Optimizing, Testing, and Securing Mobile Cloud Computing Systems for Data Aggregation and Processing

Hamilton A. Turner

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Engineering

C. Jules White, Chair
Jeffrey H. Reed
T. Charles Clancy
Douglas Schmidt
Kevin Kochersberger

Nov 20, 2014
Blacksburg, Virginia

Keywords: Mobile Cloud Computing, Locational Anonymity, Deployment Optimization, Distributed Smartphone Emulation
Copyright 2014, Hamilton A. Turner
Optimizing, Testing, and Securing Mobile Cloud Computing Systems for Data Aggregation and Processing

Hamilton A. Turner

ABSTRACT

Seamless interconnection of smart mobile devices and cloud services is a key goal in modern mobile computing. Mobile Cloud Computing is the holistic integration of contextually-rich mobile devices with computationally-powerful cloud services to create high value products for end users, such as Apple’s Siri and Google’s Google Now product. This coupling has enabled new paradigms and fields of research, such as crowdsourced data collection, and has helped spur substantial changes in research fields such as vehicular ad hoc networking.

However, the growth of mobile cloud computing has resulted in a number of new challenges, such as testing large-scale mobile cloud computing systems, and increased the importance of established challenges, such as ensuring that a user’s privacy is not compromised when interacting with a location-aware service. Moreover, the concurrent development of the Infrastructure as a Service paradigm has created inefficiency in how mobile cloud computing systems are executed on cloud platforms.

To address these gaps in the existing research, this dissertation presents a number of software and algorithmic solutions to 1) preserve user locational privacy, 2) improve the speed and effectiveness of deploying and executing mobile cloud computing systems on modern cloud infrastructure, and 3) enable large-scale research on mobile cloud computing systems without requiring substantial domain expertise.

Contents

1 Introduction ... 1

2 Key Challenges of Mobile Cloud Computing ... 3
 2.1 Motivating Scenario ... 3
 2.2 Open Research Problems in Mobile Cloud Computing 5
 2.2.1 Research Gap 1: Locational Data Can Compromise the Anonymity of Mobile Users ... 5
 2.2.2 Research Gap 2: Predicting and Optimizing Performance of MCC Systems on Modern Cloud Infrastructure 7
 2.2.3 Research Gap 3: Existing Testbeds are Unsuitable to MCC Systems 9

3 Related Work .. 10
 3.1 Preserving User Locational Privacy ... 11
 3.2 Deploying Mobile Cloud Systems .. 15
 3.3 Large-Scale Mobile Cloud Testing ... 16
 3.3.1 Smartphone Testbeds ... 16
 3.3.2 Related Work in Other Research Domains ... 19

4 Algorithmically Balancing User Anonymity and Data Precision 20
 4.1 Overview of Solution Approach to Research Gap 1 20
 4.2 Challenges of Enforcing K-anonymous Tessellation 21
 4.2.1 Unknown Data Reading Distribution Makes Region Tessellation Difficult 21
 4.2.2 Volatile Data Reading Distribution makes Balancing Privacy and Data Precision Hard .. 22
 4.3 Research Gap 1 Solution Details: Anonymous Polygon Region Tessellation using Anonoly ... 23
 4.3.1 Overview of Anonoly ... 23
 4.3.2 Model of Anonoly ... 25
 4.3.3 Anonoly Execution ... 27
 4.3.4 Ranking Regions By Resize Priority ... 29
5.7 Challenges of Optimizing Task Execution Time on a Multi-core Computing System
5.7.1 Complexity of Multi-core Deployment Optimization Necessitates Algorithm Scalability
5.7.2 Interdependent Constraints Complicate the Use of Heuristics
5.7.3 Comprehensive Testing of An Algorithm for MCDO is Hard
5.8 Solutions Details for SA+ACO Hybrid Deployment Optimization Algorithm
5.8.1 Mapping Simulated Annealing into Multi-core Deployment Optimization
5.8.2 Mapping Ant Colony Optimization into Multi-core Deployment Optimization
Pheromone Matrix Representation And Use
Pheromone Matrix Updating
5.8.3 Integrating SA and ACO Into SA+ACO
5.9 Experimental Results and Validation For Multi-Core Deployment Optimization
5.9.1 Experimental Platform
5.9.2 Comparing To Known Optimal
5.9.3 Runtimes of ACO and SA+ACO
5.9.4 Score Comparison of SA+ACO and ACO
5.10 Contributions and Significance
6 Large-Scale Distributed Smartphone Emulation
6.1 Overview of Solution Approach to Research Gap 3
6.2 Challenges of Large-Scale Distributed Smartphone Emulation
6.2.1 Error-prone, Resource Intensive Agents Increase the Difficulty of Creating Stable Large-Scale Simulations
6.2.2 Multiple Software/Hardware Platforms Increase Difficulty of Simulation
6.2.3 Large-scale IoT/mobile device Orchestration Requires a Complex Input Model
6.3 Research Gap 3 Solution Details
6.3.1 Architecture of Clasp
HTTP REST Interface
WebSocket Interface
Hybrid Remote API Usage
Connecting to TCP services on Worker Nodes
6.3.2 Complex, Error-Prone Agents
6.3.3 Providing User Input To Android Emulators Using Clasp
6.3.4 Addressing Failure and Recovery of Smartphone Emulators
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tessellation of the Dartmouth Campus</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Task Dependency Graph for Program with 9 tasks and 4 Execution Priority Levels</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Evolution of Anonym’s Generated Tessellation Map</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Anonym vs Static Tessellation Over Two Months</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Anonym vs Static Tessellation; Oct 24-Oct 31 Timespan</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>Anonym vs Static Tessellation; Nov 7-Nov14</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>Anonym vs Static Tessellation; Nov 21-Nov 28 Timespan</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>Anonym vs Static Tessellation Quality of Service; 6 Week Timespan</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>Achieved vs Desired K-anonymity; Two Month Timespan</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>Overview of Solution. Inputs are Desired QoS and either Application or Application Description, while LXC Soft-Limit Execution Parameters Are Outputs</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>Common Resource Consumption Patterns During Testing. (Green, yellow, and red indicate light warmup, heavy warmup, and benchmarking respectively)</td>
<td>51</td>
</tr>
<tr>
<td>12</td>
<td>Average Latency Overhead of Docker Container at Different Concurrency Levels</td>
<td>53</td>
</tr>
<tr>
<td>13</td>
<td>OpenResty Performance, Grouped by CPU Limiting Method Used</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>OpenResty Performance on Percentages of One Hardware Thread</td>
<td>56</td>
</tr>
<tr>
<td>15</td>
<td>OpenResty Performance, Grouped By Number of Worker Processes</td>
<td>57</td>
</tr>
<tr>
<td>16</td>
<td>OpenResty Average and Maximum Latency, Grouped By Number of Worker Processes</td>
<td>58</td>
</tr>
<tr>
<td>17</td>
<td>Performance Prediction Models Versus CPU Constraint</td>
<td>60</td>
</tr>
<tr>
<td>18</td>
<td>Prediction Error Up To 120 Tenants Per Host</td>
<td>61</td>
</tr>
<tr>
<td>19</td>
<td>Makespans achieved by SA+ACO for different combinations of input parameters. Each contour line indicates a rise of 0.5 in the log(makespan)</td>
<td>73</td>
</tr>
<tr>
<td>20</td>
<td>Comparison to known optimal values made by using Equation 10. Thick vertical lines indicate data median. 1152 samples per Algorithm.</td>
<td>76</td>
</tr>
<tr>
<td>21</td>
<td>Density distribution of runtimes of SA+ACO and ACO</td>
<td>77</td>
</tr>
<tr>
<td>22</td>
<td>Percent Change from ACO score to SA+ACO score across the entire range of input parameters.</td>
<td>78</td>
</tr>
<tr>
<td>23</td>
<td>Enabling Internet Software Integration With Clasp</td>
<td>88</td>
</tr>
<tr>
<td>24</td>
<td>EmulatorActor Finite State Machine</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>Real-time view and control of remotely-hosted mobile device emulators</td>
<td>94</td>
</tr>
<tr>
<td>26</td>
<td>Node Resources Consumed on Emulator Boot with No Hardware Acceleration</td>
<td>100</td>
</tr>
<tr>
<td>27</td>
<td>Worker Node Degradation When Launching 80 Emulators with Clasp</td>
<td>102</td>
</tr>
<tr>
<td>28</td>
<td>Android 4.0 x86 Emulator Boot Time As a Function of Emulators Already Running (bars indicate SEM)</td>
<td>102</td>
</tr>
</tbody>
</table>
Timing Common Tasks on Android 4.0 x86 Emulators. Two outliers are not shown: (None, install, 15.5 seconds) and (None, keypress, 13.5 seconds).

Task Queue Throughput Grouped By Active Emulators
List of Tables

1 OpenResty Mean Average and Mean Maximum Latency at 10% CPU, Grouped By Number of Worker Processes ... 58
2 Comparison of Median Achieved Scores. Task sizes included are [50, 100, 300, 500, 750, 1000]. 76
3 Examples of REST API provided by Clasp .. 88
4 Examples of WebSocket publisher-subscriber channels available 90
1 Introduction

The emergence and subsequent prevalence of smart mobile devices has led to a number of highly context-aware technologies, such as the Google Now and Siri digital assistants which can monitor user’s calendar, location, social networks, and other data streams to provide highly-relevant recommendations and information. Simultaneously, purchasing cloud computing services from providers such as Google (App Engine) and Amazon (Elastic Compute Cloud) has become a mechanism to reduce capital costs, ensure rapid scalability, and reduce maintenance complexity. Mobile cloud computing (MCC) studies the integration of these two technologies to enable seamless mergers of high-power high-context computing, such as real-time recognition of objects or faces in a mobile device video feed.

While the field of mobile cloud computing has grown rapidly, and multiple systems exist that utilize both smartphone devices and cloud services, there are nontrivial challenges to continued growth of mobile cloud computing. An increasingly important concern is the need to balance the contextual awareness of systems with user expectations of privacy and anonymity. This tradeoff is complex, as many MCC services provide value through integration of multiple potentially-private data streams. Removing even one of these streams can drastically reduce MCC service capabilities. However, attacks exist whereby an attacker can use private information, such as user location, to derive addition private information, such as health records. Chapter 4 presents Anonoly, an algorithm to automatically balance the need for highly-accurate location context data with the desired anonymity of a user.

The growth of mobile cloud computing has also raised a number of questions on effective use of
cloud infrastructure. While commercial mobile cloud computing systems require a precise valuation for purchase of services such as cloud infrastructure, multiple challenges currently prevent simple collection of application performance information. This inability to effectively predict performance is the root challenge for a number of open issues with mobile cloud computing, such as deploying mobile cloud computing systems onto the cloud for optimal performance, or determining if the cloud provider is properly delivering purchased hardware. Chapter 5 discusses my research in modeling quality of service metrics, such as user requests serviced per second, as a function of cloud infrastructure. Additionally, Chapter 5 discusses my work ensuring that purchased cloud hardware fully utilized, and shows that minor improvements in utilization of each host can have drastic effects in a service under peak load.

The final challenge addressed in this dissertation is the lack of realistic testing methodologies for mobile cloud computing architectures. Standard modeling and simulation solutions for testing of large-scale distributed systems do not map well to mobile device testing, due the complex agents required to emulate mobile devices and the range of mobile operating systems present in the marketplace. For example, the most widespread major version of Android, Google’s smartphone operating system, represents only 36% of the Android ecosystem, with at least seven other major versions representing significant percentages, and non-Android OSes also present. Chapter 6 presents Clasp, a solution for executing mobile cloud computing system tests involving thousands of mobile devices without requiring intense domain expertise to configure low-level details of mobile device operating systems.

The remainder of this dissertation is organized as follows: Chapter 2 identifies key gaps in the existing research and presents a motivational scenario to clarify the current limitations of mobile
cloud computing. Chapter 3 provides a comprehensive literature review for each specific challenge. Chapters 4 through 6 present each solution in detail, including details on the algorithm or software being presented and empirical validation showing performance compared to prior art. Chapter 7 concludes with a summary of the key research contributions gained from this dissertation.

2 Key Challenges of Mobile Cloud Computing

2.1 Motivating Scenario

The common usage of both mobile computing and cloud computing has created many new opportunities and challenges. This section outlines an example scenario which makes the potential advantages of mobile cloud computing clear, and is loosely based on real-world services [1, 2].

Dexoco, a young mobile development company, chooses to release an Android application that allows consumers to monitor their mobile carrier’s data network. The application occasionally samples the mobile data network’s characteristics, such as latency and download bandwidth, and uses the device GPS to associate the sample with a precise latitude-longitude coordinate. Each sample is uploaded to the a server program which aggregates samples and generates heat maps to summarize the performance of the mobile data network in various geographic locations. Dexoco plans to profit by selling raw data to mobile network operators, who are excited about the vast array of accurate, real-time data on the health and performance of their network. In order to make their raw data more desirable, Dexoco collects additional information about user behavior, such as installed applications and browsing habits. Both Dexoco’s users and the mobile network
companies are thrilled with the final product.

However, Dexoco developers quickly realize that selling raw data to the networks will violate the privacy of their user base. For each data point, Dexoco’s raw data contains fields for the collection timestamp, user ID (randomly-generated), the GPS location of the data, the network metrics collected, installed applications and browsing habits. Cellular companies have realized that their internal logs of which mobile devices connected to which cellular towers allow them to associate the Dexoco user ID field with their cellular subscriber identity field. The cellular company can now identify the precise GPS location of their subscribers using the Dexoco data, as well as associate browsing habits and installed applications with specific customers. Chapter 4 discusses approaches Dexoco can use to ensure customer privacy without sacrificing their business model.

Dexoco’s next challenges emerge as a result of growth. The increase in users has led to the use of Amazon’s Elastic Compute Cloud, but the total expense remains high. In addition to traditional mechanisms of reducing application resource consumption, Dexoco must accurately predict the tangible benefits of purchasing cloud services and automate the process of purchasing services during peak hours. New cloud infrastructure models based on Linux containers report substantially lower costs due to higher hardware sharing, but it is unclear how Dexoco’s software will perform in this environment. Chapter 5 details solutions to Dexoco’s challenge of cloud resource allocation.

In addition to reducing cost, Dexoco must also ensure their application works properly for all new users. The Android ecosystem is hugely fragmented, and it is infeasible to purchase all device models for testing purposes [2]. Standard testing methodologies are incapable of addressing testing Dexoco’s ecosystem, where large numbers of mobile devices, simulating (or emulating) a large
number of different flavors of Android OS, must be simultaneously run the Dexoco application. Chapter 6 defines solutions for dealing with this challenge, such as constructing mobile device testbeds that enable this.

2.2 Open Research Problems in Mobile Cloud Computing

This section outlines primary gaps in the research on mobile cloud computing. For each research gap I discuss the background and current context. While substantial systems have been constructed using mobile cloud computing technologies, there remain a number of challenges to the next generation of mobile cloud computing systems. This section outlines the key gaps in existing research.

2.2.1 Research Gap 1: Locational Data Can Compromise the Anonymity of Mobile Users

One major milestone impeding the development of a mobile cloud computing system is the need to avoid unexpected security and privacy concerns. Mobile operating systems are designed with features, such as Android’s permission model, to help application developers navigate these considerations. However, there are frequent reports of insecure mobile applications. Similarly, cloud virtualization technologies such as a hypervisor are designed to isolate customer virtual machines, yet there are still security issues that prevent businesses from trusting sensitive data in shared-host environments [3]. In order to avoid substantial legal challenges and to effectively protect valuable data, creative solutions to the privacy and security challenges of mobile cloud computing environments have to be created.

One of the largest known risks for mobile cloud computing applications is sensitive data collected
via smartphone data collection systems. Smartphone data collection systems are currently used for a variety of applications, such as health monitoring [4], CO$_2$ emission tracking [5], traffic accident detection [6], traffic flow measurement [7], and cardiac patient monitoring [8]. Additionally, multiple middleware layers enable rapid creation and deployment of smartphone data collection applications [9–12].

Open Problem ⇒ **Location Data from Smartphone-powered Data Collection Systems can be Used to Invade the Personal Privacy of Users.** One major challenge of using smartphones for data collection is the ability to leverage a user’s known location to determine what data was submitted by a user. For example, in a remote health monitoring system, if each health report includes the location of the user, then an attacker could follow the user and utilize the user’s location to determine which health report was his or hers. Conversely, if specific information about the user is known, such as hair color, eye color, and weight, the attacker could potentially use this information to filter the data reports and determine the user’s exact latitude and longitude. While query-based systems, such as location-assisted search, often intentionally provide the user’s exact location, information gathering applications should be able to operate without compromising the privacy of the user.

One promising approach of both protecting user’s location data and helping to prevent location data from being used to identify other private user data is geographical k-anonymity [11]. Geographical k-anonymity involves making an informed guess regarding the temporal and spatial distribution of incoming data, and using this assumption to logically break a geographical area into a number of regions [11] that each contain a minimal number of data readings, as shown in Figure 1. After sharing this tessellation map with end-user smartphone devices, devices can report regional id’s in-
stead of specific latitude/longitude locations. If the real-world incoming data distribution matches the assumption used to generate the regional tiles, then the incoming data will have the property of being k-anonymous, where at least k data readings are indistinguishable from one another [11,13]. This ambiguity prevents an attacker from determining users’ exact location or from associating other private user data using user location.

![Tessellation of the Dartmouth Campus](image)

Figure 1: Tessellation of the Dartmouth Campus

A good k-anonymity tessellation map is critical for preserving user privacy in a smartphone-powered data collection system. A key challenge with current tessellation approaches for k-anonymity is that they use a static, one-time tessellation based on predictions about the data that will enter the system. If the expected prediction used to generate the tessellation differs too much from the actual incoming data, the algorithms experience quality of service failures where either privacy is not preserved, or data precision is reduced needlessly.

2.2.2 Research Gap 2: Predicting and Optimizing Performance of MCC Systems on Modern Cloud Infrastructure

Mobile cloud computing developers have a broad range of hardware packages available for purchase from cloud systems. The offered packages are typically an unmodifiable set of discrete steps, such as 1024MB of memory and 1.2GHz processor. Deploying software solutions onto this platform is challenging, as a developer must choose which of the configurations will most effectively
meet developer goals. This is a complex optimization challenge, and is made much harder due to the interference effects of other software running on the same hardware, which can cause unexpected variance in software performance [14]. Inaccuracies can result in substantial negatives, such as loss of income or customers. There is therefore substantial interest in precisely understanding the value of purchasing specific cloud computing services, which is most easily measurable as the difference in software quality of metrics.

Additionally, cloud providers such as Amazon EC2 use multiple underlying hardware systems to host virtual machines [14]. These host systems are frequently multi-core systems intended to run multiple independent workloads simultaneously. However, there are a number of challenges to effectively utilizing all cores. While software can typically be broken into a number of separate tasks, there are a number of constraints that make it difficult to determine which tasks should be executed on which processing cores. One formalization of this is Multi-core Deployment Optimization, or MCDO, which aims to provide a mapping of software tasks onto hardware processors in such a way that an objective function, typically the makespan or overall execution time of all jobs, is minimized. In the general case, and even in many cases with relaxed assumptions, obtaining optimal mappings has been shown to be NP-Hard [15, 16]. While substantial research exists on the MCDO problem, most of the research includes a number of simplifying assumptions that reduce the usefulness of the final results [17–19].

Open Problem ⇒ **Rapidly Creating Minimal Execution Time Deployments on Heterogeneous Processors with Communication Costs.**

Within the context of MCDO, there has been substantial work on addressing the challenge under a number of assumptions. These assumptions typically include simplifications such as homoge-
neous computing nodes, no communication delays between nodes, or an infinite supply of computing nodes. However, until recently there has been less focus on the more general version of the challenge, which relaxes the assumptions of homogeneous processors and zero communication delays. Each software task has pre-established dependencies, as shown in Figure 2, that restrict a task from running until all of its predecessor tasks have completed. If a task A and its dependency task A' are executed on different processing cores P and P', then a message must be routed from P' to P upon completion of A'. The time required to route this message is dependent upon the two processing cores in question, as neighboring cores can communication more quickly than remote cores. Moreover, each processing core is considered heterogeneous, so some cores will execute software tasks rapidly while others will execute tasks slowly.

![Task Dependency Graph for Program with 9 tasks and 4 Execution Priority Levels](image)

Figure 2: Task Dependency Graph for Program with 9 tasks and 4 Execution Priority Levels

2.2.3 Research Gap 3: Existing Testbeds are Uns suited to MCC Systems

The proliferation of mobile smartphone platforms, including Android devices, has triggered a rise in mobile application development for a diverse set of situations. This in turn has contributed to the
rise of mobile cloud computing. Testing of these applications can be exceptionally difficult, due
to the challenges of orchestrating production-scale quantities of smartphones, such as difficulty in
managing thousands of sensory inputs to each individual smartphone device. Moreover, the wide
range of technologies involved in the traditional mobile cloud computing application makes system
testing challenging. Even simple tests require 3-4 different testing frameworks, and isolation of
errors is not as simple as for unit test scenarios.

High profile Android applications such as Facebook have been downloaded by millions of users
[20]. Without a large crowd to test a large-scale application, reliability and performance are difficult
to predict, as shown in a pilot study by Langendoen et al. [21]. Using emulators for application
testing is well-suited for small-scale scenarios, but large-scale emulator orchestration for realistic
network activity simulations is difficult with current technologies.

A number of exploratory frameworks and testbeds for mobile research exist, such as clouds of
physical devices provide interfacing with either personal smartphones or dummy smartphones
[22–24]. However, using personal devices restricts resource and battery consumption, and using
physical devices is expensive and introduces hardware challenges, such as USB interfacing,
when scaling to thousands of devices.

3 Related Work

Mobile Cloud Computing is a relatively young research topic related to both mobile computing and
cloud computing. While some related work specifically targets mobile cloud computing, much of
the relevant literature is organized under the more specific scopes of either mobile computing or
cloud computing. This chapter provides a taxonomy of related literature for each of the gaps in research identified in Chapter 2.2.

3.1 Preserving User Locational Privacy

Multiple methods of preserving user locational privacy in smartphone data collection systems have been proposed, none of the proposed approaches fully secures the privacy of users. The naive approach of removing user identifiers from data reports does very little to prevent de-anonymization, and reports can easily be reassociated with specific users given small amounts of additional information about the user. Slightly more secure methods require a client to expose sensitive information to a non-trusted source, such as the server or network peer, which then adds privacy and anonymity to the data using a more robust method [11, 25–29]. However, requiring sharing of sensitive data is a key weakness of these methods, and new approaches have been proposed to reduce data fidelity on a client device, so that no untrusted parties are needed for the data obfuscation [30, 31]. However, reducing data fidelity (such as reducing locational accuracy) is not by itself guaranteed to provide anonymity, and these approaches often create a false sense of security. For example, generic rules, such as only reporting location to an accuracy of $\frac{1}{2} \text{mi}^2$, are ineffective if there are only a few points of interest within each $\frac{1}{2} \text{mi}^2$ area and the probable location can be inferred to be a point of interest.

Spatial or temporal blurring reduces the precision of data readings to help ensure the privacy of the user’s location [32]. For example, users may choose to only report their location to an accuracy of within 1 mile. Temporal blurring, which is the obfuscation of time, increases the range of possible time values that a particular data reading may have been generated [33]. There are
tradeoffs between the amount of blurring and the usefulness of incoming data. For example, if a user reports that he is in North America due to spatial blurring, it would be impossible to draw locational conclusions about users from two different states in the continent, or if a data reading is timestamped to a day-resolution level, it would be impossible to track change minute-by-minute.

One challenge with spatial and temporal blurring is the difficulty determining how much blurring is required to ensure anonymity. For example, if there are one-hundred data readings generated within a five-minute time window originating from within a football stadium, then a good spatial precision level would be ‘inside football stadium.’ Expanding this example to a continent shows that the same level of privacy cannot be guaranteed because now specific users can be associated with specific countries/states (e.g. user X lives in Alaska, and therefore the one data reading from Alaska is likely from user X).

However, blurring does not guarantee privacy. Entering data reports with very imprecise locations may seem secure, but there is no guarantee that multiple data reports were entered for each imprecise location region. An attacker that knows a user’s approximate location when the data was reported may reassociate that user and their data report with minimal difficulty, because there are very few reports from that location at that time.

K-anonymity is a method that groups and manipulates data so that 'k' data items are indistinguishable from one another, which solves the issues of simply applying spatial or temporal blurring. This method is typically applied only after the data has been received, so the system can ensure that there are at least k-1 data readings in the same locational region [32, 34, 35]. This requires smartphone users to share their private data with nontrusted sources, who then anonymize the data. By sharing a tessellation map with end-user devices, Anonoly ensures k-anonymity without requiring users
to share private data.

While the guaranteed anonymity provided by k-anonymity addresses the issues of spatial/temporal blurring, the method does create some additional challenges. K-anonymity requires non-local data manipulations that the client must trust when the server performs blurring, which allows for a possible theft or leakage of private location data. Researchers have attempted to address the possibility of theft by generating peer-to-peer methods of anonymizing data, but the methods require a user to trust at least k-1 other users their his/her personal data (and they frequently require that k-1 users must be online at the time a user wants to submit a data reading) [36, 37].

Region generation is the tessellation of a large area into multiple regions, where each region has an identifier that is valid to submit to the smartphone data collection system as a localization method [11]. Predictions about incoming data-report locations and times are used to generate the regions, and if these predictions match the actual incoming data space/time distribution, then incoming data reports will be k-anonymous. A key issue is that it is not always possible to predict the location and time distribution of data readings in advance, and therefore anonymity can be unexpectedly violated. Moreover, the distribution will likely change over time, rendering the original assumption incorrect and this method ineffective. Anonoly operates by updating its assumption over time, thereby reflecting a much closer approximation to the real-world data.

This method is not well suited to scenarios where the distribution of data reading locations and times vary. In response to a major variance in the data reading locations, the tessellation algorithm has to regenerate with a new training set of data. For example, Kapadia et al. show that their method works well from 6:00 - 10:00 PM, but for data reading locations provided before 6:00 PM, a new tessellation map is needed (assuming that the wireless access point association data looks
substantially different from disparate time windows).

While prior work has operated within the assumption that the temporal and spatial distribution of incoming data readings can be known a priori by using sample data to pre-generate regions, there are multiple environments where it is impossible or impractical to obtain these early samples. For example, much of the benefit of smartphone-based data collection systems is the potential to gather field data from locations where there are not a large number of sensors available. In a smartphone data collection system for mapping cellular signal strength, the primary benefit of using smartphones may arise from sensor readings within rural or less populated regions, such as on hiking trails. However, predictions of the temporal and spatial distribution of incoming data readings from hikers on various trails is challenging, as there are no available datasets on the number of hikers that carry their smartphones on such trips.

Range and nearest neighbor queries (NN) are user requests to a location-based service provider to obtain information about nearby points of interest in a particular category.

Examples of NN queries include: “where is the nearest gas station to my location?” or “what restaurants are nearby?”. These queries are similar to data collection systems in that the user’s location information is vital to the relevance of the input data, but differ in that NN queries result in a response being sent back to the user with the requested information. In contrast, messages sent to a data collection system do not involve a reply, which creates different privacy needs. For example, NN queries often include some form of identifier to enable customization of the response or verification that the user has permission to access the requested data. This results in a range of privacy challenges and solutions centering around the malicious use of id’s to expose users [38–41], many of which require users to share their private location data with third parties such as trusted
servers or trusted peers.

3.2 Deploying Mobile Cloud Systems

The challenge of optimizing task deployment in a multi-core system, formalized as Multi-core Deployment Optimization (MCDO), has been extensively studied. Most work in this field contains a number of simplifying assumptions due to the problem difficulty. For example, [18] does not consider communication delays between processors. [19] do not consider communication latency’s caused by limited bus bandwidth. [42] does not consider the general case of MCDO, as the work focuses on energy usage. An excellent taxonomy of related work in static resource allocation is presented in [17], including earliest-time-first, modified critical path, and the localized allocation of static tasks.

Heuristic and Metaheuristic Algorithms Heuristic techniques, such as opportunistic load balancing [43], are intended to solve problems in a ‘best guess’ manner, and have become increasingly popular on NP-Complete and NP-Hard problems. Heuristics are often specifically crafted to address a single problem type in a specific context. A generalized heuristic technique which makes very few assumptions about the structure of the problem is termed a metaheuristic. Common metaheuristics include simulated annealing, tabu search, ant colony optimization, genetic algorithms, and others. For the optimization of task scheduling, genetic algorithms in particular have been used quite heavily as a metaheuristic approach [44].

Approximation Algorithms can be viewed as formally verified heuristics, and have known performance on specific problem types as well as known run-time bounds. Approximation algorithms
are popular for guaranteeing a level of confidence in a solution to complex optimization challenges.

3.3 Large-Scale Mobile Cloud Testing

Due to the far-reaching academic and commercial implications of testbeds for production-scale networks of mobile devices, a range of new research ideas have emerged to enable this. Most research falls under the taxonomy of **smartphone testbeds**, which we see as currently composed of sub-categories for *Device Clouds*, *Participatory Frameworks*, and *Distributed Emulation*. We first discuss this directly-related area of research, and then briefly summarize work in other fields that can be applied to the challenges of large-scale smartphone testing.

3.3.1 Smartphone Testbeds

Smartphone testbeds are research solutions directly intended to enable some form of large-scale experimentation with smartphone devices.

Device Clouds are composed of a number of physical smartphone devices, typically exposed to experimenters through a web-based interface. This is a variation of traditional *clouds* of general purpose computers. For example, the SmartLab is comprised of smartphones connected to a web interface [24]. SmartLab allows web-based uploading of applications or files, remote shell, re-booting of devices, etc. The service currently has 40 physical devices online and is available for researcher use.

Currently, device clouds are limited by the number of devices available and the inherent difficulty of interconnecting them. Without research enabling physical device sharing, there are concerns
about the viability of scaling this approach to networks of thousands of devices.

Participatory Frameworks is a variant of device clouds where the devices used are not purchased and dedicated to the cloud, but are instead end-user devices connected into the experimentation suite. End users may either be volunteering or receiving some form of compensation. For example, PhoneLab by the University of Buffalo [22] is an effort in this area. To initially seed their pool of devices, they distributed a large number of NSF/Sprint subsidized smartphones to students. In exchange for use of the smartphone and a free year of cellular services, participants allowed PhoneLab to 1) track data such as applications used, location, or network signal strength, 2) push ‘experiment’ applications that interact with users.

The Pogo framework [23], based on a similar concept, provides a JavaScript-based interface to allow non-domain experts to utilize smartphones for research.

While participatory frameworks in some ways solve the cost concerns of device clouds, they are also limited to small numbers of devices available and the difficulty of interconnecting devices. They are also restricted to experiments that will not potentially cause harm, such as installing malware on end-user devices or running software that might break the device.

Distributed Emulation is the process of running a large number of smartphone emulators on different physical hosts and creating an experimentation environment on top of this distributed system. Substantial work in this domain has all been performed with the open-source Android OS. One of the first significant results in this domain was MegaDroid, a 500+ node cluster costing $500,000 and capable of emulating 300,000 Android emulators [45]. Unfortunately, we could find no source code or peer-reviewed work explaining how MegaDroid achieves these results. From
the limited information available, MegaDroid appears to be using a heavily modified Android emulator, limited to a single Android version [45], and is currently incapable of allowing fine-grained control of emulator user input [46].

The next promising results in this domain are Similitude, which focuses on network interconnection of Android emulators [47]. By using ns-3 to route information between distributed emulators, and using SimMobility to address time stepping in the distributed environment, Similitude is capable of simulating multiple types of network environments, such as 3G, LTE, Vehicular Ad-hoc Networks, etc. However, Similitude requires non-trivial source code modifications to each application used, such as replacing the Android LocationManager with Similitude’s own location provider, and only allows a single version of the Android OS.

Of note is the for-profit service Manymo, which uses distributed emulation to allow developers to connect to remote Android emulators for faster development [48].

One significant challenge for distributed emulation is the current lack of support for hardware-assisted virtualization on public cloud providers, such as Amazon EC2. Mobile device emulators perform substantially better and consume fewer resources when capable of utilizing host hardware directly. Some cloud providers, such as DigitalOcean, have begun to enable hardware-assisted virtualization within their already-virtualized environments [49]. This hardware-assisted virtualization-within-virtualization allows a single host to run substantially more emulators than software-assisted virtualization, and therefore can drastically reduce the cost of large-scale distributed emulation.

Clasp is a combination of distributed emulation and a device cloud. It is distinct from other work in that it allows multiple types of Android devices, allows complex dynamic interaction with
3.3.2 Related Work in Other Research Domains

This section highlights work from related domains that is relevant to the large-scale distributed emulation provided by Clasp.

Network and Distributed Agent Testbeds, such as Emulab, PlanetLab, GENI, ns-2, OPNET, and others provide various mechanisms for experimenting with network protocols or running large-scale distributed simulations [50–54]. The primary challenge with simulation-based large-scale smartphone networks is that the programming models of modern smartphone devices are so flexible that the simulation of each agent becomes very challenging. Different models must be constructed for each OS type, OS version, Application, Application version, etc. However, there is a large potential to integrate these systems with distributed emulation smartphone testbeds, such as the manner used by Similitude [47].

Mobile Systems Testbeds enable experimentation with physical mobile systems (not necessarily smartphones). One of the largest is the DOME system [55], which covers an area of 150 square miles and has thousands of access points.

Wireless Sensor Network Testbeds enable experimentation with small mobile devices outfitted with sensors, typically with considerations such as longevity of battery. MoteLab [56] is a prime example of this work.
4 Algorithmically Balancing User Anonymity and Data Precision

Both mobile devices and cloud services have substantial privacy and security challenges to overcome. As referenced in Sections 2.2.1 and 2.1, many mobile cloud computing systems utilize user’s location. This can cause drastic privacy violations, and new mechanisms to mitigate these issues are required.

4.1 Overview of Solution Approach to Research Gap 1

To ensure user privacy in smartphone data collection systems, we present a tessellation algorithm, called Anonoly e.g. ANONymous pOLYgons, that addresses the potential failures present in current static tessellation approaches by continually updating the tessellation map based upon incoming data. As discussed above, a tessellation map that consistently reflects the real-world can preserve both user anonymity and data precision. Anonoly is a general solution to creating tessellation maps, which are comprised of regions, where each region is defined as a contiguous collection of tiles. Tiles, such as small squares or triangles, define the size and shape of the smallest differentiable unit of real-world geographic data in the tessellation map. Anonoly continuously samples both the location and the time of incoming data reports, and uses this information to generate and revise predictions about future incoming data reports’ spatial and temporal distribution. This dynamic tessellation approach can ensure that both privacy and data precision are consistently balanced by adapting to changes in the real-world incoming data distribution.
4.2 Challenges of Enforcing K-anonymous Tessellation

Current approaches to smartphone data collection frequently report the sensed data, time, and a precise location where the data was collected. Most methods of anonymizing or increasing the privacy of data involve reducing the fidelity of that data, which consequently tends to reduce the usefulness of the data. For example, tessellating a region into polygons of size $10m^2$ provides more accurate data about measurements associated with the data report but provides less privacy than tessellating into regions of $100m^2$. This section presents the challenges associated with attempting to enforce k-anonymity across a geographic region.

4.2.1 Unknown Data Reading Distribution Makes Region Tessellation Difficult

A key challenge of tessellating a geographic region to produce k-anonymity is that it requires knowledge of the temporal and spatial distribution of the future readings from the area. When the assumed data distribution is incorrect, static tessellation can have two types of quality of service failures. First, if the assumption over-estimates the number of incoming data readings, and generates a tessellation map based on that assumption, then the regions will not receive the minimum number of readings required to ensure user locational privacy. Second, if the assumption under-estimates the number of incoming data readings, then it will generate very large regions in order to ensure the minimum required number of readings per region is met. This will lead to each region receiving far more data readings than minimally required, but the locational accuracy of the incoming data will by much worse than it could have been if the assumption was correct and the regions were smaller. We term this ‘privacy-induced imprecision,’ whereby the incoming data is reduced in fidelity in order to protect privacy, but the reduction is over-aggressive and data fidelity
(e.g. locational accuracy) is needlessly sacrificed. Static tessellation algorithms can experience
either of the failures if the original assumption about the incoming data distribution was incorrect.

In a smartphone data collection system designed to collect information about cellular signal strength,
the challenge of interest may be generating cellular network coverage maps for remote regions e.g.
on hiking trails, above lakes, etc. In these types of situations, there may be little to zero initial
information about the number of smartphone users that carry their devices into these areas. Addi-
tionally, user smartphone usage habits will likely change in these areas versus more rural locations,
and therefore there is little to no information on how many data readings will be captured. These
unknowns make it difficult to generate an initial assumption about the incoming data spatial and
temporal distribution.

4.2.2 Volatile Data Reading Distribution makes Balancing Privacy and Data Precision Hard

As discussed in Section 4.2.1, a correct assumption regarding the spatial and temporal distribution
of incoming data readings can be used to generate regions that enforce k-anonymity. However,
there is no guarantee that the time and location distribution of incoming data readings will remain
static. The amount of incoming data per region can fluctuate incredibly rapidly, making it very
difficult for the assumption about incoming data to correctly match the real incoming data distribu-
tion. This volatility makes it very difficult to generate a distribution assumption that can constantly
match the real-world distribution. In situations where there are fewer data readings entering the
system than expected (a.k.a the assumption over-estimated), the data reports will not be grouped
with at least \(k - 1 \) other reports, thereby risking the privacy of users. Conversely, if the assumption
under-estimates the number of incoming data readings, then the tessellation map will have overly
large regions (to ensure that each region receives at least k data reports). In this situation, however, the regions could be smaller without causing any privacy violations, and therefore the locational imprecision is unnecessary. Balancing the orthogonal desires of privacy and data precision is a challenging topic.

In a data collection system to collect information on a cellular network, for example, an assumption might be made that the geographical area of interest will receive at least 200 data readings every hour, and that assumption used to generate a tessellation map. However, if there are only 50 data readings being received in one hour, then there will be multiple region identifiers that are used fewer than the desired k number of times, and the data reports entered into those regions will not be as private as desired. If the system instead receives 10,000 data readings in one hour, then it is likely that each region identifier will be used far more than the minimum k number of times. In this case, it would be possible to use smaller regions, thereby adding better locational granularity to the dataset, without violating the desired user privacy margin.

4.3 Research Gap 1 Solution Details: Anonymous Polygon Region Tessellation using Anonoly

4.3.1 Overview of Anonoly

Figure 3: Evolution of Anonoly’s Generated Tessellation Map
Anonoly is an algorithm for dynamically tessellating a geographic region in order to maintain k-anonymity, where k-anonymity is a property that has been shown to statistically protect privacy by making it difficult to associate specific individuals with specific data items [13]. By ensuring k-anonymity, Anonoly provides a guaranteed level of privacy (e.g. \(k \) data reports are indistinguishable) which has a number of practical benefits, including removing a potential deterrent for smartphone users interested in participating in data collection, reducing the severity of system data leaks, and increasing the potential for commercial datasets to be released for research purposes.

Figure 3 shows how the anonoly algorithm generates and dynamically modifies a tessellation map of a geographic region in order to protect user privacy. A tessellation map is a set of non-overlapping polygons with points and edges defined via latitude longitude locations, where the union of the polygons spans an entire geographical region of interest. The goal of producing the tessellation map, sharing that map with end-user smartphones, and allowing the smartphones to enter regional identifiers, is to ensure that user privacy is statically protected by the k-anonymity property of the polygons.

Counter-clockwise around Figure 3, the following steps are taken:

1. The first tessellation map is sent from server to end-user smartphones. This can either be a tessellation generated using \textit{a priori} information about the spatial and temporal distribution of incoming data readings, or can be a single polygon covering the entire region

2. Smartphones submit data reports, using the downloaded tessellation map to encode precise latitude longitudes into controlled-precision regional IDs

3. Anonoly, running on the server, sums the number of times each regional ID is used and
determines which regions are causing violations.

4. The current tessellation map is improved by increasing the size of regions that received too few data reports and decreasing the size of regions that received too many data reports. This improved tessellation map is distributed to end-user smartphones for use in future data reporting.

If the distribution of incoming data is non-volatile, then the tessellation map will converge upon a map that causes no privacy or imprecision violations. If the distribution of incoming data changes frequently, then the tessellation map will change rapidly to ensure that the privacy of users is maintained without significant loss in data precision.

4.3.2 Model of Anonoly

A model of Anonoly is defined for ease of discussion. The model can be described as a 9-tuple:

\[DAR =< R_s, T_c, K, C_r, R_{nk}, A, U, M, S_{fty}, S_{plit}, S > \]

where:

- \(R_s \) is a set containing all of the location regions that are currently defined. Each item in \(R_s \) is a closed polygon that defines the outline of one location region.

- \(T_c \) is the timeslice size, or time between each regeneration of the tessellation.

- \(K \) is the desired k-anonymity value. For example, a \(K \) of 10 would imply that each region would receive 10 data readings per \(T_c \). If a region receives fewer than 10 readings in \(T_c \), then
that region currently invalidates the k-anonymity of the system, and should be increased in size. If a region receives more than \(K \) readings, then that region can potentially be reduced in size without invalidating k-anonymity, which would improve the locational accuracy of the incoming data

- \(C_r \) is a set of counts that specify the number of data readings that have been input for each region since the last recalculation. \(C_{r,i} \) indicates the number of data readings input from the \(i \)th region in \(R_s \). After each recalculation, all of the counts in \(C_r \) are reset to zero, and \(C_r \) is resized to ensure that \(|R_s| = |C_r| \). Individual data reading counts from \(C_r \) are referred to as \(C \).

- \(R_{nk} \) is a function that accepts two regions from \(R_s \) and returns an ordering for the two regions that defines which region is farther from optimal. This allows system administrators to implement any definition of ‘optimal’ they desire in their system. Multiple possibilities for \(R_{nk} \) are discussed in 4.3.4

- \(A \) is the total area for the environment of interest, in \(distanceunits^2 \)

- \(U \) is a function that determines how much a region should grow in response to not meeting the desired \(K \) value. It accepts a region \(R \), and the associated data reading count \(C \) for that region, and returns the amount that the region should grow (in area squared) in response to the achieved \(C \) value

- \(M \) is a function that can resize two regions by removing space from one region and allocating it to another. \(M \) is given a region that needs to be resized (the consumer), a value for the amount of change in area desired (retrieved from \(U \)), and a region that touches the region
we are attempting to change (the resource). M will make a best-effort to resize the two given regions so that the consumer region is given up to the desired amount of area from the resource region. M will return either a single region that is the full merge of the two individual regions, or two resized regions

- S_{fty} is a scaling factor that is multiplied by the desired K value before determining if a region should be split in response to having an overly large K value. This should never be below two, as splitting a region that does not have enough incoming data readings to support $2 \times$ the desired K value is likely to result in a privacy violation for one of the descendant regions

- S_{split} is a function that can determine the number of sub-regions an overly large region should be split into to meet k-anonymity during the next cycle.

- S is a function that can resize a region by splitting it into multiple sub-regions. The current implementation splits into similarly sized regions. S is given the region to be resized (the consumer region) and a value for the desired number of partitions. It will return the generated set of regions

4.3.3 Anonoly Execution

When the Anonoly algorithm is initially started, R_s is initialized with a single region that encloses A completely.

For every time range T_c:

1. If there is only one region in R_s, and if the sum of C_r is less than K, then wait one more T_c
2. Order all regions in R_s using R_{nk}

3. Mark all regions as unused

4. While there are unused regions in R_s:

 (a) Get the next unused region(R) from R_s

 (b) Get the number of data readings(C) that were input into R during this cycle T_c

 (c) If C is equal to K, then mark this region as used and continue

 (d) If C is less than K, then:

 i. Retrieve the amount of desired area change for R from U

 ii. Find all the neighboring regions of R that have a C value that is larger than K, and order them according to R_{nk}

 iii. While R has yet to be changed by the desired area amount (or there are no unused neighbors), pass R, the updated desired area change, and the next-unused neighbor to M, marking each of the resulting regions as used

 (e) If C is greater than $K \times S_{fty}$, then:

 i. Retrieve the number of desired partitions from S_{plit}

 ii. Pass R and the number of desired partitions to S

 iii. Mark all of the returned regions as used and add them to R_s

5. Broadcast updated R_s to all smartphones

If the desired K value is impossible to obtain (e.g. a k-value of 100 is desired, but each time span T_c only results in 10 data readings), then this initial region will never increase in size.
4.3.4 Ranking Regions By Resize Priority

The R_{nk} function can be implemented in multiple ways, depending upon the needs of the system. In general, this ranking algorithm is used to determine which regions are allowed to resize themselves first. For example, our implementation of R_{nk} considers privacy violations as being worse than having far too many data readings for one region. Therefore our implementation, in attempting to rank regions with a desired k of 10, would consider a region with a k-value of 8 to be a higher resize priority than a region with a k-value of 2000, even though the latter could clearly be split into multiple regions and increase location accuracy. We base our priority ranking scheme upon an implicit assumption that allowing the worst regions first priority in retessellation will result in a better overall system state. Other approaches for the R_{nk} function could treat granularity as more important, or could treat distance from K as the determining factor (thereby sacrificing some locational privacy for improved granularity). Therefore, R_{nk} is an effective method of configuring a privacy vs data granularity system policy.

4.3.5 Reaching Desired Upper and Lower K-bounded Value

The U function of the DAR algorithm, which specifies how much a region should grow in response to having a smaller-than-desired k-value, can be used to adjust the desired aggressiveness in correcting privacy violations. The U function accepts the actual (i.e. lower than desired) K value and the current area of a region in R_s, and returns a positive real number that the current area should be multiplied by to find the total desired area. Overcorrecting a privacy violation by drastically increasing region size may cause data imprecision violations. Alternatively, failing to adequately increase region size may result in privacy violations occurring during the next cycle. The same
tradeoff applies to the S_{plit} function for determining how many sub-regions an overly-large region is split into. Future work can explore complex variants on the U and S_{plit} functions, such as such as aggressively compensating if a region is small in area and lazily compensating if a region is large in area.

For our implementation of U, the percent difference between the achieved K and the desired K, e.g. real/desired, is added to 1 (the current area) and returned to M (described below) to increase the region size. We intend this approach to be a moderate response to privacy violations, although future work is needed to determine effective implementations of each subfunction, such as U. The S_{plit} function is given the achieved K value as input, and outputs the number of equally-sized partitions that this region should be split into. It is known that (in general) we do not wish to split regions that have less than $2 \times K$ values, because it is likely that one of the child regions will have a privacy violation. We empirically determined $3 \times K$ to be a good split value. Our S_{plit} implementation therefore returns $\left\lfloor \frac{\text{achieved}K}{\text{desired}K=3} \right\rfloor$.

4.3.6 Merging and Splitting Locational Regions

The M and S functions, respectively, are used to merge and split regions in R_s. These functions are domain-specific functions provided by the user. While our initial algorithms do little more than successfully merge and split polygons, future work can build functions that ensure other properties of interest. For example, all of the tessellation maps will need to be shipped to smartphones at some point, so a small filesize or the ability to only ship small pieces of the updated map would be of interest. This concern could be addressed in the M and S functions by attempting to use long straight lines for polygon edges whenever possible to reduce the amount of data needed to
represent the tessellation map.

For the initial implementation of M and S, we represented the entire geographical region as a grid of square regions called tiles. Each region R is represented as a contiguous set of square tiles. To split a region α into two regions, we first create a new region β. Then, an appropriate number of tiles are consumed from α and given to β. ‘Merging’ is a slight misnomer; in reality, the ‘merging’ region involves consuming area from a neighboring region. Therefore, both splitting and merging require a method which consumes area (i.e. tiles), and the difference between the two operations is whether the consumed tiles are placed into a new region or an existing region.

The algorithm for consuming tiles from a region is described below, in listing 1. We first find the border tiles of this region, which is a simple process of locating all tiles that have at least one neighbor (out of the eight total) that is not also part of the current region. Next, all border tiles are ordered by their ‘worth’ as a starting point for a consume operation—ideal starting points are the leaf border pixels that have only one neighbor tile from the same polygon. If this operation is a merge, then each possible starting point has to also touch the polygon that will be receiving the consumed tiles. Using fringe locations as the starting point tends to avoid splitting a region into two non-contiguous regions. Once the possible starting points have been ordered, we find the first point that is consumable from this list and use it as the actual starting point of the consume operation. A tile is considered consumable if removing that tile from this region will not cause this region to become discontinuous.

Once an ideal starting location is found, we create a list representing tiles that will be consumed and add the starting tile. We then begin iterating over all tiles in this consume list, checking (for each tile) the eight neighbors - if any of them are safely consumable then we add them to the list.
After we have iterated over all tiles in the list, we restart at the first tile in the list and check all neighbors again. As the list was being built, the current region is being consumed slowly, and when the search is restarted some tiles that were previously not consumable will now be found to be consumable without breaking the region into a dis-contiguous polygon.

```java
List<Pixel> consumeArea (int consume_N):
    // Find a start tile
    border = getBorderTiles()
    sort(border)
    Tile start = null
    for tile in border:
        if (is_consumable(tile)):
            start = tile
            break

    // Consume
    List consumed = new List
    consumed.add(start)
    while (consumed.size < consume_N):
        for Tile t in consumed:
            for Tile neighbor in t.neighbors:
                if is_consumable(neighbor):
```
// Trim any extra tiles
while (consumed.size() != consume_N):
 consumed.remove(consumed.size() - 1)

my_tiles.removeAll(consumed)
return consumed

Listing 1: Consuming Area from Region Defined As Grid of Tiles

4.4 Experimental Results and Validation

This section compares the Anonoly algorithm to prior static tessellation approaches using a real-world dataset obtained from the CRAWDAD.org repository [57]. We ran one experiment to directly compare Anonoly to static tessellation over the course of a two month timespan by recording the achieved k-anonymity for both algorithms, and comparing that achieved k-anonymity over the two month timespan to the desired k-anonymity. Additionally, we ran a second experiment that compares the ability of Anonoly and static tessellation to balance privacy versus data precision when the incoming data distribution was undergoing changes.

In order to bootstrap our experiments, we used the CRAWDAD.org dataset to simulate data reports entering a smartphone data collection system. Each incoming data report must contain a timestamp and a location (starting as a latitude/longitude on the smartphone device, but converted into a regional identifier before it reaches Anonoly) in order to be used as input to the Anonoly algorithm.
The original dataset is a log of wireless access point associations on the Dartmouth campus, and therefore we used the time of each access point association, and the latitude/longitude location of the access point, as the required incoming data. Prior published tessellation algorithms require manual human intervention to create a tessellation map, and we therefore implemented a static-tessellation algorithm by running Anonoly for a small time on the dataset and then storing the generated tessellation for use as a static map.

4.4.1 Experiment Setup

These experiments were conducted on a 2.66 GHz Intel Core i7 MacBook Pro with 4Gb 1067 MHz DDR3 RAM running Mac OS X 10.6.7 and Java SE Runtime 1.6.0_24.

4.4.2 Experiment Details

Comparing Anonoly to Static Tessellation on Real-world Data In this experiment, we generated a tessellation map and then statically utilized that single tessellation map for the entire duration of data collection. On the same data, we also utilized the Anonoly algorithm to dynamically re-tessellate, allowing comparison of the Anonoly algorithm to a static tessellation algorithm.

The Anonoly algorithm will avoid or mitigate the quality of service failures which cause static tessellation algorithms to be ineffective. Our two predictions regarding how static tessellation algorithms could potentially under perform are discussed in sections 4.2.1 and 4.2.2.

Experiment Results. Figure 4 shows the k-anonymity which was achieved by a static tessellation algorithm and the Anonoly algorithm over the course of two months. Each datapoint is the median
of the k-anonymity values achieved for all regions during that timeslice. The optimal values for k-anonymity are located between the blue privacy violation region, and the red privacy-induced imprecision region. By allowing the k-anonymity value to drop below the set k-anonymity algorithm parameter of fifteen into the blue privacy violation region, the privacy of users in the smartphone data collection system is no longer statistically protected. K-values above the safety margin of forty-five (e.g. in the red zone) indicate that the tessellation could be composed of smaller regions without causing a privacy violation, and therefore the precision of the locational data could be improved with no adverse affects. The safety margin of 45 is 3x the privacy margin of 15 - having a safety margin of 2x is not recommended, as a split will likely cause one of the regions to drop below 15.

![Figure 4: Anonoly vs Static Tessellation Over Two Months](image)

In order to better understand the results shown in Figure 4, we analyze the data on a week-by-week basis. The first week, shown in Figure 5, shows Anonoly initially mirroring the static tessellation algorithm results, but the algorithms begin to differ as Anonoly updates its assumptions about the incoming data distribution. For this experiment, Anonoly was tuned to resolve privacy violations with moderate adjustments to the tessellation. When violations are detected, Anonoly makes adjustments to enable the desired level of privacy while also attempting to provide the greatest ge-
ographical precision for data reports. However, near the 10-26 datapoint Anonoly reacts to a slight drop in the median k-value and corrects too aggressively, reaching into the non-desirable privacy-induced imprecision region. However, the height of Anonoly’s over-correction is still significantly lower than the height of the static algorithm’s imprecision on 10-27.

![Figure 5: Anonoly vs Static Tessellation; Oct 24-Oct 31 Timespan](image)

On the third week of data (shown in 6) the difference between the static algorithm and Anonoly become more significant. There are multiple k-value peaks in the static algorithm where the regions in the tessellation are larger than is required to ensure user privacy. However, the Anonoly algorithm is able to effectively avoid sacrificing data precision needlessly, and generates a finer tessellation map as the number of incoming data readings increases, thereby gaining data precision while safely maintaining the required level of data privacy.

![Figure 6: Anonoly vs Static Tessellation; Nov 7-Nov14](image)

On the fifth week of the dataset (shown in 7), the first privacy violations occur. In the hours
immediately preceding Nov 24th, Anonoly reacts to a large increase in the number of incoming data readings (apparent by the rise of k-values in the static algorithm) and over-aggressively splits regions, causing a privacy violation for a short period of time. The Anonoly algorithm rapidly corrects its mistake, and does so without causing the privacy-induced imprecision error that we see in the static algorithm. Moreover, from Nov 26-Nov 28, there is a significant drop in the number of incoming data readings, and the static algorithm has an extended period of violating user privacy. Anonoly, however, manages to react appropriately and maintain k-values in the optimal region for this two day period.

Figure 7: Anonoly vs Static Tessellation; Nov 21-Nov 28 Timespan

Figure 8 shows a quantitative comparison of quality of service failures. For imprecision quality of service failures, this value was created by summing any k-values over the imprecision cutoff of forty five. For privacy, this value was created by summing any negative distance from fifteen for all data readings taken in that week. The figure shows that Anonoly was substantially more effective at mitigating both privacy violations and imprecision violations.

Evaluating Anonoly’s Ability to Maintain Desired K-anonymity Value In this experiment, we tested Anonoly’s ability to maintain the desired level of user privacy e.g. k-anonymity, across a range of algorithm configurations and incoming data distributions. We executed the static tessel-
Anonoly excels at avoiding both privacy and imprecision failures. Static Imprecision, Static Privacy, Anonoly Imprecision, Anonoly Privacy.

Figure 8: Anonoly vs Static Tessellation Quality of Service; 6 Week Timespan

Experiment Results. Figure 9 shows k-anonymity values generated by the Anonoly algorithm and a static tessellation. Multiple desired k-values are considered on the x-axis, and the actual achieved values are plotted on the y-scale. Each point represents the median of the k-values, error bars represent the 5-95th quantiles. Each algorithm (static and Anonoly) was evaluated with three different timeslices for each desired k-value, and all achieved k-values were merged before.
generating the 5th, 50th, and 95th quantiles.

Figure 9 shows that Anonoly’s 5th quantile is consistently at or above the privacy violation, while the static tessellation consistently falls below the privacy violation margin. Moreover, the static tessellation’s 95th quantile is consistently above the Anonoly’s algorithms’ 95th, except for x=75 where the two are equal. Therefore, Anonoly manages to perform better than static tessellation in all scenarios. Moreover, the median value for Anonoly is on average slightly below the median for static tessellation. While the medians are similar, static tessellation causes privacy violations far more frequently, and Anonoly ensures that errors tend towards a reduction in data granularity rather than a loss of privacy.

![Figure 9: Achieved vs Desired K-anonymity; Two Month Timespan](image)

4.5 Contributions and Significance

This section presented Anonoly, an algorithm for dynamically tessellating a geographical region in order to ensure user privacy without severe loss of data precision. Empirical results obtained from experiments on real-world datasets show that Anonoly can successfully protect user privacy better and provide higher data precision than prior static approaches. Future work on this topic
will involve implementing the Anonoly algorithm on a testbed environment with thousands of smartphone emulator instances, allowing our team to address issues which arise in production environments, such as data inconsistency, network overheads, and computational cost.

From our research on this topic, we learned the following important lessons:

1. **Maintaining k-anonymity on highly-volatile data is possible by updating predictions about the incoming data distribution frequently.** Our research shows that it is quite possible to maintain the desired privacy in many real-world situations. By testing on a large real-world dataset, we have shown that it is full reasonable to attempt to build a k-anonymity algorithm intended to run for multiple years with no modifications. While it is necessary to predict the distribution of incoming data, we have shown that updating this prediction frequently is an effective method of dealing with highly-volatile incoming data.

2. **Data precision does not necessarily have to be sacrificed to achieve user privacy.** As Section 4.4 shows, there is a direct tradeoff between the precision of incoming data and user privacy. Prior work, due to an inability to reevaluate assumptions about the incoming data, typically made decisions to ensure privacy was maintained during worst-case situations. However, this results in poor data precision in the average case, as precision was consistently reduced in order to ensure privacy even in non worst-case situations. Our work has shown that reevaluation of data assumptions allows much higher data precision in the average case, while still maintaining privacy in the worst-case.

3. **Multiple data types reveal user location.** While we have proposed a solution for protecting user locational privacy, other data included in a data report can easily remove this protection.
For example, if a user submits an image that happens to contain part of their vehicle, then that data report could be linked to that specific user by someone who knows what type of vehicle they drive.

4. **Dealing with report caching and user reputation is an open challenge.** Many current smartphone data collection systems cache data reports on smartphone devices while they are out of internet range, and submit those reports once internet is connected. Additionally, many systems attempt to track user reputation and build a list of reputable users. Both of these features are difficult to incorporate into a privacy-enabling algorithm such as Anonoly. Future work should investigate methods of combining these desired items with user privacy algorithms.

5. **Multiple tradeoffs are available for preserving k-anonymity.** To constantly preserve the desired k-anonymity, there are some tradeoffs required. However, our research has shown that there are multiple types of data which can be reduced in order to increase privacy. While we have shown that both locational and temporal accuracy can be reduced in order to increase privacy, future work will likely show that there are other components which can be used to increase system privacy.

The Anonoly algorithm implementation, experiments, and data described in this section are available in open source form from https://github.com/VT-Magnum-Research/anonoly.
5 Quality of Service Aware Optimization of Cloud Resource Allocation

5.1 Overview of Solution Approach to Research Gap 2

We propose, develop, and validate two complimentary research solutions for improving Quality of Service-aware optimization of cloud resource allocations. First, by using Linux Containers and strict resource limiting we build accurate models of software performance as a function of available cloud resources. Second, utilization of metaheuristic hybrid algorithms to improving current mechanisms for deploying software components onto cloud resources. Specifically, methods are needed to rapidly determine a good placement of software tasks onto cloud resource.

5.1.1 Using Linux Containers and Strict Resource Limiting To Predict Software Performance

By utilizing the hard resource limiting features available to Linux Containers, we are able to generate accurate worst-case performance models for each application by simulating a range of resource configurations across an extensive array (> 200) of open source web server implementations. We are also able to investigate the overhead of the different CPU limiting features available to Linux Containers, and empirically determine which methods have the least overhead when host hardware is highly shared. Taken together, these two results allow consumers to effectively determine application performance on an LXC IaaS cloud, and allow cloud providers to determine which resource limit methods are effective for high tenancy levels. We conclude with a set of empirically backed
recommendations on how to architect an LXC-based IaaS cloud to effective support high-tenancy conditions such as 100 containers per host.

In Section 5.4 we present empirical data that we have gathered showing that web server performance can be accurately predicted across a range of LXC resource limitation levels. We specifically focus on the methods for effectively scaling the processing capacity a web server is allowed, and demonstrate that these limitations results in a stable degradation from full performance to fractions of full performance. Section 5.4 also explores the two main LXC CPU limiting mechanisms currently available in the Linux Kernel, CPU pinning and CPU bandwidth limiting, and presents data indicating that the least wasteful method of achieving large-scale multi-tenant LXC environments is through a combination of the two methods.

5.1.2 Using Hybrid Metaheuristic Algorithms to Optimize Software Deployment

To address the Multi-core Deployment Optimization problem, we have implemented a hybrid metaheuristic algorithm that searches for a mapping of tasks onto processors which results in a minimal makespan. The algorithm continues work in the area of using Ant Colony Optimization (ACO) to solve the MCDO, but differs from prior work in that it combines an ACO with a Simulated Annealing (SA) algorithm. As shown in Section 5.9, the hybridized SA+ACO algorithm not only showed an average improvement over the non-hybrid ACO algorithm across a broad range of inputs, it also showed a large decrease in running time. SA has similar properties to Genetic Algorithms, such as good handling of nonlinear state spaces, but has been studied substantially less in the context of MCDO.
Figure 10: Overview of Solution. Inputs are Desired QoS and either Application or Application Description, while LXC Soft-Limit Execution Parameters Are Outputs

5.2 Challenges of Predicting Application QoS Within Multi-tenant IaaS

Accurate prediction of application quality of service would save huge amounts of money for cloud users, but is difficult to accomplish. Issues such as multi-tenancy and soft resource limits complicate the challenge of generating usable data when running on an IaaS cloud.

Traditional models of application performance profiling, as shown in Equation 1, focus on one metric of software execution such as total runtime T_p, as calculated using the frequency of software execution H_i and the runtime of individual software blocks T_i:

$$T_p = \sum_{i=1}^{n} T_i \ast H_i$$ \hspace{1cm} (1)

By expanding this model to include summary statistics for any software metrics providing benefit \vec{B}, such as latency Γ and throughput Δ, we can more appropriately quantify the performance of software in a cloud environment.

$$\vec{B} = \left< \max_{i \in n} \{ \Gamma_i \ast H_i \}, \sum_{i=1}^{n} T_i \ast H_i, \min_{i \in n} \{ \Delta_i \ast H_i \} \right>$$ \hspace{1cm} (2)
The challenge can then be formalized as a solution to Equation 3, where an application A under a set of constraints \vec{C} on hardware resources such as CPU, RAM, Disk Input/Output, Network Throughput, etc, can expect at least a minimum of \vec{B} benefit.

$$f(\vec{C}, A) = \min \vec{B}$$

(3)

As shown in Section 5.3, our final solution takes the form shown in Equation 4 whereby the solution to Equation 3 can be approximated by providing a high-level description of the application A_D using features such as application programming language, application framework, application database, etc, and a database E of existing solutions to $f(\vec{C}, A)$.

$$f(A_D, \vec{C}, E) \approx f(\vec{C}, A), f(\vec{C}, A) = \min \vec{B}$$

(4)

5.2.1 Relative Resource Limits Make Profiling in Multi-tenant Environments Challenging

Cloud IaaS providers such as Amazon traditionally use relative, or soft, resource limits that allow a VM to consume additional resources beyond it’s minimum allowance if those resources are unused by other tenants. As the Cloud IaaS provider cannot recycle unused computation time, the common practice is to allow unused computation time to be consumed by the tenants executing on a host. This is directly relatable to systems such as the Linux Completely Fair Scheduler (CFS), which will share any unused cycles between processes currently awaiting computation. This creates a substantial burden for performance profiling, as it becomes unclear if benchmark results include any extra compute time that was unused by other tenants. Moreover, this added uncertainty increases the dif-
difficulty of identifying different categories of error present when benchmarking repeatedly, thereby making it difficult to isolate and eliminate causes of benchmarking noise. For example, it has been shown that identically specified VMs already have multiple sources of variability [14].

5.2.2 Splitting Processing Capacity at Granularities Finer Than Single Hardware Processors

An emergent challenge of LXC IaaS is the need to fairly share a host computer amongst a number of tenants likely exceeding the number of available hardware threads. Traditional mechanisms for fairly sharing available processor capacity in IaaS focused on variations of CPU pinning (also known as processor affinity), whereby a process or group of processes is executed solely on designated hardware processors. CPU pinning is highly effective because 1) processor caches are more effective when processes execute on the same CPU, and 2) CPU pinning does not require global process usage counters and therefore requires no coordination between different processors. However, the unit of division used in CPU pinning is always a single hardware processor, such as a core or hardware thread, and therefore CPU pinning cannot guarantee equal sharing of multiple processes executing on the same hardware processor.

5.2.3 Multi-tenancy Introduces Error into Benchmark-based Performance Models

Multi-tenant host systems are inherently challenging to collect benchmark data from, as there is a clear potential for interference. Amazon EC2 currently shares each physical machine with up to eight guest VMs. While resource limits exist to fairly subdivide the host machine, prior work has shown that these resource limits are not enforced with absolute strictness, which can result in
worse benchmark results if a neighbor is being noisy. Section 5.3 describes how we address this challenge by using compute time bandwidth limits of the Linux Kernel.

5.3 Using Hard Resource Limits To Build Effective Prediction Models

As discussed in Section 5.2, detailed models of guaranteed application performance at various resource allocation levels would enable rapid and accurate deployment of software onto hosts. By addressing the challenges laid out in Section 5.2, we first developed a method for generating accurate performance profiles for HTTP web servers running inside Linux Containers. We then used a large repository of web server implementations to construct performance profiles for a wide range of web server implementations, varying in programming language, web server framework, database ORMs, and other factors.

As shown in Figure 10, web application developers input their desired quality of service and either a description of the application or the application itself. The method will report the LXC launch options the developer should use to achieve the desired QoS metrics. The critical novel component is hard-limit benchmarking, which provides solutions to multiple discussed challenges.

5.3.1 Utilizing Hard Limits For Worst-case Benchmarking on Multi-tenant Hardware

To address the challenge of relative resource limits discussed in Section 5.2.1, as well as the challenge of sharing CPUs at high granularity described in Section 5.2.2, we examine the bandwidth control feature of the Linux Completely Fair Scheduler (CFS) [58]. Traditionally this feature is used for allocating relative shares of CPU that are then used to calculate percentage of allowed
CPU time. However, it is also possible to define hard resource ceiling parameters that allow limiting of a process to a specific amount of CPU time. For example, CFS bandwidth limits can be used to define a quota that a process is allowed to utilize e.g. 200ms once every period e.g. 500ms. CFS bandwidth control successfully avoids the problem of relative bandwidth limitations causing error in benchmark data, as it enables restricting a Linux Container to the worse case scenario where no additional resource are available. Moreover, this CFS hard limit can presumably be used in real-time alongside other LXC IaaS tenants that are using the more common relative limiting, as the only difference in total system state will be that the CFS-limited container no longer consumes CPU from the pool of unused compute time.

However, there are a number of practical concerns surrounding the use of CFS limits. For example, CFS requires coordination between processors to determine how much computation time a process has received, and the overhead of this coordination is unclear at the moment. Turner et al. over a brief comparison of CFS limits and CPU pinning but leave a number of issues. In Section 5.4 we test a compare CPU pinning and CFS more fully to generate a cleaner understanding of how to use CPU pinning and CFS limits in tandem [58]. Additionally, CFS quotas explicitly allow over subscription e.g. \(\sum(C_i) \geq C \). It is therefore necessary to ensure that the host system is not oversubscribed before assuming that benchmarks occurring within CFS-limited LXC containers are guaranteed to receive their quota of resources.

5.3.2 Building Performance Profiles For a Range of Software

To address the primary challenge of predicting application performance, we benchmarked > 100 different web server implementations spanning 21 different programming languages. For each
implementation we benchmarked a range of CPU and RAM conditions, and used a linear spline interpolation to translate these fixed data points into a linear surface. Section 5.4 shows empirical results on the utility of the database generated with this approach. While each server implementation we used is initially fully-specified, we found mean results for several broad categories (e.g. programming languages) and created rough models of performance based on minimal information about the application. While these rough models have severe loss of accuracy, they also offer substantially better performance estimates as opposed to having no prior information.

Using high-level information about their application, such as programming language, the developer can then consult our database to find worst-case performance models for their application. As the developer specifies more information about their application, such as programming language and web framework used, we can supply more accurate performance models. If the developer desires full accuracy, they can utilize the methods derived in this section and Section 5.4 to generate a model specific to their application.

5.4 Experimental Results and Validation For Quality of Service Prediction

5.4.1 Experimental Platform

We ran our experiments on the Android Tactical Application Assessment & Knowledge (ATAACK) Cloud [59], which is a hardware platform designed to provide a test bed for cloud–based analysis of mobile applications. The ATAACK cloud currently uses a 34 node cluster, with each cluster machine containing Dell PowerEdge M610 blade running Ubuntu 14.04.1 LTS and Linux Kernel 3.13.0-39-generic. Each node has two 12-core Intel Xeon E5645® processors, each with 18GB
dedicated DDR3 ECC memory (total of 36GB shared). All nodes were reformatted prior to this work, and therefore were guaranteed to use the default configuration options of Ubuntu.

For testing LXC we utilized the Docker platform, which provides a number of additional features, such as automatic build scripts and container versioning, on top of the core Linux Container platform. Each node Docker version 1.14 with the Linux Container execution driver version 1.0.6. The AUFS storage driver was used to provide container filesystem support.

5.4.2 Dataset and Methodology

To enable data collection across multiple programming languages, web server implementations, and framework stacks, we used the open source TechEmpower FrameworkBenchmarks (TFB) project as a core component in our experimentation [60]. For this research, TFB provided automated installation and load testing for > 100 different web server implementations spanning 21 different programming languages. We provided substantial improvement to the project, such as the ability to launch web servers inside of Docker containers, and have contributed over 450 git commits to the main TFB project as well as an additional 150 git commits to our fork of the project focusing on Linux Container compatibility.

Each framework included in TFB may define multiple tests intended to emulate common aspects of a real-world web server implementation, such as the speed of common database queries. We chose to utilize the `json` test, in which a web server must allocate and serialize a new JSON object for each request, for most of the experiments shown in this section. This test type exercises the effectiveness with which a web server can utilize available processor capacity while allocating and deallocating large numbers of small objects. It also avoids potentially overloading the network
capacity of traditional Ethernet network interfaces, which can be a challenge with some of the other test types defined by TFB.

Each test included a slow warmup, fast warmup, and then the actual benchmarking. During each test the Linux dstat tool was used to monitor memory, disk, network, processor, and kernel statistics. Figure 11 shows common patterns of hardware consumption during a test sequence.

Figure 11: Common Resource Consumption Patterns During Testing. (Green, yellow, and red indicate light warmup, heavy warmup, and benchmarking respectively)

Early experiments showed that our networking hardware was restricting performance for high-performance frameworks, as they were using 100% of our available NIC bandwidth. To address this issue without dropping these high-performing frameworks, we ran the load generation system inside a second LXC container on the same host. Load generation was CPU pinned to one processor and the web server under test was pinned to the second processor, each of which has it’s own
memory bank. We validated that non-peak web server performance was not different as a result of this modification, and were able to successfully continue gathering data to build performance models beyond our prior peak capacity.

5.4.3 Determining Containerization Overhead For a Single Webserver

The solution approach described in Section 5.3 relies heavily on Linux Containers for isolation of web applications. With any isolation mechanism, e.g. Virtual Machines, Docker Containers, Linux Containers, etc, it is critically important to understand the magnitude of resources consumed by the isolation mechanism. High isolation costs, such as those experienced by Virtual Machines, reduce the total number of isolated applications that can be deployed onto a single host. While extensive work has been done to examine the resource consumption of traditional Virtual Machines, few published works examine the resource consumption of Linux Containers [61].

This experiment compares the performance of running a webserver inside of a Linux Container versus running in a non-virtualized environment. We expect to see minor performance degradation due to the isolation overhead.

Experiment Methodology. As web servers are commonly tested using a range of concurrency levels, we chose to examine overhead individually for six different concurrency levels in order to capture any differences that might appear between steady-state and heavy-load conditions.

Experiment Results. The results shown in Figure 12 indicate a latency overhead of 10ms when executing software inside a Docker Container. This is a minor overhead compared to other systems that enable network isolation, such as the 60ms of a common VM solution [61]. This confirms
the work of Felter et al., who are the only other authors we have found to examine the performance overhead of Docker containers [61].

5.4.4 Effect of CPU Limiting Mechanisms on Quality of Service

When limiting CPU as described in Section 5.3, it is critical to understand the effect the CPU limiting mechanism has on process performance. To evaluate this effect, we conducted a series of experiments gathering performance data at various CPU levels using the two most common CPU limiting mechanisms of CPU pinning and CPU bandwidth control. To understand this effect, we profiled software performance metrics while limiting software using both methods.

Experiment Results. Figure 13 shows the performance effects of various CPU resource limiting
mechanisms. As expected, CPU pinning results in higher throughput for most CPU values, presumably because CPU pinning does not require coordination between different processes. However, there is an unexpected but repeatable effect of CFS resource limiting outperforming CPU pinning at 70-80% CPU allowance.

The latency metrics in Figure 13 show that CPU pinning outperforms CFS resource limiting for all values but the lowest. However, upon careful examination readers may note that CFS was allowed 10% of total available CPU and CPU pinning allowed only 8% of total available CPU. Future results show that CFS at 8% experiences a similar spike in latency. These low-CPU latency spikes are a natural result of stress testing at low CPU levels, as the traditional independence of latency and throughput is removed due to queuing time increases once available CPU is consumed. These results therefore lead us to conclude that CPU pinning consistent results in lower latency values than CFS quota limits.

However, CPU pinning is incapable of sharing compute resources finer than a single hardware processor. Figure 14 shows the effectiveness of CFS quota limits at a granularity lower than a single core.

There is a clear linear relationship between throughput and CPU for fractions of a processor smaller than 50%, and steady-state operation from 60% to 100% of the hardware thread. This is consistent with the measured latency values, which stabilize above 60% allowed.
5.4.5 Effects of Incorrect Hardware Detection

Many web servers detect available hardware and optimize their startup scripts for performance. Out of the 120 frameworks that we examined in this work, we found at least 29 that were detecting available hardware and dynamically tuning their startup to maximize performance. The most common observed optimization was detection of CPU cores, with detection of available RAM being the next most common. However, fundamental tools used to detect the available resources such as the Linux `free` utility, or the Python `multiprocessing.cpu_count()` method, do not support Linux containers. These tools report the resources present on the host instead of the
resources available for use by the current process.

To understand the negative consequences of this incorrect configuration, we examined the most common error found - web servers using Nginx as a load balancer between multiple backend processes often misconfigured the number of Nginx worker processes. According to the documentation the number of workers should equal to the number of hardware processors for maximum performance. To understand the effects of misconfiguration at various CPU pinning levels, we benchmarked OpenResty (a Lua web server extending Nginx) across a range of CPU pinning settings with the correct number of workers (e.g. `1x`), twice the correct number of workers (e.g. `2x`), and so forth. The results are depicted in Figure 14.

Figure 14: OpenResty Performance on Percentages of One Hardware Thread

The charts illustrate the relationship between the number of workers and the performance of OpenResty, measured in requests per second and latency in milliseconds, as the percentage of the core is increased. The upper chart shows the number of requests per second increasing as the percentage of the core increases until it plateaus, indicating that the system is resource-bound. The lower chart shows the latency decreasing as the percentage of the core increases, suggesting improved performance with more resources allocated.

By optimizing the configuration of the number of workers and the CPU pinning, the performance of the web server can be significantly enhanced, leading to a better user experience and increased throughput.
‘2x’), and 24 times the number of correct workers (e.g. ‘24x’). The result are shown in Figures 15 and 16.

Figure 15: OpenResty Performance, Grouped By Number of Worker Processes

Figure 15 shows that the throughput does degrade as a function of extra worker processes at a fairly consistent rate. Using double the correct number of works results in an average of 4% loss in throughput versus, while using 24 times the correct number of workers results in an average of 8% loss in throughput. At small percentages of CPU time these percentages do not severely change the absolute throughput, but at larger percentages of CPU time (e.g. 80-100% available CPU) these losses equate to between 5 and 15 thousand requests per second difference.

Figure 16 shows the mean average and mean maximum latencies for multiple scaling groups. At high CPU levels e.g. 40% and above, the latencies of all groups are roughly equal. At very low CPU amounts the average latencies remain roughly equal as well. However, at low CPU amounts
the maximum latency is heavily influenced by the degree of misconfiguration, as the 24x scale group has substantially higher maximum latency than the 1x scale group, as shown by Table 1.

<table>
<thead>
<tr>
<th>Scaling Group</th>
<th>Average</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale 1x</td>
<td>1458</td>
<td>1615</td>
</tr>
<tr>
<td>Scale 2x</td>
<td>1577</td>
<td>2362</td>
</tr>
<tr>
<td>Scale 24x</td>
<td>6293</td>
<td>25649</td>
</tr>
</tbody>
</table>

Table 1: OpenResty Mean Average and Mean Maximum Latency at 10% CPU, Grouped By Number of Worker Processes

As the target for this research is performance on IaaS host computers with large numbers of tenants, the most interesting effects occur at small amounts of available CPU e.g. 30% total CPU. At
this range, we can conclude that incorrectly detecting available hardware has minimal effects on throughput, but has potentially substantial effects on maximum latency.

5.5 Validating Performance Models Constructed Using Hard-Limited Linux Containers

To validate the solution method, we used the proposed method to construct performance models for 120+ web application frameworks. Figure 17 shows a summary of the output performance models, which predict the minimum guaranteed application quality of service when that application is executed under the given CPU constraint.

We then used standard soft resource limits to create a Linux-Container based IaaS where each tenant was given an equal amount of total available CPU. Each tenant was put under the same stress test that was used to profile it’s performance, with the aim being to determine if the achieved maximum performance under constraint was equal to the predicted performance under constraint. Two scenarios were exercised - the first scenario only contained web application frameworks inside the containers under test, while the second group also include a non-web application container designed to saturate all available resources and interfere with the running of the web applications as much as possible. The second group directly simulates the ‘noisy neighbor’ effect of traditional IaaS performance profiling. If the solution method proposed works perfectly, there will be no substantial difference in achieved performance under these two scenarios.

To reduce system interference, the cgroup ‘user’ (which contains system tasks such as SSH) was allocated 1024 shares of CPU time, while the cgroup ‘lxr’, which housed all of our tenants, was
allowed 65536 shares of CPU time. Each tenant was allowed 1024 shares, and was executed inside the ‘lxc’ cgroup. The total ‘lxc’ group therefore was guaranteed \(\frac{65536}{65536+1024} = 98.5\% \) of the total CPU time, while each tenant container was guaranteed \(\frac{1}{N} \times 98.5 \) CPU time, where \(N \) is the number of tenants currently executing. For 5 tenants, each tenant container would be guaranteed \(\frac{1}{5} \times 98.5 = 19.7\% \) of available CPU time.

Figure 18 shows the percent error difference between achieved and predicted performance, where a result of 0\% indicates that the model perfectly predicted the software performance. The two scenarios are nearly identical, indicating the prediction method is resilient to the noisy neighbor
Figure 18: Prediction Error Up To 120 Tenants Per Host

Figure 18 also shows that, up to 120 tenants sharing a single physical host, the maximum percent error is 3%.

5.5.1 Analysis of Experimental Results

The results presented in this section lead to the following conclusions on the effectiveness of sharing hosts among hundreds of tenants and predicting software performance in this environment. First, we find that using CPU pinning to limit the compute time of a web server results in pre-
dictable application performance degradation in the absence of other processes competing for the designated processors. We also find that CFS quotas allow reasonable segregation of individual hardware processors, but exhibit sub-par performance when used with multiple physical processors. In particular, CFS has substantial overhead when used to limit process compute time across multiple physical processors.

We also found that multiple applications examine available hardware resources, such as available physical processors, in order to tune their startup parameters. However, most of the methods used do not properly support LXC resource limits, and therefore report incorrect available hardware. The most common problem we found across the 120 different frameworks examined was incorrectly detecting available hardware processors, which resulted in up to a 10% decrease in performance.

5.6 Contributions and Significance For Quantifying Performance Prediction

This research focused on the emerging model of using Linux Containers (LXC) to provide Infrastructure as a Service (IaaS) cloud computation. LXC typically has substantially lower resource overheads than the Virtual Machines (VMs) traditionally used to enable isolation in IaaS environments, which enables order-of-magnitude increases in the number of tenants that share a physical IaaS host. However, the overhead and fairness of methods used to fraction a host system into tens or hundreds of isolated containers are not well understood. Moreover, increases in multi-tenancy increase the difficulty of predicting application performance inside of the IaaS, as explained in
To address these challenges, this work develops a method of accurately benchmarking expected application performance in a multi-tenant LXC-based IaaS. We also investigate the effect that various resource isolation mechanisms, such as mechanisms to fairly share compute time amongst tens or hundreds of tenants, have on application performance and quality of service. This work focuses on the performance of web servers, which is a broad category encompassing a wide range of the technologies currently used in VM-based IaaS clouds.

This work provides the following contributions and observations regarding appropriate construction and use of Linux Container-based Infrastructure as a Service Clouds:

1. **Combined Use of CPU limiting mechanisms** is necessary for effective sharing of host processors. While CPU pinning is a low-overhead solution for coarse resource limits, CFS quota management enables fine-grained resource sharing. As described in Section 5.4, an effective solution is to utilize both mechanisms in tandem.

2. **A Method For Predicting Expected Application Performance in a Multi-tenant LXC-based IaaS**, based on utilization of hard resource limitations, is described in Section 5.3 and validated in Section 5.4.

3. **LXC IaaS Providers Should Offer Hard-Limited Containers.** As Section 5.4 shows, strict resource limits mitigate many of the existing challenges of application performance profiling inside a multi-tenant environment. Additionally, offering isolated environments with hard limits does not negatively affect other tenants currently executing on a physical host. We therefore strongly recommend that LXC IaaS systems are architected with perfor-
mance profiling, as enabled by hard-resource limits, being a first-class design consideration.

4. **Linux Container Overhead Is Negligible For Many Use Cases.** As shown in Section 5.4 and corroborated by Felter et al. [61], the overhead of Linux Containers is equal to or less than the overhead of Virtual Machines for most common metrics. Therefore any software currently running on a VM-based IaaS cloud can presumably execute on a LXC-based IaaS cloud at equal or higher levels of performance.

5. **Few Resource Detection Tools Support LXC.** Most of the resource detection utilities and functions we encountered across 120 different web frameworks did not support LXC resource limiting, and therefore incorrectly estimated available resources by large margins when executed inside Linux Containers. Existing applications that used these tools commonly configured themselves in a suboptimal manner based on these incorrect results.

6. **A Large, Diverse Database of Web Server Performance Information** is made available as part of this research. This dataset spans 21 programming languages, 120 web server frameworks, and over 600 different toolset configurations. Minimally, each test has at least 30 samples of performance statistics, each gathered from 500,000 individual HTTP requests, and aggregated into the common metrics throughput and latency.

The data and experiments described in this chapter are available in open source form from https://github.com/hamiltont/FrameworkBenchmarks.
5.7 Challenges of Optimizing Task Execution Time on a Multi-core Computing System

Effective solutions to the Multi-core Deployment Optimization (MCDO) problem can vastly increase the value of many modern computing systems by increasing the throughput of the hardware without any physical modifications. With new trends towards massively parallel computer systems, MCDO is a critical practical issue for obtaining the full potential of these new systems. However, MCDO has been shown to be NP-hard [15, 62, 63] by multiple researchers. This section outlines some of the specific challenges encountered while trying to find short runtime, high performance solution algorithms to the MCDO problem.

5.7.1 Complexity of Multi-core Deployment Optimization Necessitates Algorithm Scalability

Multiple works have shown that MCDO is NP-Hard [15, 62, 63]. Unless \(P = NP \), there are no methods to find an optimal solution to MCDO in polynomial time. While a number of assumptions can be made to help simplify the challenge, and therefore hopefully reduce the time complexity, a combination of multiple assumptions must be made to reduce the complexity from NP-hard [62]. Adding these simplifying assumptions reduces the practicality of the final solution. Therefore a critical challenge is how to find a solution approach that can scale to solving MCDO problem sets with large numbers of cores and tasks and no assumptions. Section 5.8 describes how we address this challenge using a combination of simulated annealing and ant colony optimization.
5.7.2 Interdependent Constraints Complicate the Use of Heuristics

One common approach to rapidly evaluating potential solutions to MCDO is through the use of heuristics that attempt to give some guidance about which solution characteristics may lead to an optimal solution. Heuristics are typically used when constructing or permuting a valid solution, and therefore might execute thousands of times in a single optimization algorithm execution. Therefore, heuristics must be simplistic and low-overhead enough to execute quickly. On MCDO variants with assumptions that simplify the problem, such as assuming that all cores are homogeneous, this is typically feasible e.g. place task on the fastest available processor. However, as the assumptions are relaxed, it becomes more difficult to find general heuristics that consistently result in better schedules as the impact of a heuristic decision is not known until all algorithm decisions are combined and scored. To combat this complexity, the number of variables considered by a heuristics must go up, which can cause the algorithm to execute at a fraction of the original speed.

5.7.3 Comprehensive Testing of An Algorithm for MCDO is Hard

Evaluating solutions for the MCDO is an inherently difficult task [64]. Many proposed algorithms for multiprocessor task scheduling simulate the performance of their algorithms on randomly generated task graphs [42, 65–67]. Researchers frequently program their own implementation of task graph generation algorithms, which have the potential to generate non-standard graphs and mislead algorithm validation [68]. Some work has been done on creating problem sets by recording the behavior of real systems, but the most promising approaches currently are using benchmark data sets or benchmark generators [69, 70]. Due to practical difficulties, very few researchers verify their algorithm performance on real hardware systems, making it difficult to know if the as-
sumptions made have limited the algorithm’s effectiveness. Section 5.8 describes how we address this challenge by using the Standard Task Graph (STG) Set as a broad-range benchmark for our applications [70].

5.8 Solutions Details for SA+ACO Hybrid Deployment Optimization Algorithm

The quality of service prediction generated by Section 5.3 will enable educated guesses about the quality of service received as a result of a specific hardware configuration. A system is then needed to perform the deployment of software resources onto hardware infrastructure.

This section describes SA+ACO, our hybrid metaheuristic algorithm for optimizing MCDO for minimal makespan times. SA+ACO is a combination of the simulated annealing (SA) metaheuristic [71, 72] and the ant colony optimization (ACO) metaheuristic [73]. Specifically, SA+ACO utilizes the Ant Colony System variant proposed by Dorigo and Gambardella, which has a reduced complexity resulting in faster runtimes [74].

5.8.1 Mapping Simulated Annealing into Multi-core Deployment Optimization

Listing 2 shows a simplified version of the simulated annealing algorithm. While the temperature T is high, the algorithm initially wanders the solution space searching for solutions better than the initial solution. However, as T begins to decrease, the algorithm accepts moves to worse (e.g. higher makespan) states with decreasing probability. Our full approach is slightly more complex than is shown in Listing 2, as we keep a separate variable for the globally best seen solution and
the current best seen solution, and reset the search to the global best state if there has not been an improvement in the global best for 200 iterations. This allows the algorithm to make a number of poor decisions in its search for a better solution, but restarts the search from the global best state if an improvement is not eventually found.

```python
best = initial_valid_solution ()
T = 3500
while(T-- != 0):
    new = neighbor( best )
    P = probability_accept ( evaluate ( best ),
    evaluate (new),
    T)
    if P > random():
        best = new
```

Listing 2: Pseudocode for Simulated Annealing

For our work, ‘bad’ movements (e.g. towards a higher makespan) are allowed in a probabilistic fashion using the acceptance probability defined in Equation 5.

\[
P(s, s', T) = \begin{cases}
1 & \text{if } s' < s \\
\frac{1}{1 + e^{\frac{s - s'}{T}}} & \text{if } s >= s' \end{cases}
\]

(5)

where \(s \) is the original makespan, \(s' \) is the makespan being considered, and \(t \) is the temperature of the system. The `neighbor` function is defined to be an unguided random search - we choose a task \(i \) and the core that task is currently mapped to \(j = [i] \), and assign \(i \) to any core other than \(j \). The
final output of the SA algorithm is a mapping of tasks to cores.

5.8.2 Mapping Ant Colony Optimization into Multi-core Deployment Optimization

Ant Colony Optimization (ACO) is a biology-inspired metaheuristic that is becoming an increasingly popular approach to the Multi-core Deployment Optimization problem [18,19,42,65–67,75]. In general, for any problem that can be represented as a graph, ant colony optimization involves a number of ‘ants’ searching the solution space in a pseudo-random fashion. Each ant is searching for a complete solution, which typically takes the form of a path through the graph. When an ant locates a solution, it evaluates the goodness of the found solution and augments the pheromone matrix with information. This indirect communication through the environment, or stigmergy, allows complex overall behavior to emerge even when individual agents are simplistic e.g. memory-less.

Pheromone Matrix Representation And Use A poor pheromone representation, such as one that frequently allows ants to create complete solutions without crossing the solution paths of other ants, will cause the ACO to be ineffective. While prior work has explored representing the solution matrix as \(\text{task} \times \text{time} \) [18] or \(\text{task} \times \text{task} \) [19], we chose to continue work that represents the solution matrix as \(\text{task} \times \text{core} \) [42, 65–67], where \(\tau_{ij} \) is the affinity of task \(i \) to execute on core \(j \). In this way, ants are iteratively constructing a tour e.g. iteratively mapping each task onto a processor.

The environmental pheromone information \(\tau \) is stored a \(n \times m \) matrix, where \(n \) is the number of cores and \(m \) is the number of tasks to be scheduled onto the cores. From its current state, an ant stochastically chooses the next vertex to add to its path by balancing heuristic information and the
feedback from environmental pheromones using the following formula:

\[
p_{ij}^k = \begin{cases}
\frac{[\tau_{ij}]^{\alpha}[\eta_{ij}]^{\beta}}{\sum_{l \in N_i^k}[\tau_{il}]^{\alpha}[\eta_{il}]^{\beta}} & \text{if } j \in N_i^k \\
0 & \text{otherwise}
\end{cases}
\] (6)

where an ant \(k \) on vertex \(i \) has a probability to add a neighboring vertex \(j \) to its path based upon the attractiveness of \(j \) divided by the attractiveness of all neighboring vertices. \(N_i^k \) is the set of neighbors of \(k \) while on vertex \(i \). The values of \(\alpha \) and \(\beta \) are parameters to the algorithm that weight the influence of the heuristic provided by \(\eta_{ij} \) and the pheromone trail \(\tau_{ij} \). Due to our later use of the ant colony system and simulated annealing we chose to make the heuristic function return a fixed value.

In the Ant Colony System (ACS) proposed by [74], an additional parameter \(q_0 \) is used to directly control the rate of solution space exploration versus exploitation. The probability of adding a neighboring vertex is updated as so:

\[
p_{ij}^k = \begin{cases}
\max_{l \in N_i^k} \{\tau_{il} \times \eta_{il}^{\beta}\} & \text{if } q \leq q_0 \\
\text{Equation 6} & \text{Else}
\end{cases}
\] (7)

Therefore, \(q \) (generated from a uniform distribution of \([0, 1]\)) percent of the time, the ant will choose the best available neighbor based upon current pheromone and heuristic values. This is termed the exploration stage. If \(q \) is greater than \(q_0 \), then the algorithm will perform ‘guided exploitation.’
Pheromone Matrix Updating While traditional ACO performs a $O(n^2)$ update of the pheromone matrix, ACS attempts to have a faster runtime by performing all pheromone matrix evaporation as ants are building their solution. Only the global best ant is allowed to deposit pheromone. Equation 8 describes the global update rule.

$$\tau_{ij} = (1 - p)\tau_{ij} + p\Delta\tau_{bs}^{ij}, \forall (i, j) \in T^{bs}$$

(8)

Where $\Delta\tau_{ij}^{bs}$ is defined as the heuristic value of an edge that is currently on the global best solution tour. Similarly, T^{bs} is the set of all edges in the best tour. Equation 9 is executed each time an ant makes a decision while building a tour. This reduces the desirability of each edge after it is used, thereby encouraging exploration and avoiding local optimums.

$$\tau_{ij} = (1 - \epsilon)\tau_{ij} + \epsilon\tau_0$$

(9)

This work used 0.1 for parameter ϵ, as proposed by others [76]. By applying this as a local update rule, each edge that an ant used trended slightly back to the initial pheromone value τ_0.

5.8.3 Integrating SA and ACO Into SA+ACO

The solution output by the simulated annealing algorithm was used to construct an offline ant inside of the ant colony optimization, whose solution tour represented the solution output by the SA. This ant was set to be the global best solution at this point, and then an offline pheromone update was performed to seed the pheromone matrix with the initial good solution.
5.9 Experimental Results and Validation For Multi-Core Deployment Optimization

To evaluate SA+ACO, the large (900+ unique task graphs) Standard Task Graph (STG) dataset [70] was used as a base for generation of a more comprehensive dataset for testing MCDO instances, using the guidelines presented in [43]. The initial STG problems have known-optimal solutions, which allows comparison of SA+ACO to a known optimal answer on hundreds of independent problems. The complete dataset has the following independent variables:

- **Core heterogeneity** - The variability present in each core. This is drawn from [1, core heterogeneity] for each core, and the execution time of all tasks on that core increases by this multiplicative factor. Values used in the experiments include [1, 2, 4, 8, 16].

- **Route heterogeneity** - Continuing the generalization described in [43], we define this parameter as a method of increasing variability in the routing delay between two cores. This parameter was eventually found to be one of the most critical parameters for both absolute makespan times and for percent improvement. Values used in the experiments are [1, 2, 4, 8, 16].

- **Route default cost** - This parameter was used to set the default routing cost. Each path was then multiplied by a random number drawn from [1, route heterogeneity]. Setting this parameter to zero allows the SA+ACO to be executed under the assumption that there are no communication delays in the system.

- **Task count** - This parameter was retrieved from the STG graphs, and used values were [50, 100, 300, 500, 750, 1000]
- **Core count** - Values used were \([2, 4, 8, 16]\)

Figure 19: Makespans achieved by SA+ACO for different combinations of input parameters. Each contour line indicates a rise of 0.5 in the \(\log(\text{makespan})\)

Additionally, both algorithms used \(\alpha = 2, \beta = 0.85\) and \(q_0 = 0.5\); ACO used ants=60, iterations=100; SA+ACO used ants=20, iterations=25, \(T_0 = 5000\). Figure 19 gives some indication of the expected makespan for each input parameter combination. Note that the route heterogeneity is clearly the most critical parameter for short makespans. There is not a significant increase in makespan as core heterogeneity increases, but we do see an expected rise in makespan as task counts increase and core counts decrease. Note that all makespan increases are on a logarithmic scale, the actual values of makespans found in Figure 19 range from 27 time units to 62,922 time units.

Unless stated differently in the experiment, all experiments were run on the extended dataset, which is described as so: To generate a broad testing set that could be used in a number of experiments, we took 288 graphs from the STG dataset (48 graphs from each of the 6 task counts provided by the STG). Each graph was tested using all permutations of core count, core heterogeneity, and
route heterogeneity with a routing default cost of 1.

5.9.1 Experimental Platform

Due to the nature of the problem under test, there is a large desire to test exhaustively and understand precisely which conditions the provided algorithm is effective for. To enable this large-scale testing, the experimental platform was a cluster of thirty-two computers and a master node. The proposed algorithm was encapsulated as a stand-alone C++ executable, and the python jug [77] framework was used to assist in running multiple iterations of the solution concurrently on the clustered computers. All C++ was compiled with g++ 4.4.6 using the -O3 flag. To assist other researchers, our exact experiment data, testbed code, and solution code will be made open source. The master computer has an 8-core Intel Xeon X3470 2.94GHz processor and 8GB memory. It is running CentOS 6.0, python 2.6, and jug 0.9.2. Each homogeneous clustered computer uses a Dell D610 blade mesh with two Intel Xeon E5646 12-thread processors, for a total of 24 hardware threads per computer. Each computer has 36GB of memory and is running CentOS 6.0, python 2.6, and jug 0.9.2. Jug was configured to use a filesystem (NFS) backend for locking and task synchronization.

5.9.2 Comparing To Known Optimal

The base STG dataset (e.g. homogeneous cores and no communication delays) included known optimal scores for all four core counts used. Comparing both the nonhybrid ACO and the hybrid ACO+SA algorithms to known optimal values will give an understanding of how well these algorithms fit into other work in the general area of MCDO. The primary point of this experiment is to
understand if the algorithms perform well on the simplified case of MCDO, and to compare both algorithms to a known baseline of across a wide set of experimental data. We used Equation 10 to compare the algorithms' score to a known optimal value. In all cases, Equation 10 will be negative or zero as the algorithm makespan will be greater than or equal to the optimal makespan.

\[PI(score, opt) = \frac{opt - score}{opt} \] \hspace{1cm} (10)

For both ACO and SA+ACO, a total of 1152 independent tests were executed. Specifically, there were 48 task graphs used for every permutation of input parameters:

- Core Count: 2, 4, 8, 16
- Task Count: 50, 100, 300, 500, 750, 1000

The parameter input values used in this experiment were route heterogeneity = 1, core heterogeneity = 1, route default = 0.

Experiment 1 Results: Both SA+ACO and ACO perform within 30% of Optimal

Figure 20 shows a density distribution of the percent difference from the known optimal score for both ACO and SA+ACO. Figure 20 shows that the median of both SA+ACO and ACO is greater than -0.5, meaning that both algorithms were able to achieve scores that were less than 50% worse than the known optimal values. However, SA+ACO clearly has a shorter tail on the graph, in the worse case creating makespans twice as long (-1.0 percent change) as the optimal makespan, whereas ACO occasionally creates makespans that are 3.5 times longer than the optimal value. The median value of SA+ACO is 16.5%, while the median for ACO is 29.5%. Figure 20 can be
Figure 20: Comparison to known optimal values made by using Equation 10. Thick vertical lines indicate data median. 1152 samples per Algorithm.

misleading in that a small change in absolute execution time can result in a large difference in percent change. Table 2 helps to clarify the results of Figure 20 into absolute difference in time units and shows that in all subsets considered SA+ACO outperforms ACO.

<table>
<thead>
<tr>
<th>Cores</th>
<th>Median OPT</th>
<th>SA+ACO Median</th>
<th>ACO Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1569.5</td>
<td>+22</td>
<td>+62</td>
</tr>
<tr>
<td>4</td>
<td>798</td>
<td>+91</td>
<td>+217.5</td>
</tr>
<tr>
<td>8</td>
<td>489</td>
<td>+158</td>
<td>+313</td>
</tr>
<tr>
<td>16</td>
<td>343</td>
<td>+121.5</td>
<td>+317</td>
</tr>
</tbody>
</table>

Table 2: Comparison of Median Achieved Scores. Task sizes included are [50, 100, 300, 500, 750, 1000].

5.9.3 Runtimes of ACO and SA+ACO

While initial results from the experiment in Section 5.9.2 show that SA+ACO is outperforming ACO on the version of the problem with the most assumptions, a critical question is how much extra runtime is needed to achieve these better scores. An algorithm that exhibits exponential runtime for linear increase in scores may rapidly become impractical.
Experiment Results: SA+ACO runs 60-90% faster than ACO.

Figure 21: Density distribution of runtimes of SA+ACO and ACO.

Figure 21 shows that SA+ACO is consistently faster than ACO in terms of absolute runtimes. SA+ACO finds solutions to all problems within 100 seconds (and typically in under 10 seconds), whereas ACO finds requires up to 300 seconds to find solutions. Equation 11 was used to determine that the minimum and maximum runtime differences were 60% and 90%.

\[
PC(saaco, aco) = \frac{aco - saaco}{aco}
\] (11)

5.9.4 Score Comparison of SA+ACO and ACO

This section compares the makespans found by SA+ACO and ACO across the entire input space. There were 600 unique parameter combinations of core count, task count, route heterogeneity, and core heterogeneity. For each parameter combination, we performed trials using 48 different graphs.
Figure 22: Percent Change from ACO score to SA+ACO score across the entire range of input parameters.

from the STG, resulting in a total of 28800 trials per algorithm. The percent difference between SA+ACO scores relative to ACO scores is calculated using Equation 11.

Experiment Results: SA+ACO typically outperforms ACO

Figure 22 is a comparison of the performance of SA+ACO to ACO across a wide range of input space. For utility in discussing, we adopt the following notation: \(cc_{tc} \), \(rh \), \(ch \) where \(cc \) = core count, \(tc \) = task count, \(rh \) = route heterogeneity, and \(ch \) = core heterogeneity. Having a wildcard * in any of the locations references all versions of that parameter. Having two numbers separated by a colon indicates an inclusive range. For any precise combination \(i_{j_{k_{l}}} \) the value shown in Figure 22 is the median of 48 samples, where each sample is a different STG graph.

One of the most promising observations is the consistent improvement in makespans at \(\frac{16}{300:1000} \).
This case of relatively low route heterogeneity and a large number of cores and tasks is exemplary of current hardware trends in large scale computing. The effect is fairly independent with respect to core heterogeneity, meaning that slight differences in core execution speeds should not disrupt the improvement. Large computing grids with highly connected clusters are used to achieve speedups on parallelized algorithms with huge numbers of tasks, with the goal being linear speedup in the number of cores.

One of the least promising observations is at 8×16, where SA+ACO consistently performs worse than ACO. Unfortunately, multiple attempts to dissect this failure have been unfruitful. One possibility is that the exact combination of 8 cores and 16 route heterogeneity is probabilistically poor–there are enough routes (8*7) that multiple routes receive a high routing delay, but there are not enough total routes to move onto cores that avoid these bottlenecks. When reaching 16 cores, the number of routes increases drastically (from 42 to 16*15=240), and therefore poor routes can be avoided. However, this possibility has not been qualitatively examined. As discussed in Section 5.10, the choice of route heterogeneity = 16 may be a poor input parameter choice that is changed in future works.

A large performance increase is noticed at 4×4, where SA+ACO is achieving makespans of 10-20% better than ACO. The increase continues, but at a reduced rate of 0-10%, into $4 \times 8:16$, indicating that for 4 cores and medium to high route heterogeneity SA+ACO is a good choice.
5.10 Contributions and Significance

This section has introduced a new hybrid algorithm for solving the Multi-core Deployment Optimization (MCDO) problem. We have continued prior work on using ant colony optimization (ACO) to solve MCDO problem, specifically by relaxing some of the assumptions of prior work and by adding an initial simulated annealing (SA) step. The two metaheuristics are interleaved, with the SA algorithm providing a seeding step for the pheromones matrix used inside the ACO algorithm.

Comparison to known optimal solutions to the MCDO is possible for a subset of the input space due to the work by Tobita and Kasahara [70] in publishing the Standard Task Graph (STG) Set, a dataset of concurrent application task execution time and precedence relations. Across 50 applications from the STG, and testing 2, 4, 8, 16 cores, the hybrid SA+ACO algorithm is shown to acquire a median of 16.5% increase in makespan time versus the optimal solution. On the same data, the nonhybrid ACO algorithm has a median increase in makespan of 29.5% over optimal.

However, optimal values are only available under a number of simplifying assumptions, such as homogeneous cores and no routing delays. Relaxing these assumptions, we can only compare the performance of SA+ACO to the nonhybrid ACO algorithm. With one exception, across all combinations of the input parameters (core count, task count, core heterogeneity, routing heterogeneity) SA+ACO is able to find makespans that are 0% to 30% better than those found by ACO alone. Moreover, the runtime of the SA+ACO algorithm is typically $\frac{1}{3}$ or less of the runtime of the ACO algorithm. The SA+ACO algorithm is shown to generate solutions 25% worse than nonhybrid ACO algorithm for a small class of input spaces where the routing heterogeneity is quite high (e.g.
up to 16x difference in the routing time of two cores) and the number of cores is 8. More work is required to determine the exact cause for this isolated failure.

For future work, we would like to create a toolkit to generate executable solutions, which can then be profiled and compared with the resource usage predicted by the objective function. We are also interested in exploring multi-objective approaches, such as minimizing the energy consumption of the solution. In addition, there are a number of other algorithms for solving MCDO problems that we would like to compare against.

From our research on Multi-core Deployment Optimization, we learned the following important lessons:

1. **Using Simulated Annealing To Seed Ant Colony Optimization is Quick and Effective.**

 The simulated annealing algorithm described in this paper cools into a greedy local search. Constructing valid solutions in a local search is typically much quicker than running an iteration of an ant colony solution, as the local search simply permutes valid solutions into other valid solutions instead of creating valid solutions. However, the ant colony optimization we define is more effective than random-search simulated annealing at reusing information and performing guided exploitation of a solution space. The combination of these two meta-heuristics is shown to be highly effective and worthy of continued research. A future research may include seeding the ACO pheromone matrix with the best N solutions.

2. **Routing Heterogeneity is Critical to Successful Shortest Paths.** The results in this work show that routing heterogeneity is critical to shorter makespans. However, the open-ended assumption of arbitrary routing heterogeneity may be too general to be practical. Modern
computer systems are often connected in a 2d plane, where each core has a NSEW connection to its neighbor. Using taxicab distance and assuming that each hop from neighbor to neighbor introduces a fixed routing delay, the interaction of routing heterogeneity and number of cores can be determined. For example, if all cores are known to contain all four NSEW connections, then the maximal routing heterogeneity is simply the largest taxicab distance. If cores are arranged in a square grid, this taxicab distance will typically equal $2 \times (\sqrt{\text{cores}} - 1)$, and the maximal routing heterogeneity can be fixed to this value. Future work in this area should use different time units for routing and computation delays, and use accurate hardware models of routing delay.

3. **With Relaxed Assumptions, Heuristic Creation Becomes Harder** During the execution of an ant colony optimization, the heuristic function will typically be executed hundreds, if not thousands, of times each time an ant creates a tour. This requires that the heuristic function execute quickly, but this requirement for rapid execution can be difficult to achieve in highly interconnected solution spaces. For example, considering faster processors to be more desirable can leave out information about routing delays, ending in an overall adverse effect on solution quality. Future work should explore statically calculated data structures shared by all ants to help to enable rapid heuristic calculation, such as summary values for a core’s routing centrality and a task’s need for routing centrality.

The SA+ACO code, the benchmarking code (using the python jug framework), and the extended dataset containing all of our results are available at https://github.com/VT-Magnum-Research/SA-ACO.
6 Large-Scale Distributed Smartphone Emulation

6.1 Overview of Solution Approach to Research Gap 3

To address the need for realistic smartphone testing and experimentation environments, we introduce Clasp, a system for dynamically interfacing with a distributed cloud of smartphone emulators. Clasp provides a queue-based system for job submission, abstracts differences between mobile OS versions, manages the orchestration, execution, and recovery needed when programmatically using smartphone emulators, and provides both Hypertext Transfer Protocol (HTTP) Representational state transfer (REST) and WebSocket Application Programming Interfaces (APIs) for enabling real-time interaction and control of remote emulators.

This work provides the following contributions to creation of large-scale smartphone testbeds:

- An extensive survey of existing research in the area of large-scale smartphone testing, experimentation, and distributed emulation
- Detailed descriptions for a number of architectural challenges faced when building a distributed smartphone emulation system
- Quantitative data exposing the engineering challenges encountered with large-scale smartphone emulation
- Clasp, A system for large-scale Android emulation comprising thousands of devices and tens of worker hosts, including:
 - Real-time HTTP and WebSocket APIs for launching, controlling, and querying dis-
tributed emulators

– A remoting wrapper library enabling local Object-Oriented (OO)-based programming of large number of remote emulators

– Quantitative analysis of Clasp’s performance

6.2 Challenges of Large-Scale Distributed Smartphone Emulation

There is a substantial demand for testbeds for large-scale smartphone systems in diverse areas such as academic study, military applications, and commercial ventures. However, most smartphone emulators are resource-intensive and error-prone. To support a range of mobile OS versions, a distributed emulation system has to successfully couple multiple legacy codebases in the form of older smartphone emulators and operating systems. In addition, the diverse range of mobile OS versions and emulator software versions has resulted in a vast array of software flags, many of which have complex relationships such as mutual exclusion or hard dependence. For example, simulating a user button press requires a different approach upon the version of Android OS in use, and the button press must be communicated in a different manner depending upon the version of the Android emulator in use. In addition, there is often no clear manner to check for success or failure of an attempted task, such as a simple button press.

This section outlines the major challenges faced when creating a large-scale distributed smartphone emulation system such as Clasp.
6.2.1 Error-prone, Resource Intensive Agents Increase the Difficulty of Creating Stable Large-Scale Simulations

Orchestrating thousands of mobile device emulators across hundreds of host computers requires each node to be resilient to emulator failures. A node should be capable of detecting and recovering from such failures without affecting the remaining testbed operations, including any ongoing task currently running on the emulator. Detection of failures is challenging, as smartphone emulators are virtual machines that can maintain external state even when the internal operating system has become unresponsive. This is generally termed the Halting problem. Moreover, approaches to recover from failure are also unclear, as there is no information available external to the emulator VM as to why a failure occurred or what internal state may have been affected.

Section 6.3.2 describes how we address these management issues by creating an emulator heartbeat signal and isolating units of work into small tasks that can more easily be checked for errors.

6.2.2 Multiple Software/Hardware Platforms Increase Difficulty of Simulation

The range of mobile devices that might be connected to the IoT is very large, and practitioners can expect to see hundreds of different combinations of software and hardware on the mobile devices. To successfully simulate this condition, a system must be able to orchestrate multiple versions of mobile devices, as well as include physical mobile device hardware into the simulation results. Each version of a mobile device OS can have widely different options, including different configuration option sets, different user input mechanisms, and different resource consumption characteristics when emulated [78]. Creating a single interface that can span this range of technology is
difficult [59, 78].

While technologies such as the Android emulator allow emulation of a range of Android versions, there are a large number of differences between each version. For example, pressing mobile device buttons, such as the Home, Power, or Volume Up buttons, uses different mechanisms on different versions of the Android emulator. Moreover, Android emulators running different Android OS versions can consume wildly different resources, such as CPU and RAM, on the host system. For example, a 2GHz 8GB x86 host can run four properly-configured Android 4.2 emulators, but the same host machine would have substantial difficulties running four Android 2.3 emulators. Section 6.3.5 describes how we address this challenge using node resource feedback loops.

6.2.3 Large-scale IoT/mobile device Orchestration Requires a Complex Input Model

Each mobile device has a complex input model, spanning static inputs such as device configuration and pre-loaded data, to time-series inputs such as sensor input during the course of the simulation, and dynamic input such as user input on the device screen. Dynamic inputs can also be generated from other systems during the simulation. A concise, repeatable method for specify this wide range of inputs is needed.

Section 6.3 describes how Clasp enables multiples types of specific, repeatable input via external modules, such as the Persona module that can create a range of realistic contacts.
6.3 Research Gap 3 Solution Details

Clasp is a system to enable large-scale emulation and control of Android emulators. Clasp also enables realistic large-scale testing of existing services, such as web services enabling the Internet of Things. Clasp is designed to be executed as a remote web service whereby end-user clients can remotely trigger device launches, submit device tasks, and receive device output. Clasp exposes two remote interfaces, a HTTP REST for simple client interaction, and a WebSocket interface for more complex session-based bidirectional interaction. Clasp is a highly distributed system that uses the Actor concurrency model to enable simpler reasoning about distributed system state.

6.3.1 Architecture of Clasp

In order to integrate with third-party Internet-based services, such as those running on the Internet of Things, Clasp must bridge its distributed set of Actors, most of which are not publicly routable, with these external agents. It is critical that these remote services can perform actions such as launching new emulators, accessing device details, sending files such as applications to these devices, etc. As shown in Tables 4 and 3, there is substantial ability for remote clients to introspect Clasp. This section outlines the major design decisions that enable remote clients to easily interact with the network of mobile devices provided by Clasp.

Figure 23 shows the main components that allow remote Internet-based services to communicate with devices run inside Clasp in a bi-directional manner. Figure 23 also shows worker nodes that are not available from the public Internet, which is common for security and cost reasons.
HTTP REST Interface As the master node receives connections, it filters, marshals, and routes them as necessary. The core public-facing interface is an HTTP REST interface allowing third-party services to interact with Clasp using commands such as those shown in Table 3.

<table>
<thead>
<tr>
<th>URI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/emulators</td>
<td>List emulators prepared to execute tasks</td>
</tr>
<tr>
<td>/nodes/all</td>
<td>List of worker nodes, including offline and crashed nodes</td>
</tr>
<tr>
<td>/emulators/launch</td>
<td>Launch a new emulator with provided options</td>
</tr>
</tbody>
</table>

Table 3: Examples of REST API provided by Clasp

The RESTActor on the master node handles input data unmarshalling, interacting with the targeted Actor (including timeouts for Quality of Service guarantees), and marshaling the response for client use. This interface enables any HTTP-capable system to fully interact with a remote Clasp system. By using a client library that performs this remoting invisibly, clients can locally interact with Clasp as shown in Listing 3 in a manner similar to local Object Oriented programming.
import clasp._

object Test {

def main(args: Array[String]) {

 val clasp = Clasp(host="masternode.clasp.com", port=80)

 val emulators: Seq[Emulator] = clasp.list_emulators

 if (emulators.length < 100) {
 // Clients can modify this as needed
 val options = new EmulatorOptions
 clasp.launch_emulator(options)
 }

 // Logic using emulators goes here
}
}

Listing 3: Using library to transform HTTP REST API into Object Oriented programming

WebSocket Interface The primary limitation of the above approach is that Clasp cannot broadcast events, such as emulator task complete, back to client systems. In general, HTTP REST clients must continually poll to determine if new server events have occurred. Most systems comprising the Internet of Things must consider the resource cost, such as battery usage, of constantly accessing the network and processing response data. One method of addressing this resource utilization
is to utilize a bidirectional protocol in which Clasp can alert the remote system when events of interest happen. Clasp uses the WebSocket protocol to enable bidirectional data transfer on a single TCP port. The WebSocketActor on the master node detects incoming WebSocket requests and creates a worker Actor for each connection. To avoid the resource cost of maintaining multiple open TCP connections and simplify Clasp’s architecture, each connection is multiplexed into a number of publisher-subscriber channels by the ChannelActor. By subscribing to channels, such as those shown in Table 4, clients can send direct messages to Actors, who either reply directly or broadcast messages to all clients subscribed to the channel.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/emulator/<ID>/logs</td>
<td>Receive all logs from emulator <ID></td>
</tr>
<tr>
<td>/devices</td>
<td>Updates about changes in any device’s state, such as Crashed, Booting, Ready</td>
</tr>
<tr>
<td>/node/<ID>/resources</td>
<td>Receive updates on node <ID>’s resource usage, such as RAM and CPU</td>
</tr>
</tbody>
</table>

Table 4: Examples of WebSocket publisher-subscriber channels available

An important consideration was enabling first-class support for the WebSocket interface so that clients could interact with Clasp without ever using the HTTP interface. The main challenge is how to mingle current state snapshots, such as those provided by the REST interface, with streaming updates, such as those provided by the WebSocket interface. Adding separate WebSocket channels for determining current status creates nontrivial client-side threading issues. For example, if a client requests current status from one channel, and also requests status updates from another channel, the order of responses becomes important. To remove this client-side complication, Clasp replays all channel history to any new client connections. In this manner, new clients are always provided the current state as a stream of updates, and after this updates are provided as they are generated. This is accomplished by storing all channel messages to log files, and replaying the log
file when a new client connects. A future iteration of Clasp may include flattening these channel log files occasionally to prevent sending large amounts of extra data to clients, but the current use cases have not required this.

Hybrid Remote API Usage Clients may want to use both the WebSocket remote API, which is excellent for streaming information such as real-time logs, and HTTP remote API, which is excellent for one-time tasks such as sending emulator launch commands. To enable hybrid usage, all WebSocket channel messages are fully-valid JSON objects, such as the one shown in Listing 4, and are marshaled identically to the HTTP REST API. The primary difference is that the REST API will return an array of JSON objects in some scenarios while the WebSocket interface will send each object as a separate message.

```json
{
    "ip": "10.0.0.2",
    "status": "Booting",
    "emulators": 0,
    "uuid": "931a313a-a986-456b-9172-7b355b19db25",
    "asOf": "2014-09-30T21:00:51Z"
}
```

Listing 4: JSON Format Shared by Clasp’s HTTP and WebSocket Interfaces

Connecting to TCP services on Worker Nodes Finally, we have found substantial value in selectively allowing direct connections to various services, such as the Android Debug Bridge
(adb) and Virtual Network Computing (vnc), from devices on the public internet. These protocols are challenging to adapt to an Actor-based programming model, and therefore we created the RevTCPproxyActor, which opens and maintains a dedicated TCP proxy between a worker node and the master node. Public internet clients may then connect to the opened port on the master node, and their traffic will be invisible routed through our private network to the target service running on the worker node. An example of this is discussed in more detail in Section 6.3.3.

6.3.2 Complex, Error-Prone Agents

As discussed in Section 6.2.1, mobile devices and mobile device emulators are complex agents in our system, and are prone to errors, including errors that are nontrivial to detect such as becoming unresponsive to user input. Clasp uses two different approaches to address the challenge of dealing with these error-prone agents. First, each Android emulator is directly monitored by an Actor using the state diagram shown in Figure 24. Second, the work delivered to each emulator is segmented into Tasks, which are delivered in serial to an emulator and therefore allow failures to be isolated to one Task. We discuss each approach in detail in this section.

![EmulatorActor Finite State Machine](image)

Figure 24: EmulatorActor Finite State Machine

The state diagram above shows potential states for the EmulatorActor, which monitors a single
Android emulator process. The EmulatorActor detects any premature exit of the emulator process, and will attempt to restart the process based on a recovery strategy, such as *restart three times, then escalate the failure*. The EmulatorActor also periodically attempts direct interaction with the underlying emulator, and terminates the emulator process if a response is not received in a timely manner. The EmulatorActor can additionally monitor the time taken for Task execution and indicate failure if a given tasks takes longer than the default timeout provided for that task (defaults to 5 minutes).

Other components within Clasp interact with the EmulatorActor, which in turn manages interaction with the emulator process. In this manner, Clasp can isolate and recover from failures of the underlying emulator process. To enable responsiveness while interacting directly with the emulator process, the EmulatorActor uses Futures and Promises to handle worker thread creation and response processing.

6.3.3 Providing User Input To Android Emulators Using Clasp

Control of mobile devices requires user input events, such as button presses and screen touch events. Even simplistic applications can require complex patterns of user input to transition between application states. For example, sending a text message with the default SMS application on the Android 4.0 platform requires at least five key events (enter application, tap *New Message* button, tap *To* field, tap *Message* field, tap *Send* button). It is infeasible to manually provide this user input to hundreds of devices, and therefore automation is critical. However, automation of user input can be extremely error-prone, as slight differences in application version can cause large differences in the sequence of inputs required to reach a target state. Moreover, external events
can cause view hierarchy updates, such as overlay windows for incoming messages, due to the event-driven nature of the Android platform. Therefore it is important to allow automation from a guaranteed static state, and to enable easy debugging of the user input process.

Manual User Input and Feedback is the most direct method of user control of the mobile device emulator. The distributed nature of Clasp makes this challenging, as each emulator is running on a remote host. Figure 25 shows an overview of Clasp’s approach for enabling manual user feedback and control of emulators.

![Figure 25: Real-time view and control of remotely-hosted mobile device emulators](image)

As discussed in Section 6.3.2, mobile device emulators are error prone processes that are wrapped with an Actor that monitors the emulator process. For each emulator, the Actor also creates a virtual framebuffer that the emulator will be rendered into. This framebuffer is precisely sized to preserve memory on the worker node. A lightweight Virtual Network Computing (VNC) server is launched on the worker node, to allow remote access and control of this framebuffer. This VNC server must be configured with the proper keymaps for controlling the Android emulator, which is non-trivial as different versions of Android OS use different keymaps, and customized Android versions often extended these default keymaps with additions such as keys for Bluetooth control.
To enable view and control any emulator running inside of Clasp, the web interface embeds an HTML5 VNC viewer that can be used by any modern web browser. A persistent WebSocket connection is used to enable bi-directional VNC communication. Moreover, the output of the emulator process is captured in real-time, and the WebSocket protocol is used to deliver this information to the web browser in real time. The HTTP+WebSocket API defined in Section 6.3 is used by the web interface to communicate with the Clasp system, enabling actions such as 1) listing connection information for running mobile device emulators, 2) registering for update messages, such as log information, for a specific emulator, and 3) sending control actions to emulators.

While not shown in Figure 25, a non-trivial challenge is that most worker nodes do not have publicly-routable IP addresses. Therefore direct connections between the client computer running Clasp’s web interface and the host running Clasp’s worker nodes are not possible. To address this, the Clasp master node acts as a proxy for each worker node. For protocols such as HTTP multiple proxy libraries are available, but for more recent or complex protocols such as VNC and WebSockets this is a non-trivial task. The master node dynamically establishes these proxies as needed to avoid wasting resources if a worker node is not being actively accessed.

Automated User Input is easily achieved with the Android Monkey tool, which allows generation of a stream of user input events, such as swipes or button taps.

6.3.4 Addressing Failure and Recovery of Smartphone Emulators

For each mobile OS version, Clasp contains an appropriate heartbeat signal that is used to determine if the mobile OS running inside the emulator is responding appropriately. For some Android versions, such as Android 4.0, there is an equivalent ping command available. For older OS ver-
sions, this is simulated using commands that have no side effects and have been quantitatively proven to respond quickly, such as the list sensors command. By sending this heartbeat signal to running emulators on a regular basis Clasp can easily determine if emulators are still responsive within acceptable quality of service limits.

To address job failure detection and recovery, Clasp defines a number of small operations, such as install package. For these small tasks a combination of output checks, such as looking for specific response strings e.g. Success, timeouts e.g. 30 seconds, and followup commands e.g. List Installed Packages is used to determine if a task has succeeded or failed. By chaining series of these reliable tasks together a full sequence of behavior can be executed with confidence that each item was completed successfully.

6.3.5 Enabling Emulation of Multiple Software/Hardware Platforms

As discussed in Challenge 6.2.2, each version of a mobile device OS can have widely different options, including different configuration option sets, different user input mechanisms, and different resource consumption characteristics when emulated.

To enable uniform interaction with Android emulators, regardless of version, we use the Abstract Factory design pattern to generate concrete classes specific to interaction with that version of Android. This allows uniform interaction, including items such as hard button presses, screen taps, and specification of configuration.

To deal with the challenge of vastly different resource consumption characteristics, each NodeActor in the system monitors its own resource characteristics and shares that information with the NodeManager.
When a new emulator is requested, the NodeManager actively selects a worker node for the new emulator based on the available resources of each worker node and the past resource consumption of similar emulators.

6.3.6 Simplifying Simulation Input Model Using Modules

To address the need for the hundreds of different inputs needed when executing a large-scale experiment, Clasp includes a number of configurable modules to automatically provide these inputs. For example, Listing 5 initiates the *Persona* module, which will create realistic contact details for the current mobile device user including photos, contacts, accounts, etc. By segregating the input model in this manner, Clasp enables high customization while avoiding complexity unless customization is needed. Each module can individually determine what data sources (e.g. file, network stream, other emulator outputs, internal simulation) are used to generate inputs, as well as ensure repeatability.

```scala
import clasp._

object Test {
    def main(args: Array[String]) {
        val clasp = Clasp(host="masternode.clasp.com", port=80)

        val emulators: Seq[Emulator] = clasp.list_emulators
        if (emulators.length < 100) {
            // Clients can modify this as needed
            val options = new EmulatorOptions
```
Listing 5: Using the Persona module to automatically configure emulator

6.4 Experimental Results And Validation

This section outlines multiple tests on individual components of Clasp, as well as experimental analysis of the combined Clasp system. It also includes a case study of using Clasp to experimentally benchmark web service performance.

6.4.1 Experimental Platform

We analyzed Clasp on the Android Tactical Application Assessment & Knowledge (ATAACK) Cloud [59], which is a hardware platform designed to provide a testbed for cloud–based analysis of mobile applications. The ATAACK cloud currently uses a 34 node cluster, with each cluster machine containing Dell PowerEdge M610 blade running CentOS 6.3. Each node has 2 Intel Xeon 5645® processors with 6 cores (supporting 12 independent hardware threads), as well as 36GB of DDR3 ECC memory shared between the 2 processors.
6.4.2 Analysis of Emulator Launch Times and Host Resource Consumption

This experiment shows Clasp’s resource consumption when launching large number of emulators in multiple configurations, and provides a performance baseline for multiple scenarios. This experiment showcases the various challenges of dealing with resource-intensive heterogeneous emulators by exploring multiple scenarios, such as overloading worker nodes and launching emulators in step versus in tandem, and establishing expected coarse host resource consumption characteristics for these scenarios. This experiment provides a critical baseline for future research in the area of Distributed Emulation, as it quantitatively outlines numerous challenges faced.

Node Resources Consumed Per Emulator Figure 26 shows the host resource consumption pattern created by an emulator launch. To create Figure 26, three emulators were launched in serial with an eight minute gap between each launch to avoid interactions. Each emulator remains online once launched so that Figure 26 can show any potential additive effects resulting from launching emulators while other emulators are executing.

Each worker node used in this scenario has 36GB of RAM and two hyper-threaded 6 core 2.4GHz processors, exposing a total of $2^{\text{processors}/1} \times 6^{\text{cores}/\text{processor}} \times 2^{\text{threads}/\text{core}} = 24^{\text{threads}/1}$. Therefore, a 2% decrease in real memory roughly equals ≈ 720MB of consumed RAM, and 1% decrease of the $\approx 2400\%$ total CPU available equals ≈ 600MHz.

Each emulator consumes a non-trivial portion of real memory, around 720MB, as shown by the blue boxes in Figure 26. Multiple important CPU consumption patterns are also exposed in Figure 26, such as boot spiking, steady-state consumption, heartbeat spiking, and interference effects.
Figure 26: Node Resources Consumed on Emulator Boot with No Hardware Acceleration

Boot spiking is our terminology for the clear increase in CPU consumption as each emulator’s VM is loaded into RAM and booted, at times t_0, t_8, and t_{16}. After the boot spikes complete, at times t_4, t_{12}, and t_{20}, the **steady-state consumption** effect is the CPU cost of maintaining the idle emulator. When Clasp sends a heartbeat to each emulator, as indicated by the triangle-tipped line segments, there is a noticeable **heartbeat spike** effect. The heartbeat spike is our first example of **interference effects**, where the effect is more pronounced with larger number of emulators. This is only slightly apparent in Figure 26 by noticing the heartbeat spikes become more severe from $t_{4−8}$ to $t_{12−16}$, and will be explored more in the next section. Later results show that interference effects are apparent in multiple scenarios, such as communicating with emulators through *adb* and the severity of boot spiking, as formalized in Equation 12. These interference effects, plus higher levels of wait time, lead us to conclude that Android emulators share some core components. For example, communication with a single Android emulator is often multiplexed through a server.
running inside the Android Debug Bridge (adb), leading to a bottleneck when attempting to communicate with multiple emulators. Future work in large-scale distributed mobile device emulation should make a determined effort to reduce these shared components as much as possible.

\[CPU_{boot} = CPU_0 + N \times E_{mulators} \]

(12)

Worker Node Degradation When Overloaded
Figure 27 shows the resource consumption pattern resulting from overloading a worker node by launching one non-hardware-accelerated Android 4.0 emulator every eight minutes until 80 emulator launches had been attempted. Emulator boot spikes are clearly visible at regular intervals from time \(t_0 \) to \(t_{11} \) as emulator launches were being triggered, while time \(t_{11} \) to \(t_{13} \) shows the steady-state behavior as seen by the stabilization of the RAM, CPU, and Swap metrics.

An initial experiment with 20 emulators was used to predict the failure point of the worker nodes, by linearly projecting the measured RAM and CPU consumption. Upon stressing the worker nodes to this failure point, we were only able to sustain 65 emulators at acceptable conditions, due to large delays introduced by page swapping when worker node memory dropped below 30%. As shown by Figure 27, the experiment used at most 60% of our available CPU capacity, while the available RAM decreases linearly. Once available RAM drops below 30% (as configured by the kernel swappiness setting), Linux Swap file Page Outs begin to increase. Clasp continually sends heartbeats to emulators to ensure they are operating within acceptable limits. Therefore, as the Swap file is used more aggressively Clasp begins to automatically shut off emulators that are unresponsive and not currently running any tasks. For time \(t_{8-12} \) Figure 27 shows emulator
launches continuing to be triggered, and Clasp consistently terminating emulators that are deemed to be unresponsive. This RAM bottleneck causes a launch cycle in Clasp where emulators being launched are actively in RAM and are therefore responsive to heartbeats, while emulators already launched are paged out and are therefore terminated.

Future work in this area will explore configuring emulators to use less memory, such that the available CPU is fully utilized, and more intelligent reaction of heartbeat failures due to RAM bottlenecks.

Figure 27: Worker Node Degradation When Launching 80 Emulators with Clasp

Figure 28: Android 4.0 x86 Emulator Boot Time As a Function of Emulators Already Running (bars indicate SEM)

Emulator Launch Times As discussed above, Android emulators share core components, such as access to the underlying hardware virtualization, and access to running Android emulators is
typically multiplexed though a single Android Debug Bridge (adb) instance. For these reasons, it is common to see emulator launch times increase with the number of emulators already executing on that machine, as shown in Figure 28. Clasp correctly anticipates emulator boot time lengthening on fully-loaded worker nodes and ensures the boot timeout window is large enough to address this dynamic behavior.

Figure 28 is limited to 60 emulators to avoid the effects caused by exhausting host resources such as RAM and CPU.

While Figure 28 provides a clear overview of emulator boot performance as a function of running emulators. As emulators share some resources, there is the potential that two emulators booting concurrently increases resource contention to the level that serial booting is more effective. As shown in Figure 28 this was not the case – there was no benefit to intentionally delaying emulator launches.

6.4.3 Emulator Speed

A large concern with distributed emulation, especially on a platform such as Amazon EC2 that is already virtualized, is the emulator performance. The Android emulator supports KVM virtualization, which drastically increases performance, and some Amazon EC2 machines launch with the `vmx`, indicating that they support nested virtualization and allow the Android emulator to access the host virtualization support. This experiment shows the average performance difference achieved on such platforms.

Figure 29 shows the result of executing six common emulator tasks: installing an application,
pressing a key, listing installed packages, listing available sensors, and uninstalling an application. The most apparent effect is the drastic time difference between listing available sensors (less than 1 second) and all other shown tasks. Listing available sensors is done through a direct telnet connection to Android OS running inside the emulator, while all other tasks shown are routed through the Android Debug Bridge (adb). By occasionally experiencing delays as large as 20 seconds for a single key press, the adb binary can delay execution of an entire stream of tasks. It is unclear at this time what causes these occasional large delays.

As shown by Figure 29, lack of hardware acceleration causes slowdowns of nearly 400% for some common emulator tasks. Additionally, emulators with no hardware acceleration are susceptible to occasional long delays, as evidenced by the major outliers at (None, install, 15.5 seconds), (None,keypress, 13.5 seconds), and (None,keypress, 5.4 seconds).
6.4.4 Task Throughput of Clasp

To examine the performance of Clasp when executing large numbers of tasks, we measured the time to complete various sized queues of emulator tasks. Total time for each task included submitting the task to Clasp, Clasp selecting an available emulator, delivering the task to the remote worker node, task execution time, and delivery of the task result. To minimize noise and ensure the measured item was Clasp instead of the specific emulator being executed, each task performed zero interaction with the emulator and just returned a result containing the time it was executed. No dependencies existed between tasks.

As shown in Figure 30, the speed of task execution is linearly dependent upon the number of tasks that are queued. However, as more emulators are available to execute tasks, the total processing time decreases drastically.
6.5 Contributions and Significance

This chapter introduces Clasp, a system for large-scale distributed smartphone emulation. Clasp represents a substantial research and engineering effort that will have implications for areas such as academia, government, military, and industry. From this research, we provide the following contributions to the study of large-scale distributed emulation:

1. **Clasp: A System for Dynamically Launching and Controlling a Distributed Cloud of Smartphone Emulators.** As discussed in Section 3.3, there are a small number of systems with functionality approaching Clasp, and therefore we expect Clasp to become a valuable research tool in areas such as mobile malware analysis [79].

2. **A Literature Survey of Existing Research on Large-Scale Smartphone Testing.** Section 3.3 provides an extensive survey of existing research in the area of large-scale smartphone testing, experimentation, and distributed emulation.

3. **Empirical and Architectural Guidance on Creating Large-Scale Smartphone Testbeds.** Section 6.4 quantitatively explains a number of the engineering challenges encountered while building Clasp. Section 6.3 explains a number of design challenges that were addressed to ensure Clasp was easily compatible with the numerous other tools researchers may wish to use while researching large-scale smartphone systems.
7 Conclusions & Lessons Learned

This dissertation presents new methods to address a number of key challenges within the field of mobile cloud computing. After extensive review of mobile cloud computing research literature, the core research gaps identified are 1) a loss of locational privacy in existing mobile cloud computing systems 2) a shortage of mobile cloud computing specific algorithms enabling efficient use of cloud Infrastructure as a Service, and 3) no available testing suites for conducting mobile cloud computing research. For each of these gaps in research gaps, this dissertation proposes a novel solution based upon existing literature, implements the proposed solution, and experimentally validates the result.

7.0.1 Summary of Contributions

Provide k-anonymity locational privacy through controlled reductions in locational precision. Presented in Chapter 4, Anonoly is an algorithm that can enforce user anonymity while maintaining the convenience of location based services. Using real-world data gathered from user mobile devices on the Dartmouth campus, Anonoly outperformed existing approaches by maintaining anonymity for 6 out of 8 weeks tested. Results show Anonoly is able to successfully preserve user anonymity even during extreme situations, such as a school holiday causing a 90% drop in the number of active mobile cloud computing users.

Enable more effective execution of mobile cloud computing systems onto IaaS by creating a method to precisely predict application performance at various resource usage levels, as well as a method for rapidly deploying large mobile cloud computing applications onto cloud infrastructure.
Results from Chapter 5 show performance prediction is accurate to within 3% of performance achieved even under worst-case conditions, and application quality of service is improved up to 30% using the SA+ACO deployment algorithm.

Create a flexible testbed for large-scale mobile cloud computing experimentation. Clasp, presented in Chapter 6, is a distributed emulation system that can execute and manages thousands of Android emulators running on tens of physical hosts. Clasp monitors all host resources and emulator responsiveness and adapts to reductions in performance, enabling a consistent experience across a range of. Clasp also exposes multiple interfaces using standard web technologies and internally handles core differences between mobile OS versions, such as key mappings, to enable simple interconnection with a range of existing research software.
8 Bibliography

