed. After removing this 

branch from the adjacency matrix, the modified adjacency matrix is fed into the clustering algorithm. On 

checking for islands, it is realized that no islands have been formed by the removal of branch 5-6. 

Therefore, the modified adjacency matrix is fed back into the weighting scheme for identifying new 

branches that must be eliminated in order to create the desired number of islands (in this case, two).  

On repeating this process two more times, branches 4-9 and 7-9 are identified as the branches with 

successively highest weights as shown in Figs. 5.16 and 5.17 (highlighted in red, along with the zero 

weights of the eliminated lines), and are subsequently removed. The new adjacency matrix obtained is 

shown in Fig. 5.18 (with the changes from the original adjacency matrix highlighted in red). When this 

adjacency matrix is fed into the clustering algorithm, it identifies two islands. The first island consists of 

buses 1, 2, 3, 4, 5, 7, and 8 while the second island consists of buses 6, 9, 10, 11, 12, 13, and 14. From 

this result it is realized that by using the community-based islanding approach, the IEEE 14-bus system 

has been successfully partitioned into two equal-sized partitions. Next, the two adjacency matrices are 

set as inputs to the binary integer programming section of the BEPP scheme (which is based on the 

CBBBIO technique described in the previous chapter). When none of the buses are considered critical, 

the numbers and locations obtained for placement of PMUs are shown in Table 5.1 (first row). Next, 

when bus 4 is considered to be a critical bus (with bus 2 identified to be the bus providing redundancy to 

the measurement of the critical bus), the new numbers and locations are again found out (as seen in 

second row of Table 5.1).  
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Fig. 5.16: Weight matrix of the IEEE 14-bus system after line 5-6 is removed 

 

 

Fig. 5.17: Weight matrix of the IEEE 14-bus system after line 5-6 and line 4-9 are removed 

 

Bus Num
bers

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 14 0 0 12 0 0 0 0 0 0 0 0 0

2 14 0 5 30 3 0 0 0 0 0 0 0 0 0

3 0 5 0 21 0 0 0 0 0 0 0 0 0 0

4 0 30 21 0 31 0 20 0 70 0 0 0 0 0

5 12 3 0 31 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 20 6 16 0

7 0 0 0 20 0 0 0 26 28 0 0 0 0 0

8 0 0 0 0 0 0 26 0 0 0 0 0 0 0

9 0 0 0 70 0 0 28 0 0 44 0 0 0 60

10 0 0 0 0 0 0 0 0 44 0 32 0 0 0

11 0 0 0 0 0 20 0 0 0 32 0 0 0 0

12 0 0 0 0 0 6 0 0 0 0 0 0 20 0

13 0 0 0 0 0 16 0 0 0 0 0 20 0 48

14 0 0 0 0 0 0 0 0 60 0 0 0 48 0

Bus Num
bers

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 14 0 0 12 0 0 0 0 0 0 0 0 0

2 14 0 5 30 3 0 0 0 0 0 0 0 0 0

3 0 5 0 21 0 0 0 0 0 0 0 0 0 0

4 0 30 21 0 31 0 90 0 0 0 0 0 0 0

5 12 3 0 31 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 20 6 16 0

7 0 0 0 90 0 0 0 26 98 0 0 0 0 0

8 0 0 0 0 0 0 26 0 0 0 0 0 0 0

9 0 0 0 0 0 0 98 0 0 44 0 0 0 60

10 0 0 0 0 0 0 0 0 44 0 32 0 0 0

11 0 0 0 0 0 20 0 0 0 32 0 0 0 0

12 0 0 0 0 0 6 0 0 0 0 0 0 20 0

13 0 0 0 0 0 16 0 0 0 0 0 20 0 48

14 0 0 0 0 0 0 0 0 60 0 0 0 48 0
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Fig. 5.18: Adjacency matrix of the IEEE 14-bus system after removal of branches 5-6, 4-9, and 7-9 

Table 5.1: Illustration of BEPP Scheme for computing PMU placements by partitioning IEEE 14-bus 

system into two islands 

 
Using CBBBIO Technique Using BEPP Scheme 

Number of PMUs Location of PMUs Number of PMUs Location of PMUs 

When no bus is 

considered critical 
4 2, 6, 7, 9 4 2, 7, 10, 13 

When bus 4 is 

considered critical 
5 2, 4, 7, 10, 13 5 2, 4, 7, 10, 13 

 

In Table 5.1, the results obtained using the proposed scheme is compared with the optimal results 

obtained through a direct application of the CBBBIO technique. The comparison indicates that when no 

buses are identified to be critical, the numbers of PMUs required remain the same for the two 

approaches, but the locations differ slightly. This is because in this case when the BEPP scheme is used 

to create the two islands, the fourth situation has occurred (as outlined in Section 5.3). Therefore, a 

rearrangement of the PMUs is needed for complete observability of the individual islands. However, 

from the table it is observed that even though a rearrangement of the PMUs had to be done and three 

Bus Num
bers

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 0 0 0 0 0 0 0 0 0

3 0 1 1 1 0 0 0 0 0 0 0 0 0 0

4 0 1 1 1 1 0 1 0 0 0 0 0 0 0

5 1 1 0 1 1 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1 0 0 0 0 1 1 1 0

7 0 0 0 1 0 0 1 1 0 0 0 0 0 0

8 0 0 0 0 0 0 1 1 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1 1 0 0 0 1

10 0 0 0 0 0 0 0 0 1 1 1 0 0 0

11 0 0 0 0 0 1 0 0 0 1 1 0 0 0

12 0 0 0 0 0 1 0 0 0 0 0 1 1 0

13 0 0 0 0 0 1 0 0 0 0 0 1 1 1

14 0 0 0 0 0 0 0 0 1 0 0 0 1 1



115 
 

branches eliminated to create the two islands, no extra PMUs were required. In the second case, when 

bus 4 is identified to be a critical bus, it was observed that the numbers and locations of PMUs required 

remain the same for both the approaches. Thus, this illustration indicates that the proposed BEPP 

scheme is a good choice for reaching a near-optimal (if not the optimal) solution for PMU placement in 

power system networks, especially when used in conjunction with the concept of “critical” buses. This 

“indication” is tested on a variety of large networks in the following section. 

5.6 Simulation Results 

This section summarizes the results obtained when the BEPP scheme is applied to a variety of power 

system networks. The range of the systems tested varied from 14 buses to more than 1400 buses. For 

the study done here, zero injection (ZI) buses had not been removed from the test systems. Thus, the 

PMU placements computed could be directly applied on the actual systems.  

In the first set of simulations, the effect of the proposed partitioning scheme on the ratio of the 

branches removed to the total branches present is analyzed. The systems selected for this study are the 

IEEE 14-bus system, the IEEE 30-bus system, the IEEE 57-bus system, the IEEE 118-bus system, a 127-bus 

model of the WECC system, a 283-bus model of the Central American system, the IEEE 300-bus system, 

a 750-bus model of the Indian system, a 1064-bus model of the Dominion Virginia Power (DVP) system, 

a 1133-bus model of the Indian system, and a 1443-bus model of the Brazilian system. No buses were 

defined to be critical for this analysis. The results obtained are shown in Fig. 5.19. From the plots it can 

be realized that as the size of the networks increase there is a decrease in the fraction of branches 

removed to create the islands. This indicates that the BEPP scheme will become more and more 

effective as the systems get bigger and bigger. The 750-bus and the 1133-bus were found to have 

slightly higher ratios than expected because they were more meshed than usual power system 

networks. 
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Fig. 5.19: Ratio of Branches eliminated to Branches present as number of islands is increased 

In the next set of simulations, the effect of partitioning on the number of extra PMUs needed is 

analyzed. Since this chapter focuses more on large systems, the systems having more than 100 buses 

were selected for this study. In this simulation also, no buses were identified to be critical. The results 

obtained are shown in Fig. 5.20. From the figure it becomes clear that the number of extra PMUs 

needed, as more and more partitions are made, is much less. The reason for this observation is that of 

the four possibilities identified in Section 5.3, only one has the potential of adding more PMUs. 

Therefore, although a large number of branches may have been removed to create the islands, its net 

effect on the total number of PMUs required for observability is very small. 
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Fig. 5.20: Number of extra PMUs required as number of islands is increased 

In the third set of simulations, the computation times required for performing the optimization using 

the BEPP scheme is compared with the integer programming technique developed in [1]. The power 

systems used for this study are the IEEE 14-bus system, the IEEE 30-bus system, the IEEE 57-bus system, 

the IEEE 118-bus system, the 127-bus WECC system, the 283-bus Central American system, the IEEE 300-

bus system, the 750-bus Indian system, the 1133-bus Indian system, and the 1443-bus Brazilian system. 

None of the buses were considered critical for this analysis. For the BEPP scheme, the test systems were 

partitioned into minimum number of islands greater than or equal to two, such that the size of the 

individual islands was less than 500 buses. The simulations were performed on  an Intel (R) Core™ i5 

Processor having a speed of 2.40 GHz and an installed memory (RAM) of 5.86 GB. The results are 

provided in Table 5.2. From Table 5.2, it becomes clear that for systems with more than 500 buses, the 

computation times using the BEPP scheme is significantly less in comparison to the computation times 

using the integer programming technique developed in [1]. Of special emphasis are the computation 

times for the 1133-bus Indian system and the 1443-bus Brazilian system, for which optimal PMU 

placements could not be computed using the integer programming technique by the original computer 

even after letting it run for 150,000 seconds. A much more powerful computer (Intel (R) Core™ i7 

Processor having a speed of 3.40 GHz and an installed memory (RAM) of 64 GB) was used to compute 
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for the optimal number of PMUs for those two systems. However, using the BEPP scheme, the original 

computer was able to come up with a near-optimal solution at a fraction of the time. 

Table 5.2: Comparison of the proposed BEPP Scheme with the traditional Integer programming based 

PMU placement algorithm 

System 

Using Integer 

Programming [1] 
Using BEPP Scheme 

Number of 

PMUs 

Time 

(in seconds) 

Island Details Number 

of PMUs 

Time 

(in seconds) Number Size 

IEEE 14-bus 

system 
4 0.13 2 7+7 4 0.02 

IEEE 30-bus 

system 
10 0.04 2 7+23 10 0.03 

IEEE 57-bus 

system 
17 0.18 2 27+30 18 0.08 

IEEE 118-bus 

system 
32 0.73 2 38+80 32 0.12 

127-bus WECC 

system 
39 0.90 2 52+75 41 0.13 

283-bus Central 

American system 
87 3.07 2 119+164 87 0.36 

IEEE 300-bus 

system 
87 4.04 2 87+213 88 0.79 

750-bus Indian 

system 
161 3674.98 3 161+222+367 164 92.10 

1133-bus Indian 

system 
305 >150,000 3 310+363+460 305 146.61 

1443-bus 

Brazilian system 
443 >150,000 5 

66+243+289+

409+436 
444 150.51 

 

In the last set of simulations, the critical buses are identified and redundancy under the proposed 

scheme is provided to them. The test systems used for this study are the IEEE 118-bus system, the 283-
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bus system, the IEEE 300-bus system, the 750-bus system, and the 1133-bus system. The critical buses 

were chosen based on their voltage levels and connectivity, as well as on the basis of the transient and 

dynamic stability studies that were performed on the systems. The number of partitions made was 

based on system topology and/or computational ease. The IEEE 118-bus and the IEEE 300-bus systems 

were split into three islands. Since the 283-bus system represented the Central American Power 

Transmission Network comprising of six countries (Guatemala, Nicaragua, Honduras, El Salvador, Costa 

Rica, and Panama), it was split into six islands. The 750 and the 1133-bus systems represented the 

Northern-and-Eastern Power Grids of India and were partitioned such that each of the islands formed 

had less than 500 buses. The results obtained for the test systems are shown in Table 5.3. From Table 

5.3 it becomes clear that a near-optimal solution can be obtained using the BEPP scheme even after 

considering critical buses based on the CBBBIO technique.  

Table 5.3: Number of PMUs required for different systems after considering critical buses 

System 
Number of 

islands created 

Number of 

critical buses 

Optimal number of 

PMUs using CBBBIO 

Technique 

Number of PMUs 

using BEPP 

scheme 

118-bus system 3 18 41 43 

283-bus system 6 29 101 103 

300-bus system 3 22 97 98 

750-bus system 3 68 202 203 

1133-bus system 3 74 344 344 

 

Another observation that can be made from Table 5.3 is that the BEPP scheme provides a different 

approach towards PMU placement in real systems. The CBBBIO technique described in the previous 

chapter ensured that the depth of unobservability of the complete system decreased with every stage of 

PMU addition. The BEPP scheme ensures that selective regions of the original system can become 

completely observable independent of the observability of the whole system. This is especially 
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important for systems like the Central American system which is composed of the electrical transmission 

systems of different countries. In practice, it might be possible that one of the six countries in Central 

America (courtesy of some help from the World Bank, etc.), would like to place PMUs for complete 

observability of their own transmission system, while still being connected with the rest of the network. 

Under such circumstances, the BEPP scheme can be used to ensure that PMUs are placed optimally for 

the individual country (after islanding it from the rest of the system) while simultaneously keeping track 

of the observability of the complete Central American network in mind. Thus, based on the simulations 

performed in this section, it is realized that using the technique proposed here, a flexible PMU 

placement scheme can be developed that optimizes the benefits of having PMUs at strategic locations 

of a large power system network without the associated computational burdens. 

5.7 Conclusion 

This chapter introduces a partitioning logic that will create small networks from an initial large network, 

with the smaller networks retaining the original structure/topology and which can be studied 

individually, so as to get a coherent picture of the large network. Its use in dividing a large power system 

network into small islands for facilitating PMU placement is illustrated here. The partitioning scheme 

identifies communities in the system by analyzing the connections between nodes/buses. After splitting 

the network into islands, a critical bus based PMU allocation technique (CBBBIO technique) is used to 

compute for the optimal locations in the individual islands. The main advantage of the proposed 

approach is that PMU locations can be computed for large networks without performing any type of 

topology modification/reduction. Thus, the results produced would be more accurate even with models 

having low voltage inter-connections. To summarize, the proposed method is found to provide 

genuinely good results for computing PMU placements in large systems at reduced computational 

effort. 
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Chapter 6: Phasor Measurement Based Stress Assessment Metrics 

In order to successfully monitor the health of a power system, it is necessary to constantly evaluate the 

stresses that develop within it due to different operating conditions. Correct estimation of the system’s 

proximity to an insecure operation can go a long way in preventing that “insecure operation” from 

materializing into reality. In this chapter, two synchrophasor based metrics – angle difference and 

voltage sensitivity are proposed for measurement and real-time monitoring of system stresses in 

interconnected power grids. The simulations show that by monitoring these metrics in real-time, the 

system’s ability to withstand a variety of contingencies can be found out with great accuracy. A way in 

which these metrics can be monitored through analytic and visualization platforms – such as Real Time 

Dynamics Monitoring System1 (RTDMS), a synchrophasor based software application [112] is also 

shown. The proposed metrics are found to be very effective for real-time static and dynamic stress 

monitoring as well as for operator training. 

6.1 Stresses in a power system 

Modern power system has evolved from a local control area to a regional market. This evolution has 

brought new problems related to wide area grid stresses that have to be dealt with in real-time. 

Similarly, the decentralized mode of operation of power systems as well as the exponential increase in 

regional power transfers has resulted in the system facing levels of stress over large areas that it has 

never experienced before. Under such circumstances for a reliable operation it is important that static 

and dynamic stresses of the system over a wide area be monitored in real-time. The base loading of the 

system constitutes static stress. It refers to the normal/pre-contingency state of the system. Dynamic 

stress refers to the event/contingency that the system is subjected to. With the aid of PMUs [6], it is 

now possible to assess phenomena like these in real-time. 

PMUs placed at strategic locations in the power system provide magnitude and angle measurements of 

voltages and currents. By using these measurements, different metrics can be developed for evaluating 

the state of the system as well as for estimating its “proximity” to an insecure operation. In this chapter, 

it will be shown how angle differences and voltage sensitivities can be used as effective indicators of 

system stress. The full model of WECC is used as the test system for this analysis. Two types of stressed 

conditions are simulated. In the first case, a large amount of generation is dropped in the South and the 

                                                             
1 Built upon GRID-3P® platform. US Patent 7,233,843, US Patent 8,060,259, and US Patent 8,401,710. ©2013 

Electric Power Group. All rights reserved. 
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resulting effect on the angle differences between two buses located across the network is examined. 

The second case is composed of two parts: in the first part, a small amount of load is increased in the 

South for different base loading conditions and its effect analyzed through a study of the voltage 

sensitivity. In the second part, a significant portion of the load is dropped in the North for different base 

loading conditions and its effect on the resulting oscillations is investigated. It is to be noted here that in 

the simulations performed, South and North refer to the Southern and Northern halves of the WECC. 

6.2 Two metrics for assessing system stress 

In order to analyze stresses in a typical power system, two metrics are proposed here. The first metric – 

angle difference between two buses, is relevant for buses that lie on opposite ends of the network. For 

this metric, the large generators and load buses are potential candidates. The reason being that since 

those buses act as “sources” and “sinks”, respectively, the angle difference across them is a good 

measure of the stress lying in the system-in-between. The second metric – voltage sensitivity of a bus, is 

relevant for buses that lie in the middle. This metric is especially useful for buses that have been 

(historically) found to be prone to voltage collapse. More details about these two metrics are provided 

along with simple illustrations in the following sub-sections. 

6.2.1 Angle difference as a measure of system stress 

System operators use power/currents as indicators of system stress. A variety of alert/alarm limits 

established from base-lining studies are based on the power flowing in the lines. Similarly, relay trip 

settings are usually set based on current values. However, study of recent power system outages has 

shown that monitoring the power/current alone is not a reliable measure of system stability. For 

instance, in the September 8, 2011 San Diego Blackout, the situation worsened over 6 phases (11 

minutes) because the breaker across the 500kV line between Hassyampa and North Gila could not be 

reclosed [113]. The reason why the breaker could not be closed was due to the “high” angle difference 

present across it. 

Using voltage angles obtained from PMUs for decision making has already been suggested in literature 

[35]-[44]. In this chapter the importance of monitoring angle difference between certain buses of the 

network in real-time will be demonstrated. Figs. 6.1 and 6.2 depict two scenarios of a two-bus power 

system model. Bus 1 is a generator bus while Bus 2 is a load bus. For simplicity, it is assumed that the 

system is lossless. As such, the generator bus generates 2400 MW of power which is transferred via two 

identical transmission lines (1200 MW each) and is consumed by the 2400 MW load. Let us also assume 
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that the individual lines have a rating of 2500 MW, so that even when only one of the two lines is in-

service, it is possible to successfully transfer the full power to the load. 

 

Fig. 6.1: Two-bus system with both transmission lines in service 

 

Fig. 6.2: Two-bus system with only one transmission line in service 

In the first scenario (Fig. 6.1), both lines are in-service and for a given value of line reactance, the voltage 

angles of the two buses are 60° and 30°, respectively. Therefore, the angle difference between the two 

buses of the system under normal conditions is 30°. In the second scenario (Fig. 6.2), the second line is 

tripped due to an unforeseen event. Now, since the first line is capable of transferring the full power, a 

study of only the power flow would indicate that the system is in a relatively stable condition. However, 
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the instant the second line goes out, in order to transfer the same amount of power to the load, the 

angles of the two buses will change from 60° and 30° to 80° and -10°, respectively (Fig. 6.2). Hence, an 

angle difference of 90° will now exist across the two buses. Since usual relay-settings don’t allow closure 

of a line when the angle differences are in excess of 60°, it can be surmised that the “second” line will 

not come back into service unless the loading is reduced. But since monitoring the power alone would 

not indicate this stressed condition, it is possible that the loading would not be reduced in time to allow 

the line reclosure to take place and that further damage will occur. Thus, from this example it can be 

concluded that real-time monitoring of angle differences is a better indicator of the actual stress on the 

system in comparison to just the power flows. 

6.2.2 Voltage sensitivity as a measure of system stress 

Voltage sensitivity is defined as the ratio of the change in voltage magnitude of a bus with respect to the 

change in power flowing in a line [114]. Usually measured in          , it can give early warnings 

about deteriorating voltage conditions. For the two-bus system shown in Fig. 6.1, the voltage sensitivity 

of bus 1 with respect to the power flowing between buses 1 and 2 will be, 

             
 

   

    
                                                                                                                                                        

Thus, by definition, the voltage sensitivity is the slope of the PV-curve (nose curve). Similar to angle 

differences across two buses in a network, voltage sensitivity of key buses can also indicate (in real-

time), the proximity of a system to an unstable operation (voltage collapse). However, unlike angle 

differences which are most relevant when the two buses lie on different ends of a network, voltage 

sensitivity of buses lying in the middle are most significant.  

Figs. 6.3 and 6.4 use the example of a beam-balance to explain this concept. A general power system 

network can be thought of as a combination of different beam-balance systems with sufficient supports 

provided at either ends of the beam. In electrical terms, the support refers to the injected Volt-Ampere-

Reactives (VARs) at the sending and receiving ends. Fig. 6.3 shows the state of the beam under normal 

conditions. A dynamic event (such as a contingency or an outage) can be represented by a downward 

arrow on the beam such as that shown in Fig. 6.4. Since the deformation of the beam will be most 

severe at the point of impact, it can be realized that the most vulnerable region with respect to voltage 

collapse will be the mid-portion of the system. Thus, voltage sensitivity of buses which lie in the middle 

of the network should be monitored in real-time.     
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Fig. 6.3: Normal operating condition 

 

Fig. 6.4: Stressed operating condition   

A recommended safe interval for voltage sensitivity of a 500kV bus under normal conditions is, 

                                                                                                                                 

If the value goes below   , it is an indication that the voltage is nearing the tip of the nose curve, 

whereas, if it becomes more than      , it indicates that the voltage is overly-compensated. An over-

compensated voltage is not good because it means that the voltage profile would be flat even when the 

power flow is increased making the system vulnerable to sudden voltage collapse. Thus, monitoring 

voltage sensitivity with change in power flow in real-time will also aid in efficient deployment of VAR 

supports. The next section summarizes the simulations that were performed to illustrate the use of 

these two metrics for analyzing different system events.  

6.3 Simulations performed using the WECC system 

WECC is the regional entity responsible for coordinating and managing bulk electric system reliability in 

the Western Interconnection. It covers a region extending from Canada to Mexico, including provinces 

of Alberta and British Columbia, northern portion of Baja California, Mexico, and all or portions of the 

fourteen states located West of the Rockies. Due to the wide area covered and diverse characteristics of 

the region, it faces unique challenges in coordinating the day-to-day interconnected system operations 

and the long range planning needed to provide reliable electric service across nearly 1.8 million square 

miles [115]. A 10,000+ bus model of the WECC system was used for the analysis done here.   

In this chapter, two types of stressed conditions are investigated to assess the performance of angle 

difference and voltage sensitivity as measures of stress on this system. In the first set of simulations, 
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corresponding to different levels of static stress, dynamic stress in the form of outage of generating 

unit/s is explored. In the second set of simulations, the California-Oregon Intertie (COI) is stressed by 

increasing generation in the north and loads in the south. Then, two load changes are simulated (one in 

the South and the other in the North) for different levels of COI stress and its effects are analyzed using 

angle difference and voltage sensitivity plots. The results obtained are summarized below. 

6.3.1 Generation drop in the South 

In this simulation, three scenarios were created for the WECC system corresponding to three different 

levels of static stress. The three levels were: 

 Lightly loaded system 

 Medium loaded system 

 Heavily loaded system 

The angle difference between Grand Coulee in the North and Devers in the South was used for 

quantifying system stress. If the WECC system was a mass-spring system with the large loads/generators 

being the masses and the transmission lines being the springs, then the center of mass for the northern 

half would be located around Grand Coulee whereas the center of mass for the southern half would be 

located around Devers. It is because of this reason that the angle difference between these two buses 

would give an accurate estimate of the wide area system stress. As such critical node pairs can be 

identified in different power system networks; the measure developed based on this concept will be 

applicable to other networks as well. 

For a lightly loaded system, the pre-contingency angle difference threshold between Grand Coulee and 

Devers was set at 65°. For a medium loaded system, the angle difference threshold was between 65° 

and 90°; while an angle difference of above 90° was considered a heavily loaded system. The dynamic 

stress was quantified by the outage of Palo Verde (PV) generator units. There are three units at PV with 

each unit generating approximately 1370 MW. The methodology followed was to trip one or more of 

the units for each of the three scenarios one minute after the start of the simulation and to observe the 

resulting behavior of the system for the next eleven minutes or until the system collapsed. In all the 

simulations, the angle difference between Grand Coulee and Devers was monitored for assessment of 

system stress. The results obtained are shown in Figs. 6.5-6.13. 
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Fig. 6.5: Outage of one PV unit for a lightly loaded system 

 

Fig. 6.6: Outage of two PV units for a lightly loaded system 
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Fig. 6.7: Outage of three PV units for a lightly loaded system 

 

Fig. 6.8: Outage of one PV unit for a medium loaded system 
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Fig. 6.9: Outage of two PV units for a medium loaded system 

 

Fig. 6.10: Outage of three PV units for a medium loaded system 
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Fig. 6.11: Outage of one PV unit for a heavily loaded system 

 

Fig. 6.12: Outage of two PV units for a heavily loaded system 
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Fig. 6.13: Outage of three PV units for a heavily loaded system 

Figs. 6.5-6.7 depict the outage of one, two and three units respectively for a lightly loaded condition; 

Figs. 6.8-6.10 depict the outage of one, two and three units respectively for a medium loaded condition; 

while Figs. 6.11-6.13 depict the outage of one, two and three units respectively for a heavily loaded 

condition. From Figs. 6.5-6.7 it is realized that a lightly loaded system (having an initial angle difference 

of 62°) is able to successfully withstand outage of three PV units. From Figs. 6.8-6.10 it is realized that a 

medium loaded system (having an initial angle difference of 88°) is able to withstand outage of two PV 

units but collapses when three units go out. From Figs. 6.11-6.13 it is realized that a heavily loaded 

system (having an initial angle difference of 105°) is able to withstand the outage of only one PV unit. 

From the plots given in Figs. 6.5-6.13, the following observations can be made: 

 The model of the WECC system that had been used for the study is stable up to an initial angle 

difference of 135° between Grand Coulee and Devers 

 The initial angle difference between 135° and 150° is the transition phase (vulnerable stage) and 

a clear demarcation between stability/instability cannot be made 

 The model of the WECC system used for the study is likely to collapse if the initial angle 

difference between Grand Coulee and Devers exceeds 150° 
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In these observations, initial angle difference refers to the highest angle difference between Grand 

Coulee and Devers right after the dynamic event. From this analysis, it can be concluded that a high 

static stress limits a system’s ability to handle high dynamic stress. For instance, if a system is operating 

at a static stress of  , where   is the pre-contingency angle difference between two critical node pairs, 

then it can successfully bear a dynamic stress of  , where   is angle by which the dynamic event affects 

their angle difference, such that      , where   is the angle difference limit between the critical 

node pairs that the system can bear. Therefore, for a given  , higher the value of   lesser will be the 

value of  , and vice-versa. Thus, by monitoring angle difference between different critical node pairs in 

real-time, one can capture a system’s proximity to an unstable operation very quickly. 

6.3.2 Sequential increase in loading of California-Oregon Inter-tie (COI) 

The COI comprises of three 500kV transmission lines – two lines between Malin and Round-Mountain, 

and one line between Captain Jack and Olinda. The rated power flowing in these three lines is 4800 MW. 

For this set of simulation, this flow was increased from 4860 MW to 5680 MW and then to 6370 MW in 

two steps. This change in the loading was brought about by increasing generation in the North and loads 

in the South. Although for simulation purposes, this stress was artificially created, in reality, a very 

severe contingency can drive the COI flows to such high levels. Each of the loading “stressed” conditions 

lasted 5 min. resulting in a total simulation length of 15 min. Two different dynamic events were also 

applied to the system one min. after the start and their effects analyzed for the three loading conditions. 

The results obtained are as follows. 

6.3.2.1 Load increase in the South 

In this simulation, the loading of one bus in the South was increased by 100 MW independently for each 

of the three loading conditions. The resulting angle difference between Grand Coulee and Devers is 

shown in Fig. 6.14. From the figure it becomes clear that: (a) the damping of the oscillations decreased 

considerably as the loading on the system increased (red ovals); and (b) when the system is stressed, 

small changes in system conditions have much bigger impacts (black ovals). The Malin 500kV bus voltage 

was next monitored to test for its sensitivity with respect to change in COI flows. The results are shown 

in Fig. 6.15. The outer loops denote the transient swing following the changes in the COI loading 

whereas the solid red line depicts the best quadratic fit. The slope of the solid red line denotes the 

voltage sensitivity of Malin 500kV bus. From the figure it becomes clear that the slope would increase 

(become more negative) as the system moves closer to the nose-point. Therefore, by monitoring the 
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voltage sensitivity in real-time and setting alert/alarm thresholds based on its values, protective 

measures can be developed that will indicate system stress and possible collapse in advance.  

 

Fig. 6.14: Oscillations in angle difference between Grand Coulee and Devers for 100 MW load increase in 

the South 

6.3.2.2 Load decrease in the North 

In this simulation, 440 MW of load was dropped in the North and the resulting oscillations were 

analyzed for the three COI loading conditions. Fig. 6.16 shows the oscillations in the angle difference 

between Grand Coulee and Devers while Fig. 6.17 shows the variation in voltage magnitude of the 

500kV Malin bus with respect to change in COI flow. From Fig. 6.16 it can be seen that the oscillations 

that resulted from the load drop take longer time to die out as the system becomes more and more 

stressed. The same fact is reflected in the voltage sensitivity plot of Fig. 6.17 which shows that the slope 

becomes increasingly negative with increase in stress. Thus, from these two simulations it can be 
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inferred that different types of stresses can be accurately analyzed by studying the angle difference and 

voltage sensitivity metrics in real-time.   

 

Fig. 6.15: Voltage sensitivity of 500 kV Malin bus as a function of the flow in the COI for a 100 MW load 

increase in the South 

6.4 Integration with RTDMS 

The simulations summarized in the previous section were created using PSLF software which is a power 

flow simulator developed by GE [116]. The primary advantages of using simulated data in comparison to 

real-world data are: 

 Extreme events do not happen often enough to provide learning opportunities and hence 

simulations can be used to test contingency scenarios 

 By using simulations, one can control the quality of the input data – there are no data drop-outs 

or stale/repeated values in a simulation, unless inserted knowingly 
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Since this study was done to analyze the performance of the proposed stress metrics, “good” data 

obtained from simulations was used. Moreover, simulated data also provided flexibility in terms of 

analysis and control (time and occurrence of event, region of study under test, etc.). However, since the 

ultimate goal is to test the utility of the proposed metrics with actual PMU data in real systems, an 

interface was built in MATLAB to integrate the simulations done in the previous section with RTDMS, 

which is an analytic and visualization platform developed by Electric Power Group (EPG). More details 

about RTDMS and the integration process are provided in the following sub-sections. 

 

Fig. 6.16: Oscillations in angle difference between Grand Coulee and Devers for a load decrease of 440 

MW in the North  

6.4.1 Real Time Dynamics Monitoring System (RTDMS) 

Investigations into major blackouts have concluded that the availability of real-time, wide area 

situational awareness is critical for reliability operations. Developed by EPG in early 2000, RTDMS is a 

synchrophasor based software application that addresses this critical need. It provides real-time, wide 
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area situational awareness to Operators, Reliability Coordinators, Planners and Operating Engineers and 

has been extensively used for monitoring and analysis of the power system [117]. RTDMS has been 

designed and built specifically for working with high resolution time synchronized data and has been 

upgraded over the years with new features and functionalities based on extensive industry feedback, 

research outcomes, and real world user experiences from field testing. 

 

Fig. 6.17: Voltage Sensitivity of 500kV Malin bus as a function of the flow in the COI for a load decrease 

of 440 MW in the North 

Some of the metrics that RTDMS has the capability to monitor and display are: 

 Voltage Magnitude and Angles 

 Angle differences between different buses  

 Power flows (MW, MVARs)  

 Oscillations (Frequency, damping and energy) and their detection  

 Voltage and Angle sensitivities  

 Alarms, etc. 
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Fig. 6.18 gives a snapshot of the RTDMS building blocks and functionalities [117]. RTDMS 2012 is the 

latest version of the software application and it has the following features: 

 Multi-layer map giving quick access to different data metrics providing wide-area real-time 

visualization 

 Providing clustering and de-clustering zoom in functionality  

 Mouse over feature allowing operators to drill down to get more detailed information 

 High-speed refresh rate trending charts 

 Ability to use default displays or customize to meet operator preferences or situational 

circumstances 

 RTDMS Event Analyzer providing a snapshot of critical location and information associated with 

an event via ‘yellow pop ups’ and drill down capability 

 Display builder allowing users to create and save individual displays 

 Integration with PI & EMS to exchange data and information between systems 

 

 

Fig. 6.18: RTDMS building blocks and functionalities 
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6.4.2 Interfacing with RTDMS 

As described in the previous sub-section, RTDMS has the ability to monitor angle differences and voltage 

sensitivities in real-time. Accordingly, an interface was built so as to integrate the simulations performed 

in section 6.3 with RTDMS. The role of the interface was to reorganize the data obtained from PSLF into 

a format that is compatible with RTDMS (IEEE C37.118). This post-processing of the data involved: 

 Providing proper headers and time-stamps 

 Computing       

 Converting angles from radians to degrees 

 Saving results in a comma separated value (CSV) file 

Once the interface was built, the outputs of the PSLF simulations were fed into RTDMS. Identical results 

were obtained for all the test scenarios. The RTDMS snapshots depicting the more important results are 

provided in Figs. 6.19-6.33 with Tables 6.1 and 6.2 summarizing the effects. Figs. 6.19-6.28 correspond 

to the outage of PV unit/s for different levels of static stress (Section 6.3.1), while Figs. 6.29-6.32 depict 

the system state as the COI is progressively stressed along with a 100 MW load increase in the South 

(Section 6.3.2.1). Fig. 6.33 shows how the alarm panel in RTDMS will respond as the system conditions 

worsen for the scenario described in Figs. 6.29-6.32. Figs. 6.19 and 6.20 show the Grand Coulee-Devers 

angle difference and the 500kV Malin voltage, respectively, as three PV units trip in a lightly loaded 

condition. As can be seen from the plots, although there is a high angle difference between Grand 

Coulee and Devers and low voltage at Malin (indicating that the system is in a vulnerable state), there is 

no system separation or voltage collapse.  

Figs. 6.21 and 6.22 show the Grand Coulee-Devers angle difference and the 500kV Malin voltage, 

respectively, as two PV units trip in a medium loaded condition. As can be seen from the plots, although 

there is a higher angle difference between Grand Coulee and Devers and lower voltage at Malin than the 

previous two figures (indicating that the system is in an even more vulnerable state), there is no system 

separation or voltage collapse. Fig. 6.23 and 6.24 show the Grand Coulee-Devers angle difference and 

the 500kV Malin voltage, respectively, as three PV units trip in a medium loaded condition. As can be 

seen from the plots, the 500kV Malin voltage collapses and the system separates. Moreover, it is also 

realized that since the system takes more than 30 seconds after the initiating dynamic event before the 

collapse occurs, if automatic load shedding schemes are put in place which will operate within that time 

frame (30 seconds), then the collapse can be avoided. 
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Figs. 6.25 and 6.26 show the Grand Coulee-Devers angle difference and the 500kV Malin voltage, 

respectively, as two PV units trip in a heavily loaded condition. As can be seen from the plots, the 500kV 

Malin voltage collapses and the system separates. However, in this scenario, the system took more than 

60 seconds after the initiating dynamic event to collapse, indicating that if an automatic load shedding 

scheme is put in place that will operate within that time frame (60 seconds), then the collapse will be 

avoided. Figs. 6.27 and 6.28 show the Grand Coulee-Devers angle difference and the 500kV Malin 

voltage, respectively, as one PV unit trips in a heavily loaded condition. As can be seen from the plots, 

although there is a high angle difference between Grand Coulee and Devers and low voltage at Malin 

(indicating that the system is in a vulnerable state), there is no system separation or voltage collapse. 

Figs. 6.29-6.32 show how the increase in COI power flow affect the Grand Coulee-Devers angle 

difference, the 500kV Malin voltage, as well as the voltage sensitivity of 500kV Malin bus w.r.t. COI. 

From the plots, it is observed that: 

 As the COI flow is increased, the wide-area angle difference increases. This implies that the grid 

stress increases as the COI loading is increased. 

 As the COI flow is increased, the 500kV voltage at Malin decreases. This implies that the system 

is developing a critical stress point at Malin. 

 As the COI flow is increased, the voltage sensitivity of 500kV Malin bus w.r.t. COI becomes more 

negative. This implies that the increased stress is resulting in the system nearing the “nose 

point” of the PV curve. 

Fig. 6.33 displays the alarm panel in RTDMS that will depict the state of the system corresponding to the 

events captured in Figs. 6.29-6.32. The rows of the alarm panel indicate the metric that is being 

monitored, while the columns indicate some of the large utilities/sub-regions present in the WECC. The 

color yellow denotes that a metric has exceeded its alert threshold, while the color red indicates that a 

metric has exceeded its alarm threshold. The threshold values are obtained from the base-line studies 

that have been previously performed on the system. As can be seen from Fig. 6.33, the base case 

condition has none of the indicators activated, thereby implying that the system is in normal condition.  

When the COI loading is increased to 118% (power flow increased to 5680 MW), the following indicators 

are activated: 

 Indicator for the angle difference metric for Pacific Northwest is in red (alarm) 

 Indicator for the angle difference metric for Southern California Edison (SCE) is in red (alarm) 
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 Indicators for MW and voltage sensitivity metrics for Pacific Northwest are in yellow (alert) 

 Indicators for angle difference, MW, and voltage sensitivity metrics for Pacific Gas & Electric 

(PG&E) are in yellow (alert) 

In the last panel, when the COI loading is increased to 133% (power flow increased to 6370 MW), the 

following indicators are activated: 

 Indicators for angle difference, MW, MVAR, and voltage sensitivity metrics for Pacific Northwest 

are in red (alarm) 

 Indicators for angle difference, MW, and voltage sensitivity metrics for Pacific Gas & Electric 

(PG&E) are in red (alarm) 

 Indicator for the angle difference metric for Southern California Edison (SCE) is in red (alarm) 

 Indicator for MW metric for Desert Southwest is in yellow (alert) 

 Indicator for MW metric for Southern California Edison (SCE) is in yellow (alert) 

Based on the above observations, it is realized that the number and severity of the metric state 

indicators (alerts/alarms) increase as the system stress increases (for this case, increase in loading of 

COI). Thus the alert/alarm panel of RTDMS is an excellent tool to visualize the state of a system in real-

time. Table 6.1 summarizes the effect of Palo Verde unit trips on the WECC system (based on Figs. 6.19-

6.28), while Table 6.2 summarizes the results depicted in Figs. 6.29-6.32. To conclude, the interface that 

was built for integrating the PSLF simulations with RTDMS was found to produce the desired results.  

 

Fig. 6.19: RTDMS snapshot of Grand Coulee-Devers Angle Difference for outage of three PV units in a 

lightly loaded condition 
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Fig. 6.20: RTDMS snapshot of 500kV Malin Voltage for outage of three PV units in a lightly loaded 

condition 

 

Fig. 6.21: RTDMS snapshot of Grand Coulee-Devers Angle Difference for outage of two PV units in a 

medium loaded condition 

 

Fig. 6.22: RTDMS snapshot of 500kV Malin Voltage for outage of two PV units in a medium loaded 

condition 
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Fig. 6.23: RTDMS snapshot of Grand Coulee-Devers Angle Difference for outage of three PV units in a 

medium loaded condition 

 

Fig. 6.24: RTDMS snapshot of 500kV Malin Voltage for outage of three PV units in a medium loaded 

condition 

 

Fig. 6.25: RTDMS snapshot of Grand Coulee-Devers Angle Difference for outage of two PV units in a 

heavy loaded condition 
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Fig. 6.26: RTDMS snapshot of 500kV Malin Voltage for outage of two PV units in a heavy loaded 

condition 

 

Fig. 6.27: RTDMS snapshot of Grand Coulee-Devers Angle Difference for outage of one PV unit in a heavy 

loaded condition 

 

Fig. 6.28: RTDMS snapshot of 500kV Malin Voltage for outage of one PV unit in a heavy loaded condition 
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Fig. 6.29: RTDMS snapshot of Power flow in COI as the COI flow is increased along with a 100 MW load 

increase in the South 

 

Fig. 6.30: RTDMS snapshot of Grand Coulee-Devers Angle Difference as the COI flow is increased along 

with a 100 MW load increase in the South 

 

Fig. 6.31: RTDMS snapshot of 500kV Malin Voltage as the COI flow is increased along with a 100 MW 

load increase in the South 

 



145 
 

 

Fig. 6.32: Snapshots of the voltage sensitivity screen showing voltage sensitivity of 500kV Malin voltage 

with increase in COI flow 

 

Fig. 6.33: Snapshots of the alarm panel showing worsening system condition 

Table 6.1: Effect of Palo Verde Unit trips on the Grand Coulee-Devers Angle Difference  

Static 

Stress 

Condition 

Initial 

Angle 

Difference  

Initial COI 

Loading 

Final Angle Difference for different Dynamic Stress Conditions 

1 Unit Trip 2 Units Trip 3 Units Trip 

Light 62° 3213 MW 82° (Stable) 101° (Stable) 121° (Vulnerable) 

Medium 88° 4800 MW 104° (Stable) 134° (Vulnerable) >180° (Collapse) 

Heavy 105° 5425 MW 131° (Vulnerable) >180° (Collapse) >180° (Collapse) 
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Table 6.2: Effect of increased COI flow on Malin 500kV bus’s Voltage Sensitivity 

Flow in 

COI 
Loading Level 

Angle Difference 

(static) between Grand 

Coulee and Devers 

Voltage of 

Malin 500kV 

bus 

Voltage Sensitivity of 

Malin 500kV bus w.r.t. 

COI flow 

4860 MW Base Case 88° 540kV ≈-2kV/100 MW 

5680 MW 118% over load 108° 520kV ≈-4kV/100 MW 

6370 MW 133% over load 129° 493kV ≈-6kV/100 MW 

 

6.5 Conclusion 

Two metrics are proposed in this chapter that use PMU data to monitor stress in a power system in real-

time. Angle difference between substations located across the network and voltage sensitivity of buses 

lying in the middle are found to accurately reflect the static and dynamic stress of the system. The WECC 

system was used as the test system for this analysis. The simulations performed off-line were 

successfully integrated with RTDMS – a synchrophasor based software system developed by EPG for 

real-time wide-area visualization and situational awareness of the power system. The results indicate 

that by doing data mining on these two parameters and setting appropriate alerts/alarm limits, a more 

secure power system operation can be realized. 
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Chapter 7: Synchrophasor Data Conditioning and Validation and Possible 

Applications 

All energy management systems (EMS) depend on algorithms that process raw power system data for 

computing the states of the system. The traditional non-linear state estimation techniques rely on 

supervisory control and data acquisition (SCADA) measurements for providing this raw data. The state 

estimator results in turn become the basis for other network applications such as real-time contingency 

analysis, system reliability studies, etc. As the electric utility industry becomes more and more familiar 

with synchrophasor technology, the transition of state estimation from a traditional non-linear 

formulation to one which is purely phasor based and linear becomes more and more realistic. 

A purely PMU based state estimator has considerable advantages over a purely SCADA based or a mixed 

(SCADA-and-PMU based) state estimator [66], [67]. Firstly, being linear, the PMU only state estimator 

does not require any iteration. Secondly, it is free from the data scan that is required in conventional 

estimators. Thirdly, despite its formulation as a state estimation problem, the time-tagged data 

produces an estimate at such a fast enough rate that it can be considered to be truly dynamic. However, 

similar to the conventional state estimators, a PMU only state estimator also depends on a consistent, 

reliable stream of input data. Due to the streaming nature of the phasor data, downstream applications 

which use this data are vulnerable to network congestion, configuration errors, equipment failures, etc. 

Reference [118] highlights some of the data quality issues associated with PMU data, but does not 

provide any algorithm for its conditioning/validation. In [119] a computationally simple and efficient 

methodology for cleaning synchrophasor data was developed. In this chapter, the techniques developed 

in [119] will be elaborated upon and their possible use in solving other power system problems will be 

discussed. 

7.1 Conceptual Design and Prototype Development at Dominion Virginia Power (DVP) 

Both Virginia Tech (VT) and Dominion Virginia Power (DVP) have considerable experience in handling 

synchrophasor data. Virginia Tech has been a pioneer in the development of the PMU technology and 

DVP has a functioning three phase PMU-only state estimator. A PMU-based state estimator was first 

mentioned in [65] with details appearing in [66] and then in [120]. Such an estimator has been installed 

on DVP’s 500kV network as part of a DOE demonstration project (DE-0E0000118) that has been led by 

Virginia Tech. The estimator and several applications have already been implemented in C# on the open-

PDC platform. Since downstream applications will be affected by glitches in collected data, it becomes 
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necessary to develop techniques for conditioning and validating synchrophasor data in real-time. A 

methodology that can address this problem is described henceforth. 

In order to detect bad data and switching operations that affect network topology, a technique to 

predict the next value of each voltage estimate from a history of previous estimates was developed in 

[27]. Fig. 7.1 shows this algorithm applied to a portion of a field data of samples and estimates of a 

complex voltage at 30 samples per second during a period of a low frequency oscillation at off-nominal 

frequency. In Fig. 7.1, the green line is actual synchrophasor data while the red circles are the estimates. 

The oscillation starts from the top right and moves to the bottom left. Since the estimate matches very 

well with the actual data, this three sample predictor model can be used to detect bad data by using an 

observation residual. It can also be used to smooth data by using subsequent measurements to obtain a 

better estimate which can be thought of as a technique for supplying missing data. Since this three-

sample predictor model is very easy to implement, all measurements can be subjected to this same pre-

processing, irrespective of the application for which it is used. Thus, it provides a simple and elegant 

solution to the synchrophasor data quality problem. Moreover, even if a linear state estimator is not 

desired, this data conditioning algorithm can be used independently for detecting bad data and finding 

the best estimate. 

The objective of this research is to propose technical approaches to condition and validate 

synchrophasor data for real-time situational awareness applications. As such, the task approach and 

deliverables can be grouped under: 

 System infrastructure design and maintenance 

 Data checking algorithms 

 Applications 

The following sub-sections provide more details on the individual tasks. 

7.1.1 System infrastructure design and maintenance 

The goal is to make the synchrophasor infrastructure more robust with respect to component failures. 

This is done through substation level redundancy, measurement redundancy (with dual-use line relays), 

multiple fiber communication lines to control center, and machine redundancy in the central phasor 

data concentrator (PDC). Many of these problems can be avoided by taking precautionary measures 

during the commissioning process. The reason for this is that the root causes for most of these issues 
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are synchronization errors which are primarily due to errors in PDC delay settings. These errors can be 

prevented by being extra careful during the commissioning phase. Similarly, online determination of 

signal to noise ratio (SNR) of the PMU data can be used to observe the health of electrical equipments 

and detect potential problems in them in the early stages.  

 

Fig. 7.1: Performance of the three sample predictor on real synchrophasor data 

Dominion’s central PDC architecture design and Emergency System Operation Center (ESOC) 

architecture design are found to be some of the best practices in the industry for ensuring high 

availability of data from the field to the control center. Data/measurement redundancy can also be 

realized by using dual-use line relays as PMUs so as to obtain multiple observations of voltages and 

breaker statuses. Moreover, the CBBBIO technique developed in Chapter 4 can be used for selecting 

relevant locations for placing the PMUs. By initially identifying buses critical to the network and by 

providing redundancy to their measurements, PMUs can be deployed efficiently and effectively.  
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7.1.2 Data checking algorithms 

The aim is to provide algorithms for required data quality metrics and desired network monitoring 

approaches. To do this, the data is passed through two blocks before being fed into the linear state 

estimator. The cleaning block is responsible for conditioning the data when it is possible to do so. This 

will be accomplished with optimal filtering and smoothing techniques combined with knowledge from a 

quadratic prediction model [27]. The monitoring block is responsible for validating the quality of the 

incoming data and providing information when data cleaning is not possible/not sufficiently effective 

and manual intervention is required. The linear state estimator uses knowledge obtained from both of 

these blocks for performing bad data detection as well as for providing a best estimate when there is 

measurement redundancy. The block diagram describing the proposed data conditioning and validation 

process is shown in Fig. 7.2.  

 

Fig. 7.2: Data Conditioning and Validation Module 

7.1.3 Applications 

The methodology for conditioning and validating synchrophasor data proposed in [119] is expected to 

address the following issues. It is to be noted here that many of the problems encountered below are 

specific to the Dominion system and therefore the solutions proposed are developed while taking that 

into account. At the same time, it can also be realized that some of the problems are more general in 

nature, for which case the solutions proposed will are also generic.  

1. Loss of data from one or several PMUs: The existing linear state estimator that is in use in DVP is 

robust enough to reconfigure itself when there is loss of data from one or more PMUs [121]. 
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This is done by removing those measurements from the estimation problem. However, if data 

loss is just intermittent (that is infrequent and with only a few adjacent points missing), the 

missing data can be provided by an optimal filtering algorithm in a pre-processing step, as will 

be seen in the next section. However, if a signal is completely lost and does not come back, even 

occasionally, then it is compromised and must be removed from the estimator. 

2. Loss of signals in a PMU:  Since its effect is similar to the previous item, the same logic applies. 

Missing measurements, if intermittent, are replaced using optimal filtering and smoothing 

algorithms, while if they are not, then they are dropped from the estimator altogether. 

3. Stale (non-refreshing) data: Stale signals are continuously monitored but they are not included 

in the estimation process. By doing so, if the problem of stale data is found to persist, the data 

will continue to be ignored. However, when fresh data starts coming, it will be re-included in the 

estimation purposes. 

4. Inconsistent data, data rates and latencies: Being primarily caused due to the improper settings 

of the PDC, this issue is addressed by modifying the PDC’s settings. The root cause may be varied 

but properly regulating the lead and lag time settings of the PDC is expected to be the solution 

to the problem. 

5. Off-sets in signal magnitude and phase: Offsets related to current transformer (CT) and potential 

transformer (PT) errors are constant for most loading conditions and can be solved by 

calibrating instrument transformers [122]. Temporary offsets have been observed in some of 

the older PMUs but for the current PMUs this should not be a problem as long as they satisfy 

the IEEE standard of having a total vector error (TVE) of less than one percent [2]-[4]. It will be 

shown later in this chapter that properly conditioned and validated synchrophasor data can also 

provide an insight into instrument transformer calibration.  

6. Corrupted and drifting signals in a PMU: PMUs can detect this anomaly and report it via the 

Status Word in the C37.118 stream. If this is the case then measurements which have been 

compromised due to synchronization errors can be immediately removed from the state 

estimation process. This step can be performed online. However, if the PMU does not detect 

synchronization errors then each of the synchrophasors can be referenced to a single phasor. 

Then an algorithm must be developed that watches for changes in one or more reference angles 

with respect to the group. The algorithm must also be able to use multiple references to 

redundantly check if there is a drift in the reference itself. However, the development of such an 

algorithm is left as a future exercise. 
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7. Corrupted and drifting time reference in one or several PMUs: If a corrupt time stamp is 

detected online then the measurement is compromised and should be removed from the 

estimation process. This is also indicative of problems in the configuration of the PMU and not 

just loss of synchronization. If it is the latter case, then it can be identified during the 

commissioning phase itself. The last two issues have been observed by DVP when the PMU has 

not been configured correctly during installation. It has been fixed using proper settings and 

firmware updates. 

8. Combination of several issues described above: If properly integrated into the synchrophasor 

estimator application, then all the issues described above can be properly dealt with in an online 

application. However, online handling of such issues should not be relied upon for dealing with 

all data quality issues. Data validation procedures should be created and executed upon 

installation of the PMU hardware in the substation so as to minimize problems from occurring in 

the future. 

9. Loss of primary source and/or communication and transition to alternate source: DVP has 

addressed this issue by duplicating their synchrophasor architecture. In essence, the main PMU 

stream has been duplicated so that even if the fiber that connects to the control center is lost, 

the performance of the linear state estimator is not affected. 

10. Failure of the topology processor and/or bad/incomplete topology information (where topology 

refers to the status of elements of the power system): This is mitigated by the state estimator 

reacting appropriately to missing data. Proper conditioning of synchrophasor data can provide 

assistance in mitigating incorrect impedance values in the network model. However, the logic 

that is to be followed for doing it is beyond the scope of this work. 

7.2 Methodology for performing synchrophasor data conditioning and validation 

A data conditioning algorithm for pre-processing synchrophasor data has been developed in [119]. A 

brief overview of the techniques proposed there is provided in this section. In [119], two methods for 

pre-screening the PMU data before it reached the linear estimator were introduced first. Next, it was 

followed by a Kalman filter [123] based filtering and smoothing technique that used a “quadratic 

prediction model” [27] as well as a resetting algorithm for data conditioning. It was observed that the 

approach proposed in [119] mitigated drop-outs, outliers, and other data quality issues that decreased 

the value of the phasor data at a downstream location, at the source itself. 
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7.2.1 Pre-screening of synchrophasor data 

Similar to other algorithms that use SCADA data, purely synchrophasor data-based algorithms are also 

susceptible to data quality issues. Loss of GPS synchronization, incorrect PMU configuration, and 

communication network congestion are few of the problems commonly encountered in relation to 

phasor data. Two simple techniques for validating the quality of the incoming data even before it is 

received by the linear state estimator are: 

 Plausibility Checks, and 

 Signal-to-Noise Ratio (SNR) 

Plausibility checks can be thought of as the first step for any data conditioning algorithm. It consists of a 

set of online filters which perform sanity checks on the incoming data. For instance, it is common 

practice at DVP to authenticate the PMU data after an installation before the stream is connected to the 

operations center. By doing so, issues resulting from an incorrect configuration of the PMU, problems 

with the GPS clock or an incorrectly connected signal wire can be captured and immediately resolved. In 

addition to preventing unworthy data from being consumed by the application, the online algorithm for 

plausibility checks also makes engineers aware of data quality problems that will require manual 

intervention. Different types of plausibility checks that would cause measurements to be eliminated 

before state estimation is performed are: 

 In-service buses having zero, near zero or negative voltage magnitude measurement readings 

 In-service lines having zero or near zero current magnitude measurement readings 

 For three phase systems, phasor groups with improper phase relationships  

 Bad, missing, or repeated time-stamps 

 Frequency excursion of 0.1  Hz or more from the average nominal value (60  Hz) 

 Rate of change of frequency excursion of 0.03 or more from the average nominal value (Zero) 

 Measurements which have a C37.118 status word showing the DataValid bit asserted 

 Measurements which have a C37.118 status word showing the PMUSync bit asserted 

 Measurements which have a C37.118 status word showing the PMUError bit asserted 

 Measurements which have other problems communicated via the C37.118 status word 

Evaluating the Signal-to-Noise Ratio (SNR) of a signal is an efficient method to monitor the quality of 

that signal. Since reconstructing the original sinusoid would be difficult, the assumption made is that the 
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components of the phasor (magnitude and unwrapped referenced phase angle) are DC signals. Under 

such conditions, SNR is the mean of the signal divided by the standard deviation of the signal taken over 

a moving window [124] as shown in (7.1). 

                  (
 

 
)       (

    

        
)                                                                                                 

SNR evaluation not only indicates loose connections or potential hardware problems, but also helps 

diagnose equipment issues much more accurately than the raw voltage measurement. An example of 

this is shown in Fig. 7.3. Fig. 7.3a depicts the SNR magnitude plot of a potential transformer (PT) of a 

500kV bus few days prior to a fault. Fig 7.3b depicts the SNR angle plot for the same PT. It is clear from 

the figures that both the magnitude and the angle plots show a clear indication of a potential problem 

(identified by the wider spread of the C-phase data in comparison to the other phases). Moreover, since 

these types of devices fail slowly, by regularly monitoring the SNR, signs of failure can be identified days 

in advance. For instance, the SNR magnitude and angle plot shown in Fig. 7.3 captured the faulty C-

phase data three days before the PT actually failed. Also, since SNR is a relative measure whereas the 

raw voltage measurement is an absolute one, SNR becomes a suitable candidate for setting alarm limits. 

 

Fig. 7.3a: Signal-to-Noise Ratio of phase magnitude during C-phase PT failure 
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Fig. 7.3b: Signal-to-Noise Ratio of referenced phase angle during C-phase PT failure 

A key assumption made during the computation of the SNR is the quasi-steady state operating condition 

of the power system. The size of the moving window used to calculate the mean and standard deviation 

components is critical for establishing a base-line criterion for alarming as it dictates the sensitivity of 

the calculation. Therefore, an intelligent alarming scheme would be necessary to prevent 

misinterpretation of the SNR during oscillations and when discrete changes occur in the network. The 

former can be avoided by using an oscillation detection algorithm while the latter can be circumvented 

by alarming only when the SNR is higher than a pre-defined threshold for a certain period of time.  

7.2.2 Techniques developed for data conditioning and validation 

The idea of a three phase linear state estimator using only synchrophasor data was originally proposed 

in [28]. However, the state estimator model developed in [28] was not a tracking state estimator 

because it considered each new frame as a separate problem. Therefore, it was impossible to 

detect/identify bad data using that model. An improvement to that model was made using [27] which 

identified the “quadratic” relationship between the past, present and future states. That relationships is 

given by, 

 ̂          ̂        ̂           ̂                                                                                        

In (7.2),   refers to the individual state,  ̂ (read as x-hat) denotes the estimated value of  , while the 

symbol   is the “given” operator. Therefore,  ̂      reads as x-hat of   given    Equation (7.2) is based on 

the logic that for a linear increase in load at constant power factor (true for a power system at 30 times 
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a second); the complex voltages (and currents, since currents are linear functions of voltage) will follow 

a quadratic trajectory with the next estimate depending on three previous estimates [27]. It is to be 

noted here that (7.2) is the same as (3.12) except that the individual state was represented by the letter 

  in (3.12) while it is denoted by   in (7.2). Using (7.2), two techniques for conditioning synchrophasor 

data via Kalman filtering are described below. 

7.2.2.1 Kalman-filter based filtering 

The classical model of a Kalman filter is given in (7.3). In the following equations, bold characters 

represent matrices. 

                                

                                     
                                                                                                    

 In (7.3),   is the discrete time step,        is the system state at time    ,      is the system state 

at time  ,        is the actual measurement at time    ,      is the zero-mean Gaussian process 

noise at time  ,        is the zero-mean Gaussian measurement noise at time    ,          is 

the state transition matrix relating the transition of the state from time   to time    ,          is 

the disturbance transition matrix relating the transition of the disturbance from time   to time    , 

and        is the measurement matrix at time    .  For optimal filtering we take the estimate of 

(7.3) and express it as a recursive relation in the Kalman filter notation as seen in (7.4a) and (7.4b). 

 ̂                   ̂            (        ̂       )                                                   

 ̂               ̂                                                                                                                                   

In (7.4a)        is the Kalman gain. Equation (7.4a) and (7.4b) can be solved using the standard 

Kalman filtering technique [125]. However, when applied to synchrophasor data, it can be further 

simplified. Due to the nature of the quadratic prediction model, adjacent state vectors share two of the 

three state variables in common yielding an augmented state vector. This can be imagined as a moving 

window that contains three snapshots of the system at any given time and which moves forward only 

one snapshot at a time. Therefore, for predicting the next state based on (7.2),  ̂      and  ̂        

can be expressed as,  

 ̂      [

 ̂     

 ̂         

 ̂         
]                                                                                                                                         
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 ̂        [

 ̂       

 ̂     

 ̂         
]                                                                                                                                 

Since the estimate of the future state depends on the three previous state estimates, for filtering 

purposes, it makes sense to depict  ̂      and  ̂        as     matrices. Now, we know that 

         relates the     state to the   state, i.e. 

 ̂                 ̂                                                                                                                                    

Therefore, based on (7.2), (7.5a), (7.5b) and (7.5c),          can be formulated as a constant as 

shown in (7.5d). 

         [
    
   
   

]                                                                                                                                       

It is to be noted here that in (7.5a) and (7.5b), the states are the complex voltage and current 

measurements. Therefore, without any loss of generality, we can write (7.5e) and (7.5f). 

                                                                                                                                                   

 ̂         ̂                                                                                                                                                     

Using (7.5b) and (7.5f) in (7.4b), we get        as, 

       [   ]                                                                                                                                                 

Thus, on substituting (7.5d) and (7.5g) in RHS of (7.4a) and (7.4b), respectively, a simplified model of the 

filtering technique will be developed as shown in (7.6a) and (7.6b). 

 ̂          [
    
   
   

]  ̂            (        ̂       )                                                 

 ̂        [   ] ̂                                                                                                                                

The second term in RHS of (7.6a) corresponds to the steady state observation residual. Typical plots for 

the observation residuals obtained in case of actual data are shown in Fig. 7.4 and Fig. 7.5. Figs. 7.4a and 

7.4b show the observation residual for the voltage magnitude and angle while, Figs. 7.5a and 7.5b show 

the observation residual for the current magnitude and angle. The mean that is observed in the 
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observation residuals corresponds to the ratio errors present in the measurements. Therefore, the mean 

of the residuals reflect the uncalibrated nature of the measurements [126]. 

 

Fig. 7.4a: Observation residual for typical voltage magnitude measurements 

 

Fig. 7.4b: Observation residual for typical voltage angle measurements 
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Fig. 7.5a: Observation residual for typical current magnitude measurements 

 

Fig. 7.5b: Observation residual for typical current angle measurements 
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7.2.2.2 Kalman-filter based smoothing 

The smoothing algorithm estimates the previous states of the system using current measurements. 

Mathematically, this means solving for  ̂      where     [125]. The quadratic prediction model 

associated with synchrophasor data that had been used for filtering purposes also applies to the 

smoothing process. The model of the fixed-lag smoother that has been used was developed in [127]. It 

has a discrete time state equation in the form of a recursive Kalman filter with an augmented state 

vector, an associated augmented dynamical system, and an augmented measurement equation as seen 

in (7.7). More details about it can be found in [125] and [127].  In (7.7),   is the window length, 

while       ,                  are the gain matrices. 
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(              ̂       )                                                                  

Equation (7.7) can be solved recursively as shown in [127]. The matrices          and        in 

(7.7) have same dimensions and values that were computed in the previous sub-section. A judicious 

choice of window length is important because although a higher value of   would introduce more delay 

between the received measurement and the smoothed state estimate, it will also improve the quality of 

the estimate by a significant amount. The reason for this being that an estimate obtained using 

 ̂            will be intuitively better than one obtained using  ̂              [125]. A 

suitable window length for the simulations done here was found at    .  

The smoothing technique works in the same way as the filtering technique with regards to time and 

measurement updates. Also, for both the filtering as well as the smoothing techniques, the initial 

conditions for all of the estimates and covariances can be zero without requiring an additional Kalman 
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filter to provide this information as long as it is acknowledged that the values for these will not be 

correct until the first window has been completely filled with data. Thus, in essence, the fixed lag 

smoothing algorithm is an extension of the filtering technique.  

The relevance of a quadratic prediction model based Kalman filter is profound for the given application. 

Before the introduction of phasor measurements, the idea of tracking the state of the power system 

with a Kalman filter like process was suggested in [68]. The difficulty in the use of such a filter for the 

current application is that the number of measurements made using PMUs is inadequate to produce a 

successful estimate based on that approach. To elaborate, Dominion Virginia Power (DVP) has 

approximately 4,000 buses. Therefore, the traditional Kalman filter will require a state equation for the 

states of all the 4,000 buses. However, DVP has placed PMUs on only their high voltage network (500kV 

buses) which number about 30. In such a scenario, a traditional dynamic/tracking estimator will not 

work because all the states of the system will not be “observable”. The proposed approach considers 

each state individually. Therefore, the predicted value of a state is based on the previous predicted 

values of the same state. Hence, the proposed methodology is independent of the network model/size. 

This also implies that the process and measurement noise associated with the proposed approach 

(commonly denoted by the process noise covariance,   and the measurement noise covariance,  ) are 

scalar quantities.  

Another significance of the proposed approach is that it can detect bad data in the individual 

measurements based on the history of that measurement. The three-phase linear state estimator 

developed in [28] considered every measurement as a “fresh” measurement. Therefore, bad data 

detection was impossible using their approach. In the proposed approach, the quadratic prediction 

model developed in [27] is integrated with the linear state estimation formulation. By doing so, an 

observation residual is created (Eq. (7.6)) that detects anomalies in the individual measurements, 

thereby validating its quality. It is also important to point out here that the quadratic prediction model 

developed in [27] was meant for detecting bad data or exogenous events. It had not been used for 

“cleaning real synchrophasor data” which is the focus here. Moreover, the data used in [27] was 

simulated data (IEEE 118-bus system), whereas the data used here is real synchrophasor data obtained 

from the field. Therefore, they are two separate applications based on the same (quadratic) prediction 

model.  
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7.2.2.3 Resetting Function 

The data conditioning algorithm based on Kalman-filter based filtering and smoothing algorithms was 

found to perform very well for data quality issues up to the 20% mark (probabilistically) [119], [126]. For 

higher percentages of bad data, it was observed that sustained dropouts were present in the incoming 

data. Consequently, as the probability of adjacent data point drops increased, the data conditioning 

algorithm lost its ability to make accurate predictions. Fig. 7.6 shows the phasor magnitude plot for a 

scenario where there is 50% likelihood (probabilistically) that each data point will be lost. Although the 

algorithm gives reasonable results for some time, it does not take long until so many adjacent data 

points are lost that the prediction diverges from the raw measurements. This is because if the 

observation residual remains high, the measurement will keep getting replaced by the optimal predicted 

estimate. Under such circumstances, even if after some time, the incoming data becomes good, the 

error in the optimal prediction would have compounded so many times that it would not be able to 

track the raw measurements anymore [126]. 

 

Fig. 7.6: Performance of data conditioning algorithm on phasor magnitude data having 50% drop-outs 

In order to prevent the algorithm from becoming numerically unstable and diverging, a reset function is 

built-in to it that activates when the smoothing window is completely filled with estimated data. The 

pseudo-code for the algorithm’s reset function is provided in Fig. 7.7. In Fig. 7.7,                       



163 
 

denotes the number of estimates. If the number of successive bad measurements received by the 

algorithm equals or exceeds the smoothing window length, then the algorithm will reset itself. It will 

start operating normally (afresh) once the smoothing window gets filled with raw data (and not 

estimates). Thus, for the quadratic prediction model used here, there will be a delay of at least three 

frames.  

  (
                                             

                                                     
) 

                                  

     
                                  

      
   (                        ) 

                                                            
                                                        

     
                                  

        
   (                                           ) 

                          
                                  

       
Fig. 7.7: Pseudo-code to depict data conditioning algorithm’s reset functionality 

However, proper selection of initial conditions can help the algorithm track the synchrophasor stream 

faster. For example, the steady state error covariance matrix and Kalman-filter gains can be saved and 

used to re-initialize the algorithm when required. The effect of the reset function on the same phasor 

magnitude plot that was described in Fig. 7.6 is shown in Fig. 7.8. The plot shows that although the 

output is mostly raw data (since there are not enough adjacent data points to support a quality 

prediction), there is no divergence even after the simulation has been run for more than twice the 

length of time that the first simulation (Fig. 7.6) was run for. 

Another advantage of the reset functionality is that by using it, contingencies or discrete changes in the 

system can be properly conditioned. Since the quadratic prediction model developed in [27] cannot 

account for step changes, it takes several samples until the window has moved past the step change 

that occurred, before it can properly track the stream again. However, by resetting the algorithm at the 

right time, a discrete network change can be immediately acknowledged. Fig. 7.9 demonstrates the 

effectiveness of the algorithm’s reset functionality during a loss of generation event simulated for the 

IEEE-118 bus system. In Fig. 7.9, the X-axis denotes the data points at 30 samples per second whereas 
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the Y-axis denotes the corresponding voltage magnitudes. From the figure it becomes clear that by 

resetting the algorithm at the correct instant, the optimal smoothed estimate (green star) is able to 

track the actual measurement (red circle) perfectly.  

 

Fig. 7.8: Performance of data conditioning algorithm with reset functionality on phasor magnitude data 

having 50% drop-outs 

To summarize, the following points can be considered to be the highlights of the proposed 

methodology: 

 Provides optimal smoothed estimate under ideal conditions 

 Uses optimal predicted estimate to replace bad/missing measurement 

 Reset functionality prevents divergence when larger levels of bad/missing data is present 

 Smoothed estimate tracks measurement accurately when discrete changes occur 

The synchrophasor data conditioning and validation methodology described above provides a keener 

insight into the workings of a PMU-only linear state estimator. The ways in which this logic can aid in 

calibrating positive sequence instrument transformers forms the basis for the rest of this chapter. 
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Fig. 7.9: Effect of data conditioning algorithm’s reset functionality during a contingency (Loss of 

generation) in IEEE-118 bus system 
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7.3 Synchrophasor measurement based positive sequence transducer calibration 

With the continued deployment of synchrophasor technology through utility investment and 

government grants, efforts across the industry are now beginning to shift to operationalizing the 

synchrophasor data in order to extract value from this investment in metering infrastructure. Ensuring 

the quality of the data set used for synchrophasor applications or any consumer of synchrophasor data 

is paramount for successful integration of this technology and a return on investment for the utilities. 

Historically, this same problem was solved in the context of SCADA/EMS by developing state estimation 

techniques to improve data quality. Fundamentally, the same type of solution is valid for PMU data.  The 

solution proposed in the previous section shows how the linear state estimator can be used as a means 

to clean the synchrophasor data. In this section, conditioned and validated synchrophasor data will be 

used for positive sequence transducer calibration. 

Our focus is on the high accuracy class relaying transducers. Relaying instrument transformers are 

installed throughout the transmission system to provide the necessary accurate voltage and current 

measurements for the protection system. Major control and measurement systems, such as SCADA/EMS 

also depend on the relaying instrument transformers for their proper functioning. PMU instrument 

transformers are assumed to have very high accuracy levels [2]-[4]. However, as the error values vary 

with the manufacturer and increase over time and usage (environmental conditions, prevailing burdens, 

etc.), the resulting biased measurements will become an inherent component of input data errors for 

both SCADA data as well as PMU data based applications [122]. Therefore, it becomes practically 

important to calibrate these instruments to account for their errors.  

A lot of research has been done for developing effective ways to calibrate instrument transformers. Self-

calibration of instrument transformers using zero-point test, artificial offset test and ratio meter test 

was proposed in [128]. However, that method required the calibrating instrument transformer to be 

taken off-line which would again cost time and labor. Impedance synthesis methods applicable in active, 

hybrid and phantom burdens for instrument transformer calibration were discussed in [129]. But as 

conducting onsite calibration tests are expensive and time-consuming, they are rarely performed on a 

system-wide basis. Calibration of current transformers (CTs) and voltage transformers (VTs) using PMUs 

was first proposed in [102] and later elaborated in [122] and [130]. In [122], three phase instrument 

transformer calibration was proposed using synchronized phasor measurements. It was found to be a 

labor-free calibration technique which could be performed as often as twice a day without taking the 

transducer off-line. More details about this method can be found in [130]. 
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Since the methodology developed in [122] was to be implemented in the DVP system which has a three-

phase linear state estimator running, it made sense to calibrate all three phases. However, most utilities 

of the world only have a positive sequence state estimator. Therefore it becomes necessary to realize if 

the logic proposed in [122] can be used for calibrating an “equivalent” positive sequence instrument 

transformer. This section addresses this concern. Furthermore, it is important to note here that the 

positive sequence that this “equivalent” instrument transformer will measure will be a function of the 

system frequency, the unbalance present in the individual phases, the ratio error of the individual 

“phase” transformers, as well as the PMU errors present in every measurement. The effect of these 

quantities on the net “positive sequence” is analyzed below. 

The positive sequence voltage/current phasor is related to the corresponding phase quantity phasor by 

the relation given in (7.8). 

     
 

 
                                                                                                                                            

In (7.8),   denotes the phasor under test (which can be either voltage or current) and      (
   

 
)  

    (
   

 
). Using (7.8), the equivalent positive sequence phasor can be computed for the following 

scenarios: 

 Case 0: Under ideal conditions, the power system frequency is equal to its nominal value of 60 

Hz and there is no PMU error, or ratio error, or unbalance. Therefore, the purely sinusoidal 

phase voltages/currents result in a constant positive sequence phasor as shown in Fig. 7.10. In 

Fig. 7.10, red color indicates phase  , blue color indicates phase  , green color indicates 

phase  , and black color indicates the positive sequence phasor. Fig. 7.10a shows the magnitude 

plot (in p.u.) while Fig. 7.10b shows the angle plot (in radians) for one day worth of data 

obtained at 30 samples per second and a sampling frequency of 2880 Hz. As can be observed 

from Fig. 7.10, under ideal conditions, the magnitude of all the phases as well as the positive 

sequence phasor is unity (       ), while the angles of the three phases are 120° (   

 

 
        ) apart with the positive sequence phasor angle superimposed on the phase   angle. 
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Fig. 7.10a: Phasor magnitude (in p.u.) under ideal conditions 

 

Fig. 7.10b: Phasor angle (in radians) under ideal conditions  

 Case 1: In this case, only PMU errors are present, but the system is assumed to operate at 60 Hz. 

The PMU errors were assumed to be random variables having a zero-mean Gaussian distribution 

with an error of 0.2% in the magnitude and 0.104° in the angle (values provided by a PMU 

manufacturer). With all other conditions remaining the same as in the ideal case (no ratio error, 
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no unbalance, one day worth of data at 30 samples per second, etc.), a fuzz is observed on the 

positive sequence as seen in Fig. 7.11. Fig. 7.11a compares the positive sequence phasor 

magnitudes for the present case with the ideal condition while Fig. 7.11b gives a comparison of 

the same but for the positive sequence phasor angle. Since the mean of the PMU errors is zero, 

the mean of the non-ideal positive sequence phasor is almost the same as the constant ideal 

positive sequence phasor. Thus, the net effect of only PMU error at nominal frequency on the 

positive sequence phasor is negligible.  

 

Fig. 7.11a: Comparison of positive sequence phasor magnitude (in p.u.) when only PMU error is present 

at nominal frequency 

 Case 2: In this case, PMU errors as well as ratio errors are present, but the system is assumed to 

operate at 60 Hz. The ratio errors were assumed to be random variables chosen from a uniform 

distribution. For voltage transformers, the ratio errors lay between ±6% for the magnitude and 

±4° for the angles. For current transformers, the ratio errors lay between ±3% for the magnitude 

and ±2° for the angles [130]. With all other conditions remaining the same as in the ideal case 

(no unbalance, one day worth of data at 30 samples per second, etc.), a mean is observed for 

the phasor error as shown in Fig. 7.12. This mean resembles the mean present in the 

observation residual plots of Figs. 7.4 and 7.5 and corresponds to the mean of the ratio errors of 

the individual phases.  
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Fig. 7.11b: Comparison of positive sequence phasor angle (in radians) when only PMU error is present at 

nominal frequency 

 

Fig. 7.12a: Comparison of positive sequence phasor magnitude (in p.u.) when PMU error and ratio error 

are present at nominal frequency 
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Fig. 7.12b: Comparison of positive sequence phasor angle (in radians) when PMU error and ratio error 

are present at nominal frequency 

 Case 3: In this case, PMU errors, ratio errors as well as unbalance are present in the three 

phases, but the system continues to operate at 60 Hz. The unbalance in the three phases is 

primarily due to the absence of transposition of the transmission lines and is a significant 

quantity for the longer lines. Based on [120], the unbalance was assumed to be random 

variables chosen from a uniform distribution lying between ±5% for the magnitude and ±5° for 

the angles. The cumulative effect of unbalance, ratio errors, and PMU errors on the equivalent 

positive sequence phasor at the nominal frequency of 60 Hz is depicted in Fig. 7.13. The mean of 

the error observed in Fig. 7.13 was found to be the mean of the product of the ratio errors and 

the unbalances of the individual phases. 

 Case 4: In this case, along with PMU errors, ratio errors and unbalance in the three phases, the 

system also operates at off-nominal frequencies. This is the most general case because the 

voltage and current signals have constantly changing fundamental frequency. The primary 

causes for the variations are load-generation imbalances, machine inertias, effects of 

controllers, etc. Thus, the power system frequency even under normal conditions will hover in a 

relatively narrow range around the nominal frequency, and will not be equal to the 

fundamental/nominal value all the time [13]. For simulation purposes, the frequency was varied 



172 
 

as a sinusoidal function between the range of 59.85 Hz and 60.15 Hz with a rate of change of 

frequency of 1.5 mHz/sec [131].  

 

Fig. 7.13a: Comparison of positive sequence phasor magnitude (in p.u,) when PMU error, ratio error, 

and unbalance are present at nominal frequency 

 

Fig. 7.13b: Comparison of positive sequence phasor angle (in radians) when PMU error, ratio error, and 

unbalance are present at nominal frequency 
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The current version of the standard [2]-[4] does not specify the methodology for computing 

phasors at variable off-nominal frequencies. For the simulations done here, the computation of 

the positive sequence phasor was done by re-sampling at a fixed interval and using a correction 

factor for the off-nominal frequency as proposed in [13]. The pseudo-code for doing this is given 

in Appendix D. The net effect on the equivalent positive sequence phasor is depicted in Fig. 7.14. 

In this case also, the mean of the error was found to be the mean of the product of the ratio 

errors and the unbalances of the individual phases. The plots depicted in Fig. 7.14 are truncated 

to one hour (instead of 24 hours) to better visualize the resulting waveforms (especially the 

waveform for the phasor angle). It is to be noted here that although PMUs built by different 

manufacturers will use different algorithms for computing phasors at variable off-nominal 

frequencies, the net effect on the positive sequence phasor error will be similar to what was 

observed here.  

 

Fig. 7.14a: Comparison of positive sequence phasor magnitude (in p.u,) when PMU error, ratio error, 

and unbalance are present at off-nominal frequencies using resampling and post-processing 
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Fig. 7.14b: Comparison of positive sequence phasor angle (in radians) when PMU error, ratio error, and 

unbalance are present at off-nominal frequencies using resampling and post-processing 

Table 7.1 summarizes the differences in the means of the magnitudes and angles of the ideal and the 

actual positive sequence phasors for the cases analyzed above. The difference in the magnitudes is 

defined as the ratio of the means of the magnitudes of the actual phasor to the ideal phasor. The 

difference in the angles is computed by subtracting the mean of the angle of the ideal phasor from the 

mean of the angle of the actual phasor. The mean of the error is the mean of the product of the ratio 

errors and the unbalances of the three phases. In the absence of unbalance, the mean of the error is the 

mean of the ratio errors of the three phases. Similarly, in the absence of both ratio errors and 

unbalances, the mean of the errors is a magnitude of unity and an angle of zero. From the table it 

becomes clear that in all the scenarios, the difference is equal to the product of the ratio error and the 

unbalance (whenever present). The conclusion that is drawn from this analysis is that the equivalent 

positive sequence will always reflect the anomalies present in the three-phase system. This is important 

because it implies that the logic proposed in [122] can be used for calibrating an “equivalent” positive 

sequence instrument transformer. In [130], after calibrating the relevant instrument transformers a 

methodology to compute line impedances using PMU data was also proposed. On the basis of the 

analysis done here, it can be hypothesized that estimation of positive sequence line parameters can also 

be done in a similar manner.  
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Table 7.1: Comparison of the means of the ideal and actual positive sequence phasors for different 

scenarios 

Case Summary 

Differences in the means  Mean Error 

Magnitude  

(in p.u.) 

Angle 

 (in radians) 

Magnitude 

(in p.u.) 

Angle 

(in radians) 

Only PMU error present with system 

operating at nominal frequency 
0.99999892 1.711e-007 1 0 

PMU error and Ratio error present with 

system operating at nominal frequency 
1.03460739 0.00785021 1.03460971 0.0078003 

PMU error, Ratio error, Unbalance present 

with system operating at nominal frequency 
1.02357996 0.01961466 1.02358276 0.01961422 

PMU error, Ratio error, Unbalance present 

with system operating at variable frequency 

using resampling and post-processing 

1.05379542 -0.0480587 1.05337946 -0.0480611 

 

7.4 Conclusion 

This chapter presents an overview on synchrophasor data conditioning and validation. Plausibility checks 

and signal-to-noise ratios (SNRs) are presented as viable validation methods for preventing poor quality 

data from propagating downstream as well as for alerting engineers of problems which will require 

manual intervention. Then, by combining a quadratic prediction model with Kalman filter based filtering 

and smoothing techniques, conditioning of real synchrophasor data is demonstrated. The simulations 

indicate that the proposed methodology is guaranteed to provide a clean data stream to the linear 

estimator as well as to the downstream consumers and/or network applications that depend on it. The 

chapter concludes by describing how conditioned and validated synchrophasor data can be used in 

calibrating “equivalent” positive sequence instrument transformers under a variety of system 

conditions.   
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Chapter 8: Conclusion and Future Scope of Work 

Monitoring and protection of modern power system networks is a challenging task. It requires an 

integration of efforts of many agencies – sub-station engineers, operators at the control center, etc. The 

ultimate objective of modern technology is to facilitate this integration to occur seamlessly. Phasor 

measurement units (PMUs) are a key component that modern technology has provided us. Its use in 

performing data mining, optimizing available resources, assessing system stress, and data conditioning is 

discussed in this dissertation. A synopsis of the work done is provided below. 

8.1 Dissertation Summary 

The most important function of any modern application is to aid in decision-making. Different 

applications are best compared based on their ability to make accurate and fast decisions. Since PMUs 

provide time synchronized measurements of the voltage phasor and the branch current phasors of all 

the branches emerging from the bus on which they are placed, there is an imminent need to enable 

decision-making based on PMU data that is both accurate and fast. In lieu with this thought, a 

methodology is developed in Chapters 2 and 3 in order to make multi-class decisions involving high-

dimensional synchrophasor data.  

In Chapter 2, Fisher’s Linear Discriminant (FLD) is used as a pre-processing step before feeding the 

synchrophasor data into CART (which is a very popular decision tree learning technique). By computing 

the distance from an optimally selected hyperplane and using that one-dimensional entity (distance) as 

the deciding variable, splits are successfully performed even when the original data has many 

dimensions. By using simple examples, the superiority of the proposed approach to the traditional CART 

algorithm is demonstrated, both in terms of speed as well as accuracy. 

In Chapter 3, the proposed Fisher’s Linear Discriminant applied to Synchrophasor Data (FLDSD) 

technique is applied to solve two power system problems. In the first problem, it is applied to a detailed 

model of the California Power System, where it is used in the development of an adaptive protection 

scheme. The results indicate that by using the proposed methodology a smaller tree is able to provide 

higher classification accuracy. In the second problem, the FLDSD technique is applied to the IEEE 118-

bus system, where it is used to classify dynamic events based on trajectories of voltage measurements 

obtained from PMUs. In this application also, the proposed technique was found to classify the events 

(faults, recloses, and Zone-II operations) with near-100% accuracy.  
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In order to attain maximum benefits from the placement of PMUs in the power grid, their locations 

must be selected judiciously. Accordingly, in Chapter 4, a PMU placement algorithm is developed that 

incorporates practical constraints. The Critical Bus Based Binary Integer Optimization (CBBBIO) 

technique initially identifies buses which are critical to the power system and provides them with 

redundancy in their measurement even at the highest depth of unobservability. Subsequently it adds 

more PMUs into the network to ensure complete system observability under the condition that the 

relevant portions of the system are protected at all times. In Chapter 5, the CBBBIO technique is 

combined with a community-based partitioning approach in order to reduce the computational burden 

of the optimization. The results indicate that a combination of the two techniques results in a PMU 

placement scheme that can be applied to power systems of any size.  

Assessment of system stress is essential for effective monitoring and protection of a power system. In 

accordance with this logic, in Chapter 6, two synchrophasor-based metrics for assessing static and 

dynamic stresses in a power system were proposed. The base loading of the system constituted static 

stress. It referred to the normal/pre-contingency state of the system. Dynamic stress referred to the 

event/contingency that the system was subjected to. Angle difference between buses located across the 

network and voltage sensitivity of buses lying in the middle were the two metrics that were found to 

accurately reflect the static and dynamic stress of the system. With the aid of modern software tools, it 

is shown how metrics like these can be used for assessing the system’s proximity to an insecure 

operation even for large systems (10,000+ buses) in real-time. 

Since monitoring and protection functions rely heavily on the quality of input data, the dependability of 

PMU data needs to be verified before it can be used. In accordance with this thought, a methodology to 

perform synchrophasor data conditioning and validation that fits into the linear state estimation 

formulation was developed in Chapter 7. To do this, a two part module – conditioning and monitoring, 

was proposed. The conditioning module is responsible for cleaning the data whenever possible. This was 

accomplished with Kalman-filter based optimal filtering and smoothing techniques in combination with 

the quadratic prediction algorithm described previously in Chapter 3. The monitoring module was 

responsible for providing information when data cleaning is not possible and manual intervention is 

required. The linear state estimator was also considered part of the “cleaning” algorithm as is able to 

provide bad data detection, a best estimate when there is measurement redundancy, and an extension 

of observation with current measurements. The results indicate that the proposed technique provides a 

computationally simple, elegant solution to the synchrophasor data quality problem. Its ability to aid in 
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calibrating equivalent positive sequence transducers under different system conditions is also 

demonstrated. 

The objectives of this dissertation were to address the issues of performing data mining, optimizing 

available resources, assessing system stress, and doing data conditioning with regards to monitoring and 

protection of power systems. Being very different natured-problems, each of the objectives required 

dedicated solutions. The techniques developed over the course of this study – the FLDSD technique, the 

CBBBIO technique and its integration with the community-based partitioning approach, etc., were found 

to successfully address each of the aforementioned concerns. Thus, this dissertation accomplished what 

it had set out to achieve. 

8.2 Future avenues to be explored 

As scholars and intellectuals from times immemorial have theorized, research is always a work in 

progress. That is, the ultimate purpose of any study made should be the paving of way for more studies 

to be made along similar lines. Since the research done in this dissertation was not an exception to this 

theory, it can be hypothesized that the work done here will pave the way for new research to be 

undertaken in the field of synchrophasor-based monitoring and protection of modern power system 

networks. Some key areas and applications that can be looked into are: 

 Integration of FLDSD with BART 

 Optimal substation coverage for PMU installations 

 A partitioned state estimator  

More details about these topics are described below: 

Integration of FLDSD with BART: In the traditional CART algorithm, a binary tree is used to partition the 

predictor space recursively into distinct homogenous regions, where the terminal nodes of the tree 

correspond to the distinct regions. It has been found to effectively model non-linear or non-smooth 

relationships and can successfully interpret interactions among the predictor variables. Moreover, 

because of its binary structure, it can be easily implemented in practice. However, it has been found that 

CART has a tendency to over-fit the data. Additionally, since in CART one big tree is grown, it is hard to 

account for additive effects [132]. An improvement to the traditional CART algorithm was proposed by 

Chipman et al. called Bayesian Additive Regression Trees (BART). BART is a non-parametric Bayesian 

regression approach which uses dimensionally adaptive random basis elements for decision-making 
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[133]. The original model of BART was not designed for classification problems, but it has been 

subsequently improved upon and can now be applied to both regression, as well as classification 

problems [132], [134].  

The Bayesian approach specifies a formal prior distribution for trees and other parameters and uses 

Markov Chain Monte Carlo (MCMC) methods to sample them from the posterior distribution. In the 

traditional BART algorithm, the mean of a continuous dependent variable is approximated by a “sum of 

trees” rather than a single tree. This “sum-of-trees" model is defined by a prior and a likelihood, and is 

fitted by an iterative MCMC algorithm. Each individual tree explains a different portion of the underlying 

mean function, but the sum of these trees turns out to be a flexible and adaptive model. In [132] and 

[134], this logic was extended to handle classification problems, albeit in different ways, and 

subsequently called Classification Bayesian Additive Regression Trees (CBART) and Bayesian Additive 

Classification Trees (BACT), respectively.  

The advantages of the BART algorithm (applicable to both classification and regression problems) over 

CART are as follows [132]: 

 Rather than using a single tree, BART uses a sum-of-trees model that accounts for additive 

effects 

 BART can conduct automatic variable selection of inputs while searching for models with highest 

posterior probabilities during MCMC simulation 

 Since it is based on Bayesian learning, BART can use newly coming data to update the current 

model instead of re-fitting the entire model 

Moreover, since the binary tree structured is maintained in BART, the advantages of CART of effectively 

modelling non-linear and/or non-smooth relationships as well as ease of implementation are carried 

over to BART as well. However, the concern regarding the handling of complex numbers for decision 

making persists in BART as well. A pre-processing of the inputs to BART based on the FLDSD algorithm 

can be a possible solution to this problem. Future research done in this field might open-up possible 

ways of improving both the techniques.  

Optimal substation coverage for PMU installations: In recent times, due to improvement in relaying 

technologies, digital relays can serve dual purposes - as a relay & as a PMU. In such a scenario, the cost 

of the PMU device itself is not the largest portion of the total cost, but rather the substation installation. 
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A recently completed large-scale deployment of PMUs on the extra high voltage (EHV) network of 

Dominion Virginia Power (DVP) has found this to be so. The assumption then becomes that if 

construction work is done in a substation, enough PMU devices should be placed such that everything at 

that substation is measured. 

In most of the previous works, the terms “substation” and “bus” were used interchangeably. However, 

for a practical system, this is not appropriate because the different voltage levels in a substation might 

not be necessarily coupled through a transformer. Moreover, even if they are coupled, their tap settings 

might not always be known. In such a scenario, a utility may plan to estimate them using phasor 

measurements. As observability of one voltage level in a substation does not imply the observability of 

the whole substation, from an implementation point of view, it is not correct to treat a substation as a 

single bus. Therefore, in order to indirectly minimize the cost of synchrophasor deployment (by 

minimizing installation costs), a utility might choose to place the PMUs at minimum number of 

substations. The goal then becomes to deal with observability, bus-wise and with installation, 

substation-wise. Thus, buses belonging to the same voltage level inside a substation should be treated 

as a single bus but the whole substation should not be treated as one. This can also be a topic for further 

research. 

A partitioned state estimator: The advances made in phasor technology have made it possible to 

integrate PMU measurements with traditional state estimators. The resulting estimator is faster and has 

significantly better quality [67]. However, one problem that still persists is the “seams issue” as 

identified in [13]. The “seams issue” is of identifying the simplest/best way of combining state estimates 

of two adjoining independent system operators (ISOs). This has to be done while considering the fact 

that the individual ISOs are large and have elaborate state estimation programs representing immense 

investment in people and equipments. Considering the size of the two systems, it’s a daunting task to 

start over and pool the data and models together to create a single estimator for the combined system. 

If a simpler solution that saves money, time, and frustration can be found it is definitely worth 

considering.  

The community-based partitioning approach developed in Chapter 5 presents a way in which large 

systems can be partitioned into islands by removing the least number of branches. For a partitioned 

state estimator, these branches would be the tie-lines between the two ISOs. An example of a 

partitioned system is shown in Fig. 8.1, where the BEPP scheme identifies the tie-lines 1-2, 1-27, and 8-9 

(highlighted in red) that must be removed in order to separate the New York and New England power 
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systems [135]. Then, if a separate state estimator is designed for the two sub-systems (New York system 

and New England system), the two state estimator results can be combined using (8.1) [13]: 

  
 

  
∑ ( ̂     ̂   )

    

   

                                                                                                                                             

In (8.1),   is the estimated difference between the two references denoted by  ̂  and  ̂  and    is the 

number of boundary buses.  

 

Fig. 8.1: A 16-machine, 68-bus model of the New York-New England interconnected power system 

Since the estimators of the individual islands only differ in their references, one can estimate the 

differences between the two references by including the boundary buses in both the islands as done in 

(8.1). A simpler solution can be realized if the partitioned systems have linear estimators. In such a 

scenario, the estimator of the complete system can be obtained by a superposition of the individual 
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linear state estimators. Thus, creating partitioned state estimators for systems using the BEPP scheme 

(or a variant of it) is an exciting prospect and can be looked into in the future.  
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Appendices 

The appendix comprises of the pseudo-codes that were generated to execute the algorithms developed 

in this manuscript. Appendix A summarizes the steps that are to be followed for applying the FLDSD 

technique on line 38-65 of the IEEE 118-bus system. Appendix B computes incomplete observability 

using the CBBBIO Technique for the IEEE 118-bus system after considering the high voltage and the high 

connectivity buses as critical. Appendix C shows how the BEPP Scheme can be used to partition the IEEE 

118-bus system and then compute for PMU placements in the created islands after considering the high 

voltage and high connectivity buses as critical. Appendix D describes the methodology that was followed 

for computing the positive sequence phasor for off-nominal frequencies in presence of different errors. 

Appendix A: Pseudo-code for the FLDSD Technique 

The following pseudo-code makes a 10-class classification of a 300-dimensional data. The data is 

obtained by computing the complex voltage measurements of buses on either ends of line 38-65 as well 

as the voltages of buses that lie one line away from the buses 38 and 65 (bus 30, bus 64, and bus 68, 

respectively) of the IEEE 118-bus system for different faults. Since there are 5 buses and the data is of 

one second duration at 30 samples per second, the dimensions of the data is 300, thereby implying that 

the number of columns is also 300 (See 3.2.2.1 for details). The 10-classes in which the data are 

classified are SLGNR (90 cases), SLGSHSR (90 cases), SLGUSHSR (90 cases), SLGZ2_38 (46 cases), 

SLGZ2_65 (45 cases), TPGNR (90 cases), TPGSHSR (90 cases), TPGUSHSR (90 cases), TPGZ2_38 (46 cases), 

TPGZ2_65 (45 cases), resulting in a total of 722 cases. Thus, the “        ” file contains         

matrix called   whose rows correspond to the number of cases and the columns correspond to the 

number of dimensions. Thus, the first 60 columns comprise of the real and imaginary voltages of bus 30, 

the second 60 columns comprising of the real and imaginary voltages of bus 38, and so on for buses 64, 

65 and 68, respectively. The program which performs the classification based on this information is 

provided below.   
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                %  

% Program Name: CART Tree Generator for Line 38-65 of IEEE 118-bus system   % 

%                % 

% Description: Generates CART Tree for performing 10-class classification   % 

%     of 300 dimensional data          % 

%                % 

% Author: Anamitra Pal             % 

%     Virginia Tech.            % 

%                % 

% Last Modified: 03/21/2014; 05:22 PM          % 

%                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
clc 
clear 

 
load Data % .MAT File containing the data in the correct format 

 
[~,n] = size(D); % Dimensions of the Data  

c = 10; % Number of classes 
n1 = 90; % Number of cases in first class 
n2 = 90; % Number of cases in second class 
n3 = 90; % Number of cases in third class 
n4 = 46; % Number of cases in fourth class 
n5 = 45; % Number of cases in fifth class 
n6 = 90; % Number of cases in sixth class 
n7 = 90; % Number of cases in seventh class 
n8 = 90; % Number of cases in eighth class 
n9 = 46; % Number of cases in ninth class 
n10 = 45; % Number of cases in tenth class 

  
% Extracting data of different classes 
x1(1:n1,:) = D(1:n1,:); % Class 1 
x2(1:n2,:) = D(n1+1:n1+n2,:); % Class 2 
x3(1:n3,:) = D(n1+n2+1:n1+n2+n3,:); % Class 3 
x4(1:n4,:) = D(n1+n2+n3+1:n1+n2+n3+n4,:); % Class 4 
x5(1:n5,:) = D(n1+n2+n3+n4+1:n1+n2+n3+n4+n5,:); % Class 5 
x6(1:n6,:) = D(n1+n2+n3+n4+n5+1:n1+n2+n3+n4+n5+n6,:); % Class 6 
x7(1:n7,:) = D(n1+n2+n3+n4+n5+n6+1:n1+n2+n3+n4+n5+n6+n7,:); % Class 7 
x8(1:n8,:) = D(n1+n2+n3+n4+n5+n6+n7+1:n1+n2+n3+n4+n5+n6+n7+n8,:); % Class 8 
x9(1:n9,:) = D(n1+n2+n3+n4+n5+n6+n7+n8+1:n1+n2+n3+n4+n5+n6+n7+n8+n9,:); % 

Class 9 
x10(1:n10,:) = 

D(n1+n2+n3+n4+n5+n6+n7+n8+n9+1:n1+n2+n3+n4+n5+n6+n7+n8+n9+n10,:); % Class 10 
% Computing the Means of the Distributions 
xm(1,:) = mean(x1); 
xm(2,:) = mean(x2); 
xm(3,:) = mean(x3); 
xm(4,:) = mean(x4); 
xm(5,:) = mean(x5); 
xm(6,:) = mean(x6); 
xm(7,:) = mean(x7); 
xm(8,:) = mean(x8); 
xm(9,:) = mean(x9); 
xm(10,:) = mean(x10); 
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% Computing the Covariances of the Distributions 
S(1:n,:) = cov(x1); 
S(n+1:2*n,:) = cov(x2); 
S(2*n+1:3*n,:) = cov(x3); 
S(3*n+1:4*n,:) = cov(x4); 
S(4*n+1:5*n,:) = cov(x5); 
S(5*n+1:6*n,:) = cov(x6); 
S(6*n+1:7*n,:) = cov(x7); 
S(7*n+1:8*n,:) = cov(x8); 
S(8*n+1:9*n,:) = cov(x9); 
S(9*n+1:10*n,:) = cov(x10); 

  
% Computing for the Distance to the Hyper-plane 
y = [ x1 ; x2 ; x3 ; x4 ; x5 ; x6 ; x7 ; x8 ; x9 ; x10 ]; 
testing = zeros(n1+n2+n3+n4+n5+n6+n7+n8+n9+n10,n); 
ds = zeros(c-1,c); 
d1 = zeros(c-1,c); 
d = zeros(n1+n2+n3+n4+n5+n6+n7+n8+n9+n10,(c*(c-1)/2)); 
for i=1:(n1+n2+n3+n4+n5+n6+n7+n8+n9+n10) 
    yy = y(i,:)'; 
    for j=1:c-1 
        for k=j+1:c 
            a = xm(j,:) - xm(k,:); 
            J = S(((j-1)*n+1):(j*n),:)+S(((k-1)*n+1):(k*n),:); % Fisher's 

Logic 
            % Using QR Decomposition for performing the inverse 
            [Q1,R] = qr(J); 
            R1 = R'; 
            y1 = zeros(n,1); 
            for l=1:n 
                S1 = 0; 
                for m=2:l 
                    S1 = S1 + R1(l,m-1)*y1(m-1); 
                end 
                y1(l) = (a(l) - S1)/R1(l,l); 
            end 
            x = y1'*Q1'; 
            xh = 0.5*(xm(j,:) + xm(k,:)); 
            M = eye(n); 
            M(:,n) = x'; 
            T1 = eye(n); 
            T1(1:n-1,n) = -(x(1:n-1))'; 
            D = eye(n); 
            D(n,n) = 1/x(n); 
            G = T1*D; 
            V = G(1:n-1,:)'; 
            W = eye(n) - V*((V'*V)\V'); 
            e = W*(yy - xh'); 
            testing(i,:) = e; 
            ds(j,k) = sqrt(e'*e); 
            d1(j,k) = ds(j,k)*sign(testing(i,:)*xm(j,:)'); 
        end 
    end 
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    % Number of d's = c*(c-1)/2 where 'c' is the number of classes 
    cnt = 1; 
    for j=1:c 
        for k=j+1:c 
            d(i,cnt) = d1(j,k); 
            cnt = cnt + 1; 
        end 
    end 
end 

  
% Naming the nodes 
SS1 = ones(n1,1)*'SLGNR   '; 
SS2 = ones(n2,1)*'SLGSHSR '; 
SS3 = ones(n3,1)*'SLGUSHSR'; 
SS4 = ones(n4,1)*'SLGZ2_38'; 
SS5 = ones(n5,1)*'SLGZ2_65'; 
SS6 = ones(n6,1)*'TPGNR   '; 
SS7 = ones(n7,1)*'TPGSHSR '; 
SS8 = ones(n8,1)*'TPGUSHSR'; 
SS9 = ones(n9,1)*'TPGZ2_38'; 
SS10 = ones(n10,1)*'TPGZ2_65'; 
SS = [ SS1 ; SS2 ; SS3 ; SS4 ; SS5 ; SS6 ; SS7 ; SS8 ; SS9 ; SS10 ]; 

  
% Creating the tree 
c = cellstr(char(SS));     
t = classregtree(d,c,'names',{'d1-2 ' 'd1-3 ' 'd1-4 ' 'd1-5 ' 'd1-6 ' 'd1-7 ' 

'd1-8 ' 'd1-9 ' 'd1-10' 'd2-3 ' 'd2-4 ' 'd2-5 ' 'd2-6 ' 'd2-7 ' 'd2-8 ' 'd2-9 

' 'd2-10' 'd3-4 ' 'd3-5 ' 'd3-6 ' 'd3-7 ' 'd3-8 ' 'd3-9 ' 'd3-10' 'd4-5 ' 

'd4-6 ' 'd4-7 ' 'd4-8 ' 'd4-9 ' 'd4-10' 'd5-6 ' 'd5-7 ' 'd5-8 ' 'd5-9 ' 'd5-

10' 'd6-7 ' 'd6-8 ' 'd6-9 ' 'd6-10' 'd7-8 ' 'd7-9 ' 'd7-10' 'd8-9 ' 'd8-10' 

'd9-10' }); 
view(t) 
sfit = eval(t,d); 
pct = mean(strcmp(sfit,c)); 

  
% Testing the tree 
cost = test(t,'crossvalidate',d,c); 
[cn,s,n,best] = test(t,'cross',d,c); 
tmin = prune(t,'level',best); 
view(tmin) 
[mincost,minloc] = min(cn); 
plot(n,cn,'b-o',... 
     n(best+1),cn(best+1),'bs',... 
     n,(mincost+s(minloc))*ones(size(n)),'k--') 
xlabel('Tree size (number of terminal nodes)') 
ylabel('Cost') 
grid 
sfitn = eval(tmin,d); 
pct2 = mean(strcmp(sfitn,c)); 
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Appendix B: Pseudo-code for the CBBBIO Technique 

The following pseudo-code computes for the optimal PMU placement for the IEEE 118-bus system based 

on the CBBBIO Technique. The buses of this system that are identified to be critical are: 8, 9, 10, 11, 12, 

26, 30, 38, 49, 63, 64, 65, 66, 68, 80, 81, 92, and 100. Of these, buses 8, 9, 10, 26, 30, 38, 63, 64, 65, 68, 

and 81 are the high voltage buses, buses 12, 49, 80, and 100 are the high connectivity buses (  7 

connections), while the rest (buses 11, 66, and 92) provide redundancy in measurement to the critical 

buses and are hence also critical. The program which performs the optimization based on this 

information is provided below. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                % 

% Program Name: PMU Placement for the IEEE 118-bus system using CBBBIO      % 

%      Technique            % 
%                % 

% Description: Computes optimal PMU placement for the IEEE 118-bus system   % 

%     based on the CBBBIO Technique. High voltage buses and high   % 

%     connectivity buses (  7 connections) were considered     % 

%     critical buses              % 

%                % 

% Author: Anamitra Pal             % 

%     Virginia Tech.            % 

%                % 

% Last Modified: 03/22/2014; 09:52 AM          % 

%                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc 
clear 
 

load A118 % A118 is the incidence matrix of the IEEE 118-bus system 

  
N = length(A); % Number of buses present in the system 

  
% Identifies critical buses present in the system 
xi = zeros(N,1); 
% List of critical high voltage buses 
xi(8,1)=1;xi(9,1)=1;xi(10,1)=1;xi(26,1)=1;xi(30,1)=1;xi(38,1)=1;xi(63,1)=1;xi

(64,1)=1;xi(65,1)=1;xi(68,1)=1;xi(81,1)=1; 
% List of critical high connectivity buses 
xi(12,1)=1;xi(49,1)=1;xi(80,1)=1;xi(100,1)=1; 
% List of extra buses that ensure redundancy of the critical buses  
xi(11,1)=1;xi(66,1)=1;xi(92)=1; 

  
% Defining parameters of the optimization 

f = ones(N,1); 
b = -1*ones(N,1); 
beq = 0; 
fi = f - 2*xi; % This gives priority during the minimization process to the 

PMUs at critical buses 
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tic 
% For Complete Observability 
d = 0; 
Aeq = xi'; % With this Aeq*x=beq=nnz(xi), we ensure that xi must be one for 

the critical buses 
AA = -A; 
x0 = bintprog(fi,AA,b,Aeq,nnz(xi)); % Performs the optimization 
d % Displays the depth of unobservability 
NPMU = f'*x0 % Displays the number of PMUs required 
c = 1; 
for j=1:N 
    if(x0(j)~=0) 
        Loc(c) = j; %#ok<*SAGROW> 
        c = c + 1; 
    end 
end 
Loc % Displays the locations of the PMUs 

  
% For different Depths of Unobservability 
d = 1; 
xold = x0; 
cnt = 0; 
AA = A; 
while NPMU~=18 
    Loc = 0; 
    Aeq = (f - xold)'; 
    A1 = sign(AA); 
    AA = sign(A*A1); 
    xnew = bintprog(fi,-AA,b,Aeq,beq); % Performs the optimization 
    d % Displays the depth of unobservability 
    NPMU = f'*xnew % Displays the number of PMUs required 
    c = 1; 
    for j=1:N 
        if(xnew(j)~=0) 
            Loc(c) = j; %#ok<*SAGROW> 
            c = c + 1; 
        end 
    end 
    Loc % Displays the locations of the PMUs 
    d = d + 1; 
    if(xnew==xold) 
        cnt = cnt + 1; 
    end 
    xold = xnew; 
end 
toc 
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Appendix C: Pseudo-code for the BEPP Scheme 

The following pseudo-code performs community-based partitioning as well as computes for the optimal 

PMU placements in the created partitions in accordance with the BEPP scheme for the IEEE 118-bus 

system. The program is divided into two parts. The first section creates the partitions by eliminating 

branches with the highest weights and then clusters the buses together to form individual islands. The 

second section uses the results obtained in the first section to perform the optimization based on the 

CBBBIO technique for the created islands and then identifies the corresponding locations for PMU 

placement in the original, un-partitioned system. The link between the two sections is the            

file which contains information about the number of islands formed, the branches removed, the final 

incidence matrix of the original system, as well as the buses present in the individual islands. The two 

programs are provided below. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                % 

% Program Name: Community based Island Identification for IEEE 118-bus     % 

%       system             % 

%                % 

% Description: Identifies communities in the IEEE 118-bus system by     % 

%      eliminating branches with highest weights and clusters the   % 

%     buses together to form individual islands       % 

%                % 

% Author: Anamitra Pal             % 

%     Virginia Tech.            % 

%                % 

% Last Modified: 03/22/2014; 10:20 AM          % 

%                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc 
clear 

 

load A118 % A118 is the incidence matrix of the IEEE 118-bus system 

  
Num_island = input('Number of islands: '); % Enter number of islands in which 

the system must be partitioned 

  
tic 
A_org = A; 
n = length(A); 
Brnch = zeros((nnz(A) - n)/2,2); % Computes for the number of branches 

present in the system 
 

% Defining constants used in the optimization 

C = ones(n); 
count = 1; 
number = 0; 
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while number==0 
    % Weight Computation Section 
    % Forming the Depth Matrix 
    Af = eye(n); 
    Depth = zeros(n); 
    i = 1; 
    B = 0; 
    cnt = 0; 
    while cnt==0 
        Ai = Af; 
        if(isequal(Ai,C)==1) 
            cnt = cnt + 1; 
            B = 1; 
        end 
        Af = sign(A*Ai); 
        for j=1:n 
            for k=1:j 
                if(Ai(j,k)==0 && Af(j,k)~=0) 
                    Depth(j,k) = i; 
                end    
            end 
        end 
        if(isequal(Ai,Af)==1) 
            if(B==0) 
                cnt = cnt + 1; 
            end 
        end 
        i = i + 1; 
    end 
    Depth = Depth + Depth'; 
    clear Ai Af  
    % Forming the Vertex Number Matrix 
    Vnum = zeros(n); 
    for i=1:n 
        cnt = 1; 
        Vnum(i,i) = 1; 
        while cnt<=max(Depth(:,i)) 
            for j=1:n 
                if(j~=i) 
                    for k=1:n 
                        if(Depth(j,i)==cnt) 
                            if(A(j,k)~=0) 
                                if(Depth(j,i)>Depth(k,i)) 
                                    Vnum(j,i) = Vnum(j,i) + Vnum(k,i); 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
            cnt = cnt + 1; 
        end 
    end 
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    % Forming the Weight Matrix 
    Wght = zeros(n); 
    for i=1:n 
        W = zeros(n); 
        Anew = A; 
        Anew = Anew - eye(n); 
        for j=1:n 
            for k=1:n 
                if(Depth(j,i)==Depth(k,i)) 
                    Anew(j,k) = 0; 
                    Anew(k,j) = 0; 
                end 
            end 
        end 
        for j=1:n 
            for k=1:n 
                if(Anew(j,k)~=0) 
                    if(Depth(j,i)==max(Depth(:,i))) 
                        W(k,j) = Vnum(k,i)/Vnum(j,i); 
                    end 
                end 
            end 
        end 
        m = 1; 
        while m<=max(Depth(:,i)) 
            for j=1:n 
                if(Depth(j,i)==max(Depth(:,i))-m) 
                    for k=1:n 
                        if(Anew(j,k)~=0) 
                            if(Depth(j,i)>Depth(k,i)) 
                                W(k,j) = (sum(W(j,:)) + 

1)*(Vnum(k,i)/Vnum(j,i)); 
                            end 
                        end 
                    end 
                end 
            end 
            m = m + 1; 
        end 
        Wght = Wght + W; 
    end 
    Weght = Wght + Wght'; 
    Weight = triu(Weght); 
    [r c w] = find(Weight); 
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    % Clustering Section 
    island_number = 0; 
    length_A = length(A); 
    Adjacency_A = A - eye(length_A); 
    node_allocation_status = (1:length_A)'; 
    while sum(node_allocation_status)>0 
        first_unallocated_node = find(node_allocation_status,1,'first');  
        node_allocation_status(first_unallocated_node) = 0;     
        Adjacency_A(:,first_unallocated_node) = 0; 
        current_island(1)= first_unallocated_node; 
        island_node_counter = 1; 
        node_to_be_checked_counter = 2;   
        adjacent_nodes = find(Adjacency_A(first_unallocated_node,:)); 
        check_more_nodes = length(adjacent_nodes);     
        while check_more_nodes>0         
            for i = 1:length(adjacent_nodes)             
                Adjacency_A(:,adjacent_nodes(i)) = 0; 
                current_island(island_node_counter+i) = adjacent_nodes(i); 

%#ok<SAGROW> 
                node_allocation_status(adjacent_nodes(i)) = 0;             
            end         
            island_node_counter = length(current_island);         
            adjacent_nodes = find(Adjacency_A(... 
                             current_island(node_to_be_checked_counter),:));                      
            check_more_nodes = check_more_nodes + length(adjacent_nodes) - 1;         
            node_to_be_checked_counter = node_to_be_checked_counter + 1;       
        end     
        current_island = sort(current_island);   
        island_number = island_number + 1;    
        clear current_island         
    end 
    if(island_number>=Num_island) 
        number = 1; 
    end 
    nmbr = 0; 
    for i=1:length(w) 
        if(w(i)==max(w) && number==0 && nmbr==0) 
            Brnch(count,1) = r(i); 
            Brnch(count,2) = c(i); 
            A(r(i),c(i)) = 0; %#ok<SAGROW> 
            A(c(i),r(i)) = 0; %#ok<SAGROW> 
            count = count + 1; 
            nmbr = nmbr + 1; 
        end 
    end 
    Brnch(~any(Brnch,2),:) = []; 
    clear Wght W Anew Depth Vnum Weght Weight 
end 
disp('Branches to be removed') 
disp(Brnch) 
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% Saving final system configuration 
[len,~] = size(Brnch); 
A = A_org; 
Island = zeros(Num_island,n); 
for j=1:len 
    A(Brnch(j,1),Brnch(j,2)) = 0; 
    A(Brnch(j,2),Brnch(j,1)) = 0; 
end 
island_number = 0; 
length_A = length(A); 
Adjacency_A = A - eye(length_A); 
node_allocation_status = (1:length_A)'; 
while sum(node_allocation_status)>0 
    first_unallocated_node = find(node_allocation_status,1,'first');  
    node_allocation_status(first_unallocated_node) = 0;     
    Adjacency_A(:,first_unallocated_node) = 0; 
    current_island(1)= first_unallocated_node; 
    island_node_counter = 1; 
    node_to_be_checked_counter = 2;   
    adjacent_nodes = find(Adjacency_A(first_unallocated_node,:)); 
    check_more_nodes = length(adjacent_nodes);     
    while check_more_nodes>0         
        for i = 1:length(adjacent_nodes)             
            Adjacency_A(:,adjacent_nodes(i)) = 0; 
            current_island(island_node_counter+i) = adjacent_nodes(i); 
            node_allocation_status(adjacent_nodes(i)) = 0;             
        end         
        island_node_counter = length(current_island);         
        adjacent_nodes = find(Adjacency_A(... 
                         current_island(node_to_be_checked_counter),:));                      
        check_more_nodes = check_more_nodes + length(adjacent_nodes) - 1;         
        node_to_be_checked_counter = node_to_be_checked_counter + 1;       
    end     
    current_island = sort(current_island);   
    island_number = island_number + 1;     
    eval(['Island_' num2str(island_number) '= current_island']);  
    for j=1:length(current_island) 
        Island(island_number,j) = current_island(j); 
    end 
    clear current_island    
end 
toc 

  
save output Num_island Brnch A Island 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                % 

% Program Name: PMU Placement in Islands created using Community-based     % 

%          Partitioning for the IEEE 118-bus system       % 

%                % 

% Description: Computes optimal number of PMUs in the created islands and   % 

%     maps their locations on to the original system      % 

%                % 

% Author: Anamitra Pal             % 

%     Virginia Tech.            % 

%                % 

% Last Modified: 03/22/2014; 10:27 PM          % 

%                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc 
clear 

 

load output 

  
% Critical buses of the original system 
xi_org = [ 8 9 10 11 12 26 30 38 49 63 64 65 66 68 80 81 92 100 ]; 
% Identifying critical buses in the partitioned islands 
c = 1; 
xi_new = zeros(Num_island,length(Island)); 
for j=1:Num_island 
    for k=1:length(xi_org) 
        for l=1:length(Island) 
            if(xi_org(k)==Island(j,l)) 
                xi_new(j,c) = l; 
                c = c + 1; 
            end 
        end 
    end 
end 
% Computing optimal PMU placement for the individual islands 
tic 
NPMUf = 0; 
for j=1:Num_island 
    num = nnz(Island(j,:)); 
    Atemp = eye(num); 
    for k=1:num 
        for l=1:num 
            Atemp(k,l) = A(Island(j,k),Island(j,l)); 
        end 
    end   
    N = length(Atemp); 
    f = ones(N,1); 
    b = -f; 
    beq = 0; 
    xi = zeros(N,1); 
    for k=1:length(xi_new) 
        if(xi_new(j,k)~=0) 
            xi(xi_new(j,k),1) = 1; 
        end 
    end     
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    fi = f - 2*xi; % This gives priority during the minimization process to 

the PMUs at important buses 
    % For Complete Observability 
    Aeq = xi'; % With this Aeq*x=beq=nnz(xi), we ensure that xi must be one 

for the important buses 
    AA = -Atemp; 
    x0 = bintprog(fi,AA,b,Aeq,nnz(xi)); % Performs the optimization 
    NPMU = f'*x0; 
    disp('Number of PMUs for Complete Observability') 
    disp(NPMU) % Displays the number of PMUs required for the individual 

system 
    c = 1; 
    Loc = zeros(1,N); 
    for l=1:N 
        if(x0(l)~=0) 
            Loc(c) = l; 
            c = c + 1; 
        end 
    end 
    Loc(:,~any(Loc,1)) = []; 
    Locf = zeros(1,length(Loc)); 
    for l=1:length(Loc) 
        Locf(l) = Island(j,Loc(l)); 
    end 
    disp('Location of PMUs in individual island') 
    disp(Loc) % Displays the locations of PMUs in the individual island 
    disp('Location of PMUs in original system') 
    disp(Locf) % Displays the locations of PMUs in the original system 
    NPMUf = NPMUf + NPMU; 
end 
toc 
disp('Total number of PMUs required') 
disp(NPMUf) % Displays the total number of PMUs required 
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Appendix D: Pseudo-codes for computing positive sequence phasor at off-nominal frequencies 

The following pseudo-code shows how the positive sequence phasor can be computed at off-nominal 

frequencies. The frequency is first estimated using a suitable sample window. This is then used for re-

sampling the correction factors as well as for transforming the nominal frequency phasors into off-

nominal frequency phasors in accordance with the logic described in [13]. The program which does this 

is provided below. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                % 

% Program Name: Positive sequence phasor computation at off-nominal     % 

%      frequencies using a correction factor and resampling     % 

%                % 

% Description: Computes positive sequence phasors at off-nominal       % 

%     frequencies using a correction factor and resampling. The    % 

%     variable off-nominal frequency is assumed to be a       % 

%     sinusoidal function.           % 

%                % 

% Author: Anamitra Pal             % 

%     Virginia Tech.            % 

%                % 

% Last Modified: 03/22/2014; 10:55 PM          % 

%                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc 
clear 
close all 

  

% Input parameters 
D = 0; % Angular starting point for the waveform in Degrees 
fs = 2880; % Sampling Frequency 
n = 30; % Number of samples per second 
t  = 1:(3600*n); % One hour worth of data at n samples per second 
t_len = length(t); 
% Frequency is a sinusoidal signal lying between 59.85-60.15Hz and changing 

by 1.5mHz/sec.  
f = zeros(t_len,1); 
T_f = 2*(0.3/0.0015); 
for j=1:t_len 
    f(j) = 60 + 0.15*sin(2*pi*j/(30*T_f)); 
end 
N = fs/60; % Number of Samples of the Input Signal to compute first window 
% Computing frequency using an N-sample window 
c = N; 
F = zeros(t_len,1); 
F(1:N) = f(1); 
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while(c<=t_len-N) 
    meanf = median(f(c:c+N-1)); 
    for j=1:N 
        F(j+c) = meanf; 
    end 
    c = c + N; 
end 
f = F; 
a = exp(1i*2*pi/3); % exp(j*120) 
A = (1/3)*[ 1 1 1 ; 1 a a^2 ; 1 a^2 a ]; % Transformation matrix converting 

three phase to symmetrical components 
% Computing the correction factor for off-nominal frequencies by resampling 
P = zeros(t_len,1); 
Q = zeros(t_len,1); 
for j=1:t_len 
    P(j) = (sin(N*2*pi*(f(j)-60)/(2*fs))/(N*(sin(2*pi*(f(j)-

60)/(2*fs)))))*(exp((1i*(N-1)*2*pi*(f(j)-60))/(2*fs))); 
    Q(j) = 

(sin(N*2*pi*(f(j)+60)/(2*fs))/(N*(sin(2*pi*(f(j)+60)/(2*fs)))))*(exp((-1i*(N-

1)*2*pi*(f(j)+60))/(2*fs))); 
    if(f(j)==60) 
        P(j) = 1 + 1i*0; 
        Q(j) = 0; 
    end 
end 

  

% Pure Signal 
VA = zeros(t_len,1); 
VB = zeros(t_len,1); 
VC = zeros(t_len,1); 
for j=1:t_len 
    VA(j) = exp(1i*D*pi/180); 
    VB(j) = exp(1i*((D-120)*pi/180)); 
    VC(j) = exp(1i*((D+120)*pi/180)); 
end 
VAold = VA; 
VBold = VB; 
VCold = VC; 
% Transforming nominal frequency pure phasors into pure phasors at off-

nominal frequencies by resampling 
cnt = 0; 
while(cnt<=t_len-N)     
    for j=1:N 
        VA(j+cnt) = P(j+cnt)*VAold(j+cnt)*exp(1i*j*2*pi*(f(j+cnt)-60)/fs) + 

Q(j+cnt)*conj(VAold(j+cnt))*exp(-1i*j*2*pi*(f(j+cnt)+60)/fs); 
        VB(j+cnt) = P(j+cnt)*VBold(j+cnt)*exp(1i*j*2*pi*(f(j+cnt)-60)/fs) + 

Q(j+cnt)*conj(VBold(j+cnt))*exp(-1i*j*2*pi*(f(j+cnt)+60)/fs); 
        VC(j+cnt) = P(j+cnt)*VCold(j+cnt)*exp(1i*j*2*pi*(f(j+cnt)-60)/fs) + 

Q(j+cnt)*conj(VCold(j+cnt))*exp(-1i*j*2*pi*(f(j+cnt)+60)/fs); 
    end 
    cnt = cnt + N; 
end 
Vpos = zeros(t_len,1); 
for j=1:t_len 
    Vpnz = A*[VA(j) ; VB(j) ; VC(j) ]; 
    Vpos(j) = Vpnz(2,1); 
end 
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Vposmag = abs(Vpos); 
Vposang = unwrap(angle(Vpos)); 

  
% Inserting Unbalance, Ratio errors and PMU errors in individual phases 
% Adding unbalance 
UB = zeros(3,1); 
for j=1:3 
    UB(j) = (1 + 0.05*rand)*exp(1i*10*(rand-0.5)*pi/180); % 0.95 to 1.05% 

mag, +/-5 degree in angles 
end 
VAub = UB(1,1)*VAold; 
VBub = UB(2,1)*VBold; 
VCub = UB(3,1)*VCold; 
% Adding ratio errors 
RE = zeros(3,1); 
for j=1:3 
    RE(j) = (0.94 + 0.12*rand)*exp(1i*8*(rand-0.5)*pi/180); % 0.94 to 1.06% 

mag, +/-4 degree in angles 
end 
VAreub = RE(1,1)*VAub; 
VBreub = RE(2,1)*VBub; 
VCreub = RE(3,1)*VCub; 
% Adding PMU errors 
s = 0.002; % Error in magnitude of 0.2%  
an = 0.104; % Error in angle of 0.104 degree 
PMU = zeros(t_len,3); 
for j=1:t_len 
    for k=1:3  
        PMU(j,k) = (1 + s*randn)*exp((1i*an*randn)*pi/180); 
    end   
end 
VAe = zeros(t_len,1); 
VBe = zeros(t_len,1); 
VCe = zeros(t_len,1); 
for j=1:t_len 
    VAe(j) = PMU(j,1)*VAreub(j); 
    VBe(j) = PMU(j,2)*VBreub(j); 
    VCe(j) = PMU(j,3)*VCreub(j); 
end 
VAeold = VAe; 
VBeold = VBe; 
VCeold = VCe; 
% Transforming nominal frequency impure phasors into impure phasors at off-

nominal frequencies by resampling 
cnt = 0; 
while(cnt<=t_len-N)     
    for j=1:N 
        VAe(j+cnt) = P(j+cnt)*VAeold(j+cnt)*exp(1i*j*2*pi*(f(j+cnt)-60)/fs) + 

Q(j+cnt)*conj(VAeold(j+cnt))*exp(-1i*j*2*pi*(f(j+cnt)+60)/fs); 
        VBe(j+cnt) = P(j+cnt)*VBeold(j+cnt)*exp(1i*j*2*pi*(f(j+cnt)-60)/fs) + 

Q(j+cnt)*conj(VBeold(j+cnt))*exp(-1i*j*2*pi*(f(j+cnt)+60)/fs); 
        VCe(j+cnt) = P(j+cnt)*VCeold(j+cnt)*exp(1i*j*2*pi*(f(j+cnt)-60)/fs) + 

Q(j+cnt)*conj(VCeold(j+cnt))*exp(-1i*j*2*pi*(f(j+cnt)+60)/fs); 
    end 
    cnt = cnt + N; 
end 
Vpos_e = zeros(t_len,1); 
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for j=1:t_len 
    Vpnz_e = A*[VAe(j) ; VBe(j) ; VCe(j) ]; 
    Vpos_e(j) = Vpnz_e(2,1); 
end 
Vpos_e_mag = abs(Vpos_e); 
Vpos_e_ang = unwrap(angle(Vpos_e)); 

  
% Plots 
plot(t,Vpos_e_mag,'b') 
hold on 
% figure 
plot(t,Vposmag,'r') 
xlabel('Time - one hour worth of data at 30 sps') 
ylabel('Positive sequence phasor magnitude (in p.u.)') 
legend('Pos Seq Mag in presence of error','Pos Seq Mag in absence of error') 
figureHandle = gcf; 
set(findall(figureHandle,'type','text'),'fontSize',12,'fontWeight','bold') 
figure 
plot(t,angle(Vpos_e),'b') 
hold on 
% figure 
plot(t,angle(Vpos),'r') 
xlabel('Time - one hour worth of data at 30 sps') 
ylabel('Positive sequence phasor angle (in radians)') 
legend('Pos Seq Ang in presence of error','Pos Seq Ang in absence of error') 
figureHandle = gcf; 
set(findall(figureHandle,'type','text'),'fontSize',12,'fontWeight','bold') 

  
% Comparison 
abs_mean_E = abs(mean(RE.*UB)); 
angle_mean_E = angle(mean(RE.*UB)); 
mean_mag_Vpos = mean(Vposmag); 
mean_mag_Vpos_e = mean(Vpos_e_mag); 
mean_ang_Vpos = mean(Vposang); 
mean_ang_Vpos_e = mean(Vpos_e_ang); 
R_mag_Vpos = mean_mag_Vpos_e/mean_mag_Vpos; 
R_ang_Vpos = mean_ang_Vpos_e - mean_ang_Vpos; 
mag_error = abs_mean_E - R_mag_Vpos; 
ang_error = angle_mean_E - R_ang_Vpos; 
disp(mag_error) 
disp(ang_error) 

 

 

 

 

 

 


