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Mahmoud A. M. S. Elbayoumi

(ABSTRACT)

According to Moore’s law, Integrated Chips (IC) doubles its capacity every 18 months. This

causes an exponential increase of the available area, and hence,the complexity of modern dig-

ital designs. This consistent enormous gross challenges different research areas in Electronic

Design Automation (EDA). Thus, various EDA applications such as equivalence checking,

model checking, Automatic Test Pattern Generation (ATPG), functional Bi-decomposition,

and technology mapping need to keep pace with these challenges. In this thesis, we are con-

cerned with improving the quality and performance of different EDA algorithms particularly

in area of hardware verification and synthesis.

First, we introduce algorithms to manipulate Reduced Ordered Binary Decision Diagrams

(ROBDD) on multi-core machines. In order to perform multiple BDD operations concur-

rently, our algorithm uses a breadth-first search (BFS). As ROBDD algorithms are memory-

intensive, maintaining locality of data is an important issue. Therefore, we propose the

usage of Hopscotch hashing technique for both Unique Table and BFS Queues to improve

the construction time of ROBDD on the parallel platform. Hopscotch hashing technique

not only improves the locality of the manipulating data, but also provides a way to cache

recently performed BDD operation. Consequently, The time and space usage can be traded



off.

Secondly, we used static implications to enhance the performance of SAT-based Bounded

Model Checking (BMC) problem. we propose a parallel deduction engine to efficiently utilize

low-cost off-shelf multi-core processors to compute the implications. With this engine, we can

significantly reduce the computational processing time in analyzing the deduced implications.

Secondly, we formulate the clause filter problem as an elegant set-covering problem. Thirdly,

we propose a novel greedy algorithm based on the Johnsons algorithm to find the optimal

set of clauses that would accelerate BMC solution.

Thirdly, we proposed a novel synthesis paradigm to achieve timing-closure called Timing-

Aware CUt Enumeration (TACUE). In TACUE, optimization is conducted through three

aspects: First, we propose a new divide-and-conquer strategy that generates multiple sub-

cuts on the critical parts of the circuit. Secondly, cut enumeration have been applied in two

cutting strategies. In the topology-aware cutting strategy, we preserve the general topology of

the circuit by applying TACUE in only self-contained cuts. Meanwhile, the topology-masking

cutting strategy investigates circuit cuts beyond their current topology. Thirdly, we proposed

an efficient parallel synthesis framework to reduce computation time for synthesizing TACUE

sub-cuts. We conducted experiments on large and difficult industrial benchmarks.

Finally, we proposed the first scalable SAT-based approaches for Observability Dont Care

(ODC) clock gating. Moreover we intelligently choose those inductive invariants candidates

such that their validation will benefit the purpose in clock-gating-based low-power design.
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Chapter 1

Introduction

According to Moore’s law, the feature size of transistors is shrinking every 18 months. Mean-

while, the complexity of the logic design is increasing exponentially. These advances have

challenged circuits developer to ensure that their products are synthesized efficiently and are

free of bugs and defects.

Binary Decision Diagrams (BDDs)-based and Satisfiability (SAT)-based algorithms have

been used in logic circuits synthesis, testing and verification [1], [2], [3], [4]. In this chapter,

we introduce the motivation for our work, thesis objectives, outlines and publications.

1
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1.1 Motivations

In this section we will discuss the motivation of our work. First, we will discuss the motivation

for utilizing multi-core platforms. Secondly, the motivation for concurrent BDD package will

be discussed. thirdly, we will discuss the motivation for SAT-based bounded model checking.

In addition, we will discuss the motivation for timing aware and low-power logic synthesis.

1.1.1 Motivation of parallelization

Nowadays, computing has seen a steady shift toward parallel computing. This shift is mainly

because of three reasons [5]. First, operating frequency has hit a wall. This is because increas-

ing the operating frequency may induce excessive power consumption. Secondly, Instruction

Level Parallelism (ILP) has reached its limit due to constraints limited by data, control,

and structural resources. Thirdly, memory manufacturers tend to trade delay with storage;

thus, the degradation due to memory access time outweighs any improvement in processor

operating frequency. As a result, manufacturers are interested in looking for alternatives

to these traditional approaches for increasing performance. Thus, increasing the number of

processors (cores) on a die to improve the performance is one of the mainstream to boost

the performance[6]. This lead to a low-cost (but powerful) parallel computing platform.

Accordingly, these platform need to be utilized efficiently to leverage the opportunities in

many sequential EDA algorithms [7].
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1.1.2 Motivation for Binary Decision Diagrams

Boolean algebra is an essential mathematical tool in various fields of computer science and

engineering. Many problems can be modeled as sequence of Boolean expressions. For exam-

ple, VLSI design automation [8], artificial intelligence [9], and network system analysis [10]

are typical examples of these problems. Consequently, the efficient representation and ma-

nipulation of Boolean function are requirements in many algorithms in various area especially

in VLSI design automation.

Among many Boolean representations [11], Binary Decision Diagrams (BDDs) are considered

one of the most efficient ways for representation and manipulation of Boolean functions [11].

Since its introduction in 1986 [12], efficient constructions of Reduced Ordered Binary Decision

Diagrams (ROBDD) have penetrated many areas of computer aided VLSI design, including

fault simulation [1], circuit synthesis [2], Automatic Test Pattern Generation (ATPG) [3],

circuit verification [4], just to name a few. Three major approaches have been proposed

to construct ROBDD: depth-first search (DFS) [13], breadth-first search (BFS) [14] and

hybrid BFS-DFS [15]. Although DFS has a low associated memory overheads and large

potential to be optimized (i.e., by using Computed Tables (CT)), it has poor memory locality.

Meanwhile, BFS construction approach preserve memory locality and it has a large potential

to be parallelized; however, it has associated overheads in storing temporary nodes (stored

in queues).

Recently, concurrent hashing techniques (e.g., Hopscotch hashing [16]) have been proposed
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to guarantee efficient constant lookup and deletion times in the hash table. In addition,

it shows a superior performance on traditional hashing techniques; i.e., chained hashing,

linear hashing and Cuckoo hashing [17], even when the hash table is 90% full. It depends

mainly on keeping those nodes, hashed to the same bucket, in a restricted nearby space of

the memory. In doing so, it has benefits of low access time of the main memory cache, and

guarantees constant worst-case lookup time. This can play a critical role in improving the

performance in the access of BDD nodes, which are typically stored and indexed via hash

tables. Thus, in a sense, while construction algorithms for BDDs are extremely difficult to

parallelize, we exploit concurrency in hashing algorithms, with tremendous payoffs. As we

have new architectures, we need to investigate and develop new algorithm to handle BDDs

on these architecture to efficiently utilize the available off shelf devices.

1.1.3 Motivation for SAT-based bounded model checking

Two classes of approaches have been proposed to verify IC designs: simulation-based and

formal verification techniques. While simulation-based verification can better accommodate

large designs, it cannot offer guarantees [18]. On the other hand, formal methods explore all

corners in theory and thus are complete. In that sense, formal verification can be regarded

as a promising alternative for certain types of designs and properties.

Model checking is a formal verification method, which computes and traverses the reachable

states of the design to determine whether the target property is upheld. In 1999, bounded
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model checking (BMC) was proposed [19] based on a Satisfiability (SAT) formulation and

gives model checking a great push forward. BMC has enjoyed considerable success with the

employment of propositional SAT solvers in recent years [20]. It has been widely applied in

bug hunting and property checking within a bounded sequential depth [21]. In Chapter 4,

we will presents a formulation for static implication selection to boost the performance of

BMC problem.

1.1.4 Motivation for timing-aware logic synthesis

Logic synthesis is the automated generation of an optimized logic networks (in terms of delay

[22], area and/or power [23]) from another unoptimized/sub-optimized logic network. Over

the years, many researchers have been interested in optimizing certain dedicated hardware

components. For example, Sklyarov et al. [24] had proposed a novel technique for synthe-

sis parallel hierarchical finite state machine; Roy et al. [25] had proposed a customizable

prefix graph structures that yield adders with optimal performance-area trade-off. Other

researchers had developed various synthesis algorithms for dedicated platforms. For exam-

ple, Uma et al. [26] had explored constraint synthesis optimization technique for targeted

FPGA device. Another research aims toward building general methodologies that is capable

of efficiently synthesizing both control and data-path components [27].

This thesis fits in the last group, that is, general timing-aware synthesis. In other words,

we do not target a specific hardware structure or platform. Instead, we propose a general



6

framework for delay-optimization logic synthesis.

1.1.5 Motivation for low-power logic synthesis

Power consumption is one of the major considerations in modern chip design. This was not

only driven by the stringent power budget in mobile and tablet industry [28], but also driven

by the need to reduce power consumption in high end servers as well. This need comes as

the fact that increasing power consumption of computing systems has started to limit their

performance growth [29].

The two major sources of power consumption in CMOS circuits are static and dynamic power

consumption. According to data provided by large chip manufacturer [29], devices such as

CPUs could have their dynamic power consumption contributing to 70% of the total power.

Various power reduction techniques have been proposed and implemented in all levels of the

computing system, from software and architecture levels [30] to circuit levels [31]. At the

circuit level, many clock-gating and power-gating techniques had been proposed [32], [33]-

[34]. In Chapter 6, we will present a novel scalable invariant-directed power aware synthesis

technique.
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1.2 Dissertation Objectives

Dissertation objectives are as follows:

• Improve BDDs construction time with concurrent Hopscotch Hashing techniques.

• Formulate a criterion for filtering static Implications to help SAT-BMC problem.

• propose a parallel implication deduction engine.

• propose an timing-Aware CUt Enumeration (TACUE) algorithm to improve timing

closure in hard circuit instances.

• propose an efficient parallel synthesis framework for TACUE.

• propose the first method for SAT-based ODC power-aware synthesis.

1.3 Dissertation Outlines

This thesis is organized as follows:

• Chapter 2 introduces the necessary background for the techniques used in this disser-

tation. It introduces the fundamentals of BDDs, including its concepts, algorithms.

In addition, SAT-based Bounded Model Checking (BMC) is introduced. Static logic
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implications and their various types will also presented. Preliminaries for timing-aware

and low-power logic synthesis is introduced.

• Chapter 3 introduces the detailed BDDs construction with Hopscotch hashing. We

will introduce efficient resizing and garbage collector mechanism. We will presents The

results for these algorithms.

• Chapter 4 introduces the details of filtering algorithm of static implications. In addi-

tion, it will present the parallel framework for generating static implications. Finally,

the results will be presented.

• Chapter 5 introduces the details of our timing-aware synthesis algorithm. We apply

TACUE in two different cutting strategies. In addition, we will present the parallel

framework for generating the synthesized sub-cuts. Finally, the results will be pre-

sented.

• Chapter 6 introduces the details of our Low-power synthesis algorithm. First, we intro-

duce our problem and our proposed algorithm related concepts. Secondly, our scalable

algorithm along with heuristics is introduced. Thirdly, Results and experiments are

presented. Finally, our work is concluded.

• Chapter 7 presents the future work for this thesis. We propose to extend algorithms

presented in Chapter 3 to very large BDDs and partition BDDs. In addition, we

propose to filter Potential Inductive invariants to assist SAT solver to efficiently solve

BMC problems. Finally, we propose to apply both BDDs and SAT techniques we have
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investigated to logic synthesis area.

1.4 Publications

As of today, the work presented in this dissertation has resulted in the following publications:

• Mahmoud Elbayoumi, Michael Hsiao and Mustafa ElNainay , Novel SAT-based Invariant-

Directed Low-Power Synthesis, ISQED 2015, March 2015, Santa Clara, CA, USA.

(Accepted)

• Mahmoud Elbayoumi, Mihir Choudhury, Victor N. Kravets, Andrew Sullivan, Michael

S. Hsiao, Mustafa Y. ElNainay, TACUE: A Timing-Aware Cuts Enumeration Algo-

rithm for Parallel Synthesis. DAC 2014, San Francisco, CA, USA.

• Mahmoud Elbayoumi, Michael Hsiao and Mustafa ElNainay , Selecting Critical Im-

plications with Set Covering Formulation for SAT-based Bounded Model Checking,

ICCD 2013, Oct. 2013, Asheville, NC, USA.

• Mahmoud Elbayoumi, Michael Hsiao and Mustafa ElNainay , Set-Cover-based Critical

Implications Selection to Improve SAT-based Bounded Model Checking Extended

Abstract. GLSVLSI 2013, May 2013, Paris, France.

• Mahmoud Elbayoumi, Michael Hsiao and Mustafa ElNainay , A Novel Concurrent

Cache-friendly Binary Decision Diagram Construction For Multi-Core Platforms, ACM

Design, Automation & Test in Europe (DATE 2013), March 2013, Grenoble, France.



Chapter 2

Background

In this chapter, we present preliminaries about work accomplished in the dissertation. First,

We define Boolean Functions. Secondly, we introduce Binary Decision Diagrams (BDDs).

Moreover, we introduce the concept of static implications and inductive invariants. Next,

we introduce satisfiability (SAT)-based Bounded Model Checking (BMC) and Property-

directed Model checking. Furthermore, BDD bi-decomposition and time-driven logic bi-

decomposition are presented as they been utilized as synthesis optimization engine for sub-

cuts produced by TACUE. In addition, dominant cuts is used in topology-aware cutting

strategy and in our low-power synthesis algorithm. Finally, we introduce clock-gating syn-

thesis and rarity random simulation.

10
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2.1 Boolean Functions

The Boolean function of n variables is defined as [11]:

f(x) : Bn 7→ B (2.1)

Where B = {0, 1}. The set B is the set of Boolean values whose elements are sometimes

referred to a ’true’ or ’false’ instead of 1 and 0. For any value of n, we have always 2n possible

Boolean functions. Boolean functions are used to express relations between different Boolean

variables. A Boolean expression is composed of Boolean variables, x1, x2, · · · , xn, Boolean

values; ’true(1)’ and ’false(0)’ and also the Boolean operators: conjunction ∧, disjunction ∨,

negation ⇁, implication ⇒, and bi-implication ⇔. An example of Boolean expressions is

shown in Eq. (2.2).

x1 ⇔ x2∨⇁ x3 (2.2)

A Boolean expression describes how to determine a Boolean output value based on logical

calculations on some Boolean variables and values. The sequence of assignments of values

for Boolean variables is referred to as a truth assignment and is written as Eq. (2.3).

[1/x1, 0/x2, 1/x3] (2.3)

Eq. (2.3) means that Boolean value ’true(1)’ is assigned to x1 and x3, and Boolean value
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’false(0)’ is assigned to x1. For example, Eq. (2.2) is evaluated to 0 for the truth assignment

in Eq. (2.3). Meanwhile, it is evaluated to 1 for assignment [1/x1, 0/x2, 0/x3].

Two Boolean functions are said to be equivalent, if they yield the same output for all truth

assignment. A Boolean function is said to be tautology, if it is evaluated to 1 for all truth

assignment. On contrary, contradiction is a Boolean function whose output always is evalu-

ated to 0 for all truth assignments. A satisfiable Boolean function is the one whose output

is 1 for at least one truth assignment.

Testing Boolean function for satisfiability, and checking for equivalence is a common pro-

cedure in EDA. These problems involves extensive handling of Boolean functions. classical

methods have been used to represent Boolean functions (i.e., truth table, Karnaugh maps,

and prime cubes). However, their time and memory requirements are growing exponentially

with number of input for many common functions [12]. Moreover, many of these classical

methods may produce multiple representation for the same Boolean function. In addition, in

cases, the size is not exponential, simple operations (i.e., negation) would produce problems

with exponential size [12]. Thus, many of the EDA tasks are requiring a solution to NP-

complete or co-NP-complete problems [12]. Accordingly, There is a need for an efficient way

to represents and manipulates Boolean functions; such that, the size of the representation is

reasonable and exponential computation will be avoided in most of cases.
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Figure 2.1: Illustration of ROBDD.

2.2 Binary Decision Diagrams

BDDs are graphs represents a Boolean function as depicted in Fig. 2.1. ROBDD of f = x1.x2.

The is one node for each level. node x1 is in level 2 and node x2 is in level 1. There is two

terminal nodes ”0” and ”1”. Each node has two edges; Then (or true) edge, and Else (or

false) edge. As mentioned before, BDDs are first introduced by Lee in 1959 [35]. However,

they did not become popular until Bryant proposed efficient algorithm to manipulate them

[12]. Since then, BDDs and their variants [36] have been extensively exploited in various

applications in many area of VLSI automation.

A BDD is a directed acyclic graph with two terminal nodes; so called 0-terminal node and
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Figure 2.2: The original tree for f = x1.x2.

1-terminal node [13]. Each non-terminal node has an index to identity an input variable

of the Boolean function and has two outgoing edges, called the 0-edge and 1-edge (see Fig.

2.1).

An Ordered BDD (OBDD) is a BDD where input variables appear in a fixed order in all paths

of the graph and no variable appears more than once in a path. In this dissertation, we will

use natural numbers 1, 2, · · · for the indices of the input variables, and every non-terminal

node as an index less than its descendant nodes.

A compact OBDD is derived by reducing a binary tree graph as depicted in 2.2. In the binary

tree, 0-terminals and 1-terminals represent logic values 0 and 1, and each node represents

the Shannon’s expansion of the Boolean function [11]:

Usually BDDs are constructed using a ternary operator so called If-Then-Else (ITE) opera-
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tor. It is defined as follows

ITE(x, y, z) = x.y + x.z (2.4)

ITE operator is applied recursively as in Eq. 2.5 to obtain any BDD:

ITE(f, g, h) = ITE(xi, ITE(fxi
, gxi

, hxi
), ITE(fxi

, gxi
, hxi

)) (2.5)

Where fxi
, gxi

, hxi
are the positive cofactor of f , g and h with respect to xi. fxi

, gxi
, hxi

are the negative cofactor of f , g and h with respect to xi. The ITE operator is applied

recursively until it reach one of the base case as follows (Eq. 2.6):

ITE(f, 1, 0) = f

ITE(f, 0, 1) = f

ITE(1, f, g) = f

ITE(0, f, g) = g

ITE(f, g, g) = g

(2.6)

Where f is the complement of function f . The following reduction rules give a Reduced

Ordered BDD (ROBDD):

• Eliminate all the redundant nodes whose two edges point to the same node.
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Figure 2.3: Two shared BDDs. f1 = x1.x2, f2 = x1 + x2

• share all the equivalent sub-graphs.

A set of BDDs representing multiple functions can be united into a graph that consists of

BDDs [37] sharing their sub-graphs with each other as shown in Fig. 2.3. This sharing

property saves time and space to have duplicate BDDs. When the isomorphic sub-graphs

are completely shared, two equivalent nodes never coexist.

In the shared BDD environment, the following advantages are obtained:

• Equivalence checking can be performed immediately by just looking at the root nodes.

• reusing duplicate BDD can save time and memory as the operation will be converted

to copy a pointer to the root node.
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Figure 2.4: The original tree for f = x1.x2.

2.2.1 Complemented Edges

In order to reduce memory, complemented edges are used. It is used to represents the

complement of the function by complementing the pointing value to this function. This is

because ROBDDs of a function f and its complement f are only differ in one aspect: The

values of their sink node are interchanged. Rudnell et al. [13] showed that by restricting the

complemented edge at the Else edge only, the ROBDDs become canonical. Fig. 2.4 depicts

the ROBDD of f = x1.x2 and f with the complemented edge.
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2.2.2 Depth-first Search vs. Breadth-First search

Two major approaches have been proposed to construct ROBDD; Depth-First (DF) and

Breadth-First (BF). While DF has low associated memory overheads and large potential

to be optimized (i.e.; by using computed tables), it has low potential to be parallelized.

Meanwhile, BF construction approach has a large potential to be parallelized; however, it

associates with overheads in storing temporary nodes (stored in queues).

2.2.3 Unique and Computed Tables

Almost all BDD packages uses hash tables. Hash tables are used for two purposes. First,

they guarantee strong canonicity of the constructed BDDs. In other words, hash tables will

not allow duplicated nodes, and hence sub-graphs; so, every function will be represented by

single node. Second, they are used as a software cache for newly calculated subfunctions.

In other words, packages usually need an additional hash table (usually called Computed

Table (CT)) to store the result of recent BDD operation. So, before any BDD operation is

evaluated, it is checked if its result is stored in CT. In the following sections, We will present

an introduction to static implications and inductive invariants.
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2.3 Static implications and inductive invariants

Static implication and inductive invariants is introduced in this section. In addition, the

concept of implication graph and filtering of static implication is presented.

2.3.1 Static Logic Implications

Static logic implications [38], [39], [40] describe relationship between different gates in a CUV

that hold for all the states of the sequential circuits (whether it is legal or illegal states) .

It can be obtained by asserting and propagating logic ’0’ and ’1’, to every gate in CUV.

We have different types of static logic implications, direct, indirect, extended Backward,

Extended Forward and Justification Frontiers Implications. We define impl[G, v, t] as the

set of all implications resulting by assigning a value v to gate G in time frame t, where

v ∈ {0, 1}. In addition, (G1, v)→ (G2, w, t) means assigning gate G1 value v implies a value

w on gate G2 in time frame t.

Direct and Indirect Implications

A direct implication is the result of assigning the value on the target gate in their direct

fan-out gates (forward implications) and direct fan-in gates (backward implications). They

are based on controlling values of gates. The controlling values The direct implications are

of two types: 1) forward implications, and 2) backward implications. direct implications
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could be formulated mathematically as:

impl[N, v] ≡ impl[N, v] ∪ [LogicSimulate(impl[N, v])] (2.7)

Where LogicSimulate() refers to performing logic simulation with direct implications as-

serted on the gates.

Extended Backward Implications

Extended Backward Learning (EBL) [41] is performed on unjustified implicants (which are

gates whose inputs are not sufficient to justify the output) in the implication list of target

gate (which is the gate we need to find its implications). The extended backward implications

are computed by considering both the target gate N and the unjustified output specified

gates in the implication list of the target gate. There are generally four cases depending on

the gate type (AND, OR, XOR, XNOR) of the gate where the target signal is the output

[42].

Extended Forward Implications

Extended Forward Implications is proposed in [43] to identify un-testable faults for ATPG.

The motivation for Extended Forward Learning (EFL) is to push the envelope of implica-

tion of I-Frontier gates (gates that don’t have sufficient values at its inputs to determine

its output). In other words, EFL tries to extend implications beyond the point forward

implications reach.
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Justification Frontiers Implications

Justification Frontier (JFron) Learning is proposed in [39]. This technique extends the EBL

technique by justifying an unjustified gate to its Immediate Justification Frontier. The

Immediate Justification Frontier (IJF) of a gate’s assignment can be obtained by taking

the immediate input justification scenarios for that assignment and recursively extending

them backward until all the gates achieve their non-controlling values or a primary input is

reached.

Contrapositive principle

Contrapositive principle is used to deduce more implications from CUV. It states that if

x → y is true, then y → x must also be true. When representing an implication in clausal

form, the contrapositive relation is automatically included.

2.3.2 Implication graph

An implication graph G(V,E) is a digraph used to store logical implications among the set

of nodes, V , and relations among nodes with directed edges, E. In the implication graph,

every node represents one gate with one assignment (i.e., a = 0 is a node that represents

gate a with value 0). Accordingly, as every gate can only set to either 0 or 1, thus |V | = 2N ,

where N is number of gates in the CUV. E is the set of all edges in G. e ∈ E between nodes

x and y iff x→ y.
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2.3.3 Filtering of Static Logic Implications

The classification of constraint clauses can be regarded as a filter: only those that meet

the criteria are taken and added as constraints to the formula. However, such simple filters

may inadvertently leave out some key critical relations or fail to remove those less important

clauses. As far as we know, there are two major work that are related to enhancing the per-

formance of SAT-based BMC. One of the early work aims to tune SAT solvers presents in

[44], [45]. Strichman presents many optimization techniques for BMC-specific application,

one of them is related to the work presented in this dissertation, he used semi-symmetry

property of the checked Conjunctive Normal Formula (CNF) (due to replication of the tran-

sitive relation function over multiple timeframes) to deduce more clauses. Our approach

outperforms this technique in two aspects. First, we already duplicate the deduced impli-

cation through different timeframe without taking care of the initial state assignment and

its corresponding cone of influence (contrary to [44]). Secondly, the previous technique does

not provide a criterion for selecting important clauses.

Another work based on And-Inverter-Graph (AIG) is proposed in [46]. The authors present

an algorithm that dynamically reduces the transition relation by detecting and merging

equivalent nodes. Kuehlmann et al. [47] extend the approach by identifying more equivalent

nodes using observability don’t cares (ODCs). Case et al. [48] further extend this technique

for sequential circuits by exploiting sequential ODCs. The main drawback in such approaches

is that they cannot avoid a potentially large number of SAT solver calls. Also, the evaluation

of ODCs can be computationally expensive.
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2.3.4 Inductive invariants

Sequential circuits can be modeled as nite-state transition system S : (i, x, I, T ). Where I is

the initial condition,T (i, x, x′) is the transition relation over a set of input variables i , x is

the set of internal state variables and x′ is the set of next state internal variables. A relation

P (x) is called an inductive invariant in S if there is not any sequence of states from I that

could violate P . P does not necessarily need to satisfy T .

2.4 Model Checking

Model checking is a field of science (and engineering) concerned with deciding whether a

design complies with its specifications. Algorithm [49], Inductive Model Checking [50], de-

ductive [51] and symbolic state exploration techniques [52] have been used in the past.

Inductive invariants and model checkers interact in various ways. For example, inductive

invariant candidates could be used to strengthen the model checker itself [53], [54]. On

the other hand, model checkers could be used to prove the validity of inductive invariant

candidates. These proved inductive invariants could then be used to improve synthesis or

help solving the verification problem [55]. We introduce below two types of model checking

related to our work.
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2.4.1 SAT-based Bounded Model Checking Problem

In Bounded Model Checking (BMC), the Circuit Under Verification (CUV) is checked against

a certain property p on a k time-frame window. SAT-based Bounded Model Checking is per-

formed by constructing the following Conjunctive Normal Formula (CNF) Boolean Formula

(Eq. 2.8).

ϕ = I(s0) ∧
∧

0≤i<k

T (si, si+1)∧ ‖ φ ‖k (2.8)

where: T (si, si+1) is the transitive relation; hence,
∧

0≤i<k T (si, si+1) is k-timeframe Iterative

Logic Array (ILA) of CUV; I(s0) is a legal initial state; ‖ φ ‖k is a monitor circuit for some

property p (which we want to check). The monitor circuit is constructed such that ϕ will be

satisfiable if and only if the CUV would violate p. Fig 2.5 depicts a typical BMC instance,

where k unrolled transitions are shown , and the property assertions in each unrolled time

frame.

Given a BMC instance ϕ, an implicit exploration of the reachable states to verify whether

the property assertion is satisfiable within k frames is performed by a SAT solver. If ϕ is

satisfiable, a trace (counter-example) of length less than or equal to k starting from the initial

state is generated which exposes the violation of p in the CUV. Otherwise, the satisfiability of

the instance indicates that no counter-example of length k from the given initial state exists.

In this case, it is necessary to increase the bound of k (via incremental SAT-based BMC

[56]). When k exceeds the sequential length of CUV and the instance is still un-satisfiable,
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Figure 2.5: BMC illustration.

it can be concluded that the CUV holds p. To avoid unrolling all the way to the sequential

depth when p is a true property, BMC with induction can be used [57].

2.4.2 Property-directed reachability model checking

Property-directed reachability (PDR), aka IC3, is a complete (and one of the fastest) model

checker tool used in model checking [58] and sequential equivalence [59]. According to

Hardware Model Checking Competition 2014 results (HWMCC14 [60]), many of the fastest

(publically available model checkers) are based on IC3. This motivates us to use PDR as the

underlying model checker in our algorithm. PDR strengthens a property P by incrementally

generating inductive invariants that have to be valid if P is valid. It incrementally iterates

until P is relative inductive to the set of generated invariants [61]. We have to note that
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any other complete model checker could be used in our proposed low-power algorithm in

Chapter 6.

2.5 Logic synthesis techniques and dominant cuts

BDD bi-decomposition and time-driven logic bi-decomposition are utilized as synthesis op-

timization engine for sub-cuts produced by TACUE. In addition, dominant cuts is used in

topology-aware cutting strategy. Thus, we briefly introduce them.

2.5.1 BDD Bi-decomposition

Boolean function bi-decomposition is pervasive in logic synthesis [62]. It consists of decom-

posing Boolean function f(X) into the form of f(X) = h(fA(XA, XC), fB(XB, XC)), under

variable partition X = {XA|XB|XC}. The quality of bi-decomposition is mainly determined

by the quality of variable partitions, as an optimal solution results in simpler subfunctions

fA and fB [63], [64].

An efficient BDD bi-decomposition is proposed in [65]. It starts by building the BDD of

each output. Then, it recursively decomposes each output BDD to two smaller logically

related BDDs. However, the complexity of BDD bi-decomposition rests in achieving a good

variable partition for the given logic function. Thus, we use a fast, scalable algorithm [66] for

obtaining provably optimum variable partitions for bi-decomposition of Boolean functions
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by constructing an undirected graph called the blocking edge graph (BEG) [66].

2.5.2 Time-Driven Logic Bi-Decomposition

Time-driven logic bi-decomposition is proposed in [67]. It synthesizes a timing-aware circuit

by first bi-decomposing the Boolean representation of the circuit, then it re-balances the

functions using a tree-height reduction technique. Kravets et al. [68] had proposed a gen-

eral symbolic decomposition template for logic synthesis that uses information-theoretical

properties of a function to infer its decomposition patterns. Using this template, the decom-

position is done in a Boolean domain unrestricted by the representation of a function, which

enables superior implementation choices driven by additional technological constraints. Bi-

decomposition technique in [67] is applied iteratively on the decomposed templates.

2.5.3 Vertex Dominator and Dominant Cuts

Definitions

Circuit graph: a circuit can be represented by a directed acyclic graph (DAG) G(V,E) in

which each gate is represented by a vertex v ∈ V and each wire connecting two gates is

represented by an edge e ∈ E as depicted in Fig. 2.6. Sink vertices : The set of outputs SO

of a circuit labeled as sink vertices. In Fig. 2.6, only vertex m is labeled as sink vertex.

Source vertices : The set of inputs of a circuit labeled as Source vertices. In Fig. 2.6, vertices

a, b, c and d are source vertices.
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Figure 2.6: Circuit graph illustration.

Vertex dominator : a node v ∈ V dominates a node u ∈ V if every path from u to any node

in SO must go through v.

Dominating set : a set D(v) ⊆ V is called a dominating set for vertex v iff every vertex u ∈ D

is a vertex dominator of v.

Cut : a cut in a circuit is defined by a root vertex r ∈ SO (a sink node) and a set of boundary

vertices S ⊆ V , such that any path from an input to r must path through at least one of

the vertices in S. The cut can be written as a 2-tuple (r, S).

Dominant cut : a cut C = (a, S) in which all paths from S to a never pass through any

vertex outside the fan-in cone of node a. Thus, dominant cut is a self-contained cut.

Fig. 2.7 depicts the algorithm for finding vertex dominator [69]. The algorithm starts with
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1: CalDomSets()

2: for all node a do

3: D(a) = {a}

4: end for

5: for Level i = N − 1 to 1 do

6: for all gate g in level i do

7: calculate D(g) as defined in Eq. 2.9

8: end for

9: end for

Figure 2.7: Dominant sets calculation algorithm.

initializing all dominant sets (lines 2 to 4). It calculates the dominant sets for all nodes other

than the output nodes. Let N be the number of levels in the circuit. It starts from level N

backward to the inputs (at level 1). It calculates dominant sets level by level (line 5 to 9)

using the following formula:

D(a) =


{a} a ∈ SO

{a} ∪
⋂

b∈FOD{b} otherwise

(2.9)

Here, FO is the set of fanout nodes for node a. The complexity of finding dominant sets

is linear to the number of gates. The dominant cuts could be computed directly after

calculating dominator sets.
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2.5.4 Clock-gating power-aware synthesis

During normal circuit operation, clock-gating reduces dynamic power consumption by elim-

inating signal transitions that are not required to correctly compute the output signal. One

way to achieve that is to identify ODC [32]. A single output function f(x1, .., xn) can be

decomposed into sub-blocks, such as C and D blocks. When C = c (where c{0, 1} is set

to the controlling value of f), f can be completely determined by block C alone and thus

block D can be safely switched off. As the goal is to save power, block D is refrained from

changing by clock gating its inputs. f decomposition could be as simple as enumerating all

possible AND/OR gates in small circuits [70]. Recent techniques use BDDs to increase the

opportunities in the medium-sized circuits [71].

2.5.5 Rarity simulation

Simulation is an obvious way to eliminate invalid inductive invariant candidates. However,

conventional random and constrained simulations usually saturate too fast for large circuits

and thus unable to disprove many of invalid inductive invariant candidates [72]. This is be-

cause random simulation does not take into account the properties of the circuit. Constrained

random simulation mandates the use of a SAT-solver or an Automatic Test Generation Pat-

tern (ATPG) engine to extract knowledge (such as reachable states) and thus can be very

slow. On the other hand, rarity simulation [72] uses heuristics to identify rare states, and

simulation proceeds from those rare states. This allows the engine to quickly remove many
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of invalid inductive invariant candidates.

2.6 Conclusion

In this chapter, we have introduced the preliminaries of the rest of the thesis. We have

presented Boolean functions and the basics of BDD construction algorithm in the first two

sections. Static implications are introduced. Moreover, Model checking problem are intro-

duced. Finally, we introduce logic synthesis, dominant cuts is presented. In the next chapter,

we will presents the detailed implementation of our concurrent BDD package.



Chapter 3

Concurrent Cache-friendly Binary

Decision Diagram Package For

Multi-core Platforms

In this chapter, a literature suvery on BDD are presented in the first section. We present

an overview for Hopscotch hashing and how we adapt it to our BDD package (i.e., our

concurrent version and resizing technique). Then, we present the package framework and

our Garbage collector. Finally, we present the result for our package.

32
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3.1 Literature Survey

Currently, BDD packages depend on chained hash tables. Although they are efficient in

terms of memory usage, they exhibit poor cache performance due to dynamic allocation and

indirections of data. Moreover, they are less appealing for concurrent environments as they

need thread-safe garbage collectors. Furthermore, to take advantage of the benefits from

multi-core platforms, it is best to re- engineer the underlying algorithms, such as whether

traditional depth-first search (DFS) construction, breadth-first search (BFS) construction,

or a hybrid BFS with DFS would be best. In this chapter , we introduce a novel BDD

package friendly to multicore platforms that builds on a number of heuristics [73]. Firstly, we

restructure the Unique Table (UT) using Hopscotch hashing to improve caching performance.

Hashing plays a critical role and Hopscotch hashing is also concurrency-friendly. Secondly, we

re-engineer the BFS Queues with hopscotch hashing. Thirdly, we propose a novel technique

to utilize BFS Queues to work as a Computed Table (CT) simultaneously. Finally, we

propose a novel incremental Mark-Sweep Garbage Collector (GC). We report results for

both BFS and hybrid BFS-DFS construction methods. With these techniques, even with

a single-threaded BDD, we were able to achieve a speedup of up to 8× compared to a

conventional single-threaded CUDD package. When two-threads are launched, another 1.5×

speedup is obtained.

Prior work relevant to our proposed BDD package comes from four lines of research: se-

quential depth-first/breadth-first BDD algorithm, RAM-based BDD algorithms, disk-based
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BDD algorithms and pointer reduction techniques for minimizing memory usage. These ap-

proaches are often overlap. Binary Decision Diagrams (BDDs) was introduced by Lee [35]

and Akers [74] to efficiently represent Boolean functions. Reduced Ordered Binary Decision

Diagrams (ROBDDs) was proposed by Bryant [12] to assure a canonical form of a Boolean

Function. ROBDDs are BDDs with fixed variable ordering in all its branches and they do

not have any repeated sub-graph. Bryant prove that two Boolean Functions are equiva-

lent iff they have the same ROBDDs structure. The restriction of a fixed variable order

and the removing of any repeated sub-graph in ROBDDs enable Bryant to develop efficient

manipulation algorithms for ROBDDs.

As hash tables enforce the uniqueness property of its nodes, Bryant introduced an efficient

way to integrate the reduction algorithm with the manipulation algorithm of the BDDs

by using hash tables. However, the main disadvantage of the Bryant approach is that

the ROBDDs are stored in disjunctive memory areas. Therefore, the memory overheads

are increased. For this reason, Minato [37], [75] propose Shared Ordered Binary Decision

Diagrams (SOBDDs). SOBDDs use single Hash table to store all ROBDDs. By this way,

similar sub-graphs are utilized efficiently across different ROBDDs. SOBDDs will be used

as the basis for implementing our BDD package.

BF algorithms have been used mainly to handle large BDDs. Ochi et al. [76] described effi-

cient algorithms for BDDs too large to fit in main memory on the commodity architectures

available at that time. Ashar and Cheong [77] improved the performance of BDD algorithms

used in [76] by removing redundant nodes, and hence their BDD are more compact. An-
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other line of research exploits memory hierarchy [14]. In this approach, super-scalarity and

pipelining are exploited to improve BDD algorithms.

Another approach uses network of workstations to distribute BDD operations. Ranjan et al.

proposed a BF algorithms for a network of workstation [78]. However, the proposed algo-

rithms are sequential. In other words, the computation is carried in one workstation at a

time. Stornetta et al. [79] proposed a parallel BDD package based on DF algorithms. Al-

though, their mechanism provides an efficient work balance. However, their algorithms incur

large communication overhead. Milvang et al. proposed a package [80] based on the ideas

in [78]. However, they utilized all workstations in the network at the same time. The main

problem of their approach is that the work is unbalance. Yang et al. [81] proposed a hybrid

BF/DF algorithms for parallel construction of BDDs for shared memory multiprocessors and

distributed shared memory (DSM) systems. Their algorithm relies on frequent synchroniza-

tion of global data structures and on exclusive access to critical section of the code which

make their approach inefficient in terms of scalability. Binachi et al. [82] proposed a paral-

lel BDD package for Multiple-Instruction Multiple Data (MIMD) systems. Their approach

exhibits efficient work balance. However, the communication overhead is a bottleneck.

Other research takes the approach to handle large BDDs which have very large number of

nodes that can’t be placed in a single hash table. Minato et al. [83] used bit streaming

technique to store BDDs in secondary storage medium. By assuming that the machine has

enough storage, their technique never causes memory over flow or swap out. A recent study

[84] proposed utilizing a parallel disk of a cluster or a storage area network (SAN). They use



36

Roomy library to overcome the latency issue of using disk. Their technique are based on

BFS. Our research fills the gab that utilizes cache in a single machine. but can be extended

with other direction to distributed and/or large BDDs. Some of the public domain BDD

packages available is CUDD [85], CAL [78], ABCD [86] and TUDD.

Hash tables are one of the most thoroughly researched data structures as they have many

applications in computer science and engineering. It also plays important rule in constructing

BDDs (they are used in Unique Tables(UTs) and Computed Tables(CTs) ). There are various

types of hashing technique. For example Chained hashing [87], Linear probing [87] Cuckoo

hashing [17] and Hopscotch hashing [16].

3.2 Hopscotch Hashing: Overview and adaption to our

package

Hopscotch hashing is a recently proposed hashing technique [16]. It is based on multi-phase

probing displacement techniques. Hopscotch hashing preserves and utilizes data locality,

hence it has been shown to outperform all other well-known hashing techniques, including

chaining, cuckoo hashing, and linear probing. Moreover, it also guarantees a fixed worst case

fetching time.
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3.2.1 Basic Operations

The hash table is an array of buckets, each of which is a set/list of items. Due to cache

memory, the cost of finding an element in the nearby buckets is almost the same. So,

Hopscotch hashing utilizes the notion of neighborhood around any given bucket. Hopscotch

hashing tries to insert elements of the same bucket in the neighborhood of the bucket. In

other words, it may place the new item in a neighboring bucket if necessary. If it does

not find any empty location for the new element, it tries to shuffle and move other bucket

elements to provide a space for this new element.

Thus, given that the hash table has a single hashing function h(), any hashed element will

be found in the corresponding bucket bh or in one of the next H-1 entries after bh, where

H is a constant referred to as the hopscotch neighborhood length. In order to accelerate

the operation, a bitmap contains hop information for each bucket is stored. Each bit in

the hop information for bucket bh represents an entry of the nearby entries of bh. For each

bucket bh, if any of the H entries, starting from bucket bh, has been mapped to bh, then the

corresponding bit in the hop information for bucket bh is set to one. Otherwise, it is set to

zero as depicted in Fig. 3.1. In this example, H = 4, and hop information for bucket 233 is

1001. Accordingly, nodes x and z belong to bucket 233.

The pseudo-code for contains() and findOrAdd() methods are shown in Fig. 3.2 and Fig. 3.3,

respectively. In Fig. 3.2, the contains() method takes three arguments and returns TRUE

when the item exists in the hash bucket and FALSE otherwise. The input arguments
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Figure 3.1: Hop Information Illustration.

are defined as follows: 1) node is the node item that we are searching for, 2) if the item

already exists, ptr stores a pointer to it, otherwise it is undefined, 3) lck is a Boolean flag

to determine whether the method will use locks or not. In this contains() method, the

hash value is calculated in lines 2 & 3, hop information is then fetched, and decoded to

corresponding entry in the hash table (not shown in Figure). Finally, the algorithm loops

in every corresponding entry to find whether the required item exists or not (lines 13-24).

Additional details will be provided in Section 3.3.

Fig. 3.3 lists the pseudo-code for the findOrAdd() method. In the add method, to add an

item x with hash value h(x) = i: 1 - starting from entry i and probe the successive entries

until an empty entry is found at index j (line 5). The findNearestEmptyLocation() method

finds the nearest empty location and passes it by value to emptyLoc and return TRUE. If it

reaches the end of the table without finding any empty locations, it returns FALSE and the

resize() method will be called to reallocate the bucket. 2 - if an empty entry is within H−1

from index i, then the procedure places the item, update hop information for bucket i, and

return (lines 20 & 21). 3 - otherwise, location j is too far from index i. and the algorithm
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will try to swap items between i and j to make a space for the new item (lines 9-16) as

following. First, it tries to find an item y that lies between i and j and is hashed within H-1

entries below j (line 10). Secondly, move y to an entry at index j (lines 11-15). Now, the

old entry for y is available. We repeat this operation until the available entry is within H-1

of entry at index i. Finally, add x at the available entry, update the hop information for i,

and return. contains() methods complete in constant time in the worst case.

3.2.2 Concurrent version and adaptation to BDDs

As depicted in Fig. 3.4, the concurrent version of Hopscotch hashing partitions the nodes

table into M number of segments. Each segment is associated with a read/write lock.

SegmentSize refers to the length of each segment in the node table. Segment table stores

the lock for each division. The segment size (S) is the length of each partition in the node

table corresponding to each segment. We choose S > H to reduce the maximum number

of segments needed to be handled in any operation to two segments. For example, consider

Fig. 3.2. The contains() method calculates the segment of the final possible item in the

neighborhood of the bucket (variable NextSeg in line 6). If NextSeg is different from the

segment of the first item of the bucket (FirstSeg), the segment is locked (lines 8 & 9).

Otherwise, only FirstSeg segment is locked (line 11).
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1: contains(node, ptr, lck)
2: hashString = getHashString(node)
3: hashCode = getHashCode(hashString)
4: if lck then
5: FirstSeg = getSegment(hashCode)
6: NextSeg = getSegment(hashCode+BucketSize− 1)
7: lock Segment at FirstSeg
8: if FirstSeg 6= NextSeg then
9: lock Segment at NextSeg
10: end if
11: end if
12: while There is another node in the bucket hashCode do
13: if node.key = Current location key then
14: ptr = calculate current location pointer
15: if lck then
16: unlock Segment at FirstSeg
17: if FirstSeg 6= NextSeg then
18: unlock Segment at NextSeg
19: end if
20: end if
21: return true
22: end if
23: end while
24: if lck then
25: unlock Segment at FirstSeg
26: if FirstSeg 6= NextSeg then
27: unlock Segment at NextSeg
28: end if
29: end if
30: return false

Figure 3.2: contains() method.

3.2.3 Resizable Unique table

The unique table (UT) is implemented as a hash table using the hopscotch hashing technique

described above. To preserve data locality, it is represented by an array of buckets, where

each bucket contains data as depicted in Fig. 3.5. Each bucket in UT consists of 16 bytes.
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1: findOrAdd(node, ptr)
2: if contains(node, ptr, true) then
3: return true
4: end if
5: if !findNearestEmptyLocation(emptyLoc, segment) then
6: resize()
7: end if
8: calculate hashCode for node
9: while emptyLoc− hashCode > BucketSize− 1 do
10: search for a node within emptyLoc− BucketSize + 1 and emptyLoc whose bucket is

within the same range.
11: if a node suitable for swapping then
12: perform swapping and update emptyLoc and segment and hop information for the

bucket.
13: else
14: resize()
15: end if
16: end while
17: if contains(node, ptr, false) then
18: return true
19: else
20: add node at emptyLoc
21: update hop information for emptyLoc
22: end if

Figure 3.3: findOrAdd() method.

Figure 3.4: Hopscotch Concurrency Illustration.
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Figure 3.5: UT Bucket Layout.

We have 4 bytes to store bitmap for bucket hop information. In addition, we have two

4-bytes to store hashstring for Then and Else. The remaining 4 bytes are used to pack six

fields; 1) Garbage Collector Mark (2-bits), 2) Index: which is node index, 3) flags: which

is used for internal operation of UT, 4) Else local id, 5) Then local id and 6) node internal

id (within the hashed bucket).

Each bucket contains hop information bitmap, a Then pointer, a Else Pointer, an Index,

some Flags, and a GC mark field (described in Section 3.3.4). The initial size of the UT is

selected to be a power of two, in order to improve the performance of UT resizing operation.

The hashing function is calculated as follows:

h(x) = f(T,E,m) mod n (3.1)

where T is the Then pointer, E is the Else pointer, m is the node index, and f(T,E, Index)

is a stream of bits (called hash string) which is function of Then pointer, Else pointer and

Index. Our package is a pointer-free package; that is, the pointers of the BDD nodes are not

the physical memory addresses of the node. We take this approach for mainly two reasons.

First of all, it is to provide a platform-independent implementation. Secondly, Hopscotch



Mahmoud A. M. S. Elbayoumi Chapter 3. BDD Package 43

Figure 3.6: Pointer Layout.

hashing usually swaps nodes between entries. So, physical-address pointers will add more

overhead due to the need to update pointers in each swap. Figure 3.6 depicts our BDD

pointer. It consists of four fields: (1) hash string (which is defined in Eq. 3.1), (2) inverting

bit, (3) temporary bit (it is used to indicate whether the pointer is used in the UT or CT) and

(4) local pointer (which is a unique identifier for the node within the bucket’s neighborhood).

When a new node is inserted into the UT, it searches for other nodes within the bucket first,

and assigns a new local pointer to the new node as illustrated in Figure 3.7. Nodes x and

y belong to bucket 462. Location 465 is empty (emptyLoc appears in gray). Nodes x and

y have local ids equal 0 and 2 respectively. Thus, node at emptyLoc will get the smallest

available local id assigned to any node belongs to this bucket; that is, one. When UT is not

able to insert a new node within its bucket neighborhood, resize() is called (as shown in

Fig. 3.3 at line 14).

In order to save time and avoid memory explosion, we propose an incremental resizing

technique for our UT. As depicted in Fig. 3.8, resize() Method consists of three phases.

The first and third phases are done by the Master thread, while the second thread is

processed by both Master and Slaves threads. When resize() is called, the first thread
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Figure 3.7: ID assignments.

call is considered as the Master thread, and any other thread executed by the Master is

called a Slaves thread. In the first phase (see Fig. 3.8, lines 2-7), the Master will allocate

a continuous memory block with the size identical to the size of the original UT as shown in

Fig. 3.9. Assume the initial UT size is x. After one resize() method call the size will double;

so, the size will increase by another x (and the old partition will remain). After another

call for resize() method, the size will doubles again; and hence, UT size will increased by

2x. Note that any other Slave thread that enters while Master thread is executing the first

phase, will be blocked while trying to acquire the lock (line 1 of Fig. 3.8).

In the second phase, all Master and Slave threads are cooperating in table rehashing. Each

thread will take a segment and rehash it until all segments are rehashed (lines 8-12 of Fig.

3.8). Note that each pointer of any node will not change due to UT resizing. This is because

that the UT stores the hash string instead of the hash values. In addition, by restricting

the size of UT to be a multiple of two, any node will be rehashed to the same location or

will be shifted by the old size of the table as depicted in as depicted in Fig. 3.10. Item at

location A will remain in the same place or it will move to location B, which be is far from
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1: resize()
2: acquire master lock.
3: if this is the master thread then
4: acquire lock on all segments.
5: allocates new space, updates necessary parameters variables
6: end if
7: release master lock.
8: while there is a segment doesn’t rehashed yet do
9: for all i such that i ∈ current segment do
10: rehash node at location i.
11: end for
12: end while
13: acquire master lock.
14: if this is the master thread then
15: release all segments lock
16: notify all sleeping threads
17: else
18: sleep
19: end if
20: release master lock.

Figure 3.8: resize() method.

Figure 3.9: UT resizing illustration.

location A by x (where x is the size of the UT before calling resize()). In the third phase

(lines 14-20 in Fig. 3.10), all Slave threads will sleep until the Master finishes.
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Figure 3.10: UT Rehash Illustration.

Figure 3.11: BDD package framework.

3.3 Package Framework

The overall package Framework is illustrated in Fig. 3.3. It consists mainly of 1) Master,

2) Slaves, 3) UT , and Queues.

3.3.1 Manager

As depicted in Fig. 3.12, manager is responsible for allocation and initiation of all necessary

components to built a BDD from a netlist circuit (lines 2-4). It schedules BDD request into

queues (Line 6). In addition, it synchronizes between workers (lines 8 & 9).
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1: Read circuit netlist.

2: Initialize and allocate UT, Queues, and other internal variables.

3: Create worker threads.

4: for all circuit levels do

5: insert available BDD request for this level.

6: while there is a scheduled request in this level do

7: wait until workers finish executing apply() method.

8: wait until workers finish executing reduce() method.

9: end while

10: end for

Figure 3.12: Manager main method.

3.3.2 Worker Threads

Worker threads are responsible of performing BDD basic construction operations as depicted

in Fig. 3.13. Fig. 3.11 depicts how Manager synchronizes among workers. Manager al-

locates UT and Queues, insert BDD requests, then creates N − worker threads. Worker

threads execute apply() method concurrently. Manager synchronizes between worker threads

until all threads finish executing apply(); Then, worker threads execute reduce() method.

These operations repeat until all circuit gates are constructed.

manager waits until all workers finish the apply() method (line 4 in Fig. 3.13), then it

allows workers to begin in reduce() method(lines 6 in Fig. 3.13).
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1: loop

2: while there is a scheduled request in this level do

3: apply().

4: wait until all other workers finish apply() method.

5: reduce().

6: wait until all other workers finish reduce() method.

7: end while

8: end loop

Figure 3.13: Worker main method.

Fig. 3.14 depicts apply() method pseudo-code. As apply() method reads nodes from UT, we

remove all locks while apply() fetch nodes from UT.

Fig. 3.15 shows the method reduce(). As the reduce() method reads requests from Queues,

we remove all locks while reduce() fetch nodes from Queues.

3.3.3 Queues and Computed Tables

While worker threads construct BDDs, apply() and reduce() methods require to access

temporary request often (see lines 4,12, 22 in Fig. 3.14 and lines 4, 29, 34, 37 in Fig. 3.15).

In order to have an efficient memory access, we propose to implement Queues as a hash

Table and an array of lists as depicted in Fig. 3.16. Array of lists is used to keep track

of every request on each level. : Queues consist of one large hash table (implemented with
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1: apply()
2: for i = 1 to MaxIndex do
3: while there is a scheduled request in Queues in level i do
4: dequeue request from Queues.
5: get F , G, H, and R from request.
6: if R isn’t fully processed then
7: x = topIndex(F,G,H).
8: if terminalCase(Fx,Gx,Hx,result) then
9: R.setThen(result).
10: else
11: putInStandardTriple(Fx, Gx, Hx).
12: Queues.findOrAdd(Fx, Gx, Hx, result).
13: R.setThen(result).
14: end if
15: if terminalCase(Fx, Gx, Hx, result) then
16: R.setElse(result).
17: else
18: putInStandardTriple(Fx, Gx, Hx).
19: Queues.findOrAdd(Fx, Gx, Hx, result).
20: R.setElse(result).
21: end if
22: Queues.putRequest(F,G,H,R)
23: if max. nodes limit is reached for level i then
24: break.
25: end if
26: end if
27: end while
28: end for

Figure 3.14: apply() method.

Hopscotch hashing), and array of N lists, where N is number of levels. Each list contains the

pointers of the request in hash table corresponding to certain level. Hash table utilization

in implementing Queues have another motivation. We can utilize the hash table as a CT.

Dated requests remains in the hash Table as long as a new request needed to be stored in

the same location. Accordingly, if a request (R = {F,G,H}) is previously evaluated and

still in the hash table, its forwarded pointer is fetched.
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3.3.4 Garbage Collectors

Garbage Collector (GC) is based on a lock-free Mark-and-Sweep approach. We use two bits

to represent a mark. Any node can be marked as 1) a permanent node, 2) an updated node,

or 3) a dated node. Permanent nodes has its unique mark. We use two other marks to

represent updated and dated marks. Before a level is constructed, mark is set and all nodes

represent gates in circuit are marked as Permanent. All new nodes inserted will be marked

with the Updated Mark. Any node that has a Dated Mark may be overwritten with a new

nodes if it is needed to be inserted in the same location of the old node.

3.4 Results

The proposed package is implemented in C++ and is tested with a BDDtest. BDDtest

creates a Manager, which in sequence creates Workers and allocates UT, Queues, and other

necessary data. BDDtest also create BDDs for every gate in the circuit. For sequential

circuits (Table 3.2 ), BDDtest builds the transition relation of the circuit (which takes a

longer time for construction). The transition relation for the circuit is the conjunction of all

transition relations for each state element si, i.e., (
∧
∀i si⊕ δi). The experiments were run on

Core 2 machine with 4 GB of RAM and Ubuntu as the Operating system. CUDD 2.4.2 [88]

is used as comparison. We report results on a number of circuits from ISCAS85, ISCAS89,

and ITC99 to test our proposed BDD construction. The results are reported in Tables 3.1

& 3.2. Table 3.1 reports the results for combination circuits. Table 3.2 reports the results
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of creating the transition relation for sequential circuits.

Table 3.1: Experimental Results - Combinational Circuits

Circuit CUDD BR-1 BR-2 Resizing BR-CT HBR HCT GC

c432 0.455 0.411 0.277 0.386 0.246 0.510 0.300 0.381

c1355 33.206 7.929 5.030 6.803 4.888 114.722 20.737 5.785

c1908 11.542 1.622 1.037 1.292 1.001 4.980 1.963 1.759

c5315 16.364 2.911 2.430 2.593 2.144 28.612 12.952 4.234

In Tables 3.1 & 3.2, for each circuit, we first report the execution time taken by CUDD,

followed by our package with BR-1 (Basic Run with 1 thread). We define Basic Run as a

run that does not include UT resizing, CT utilization, BFS-DFS hybrid approach, nor GC.

In other words, BR-1 is a BFS without UT resizing and CT is not utilized. BR-1 is followed

by BR-2 (Basic run with 2 threads). Note that starting from column three, 2 threads are

used. The fourth column (Resizing) reports BR-2 with 6 resizing operations. The fifth

column (BR-CT) reports the BR with computed table. The sixth column (HBR) reports

the DFS-BFS hybrid approach with Queue size ranging from 1 to 40% (percentage depends

on the circuit). The seventh column (HCT) reports the time for DFS-BFS hybrid approach

with CT (we use the same configuration as in column six). Finally, the eighth column (GC)

reports the time of BR-2 with Garbage collection.

According to Tables 3.1 & 3.2, our base approach (with BR-1) achieved a speedup ranging

from 2× to 8× compared with CUDD. When we use two threads (BR-2), we achieved another

1.5× speedup on average. For example, consider circuit b12rst 1 3 new s, the original CUDD
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Table 3.2: Experimental Results - Transition Relation Construction of Sequential Circuits

Circuit CUDD BR-1 BR-2 Resize BR-CT HBR HCT GC

s298 1 2 new s 2822.1 1585.4 847.8 950.2 838.6 10159.4 1012.4 1044.9

s298 2 3 new s 2202.2 646.0 437.7 525.2 365.1 875.3 529.6 660.7

s298 2 4 new s* 2760.9 395.5 228.6 274.4 270.0 581.6 278.2 353.0

s400 1 2 new s* 1071.2 369.3 275.7 281.2 270.7 1498.3 380.8 342.9

s444 1 2 new s* 2430.3 335.7 183.3 247.4 167.6 786.2 266.7 268.7

b12rst 1 2 new s* 214.1 49.6 30.9 31.2 30.0 401.7 150.0 69.1

b12rst 1 3 new s* 714.3 88.1 64.1 76.9 64.0 268.6 67.4 100.4

b12rst 1 4 new s* 734.4 120.4 84.6 88.8 70.5 338.5 105.4 156.0

b12rst 1 5 new s* 680.8 94.1 65.7 81.7 53.7 248.0 84.3 82.3

b12rst 2 3 new s* 853.9 173.0 120.2 146.4 97.8 819.0 321.9 194.5

b12rst 2 4 new s* 864.7 109.0 78.4 114.0 76.9 231.5 151.0 110.9

b12rst 2 5 new s* 913.5 174.7 107.6 141.2 90.1 933.2 271.0 124.1

(*) only a portion of the circuit is tested, not the whole circuit.

took 714 seconds to construct the transition relation for this circuit, and our BR-1 took only

88 seconds. This is a speedup of 8.11×. BR-2 reduces the time further to 64 seconds. In a few

cases, having two threads allowed us to achieve nearly 2× speedup, such as s298 1 2 new s,

where the execution time was reduced from 1585 seconds to 847 seconds. When resizing is

performed for 6 times, we still obtained speedups higher than BR-1. Accordingly, we can

conclude that, resizing has a little impact on the performance, because we utilize all threads
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to perform the resizing operation. When comparing the results under columns HBR and

HCT, we observed that utilizing the CT with a hybrid approach provides a large improvement

in the performance when DFS-BFS hybrid approach is exploited. This is because many

requests have been replicated during DFS-BFS hybrid, and hence, CT becomes very vital.

When we use the DFS-BFS hybrid approach (column 6, HBR), the performance is degraded

compared to BR-2 in all cases. Also, it degraded in most of cases compared to CUDD (i.e.,

s298 1 2 new s), since no computed table is used (while CT is used in CUDD). However,

when we use DFS-BFS hybrid approach with Computed Table (HCT), the performance is

enhanced. For example, in circuit b12rst 2 5 new s, although the performance of HCT is

degraded by 2.52 compared with BR-2, we obtained 3.37× speed-up compared with CUDD

and 3.44× over the one with CT (column HBR). Finally, garbage collection incurs some

overhead, but can be useful when memory usage is high, as in b12rst 1 2.

In all circuits, our results show that the BFS based construction of the BDDs, as opposed to

hybrid BFS-DFS, achieves superior performance on multi-core platforms. Of course, these

depend on the type of hashing algorithms used.

3.5 Conclusion

In this chapter, we have introduced a novel cache-friendly Multi-threaded BDD Package

to construct and manipulate ROBDDs on a multi-core platform. As BDD algorithms are

memory intensive, maintaining locality of data is important to reduce cost of memory loads
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and stores. Furthermore, our algorithm offers concurrency to enhance performance on multi-

core platforms. We propose the usage of concurrent Hopscotch hashing technique for both

the Unique Table and the BFS Queues to improve the performance of BDD construction.

Hopscotch hashing not only improves the locality of the manipulating data, but also provides

a way to cache recently performed BDD operation. Moreover, it is concurrency friendly.

Consequently, the time and space usage can be traded off. With our approach, even with a

single-threaded implementation, we were able to achieve a speed-up of up to 8× compared

to a conventional single-threaded CUDD package. When two-threads are launched, another

1.5× speed-up is obtained.
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1: reduce()
2: for i = MaxIndex to 1 do
3: while there is a scheduled request in Queues in level i do
4: dequeue request from Queues.
5: if R isn’t forwarded then
6: if Then of R is processed in apply()) then
7: if Then points to a Queues node then
8: get R in Queues corresponding to Then.
9: if R.isForwarded(result) then
10: Then = result.
11: end if
12: end if
13: end if
14: if Else of R is processed in apply()) then
15: if Else points to a Queues node then
16: get R in Queues corresponding to Then.
17: if R.isForwarded(result) then
18: Else = result.
19: end if
20: end if
21: end if
22: if either Then or Else points to a Queues node then
23: update R with new Then and Else.
24: else if Then = Else then
25: forward R to Then.
26: else if Then is inverted then
27: invert Then, and Else.
28: create UT node with Then, Else and i.
29: result = UT.findOrAdd(node)
30: invert result.
31: forward R to result
32: else
33: create UT node with Then, Else and i.
34: result = UT.findOrAdd(node)
35: forward R to result
36: end if
37: return R back to the Queues
38: end if
39: end while
40: end for

Figure 3.15: reduce() method.
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Figure 3.16: Queues Structure.



Chapter 4

Selecting Critical Implications with

Set-Covering Formulation for

SAT-based Bounded Model Checking

In this Chapter, a literature survey in static implication utilization in BMC problem is

presented. A parallel deduction engine is presented in the second section. Set-Cover based

formulation of Static implication filtering for BMC is presented in the third section. A greedy

approach based on this formulation is presented in the fourth section. Finally, results and

conclusion are presented.

57
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4.1 Literature Survey and Contributions

The effectiveness of SAT-based Bounded Model Checking (BMC) critically relies on the

deductive power of the BMC instance. Although implication relationships have been used

to help SAT solver to make more deductions, frequently an excessive number of implications

has been used. Too many such implications can result in a large number of clauses that

could potentially degrade the underlying SAT solver performance.

One method to improve BMC is to embed clauses in the formula such that the deductive

power of the instance is increased. To this end, there has been low-cost learning techniques

based on a combination of binary resolution and static logic implications to learn sequential

relations that may span several time-frames in the circuit have been proposed [38], [39]. In

these methods, all the learned relations are globally true, which means that the relations

learned over a small window of the unrolled circuit can be readily replicated throughout

the unrolled transitions of the circuit. These relations, when added as constraint clauses to

the original Conjunctive Normal Form (CNF) for the BMC instance, aid the SAT solver in

deducing a larger set of implied literals at a given decision point. As a result, they can help to

prune the search space. However, adding an unnecessarily large number of static implication

clauses may degrade the performance, as DPLL would now have to iterate on a large number

of clauses. Therefore, investigation of a method that can classify the implication clauses as

useful or not-useful would be a tremendous benefit.

As far as we know, there is no well-defined criteria for a classification strategy of static
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logic implication clauses. The only filtering technique used for static logic implication is

proposed in [39], where they the metric is based on extended implications [38]-[39]. Other

simple methods may use the distance; that is, the distance between the nodes in question

in a clause. Larger distances may be preferred as they relate signals that are further apart.

The classification can be regarded as a filter, only those that meet the criteria are taken and

added as constraints to the formula [53],[54].

Our contributions are summarized as follows.

• We first propose a framework for a parallel deduction engine to reduce implication

learning time. Our parallel deduction engine can achieve a 5.7× speedup on a 36-core

machine.

• We propose a novel set-covering technique for optimal selection of constraint clauses.

This technique depends on maximizing the number of literals that can be deduced by

the SAT solver during the BCP (Boolean Constraint Propagation) operation. By se-

lecting only those critical implications, our strategy improves BMC by another 1.74×

against the case where all extended implications were added to the BMC instance.

Compared with the original BMC without any implication clauses, up to 55.32×

speedup can be achieved.
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4.2 Parallel Deduction Engine

We have based our parallel deduction framework on the observation that the implication of

each node can be deduced independently from other nodes. Thus, we can design a simple

parallel algorithm to perform this operation. Our parallel deduction engine computes the

implication of each node in the implication graph independently. It then shares the learnt

implications among all nodes, and iterates until fixed point is reached.

Our parallel framework engine is constructed as follows: we have two types of logical threads,

(1) one Master and (2) M Worker threads. As depicted in Fig. 4.1, the master thread is

responsible for allocating the implication graph (at line 1), creating other worker threads (at

line 2), synchronizing between them, and interchanging and sharing learnt clauses between

different nodes (at line 5 and 6). Fig. 4.1 shows the pseudo-code for the Master thread.

Fig. 4.2 lists the pseudo-code for the worker thread. Each worker thread takes a node in the

implication graph and deduces its implications using techniques described in Section 2.3.1.

These operations are repeated until all nodes have been processed. The workers will wait

until the Master thread has shared all learnt clauses from other nodes. It repeats the routine

until no other edge is added, i.e., a fixed-point has been reached.

As depicted in Fig. 4.3, the deduce() method iterates on the implication graph. First, it

deduces direct implications for a node (at line 3), then, it deduces indirect implications (at

line 4). Thirdly, it deduces Extended Backward implications (EBI) (at line 5). Fourthly, it

deduces Extended Forward Implications (EFI) (at line 6). In the fifth step, it deduces Justi-
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1: allocate Implication graph nodes (2N)

2: create M worker threads

3: repeat

4: wait until ALL worker finishes

5: share learnt clauses

6: until no other clause have been added to the implication graph

Figure 4.1: Master thread.

1: repeat

2: repeat

3: deduce()

4: until no other shared clause is added

5: until no other clause is added

Figure 4.2: Worker thread.

fication Frontier Implications (at JFron) (line 8). It then repeats until no more implications

are added to the implication graph.

4.3 Set-Cover Problem

An instance (X,F ) of the set-cover problem consists of a finite set X and a family F of

subsets S of X, such that every element of X belongs to at least one subset in F [89]:
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1: deduce()

2: repeat

3: deduceDirectImplication()

4: deduceIndirectImplication()

5: deduceEBI()

6: deduceEFI()

7: deduceJFron()

8: until no other clause have been added to the implication graph

Figure 4.3: Deduce() method.

X =
⋃
S∈F

S (4.1)

If a subset S is a non-empty set (contains atleast one element), we say that a subset S ∈ F

covers its elements. The set-covering problem is to find a minimum-sized subset C ⊆ F

whose members cover all of X:

X =
⋃
S∈C

S (4.2)

We say that any C satisfying Equation (4.2) covers X. The set-cover problem is known as an

NP -hard combinatorial problem [90]. Approximation algorithms based on greedy algorithms

[91], linear programming and network flow algorithm [91] had been proposed. Dutta [91] has
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1: Greedy-Set-Cover(X,F )

2: U = X

3: C = ∅

4: while U 6= ∅ do

5: select an S ∈ F that maximizes |S ∩ U |

6: U = U\S

7: C = C ∪ {S}

8: end while

9: return C

Figure 4.4: Standard Greedy-Set-Cover Algorithm [89].

conducted a comparative study and has shown that greedy algorithms can often provide a

near-optimal solution to the set-cover problem.

A standard greedy algorithm is depicted in Fig. 4.4. The main idea behind this greedy

approach is to find greedily the subsets that covers maximum number of elements in F . U

is initialized with the family of subsets X (line 2) and the cover C is initially empty (line

3). The algorithm greedily chooses a subset S that have maximum number of elements (line

5). It removes these elements from U (line 6) and adds the subset S to the cover U (line 7).

This process is repeated until all elements are covered. In other words, U became an empty

set (line 4). Its approximation ratio is proven to be ln |X| − ln ln |X|+ Θ(1) [92].
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4.4 Greedy Set-Cover Formulation and Algorithm

Our clause selection criteria is based on selecting the clauses that can bring about the

maximum number of assignments during BCP operation in the SAT solver. That is, our

target is to select the smallest set of implication clauses, when added to the original formula,

can help produce a maximal number of implications during BCP operation.

Before we formally define the problem, the following definitions are needed.

• Definition I: Let i be a node in the implication graph corresponding to a gate g with

a value v. Node i could also be rewritten as (g, v).

• Definition II: Si is a set of all signal assignments implied from asserting node i in the

CUV (deduced from some or all implication techniques stated in Section 2.3.1).

• Definition III : Mi is a set of all signal assignments implied from asserting node i in

the CUV deduced using only direct and Indirect implications.

• Definition IV : V is a set of all nodes in the implication graph, |V | = 2G, where G is

number of gates in CUV.

Problem statement: Given an implication graph G(V,E) for the circuit, for each node

i ∈ V , we have a set of implications Si (direct, indirect and extended implications) and Mi

(direct and indirect implications only). Note that Mi ⊆ Si. As BCP can deduce direct and

indirect implication efficiently, we want to select the minimum set of nodes k ∈ Si such that
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their direct and indirect implications (Mk) cover Si. Formally, let M be the family of direct

and indirect implication of nodes in Si; that is, M =
⋃

w∈Si
Mw. So, the problem is to find a

minimum-sized subset C ⊆ M whose members cover all of Si, and hence, Si =
⋃

Mk∈M Mk.

According to Eq. [4.1], (Si,M) is a set-cover instance for clause selection.

Example 1 : (Basic Idea) Let us consider that we have a CUV containing gates d, f , g, l,

m, n, r and t. Without loss of generality, we assume that the deduced implications are in the

same time frame. Let signal assignments (d, 1), (f, 0), (g, 1), (l, 0), (m, 1), (n, 0), (r, 0) and

(t, 0) be labeled as nodes 1, 2, 3, 4, 5, 6, 7 and 8, respectively. Let S7 = {1, 2, 3, 4, 5, 6, 7, 8}.

Let the set of direct and indirect implications for each of the nodes be, M1 = {2, 7, 8},

M2 = {1, 4, 6}, M3 = {5}, M4 = {7, 8}, M5 = {2, 6, 7, 8}, M6 = {4, 7}, M7 = {1, 3, 6}, and

M8 = {3, 5}. So, M = {M1,M2,M3,M4,M5,M6,M7,M8}.

Suppose we want to find the cover for (SS7 ,M); that is, we want to find the smallest set

of clauses that can provide the most number of implications for node 7. We apply the

greedy strategy; M5 has the maximum size (of 4), the greedy algorithm will choose it and

remove nodes 2, 6, 7 and 8 from the other sets, and we will have 4 remaining non-empty

sets: M2 = {1, 4}, M3 = {5}, M7 = {1, 3}, M8 = {3, 5}. Now, the algorithm has the choice

between M7 and M8 (as both are of max. size of 2). It will pick M8, and hence it will remove

nodes 3 and 5 from all other set, and we will have 2 remaining non-empty sets. M2 = {1, 4}

and M7 = {1}. Greedy choice will pick M2 (as it is of max. size of 2). Now, all sets are

empty, and implications 7→ 2, 7→ 5, 7→ 8 are chosen to cover all the transitive relations

of S7.
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Example 2 : (Contrapositive Principle Consideration): As the greedy algorithm

selects the clauses, it may remove its contrapositive relation(s) from other sets. Referring to

Example 1 above, when 7 → 5 is chosen, the greedy algorithm will check if ¬5 → ¬7 exits

in S¬5. If the contrapositive clause exists, it will remove it and all its direct and indirect

implications. In other words, S¬5 = S¬5 \M¬7. This not only removes unnecessary clauses,

but also reduces the calculation time for set Cover of all subsequent nodes.

Algorithm

Fig. 4.5 describes our greedy approach for the selection of clauses. FLi is a filtered list for

node i. The filtering process iterates on each non-constant node in the implication graph.

It gets the implication with largest |Mj| (line 5) and adds node j to FLi (line 6). Then,

it removes direct and indirect implication from Si, Mj∀j ∈ V . In line 12, it removes the

contrapositive implication (and all its direct and indirect implications from Sk : k ∈ v, k 6= i).

4.5 Results

The proposed parallel deduction engine and the set-covering selection framework have been

developed with C++ and the performance was evaluated on SGI UV system [93]. We have

used 36 dedicated 2.66 GHz Intel Xeon cores, with total of 190.8 GB of RAM, running

SUSE Linux 11. We have compiled our program with g++ under -O3 option. Since most of

the BMC instance available online is in CNF form including the initial state, the unrolled
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1: for all node i = (N, v) in the implication graph do

2: FLi = ∅

3: if i is not a constant node then

4: repeat

5: get node j = (M, v′) ∈ Si such that |Mj| is max.

6: FLi = FLi ∪ {j}

7: Si = Si \Mj

8: for all node k 6= j do

9: Mk = Mk \Mj

10: end for

11: get node l = (M, v′) and node t = (N, v)

12: Sl = Sl \Mt

13: until all clauses in Si is covered

14: end if

15: end for

Figure 4.5: Greedy-Set-Cover Filtering Algorithm.

instance, and the monitor [94], [95], it is difficult to extract a single time-frame of only the

circuit. Thus, we have developed a set of BMC benchmark based on ISCAS89 circuits that

require a large computational cost to solve (as depicted in last column (orig.) in Table 4.6).
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Table 4.1: Parallel Deduction Engine without Implication Sharing between Nodes

ckt
Case A Case B Case C Case D

Seq. Par. s-u Seq. Par. s-u Seq. Par. s-u Seq. Par. s-u

s298 0.015 0.005 2.91 0.358 0.066 5.39 0.839 0.157 5.34 1.788 0.313 5.72

s344 0.011 0.005 2.22 0.150 0.032 4.64 0.542 0.100 5.42 1.047 0.192 5.46

s382 0.533 0.098 2.96 0.533 0.098 5.44 1.736 0.314 5.53 0.519 1.460 5.68

s400 0.024 0.006 4.01 0.607 0.109 5.59 1.958 0.341 5.75 3.403 0.598 5.69

s444 0.628 0.120 3.34 0.631 0.117 5.38 0.631 0.119 5.70 6.858 1.174 5.84

s526 1.015 0.204 3.40 1.012 0.191 5.29 1.009 0.198 5.66 1.015 0.204 5.65

s820 0.085 0.024 3.55 3.684 0.640 5.76 9.053 1.595 5.72 17.333 3.122 5.55

ckt: circuit. Case A: Direct and Indirect Implication only. Case B: Case A + EBI. Case C: Case

B + EFI. Case D: Case C + JFron. Seq. : sequential run with 1 thread. Par. : parallel run

with 36 threads. s-u: speed-up ratio.

The results for the parallel deduction engine are first reported in Tables 4.1 and 4.2. We have

run deduction engine in different scenarios. We conducted different deduction approaches

with and without sharing of the implications among the nodes, reported in Tables 4.2 and

4.1, respectively. The speedup is computed against the single-processor scenario.

In Table 4.1, we have different cases. In case A, we have run the deduction engine for only

direct and indirect implications. In case B, we have run the deduction engine with direct,

indirect and EBI. In case C, we have run the deduction Engine with direct, indirect, EBI
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Table 4.2: Parallel Deduction Engine with Implication Sharing between Nodes

ckt
Case B Case C Case D

Seq. Par. spd-up Seq. Par. spd-up Seq. Par. spd-up

s298 0.726 0.138 5.264 1.682 0.326 5.159 3.554 0.661 5.702

s344 0.224 0.050 4.522 0.634 0.117 5.428 1.208 0.226 5.354

s382 0.973 0.181 5.375 0.973 0.189 5.479 0.972 0.185 5.540

s444 1.773 0.358 4.950 12.380 2.173 5.677 12.380 2.173 5.697

s526 2.768 0.520 5.319 7.394 1.344 5.504 16.109 2.832 5.687

s820 11.733 2.220 5.286 43.411 7.701 5.637 83.642 15.009 5.573

Case B: Direct and Indirect Implication only+ EBI. Case C: Case B + EFI. Case

D: Case C + JFron. Case E: Case D + JEnum. Seq. : sequential run with 1 thread.

Par. : parallel run with 36 threads. spd-up: speed-up ratio.

and EFI implications. In case D, we have run the deduction engine with direct, indirect,

EBI, EFI and JFron implications. For each case, we report the sequential run time (seq.),

the parallel deduction time (par.) with 36 threads, and the speed-up ratio (spd-up). In

Case A, the speed up varies from 2.22× (in s344) to 4.02× (in s400) with average speedup

2.84×. As we utilize more extended learning, we achieved more speed up. In case B, the the

speed up varies from 4.64× (in s344) to 5.76× (in s820) with average speedup 5.16×. In case

C, the the speed up varies from 5.42× (in s344) to 5.75× (in s400) with average speedup

5.2×. In case D, the the speed up varies from 5.46× (in s344) to 5.84× (in s44) with average

speedup 5.6×. As we utilize more extended learning, more speedup was achieved because



70

of the following reason. Direct and indirect implications are deduced faster than extended

implications. This causes more threads to finish at the same time. Accordingly, this would

cause a contention on choosing which thread should deduce the next node, and hence reduces

the speedup from parallelism.

In Table 4.2, we have different cases when the clauses are shared between nodes, namely

cases B, C, and D, as in Table 4.1. For each case, we likewise report the sequential run time

(seq.), the parallel deduction time (par.) with 36 threads, and the speed-up ratio (spd-up).

In Case B, the speed up varies from 4.522× (in s344) to 5.375× (in s382) with average

speedup 5.031×. As we utilize more extended learning, we get more speed up. In case C,

the the speed up varies from 5.159× (in s298) to 5.677× (in s444) with average speedup

5.346×. In case D, the the speed up varies from 5.354× (in s344) to 5.702× (in s298) with

average speedup 5.401×. As we utilize more extended learning, we get more speed up for

the same reason in the previous case (Table 4.1)

In Table 4.4, we report the time taken by our set-cover approach to select the clauses. In

other words, we want to see what fraction of all the learned implications need to be added

to the formula such that we can still achieve the same deductive power had we included all

the learned clauses. We list the selection time for the two approaches (with/without sharing

clauses). In each approach, we show time required in each case (cases are defined in the

same way as in Tables 4.1 and 4.2). For Case B, the selection time for s298 is 0.60s when

no clauses are shared, and .62s when clauses are shared. For Case C, the selection time for

s444 is 2.22s when no clauses are shared, and 2.27s when clauses are shared. For Case D,
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the selection time for s820 is 10.39s when no clauses are shared, and 10.82s when clauses

are shared. We conclude that the selection time is almost the same for both approaches and

for every case. Also, we notice that the selection time is also very low, compared to the

SAT-solving time, which will be reported subsequently in Table 4.6.

In Table 4.5, we report the percentage of the clauses after applying our filtering algorithms

on all the learned clauses (i.e., using our set-cover filter and extended implication filtering

[39]). We list the selection time for the two approaches (with/without sharing clauses). In

each approach, we show the percentage of the clauses in each case (cases are defined in

the same way as Tables 4.1 and 4.2). For Case B, the percentage of clauses for s298 is

34.99% with SC filtering and 20.69% with EI filtering when no sharing is used. However,

this percentage is reduced with clauses sharing (12.43% with SC filtering and 7.89% with EI

filtering). For Case C, the percentage for s400 is 29.25% with SC filtering and 22.05% with

EI filtering when no sharing is used. However, this percentage is reduced with clauses sharing

(8.66% with SC filtering and 5.61% with EI filtering). For Case D, the percentage for s526

is 34.74% with SC filtering and 25.88% with EI filtering when no sharing is used. However,

this percentage is reduced with clauses sharing (11.28% with SC filtering and 6.87% with EI

filtering). We notice that the number of clauses from SC filtering is always larger than the

number of clauses from EI filtering whether we apply sharing or not. However, smaller is not

necessarily better. Taking into account that the performance of BMC is enhanced with SC

filter (discussed next in Table 4.6). We conclude that SC filtering takes into account those

important clauses that EI filtering does not, which in turn reduces the search space.
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In Table 4.3, we report the size of used formulas in our experiments. Number of variables

varies from 376001 for s382 circuits to 780001 for s344 circuits. which provides a large search

space for SAT solver. In addition, no. of clauses varies from 1037422 for s382 to 2209183 for

s832. These formulas uses long time to solve (see Table 4.6 the last column ”orig”).

In Table 4.6, we report the time used to solve the BMC instances. We have used Minisat

2.0 [96] to solve each CNF formula. k is the number of unrolled timeframes. We report

the time for the two approaches (with/without sharing clauses between nodes). In each

approach, we report the different cases. In every case, we list the solving time using the

set-covering selection is used (SC) as well as using the Extended implication clauses is used

(EI). In addition, the time to solve the original CNF formula without any added static

implication clauses is reported (Orig.). Consider circuit s298, unrolled for 4000 time-frames.

The original solving time was 2107 seconds. With our set-cover filtering, the solving time

varied from 15 to 17 seconds. On the other hand, the Extended Implication filtering varied

between 57 and 59 seconds. For all circuits, we obtain an average of 1.74× speedup due

to our selection algorithm (compared with extended implication approach). Also, we gain

an average 63.52× speed-up compared to the original CNF formula. Moreover, we have an

average 55.32× overall speed-up against the original problem.
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Table 4.3: Formulas Size

ckt no. of variables no. of clauses

s298 568001 1615465

s344 780001 1923587

s382 376001 1037422

s400 388001 1081400

s444 422001 1175324

s526 446001 1384940

s832 658001 2209183

s1196 575001 1602774

s1238 554001 1613771

ckt: circuit.

4.6 Conclusion

In this chapter, we have three contributions. First, we propose a parallel framework to

deduce different static implications. We show that we could gain a 5.6× speed-up on 36 core

machine. Second, we formulate the clause selection problem as a set-cover problem. Third,

we propose a novel low-cost greedy set-covering based selection algorithm for choosing static

implication. In comparison with extended implication approach, we achieve an average
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Table 4.4: Clause Selection Time

ckt # IN # OUT # FF
no shared clauses Clauses shared between nodes

Case B Case C Case D Case B Case C Case D

s298 3 6 14 0.60 0.62 0.62 0.62 0.62 0.63

s344 9 11 15 0.88 0.91 0.92 0.90 0.90 0.91

s382 3 6 21 1.43 1.44 0.92 1.53 1.50 1.56

s400 3 6 21 1.63 1.64 1.65 1.70 1.68 1.651

s444 3 6 21 2.07 2.22 2.25 2.25 2.27 2.29

s526 3 6 21 2.03 2.04 2.08 2.01 2.04 2.05

s820 18 19 5 9.98 10.26 10.39 10.06 10.71 10.82

ckt: circuit. # IN : no. of inputs. # OUT: no. of outputs. # FF: no. of state elements. Case

B: Direct and Indirect Implication only+ EBI. Case C: Case B + EFI. Case D: Case C + JFron.

1.74× speed up due to our selection algorithm. Moreover, we have an average 55.32× overall

speed-up compared to the original problem.
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Table 4.5: Remaining Clause Percentage(%)

ckt
no shared clauses Clauses shared between nodes

Case B Case C Case D Case B Case C Case D

SC EI SC EI SC EI SC EI SC EI SC EI

s298 34.99 20.69 35.11 21.19 33.29 20.75 12.43 7.89 9.49 6.14 9.45 6.23

s344 30.60 19.55 31.57 23.25 31.95 23.71 10.67 7.19 15.98 12.69 18.69 14.93

s382 27.33 19.37 27.96 20.82 26.85 20.81 11.00 6.17 8.27 5.07 8.28 5.20

s400 28.62 20.64 29.25 22.05 27.26 21.91 11.48 6.87 8.66 5.61 8.66 5.75

s444 31.41 20.47 33.82 26.12 32.70 25.50 6.40 3.67 10.21 7.39 10.14 7.33

s526 35.08 24.08 35.33 24.94 34.74 25.88 10.96 5.92 11.19 6.17 11.28 6.87

ckt: circuit. Case B: Direct and Indirect Implication only+ EBI. Case C: Case

B + EFI. Case D: Case C + JFron. SC. : set-covering selection approach. EI:

extended implication approach.

Table 4.6: BMC Time

ckt k

no shared clauses Clauses shared between nodes

Orig.Case B Case C Case D Case B Case C Case D

SC EI SC EI SC EI SC EI SC EI SC EI

s298 4000 17.29 57.84 17.39 59.08 17.67 59.39 17.51 58.3 17.62 59.6 15.29 59.63 2107.92

s344 4000 242.86 527.96 243.98 585.5 243.69 593.53 255.60 588.62 257.7 595.68 255.4 585.34 1910.38

s382 2000 33.88 46.6 32.78 44.41 18.08 41.74 15.74 47.10 26.4 44.97 25.77 41.61 1365.38

s400 2000 24.37 44.37 31.79 50.02 44.16 34.33 24.75 52.10 21.73 48.20 31.88 43.95 1303.74

s444 2000 26.27 36.060 28 37.11 27.18 37.79 26.71 36.06 26.32 36.05 26.36 38.03 2145.82

s526 2000 7.82 9.94 3.54 4.12 3.53 4.1 6.76 10.72 5.36 1.19 5.31 1.21 2004.53

s832 2000 5582 5915 6183 5072 5579 5034 2196 3305 1413 1754 889.1 897 6323.62

s1196 1000 256 494 470 890 257 1163 223 287 184 1179 237 1103 923

s1238 1000 203 274 211 365 190 377 225 199 208 278 203 171 1079

Case B: Direct and Indirect Implication only+ EBI. Case C: Case B + EFI. Case D: Case C + JFron. SC. : set-covering selection approach.

EI: extended implication approach. Orig. : original CNF without any implication clauses.



Chapter 5

TACUE: A Timing-Aware Cuts

Enumeration Algorithm for Parallel

Synthesis

In this chapter, literture survey on timing-aware synthesis and our contributions is presented.

Secondly, TACUE algorithm is presented in the second section. In the third section, we

apply TACUE algorithm to different cutting approaches: topology-aware cuts and topology-

masking cuts. We propose an efficient parallel synthesis framework for TACUE cuts in the

fourth section. Our results are presented in fifth section. In the last section, the chapter is

concluded.
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5.1 Literature Survey and Contributions

Achieving timing-closure has become one of the hardest tasks in logic synthesis due to

the required stringent timing constraints over very large circuit designs. In this Chapter,

we propose a novel synthesis paradigm to achieve timing-closure called Timing-Aware CUt

Enumeration (TACUE) [97]. In TACUE, optimization is conducted through three aspects:

First, we propose a new divide-and-conquer strategy that generates multiple sub-cuts on the

critical parts of the circuit. Secondly, cut enumeration have been applied in two cutting

strategies. Thirdly, we proposed an efficient parallel synthesis framework to reduce com-

putation time for synthesizing TACUE sub-cuts. We conducted experiments on large and

difficult industrial benchmarks.

As far as we know, there are two major bodies of work that are related to delay-optimization

with cuts generation. The first was proposed by Baneres et al. [98], in which a dominator-

based partitioning technique is used to find topologically ordered clusters in the circuit-

under-optimization (CUO), followed by logic restructuring on these clusters. The second

timing-aware work conducts cuts enumeration on And-Inverter-Graphs (AIGs). For example,

Chatterjee et al. [99] had proposed a cut factorization scheme to enumerate bounded size

cuts up to 16 inputs. Their technique is usually used in technology mapping and re-writing.

Martinello et al. [100] had extended the concept of factor cuts to KL-cuts, where K is

number of inputs and L is number of outputs in a circuit cut. Because factor cuts are not

restricted to convex cuts [101], an uncontrollable amount of area increase may result. This
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increase in area would lead, in many cases, to undesirable degradation in circuit timing

behavior. Although KL-cuts extend the application of factor cuts to peep-hole optimization

and regularity extraction, however, they still suffer from having a restricted number of inputs

and work exclusively with AIGs.

Our work is uniquely different from the previous work in timing-aware synthesis from several

perspectives. Unlike Baneres work [98] that only groups nodes in the critical paths and

generates a single solution, we enumerate sub-cuts in dominator-based partitions. As a result,

we are less likely to be stuck at local optima as our approach explores more possible solutions

to improve the timing behavior of CUO. Secondly, their approach allows the grouping of

different dominant cuts, which can result in a significant increase of area, thereby indirectly

degrade the timing performance of the optimized solution. On the contrary, we propose

two different cutting strategies, one that aims to preserve the topological structure of CUO

and the other one would investigate other possible topologies. Such strategies allow for more

control on the optimization choices. In contrast with Chatterjee work [99] on factor cuts, our

approach could handle larger cuts (TACUE have been tested on up to 60 inputs sub-cuts).

In addition, our technique runs on a general circuit graph. Thus, each vertex represents a

general Boolean function (not just ”AND” function as in AIG). Subsequently, our method

can be applied in all synthesis stages and it is not restricted only to technology mapping

stage. Thirdly, previous experiments were conducted on fairly small circuits (ISCAS’85,

ISCAS’89, ITC’99 and some other small circuits). In our case, we conducted experiments on

very large industrial benchmarks. In addition, previous methods only optimized their circuits
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using outdated SIS tool [102]. In contrast, we first apply extensive optimization techniques

(i.e. BooleDozer [103], ABC [104], SIS . . . etc.) before using our synthesis framework to

show that our synthesis framework exhibits a superior outcome for very-large very-hard-to-

optimize circuit instances.

Our contributions are summarized as follows.

• we propose a novel Timing-Aware CUts Enumeration (TACUE) algorithm to generate

timing critical sub-cuts in CUO.

• we apply our TACUE algorithm in two different cutting strategies. 1) Topology-aware

cutting strategy, in which we preserve the general topology (i.e., connectivity) of the

circuit, and 2) topology-masking cutting strategy, in which we relax this constraint and

allow the connectivity to change in CUO.

• we propose an efficient parallel synthesis framework for applying different synthesis

optimization techniques in the generated TACUE sub-cuts.

5.2 Timing-Aware Cut Enumeration

Definitions:

Vertex slack : the slack of a vertex v is defined as follows:

sv = tr − ta (5.1)
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where tr is the required arrival time and ta is actual arrival time.

Direct children of a cut: for a cut C = (a, S), it is the set of direct descendant of the root a.

For example, in Fig. 5.3, nodes b, f and g are the direct children of cut (a, {a}).

Convex subgraph: A subgraph, S, of graph G is convex if for any pair of vertices v, w ∈ S,

all the shortest paths from v to w in G are fully contained in S.

Convex Cut: A convex cut of a graph G = (V,E) is a partition of V into V1 and V2 such

that both sub-graphs of G induced by V1 and V2 are convex.

Basic idea of our algorithm: we target to generate time-critical sub-cuts from bigger cuts.

In other words, given a cut in CUO, our objective is to enumerate, heuristically, sub-cuts

in the critical paths of CUO. These sub-cuts will be passed later to various logic synthesis

optimization techniques. If they successfully find better solutions, a heuristic is used to select

the optimal choice among them. Then, the optimal choice will be admitted to CUO, and

hence, this would contribute to the overall timing closure of CUO.

TACUE algorithm for enumerating critical sub-cuts is shown in Fig. 5.1. TACUE starts

with a critical cut C which is required to be enumerated. TACUE uses Breadth-first (BF)

approach for enumerating C. First, TACUE creates the base sub-cuts, which contains the

root with all direct children by calling createBaseCut (line 2). TACUE adds the base cut

to a queue (line 3). Then it loops until the queue becomes empty (line 4-10). It dequeues

a sub-cut from the queue (line 5) and calculates the possible combinations that could be

conducted on the boundary of this sub-cut (line 6). Finally, it enumerates all combinations



Mahmoud A. M. S. Elbayoumi Chapter 5. Timing-Aware Synthesis 81

1: TACUE(C)

2: cbase = createBaseCone(C)

3: queue.enq(cbase)

4: while queue.size() > 0 do

5: v = queue.deque()

6: combCount = CalCombCount(v.boundary())

7: for i = 1 to combCount do

8: nPairEnum(v, i, queue)

9: end for

10: end while

Figure 5.1: TACUE algorithm outlines.

using nPairEnum function (line 7-9).

Fig. 5.2 depicts the algorithm for nPairEnum function. nPairEnum enumerates all i

combinations at the boundary of a sub-cut v and adds it to queue. We measure the criticality

of a vertex by vertex slack which is defined in Eq. 5.1. nPairEnum enumerates only the

critical vertices, that is, it has a cut-off value on vertex slack. Thus, vertices with slack larger

than certain threshold will not be added to the enumerated sub-cuts list.

Fig. 5.3 illustrates our approach in which TACUE generates the time-critical sub-cuts. Let

the slack cut-off value be 1. TACUE takes the original cut tO (the cut that needs to be

enumerated as depicted in Fig. 5.3.a) and a set of tuning parameters. The cut-enumeration
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1: nPairEnum(v, i, queue)

2: c = getCritVertex(v)

3: if i = 1 then

4: for j = 1 to c.length() do

5: cnew = createNewCut(v, c[i])

6: queue.enq(cnew)

7: end for

8: else

9: for j = 1 to c.length() do

10: vnew = createNewCut(v, c[i])

11: nPairEnum(vnew, i− 1, queue)

12: end for

13: end if

Figure 5.2: Enumerates all n combinations at the boundary of a sub-cut.

algorithm starts with the root a of tO and enumerates sub-cuts in a BF manner. The vertices

of cut tO are labeled with nodes a, b, . . . , etc. The direct children of a are g, b and f . Without

loss of generality, let the slack of vertex g be 3 (which is greater than the cut-off slack value).

Then, vertex g and all of its children will not be included in any enumerated sub-cuts. Now,

TACUE will enumerate all possible combinations for the other direct children nodes b and

f . As vertex b has a slack value of zero (b is in a critical path, and all critical vertices have

a zero slack) and is a direct child of a, it will be included in any enumerated sub-cuts. For
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Figure 5.3: Cut enumeration illustration. (a) the original cut, (b) sub-cuts generated in the

first level, and (c) sub-cuts generated in the second level.

node f , let us assume that its slack is 1, thus it is not on the critical path. However, its slack

is smaller than the cut-off value, thus, it will be included in the future sub-cuts. However,

because it is not on a critical path, it does not need to be included in every sub-cut. Thus,

at this level, we have two sub-cuts (a, {b}) and (a, {b, f}) as depicted in Fig. 5.3.b.

In the second round, the cut-enumeration algorithm will enumerate cuts in the next level for
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all cuts in the first level as depicted in Fig. 5.3.c. It starts with cut (a, {b}), the direct children

of this cut are c, d and f . We have 7 combinations, The children vertices will be enumerated

one by one. The resultant sub-cuts will be (a, {b, c}), (a, {b, d}) and (a, {b, f}). The next

step would be enumerating them two by two. The resultant sub-cuts will be (a, {b, c, d}) ,

(a, {b, c, f}) and (a, {b, d, f}). Finally we consider three nodes at a time. Thus, all three

direct children will be taken altogether in sub-cut (a, {b, c, d, f}). This cut is not shown in

the Fig. 5.3 because the cut-off limit for generated sub-cuts is 8 (which is a user input). In

the case that the cut-off limit is increased, this final cut and sub-cuts in deeper levels will

be generated and added.

5.3 Applications of cut Enumeration

In the previous section, we described how TACUE takes a cut C and enumerates timing-

critical sub-cuts from C. However, we did not describe how to generate cuts used by TACUE.

In this section, we describe two divide-and-conquer strategies to generate these cuts.

5.3.1 Topology-Aware Cuts

In some cases, we need to preserve the connectivity of the CUO. This is useful when we start

with an initially ”good” topology, and we would want to keep the same topology to be used

later.
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1: GenerateStructAwareCuts()

2: GenDomCuts()

3: CL = FilterCuts()

4: for all C in CL do

5: TACUE(C)

6: end for

Figure 5.4: Topology-Aware cuts generation algorithm.

One way to achieve connectivity preservation in CUO is by restricting changes to be made

only inside each dominant cut. This intuition is motivated by the self-contained nature of

dominant cuts, that is, any vertex in a dominant cut does not fanout to any vertex outside

that cut. In other words, we model each dominant cut as a single super node and we restrict

the change of logic to occur only inside these super nodes. The main benefit from this

restriction is to keep the general connectivity of circuit nearly the same, which is helpful

when the CUO already has a ”good” topology.

Fig. 5.4 depicts topology-aware cuts generation algorithm. It starts by generating dominant

cuts (line 2). Then the critical dominant cuts are enumerated (line 3). Finally, it iterates on

all filtered cuts and enumerates them (lines 4-5).
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5.3.2 Topology-Masking Cuts

Fig. 5.5 depicts the topology-masking cuts generation algorithm. Contrary to the topology-

aware cutting strategy, this strategy does not take CUO connectivity preservation into con-

sideration. Because we may start with an initially poor timing-performance CUO or locally

optimized CUO. The algorithm starts with identifying critical outputs of CUO and generate

cuts from these outputs (line 2). These cuts have the critical sink vertices as a root and all its

fan-in source vertices as the boundary vertices. Secondly, it enumerates sub-cuts from these

critical cuts (lines 4-5). If a sub-cut is being accepted as a new solution, it is committed to

CUO. The aforementioned process is repeated at the critical boundary vertices of the new

committed sub-cut (line 7). For example, consider the cut tO in Fig. 5.3.a, tO has a root a.

Suppose that, without losing the generality, the sub-cut (a, {b, c}) had been accepted and

committed to CUO. Thus, GenerateStructMaskCuts starts at the direct children of the

sub-cut (a, {b, c}), which in this case are d, f , g and h. GenerateStructMaskCuts identifies

the critical vertices (from the slack value of each vertex), then it applies TACUE on them.

As g and h are not critical (as slack value is 2 < cut-off slack value), they are pruned.

Thus, sub-cuts are enumerated from vertices d and f . If it is unable to find a better cut,

GenerateStructMaskCuts identifies the critical direct children vertices (in this case, b is the

only critical direct children of a). These direct children are enumerated in order to explore

a better solution for them. GenerateStructMaskCuts repeats on critical boundary vertices

of the committed sub-cuts until it reaches the source vertices.
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1: GenerateStructMaskCuts()

2: CL = GetCritOutCuts()

3: repeat

4: for all C in CL do

5: TACUE(C)

6: end for

7: CL =getNextCritCuts()

8: until CL is NOT empty

Figure 5.5: Topology-Masking cuts generation algorithm.

5.4 Parallel Synthesis Framework

In this section, we first describe a sequential strategy for TACUE, followed by a naive and

optimized parallel strategies for TACUE in a synthesis framework.

5.4.1 Sequential Algorithm

Fig. 5.6 depicts a sequential algorithm for TACUE. It enumerates sub-cuts individually (line

4). Then, it applies synthesis optimization (e.g., BDD bi-decomposition and time-driven

logic bi-decomposition) to each sub-cut (line 5). It iterates this process on all sub-cuts until

it reaches the stopping criteria. Due to the sequential nature of the flow, it may take an

excessive amount of time to reach a good solution.



88

1: SeqSynth()

2: CL = getCuts()

3: for all C in CL do

4: SC = enumOneCut(C)

5: synthesize(SC)

6: end for

Figure 5.6: Sequential Synthesis Algorithm

5.4.2 Parallel Framework - Naive Approach

Fig. 5.7 extends the sequential algorithm to a naive parallel implementation. First, It gener-

ates all sub-cuts in one level (line 5). Secondly, it applies synthesis optimization algorithms

in all of these sub-cuts in parallel (line 6). Thirdly, it repeats these steps to the next level

until it reaches the stopping criteria. The main problem in this approach is that we cannot

guarantee load balance in each level. For instance, if we may have 4 workers and only one

sub-cut in a level, we will end up having 3 idle workers on that sub-cut.

5.4.3 Parallel Framework - Optimized Approach

In order to have a well-balanced parallel framework, we propose to split the cut enumeration

step from parallel synthesis. This is based on noting that cut enumeration only takes a

small fraction of time compared to the synthesis step. Thus, we will not have a tangible

performance degradation if we enumerate the cuts sequentially. Meanwhile, we boost the
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1: NaivParSynth()

2: CL = getCuts()

3: for all C in CL do

4: repeat

5: SC = enumDirChildCut(C)

6: ParSynth(SC)

7: until reach stopping criteria

8: end for

Figure 5.7: Naive Parallel Synthesis Algorithm

performance of the major part of our framework by having a full parallelism in the synthesis

optimization stage.

Fig. 5.8 lists our proposed parallel framework algorithm, and Fig. 5.9 illustrates the frame-

work pictorially. As shown in Fig. 5.8, sub-cuts are first enumerated sequentially. Next, they

are evenly distributed among different workers (which achieves a well-balanced work load).

Thirdly, each worker applies different synthesis optimization techniques on sub-cuts assigned

to it. All successful sub-cuts are sent back to the master process, and the master determines

which sub-cut would be committed to the original circuit. The criteria used for this try to

decrease the number of levels while maintaining a limited percentage area increase.
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1: ParrSynth()

2: CL = EnumerateCuts()

3: for all C in CL do

4: ParSynth(C)

5: end for

Figure 5.8: Sophisticated parallel Synthesis Algorithm

Figure 5.9: Parallel synthesis Framework.

5.5 Results

The proposed TACUE algorithm and parallel synthesis framework have been developed with

C++ and the performance was evaluated on 11 dedicated 2.7 GHz Intel Xeon cores, running

a 64-bit Linux distribution. We have compiled our program with g++ under -O3 option.

We have used large industrial benchmarks to evaluate our work. The characteristics for

our benchmarks are reported in Table 5.1. We applied many optimizations before applying

TACUE (i.e., SIS, ABC, BooleDozer . . . etc.). In doing so, we guarantee that our benchmarks
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are already ”well optimized”, making further optimization harder. In addition, the bench-

marks are also hard to synthesize under their timing constraints. In other words, timing

closure was not yet achieved even though they had gone through a sophisticated timing-

aware optimization (see Table 5.1 for the original worst time slack values before applying

our work).

Table 5.1 lists the characteristics of the industrial benchmarks used. These data are reported

after applying many state-of-art industrial and public-access optimization techniques but

before applying TACUE. For each circuit, the number of inputs (IN) is first listed, followed by

the number of outputs (OUT), the number of sequential elements (DFF), the total number

of gates (GATES), the number of levels (LV), the total area (AR) for the combinational

part of the benchmarks (measured in number of basic unit cells). Finally, the worst slack

(measured in picoseconds) is reported in the last column. Note that all of the circuits have

a negative worst slack, which mean that, the current state of art synthesis tools could

not achieve timing-closure on these designs.

5.5.1 Topology-Aware Cuts

Table 5.2 reports the number of levels after applying TACUE using the topology-aware cuts.

We apply TACUE for 2 iterations (Itr. # 1 and Itr. # 2) with BDD bi-decomposition (BD)

and time-driven logic synthesis (TD). The last column reports the Maximum Level Reduction

Percentage (MLRP) for each case. The results showed that we can reduce the number of
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Table 5.1: Circuit Statistics

ckt IN OUT DFF GATES LV AR WS

ia0 279 624 968 12339 27 48602 -36.335

ia1 229 517 870 146608 26 47110 -28.619

ia2 204 508 840 127823 26 39667 -19.344

ib0 253 626 963 149566 26 48234 -37.644

ib1 201 515 867 146530 27 46763 -26.999

ib2 176 505 841 127782 27 39126 -18.384

levels by 14.81% for topology-aware cuts. Table 5.3 reports the corresponding circuit area.

The last column reports Maximum Area Increase Percentage (MAIP) for each case. Our

approach showed that TACUE has a very slight area increase of only 0.475%.

Table 5.4 reports the number of dominant cut (DC) computed and the number of accepted

dominant cuts (AC). AC is defined as the number of dominant cuts that the synthesis algo-

rithm had successfully reduced its number of levels. We report results for 3 iterations. For

each iteration we run both BDD Bi-decomposition and time-driven logic bi-decomposition.

We always had a higher acceptance rate in TD case over BD because TD tends to better

optimize the cut in terms of delay. In addition, the number of AC decreases with the in-

creasing number of iterations because the topology-aware cutting strategy restricts TACUE

to preserve the topology. Thus, we do not have a large room for changing the design struc-
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Table 5.2: No. of Level Reduction with Topology-Aware Cuts

ckt

Itr. # 1 Itr. # 2

MLRP (%)

BD TD BD TD

ia0 25 24 25 23 14.81

ia1 25 25 24 23 11.53

ia2 25 24 23 23 11.53

ib0 25 24 24 23 11.53

ib1 25 24 25 23 14.81

ib2 25 24 24 23 14.81

ture.

5.5.2 Topology-Masking Cuts

Table 5.5 reports the number of levels after applying TACUE with topology-masking cuts.

TACUE was applied for 3 iterations for both BDD BD and TD as before. The results show

that we could get up to 22.22% reduction (compare with 14.81% for topology-masking cuts

in Table 5.2) in the number of levels. This is due to that we did not require TACUE to

preserve the topology.

Table 5.6 reports the percentage area increase from the topology-masking technique. We
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Table 5.3: Area Report for Topology-Aware Cuts

ckt

Itr. # 1 Itr. # 2

MAIP (%)

BD TD BD TD

ia0 48698 48630 48668 48616 0.1975

ia1 47148 47213 47174 47231 0.2569

ia2 39656 39676 39666 39713 0.1160

ib0 48304 48223 48302 48195 0.1451

ib1 46771 46899 46782 46962 0.4256

ib2 39216 39312 39227 39275 0.475

noticed that TD perform poorly (especially with the increase in number of iterations) from

the area point of view (up to 44.7% area increase). This is because we allow for changing

the topology, and TD had a large acceptance rate. On the other hand, BD synthesis would

reduce number of levels (up to 22%) while maintaining a adequate area increase (7.21% in

circuit ib2). This increase in area will be reflected on the physical synthesis stages as it will

be discussed later. We also noticed that, if we restrict the number of iteration in this stage to

one, we would get enhancement on both logic and physical synthesis stages. This is because

that number of levels is highly reduced from the first iteration with a limited percentage

area increase.
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Table 5.4: Dominant Cut Statistics for Topology-Aware Cuts

ckt

Itr. # 1 Itr. # 2 Itr. # 3

BD TD BD TD BD TD

DC AC DC AC DC AC DC AC DC AC DC AC

ia0 710 60 710 149 790 14 812 60 784 3 817 24

ia1 653 56 653 144 720 14 772 56 719 1 771 20

ia2 634 35 634 118 640 7 669 45 641 2 709 18

ib0 675 61 675 161 721 8 773 65 745 3 766 29

ib1 593 55 593 136 628 16 688 70 652 8 717 28

ib2 617 41 617 131 630 8 674 48 636 2 683 17

5.5.3 Impacts of TACUE on Physical Synthesis

We have run our physical synthesis tool on the circuits optimized by TACUE for topology-

aware cuts. We report the worst slack in Table 5.7. The Maximum Worst Slack Increase

Percentage (MWSIP) is reported in the last column. We could gain 21.16% increase of worst

slack on average and 45.72% in the best case.

The impact of TACUE on physical synthesis is also investigated. Table 5.8 reports the worst

slack after each iteration. Results shows that we could gain 18.54% increase on the worst

slack on average and 31.23% in the best case.
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Table 5.5: No. of Level Reduction with Topology-Masking Cuts

ckt

Itr. # 1 Itr. # 2 Itr. # 3

MLRP (%)

BD TD BD TD BD TD

ia0 26 24 23 22 23 21 22.22

ia1 25 23 23 21 23 21 19.23

ia2 25 23 23 21 23 21 19.23

ib0 24 23 23 21 23 21 19.23

ib1 25 24 23 21 22 21 22.22

ib2 25 24 23 22 22 21 22.22

We also manually conduct experiments with different tuning parameters to optimize the

overall flow of our synthesis tool. Table 5.9 depicts the best results we could obtain for

each benchmark. We report worst slack and area in each benchmark for base case (BC)

and best case (BSC). In addition, we report the synthesis technique (ST) we had utilize in

the best case. We have 3 cases in which BD is superior to TD and other 3 cases in which

TD is superior to BD. Moreover, we report the cutting technique (CT) we had used (TA:

for topology-aware and TM: for topology-masking). The results shows that TM is generally

superior to TA. The Worst Slack Reduction percentage (WSRP) show that we could obtain

an average 21.98% and up to 45.72% in the best case (for ia2). Results on Level Reduction

Percentage (LRP) show that we have an average of 9.37% LRP with minimum of 3.84% (in
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Table 5.6: Area Report for Topology-Masking Cuts

ckt

Itr. # 1 Itr. # 2 Itr. # 3

MAIP

BD TD BD TD BD TD

ia0 48889 49658 50829 60527 51773 66322 36.5

ia1 47753 52981 48127 61422 49415 67599 43.5

ia2 39702 39757 40113 48385 40447 54049 36.3

ib0 49299 54703 51004 62566 51376 68565 42.15

ib1 47267 50691 49022 58715 50326 67698 44.7

ib2 39315 39352 40891 48683 41957 52999 35.5

ia1) and 14.81% (in ia0). Results for Area Increase Percentage (AIP in the last column)

show that we have an average of 1.869% increase in area with min. increase of 0.2569% (in

ia2) and maximum area increase of 6.52% (in ia0).

5.5.4 Parallel Synthesis Framework

Table 5.10 reports the time required for TACUE and our parallel Synthesis framework to

optimize our benchmarks. The time is reported for one iteration of topology-aware cuts

and our synthesis method is time-driven logic bi-decomposition. We report time for 1, 2, 4,

6, 10 and 20 processes. We gain an average speed-up of 2.18×, 3.99×, 5.42×, 7.12× and
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Table 5.7: Worst-Slack Report for Topology-Aware Cuts

ckt

Itr. # 1 Itr. # 2 Itr. # 3 Itr. # 4

MWSIP (%)

BD TD BD TD BD TD BD TD

ia0 -32.602 -29.72 -31.342 -31.237 -33.355 -31.046 -28.579 -29.501 21.35

ia1 -28.213 -29.103 -26.842 -26.579 -28.333 -29.157 -26.648 -29.61 7.13

ia2 -15.803 -20.81 -14.583 -10.499 -13.019 -15.39 -15.395 -14.361 45.72

ib0 -34.172 -35.763 -42.46 -32.997 -34.076 -33.973 -33.525 -39.275 10.94

ib1 -24.881 -22.204 -22.861 -25.984 -26.114 -26.074 -25.387 -20.398 24.45

ib2 -17.331 -21.352 -15.19 -20.382 -15.81 -24.511 -17.126 -19.164 17.37

8.78× on 2, 4, 6, 10 and 20 processes, respectively. The speed-up showed that we have a

good work balance. The reason for the super-linear speed for 2 processors and almost linear

for 4 processors is that these are conducted on quad-core processors. Thus, in case of 2

and 4 processes we get benefit from locality and advanced parallelism features on the same

processor. Our results show that we still get noteworthy speed-up for 6 and 10 processes.

This is due to the fact that TACUE takes a small fraction of the computation. In addition,

the way we organize the parallelism framework is efficient.



Mahmoud A. M. S. Elbayoumi Chapter 5. Timing-Aware Synthesis 99

Table 5.8: Worst-Slack Report for Topology-Masking Cuts

ckt

Itr. # 1 Itr. # 2 Itr. # 3 Itr. # 4

MWSIP

BD TD BD BD BD

ia0 -35.447 -31.306 -30.485 -28.368 -30.714 21.92

ia1 -26.293 -36.491 -29.989 -31.504 -26.372 8.13

ia2 -18.039 – -19.145 -13.302 -16.102 31.23

ib0 -32.189 -40.093 -35.058 -36.468 -35.822 14.49

ib1 -25.369 -29.457 -23.856 -24.208 -27.641 11.64

ib2 -16.405 -14 -16.88 -19.526 -18.854 23.85

5.6 Conclusion

In this chapter, we presented a novel paradigm to accomplish timing closure of very large,

previously optimized circuits. In order to tackle the scalability problem in our industrial

benchmarks, we propose a divide-and-conquer heuristic, which we call Time-Aware CUt

Enumeration (TACUE) algorithm. The basic idea behind TACUE is to generate many

well-chosen sub-cuts along the critical paths of the circuits. We apply different synthesis

techniques to these sub-cuts, and we choose the best solution in terms of delay and area.

Some circuits start with a ”good” topology, while others do not have this feature. Thus,

sometimes we need to make a decision whether we want to keep the current topology or not.
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Table 5.9: Physical Synthesis Best Results Summary

ckt

WS AREA

CT ST # of itr. WSRP(%) LRP(%) AIP (%)

BC BSC BC BSC

ia0 -36.335 -28.368 48602 51773 TM BD 3 21.93 14.81 6.52

ia1 -28.619 -26.293 47110 47753 TM BD 1 8.13 3.84 1.36

ia2 -19.344 -10.499 39667 39713 TA TD 2 45.72 11.53 0.2569

ib0 -37.644 -32.189 48234 49299 TM BD 1 14.49 3.84 2.21

ib1 -26.999 -22.204 46763 46899 TA TD 1 17.76 11.11 0.2908

ib2 -18.384 -14 39126 39352 TM TD 1 23.85 11.11 0.5776

Accordingly, we have proposed two different cutting strategies to handle this issue. Finally,

we also proposed an efficient parallel synthesis framework for TACUE. Significant reductions

in worst slack was achieved with only a slight to moderate area overhead. Although TACUE,

with synthesis framework, seems to be sequential in nature on first impression, we could come

up with an elegant way to separate these data dependencies and sharing. The results show

that we could gain almost linear and sometimes super-linear speedups.



Mahmoud A. M. S. Elbayoumi Chapter 5. Timing-Aware Synthesis 101

Table 5.10: parallelism Results (time measured in seconds)

ckt/np. 1 2 4 6 10 20

ia0 1781.05 859.67 437.57 326.325 264.32 205.6

ia1 2015.77 935.08 515.96 351.55 303.3 227.6

ia2 1377.05 600.56 333.41 248.99 183.47 157.7

ib0 1735.25 903.72 497.57 368.13 280.8 208.3

ib1 1670.9 732.9 404.19 310.09 219.92 193.05

ib2 1588.7 658.23 374.2 277.12 197.1 168.14



Chapter 6

Novel SAT-based Invariant-Directed

Low-Power Synthesis

In this chapter, we present our algorithm for low-power synthesis. A literature survey for

clock-gating algorithm is presented in the first section. Secondly, a motivating example is

illustrated. We present heuristics to speedup inductive invariant generation, invalidation

and proving is followed. Finally, we present results and conclusion.

6.1 Literature Survey and Contributions

Dynamic power consumption is a critical concern in the design of both high performance

and low-power circuits. Clock-gating is one of the most efficient and prominent approaches

to reduce dynamic power. In this Chapter, (1) we propose the first scalable SAT-based

102
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approaches for Observability Dont Care (ODC) clock gating; (2) we intelligently choose

those inductive invariants candidates such that their validation will benefit the purpose in

clock-gating-based low-power design. Our approach shows an average 23.2 % reduction in

dynamic power with an average 9.5% increase in area [105].

Clock-gating could be classified into two main approaches [33]. In one approach, Observ-

ability Dont Cares (ODCs) are used to gate state elements that are not observed by the

circuit outputs [32]. In the other approach, stability conditions (STC) are used to gate state

elements that hold stable value for two or more consecutive time frames [106].

In the ODC-based clock gating approach, many algorithms have been proposed. In one

technique [71], the combinational part of the circuit is first decomposed, and combinational

ODCs are identified and blocked whenever appropriate [70]. However, this approach has

scalability limitations as it depends on Binary Decision Diagram (BDD) decompositions.

As far as we know, the only ODC-based scalable clock-gating algorithm is proposed in [32].

Benini et al. [32] proposed a scalable clock gating at the Register Transfer Level (RTL).

It considers the data inputs of a steering module (i.e., multiplexers and tri-state elements).

When a particular line is selected, the rest of the lines become unobservable for computing

the other signal. The ODCs are propagated backwards to maximize the set of signals that

should be gated. The main drawback of such approach is that it may miss many potential

parts for optimization, and it is restricted to only the combinational part (not sequential) of

the circuit.

In the STC-based clock gating approach, Hurst [107] proposed the first SAT-based STC
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clock gating to address the scalability of STC-based clock-gating problem. However, he

did not explore the maximum gating condition which is the main component of STC-based

technique. This is because the monolithic approach is used in dealing with model checking.

Therefore, they provide an ad-hoc method for clock-gating. Moreover, the lack of comput-

ing the overall signal probability of their clock gating condition adds a limitation to their

approach. Lin et al. [34] proposed a SAT-based STC clock gating technique based on inter-

polation computation for maximum clock gating calculation. Thus, this would restrict the

scalability of the approach. In general, extracting STCs are shown to be a challenging task

[33],[106]. Wiener et al. [33] use data mining to generate inductive invariant candidates.

However, they did not prove them formally. Instead, they use ”Human Experts” to judge

on the correctness of those candidates. This approach has two major drawbacks. First, a

”human expert” may not be available or it may be error-prone and this approach does not

scalable well. In addition, they depend heavily on randomized constrained simulation which

can be computationally expensive.

Logic synthesis has also been used as a preprocessing stage to reduce the complexity of

formulas expressed in the CNF [108]. In doing so, it can help reducing the complexity of

the SAT solver, such as the original version of IC3 [61]. However, the use of this idea was

limited to the combinational part of the circuit as the SAT-formula (in these approaches)

usually represents only a couple of unrolled timeframes.

Our technique could be depicted as a generalization of ODC-based techniques, in that it

decomposes the functions using sequential ODC, which are not included in the previous
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combinational ODC. Thus, it offers more opportunities in clock-gating more logic. One

uniqueness about our approach is that it does not depend on specific type of model checkers

[34]. Rather, any model checker could be used with our framework. In addition, our algo-

rithm is easily parallelizable, so the capabilities offered by recent low-cost, high performance

computing platform could be leveraged on running our algorithm. Moreover, as we work in

a pre-optimized circuit, our algorithm showed that it had the capabilities to save power even

in cases where we only have small windows for optimization. The scalability of our algorithm

allows us to finish quickly even for the largest benchmark circuits. Finally, there is a wide

range of applications in ASIC [31] and FPGA [109] in which our algorithm is applicable.

Our contributions can be distinguished from the previous work as follows:

• Unlike previous techniques, our method decomposes logic functions in an entirely new

way, by using inductive invariants that relate signals in the circuit. This gives more

opportunities especially in highly optimized circuits.

• Unlike algorithms proposed in [70], [71], we use SAT- based toolsets [61],[58], which

are more scalable than BDD-based techniques, thereby providing new opportunities

for power saving.

• We have used SAT-based formal methods to prove inductive invariants instead of de-

pending on ”human experts” as proposed in [33].

• Techniques proposed in [107], [34] are STC-based, whereas our technique is an ODC-

based. However, we have used efficient heuristics including efficient filtering of those
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invalid invariants (with the aid of incremental saturated rarity simulation) as we select

which inductive invariant candidates to prove.

• Unlike all of the approaches above (and the original IC3 [61]), we address the scal-

ability problem of the model checking problem in a new way. In the original IC3,

combinational synthesis techniques are used to reduce the size of the SAT formula. In

addition, the learnt invariants are used from one proved property to another. However,

model checkers would have to deal with the whole circuit. In our approach, instead

of using this monolithic approach in which combinational synthesis is performed in all

inductive invariant candidates, we propose a local (but efficient) approach in which

we apply combinational and sequential synthesis on each inductive invariant candi-

date (not the whole set of candidates). We found that this approach highly reduces

the number of state elements and literals, and synergistically reduces the run time for

model checker.

6.2 basic Idea, Motivating Example and Heuristics

Dynamic power dissipation of a CMOS circuit is calculated as follows [70]:

Pdynamic(n) =
1

2
× f × V 2

dd ×
n∑

i=1

(cisi) (6.1)

where n is the total number of gates, f is the clocking frequency, Vdd is the supply voltage,

ci is the load capacitance for gate i and si is the switching activity for gate i. Switching
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Figure 6.1: Our Proposed clock-gating.

activity is the average number of transitions (0 → 1 and 1 → 0) a gate i switches per unit

time. Reducing switching activities is an effective way to lower dynamic power.

Consider an invariant (C +D) which by definition holds for all reachable states from initial

state I. According to this invariant, if C = 0 then D has to be 1. Thus, whenever C is 0,

signal D can be set to 1 directly and its fan-in cone could be safely blocked. Fig. 6.1 depicts

this idea. The total power saving in this case would be:

Psaved = p(C = 0)× P (s(B)) (6.2)

where p(C = 0) is the probability that C is set to 0 and s(B) in the set of nodes in the

transitive fan-in cone of D. As noticed from Equation 6.2, the amount of power saving is

directly proportional to the probability of negation of signal C. One issue has to be taken

care of is when part of the logic in the fan-in of D is used in other node that is not in D [70].

Although the problem statement is simple, achieving it is hard due to the following reasons.

First, generating all inductive invariant candidates would be prohibitive as we would have

very huge number of candidates O(n2) in large circuits containing n signals. Secondly, many
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of these candidates might be invalid, and this would overwhelm the model checker later [72].

Thirdly, even if we have a good approach to filter invalid invariant candidates, we still have

the problem of prove a potentially large number of survived candidates, which usually is

a computationally expensive step. In the next sections, we discuss our approach to tackle

these problems.

6.3 Inductive Invariant Candidate Generation

A circuit of n gates would have O(n2) 2-literal potential inductive invariant candidates.

Generating and proving this large number of candidates would be expensive. Thus, we

propose two heuristics to reduce this cost. First, we consider a signal C only if it has a

very high probability of occurrence. The motivation is that even if we have a valid invariant

with small probability, we will likely not benefit from it for gating the corresponding block.

The second heuristic is that we only choose D variables as the roots of dominant cuts. As

we stated earlier, the blocked part is the only part of logic that is completely contained in

the transitive fan-in of signal D. When candidate invariants are proven, if a dominant cut

is totally contained in the transitive fan-in of another dominant cut, they will be merged.

However, at this stage we do not have the information to determine whether this would

happen or not. Thus, we choose to select D from the roots of the dominant cuts (as they

are the maximally self-contained cuts). In doing so, dominant cuts allow us to abstract the

circuit and to reduce the number of D variables needed to be considered. In case we have a
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valid invariant, we would be able to block the entire dominant cut, and any other invariants

inside this dominant cut need not to be considered. On the other hand, if we have an

invariant that involves a variable internal to this cut (but not at the root), more refinements

could be used later to determine which invariant candidates are needed according to the

proved invariants from the dominant cut.

With these two heuristics, the number of candidates needs to be proven is significantly re-

duced. In addition, nodes that seem to have constant values during simulation are eliminated

from C and D variables sets. This would have two benefits: first, it reduces the number

of inductive invariant candidates. Secondly, in case it is truly a constant node, it would

produce inconsistency later. For example, if C is a constant 1, it will have signal probability

equal to 1 (from random simulation). In case this variable is chosen, it would generate two

inductive invariant candidates (C +D) and (C +D), and both would be true.

6.4 Inductive Invariant Candidates Computation

Rarity simulation is efficient in filtering invalid invariants. However, it cannot prove their

validity. Thus, we have a tradeoff. If rarity simulation runs for very long time, it might

discover all invalid invariants. However, keep it running after that is simply a waste of time

and resources. On the other hand, when rarity simulation runs only for a small amount

of time, it could miss many of invalid invariants which would cause two problems. First, it

would end up with many invalid invariants that would impair from having an efficient filtering
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algorithm. In other words, the filtering algorithm will work on a possibly highly contaminated

set which have lots of valid invariants. Accordingly, filtering will have a considerable chance

to filter out some of valid invariants and keep many invalid invariants. Hence, even if the

model checker is able to quickly invalidate them (in the ultimate optimistic case), we would

have very low quality solution.

Secondly, validating all the inductive invariant candidates by a model checker would be

computationally expensive. Thus, as a tradeoff, we propose an algorithm to reduce the

time to disprove many (if not all) invalid candidates as depict in Fig. 6.2. In this algorithm;

rarity simulation has ”normal” and ”aggressive” modes. Each mode has its own max timeout

tnormal and taggressive respectively, and taggressive >> tnormal. The normal mode is executed

first and it is kept running as long as it discovers more invalid candidates (lines 2−5). When

it saturates, it switches to the aggressive mode (lines 6 − 7). In the aggressive mode, the

max. timeout is much higher than the normal mode. Whenever it finds an invalid invariant,

it switches back to the normal mode again(line 8). It decides to quit if and only if it could

not find an invalid invariant in two consequent normal and aggressive runs.

6.5 Proving Inductive invariant candidate

In order to prove one survived candidate from rarity simulation, a new circuit for this in-

ductive invariant candidate (which is modeled as a property p) would be construct such that

its output will be satisfied if and only if there is a counter example to p. This could be
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1: repeat

2: set Ttimeout = tnormal

3: repeat

4: Rarity Sim()

5: until invalid invariant saturation

6: set Ttimeout = taggressive

7: Rarity Sim()

8: until invalid invariant saturation

Figure 6.2: Iterative Rarity Simulation Saturation Algorithm.

accomplished by building circuit with output p̄. Newly constructed circuit is checked with a

PDR-based model checker [58]. In case we have multiple invariant candidates we will present

the conventional approach to implement that and our efficient way.

6.5.1 Conventional approach

the reasoning in this approach [61], in order to benefit from the experience acquired from

proved inductive invariant and to minimize the effort required to prove all inductive invariant

candidates, invariant candidates counter examples are built in the same circuit and they

proven monolithically. In other word, learnt inductive invariants from a valid (and proved)

inductive invariants is applied in proving of all subsequent inductive invariants. circuit of the

whole counter examples may be combinationally (and not sequentially) optimized to reduce
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no. of literals.

6.5.2 Our approach

As the heaviest part of our algorithm is the model checker. So, in order to have an efficient

algorithm, we need to reduce the run time of this major stage. We have proposed an efficient

heuristic in order to achieve that. This heuristic is based on the observation that generated

invaraints are structurally simple (not functionally) as it consists of 2 literals. This would

leverage the capability of combinationnal and sequential synthesis to large reduces them and

hence, help the model checker to prove them latter. In other words, for our with In order to

reduce the complexity of the generated inductive invariant candidates, and reduce the burden

on the model checker. We have proposed to use logic synthesis (combinational and sequential

optimization) as a mandatory step before running the model checking. That is, we used

logic optimization to reduce the complexity of our circuit combinational and sequentially, by

building the inductive invariant candidate as an output and try to optimize the part of the

original circuit contributes to this output only. Our experiments shows that running PDR

on each candidate individually reduces the overall computation time compared to run it in a

monolithic approach. This is because the shared logic between different properties limit the

synthesis process to highly optimize the constructed property circuit and hence add a high

burden on the model checker.

In PDR, instead of taking a monolithic approach, in which we PDR on all of inductive
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1: Construct property monitor circuit

2: Sequential Sweeping [110]

3: loop

4: AIG balancing [111]

5: AIG rewriting [111]

6: end loop

7: PDR()

Figure 6.3: PDR Prove Algorithm.

invariant candidates survived from filtering algorithm. We take the opposite approach and

prove each individual inductive invariant candidate. The ”common wisdom” suggest to do

all of them once and get benefit of learnt clauses. But, in other hand, model checker have

to deal with the whole circuit and this add a big heavy task on it. So, we take it one by

one, and get benefit of the simplicity form of our invariant and run very quick (but efficient)

combinational and sequential optimization, which shows that it is helpful to reduce the size

of the reachable state of the circuit (for this invariant). Fig. 6.3 depicts the algorithm for

Prove invariant candidates.

6.6 Low-Power Synthesis Algorithm

The sequential version of our algorithm is depicted in Fig. 6.4. The algorithm start with

generating the inductive invariants candidates based on the heuristics described in the pre-
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1: Generate inductive invariant candidates

2: Rarity Simulation Filtering

3: Select invariant

4: PDR Prove

5: Write back

Figure 6.4: Sequential algorithm for Power-Aware Synthesis.

vious section as shown in line 1. After that Rarity simulation is run rapidly to eliminate

as many as possible of the invalid invariants (line no. 2). The proved inductive invariants,

will be grouped and selected according to a greedy approach describe in next section. The

filtered inductive invariant candidates will be passed to PDR-based model checker to prove

them.

6.7 Greedy Selection of Inductive Invariants

Figure 6.5 depicts the greedy algorithm for candidates selection. S is the set of selected

invariants. It is initially empty (line 1). Survived invariants from rarity simualtion are

grouped according to controlling variable A (line 2). Shared nodes in each group is computed

and amount of power saving of blocking the group is calculated(line 3− 4). The Algorithm

starts greedy to select a group with max. power saving (line 5 − 8) and remove the shared

node and conflict node from other remaining groups. The process continue until all groups

are empty.
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1: S = φ

2: group survived candidates

3: compute node shared between each group

4: calculate power saving for each group

5: repeat

6: S = S∨ group with Max. Power Saving

7: remove conflict and shared node from other groups

8: until all groups are empty

9: return S

Figure 6.5: Greedy selection of candidates algorithm.

6.8 Results

We have evaluated our algorithm on the largest circuits from public domain ISCAS89 and

ITC99 benchmarks. The benchmarks are preprocessed by ABC [104] as follows: the designs

were (a) attened , (b) structurally hashed , (c) sequentially optimized by register sweeping

[110], (d) combinationally optimized with AIG rewriting and balancing [111]. The power is

computed by random simulation tool available in ABC [112]. The proposed algorithm has

been developed with C/C++ inside ABC and the performance was evaluated on 6 dedicated

2.66 GHz Intel Xeon cores, running a 64-bit Linux distribution. We have compiled our

program with g++ under -O3 option.

The experiments are designed to answer the following questions:
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Table 6.1: Circuit Statistics

ckt IN OT FF AIG LV PWR

s9234 36 39 211 1947 34 477.62

s13207 31 121 669 2721 34 445.88

s15850 14 87 597 3553 45 504.62

s38417 28 106 1636 9219 31 2855.09

s38584 12 278 1452 12394 36 5694.93

b17 opt 37 97 1414 27645 71 1706.49

b18 opt 37 23 3270 80668 140 2382.71

b19 24 30 6642 163520 138 3728.6

• How much can our algorithm reduce power?

• How other synthesis objectives are affected (i.e., area overhead)?

• How our approach is efficient compared to other previous work?

Table 6.1 reports the statistics of our benchmark circuits. In Table 1, input (IN), output

(OT), no. of ip ops (FF), size of AIG graph (AIG) [113], no. of levels (LV) and original

power dissipation (PWR).

Table 6.2 shows the quality of solution and performance of our proposed method compared

to BDD-based ODC method proposed in [71], and state-of-art SAT-based STC method
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proposed in [34]. Acronyms used in the table is as follows, power reduction percentage

(PR%), power reduction in optimized circuit (OPR%) area increase percentage due to added

logic (AI%), no of flip flop added (FFA), number of generated inductive invariant candidates

(IIC), and time (T). Our approach shows a power reduction with 11.96% in b18 opt and up

to 37.1 % in s38417, with an average of 23.2% over all circuits. The area increase is 1.5 %

in b19 and up to 19.8% in s9234, with 9.5% on average. The number of FF added due to

gating was as low as 0 in s13207 and at most 6 FFs in s38417 with average 2 FFs. Run

time is 31 seconds in s9234 and up to 324 in s38584 with average 154.75 seconds. Compared

to BDD-based ODC method, our approach achieve higher power saving with 37.1% and

32.4% power reduction in s38417 and s38584 respectively compared to 24% and 9.8% for

BDD-based ODC method. Also the area overhead is still small 10.5% and 9.1% compared to

4.9% and 6% in [71]. Our algorithm has better time performance 215s and 324s compared

to 3986s and 3391s. We have to note that the average power savings for BDD-based method

is 19.4% for small and medium size circuits (their experiments done on MNCN benchmarks)

meanwhile we have an average power saving 23.2%. Moreover, our method scales for larger

circuits. In addition, their average area increase is 9.3% while we get an average of 9.5%.

For the SAT-based STC method, they run their experiments without pre-optimizing circuits

first. We report the power percentage for our algorithm before pre-optimization in PR%.

On average our approach shows a 30.7% compared to 25.23% power reduction in SAT-based

STC method. For pre-optimized circuits, our approach provides higher power saving in all

circuits except s38584.
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Table 6.2: Comparison between our proposed method, BDD-based ODC method, and state-

of-art SAT-based STC methods

ckt

Our approach BDD ODC [71] SAT STC [34]

OPR% PR% AI% FFA IIC T PR% AI% T PR% AI% IIC T

s9234 12.0 15.6 19.8 3 3728 31 - - - 7.01 1.31 34281 12.27

s13207 26.4 34.2 17.1 0 17218 42 - - - 12.1 4.08 173738 9.21

s15850 12.2 20.5 12.2 2 42302 279 - - - 3.35 0.97 57538 42.65

s38417 37.1 41.9 10.5 6 1954586 215 24 4.9 3986 4.1 3.77 452724 110.85

s38584 32.4 36.5 9.1 1 1044546 324 9.8 6 3391 64.56 4.39 148418 55.44

b17 opt 21.5 31.3 3.3 1 721962 40 - - - - - - -

b18 opt 11.96 32.4 2.7 2 935471 70 - - - - - - -

b19 31.9 33.1 1.5 1 1190160 237 - - - - - - -

6.9 Conclusion

We have proposed an efficient scalable SAT-based low-power synthesis. Fast discovery of

useful inductive invariants is used to clock-gate critical signals that can significantly reduce

power consumption. We have proposed two heuristics to reduce the number of invariants

that need to be searched. In addition, optimizations to different stages of our algorithm, in

rarity simulation and model-checking, are applied to improve the performance and quality

of our results. The results showed that an average of 23.2% power reduction can be achieved

with a small area overhead, all in short execution times.
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Future Work

In this chapter, we present different possibilities to improve the work proposed in the dis-

sertation. First, we introduce different possible extensions to our package to handle very

large BDDs. Secondly, we propose the extension of this package to handle POBDDs. In

addition, we will propose to investigate another research direction, in which we will pro-

pose to filter Potential Inductive invariants. Furthermore, we suggest to investigate the use

of variant techniques(i.e., BDD-based/SAT-based techniques) to our timing-aware synthesis

algorithm. Finally, we propose to extend our SAT-based low-power approach to STC-based

clock-gating techniques.

119
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7.1 Extending Hopscotch Hashing Technique to Very

Large Monolithic BDDs

Roomy package [114] is a c/c++ library allows to use the secondary storage as the main

working memory of computation instead of RAM. In order to reduces the latency and improve

the limited bandwidth of off-shelf hard disk, Roomy uses many disks in parallel. its data

structures are transparently distributed across many disks. However, it provides a small

options of data structures (arrays, unordered lists and hash tables)

Kunkle etal. [84] propose to use Roomy package for very large BDDs. Although they have

succeeded to build BDDs, for very large problem, for the first time. However, their imple-

mentation have some major problems. First, they use shared quasi BDDs (SQBDD) [81],

which is known to have large memory overhead (i.e., SQBDDs have order of 2 or 3 higher

than ROBDDs). This overhead is not acceptable for very large BDDs. Secondly, They don’t

use shared BDDs. Finally, their BDD construction algorithms are not efficient in term of

computation time.

There are different directions to improve our BDD package such that be able to accommodate

very large BDDs using parallel-disk computation. First, the Hopscotch hashing could be

integrate with Roomy package. Secondly, primitive atomic synchronizations could be used

with Hopscotch hashing to improve its scalability.
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7.2 Extending Hopscotch Hashing Technique to Partition-

BDDs

partitioned-ROBDDs (POBDD) are another version of ROBDDs [115] . Similar to ROBDDs,

They are canonical. However, they have two important advantages over monolithic ROBDDs.

First, their size is usually compact than monolithic ROBDDs and even Free BDDs. Secondly,

only one partition need to be manipulated which further increases space and time processing

efficiency.

We propose to get the advantage of our package combined with Roomy and POBDD to

construct very large circuits. We propose to extend the resultant package from the previous

section to handle POBDD. In other words, we will propose techniques to handle different

variable order for different branches in POBDD. For example, we would change UT and CT

and hashing mechanism to handle this change in BDD structure. In addition, The resizing

and GC would also be modified.

7.3 Selection of Potential Inductive Invariants

For sequential circuits, static implications are relations that hold in all states (reachable and

unreachable states). However, Inductive Invariants are relations that hold in all reachable

states, but they are not necessary hold in unreachable states. By adding inductive invariants

to SAT formula (Eq. 2.8 ), we obtain a much tighter over-approximation of the reachable
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state space because any illegal states that violate one or both of these invariants is discarded

from the search space. In other words, inductive invariants are used to prune the search

space, and hence improve SAT solver performance.

Inductive invariants are often proven using induction [116] and/or properties strengthening

technique [117]. In property strengthening, properties φ, δ and ζ are assumed together

(given that δ and ζ also passed the base case) in the first time frame and then verified one

by one in the second. If the SAT solver returns inconclusive for a property during validation

process, its respective assumption is removed from the first frame. The process is repeated

until all properties being assumed are in fact true invariants. Both induction and property

strengthening are used in attempt to eliminate the spurious initial state (The initial state

now has to satisfy all three properties together, making it closer to the reachable state space).

Checking the validity of all potential inductive invariants (PII) with induction is an exhaus-

tive task. This due to the large number of PII. We will propose a technique to filter the PII

before we check their validity with SAT solver.

7.4 Bi-Decomposition for Logic Synthesis

Recent work [63] proposed SAT-based solutions for bi-decomposition synthesis problem. The

use of SAT not only makes the computation of bi-decomposition feasible for large circuits,

but also serves for automatically selecting and optimizing variable partitions. SAT-based

OR, AND and XOR bi-decompositions under known and unknown partition of variables
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were proposed in [63].

The relative inefficiency of the existing SAT-based models [63] prevent their use on very

large industrial circuits. We propose to use static implication combined with PII to help

SAT solver to successfully bi-decompose large circuits.

7.5 SAT-Based STC Clock-Gating for Logic Synthesis

Our framework could be used in generation and inductive invariant candidates computation

in STC clock-gating. Lin et al. [34] proposed use of interpolation to improve clock-gating.

New improvements have proposed to improve IC3 model checker with interpolation [118]

. Both technique could be investigated with our low-power approach to enable efficient

SAT-based STC clock-gating.
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