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Abstract

Nowadays, we use embedded electronic devices in almost every aspect of our daily

lives. They represent our electronic identity; they store private information; they moni-

tor health status; they do confidential communications, and so on. All these applications

rely on cryptography and, therefore, present us a research objective: how to implement

cryptography on embedded systems in a trustworthy and efficient manner.

Implementing embedded cryptography faces two challenges - constrained resources

and physical attacks. Due to low cost constraints and power budget constraints, em-

bedded devices are not able to use high-end processors. They cannot run at extremely

high frequencies either. Since most embedded devices are portable and deployed in the

field, attackers are able to get physical access and to mount attacks as they want. For

example, the power dissipation, electromagnetic radiation, and execution time of embed-

ded cryptography enable Side-Channel Attacks (SCAs), which can break cryptographic

implementations in a very short time with a quite low cost.

In this dissertation, we propose solutions to efficient implementation of SCA-resistant

and high-performance cryptographic software on embedded systems. These solutions

make use of two state-of-the-art architectures of embedded processors: instruction set

extensions and multi-core architectures. We show that, with proper processor micro-

architecture design and suitable software programming, we are able to deliver SCA-

resistant software which performs well in security, performance, and cost. In comparison,

related solutions have either high hardware cost or poor performance or low attack

resistance. Therefore, our solutions are more practical and see a promising future in

commercial products. Another contribution of our research is the proper partitioning



of the Montgomery multiplication over multi-core processors. Our solution is scalable

over multiple cores, achieving almost linear speedup with a high tolerance to inter-core

communication delays. We expect our contributions to serve as solid building blocks

that support secure and high-performance embedded systems.
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Chapter 1

Introduction

Many embedded electronic systems, including RFIDs, wireless sensors, smart cards,

wireless car keys, smart phones, tablets, and so on, are used to represent personal identi-

fication, to store private information, to monitor realtime status, and to do confidential

communications. They need to access, store, and manipulate sensitive and private in-

formation. As a result, information security on embedded systems has become not just

an option but a necessity. When sending emails via mobile devices, we want them to

be confidential. When unlocking our cars with wireless keys, we have to guarantee no

one else can receive the wireless signal and replay it to open our cars illegally. When

downloading applications, we have to make sure there is no virus or Trojans. All of

the above show that embedded security has become an important aspect of embedded

systems.

To guarantee security, cryptography is an indispensable component. Cryptographic

implementation has been under discussion for many years, especially for general-purpose

computing systems. However, implementing cryptography on embedded systems still

needs a lot of research effort due to its new features, such as limited resources, low

budgets, and openness to physical attacks. As cryptography is needed in more and more

embedded systems, designers face an urgent challenge: how to implement embedded

cryptography while taking into account security, performance, and cost.
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In this dissertation, we present our contributions on analyzing and implementing

embedded cryptography. We propose solutions to efficient implementation of secure

and high-performance embedded cryptographic software. The most important feature

of these solutions is the proper usage of two state-of-the-art techniques of embedded

processors: instruction set extensions and multi-core architectures. We show that, with

proper processor microarchitecture design and suitable software programming, we are

able to overcome different design challenges and to implement secure, high-performance,

and efficient cryptography on embedded systems.

1.1 Security on Embedded Systems

Security resides in different aspects of embedded systems. Take a cell phone for

example [1]. The product developers want to prevent their designs from being copied

and reused by other competitors. Communication service providers want to guarantee

that only authorized users can access the network. Content providers concern about

illegal usage and copy of their digital contents. An end-point user cares about his/her

private data stored in the cell phone. When he/she uses cell phone for bank transactions,

fraudulent transactions must be forbidden. Virus and Trojans against smart phones are

also worries for end users. All of the above cases show us that security almost covers

every aspect of such an embedded system.

Most of the security issues are not unique for smart phones. In general, we can

summarize security problems on embedded systems in five elements: confidentiality,

authenticity, integrity, availability, and non-repudiation [2]. Confidentiality assures that

information is only readable by authorized persons or organizations. Authenticity means

that data or information are genuine and that different parties involved are who they

claim they are. Integrity means that data is not modified unnoticeably. Availability

ensures that services offered by embedded systems are available to legitimate users,

without being disrupted by attacks. Non-repudiation implies that one party cannot

2



deny his/her transaction behavior.

Cryptography is a cornerstone to protect the above security elements. There are a

number of cryptographic algorithms designed to encrypt and decrypt data, to do digi-

tal signature and verification, and to check integrity of data. These algorithms can be

grouped into three different categories, including symmetric-key algorithms, asymmetric-

key algorithms, and hashing algorithms [3, 4]. Symmetric-key algorithms are a class of

algorithms that use identical cryptographic keys for both encryption and decryption.

Symmetric-key cryptography is usually used to provide confidentiality, that is to make

information unreadable to persons without the cryptographic key. Typical symmetric-

key algorithms include Digital Encryption Standard (DES) [5], Advanced Encryption

Standard (AES) [6], and RC4. Asymmetric-key algorithms use a pair of keys to do

encryption and decryption, respectively. Knowing one key of a pair does not reveal any

information of the the other key. Asymmetric-key cryptography is used to support au-

thenticity. RSA [7], DSA [8], and ECC [9] are three popular asymmetric-key algorithms.

From the computational point of view, most asymmetric-key algorithms are very expen-

sive when compared with symmetric-key algorithms. Hashing algorithms are one-way

mathematical functions that convert a large, possibly variable-sized message into a small

digest with fixed length. It is very difficult to find two different messages with the same

digest. It is even more difficult to generate a message for a specific digest. Hashing

algorithms are often used to protect integrity. Some representative examples are MD5

[10], SHA-1 [11], and the upcoming SHA-3 [12].

An important point to note is that cryptographic algorithms are only a set of mathe-

matical functions. To guarantee security, embedded system designers first need to prop-

erly utilize them in a secure protocol. Second, designers also have to implement them

securely. Most cryptographic algorithms are secure assuming that attackers have no

access to their internal states. When it comes to implementation, designers must make

sure that this assumption is valid. This refers to secure implementation of cryptography.

3



1.2 Secure Embedded Cryptography Design Chal-

lenges

Cryptography on embedded systems is different from cryptography on general-purpose

computers. One design challenge is how to implement cryptography with constrained

resources. Generally speaking, embedded systems are smaller than general-purpose com-

puters. They are designed for only one or a few dedicated functions. Correspondingly,

embedded systems have lower resource budget. For example, embedded processors usu-

ally have narrower data path, fewer pipeline stages and fewer advanced features when

compared with general-purpose processors. This means that there are less data pro-

cessed by each instruction, fewer instructions that run in parallel and more control costs

and memory access costs. Moreover, the clock frequency of embedded processors is

often much lower. These inevitably decrease the performance of embedded systems.

As the requirements for ubiquitous computing become higher, we find that sometimes

conventional embedded processors are not enough to achieve the design target.

Another design challenge to embedded cryptography is the openness to physical

attacks. A number of embedded devices are portable or are deployed in the field. They

can be lost or stolen. Attackers could easily get physical access to these devices and

launch attacks as they want. This makes embedded cryptography more vulnerable.

Physical attacks can be roughly grouped into two categories: invasive attacks and non-

invasive attacks [13]. Invasive attacks involve direct electrical access to the internal of

a embedded device. For example, attackers can open the package of embedded devices

or IC chips and place probes to monitor the internal signals. Non-invasive attacks do

not break into the devices. Instead, they break cryptography by using the physical

characteristics of the device which can be observed without breaking into the device.

For example, power attacks [14] uncover the embedded secret keys by only observing the

inputs/outputs and the power consumption of the device. Beside power, other physical

characteristics include electromagnetic radiation [15], timing [16, 17], and so on. A

4



non-invasive attacks is also called Side-Channel Attack (SCA). Compared with invasive

attacks, SCA usually has lower attack costs and lower possibility of being detected.

Therefore, it has presented a great concern to embedded cryptography designers.

Although embedded systems also face logical security problems, e.g. trusted com-

puting [18], we focus on SCA when we talk about security in this dissertation. This

does not mean that logical security is not important. We choose physical security as

our research topic because of our expertise in circuit design and computer architecture.

We expect logical security of embedded systems to be handled by others, e.g. people

with experiences in security on general-purpose computers. Between invasive physical

attacks and SCA, we select the latter, since SCA usually has lower attack costs, which

makes it a threat to a large amount of embedded systems.

1.3 Related Work - A Brief Review

1.3.1 Solutions to Higher Performance

Since embedded systems have very specific applications, one solution to the low-

performance problem is to design hardware coprocessors to accelerate desired calcula-

tions. For cryptographic applications, we see hardware coprocessors almost for every

cryptographic algorithm [19, 20, 21, 22, 23, 24]. Integrating coprocessors is always ac-

companied by additional hardware cost. Since coprocessors are algorithm-specific, it is

not easy to reuse them for other purposes. Therefore, using cryptographic coproces-

sors is feasible for embedded systems that are specifically designed for security, such as

RFIDs, Car keys, and cryptography accelerators [25].

For other embedded systems, where cryptography is needed but not as the main ap-

plication, coprocessors are considered to be too expensive. In such a case, instruction set

extension (ISE) is a possible way of solving the problem. ISE implements smaller opera-

tions, usually the most time-consuming part of an algorithm, as special instructions and

uses dedicated hardware for acceleration. Unlike coprocessors, ISE does not implement
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the whole algorithm. Its hardware cost is lower. Moreover, ISE has higher reusability

over coprocessors. This is because it is possible to find similar low-level operations in

different algorithms. For example, ISE that accelerates binary polynomial operations for

ECC can also be used to accelerate AES’s MixColumns and InvMixColumns operations

[26]. Due to the above good features, extensible embedded processors [27, 28] are be-

coming popular. ISEs for cryptography are also under hot discussion [29, 30, 31, 32, 33].

Recently, as transistors continue to shrink in size, designers obtain more hardware

resources than ever before. Correspondingly, designing multi-core embedded processors

becomes feasible. Since multi-core solutions are still pure software, they are not as ef-

ficient as the hardware-based ISEs and coprocessors. However, their advantage is high

flexibility. Multi-core processors are suitable for general-purpose embedded systems such

as PDAs, tablets, and smart phones. Recent tablets, such as Apple iPAD 2, Motoro-

la Xoom, and RIM PlayBook, are already using dual-core embedded processors. For

cryptographic engineers, the remaining problem is how to make use of the multi-core

processors to accelerate cryptography. In other words, how to do parallel programming

for cryptographic algorithms. The easiest way is to run multiple cryptographic tasks on

multiple cores so that the throughput increases linearly with the number of cores, as

shown in Figure 1.1a. This approach is widely adopted due to its design simplicity. One

possible problem is that embedded systems are low-end devices. In most cases, these

is no need to perform multiple cryptographic tasks in parallel. In such cases, multi-

core processors can not improve the performance. This requires a second solution that

partitions one cryptographic task for multiple cores, shown in Figure 1.1b. Consider-

ing cryptographic algorithms are usually very compact, simply dividing one algorithm

into several parts triggers a bunch of communications due to data dependency. Many

researchers prefer to modify the algorithms so that data dependency among different

parts is minimized. For example, to accelerate RSA, one of the most time-consuming

cryptographic algorithms, we see bipartite [34, 35] and tripartite [36] partitioning of

RSA’s cornerstone: modular multiplication. These solutions cannot be easily scaled to
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Figure 1.1: Different parallel programming schemes. (a) n tasks mapped to n cores; (b)
1 task mapped to n cores.

multiple cores, since each part still runs on a single processor core. We also see solution

that converts the calculation to the residual number system [37] so that long-wordlengh

operations of RSA can be converted to operations on smaller words, which then leads

to a set of parallel operations. However, the resulting solution is not fully balanced over

the complete set of processor cores.

1.3.2 Solutions to Stronger Security

For different acceleration solutions, we need corresponding protection schemes. Hard-

ware coprocessors often use secure logic styles, including WDDL [38], MDPL [39], RSL

[40], DRSL [41], DWDDL [42] and so on, which convert the standard circuits to spe-

cial ones. These special circuits have reduced side-channel leakage. The cost of secure

logic styles is pretty high. For example, WDDL increases the circuit area by 3.4 times;

MDPL’s area overhead is 4.54 times. Although some other logic styles like SABL [43],

SecLib [44], DyCML [45] and DDSLL [46] have lower area overhead (1 to 2 times), they

are based on customized cell libraries. The design cost is very high. Until now, copro-
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cessors based secure logic styles have not been broadly accepted by industry due to their

obvious disadvantages.

Instruction set extensions also use secure logic styles for protection purpose. The

difference between protecting coprocessor and protecting ISEs is that ISEs in secure

logic styles are usually not enough from a systematic point of view. This is because

sensitive data also exists in other parts of the processor, such as register file and memory.

Therefore, besides protecting ISEs with secure logic styles, some researchers propose to

employ other approaches to protect the other parts in the system [47, 48]. A problem

with these solutions is that protecting the entire processor, no matter which approach

is used, is a very complicated procedure. In the end, these solutions still turn out to be

expensive, although a little more efficient than coprocessors in secure logic styles.

Protecting pure software cryptography on regular processors often turns to modifica-

tions on the algorithm so that data manipulation generates data-independent physical

information. A popular way of implementing this concept is to randomize the inter-

nal variables while keeping the overall functions of cryptographic algorithms unchanged

[49, 50, 51, 52]. This approach is called masking. To achieve satisfying security, the ran-

domization could be very complex [53, 54, 55]. A drawback of these protection schemes

is their low performance. A recent work shows that a third-order masking scheme de-

creases the performance by more than 200 times [55]. In our understanding, this is the

major barrier that prevents these solutions from practical applications.

1.4 Our Contributions

According to Section 1.3, we see that most current SCA-resistant implementations

are either too expensive or too slow. We also notice that current cryptographic algo-

rithms are not well mapped to multi-core processors in scalable and balanced ways.

The objective of our study is to find solutions to the above two problems. Specifical-

ly, our goal is to deliver SCA-resistant and high-performance cryptographic software
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on embedded systems. As software is the most popular implementation of embedded

cryptography, we hope that our solutions can benefit a large range of embedded systems.

To achieve the above objective, a suitable processor micro-architecture is very impor-

tant. SCA on embedded software is a problem that involves both software and hardware.

On the one hand, software is the approach to realizing the cryptographic functions; on

the other hand, hardware, the processor, is the source that leaks side-channel informa-

tion. Similarly, performance issue on embedded systems is also closely related to both

software and processor. We believe that focusing on microarchitecture is a good starting

point to solve the security and performance problems, since microarchitecture is the

bridge that connects software and hardware circuits. It is easy to make the best use of

both software and hardware and finally hit the sweet spot in the design space. In detail,

we base our security and performance solutions on two microarchitectures: instruction

set extensions and multi-core processors. For security, we adjust the microarchitectures

to support SCA-resistant software designs. For performance, we focus on multi-core

microarchitecture and choose RSA, one of the most time-consuming cryptographic al-

gorithms, as our research target. We investigate RSA’s cornerstone, Montgomery mul-

tiplication, and parallelize it in a scalable and balanced way. As a result, our security

solution performs well across the board in terms of security, performance, and cost,

without obvious disadvantages in any aspect. Our performance solution is scalable and

offers almost linear speedup to the number of cores with high tolerance to the latency

of inter-core communication.

We summarize our contributions as follows.

1. As a preliminary research, we investigate the existing SCA countermeasures from

both algorithm and circuit levels. We show that masking, one of the popular

countermeasures, is breakable at both levels. For a masked design, dependency

between mask and power consumption makes it possible to introduce bias to the

mask which finally leads to broken secure embedded systems. At the circuit level,

we show that higher-order circuit effects, such as glitches, inter-wire capacitance,

9



and IR drop, are possible leakage sources for basic SCA. The preliminary research

shows that masking is not perfect. It is expensive to achieve strong security.

2. We propose the concept of Virtual Secure Circuit (VSC) as a guideline to protect

embedded software. VSC is based on the idea of differential logic, also called

Dual-Rail Pre-charge (DRP) logic [38]. It makes low-cost modifications on the

microarchitecture of processors so that DRP behavior which can be controlled by

customized instructions or customized combination of instructions is supported.

In such a way, software gets protection when every sensitive data is processed by

those customized instructions.

3. Based on the VSC concept, we propose different implementation schemes using

dual-core microarchitecture and instruction set extensions. We show our research

steps and the results obtained at each step. Finally, we obtained secure solutions

to embedded software on both multi-core platforms and instruction set extensions.

Compared with other security solutions, our security solutions perform well across

the board in terms of security, performance, and cost, without obvious disadvan-

tages in any aspect.

4. We also propose a parallelization scheme, called pSHS, for Montgomery multipli-

cation on multi-core processors. Without modifying the algorithmic algorithm,

pSHS is able to accelerate Montgomery multiplication linearly to the number of

cores with a high tolerance to the inter-core communication latency. Moreover, we

give a comprehensive analysis on pSHS which is able to guide the programmers

to choose the optimal number of cores that should be used by pSHS according

to the inter-core communication delay. pSHS accelerates one single RSA program

very efficiently. It not only increases the throughput but also decreases the laten-

cy. This makes it suitable for embedded public-key cryptography on embedded

multi-core systems.
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1.5 Organization

Most of our work has been published in conference proceedings and journals. In

this dissertation, we try our best to present it in a systematic way. In addition, some

details and results that are not presented in the previous publications are elaborated

in this dissertation. The rest of this dissertation uses seven chapters to present our

contributions.

In detail, this dissertation is organized in the following way: Chapter 2 introduces

preliminary knowledge that is needed by this dissertation, such as Side-Channel Attack-

s, masking countermeasure, hiding countermeasure, multi-core processor microarchitec-

ture, and instruction set extensions.

Chapter 3 presents our first preliminary research that analyzes the masking counter-

measure at the algorithmic level [56]. We present how we manually introduce bias to

algorithmic masking and how we successfully break a masking scheme for AES.

Chapter 4 shows our second preliminary research that investigates how higher-order

circuit effects, such as glitches, inter-wire capacitance, and IR drop, influence the security

of a masked circuit [57]. Both analysis and experimental results show that all those three

higher-order circuit effects are possible side-channel leakage sources. To reduce the

leakage, extraordinary efforts are required, which tells us that strong security achieved

by masked circuit requires extremely high costs.

Chapter 5 proposes the concept for VSC. Following that, VSC on dual-core processors

is presented as the first implementation scheme [58]. We show that, without modification

to the processor cores, we are able to implement the VSC concept, achieving strong

security with low hardware cost. This scheme works well in front of power attacks but

requires additional countermeasures to disable electromagnetic attacks.

Chapter 6 gives another implementation scheme of VSC based on instruction set

extensions [59]. This chapter shows how to implement VSC on a single-core processor.

Compared with the dual-core implementation scheme, VSC on single-core processor

has consistent security performance in front of both power attacks and electromagnetic
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attacks.

Chapter 7 improves the implementation scheme in Chapter 6. Instead of implement-

ing the secure instructions in the regular processor pipeline, we introduce to the processor

a secure pipeline specifically for all the secure instructions. This secure pipeline allows

us to do identical placement-and-route for direct and complementary parts, which is an

essential requirement to obtain strong security with DRP countermeasure. In addition,

we compare this solution with other representative solutions and show that only our

solution hits the sweet spot in the design space.

Chapter 8 shifts our focus from SCA-resistance to high-performance cryptography.

We present a scalable and balanced way, called pSHS, to partition the Montgomery

multiplication which achieves a linear speedup on a message-passing multi-core processor

[60, 61]. Comprehensive analysis shows that pSHS has a high tolerance to the inter-core

communication latency. pSHS accelerates each single Montgomery multiplication and

finally accelerates each single public-key cryptography that makes use of Montgomery

multiplications. This makes it suitable for a embedded system where usually at most

only one public-key requirement exists at one time.

Chapter 9 summarizes our research and analyzes some limitations which are useful

for future research.
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Chapter 2

Preliminaries

In this Chapter, we introduce preliminary knowledge of SCA and state-of-the-art

embedded architectures. The rest of the dissertation will continuously refer back to this

chapter for basic concepts.

2.1 Side-Channel Attacks and Countermeasures

In this section, we briefly introduce the basic concept of SCA, how to mount SCA

in practice, and how to thwart SCA.

2.1.1 SCA Concept

Cryptographic algorithms are designed to resist at least thousands of years of crypt-

analysis. That is, given that the attackers know the algorithm, the input data and the

output data, any known method to extract the crypto-algorithm’s secret key has an

enormous computational complexity. Take brute-force attack as an extreme case, if an

attacker is able to check 1 billion AES keys per second, the 128-bit AES algorithm [6]

can resist a brute force attack for 1013 years.

Unfortunately, the security features of an algorithm alone are not sufficient to guar-

antee that their implementations are also secure. SCA is able to break a cryptographic
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Figure 2.1: Concept of SCA.

device much faster than cryptanalysis. The reason is that, by exploiting the side-channel

leakage of a device, SCA can reveal the secret key bit by bit or piece by piece. This breaks

the exponential complexity of a brute force key search. In this section, we describe the

concept of SCA.

Figure 2.1 shows a cryptographic device and how power attacks break it. The device

implements a cryptographic algorithm, represented by f . f takes the plaintext (PT )

and the key (K) as inputs, and generates the encryption result (ER) (ER = f(PT,K)).

The internal secret key K is not directly observable through the ports of the device.

The objective of SCA is to reveal the value of K.

Each bit of ER is related to every bit of PT and every bit of K. Suppose K has

128 bits, then a traditional brute-force attack needs to consider 2128 possible key values.

It is this huge search space that ensures the security of the cryptographic algorithm.

However, SCA does not try to break the entire K at once. Instead, SCA divides K into

pieces, which are broken one by one. For example, a typical AES algorithm uses an

128-bit key. Using an SCA that reveals one key byte at a time, the search space for the

14



entire key is reduced from 2128 to 16 ∗ 28 = 212.

Obviously, this is a drastic reduction, and SCA achieves this as follows. Although

every bit of the output ER is guaranteed to be related to every bit of K, this is not

true for the intermediate values. We can always find intermediate values that are only

related to a small part of K, e.g. one byte of K. For example, assume that we can find

an intermediate value V which depends on a single key byte K[7 : 0] and the plaintext

PT . We can write V = g(PT,K[7 : 0]). Then K[7 : 0] can be discovered with only 28

guesses.

To test which guess is correct, we therefore need to observe V . This variable is inside

of the implementation, but it is indirectly observable through its power dissipation.

Indeed, the power dissipated by V is a part of the power dissipated by the entire device,

which can be measured by the attackers. With proper distinguishing techniques, the

chip’s overall power dissipation can be used in place of the power dissipation from V ;

power dissipated by unrelated components can be treated as noise. In such a way, SCA

can identify the entire secret key piece by piece and finally breaks the cryptographic

implementation within a very short time.

There are several different distinguishing techniques, including difference of means,

Pearson correlation, and mutual information. Correspondingly, we have different kinds of

attacks: differential attack [14], correlation attack [62], and mutual information analysis

[63]. In the rest of this dissertation, we mainly use correlation attacks.

2.1.2 An SCA Example

To make the above SCA concept more concrete, we present an SCA example in this

section to show how to do measurement and analysis. We run an AES program on top

of an embedded processor. The AES key is embedded in the on-chip memory. Such

a cryptographic device receives plaintext and sends out ciphertext through its UART

peripheral. To uncover the key with SCA, we build a setup whose block diagram and

real picture are shown in Figure 2.2.
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Figure 2.2: Setup for SCA. Photo was taken by the author in 2010.

The setup contains the cryptographic device, an oscilloscope (Agilent DSO5032A)

and a PC. The three parts of the setup are connected in a circular fashion. A RS232

cable connects the cryptographic device and the PC. Between the oscilloscope and the
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Algorithm 1 Program running on the embedded processor

exp key ⇐ KeyExpansion(key)
loop

if UART is not empty then
wait until 16 bytes received
pt[15 : 0]⇐ UART FIFO

ct[15 : 0]⇐ Cipher(pt, exp key)

PC is a USB cable, through which the PC is able to send commands to and get sampling

waveform from the oscilloscope. The oscilloscope uses a current probe (Tektronix CT-

2) to monitor the current flowing into the cryptographic device. We use the current to

represent the power consumption of the embedded system. Side-channel analysis requires

a number of measurements with different inputs (plaintexts for AES). In this example,

the result of one measurement is the current trace of the cryptographic device and the

corresponding random plaintext block for encryption. Each measurement consists of the

following 4 steps. A side-channel analysis that requires n measurements needs to repeat

these 4 steps for n times.

• Step 1: The PC sends a random plaintext block (16 bytes) to the embedded

platform through the RS232 cable.

• Step 2: The embedded processor in the platform receives the plantext and encrypts

it with the AES software. The program running on the embedded processor is

shown in Algorithm 1. Cipher is an AES encryption function.

• Step 3: After sending out one block of plaintext, the PC sends command to the

oscilloscope to sample the current trace when PowerPC is running the encryption.

• Step 4: After sampling is done, one current trace is sent back to PC for side-channel

analysis.

After obtaining measurements, we move on to the analysis phase. First of all, we

select a set of intermediate values (V in Figure 2.1) from the AES algorithm, each of
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which is related to one byte of the cryptographic key of AES. Here the outputs of the

Substitution step in the first round are the selected intermediate values, as shown in

Equation 2.1, where in[i] is the i-th byte of the 128-bit plaintext, key[i] is the i-th byte

of the 128-bit key, and v[i] is the i-th byte of the 128-bit AES intermediate state.

v[i] = subbytes(in[i]⊕ key[i]); (2.1)

In this formula, the plaintext in is known to attackers, while key and v are unknown.

However, v is indirectly observable through the power consumption of the algorithm.

Hence, we can create a hypothesis test for a key byte, using a power model for v. By

making a guess for the i-th key byte, we can infer the value of v[i]. The power model

used in the attack is an estimate for the power consumption of the hypothesized v[i].

The actual hypothesis test, explained later in this section, will compare the estimated

power consumption with the measured power consumption to identify the most likely

key byte hypothesis.

To map v[i] to power hypothesis, two common power models are Hamming weight

and Hamming distance. Usually, Hamming weight represents static power and Hamming

distance represents dynamic (switching) power. Hamming distance requires two sequen-

tial values in one register, which is hard for attackers since they do not know which other

variables share the same register with v. Therefore we use Hamming weight.

The last step is to distinguish the correct key hypothesis from other incorrect ones

based on the measurements and the power model. Suppose we have n random plaintext

blocks (pt[1 . . . n]). Each of them is used for one measurement. Correspondingly, we

obtain n power traces, each of which contain m sampling points (tr[1 . . . n][1 . . .m]). A

correlation attack takes pt and tr as inputs, and discovers AES’s key byte by byte by

focusing on the first round of AES. The details are presented in Algorithm 2. The basic

process is to take pt[1 . . . n] and a guess value of a key byte (key guess) to calculate

an intermediate value v[1 . . . n] (v[i] = f(key guess, pt[i])). Sampling a complete power

trace guarantees that the operations on the intermediate value occur during the sampling
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Algorithm 2 Correlation power attack on one key byte.

Require: pt[1 . . . n] contains the random plaintext for encryption; tr[1 . . . n][1 . . .m]
contains the sampled power traces; f maps the inputs to the intermediate value v; g
calculates the correlation coefficient.

Ensure: key gap[j] is the CPA-attacked key byte.
/* Obtain correlation coefficient traces corr */
for key guess = 0 to 255 do

for i = 1 to n do
v[i] = f(key guess, pt[i])
v hw[i] = HammingWeight(v[i])

for i = 1 to m do
corr[key guess][i] = g(v hw[1 . . . n], tr[i][1 . . . n])

/* Find the correct key byte */
for i = 1 to m do

find |corr[key1][i]| = max(|corr[0 . . . 255][i]|)
find |corr[key2][i]| = second max(|corr[0 . . . 255][i]|)
gap[i] = corr[key1][i]− corr[key2][i]
key gap[i] = key1

find gap[j] = max(gap[1 . . .m])
return key gap[j] as the correct key byte

process. We use the Hamming weight of v (v hw[1 . . . n]) to approximate the power

dissipated by v. Then we calculate the correlation coefficient of v hw and the actual

measured power traces at each sampling point. As a result, we obtain a correlation

coefficient trace corr[1 . . .m] (corr[i] is the correlation coefficient of v hw[1 . . . n] and

tr[1 . . . n][i]). Details of correlation calculation are shown in Equation 2.2. v hw and tri

are the mean values of vectors v hw[1 . . . n] and tr[1 . . . n][i], respectively.

corr[i] =

∑n
d=1 (v hw[d]− v hw) · (tr[d][i]− tri)√∑n

d=1 (v hw[d]− v hw)2 ·
∑n

d=1 (tr[d]− tri)2

(2.2)

By now, we have obtained one coefficient trace corr[1 . . .m] which is corresponding

to one guess value of the key byte. Since there are 256 possible values for one byte of

key, we can, therefore, obtain 256 coefficient traces. By grouping these coefficient traces

together, we are able to identify one coefficient trace from all the other 255 traces.

In particular, at some points (when the operations on the intermediate value occur),
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Figure 2.3: An example of SCA results. 256 correlation coefficient traces are used.
Around time 100us, the black trace which corresponds to the correct key byte emerges
from all the other 255 traces. It turns out that this black trace is corresponding to the
correct key hypothesis. So the attack is successful.

the abstract value of the coefficient trace corresponding to the correct key guess is much

larger than all the other traces. Figure 2.3 gives an example of the correlation coefficient

traces. We can see that around time 100µs, one trace emerged from all the other traces.

And it turned out that the key guess corresponding to this trace is the correct key, which

means correlation power attack on this key byte is successful.

2.1.3 SCA Countermeasures

Power attacks and electromagnetic radiation attacks are based on the dependency

between power or electromagnetic radiation and immediate values in a cryptographic

algorithm. To prevent SCA, we need to eliminate the dependency. In other words, the

goal is to obtain data-independent power and electromagnetic radiation.

The earliest ways to thwart SCA were called “Ad-hoc Approaches” [64], such as

adding noise, randomizing execution sequence [65, 66], randomly injecting redundant

instructions [67] and limiting the dynamic variance of the current. Although they are

effective to some extent, the drawback of this kind of countermeasures is that theoret-
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ically they do not prevent attacks completely: attacks can still be successful by taking

more samples or signal processing [68, 69].

For the purpose of completely preventing SCA, at least in theory, researchers present-

ed two kinds of countermeasures: masking and hiding. In this dissertation, we mainly

investigate these countermeasures and base our protection solutions on hiding.

Masking

Masking achieves the above goal by randomizing the intermediate values of the cryp-

tographic algorithms. The basic concept can be described by Equation 2.3.

o = f(a) = f1(a⊕m)⊕ f2(m) (2.3)

In Equation 2.3, ⊕ represents the masking operator. For example, it represents ex-

clusive or for Boolean masking. f(a) represents a cryptographic module with unmasked

input a. We create a masked version of this module by introducing a random mask m and

by partitioning the original function into two sub-functions f1 and f2 which process the

masked signal a⊕m (am) and the random mask m respectively. The decomposition of f

into f1 and f2 depends on the original cryptographic module. This is a design problem

in itself, in particular when f contains non-linear terms. Nevertheless the decomposition

has been demonstrated to be feasible [50].

One good feature of masking is that it can be implemented at the algorithm level

without changing the low-level hardware to make their power characteristics independent

of the processed data. There are also some assumptions for masking to achieve expected

SCA-resistance. First, m needs to remain secret. A secret m implies that we cannot

extract any information about a from observing am. For example, choosing a pseudo-

random sequence for m is sufficient to obtain a statistically uniform distribution for

am. This is necessary to guarantee the power consumption of f1 and f2 to be data-

independent. Otherwise, if it is possible to predict m, then we would still be able to

obtain the trace of the unmasked data a [70, 71, 72]. In Chapter 3, we will discuss more
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details.

A well recognized threat to masking is called higher-order attacks [73, 74, 75, 76,

77, 69]. For example, a second-order attack exploits two intermediate values that are

related to the same mask. For example, by processing these two masked values with a

⊕ operation, we can remove the effect of masking. There are also other approaches to

exploit second-order attacks [71, 72]. To prevent second-order attacks, designers need to

integrate at least two independent masks for each unmasked value, called second-order

masking. It is demonstrated that a n + 1-order attack is able to break any n-order

masking. However, as the order number increases, the difficulty of attacks increase

exponentially. So it is believe that to a certain order, the attack becomes infeasible. Of

course, higher-order masking is also more complicated and hence has higher costs and

lower performance.

Another constraint for masking is that Equation 2.3 is defined at the logic level.

Hardware (circuit) implementation is not always perfect. Circuit level issues may intro-

duce unexpected side-channel information. For example, glitches in circuit have been

demonstrated to a side-channel leakage source that is able to lead to successful attacks

on masked designs [78, 79]. In addition to that, we will show that some other circuit

level issues have similar negative influence on masking countermeasure in Chapter 4.

Hiding

The goal of hiding is to design cryptographic devices such that they have the same

power consumption and electromagnetic radiation when manipulating different data.

Hiding allocates the task of eliminating data dependency to the device hardware. Un-

like masking which makes some statistical characteristics, typically the expectation, of

the intermediate values statistically independent of the unmasked value, hiding elimi-

nates any possible data-dependency. Therefore, hiding does not suffer from higher-order

attacks.

There are several different approaches to implement hiding. One of them is the
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Figure 2.4: Comparison between CMOS standard NAND gate and DRP NAND gate.
(a) A CMOS standard NAND has data-dependent power dissipation; (b) A DRP NAND
gate has a data-independent power dissipation.

differential logic, also called Dual-Rail Precharge (DRP) Logic. We use an example to

explain the details.

Figure 2.4 explains the operation of the DRP technique using a DRP NAND gate.

In this example, we approximate static and dynamic power dissipation of a logic gate

through the Hamming Weight and Hamming Distance of its output respectively. In

the case of a single NAND gate (Figure 2.4a), the static and dynamic power dissipation

depend on the input values of the gate. For example, if the static power is 0, both inputs

must be 1. This side-channel leakage is the basis for SCA.

Figure 2.4b shows the same test case on a DRP NAND gate. In this case, the circuit

encodes each logic value with a complementary pair (Ap, Ap). Furthermore, each pair is
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pre-charged to (0,0) in each clock cycle before evaluation. As a result, each clock cycle,

every DRP signal pair shows exactly one transition from 0 to 1 and another one from

1 to 0. The resulting static and dynamic power dissipation are now independent of the

input values of the DRP gate.

Despite the elegance of this concept, DRP circuits in hardware do have some dis-

advantages. First, DRP circuits are at least two times larger than equivalent standard

CMOS circuits, and they have a much larger power dissipation. Second, the constant-

power argument, based on Hamming Weight or Hamming Distance, does not always hold

when low-level electrical effects are taken into account. Small asymmetries between the

direct and complementary paths of a signal pair still may lead to residual side-channel

leakage. Nevertheless, careful design is able to reduce the imbalance to a very low level.

This requires much more power measurements for a successful SCA [80, 81].

So far, the DRP technique has been broadly used in hardware as secure circuits, for

example in WDDL [38], and in MDPL [39]. However, software DRP technique has not

been developed. The major reason for this is that DRP technique requires the executions

of the direct and complementary datapaths in parallel. In regular processors, this cannot

be realized.

2.2 State-of-the-Art Embedded Microarchitectures

In this section, we introduce the concept of two state-of-the-art embedded microar-

chitectures, including instruction set extensions and multi-core processors.

2.2.1 Instruction Set Extensions

Instruction set of a processor maps a set of basic operations to machine codes. The

processor activates dedicated hardware to process each instruction. Putting instructions

in sequence, we get a software routine which finishes a more complicated operation. For

the purpose of generality, processor designers usually pick those most frequently used
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basic operations and include them into instruction set.

Instruction set extensions are additional special instructions to the existing instruc-

tion set. These special instructions are implemented with dedicated hardware that is

able to process some specific operations efficiently. Once extensions are added, the

processor is largely targeted for specific applications and named as Application Specific

Instruction-set Processor (ASIP). Since most embedded systems are application-specific,

instruction set extensions are very useful. There are several commercial products of

statically extensible or custom embedded microprocessors such as Tensilica Xtensa [27],

MIPS Pro Series [82], and ARC 700 Series [83].

An on-going hot discussion on instruction set extensions is to implement them on

reconfigurable devices, for example FPGAs [28, 84]. The idea is to implement the exten-

sions with reconfigurable resources so that they can be updated according to different

applications. This, to some extent, makes the architecture more general.

A typical example of a processor with instruction set extension is shown in Fig-

ure 2.5. In a five-stage processor, the original data path consists of 5 stages, including

instruction fetch, instruction decode, execution, memory access, and write back. To add

extensions, the decode stage should be extended so that it recognizes new instructions.

After that, the processor is able to transfer operands to the execution stage in which

dedicated hardware is added to process the extended operation. Although the concept

of instruction set extensions is simple, integrating them into a processor still needs a lot

of efforts especially when some extensions need multiple clock cycles to finish their job.

In such a case, the processor pipeline needs to be stalled or other mechanisms should be

used, for example out-of-order processing [85].

A challenge for instruction set extensions is how to enable compilers to make good

use of them. Compilers that are originally designed for the existing instruction set need

modifications to cover the new instructions. However, this modification is infeasible. On

the one hand, compiler developers cannot foresee what instruction set extensions will

be added by users. On the other hand, it is unrealistic to expect users to understand

25



Instruction
Fetch

Instruction
Decode

Execution Memory
Access

Write
Back

Decode for 
extensions

extension
operation

Processor with instruction set extensions

Figure 2.5: A typical example of a processor with instruction set extensions.

compilers and do modifications by themselves. One way to go around this problem is as

follows. Users first do regular software programming. Second, they profile the program

to determine the best instruction extensions for the performance. For example, they

can select the most frequently executed code block and use one instruction to cover the

operation. Third, with the information from the second step, processor generators are

able to implement the new instruction; compilers know where the new instructions are

used. Their job is just to replace the selected blocks of code with new instructions. The

TIE compiler [86] for Xtensa processors is an example of this approach.

2.2.2 Multi-core Processors

As processors’ power approaching the power wall, we have lost the option of im-

proving performance by increasing the clock frequency. Alternatively, researchers found

that multi-core processors were able to deliver the same computational capability with

higher power and energy efficiency [87]. As a result, multi-core processors have become

popular. And this is supported by the scaling trend of the transistors, which offers chip

designers enough hardware resources in one chip.

Designing multi-core processor is not just copy-and-paste. An important task is to

handle on-chip communication among different cores. According to the solutions to
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this problem, multi-core processors are grouped into two categories: shared-memory

processors [88, 89] and message-passing processors [90, 91]. Shared-memory processors

implement inter-core communication by sharing memories that can be accessed by d-

ifferent cores. This requires either multi-port memories or shared buses and arbiters.

Message-passing processors accomplish inter-core communication by transferring mes-

sages from one to another. The inter-core communication is done with a network that

connects different cores. Different cores have their own memory space that is not directly

accessible by other cores.

Currently, we can find a number of embedded multi-core processors in the mar-

ket, including Nvidia Tegra 2, TI OMAP, Marvell Armada 628, Apple A5, Aeroflex

Gaisler Leon3 processor, IBM CELL processor, and so on. Most of these processors

use shared memory architecture. But as the number of cores increases, the shortage on

scalability of shared-memory architectures will become significant. We can expect that

message-passing architecture will also become popular. Figure 2.6 and Figure 2.7 show

the diagrams of the shared-memory-based ARM11 MPcore processor and the message-

passing-based CELL processor, respectively. In Figure 2.6, we see that four cores with

their own L1 Cache are all connected to the Snoop Control Unit for synchronization of

the L1 Cache contents and for sharing L2 Cache and main memory. In comparison, the

CELL processor in Figure 2.7 has 8 Synergistic Processing Elements (SPEs). Each SPE

has its own local storage. Eight SPEs are connected in a ring fashion by the Element In-

terconnect Bus (EIB). Communication among cores are done with messages transferred

by EIB.

2.3 Conclusion

In this chapter, we explained the concept of SCA, how to mount SCA, and the

techniques to prevent SCA. In addition, we also briefly introduced the basic concepts of

instruction set extensions and multi-core architectures. In the rest of this dissertation,
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we will present how we make use of both embedded architectures to thwart SCA and to

improve performance.
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Chapter 3

Slicing Attack on A ‘Perfectly’

Masked AES

In this chapter, we propose a new SCA method , called slicing attack, that breaks the

masking countermeasure. The success of this attack helps us to polish our understanding

on masking, especially algorithmic masking. It also serves as a guidance to the proposal

of our own side-channel protection solutions.

In general, slicing attack breaks masking by introducing bias to the random mask

in the analysis process, so that attackers can make better-than-random guesses on the

mask and finally mitigate the protection of masking. Since the bias introduction is done

by selecting power measurements that fall into a slice of their probability distribution,

we call this attack slicing attack [56].

3.1 A ‘Perfect’ Algorithmic Masking on AES

We have introduced the concept of masking in Section 2.1.1. In this section, we

introduce an example of masking on AES SBox [50]. The main component of the S-Box,

as illustrated in Figure 3.1, is a masked GF (28) inversion. The relationship between

inputs and outputs is shown in Equation 3.1.
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Figure 3.1: Algorithmic Masking on AES SBox.

o = f(a) = affine(minv(a⊕m,m, fm))⊕ affine(m)⊕ 0x63 (3.1)

It takes a⊕m, m and fm as inputs. Input a⊕m is the masked value of a, m is the

mask, and fm is called a fresh-mask, and its purpose is to mask intermediate results

within the inversion block. Every input to the masked AES SBox is independent of the

unmasked input a, so that the internal states do not leakage side-channel information.

The masked inversion is implemented using a combination of modular addition and

modular multiplication. Implementation details can be found in [50].

3.2 Slicing Attack

Recently, it was shown that a Boolean masking scheme can be broken by first es-

timating the mask bit and then mounting a DPA based on these estimates [72, 71].

These attacks were demonstrated on single-rail as well as dual-rail masked logic, and

they demonstrated a practical implementation of the so-called zero-offset second-order

DPA [75].

In this section, we apply similar idea to algorithmic masking. Let’s call p the power

dissipation of a masked circuit, which is the power from f1(a⊕m)⊕f2(m) in Equation 3.1.

For a perfect masked circuit, the correlation between p and the unmasked input a must
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be zero. Indeed, if there would be any correlation left, then it would mean the masked

circuit is still susceptible to DPA. So we can write

corr(p, a) = 0 (3.2)

However, masked circuits are designed without considering the effect of the mask m

on the power. In general, the power dissipation will still be correlated to the mask m.

This is considered harmless because m is a random number, without useful information

to the attacker. But if p and m are correlated to some extent, this means that

corr(p,m) 6= 0 (3.3)

As we discussed before, the mask m should remain a secret to maintain full side-

channel resistance. Observing Equation 3.3, a question which comes to mind is: can

we make use of the power p to estimate the mask m? Indeed, this question has been

answered in a positive manner for the specific case of single-bit Boolean masking schemes

[71, 72]. However, there is no reason why this should be limited to single-bit masking.

We will therefore derive a method that works on multi-bit algorithmic masking.

In the following, we treat the mask value m as well as the power dissipation p as

discrete random variables. This assumption is valid if we approximate p for example

with the hamming weight of the circuit under consideration. We will further see how

this can be generalized to measured power values with a continuous distribution.

We can write the joint probability of the circuit consuming power p with mask value

m as

Pr(Power = p,Mask = m) = Pr(p,m) (3.4)

Since the mask has a uniform distribution, the marginal probability of m should be a

constant. The marginal probability of m is found by summing out the joint probability

over p.

32



Pr(m) =
∑
p

Pr(p,m) = Const (3.5)

The conditional probability of the power can now be found as follows.

Pr(p|m) =
Pr(p,m)

Pr(m)
(3.6)

The conditional probability in Equation 3.6 is the probability that the power dissi-

pation of the circuit is p, given that the mask equals m. Note that we indicated earlier

that the power is correlated to the mask. This means that the conditional probability

in Equation 3.6 cannot be independent of m. Thus, if we consider a given power mea-

surement p1, then the conditional probability of this power measurement will change as

the mask changes. We can express this as follows.

Pr(p1|m) =
Pr(p1,m)

Pr(m)
6= Const (3.7)

The inequality of Equation 3.7 becomes an attack method when we express the

conditional probability of m. Through Bayes’ theorem we can write

Pr(p|m)

Pr(p)
=
Pr(m|p)
Pr(m)

(3.8)

We can now write the inequality of Equation 3.7 as follows. Assume that we have a

given power measurement pa and two possible (and different) mask values m1 and m2,

then according to Equation 3.7 and Equation 3.8:

Pr(m1|pa) =
Pr(pa,m1)

Pr(pa)
6= Pr(m2|pa) =

Pr(pa,m2)

Pr(pa)

∣∣∣∣
m1 6=m2

(3.9)

In other words, Equation 3.9 shows that one mask value, say m1, is more likely

to correspond to a given power measurement pa then another mask value. Thus if we

measure a given power level, then we can estimate with a better-than-random guess on

what the mask value would be. In practice, power values are measured as continuous
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quantities, and it is impossible to choose just one discrete power value. Therefore, to

implement the test of Equation 3.9, we will choose p over a range of possible values, and

all those p samples fall into this range build up the slice of samples we want. Accordingly,

the inequality becomes a sum:

∑
p∈range

Pr(m1|p) 6=
∑

p∈range

Pr(m2|p)

∣∣∣∣∣
m1 6=m2

(3.10)

In the case of continuous power values (such as obtained through physical measure-

ments), the summations in Equation 3.10 become integrals. Clearly, there is a limit to

this inequality. When we would integrate the power over the full range of possible values,

Equation 3.10 becomes Equation 3.5 and turns from an inequality into an equality. So

the key is to perform a partial selection of p over the possible range of values.

We can now summarize our attack method as follows.

Step 1: Collect power traces from the masked cryptographic circuit, and establish

the possible range of power values.

Step 2: Select a slice of the possible range of power values, and discard all mea-

surements which fall outside this range.

Step 3: Perform a DPA on the set of measurements obtained through step 2.

In the next section, we will demonstrate this surprisingly simple technique by means

of a simulated attack on a masked SBOX.

3.3 Experimental results

In this section, we present experimental results based on logic-level simulation. The

main idea of the experiment is to count the number of logic-1s in a circuit to estimate

the power dissipation of a circuit. We call this a hamming-weight simulation. Our

purpose is to show that algorithmically masked hardware circuits that successfully hide
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the unmasked data still show dependence between the power and the mask. Furthermore,

we make use of this dependence to introduce mask bias and successfully mount a power

attack.

First, we describe the circuit module used for test in this experiment. We use a

masked AES SBox (already mentioned in Section 3.2) with a key addition as the design

under test. The masking methodology is given by [50]. The structure can be found in

Figure 3.2.

We include an addition of a secret key value at the SBox output. The objective of

our side channel analysis will be to find the secret key. In the simulation presented in

this chapter, the key is 35.

The simulation is based on the gate-level netlist of the above design. To get this

netlist, we first implement the masking scheme with GEZEL [93]. Next, we convert the

GEZEL code to VHDL code and do synthesis with Design compiler. During synthesis,

we must ensure that the XOR operations remain atomic elements. Therefore, the XOR

operations are implemented in a separate hierarchy, and every XOR gate is a separate

module. During synthesis, we then set a don’t-touch attribute to the XOR modules,

which prevents them from further logic expansion and/or optimization. The resulting

synthesized VHDL netlist from Design Compiler is then converted back to GEZEL for

hamming-weight simulation. As testbench, we exhaustively enumerate all three inputs

from the masked SBOX: the masked data input a⊕m, the mask signal m, and the fresh-
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mask fm. For each triplet at the input, we obtain the hamming weight of the netlist,

and we record the value of the SBOX output. These data sets are next subjected to our

slicing attack.

Figure 3.3a shows the probability density function as the joint probability of the

mask m and the power level p. Figure 3.3b is a detailed view of the elliptical area

labeled in Figure 3.3a. Figure 3.3c illustrates the joint probability distribution of power

p and mask m for two different values (128 and 135) of the mask.

Figure 3.3a and Figure 3.3b are 3-d graphs with power, mask, and joint probability

labeled on ‘X-axes’, ‘Y-axes’, and ‘Z-axes’ respectively. The reason why only power

and mask are shown here is that we draw the graphs from the perspective along with

the Z-axes (XY view). The magnitude of probability is represented by the brightness.

Figure 3.3c (XZ view) shows the joint probability distribution when m = 128 and m =

135. As we can see, the probability changes as the mask changes, which demonstrates

the dependence between the power and the mask.

The next step is to find a way to exploit biased mask. As was demonstrated with

Equation 3.10, we can get a biased mask signal by selecting samples from a restricted

range of power levels. This reduced set of samples can then be used for side-channel

analysis. Of course, the range of power levels must be sufficiently large so that a DPA

can still succeed. In our first attempt, we only included samples with a power level in

the slice from [0:216] (See Figure 3.3a). This range includes 5% of the total number of

samples.

We can calculate the conditional probability mass function (PMF) of the mask as a

parameter of the power level range selected. (We use PMF here instead of PDF, since,

in the simulation, the power dissipation is a discrete random variable.) The marginal

probabilities for the mask values are illustrated in Figure 3.4. We included two different

curves. The dotted line is the marginal probability when we choose to include all samples.

As expected, the dotted line is constant, which means that we are using an unbiased

mask signal. The solid line in Figure 3.4 represents the marginal probability of the mask
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Figure 3.3: Joint probability of power and mask. (a) Joint Probability Pr(p,m) for
a masked AES SBox; (b) Detailed view of the elliptical area labeled in (a); (c) Joint
probability Pr(p,m) when m = 128 and m = 135 illustrate dependence of the power on
the mask.
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Figure 3.4: Total and partial probability mass function of the mask. The partial prob-
ability mass function is over selected range of power values ([0:200]).

signals for partially selected samples with a power level in the slice [0:216]. This line is

not a constant, which means that the mask is biased.

We can further analyze the probability for each bit in the mask. This probability

is represented in Figure 3.5. This figure illustrates that, for power samples in the slice

[0:200], the probability for mask bits to be 1 is almost always less than 0.5. In other

words, a reasonable estimate for the mask for all power samples in the slice [0:200] is

an all-zero value. What should be mentioned is that the slice [0:200] is a simple choice

but maybe not the optimal one. However, this example is enough to demonstrate our

analysis in Section 3.2.

Finally, we can mount a DPA attack with this slice of power samples by assuming

that the mask is always 0. While our guess for the mask is not deterministically correct,

it is a correct guess from a statistical point of view. We have implemented the DPA

based on the correlation of the hamming weight of unmasked input a. Figure 6 shows

the resulting correlation graph. The highest peak (0.1658) appears at ’guess key =

35’ which is correct. Three other peaks can also be distinguished at 79 (-0.1476), 112

(0.1433), and 159 (-0.1459). In our simulated attack, guess key 35 is the correct one.
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Figure 3.5: Resulting mask bias for the selected range of power values.

Figure 3.6 demonstrates how we successfully identified the correct key, even though the

figure indicates that there are several other candidates with a correlation value close to

the optimal one. The cause of this effect is that our mask estimation is obtained through

a stochastic process. What’s more, the fresh-mask fm is still unknown, this makes it

harder to get a obvious peak. Still, we see that due to partial observation of the power

samples, the key guess space due to masking is reduced from 256 possibilities to only 4.

Right now the power model used for attack is very simple. As the model improves, the

attack result should be better.

3.4 Conclusion

This chapter illustrated how mask bias can be obtained on algorithmic masking.

The power dissipation of masked hardware circuits is uncorrelated to the unmasked

data values, and therefore cannot be used for DPA. However, we showed that the power

dissipation of a masked hardware circuit may still be correlated to the mask. Because

of this correlation, it is possible to bias the mask by selecting only a small slice over the

entire power probability density function. We applied this technique using an AES SBox
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Figure 3.6: DPA correlation graph on signal with mask bias.

with perfect masking. Using logic-level simulation, we demonstrated the dependence

between the power dissipation and the mask value. By slicing the power PDF before

mounting a DPA, we can bias each bit from the mask. In our case, we introduced a

bias towards logic-0. Our conclusion is that algorithmic masking remains susceptible to

direct DPA by making clever use of the power probability density function.
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Chapter 4

Higher-Order Circuit Effects Break

Secure Circuits

In this chapter, we continue discussing security issues of cryptographic implementa-

tions. This chapter, together with Chapter 3, help us to understand the existing SCA

countermeasures. Accordingly, we propose new protection solutions in the following

chapters.

Instead of looking into signal processing methods, here we focus on circuit-level issues.

We take a close look at the circuit properties that depend on more than one value in

the circuit. We call them higher-order circuit effects. We first derive two conditions for

secure masking of circuits: 1) the random masks need to be unbiased, and 2) the power

consumption needs to be independent of the unmasked data. In logic simulations, for

example in simulations based on toggle counts, these two conditions can be satisfied by

masking. In a real circuit, however, we find the second condition cannot easily be met

because of higher-order circuit effects. While higher-order effects have been mentioned

as a possible source of side-channel leakage [94], no detailed analysis has been presented.

Our contribution in this chapter includes detailed analysis of several common higher-

order circuit effects, including glitches, inter-wire capacitance, and IR drop. Our analysis

explains, in a consistent manner, why all higher-order circuit effects can cause side-
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channel leakage in masked circuits. As far as we are aware, no such analysis has been

performed before. Our second contribution is to demonstrate and to quantify the im-

pact of circuit effects on side-channel leakage. We present HSPICE simulations on an

algorithmic masked GF(22) multiplier. In our experiment, we conclude that the leakage

caused by each of the above-mentioned higher-order circuit effects are comparable.

4.1 Analysis on Masked Circuits

In this section we present an analysis of masked circuits. We first derive two con-

ditions to implement perfect masking. Next, we show that higher-order circuit effects

(such as glitches, inter-wire capacitance, and IR Drop) may break these conditions.

4.1.1 Two Conditions for Perfect Masking

The perfect masking condition requires that a logic-0 and a logic-1 appears with the

same probability on all intermediate circuit nodes. Let’s consider such an intermediate

plaintext node a, which is masked using a mask m by means of Boolean masking (XOR).

The value of masked node am is given by the following truth table.

am m a

0 0 0

0 1 1

1 0 1

1 1 0

Let F0 be the probability that m = 0, and F1 the probability that m = 1. Obviously

F0 + F1 = 1. We can express the expectation of power consumption P with respect to

the unmasked signal a as follows.

 P (a = 0) = F0 · P (am = 0,m = 0) + F1 · P (am = 1,m = 1)

P (a = 1) = F0 · P (am = 1,m = 0) + F1 · P (am = 0,m = 1)
(4.1)
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In order to implement the perfect masking condition, the power consumption of the

circuit needs to be independent from a in a statistical sense. Therefore, the first and

second formula in Equation 4.1 should have the same expectation. There are many ways

to fulfill this condition. The most common approach is to require the following.

F0 = F1 (4.2)

P (am = 0,m = 0) + P (am = 1,m = 1) = P (am = 1,m = 0) + P (am = 0,m = 1) (4.3)

We consider Equation 4.2 and Equation 4.3 as two general conditions for secure

masked circuits. Equation 4.2 shows that the mask signal needs to be unbiased, while

Equation 4.3 shows that the circuit must consume the same power for each value of the

unmasked input in a statistical sense.

The above conditions can be easily expanded to more general masking arrangements.

Given a circuit block with masked data input am, and mask m, where each of these can

be words, then we can write the power consumption in terms of the unmasked data a

as follows.

P (a) =
∑
m

Fm · P (am,m) (4.4)

Fm is the probability distribution of the mask, while P (am,m) is the power con-

sumption of the masked circuit for each possible combination of mask and masked value.

Accordingly, we can define two general conditions for secure masked circuits as follows:

Fi = Fj|i 6=j (4.5)

∑
m

P (am = i⊕m,m) =
∑
m

P (am = j ⊕m,m)

∣∣∣∣∣
i 6=j

(4.6)

The first condition Equation 4.5 requires the mask to have a uniform distribution.

The second condition Equation 4.6 requires the circuit to consume the same power for
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each possible value of the unmasked input in a statistical sense.

Thus, conditions Equation 4.2 and Equation 4.3, as well as their generalizations

Equation 4.5 and Equation 4.6, express when perfect masking is achieved by a masked

circuit implementation. First-order attacks on masked circuits are enabled by violation

of either of these conditions. For example, it is known that a bias in the mask causes

first-order side-channel leakage [70]. Indeed, bias represents a violation of Equation 4.2

or Equation 4.5. In order to understand the implications of the condition Equation 4.3

or Equation 4.6, we need a better understanding of the power consumption P . In a

digital circuit, the dynamic power consumption is given by the following equations [95].

Pavg = a · fc · V 2 · C (4.7)

P = I · V (4.8)

In Equation 4.7, Pavg is the average power consumption. α is the switching factor, fc

is the clock frequency, V is the voltage of power supply and C is the effective capacitance.

In Equation 4.8, P is the instant power consumption. I is the instant current and V

is the instant voltage. For a real attack, the average power consumption is the average

value of all the power samples in one cycle. The instant power consumption corresponds

to only one power sample. Both of them can be used for the side-channel analysis. We

need to examine every term in Equation 4.7 and Equation 4.8 for a possible dependency

to the value of the unmasked signal a. If such a dependency is found, then the condition

of Equation 4.3 or Equation 4.6 no longer holds and first-order side-channel leakage

appears.

4.1.2 Higher-Order Circuit Effects Causing Side-Channel Leak-

age

As it turns out, real circuits have a large number of higher-order effects that can

cause the terms of Equation 4.3 and Equation 4.6 to become dependent on the circuit
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state. We will describe three of them: glitches, inter-wire capacitance, and IR Drop.

There may be other higher-order effects in circuits, but it is not our intention to be

exhaustive. Instead, our objective is to show how and why higher-order circuit effects

can be used to relate different intermediate circuit values. When these values contain

both the information of the mask and the corresponding masked value (not necessary

to be exactly m and am), the previous ‘perfect’ masking is not perfect anymore.

Glitch

First, consider again the effect of glitches. A glitch results in additional net transi-

tions in a circuit, so that the switching factor α in Equation 4.7 appears to be increasing.

Glitches are also state-dependent. For example, a glitch may appear when am = 1 and

m = 1 (a = 0) but not in any other combination. Hence, glitches may cause an im-

balance in Equation 4.3, which in turn results in a violation of the perfect masking

condition.

Inter-Wire Capacitance

Second, consider the effect of the capacitance C on the average power consumption.

The total capacitance of a circuit has two components: gate capacitance and wire capac-

itance. In deep submicron technology, the inter-wire capacitance accounts for more than

50% of the total capacitance for narrow wires [96]. Modeling of the wire capacitance in

an integrated circuit is a non-trivial task. For simplicity, the following discussion is on

the basis of the simplified model as shown in Figure 4.1. This circuit shows two wires

w1 and w2, each with a different driver. There are two parts for the capacitance seen

by each wire, one part between the wire and the semiconductor substrate (C1 and C2),

and the other part between adjacent wires (C3). Wire w1 sees a single, fixed capacitor

C1 and a second floating capacitor C3. The effective value of C3 as seen from wire w1

changes in function of w2’s voltage level. For example, when w1 carries a logic-1 while

w2 carries a logic-0, then the effective capacitance on w1 is C1 + C3. However, when
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Figure 4.1: Model for inter-wire capacitance.

both w1 and w2 carry a logic-1, then the effective capacitance on w1 is only C1, since

there is no current required to charge C3.

Now assume that wire w1 is driven by the masked signal am and wire w2 is driven

by the mask m. Evaluating Equation 4.3, and assuming that logic-0 does not consume

power, we find for the left side of Equation 4.3:

P (am = 0,m = 0) + P (am = 1,m = 1) = 0 + fc(V
2 · (C1 + C2))

While the right side evaluates to:

P (am = 1,m = 0) + P (am = 0,m = 1) = fc · V 2 · (C2 + C3) + fc · V 2 · (C1 + C3)

Clearly, the right hand side is a factor 2 · fc · V 2 · C3 bigger than the left hand

side. This factor is caused by taking inter-wire capacitance C3 into account. As chip

feature sizes continue to shrink, inter-wire capacitance becomes more significant. This

implies that the possible asymmetry of Equation 4.3 is likely to deteriorate further with

shrinking feature size.
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Figure 4.2: Model for IR Drop.

Table 4.1: State changes and corresponding currents.

State Change Current into G1 Current into G2
m (0 to 0), am (0 to 0) 0 0
m (0 to 1), am (0 to 0) Im 0
m (0 to 0), am (0 to 1) 0 Iam
m (0 to 1), am (0 to 1) I ′m I ′am

IR Drop

Third, consider the influence of ‘IR drop’ [95] on the instant power consumption. In

an integrated circuit, the power supply is connected to every gate through a network

called ‘power grid’. When current flows from the power pins to each gate, the resistance

of the power grid causes a local decrease of the voltage which is called IR drop.

In Figure 4.2, there are two gates G1 and G2, driving a mask m and a masked value

am respectively. The power grid includes two resistors. Vdd is the voltage on the external

chip input, and Vm the local voltage at gate G1. Suppose m and am are both 0. Then

the circuit has 4 possible state changes that are described in Table 4.1. Table 4.1 also

defines the currents for each gate during each state change.

When we ignore IR drop, Im and I ′m would be identical. However, due to the re-

sistances in the power grid, the instant switching current depends on the number of

switching gates. The current profiles for Im and I ′m are as shown in Figure 4.2. If we
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consider the instant current near the inputs’ switching activity (for example t = t0) for

each case, then we find:

Im|t=t0
> I ′m|t=t0

(4.9)

and similarly

Iam|t=t0
> I ′am|t=t0

(4.10)

Evaluating this observation in Equation 4.3, the left hand side is equal to

P (am = 0,m = 0) + P (am = 1,m = 1) = Vdd · 0 + Vdd · (I ′m + I ′am)

The right hand side, on the other hand, is equal to

P (am = 1,m = 0) + P (am = 0,m = 1) = Vdd · Iam + Vdd · Im

Because of Equation 4.9 and Equation 4.10, we see that the instant power consump-

tion at t0 for right hand side is larger than the instant power consumption at the same

time for left hand side. Hence, Equation 4.3 may not be satisfied because of IR drop

and a side-channel leak appears.

According to the above analysis, higher-order circuit effects make the correlation

between different intermediate circuit values a common phenomenon in a real circuit.

This presents a risk for the perfect masking scheme.

4.2 Experimental Results

In this section, we describe a series of experiments that we did to test the above

analysis. We will not only demonstrate that the higher-order circuit effects lead to

side-channel leakage, but also show that the amount of leakage of each of them are

comparable.
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Figure 4.3: Masked Galois Field multiplier.

Ideally, we would use actual masked circuits and physical measurements in order to

characterize these side-channel leaks. This has the disadvantage that any measurement

of side-channel leakage cannot be attributed to individual circuit effects, but only to

the circuit as a whole. For this reason, we initially investigated a masked circuit using

HSPICE simulation, and we constructed the simulation setup such that effect of glitches,

inter-wire capacitance and IR-drop could be investigated separately. Our approach is to

explore the difference between the circuits with and without higher-order circuit effects.

The circuit under simulation is shown in Figure 4.3. It is a masked Galois Field

multiplier: a critical part of a masked AES S-Box. The circuit has 5 inputs: am, bm,

ma, mb, and mq and 1 output: qm (2 bit for each). am and bm are masked values of a

and b (am = a XOR ma, bm = b XOR mb); qm is the masked value of q (qm = q XOR

mq). The circuit consists of 4 GF(22) multipliers and a set of XOR gates (36 standard

gates in total).

Glitches. We perform two simulations to test glitches: one with the entire circuit in

Figure 4.3; the other only with the GF(22) multipliers. According to [79], only the XOR
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Figure 4.4: Simulation results for glitches. Delation between hamming weight of un-
masked inputs and power is depicted.

gates leak side-channel information through glitches. Therefore, we expect unmasked-

data dependent power in the first experiment while no leakage in the second. In each

simulation, we take the following steps:

1): Switch the input from 0 to every possible value n. Accordingly, we obtain 1024

average current values for the entire circuit, proportional to the average switching

power.

2): Every average current value is mapped to a set of unmasked inputs a and b.

We group the 1024 average current values in terms of the hamming weight (from 0

to 4) of the unmasked input. By averaging each group, we obtain the mean power

for each hamming weight as the experimental result.

The result is shown in Figure 4.4. As we can see, the majority momentum of mean

power in the first simulation is increasing as the hamming weight of the unmasked inputs

increases. In contrast, mean power in the second simulation almost remains the same.

Hence, we can attribute the leakage to the glitches in the XOR gates.

What should be mentioned is that glitches in the XOR gates are related to the

arrival time of the inputs which is decided by the layout of the circuit and other factors.
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Figure 4.5: Inter-wire capacitance between outputs and inside GF(22) multipliers.

In our experiment, we performed the first simulation several times with different arrival

sequence of the inputs. The results turn out to be similar as the one shown in Figure 4.4.

Inter-Wire Capacitance. Inter-wire capacitance can exist between the outputs of

the GF(22) multipliers. We can also find inter-wire capacitance between nets in differ-

ent GF(22) multipliers, if they are placed close to each other. Furthermore, inter-wire

capacitance is influenced by many factors, for example the layout of the circuit. In our

simulations, we made a reasonable assumption for inter-wire capacitance: comparable

to the gate capacitance [96]. Because it is really hard to eliminate glitches from the

XOR gates, to see the individual influence of the inter-wire capacitance, we rule out the

XOR gates and perform simulation just on the GF(22) multipliers.

The first simulation is performed with inter-wire capacitances added between the

outputs of the GF(22) multipliers, shown in Figure 4.5. The second one is done without

inter-wire capacitance, which is exactly the same as the second simulation for glitches.

In each simulation, we take the same steps mentioned in the previous subsection.

The results are presented in Figure 4.6, where we can see the average power increases

as the hamming weight goes from 0 to 4 in the first simulation but changes little in the

second one. Besides that, if we increase the value of the inter-wire capacitances, the

average power for the first simulation increases more quickly.

IR Drop. Like the experiment for inter-wire capacitance, we only use the GF(22)

multipliers (without XOR gates) in the simulation to test IR drop. The method of the
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Figure 4.6: Simulation results for inter-wire capacitance. Dependency exists between
hamming weight of unmasked inputs and power with inter-wire capacitance.

simulations for IR drop is similar to the previous one. We first simulate the circuit

without resistance in the power grid. After that, resistances with a reasonable value

[96] are added as shown in Figure 4.7. Vdd is the power input from outside. Every line

in the Figure 4.7 is a wire of the power grid. We connect the crossing points of these

wires to the power input of each logic gate in the circuit under test. We use the similar

way as the previous sub-sections to add stimuli to the inputs and to process the current

traces. The only difference is that we do not use average values, but a single value

sampled not long after the inputs’ switching activity. The results in Figure 4.8 indicate

that the addition of resistances into the power grid causes more instant power for higher

hamming weight. We also did simulations with different resistance values. Results show

that the larger the resistance is, the more the power increases as the hamming weight

goes from 0 to 4.

According to the perfect masking conditions, the power should be independent on the

unmasked inputs. With no doubt, it should also be independent on the hamming weight

of them. From the above experimental results, we can see the higher-order circuit effects

discussed in Section 4.1.2 introduce dependence between the power and the unmasked

input. Therefore, they are indeed possible sources of side-channel leakage. Furthermore,

as the hamming weight increases, the power in the Figure 4.4, Figure 4.6, and Figure 4.8
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Figure 4.8: Simulation results for IR Drop. Dependency exists between hamming weight
of unmasked inputs and power with IR Drop.
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all goes up. This means the effects of these higher-order circuit effects are additive. In

a real circuit, where all these circuit effects exist, we can find the overall leakage will be

larger than the one caused by each one of them.

We also notice that the power changes slightly even when no higher-order effects are

added. We consider this as influence from some existing circuit effects, such as static

leakage and early propagation.

We also quantify the relative side-channel leakage for each circuit effect. It is not easy

to define the magnitude of a leakage. Usually, this is partially dependent on the attack

method. Here, for the convenience, we base our analysis on the attack with hamming

weight. According to the relationship between power consumption and Hamming weight

of the unmasked inputs, we can find the maximum power variations for glitches, inter-

wire capacitance and IR drop are 0.025 mW, 0,0045 mW, and 0.0094 mW respectively.

The ratio is 5.6 : 1 : 2.1. Clearly, their leakage are comparable.

4.3 Conclusion

This chapter introduced an analysis of masked circuits from the circuit-level perspec-

tive. We defined two general conditions for secure masking. Both of these conditions can

be easily achieved at the logic-level, which abstracts voltage into discrete logic-levels and

which abstracts time into clock cycles. However, the conditions for secure masking are

much harder to achieve in real circuits, in which we have to allow for various electrical

and analog effects. We showed that glitches, inter-wire capacitance, and IR Drop can all

cause side-channel leakage. We evaluated our analysis using HSPICE simulations, and

we found that leakage caused by these 3 circuit effects is comparable.

We summarize Chapter 3 and Chapter 4 as follows. Even though the secure circuits

have already traded several times [39] or even more than 10 times [97] more area and

power than regular circuits for better SCA-resistance, low-level physical characteristics

of circuits still cause vulnerabilities. And it can be anticipated that solutions to these
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low-level circuit issues may require even more area and power. Considering that the

existing secure circuits already found it hard to be accepted by the industry due to their

high area and power costs, it is reasonable to expect a dead end even if we can find

solutions to those low-level circuit issues.

On the other hand, our advanced SCA analysis method demonstrated that simple

randomization technique is not enough to protect secure algorithms. More complicated

randomization schemes are required [53, 98]. As expected, this increases the costs and

makes the solutions even more algorithm-specific.

Therefore, we consider that simply using either the secure circuits or the masking

algorithms will be infeasible to provide efficient or practical countermeasures.
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Chapter 5

SCA-Resistant Software on

Dual-Core Processor

Starting from this chapter, we present our SCA-resistant solutions. According to

Chapter 3 and Chapter 4, we notice that neither secure algorithms nor secure circuits

can deliver practical SCA-resistant solutions individually. Our understanding is that

a feasible SCA-resistant solution requires the designers to search for a design platform

that can easily find a balance between different aspects, including security, performance,

and cost. In our opinion, a microprocessor that possesses SCA-resistant features could

be such a platform. On the one hand, a microprocessor by itself is a hardware circuit,

to which secure circuit techniques can be applied. In the meantime, since microproces-

sor is a reusable hardware, this means that the additional hardware cost spent on the

secure circuit is also reusable. This alleviates the pressure of high hardware cost on se-

cure circuit solutions. On the other hand, as microprocessor connect both software and

hardware, it is easy to make design trade-offs between performance and hardware cost.

Therefore, microprocessor offers the designers a lot of flexibility to find balanced solu-

tions. Moreover, since software is the most popular cryptographic implementation on

embedded systems, such solutions can find its position in a large amount of applications.

In this chapter, we introduce our first SCA-resistant solution based on a dual-core
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processor. We propose a protection solution to cryptographic software with the dual-

rail pre-charge (DRP) technique. We will show that our method creates the software

equivalent of a DRP secure circuit. We name this concept Virtual Secure Circuit (VSC).

The key contributions of this chapter are as follows. First, we perform security

analysis on VSC and explain why a software-based DRP technique can withstand side-

channel power attacks. Second, we construct a VSC protected AES prototype on a

dual-PowerPC computing platform. Third, we successfully demonstrate the effectiveness

VSC’s protection by means of a set of side-channel attacks on the prototype based on

real-world measurements. Attack results show that dual-core VSC offers a considerable

improvement on the security by increasing the attack difficulty at least 80 times. Even

32 million measurements are not sufficient for a successful full attack.

5.1 Virtual Secure Circuit (VSC)

In this section, we introduce the Virtual Secure Circuit (VSC), a software concept

equivalent of DRP circuit in hardware, which has already been detailed as a popular

SCA countermeasure in Section 2.1.3. We first clarify a few initial assumptions on the

hardware. Next, we describe a dual-core architecture that serves as the target for VSC,

and we present the design of a VSC by means of an example. Finally, we show that

a VSC is functionally equivalent to a DRP circuit in hardware, with similar security

properties.

5.1.1 Micro-Processor Assumptions and Side-Channel Leakage

While VSC is a software-based concept, its ultimate objective is to reduce the side-

channel leakage originating from hardware, and more specifically from the microproces-

sors that execute VSC software. Because microprocessors exist in all shapes and sizes, we

make the following assumptions regarding their implementation. First, we assume that

we can build the multi-core platform from small microprocessors or micro-controllers,
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which have a well-defined instruction-execution pattern. For example, we assume deter-

ministic memory-access time (no cache), and we assume there are no state-dependent

processor features (no branch predictors). Second, we assume that VSC can run as an

atomic thread of control on the multi-core architecture. Thus, we assume that inter-

rupts and exceptions can be disabled for the duration of the complementary program

execution. These two assumptions ensure that it is feasible to maintain synchronization

between the cores. These assumptions do not mean that VSC will never be able to

support more complex architectures. In this chapter, as the first step, we only focus on

the simple case. Even in its simplest form, we can still point out practical implemen-

tation scenarios for VSC. For example, tiled processors [99], an important category of

multi-core processors, are usually built with small processing cores and local memories.

The local memories for 8 Synergistic Processing Elements (SPE) in the Cell processor

[90] are not cache either.

Given the above assumptions, we now analyze what parts of the micro-processor

are potential sources of side-channel leakage. For this purpose, we analyze the flow of

information within a microprocessor, as shown in Figure. 5.1a. We can distinguish three

different datapaths. The first datapath is the computational datapath. It starts from the

register file, goes through the Arithmetic Logic Unit (ALU), and returns to the register

file. There are two additional datapaths for memory-operations. The memory-load

datapath is used to transfer information from memory to the register file. The memory-

store datapath is used to transfer information from the register file to the memory.

Each of the above datapaths is a potential source of side-channel leakage. For exam-

ple, Figure. 5.1b shows the execution of an and operation, which configures the computa-

tional datapath as an array of AND gates. Clearly, this operation leads to data-dependent

power dissipation which must be avoided. If we can protect each of these three datap-

aths, the microprocessor instructions that only make use of these datapaths will also be

secure. In the following section, we explain how this is done in VSC.
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5.1.2 Dual-Core Architecture for VSC

Figure. 5.2 illustrates a dual-core architecture used for a VSC. In a multi-core archi-

tecture, two structurally identical cores are selected. Both cores execute complementary

versions of the same program: core 1 executes Program, while core 2 executes Program.

The rules for creating the instructions of Program and Program follow the principles

of the DRP technique. For each instruction in Program, there is a complementary

instruction in Program. A complementary instruction pair maps complementary input

data into complementary output data. Section 5.3 will describe such instruction pairs

in more details.

During the execution of these complementary programs, both cores maintain cycle-

accurate synchronization, which is achieved by means of a synchronization interface.

This ensures that both cores execute complementary instruction pairs in the same clock

cycle. As a result of executing complementary instructions, both cores also handle com-

plementary data stored in their register file as well as in their local memory. To extend

the DRP technique into storage, the register file and the local memory are both pre-
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charged whenever new data is stored. In this way, any data-dependent power consump-

tion in core 1 is matched by a complementary data-dependent power consumption in core

2, so that the overall power consumption of the multi-core system is data-independent.

To implement the above concept, we need 1) to convert the ordinary software into

the complementary Program and Program, and 2) to design a dual-core system where

two cores can be synchronized with clock-cycle accuracy.

5.1.3 Creating Program and Program

A case study is used to explain how the program conversion looks like. Figure.

5.3 shows the conversion of part of the AES encryption round. In Figure. 5.3a, the

AES AddRoundKey and SubByte operations are implemented with two lines of C code

(shown in bold typeface). The assembly code consists of a xor operation, a memory load

operation, and a memory store operation. After VSC conversion, two complementary

programs are shown in Figure. 5.3c. The conversion includes two steps. The first step

is to create complementary instruction pairs. The second step is to add the pre-charge

operations.

Step 1: Complementary instruction pairs are shown in bold typeface in Figure. 5.3c.

We first consider the conversion of the xor operation. Its complementary instruction,

xnor, is unavailable on the PowerPC instruction set used here. Therefore the original

logic function r8 = r7 ⊕ r6 is expanded into r8 = r7 · r6 + r6 · r7 in Program and

into r8 = (r7 + r6) · (r6 + r7) in Program. In Figure. 5.3c, the converted code uses

5 steps to complete the new equations with the help of 3 temporary registers r9, r10,

and r11. The remaining xor operations, on line 2 and line 4, are used to invert the

lowest byte and do not violate the complementary rule. Finally, since the memory-load

(lbzx) and memory-store (stb) instructions do not change their operands’ value, their

complementary instructions are themselves.

Step 2: The instructions in regular typeface in Figure 5.3c are used for pre-charge.

They do not affect the computation results. Instead, they reset the execution circuits
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; r6 = in, r7 = keyr3 = sbox = 0xXX00, r4 = &out
xor   r8, r7, r6 ; add key
lbzx  r3, r5, r8 ; sbox lookup
stb   r3, 0(r4) ; store out

; r6 = in, r7 = key,
; r0 = 0,  r11 = 0xff,
; r12 = 0xXX00, 
; (r12) = 0
; xor conversion
1. xor  r9,r0,r0  
2. xor  r9,r7,r11  
3. xor  r10,r0,r0  
4. xor  r10,r6,r11  
5. and  r11,r0,r0
6. and  r11,r9,r6
7. and  r9,r0,r0
8. and  r9,r10,r7
9. or   r8,r0,r0
10. or   r8,r9,r11
; lbzx conversion
11. lwzx r3,r12,r0
12. lbzx r3,r5,r8
13. lwzx r9,r12,r0
; stb conversion
14. stwx r9,r4,r0
15. stb  r3,0(r4)
16. stwx r9,r12,r0
17. lwzx r9,r12,r0

Program Program

; r6 = in, r7 = key,
; r0 = 0,  r11 = 0xff,
; r12 = 0xXX00, 
; (r12) = 0.
; xor conversion
1. xor  r9,r0,r0  
2. xor  r9,r7,r11  
3. xor  r10,r0,r0  
4. xor  r10,r6,r11  
5. or   r11,r0,r0
6. or   r11,r9,r6
7. or   r9,r0,r0
8. or   r9,r10,r7
9. and  r8,r0,r0
10. and  r8,r9,r11
; lbzx conversion
11. lwzx r3,r12,r0
12. lbzx r3,r5,r8
13. lwzx r9,r12,r0
; stb conversion
14. stwx r9,r4,r0
15. stb  r3,0(r4)
16. stwx r9,r12,r0
17. lwzx r9,r12,r0

unsigned char in, key, out;
unsigned temp;
unsigned char sbox[256] = {0x63, ...};
temp = in ^ key;
out = sbox[temp];

(a) Original C program

(b) Original Assembly

(c) Converted VSC assembly code

don’t care

Figure 5.3: An example of Virtual Secure Circuit. (a) KeyAddition and SubByte oper-
ations in C code; (b) Compiled assembly code; (c) Converted VSC assembly code.
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and storage, between the computational instructions. Most instructions in Figure 5.3c

(namely, those in the computational datapath) use a single pre-charge instruction.

Memory-load and Memory-store instructions may need more than a single pre-charge

instruction, depending on the presence of sensitive data in the address or data of the

memory-access operation. Section 5.3 will discuss these in more details.

VSC is not a free lunch. Converting ordinary programs to VSC increases the software

footprint and the execution time. The penalty of VSC will be shown in Section 6.3.

5.1.4 VSC Is Equivalent to DRP Circuit

Finally, we demonstrate that VSC is functionally equal to DRP circuit. Figure 5.4

illustrates the process to map a path of a DRP circuit to processor execution. We first

convert a DRP circuit to a pipelined version according to the instruction set architecture

of the processor. After that, we process the pipelined circuit sequentially. Based on

this, we can map the VSC assembly code in Figure 5.3c to a DRP circuit, as shown

in Figure 5.5. Each active (bold) instruction of Program or Program corresponds

to a single logic gate (or function) in the circuit. The numbers annotated within the

logic gates correspond to line numbers in the programs. In between each logic gate, a

register is inserted. The pre-charge operation will reset that register before loading it

with sensitive data. Program and Program execute in lockstep, and for each tuple

of instructions, exactly two complementary gates of the circuit will evaluate. Hence,

we conclude that VSC is a sequentialized version of DRP. Also, VSC may inherit the

properties of DRP circuits.

5.2 Synchronization of two cores

The purpose of processor synchronization is to ensure that the complementary in-

structions are executed at the same clock cycle. This requires that not only the instruc-

tions but also the processor pipelines are synchronized. For parallel programming, we
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C

A
D

C’
E

(a) original path in DRP circuit (b) pipelined path in DRP circuit

(c) mapping to the processor datapath

A
B
C
D
E

A
B
C
D
E

or E,0,0
or E,D,C

and D,0,0
and D,A,B

pre-chargable
register

Figure 5.4: Mapping a DRP path to processor activity. (a) original path in DRP circuit;
(b) pipelined path in DRP circuit; (c) mapping to the processor datapath.
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4

6

8

6

8

LUT

LUT

; r0 = 0,  r11 = 0xff,
; r12 = 0xXX00, 
; (r12) = 0
; xor conversion
1. or   r9,r0,r0  
2. xor  r9,r7,r11  
3. or   r10,r0,r0  
4. xor  r10,r6,r11  
5. and  r11,r0,r0
6. and  r11,r9,r6
7. and  r9,r0,r0
8. and  r9,r10,r7
9. or   r8,r0,r0
10. or   r8,r9,r11
; lbzx conversion
11. lwzx r3,r12,r0
12. lbzx r3,r5,r8
13. lwzx r9,r12,r0
; stb conversion
14. stwx r9,r4,r0
15. stb  r3,0(r4)
16. stwx r9,r12,r0
17. lwzx r9,r12,r0

Program Program

; r0 = 0,  r11 = 0xff,
; r12 = 0xXX00, 
; (r12) = 0.
; xor conversion
1. or   r9,r0,r0  
2. xor  r9,r7,r11  
3. or   r10,r0,r0  
4. xor  r10,r6,r11  
5. or   r11,r0,r0
6. or   r11,r9,r6
7. or   r9,r0,r0
8. or   r9,r10,r7
9. and  r8,r0,r0
10. and  r8,r9,r11
; lbzx conversion
11. lwzx r3,r12,r0
12. lbzx r3,r5,r8
13. lwzx r9,r12,r0
; stb conversion
14. stwx r9,r4,r0
15. stb  r3,0(r4)
16. stwx r9,r12,r0
17. lwzx r9,r12,r0

10

10
12

12

15

15

regular

shaded

Figure 5.5: Mapping from software dataflow to secure circuit. By instantiating the each
processor’s active datapath at different time, we obtain a DRP secure circuit.
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already have a synchronization method barrier that guarantees that any thread/pro-

cess stops at this point and cannot proceed until all other threads/processes reach this

barrier. However, barrier does not ensure the instructions right after it on different

cores start at the same clock cycle. Another synchronization scheme at a lower level is

needed. We call it pipeline sync.

Before presenting our solution, we first introduce a bus protocol used by many pro-

cessors. The peripheral bus usually has an ack signal which starts from a memory

peripheral to the processor. During every load operation, the processor first uses the

address bus and some control signals to send out a memory access request. After that,

the selected peripheral uses the ack signal to notify the processor that the required data

is ready on the data bus. If the selected peripheral is not able to offer the requested

data right away, the ack signal will be kept invalid for a while until the data is ready.

When waiting for the ack signal to be valid, the processor is in a fixed state (wait ack).

Our solution makes use of the above memory access protocol, shown in Figure 5.6.

A Synchronization Unit (SU) is attached to both cores’ peripheral buses. Whenever one

core initiates a load operation on the SU, the ack signal on its peripheral bus will be

kept invalid. This means that every time a core tries to read data from SU, it enters the

wait ack state. When both cores are in the wait ack state (several clock cycles after

both of them initiate load operations on SU), ack signals become valid at the same

time. So both cores jump out the wait ack state at the same clock cycle and go on

to process the following instructions. Moreover, if the ack signal is kept invalid for too

long the processing cores consider this as an error and an exception will be launched. To

avoid this, we first use a parallel programming’s barrier to reduce the timing difference

of the two cores before doing the pipeline sync. This guarantees no exception occurs.

By now, two cores have been totally synchronized. We repeat the above process every

time before running the protected cryptographic software. In this way, the required

synchronization is achieved.

The above synchronization scheme does not require any modification on the proces-
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sors. The SU is also very simple, so the cost is low. We tested it on PowerPC and

MicroBlaze processors. Both worked correctly.

5.3 Implementation Details on VSC-AES

This section lists some detailed design issues of VSC-AES to share our experiences on

the VSC programming techniques.

We first define two terms: ‘sensitive data’ and ‘related data’. Sensitive data is the

intermediate data of the software that is related to the cryptographic key as well as the

inputs that can be controlled by the user. Related data is the intermediate data that

is not sensitive but will affect some sensitive data. Obviously, sensitive data is what

we have to protect. Since related data will affect the sensitive data, during the VSC

conversion, we also have to convert them into complementary format.

AES uses three kinds of instructions to process sensitive data: 1) the logic instruc-

tions, such as xor, and, or, and not; 2) the shift instructions; 3) the data instructions,

such as move, load and store; Different categories operate differently in the processor.

Accordingly, different conversion rules are needed.

Logic Instructions.

Logic instructions are easy to complement. For example, and and or are complemen-

tary. not complements itself. If a logic instruction has no complement in the instruction

set (such as xor), we can decompose it into simpler logic operations and complement

those. The rules for pre-charge are easy as well, and simply evaluate all-0 inputs for the

pre-charged instructions. Figure 5.7 shows an example.

Shift Instructions.

Shift operations are usually implemented with several shift levels of combinational

multiplex logic. They are basically data movement operations. So the complementary
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logic instruction shift instruction
and r1,r2,r3 slwi r1,r2,imm (imm<=16)

Program Program Program Program
li r0,0
and r1,r0,r0
and r1,r2,r3

li r0,0
or r1,r0,r0
or r1,r2,r3

li r9,0
slwi r11,r9,imm
slwi r11,r2,imm
li r10,0
xor r1,r9,r9
xor r1,r11,r10

li r9,0
slwi r1,r9,imm
slwi r1,r2,imm
li r10,2imm-1
xor r1,r9,r9
xor r1,r11,r10

data instructions
stb r1,imm(r2) lbzx r1,r2,r3 (access SBox)

Program Program Program Program
; (r12) = 0
; r0 = 0
li r9,0
stw r9,imm(r2)
stb r1,imm(r2)
stwx r9,r12,r0
lwzx r9,r12,r0

; (r12) = 0
; r0 = 0
li r9,0
stw r9,imm(r2)
stb r1,imm(r2)
stwx r9,r12,r0
lwzx r9,r12,r0

; (r12) = 0
; r12 = 0xXX00
; r2 = 0xXX00
; r0 = 0
li r9,0
lwzx r1,r12,r0
lbzx r1,r2,r3
lwzx r9,r12,r0

; (r12) = 0
; r12 = 0xXX00
; r2 = 0xXX00
; r0 = 0
li r9,0
lwzx r1,r12,r0
lbzx r1,r2,r3
lwzx r9,r12,r0

Figure 5.7: Representative conversion examples.

instruction are themselves. The same as logic instructions, shift instructions are also

implemented in ALU. So the pre-charge method is the same as logic instructions. Besides

that, special attention should be paid to the related data generated by shift operations.

A shift or rotate instruction may shift the non-sensitive bits into dataflow, for example

inserting 0 to the vacant bits. If these vacant bits are used to calculate the sensitive

data, they become related data. Therefore, these bits need to be 1 in Program. After

the shift instruction, we need to invert the shifted-in related data in Program while keep

them as they were in Program. Figure. 5.7 shows a representative example.

Data Instructions.

Data instructions do not change the value of the data, so Program and Program

share the same data instruction. The pre-charge operations are more complex since they

deal with the memory. This brings up the problem of how to apply the DRP rules to
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the memory buses.

There are two scenarios. First, only the data bus carries sensitive data. Second, a

special case happens when the processor tries to read an element from the SBox in the

SubByte step. During this process, not only the data buses carry the sensitive SubByte

result, the address buses are also sensitive since it is related to the AddRoundKey’s result.

While the first case can easily be handled, special efforts are needed for the second case.

To make sure the data buses carry complementary data, in Program, complementary

SBox elements should be stored in the complementary addresses. We define the SBox in

the ordinary program, Program and Program as SBox, SBoxc and SBoxc respectively.

Their relationship should be : SBox(i) = SBoxc(i) = bitnot(SBoxc(bitnot(i))). More-

over, the address buses should also be complementary. A possible problem is as follows.

Suppose the SBoxc and SBoxc’s base addresses are both 0x0001. When Program loads

SBoxc(0), Program loads SBoxc(255). The actual value on the address bus is the sum

of the base address and the element’s index, namely the offset address. In the above

case, the values on the address buses are 0x0001 and 0x0100, which is obviously not

complementary. Our solution is to align both SBoxc and SBoxc to the 28-byte boudary

(SBox’s base address is 0xXX00. XX means ‘do not care’ and can be different for SBoxc

and SBoxc). In this case, the values on the address buses of two cores are 0xXX00 and

0xXXFF. The sensitive part of the address buses are complementary.

We reserve a word which stores 0 in the memory. The 0 value is used to pre-charge the

data buses. When the address buses contain sensitive data, the address of the reserved

word should also be aligned to the 28-byte boudary (e.g. r12=0xXX00 in Figure. 5.3).

When accessing this reserved address, the lowest byte of the address bus is pre-charged

to all 0. With the above preparation, the pre-charge operations reset the memory bus

and the storage in the way shown in Figure. 5.7. Finally, if the value in the source

register or memory is not used later, we reset it to 0.

With the above techniques, we were able to convert the full AES software into VSC

protected AES.
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5.4 VSC AES Prototype Resists SCA

In this section we construct a VSC AES prototype and demonstrate that VSC works

in reality.

5.4.1 VSC AES Prototype

We use SASEBO-G board as our dual-core platform. The XC2VP30-5FG676C F-

PGA on board contains two identical embedded hard PowerPC cores. Based on that,

we built a shared-memory dual-PowerPC processor. Other modules, such as the buses,

memories, synchronization unit, and so on, are built with the FPGA resources. The

design ran at 20MHz.

AES under test uses a 128-bit key (16 key bytes from key[0] to key[15]). We first

implemented two version of AES: regular AES, and VSC AES, represented by AES and

VSC-AES respectively. The implementation of AES was based on the standard AES

algorithm description [6]. Based on that, we converted AES to VSC-AES by using the DRP

technique to protect the three datapaths in the PowerPC processors. Some conversion

technical details will be discussed in Section 5.3.

We use the analysis setup shown in Section 2.1.2 to test the SCA resistance of our

dual-core based VSC implementation. We mount both correlation power attack (CPA)

[62] and correlation electromagnetic attack (CEA). During each attack, the AES key

remained unchanged. The KeyGeneration process only ran once. So our attack focused

on the regular encryption operations.

All attacks focus on SubByte’s output in AES’s first round. Since the attackers

could not figure out the exact time when the sensitive data would appear before the

analysis, the oscilloscope sampled the current trace of the entire first round. Moreover,

to save the space of waveform and shorten the analysis time, the oscilloscope worked in

the ‘average’ mode. Every current trace the computer obtained was the average of 32

normal traces (with the same plaintext). Hamming weight of the sensitive data is used

71



as the power model. Because of the pre-charge process, this power model is the best for

VSC-AES. Hamming distance may work better for AES, but this requires the attackers to

get access of the software, which cannot always be fullfiled. Therefore, Hamming weight

is also chosen for AES. The improvement of VSC-AES over AES obtained based on this

power model is a conservative one.

5.4.2 Results

We discuss CPA and CEA separately here as we will see that their results are differ-

ent.

Correlation Power Attack

Figure 5.8 shows an example of the CPA results on one of AES’s key bytes (key[3]).

With only 256 averaged measurements, we were able to find the first correctly attacked

key byte of AES. When the number of averaged measurements increased to 40960, all the

16 key bytes were revealed.

Figure 5.9 shows an example of the attack results on VSC-AES’s key[3]. In contrast

to AES, even with 40960 averaged measurements, none of the 16 key bytes were revealed.

Only after the measurements number increased to 81920, the first uncovered key byte

appeared. After increasing the averaged measurements number to 1024000, only 6 key

bytes were attackable. In addition, we also used the Hamming weight of each bit of

SubByte’s output as the power model. It turned out that this power model worked

better in our experiments. With the bit-based power model, attacks were able to find

the first revealed key byte with around 20480 averaged measurements. Further, even

with 1024000 averaged measurements (32 million regular measurements), 3 key bytes

were still unattackable.

It is clear that, compared with AES, VSC-AES has obvious reduction of side-channel

power leakage. We use the number of measurements to disclosure (MTD) to quantify

the resistance against power attacks. Disclosure here means that at least one key byte
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Figure 5.8: CPA result on unprotected AES on the dual-core prototype. (a) Correlation
between the sampled current and the power estimations with 10240 averaged measure-
ments; (b) Correlation between the sample current and the power estimations at the
point where the attacked key is identified. Correct key’s trace is plotted in black, while
all other key’s traces are in gray. The emerged black trace means successful attack.
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Figure 5.9: CPA result on protected VSC-AES on the dual-core prototype. (a) Cor-
relation between the sampled current and the power estimations with 10240 averaged
measurements; (b) Correlation between the sample current and the power estimations
at the point where the attacked key is identified. Correct key’s trace is plotted in black,
while all other key’s traces are in gray. The buried black trace means unsuccessful attack.
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is broken. Based on the byte-based Hamming weight model, VSC-AES’s improvement on

MTD over AES is 320 times. Based on the bit-based Hamming weight model, VSC-AES’s

improvement is 80 times. If we consider a successful power attack as discovering all key

bytes, then attacks with over 32 million measurements were not able to succeed.

To further verify the correctness of VSC, we mounted attacks on variants of VSC-

AES: 1) only the true path of VSC-AES without the complementary path (VSC-AES

nocomp), 2) VSC-AES with the true path 1 clock cycle ahead of the complementary path

(VSC-AES nosync), and 3) VSC-AES without pre-charge operations (VSC-AES noprch). All

these designs could be broken much more easily than VSC-AES as shown in Table 5.1.

Table 5.1 summarizes the results of the above power attacks. VSC-AES pays 4.57

times of execution time and 6.21 times of footprint for a much higher capability of re-

sisting power attacks. Also, complementary operations, pre-charge, and synchronization

are demonstrated to be three indispensable conditions for protection.

In summary, through the experiments, VSC showed its effectiveness on protecting

AES software. The side-channel resistance of VSC-AES is comparable to the resistance

offered by the WDDL prototype IC chip [80]. Compared with the unprotected designs,

their improvements in terms of MTD are both around 100.

Correlation Electromagnetic Attack

Besides CPA, we also mount CEA on the dual-core based VSC. Figure 5.10 shows an

example of the CEA results on both AES and VSC-AES with 5120 averaged measurements.

It turns out that CEA attacks are both successful. Table 5.2 gives more details on CEA

results. It shows that VSC-AES does not offer improved resistance against CEA.

5.5 Discussion

Based on the experimental results, we see that dual-core VSC supplies a good protec-

tion against CPA. The security improvement is around 80 times. When CEA is mounted,
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Figure 5.10: CEA results on unprotected AES and dual-core VSC AES. (a) unprotected
AES (AES), (b) VSC-protected AES (VSC-AES) on the dual-core VSC prototype: Cor-
relation between the sampled current and the power expectations with 5120 averaged
measurements. The correct key’s trace is plotted in black, while all other key’s traces are
in gray. The emerged black trace in both (a) and (b) means both attacks are successful.

77



T
ab

le
5.

2:
C

E
A

at
ta

ck
re

su
lt

s
su

m
m

ar
y.

P
a
ra

m
e
te

r
A

E
S

V
S
C

-A
E

S
V

S
C

-A
E

S
n
o
co

m
p

V
S
C

-A
E

S
n
o
p
rc

h
V

S
C

-A
E

S
n
o
sy

n
c

b
y
te

-b
a
se

d
b
it

-b
a
se

d
ex

ec
.

ti
m

e
(µ

s)
35

7
16

30
−

−
−

fo
ot

p
ri

n
t

(k
B

)
1.

9
5.

9*
2=

11
.8

−
−

−
#

of
ke

y
b
y
te

s
N

O
T

fo
u
n
d

(C
E

A
)

@
51

20
1

3
0

8
0

0
0

@
10

24
01

0
0

2
0

0
0

@
40

96
01

0
0

0
0

0
0

@
10

24
00

01
0

0
0

0
0

0
1

T
o

fi
n

d
th

e
fi

rs
t

u
n

co
v
er

ed
k
ey

b
y
te

.
2

N
u

m
b

er
o
f

a
v
er

a
g
ed

m
ea

su
re

m
en

ts
:

ev
er

y
a
v
er

a
g
ed

m
ea

su
re

m
en

t
is

a
n

a
v
er

a
g
e

o
f

3
2

in
st

a
n
t

m
ea

su
re

m
en

ts
w

it
h

th
e

sa
m

e
p

la
in

te
x
t.

78



there is no improvement from dual-core VSC. Our explanation is that dual-core VSC

has two cores too far away from each other. While a current probe always measures

the current flowing into both cores, an H-field probe can easily pickup the signal mainly

from only one core when located closer to it. Therefore, CEA can still break VSC on

dual-core processors easily. Although dual-core VSC does not thwart CEA, in those

cases where CEA is not a threat or is already prevented by other solutions, dual-core

VSC is still an effective countermeasure.

5.6 Previous Works

A previous similar work, called MUTE-AES, was presented in 2008 [101]. Both VSC

and MUTE-AES follow the idea of running the direct and complementary copies of a

cryptographic algorithm on two identical cores to generate data-independent power. De-

spite their similarity, there are significant differences between our work and the previous

work.

• VSC and MUTE-AES are at different level of abstraction. VSC deals with the

processor instructions, while MUTE-AES is based on modifying AES algorithm.

As a result, VSC is a WDDL-like general protection solution, while MUTE-AES

only applies to the AES algorithm.

• Unlike VSC, MUTE-AES does not strictly follow the principles of the DRP tech-

nique. There is no pre-charge operations in MUTE-AES. Based on our experimen-

tal results in Table 7.1, without pre-charge (VSC-AES noprch), the crypto-system

can still be easily attacked.

• We not only show VSC’s improvement qualitatively but also quantify the improve-

ment with real Side Channel Attacks. For MUTE-AES, the experiment was based

on simulation and the improvement was not quantified. Hence, there is no way to

see how much better security that MUTE-AES can supply.
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• The method to perfectly synchronize two cores for MUTE-AES is to recognize the

program pattern of the AES software’s assembly codes. This method is potentially

false positive, not to mention it is specific to a single program. In contrast, as shown

in the Chapter 5.2, VSC’s synchronization method is simpler and more generic and

is not false-positive nor true-negative.

5.7 Conclusion

In this chapter, we have proposed VSC as a solution to protect software with the DRP

technique. Following that, we use dual-core processors to implement that VSC concept.

Analysis showed that a dual-core VSC was equivalent to a DRP circuit. It inherited

the security features from the DRP circuits. To demonstrate this, a VSC protected full

AES was implemented on a dual-PowerPC processor. Experiments showed that, when

power attacks are mounted, the VSC protected AES software had a comparable security

performance as the WDDL based AES IC prototype. However, when electromagnetic

attacks are mounted, dual-core VSC does not supply any security improvement. In

conclusion, we see the effectiveness of VSC. In circumstances where electromagnetic

attacks are not a problem, dual-core VSC can be a good software protection solution.

Otherwise, we still need to overcome the electromagnetic attack problem, which will be

covered in the next two chapters.
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Chapter 6

SCA-Resistant Software Using

Instruction Set Extensions: Initial

Solution

Chapter 5 tells us that VSC implemented on synchronized dual-core processors of-

fers a good resistance to power attacks. However, due to the separation of two cores,

electromagnetic radiation from each core can be picked up by EM probes. This requires

designers to search for other approaches to preventing electromagnetic attacks. In this

chapter, we introduce a solution that has the same security gain in front of both power

attacks and electromagnetic attacks.

We still follow the VSC concept to realize SCA-resistance, but with only one single

processor core. Considering regular single-core processors do not support execution

of direct and complementary operations at the same time, we turn to instruction set

extensions. By adding a set of special instructions, we enable the processors to behave

the same as DRP circuits when executing these added instructions. We call these special

instructions balanced instructions and the resulting processor balanced processor. In

addition, since the direct datapath and its complementary counterpart are within the

same processor, the distance between them is very close. It is expected that this solution
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has similar security gain against both power attacks and electromagnetic attacks.

Similar to the dual-core VSC, this solution has an advantage of flexibility. Once

the balanced processor is built up, the side-channel resistance is achieved completely

in software. The second advantage is that the proposed solution is not limited to a

specific cryptographic algorithm. The third advantage is the much lower hardware cost

when compared with dedicated hardware DRP circuits. Our results show that hiding-

based countermeasures can be applied using the existing ASIP technology. Hence, the

proposed technique can be directly applied by ASIP users with a need for side-channel

resistance in their designs.

The contributions of this chapter include 1) the concept of using a single balanced

processor to support VSC, 2) a low-cost solution to implement a balanced processor

and the demonstration of its security, 3) a secure programming method to implement

a VSC, and 4) the demonstration and quantification of the effectiveness of our solution

with real-world side channel attacks.

6.1 Virtual Secure Circuit on A Balanced Processor

The concept of the single-core VSC is illustrated in Figure 6.1. Similar to DRP

circuits, the processor has two parts: one performs direct operations and the other

performs complementary operations. Every direct operation in the first part has a

complementary counterpart in the second part. A direct operation takes input in and

generates output out. The complementary operation takes input in and generates output

out. in = NOT (in) and out = NOT (out). NOT means the bit-wise inversion operation.

Each balanced instruction in the balanced processor chooses a pair of complementary

operations from two parts of the processor and executes them at the same time. The

cryptographic algorithm is programmed with this set of balanced instructions. Therefore,

the cryptographic algorithm has both a direct execution path and a complementary path.

To run the cryptographic algorithm, both direct and complementary plaintext (balanced
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Part2 

function encryption(balanced_plaintext) 
{ 
      pre-charge instruction; 
      balanced instruction; 
                            ... 
      pre-charge instruction;  
      balanced instruction; 
      return balanced_encryption_result; 
} 
 
function others 
{ 
      regular instruction; 
                     … 
      regular instruction; 
} 

Instruction 
Memory 

Balanced 
Processor 

Data 
Memory 

Balanced 
Encryption result 

Balanced 
Plaintext 

Part 1 
direct operations 

Direct data Complementary data 

Part 2 
Complementary operations 

Power Power 

Part1 

data-independent 
Total power 

(a) 

(b) 

Figure 6.1: Concept of balanced processor and VSC programming. (a) Concept of the
proposed solution: balanced processor and VSC programming; (b) Power dissipation
from the new balanced processor system does not reveal the processed data.
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input) are supplied to these two paths. Finally, the algorithm generates both the direct

and the complementary encryption results (balanced outputs), shown in Figure 6.1a.

Besides the balanced instructions, the processor also has another set of instructions

that perform the pre-charge operations in the same way as the DRP circuits. Before

executing balanced instructions, a set of pre-charge instructions first clear the execution

datapath. Following that, the balanced instruction finishes the calculation. Both the

balanced instructions and pre-charge instructions can be added to a general-purpose

processor as instruction set extensions.

With the above concept, we obtain another software counterpart of DRP circuit.

For a balanced instruction, similar to the DRP gate shown in Figure 2.4, the power

dissipation from the direct operation always has a complementary counterpart from the

complementary operation. The sum of these two is a constant, shown in Figure 6.1b.

Suppose the output of the balanced instructions contains the direct and complementary

forms of the intermediate value V mentioned in Section 2.1.1, attackers are not able

to go from the power of the balanced instructions to the value of V . Therefore, V is

protected. If every intermediate value in the cryptographic algorithm is processed by

the balanced instructions, then the entire algorithm is secured.

6.1.1 Implementation

The next step is to map the above concept to the processor implementation. This

includes the implementation of the balanced instructions, the pre-charge instructions

and the secure programming style that leads to DRP behavior.

Balanced Instructions

The instruction set architecture of a processor includes different instructions. The

logic function of the software is realized with logic instructions, such as AND, OR, and

NOT. In theory, any algorithm can be realized with these three instructions. For high-

er efficiency, processors also implement the arithmetic instructions that are frequently
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used, such as ADD, SUBTRACT, and MULTIPLY. In addition to that, due to the

processor architecture, shift instructions and data instructions, such as MOVE, LOAD,

and STORE, also appear in the instruction set architecture. Finally, the processor also

provides the control instructions, such as JUMP and conditional JUMP.

As mentioned above, each balanced instruction executes a pair of complementary

operations. To make the balanced datapath compatible with the regular datapath, the

width of either the direct or the complementary datapaths is designed to be half of the

regular datapath’s width. Thus, the entire datapath of a balanced instruction is as wide

as the regular instructions.

The integration of balanced instructions follows the rule that balanced instructions

take balanced inputs and generate balanced outputs. The proposed solution chooses

balanced instructions according to the existing regular instruction set architecture. This

enables the design flow of the VSC software to reuse the existing compiler for the regular

instructions. The details are as follows.

Among the logic operations, NOT is the complementary instruction for itself. This

means that if half of the input is direct value and the other half is complementary value,

the output of NOT is still a pair of complementary values. Therefore, the regular NOT

instruction can also be used as the balanced NOT instruction. The AND operation has

OR operation as complementary counterpart and vice versa. Therefore, the balanced

AND instruction (b and) should be half AND for the direct input and half OR for the

complementary input. Similarly, the balanced OR instruction (b or) should be half OR

and half AND, shown in Figure 6.2. With balanced AND, OR, and NOT, any complex

logic function can be realized.

Shift and data instructions are similar. They both move the programs’ intermediate

values from one storage location to another. Since ‘move’ operations do not change the

values of the operands, their complementary counterparts are themselves. Similar to

NOT instruction, shift and data instructions are shared by both balanced and regular

instructions, shown in Figure 6.2.
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(a) inv r1, r2 (b) mov r1, r2

(c) b_and r1, r2, r3
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Figure 6.2: Examples of balanced instructions. (a) Regular INV can be used as a
balanced INV; (b) Regular MOV can be used as a balanced MOV; (c) Balanced AND
instruction uses half AND operators and half OR operators.

Designing balanced arithmetic instructions is doable but may has a higher increase

of hardware resources. This is because we need to first convert the regular arithmetic

modules to basic AND, OR, and NOT gates and then convert them to DRP gates.

Such an conversion brings us an inefficient synthesis. However, if we compare such

an area increase with the area of a processor, this increase is still quite small. If the

algorithm uses arithmetic instructions, corresponding balanced arithmetic instructions

may be needed.

Control-flow related instructions, e.g. BRANCH, do not leak useful side-channel in-
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formation to DPA and EMA, as long as the control flow is not related to both plaintext

and key. For example, symmetric-key cryptography usually has fixed control flow. The

branch condition is irrelevant to either the plaintext or the secret key. Public-key cryp-

tography’s control flow is only related to the key but not the plaintext. While this may

enable SPA, this problem can easily be solved by other methods, for example by using

the Montgomery Ladder [102].

In summary, a minimum solution only needs to add two balanced instructions (bal-

anced AND and balanced OR). NOT, shift, and data instructions can be shared between

regular and balanced instructions. This makes the modification to the processor very

tiny.

Pre-charge Instructions

As mentioned in Section 2.1.3, besides complementary datapath, DRP technique

also requires pre-charge operations. The proposed solution also faces the problem on

how to implement pre-charge instructions for the same purpose. A pre-charge operation

needs to pre-charge not only the result storage but also the computational datapath.

For a balanced processor, a pre-charge instruction needs to pre-charge the processor’s

datapath and the destination registers or memory locations.

In the DRP circuits, pre-charge is usually done by pre-charging the inputs. The pro-

posed solution uses a similar way to realize the pre-charge operations. It turns out that

by setting the input operands of different balanced instructions to 0, the corresponding

outputs are either all 0 or all 1 (for NOT). Since all 0 and all 1 are both acceptable

pre-charge results, the pre-charge operation of a balanced instruction can be done by

just executing the same balanced instruction with all 0 inputs.

In summary, there is no need to add additional dedicated pre-charge instructions.

Every balanced instruction can finish the pre-charge operation for itself by taking all 0

as the inputs.
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6.1.2 Security Analysis

As discussed in Section 5.1.4, a processor has three different datapaths that may

dissipate data-dependent power. If we can protect each of these three datapaths, the

microprocessor instructions that only make use of these datapaths will also be secure.

Similarly, we demonstrate that a single-core VSC is functionally equal to a DRP

circuit. Figure 6.3 shows an example of a regular program (Figure 6.3a), a VSC program

(Figure 6.3b) and a DRP circuit (Figure 6.3c). All of them accomplish the same function.

In the VSC program, bold instructions act as balanced instructions. Other instructions

before each of them are used for the pre-charge purpose. ’b and’ and ’b or’ are balanced

AND and OR instructions.

Two successive pre-charge and balanced instructions correspond to the pre-charge

and evaluation activities of a logic gate (vector) in the circuit in Figure 6.3c. The

numbers annotated within the logic gates correspond to line numbers of the balanced

instructions in the VSC program. In between each logic gate, a register is inserted. They

are equivalent to the registers in the processor’s register file. The pre-charge instruction

will reset that register before loading it with sensitive intermediate values. In addition,

the direct and complementary operations are activated by the same balanced instruction

at the same time. Therefore, when executing a pre-charge instruction followed by a

balanced instruction, the circuits inside the processor behave exactly the same as a

part of DRP circuit in Figure 6.3c. We conclude that such a single-core VSC is a

sequentialized version of a DRP circuit. Moreover, single-core VSC also inherits the

properties of DRP circuits.

6.2 VSC Programming

This section presents a method for VSC programming on the balanced processors so

that SCA can be thwarted. Compared with the regular programming, VSC programming

has two basic constraints. First, only the balanced instructions can be used to process
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8

6

8

; regular program

1. not  %r1,%r6  

2. not  %r2,%r7  

3. and  %r6,%r2,%r3

4. and  %r7,%r1,%r4

5. or   %r3,%r4,%r1

10

10

direct

complementary

; VSC program

; %r0 = 0 

1. not   %r0,%r6

2. not   %r1,%r6  

3. not   %r0,%r7 

4. not   %r2,%r7  

5. b_and %r0,%r0,%r3

6. b_and %r6,%r2,%r3

7. b_and %r0,%r0,%r4

8. b_and %r7,%r1,%r4

9. b_or %r0,%r0,%r1

10.b_or %r3,%r4,%r1

(a) (b)

(c)

for pre-charge

for computation

Figure 6.3: VSC program conversion and corresponding equivalent DRP circuit. (a)
Regular program of Leon3 [103] assembly code; (b) VSC program of Leon3 assembly
code; (c) Equivalent DRP circuit.

sensitive data. Second, the direct or the complementary datapath can only take half of

the datapath of the processor. There could be different methods to deal with these two

constraints. Here, we show a special solution based on bitslice programming.
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6.2.1 Bitslice Programming

Bitslice programming is a special programming method. The idea is to break the

software applications into only logic operations at the bit level, such as AND, OR, NOT,

and XOR. The software’s logic function is realized bit by bit. This is similar to the

hardware implementation, with every operation equivalent to one logic gate. Porting

this idea to a n-bit processor results in n application instances running in parallel.

Figure 6.4 shows a simple example on bitslice programming.

Suppose the application is AND operation and runs on a 4-bit processor. We use this

application to process two arrays A: (a0, a1, a2, a3) and B: (b0, b1, b2, b3) and generate the

result C: (c0, c1, c2, c3). ci = ai AND bi. Every array element is 3-bit long, for example

a0 can be represented as (a0[2], a0[1], a0[0]). Figure 6.4a shows the process based on

regular programming. Every element is stored into a processor register. AND operations

are used to process the elements, with each operation generating one element of C. In

contrast, bitslice programming views the problem in a different way. Each array element

is distributed over different registers. The operation on each array element is broken

down to the bit level. Therefore, instead of 1 AND instruction, 3 AND instructions are

needed to generate one element of C array. However, since the processor has a 4-bit

wide datapath, another 3 exactly the same application instances can be done in parallel.

Hence, the operations in Figure 6.4a can also be finished in Figure 6.4b.

Bitslice programming guarantees that the processor’s datapath is under full usage,

which may make it more efficient. However, it also has limitations. First, bitslice

programming only uses logic instructions for computation. So for software applications

that use a lot of arithmetic operations, bitslice programming loses efficiency. Second,

running n identical application instances in parallel generates n times of intermediate

results. These results need to be moved out to the memory in case the processor’s

registers are not enough. This will also reduce the efficiency.

Even though it has the above limitations, bitslice programming for symmetric-key

cryptography is still popular. By now, we have seen bitslice programming under inten-
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a0[2] a0[1] a0[0]

a1[2] a1[1] a1[0]

a2[2] a2[1] a2[0]

a3[2] a3[1] a3[0]

b0[2] b0[1] b0[0]

b1[2] b1[1] b1[0]

b2[2] b2[1] b2[0]

b3[2] b3[1] b3[0]

c0[2] c0[1] c0[0]

c1[2] c1[1] c1[0]

c2[2] c2[1] c2[0]

c3[2] c3[1] c3[0]
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regular programming

bitslice programming

a1[0] a0[0] a0[0]

a1[1] a0[1] a0[1]

a1[2] a0[2] a0[2]

b_and r0,r0,r9
b_and r1,r5,r9
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VSC programming

one element stored in one register
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r11
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(a)

(b)

(c)

b0[2] = NOT (b0[2])

Figure 6.4: Comparing regular, bitsliced, and VSC programming. Processing arrays A:
(a0, a1, a3, a4) and B: (b0, b1, b2, b3) with AND operations to generate C: (c0, c1, c2, c3).
Each array element is 3-bit long while the processor’s datapath is 4-bit long. (a) regular
programming; (b) bitslice programming; (c) VSC programming.
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sive research on two most important symmetric-key algorithms, including DES [104] and

AES [105, 106, 107]. The reason is that symmetric-key cryptography seldom uses arith-

metic operations, which makes the first constraint not a problem. Similarly, public-key

cryptography that mainly uses logic operations can also be implemented in a bitsliced

way. For example, Batch Binary Edwards [108] bitslices Edwards-Curve-based ECC and

is able to achieve high performance.

To deal with the second constraint, improved bitslice schemes have been proposed.

The main idea is to reduce the number of encryption instances running in parallel,

while maintaining a full usage of the processor’s datapath. In this case, instead of

taking only 1 bit of the register, one encryption instance takes multiple bits. Similar

intermediate bits in one encryption instance are organized in one register. The operations

on them are usually the same, even though not always identical as in the basic idea of

bitslice programming. Once the operations for different bits in the same register are

different, shift operations are employed to separate them for different operations and

join them together after that. This sacrifices some computational efficiency but reduces

data movements between the registers and the memory. The bitslice programming for

AES that we will use for demonstration follows this method.

6.2.2 VSC Programming Based on Bitslice

Bit-slicing programming is a very suitable starting point for VSC programming.

First, bitslice programming only uses bit-level logic instructions for computation. These

instructions can easily find complementary counterparts. Second, bitslice programming

can easily meet the requirement that direct operation only takes half of the processor’s

datapath. This can be done by simply changing the number of instances. Therefore, it

is very easy to convert the bitslice programming to VSC programming.

Figure 6.4c shows how to convert the example depicted in Figure 6.4b to a VSC

program. Instead of running 4 direct application instances together, we maintain 2

instances as direct and change another 2 to the complementary instances. This easily
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fits into the balanced processor. In detail, doing VSC programming based on bitslice

programming can simply go with the following two steps.

• Do bitslice programming for the cryptographic application. Implement even num-

ber of application instances in parallel. Make sure that each application instance

either falls into the direct part or the complementary part of the balanced pro-

cessor. This guarantees that, after converted a VSC, the application instance

either remains as a direct instance or is completely converted to a complementary

instance.

• Convert the regular instructions to balanced instructions. Add the correlated pre-

charge operation before each balanced instruction.

To demonstrate the effectiveness of single-core VSC, we chose the AES algorithm as

the attack target. The bitslice AES was designed according to the method presented in

[106]. Following the above two steps, we obtained a VSC AES on a 32-bit processor.

Every AES instance takes 16 bits of the processor’s datapath. So in VSC AES, one

direct AES and one complementary AES run in parallel. One detail about VSC AES

is with the XOR instruction. Since the complementary counterpart of XOR, XNOR,

cannot be pre-charged by simply applying 0 on the inputs, we expand XOR to AND,

OR, and NOT instructions. Actually, the logic operation shown in Figure 6.3 is a XOR

operation that has alreadly been expanded.

From the existing efficient designs of bitslice symmetric-key cryptography, we can see

that the mainstream symmetric-key cryptography algorithms can all be easily converted

to VSC. So although the current version of VSC may not support the software with

arithmetic operations well, it can still be applied to a great amount of security systems.

6.3 Experimental Results

To demonstrate that VSC on the complementary processor improves the resistance

against SCA, this section presents the experimental results based on real attacks.
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6.3.1 Experimental Setup

We used a Leon3 embedded processor [103] to build a balanced processor prototype.

Both the regular bitsliced AES and the VSC bitsliced AES discussed in Section 6.2 were

chosen as the attack targets. To convert Leon3 to a balanced processor, we replaced the

operations of two existing instructions (ANDN and ORN) with complementary AND

and OR operations. Since ANDN and ORN instructions are not used by the bitsliced

AES, this does not influence the correctness of the software and helps to quickly build

up the prototype.

The prototype was realized on a FPGA board with a Xilinx Spartan 3E-1600 FPGA.

The balanced Leon3 processor was implemented with FPGA resources, clocked at 50

MHz, while the software applications under test were stored in the on-board DDR2

SRAM memory. An AES encryption key was stored in the DDR2 SRAM and could not

be read out of the board.

The measurement setup has already been described in Section 2.1.2. The only d-

ifference is that we use both a current probe (Tektronix CT-2) and a H-field probe

(ETS-LINDREN 903) to measure the current and electromagnetic radiation respectively,

shown in Figure 6.5. To reduce noise sampled by probes, every sampled trace transferred

to the PC is an average trace of 32 normal traces (with the same plaintext).

6.3.2 Results

We mount the same CPA and CEA to single-core VSC as to dual-core VSC in the

previous chapter. Attacks focus on the same place: the outputs of the SubBytes step

(16 bytes) in the first round of the AES algorithm.

Figure 6.6 and Figure 6.7 show some examples of the CPA and CEA results with

5120 averaged measurements. The x-axis represents time that each measurement covers.

The first round execution of AES occurs within this time range. The y-axis represents

correlation coefficient, the attack result. The black traces are the correlation coefficient

traces corresponding to the correct key byte value. The gray traces correspond to other
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H-field probe current probe voltage probe

Figure 6.5: Experimental setup for single-core VSC. Photo was taken by the author in
2011.

incorrect key byte values.

The black traces can be easily differentiated from others in Figure 6.6a and Fig-

ure 6.7a. This means that both CPA and CEA can attack the the unprotected AES

(AES) successfully. In contrast, when attacking the VSC-AES implementation, the black

traces are both buried into other gray traces in Figure 6.6b and Figure 6.7b. There is no

way to identify them from other traces. Therefore, both CPA and CEA are unsuccessful.

Table 6.1 presents more detailed attack results. 1280 averaged measurements are

sufficient for both CPA and CEA to uncover all 16 key bytes of the unprotected AES. To

fully attack VSC-AES with the byte-based model, the number of averaged measurements

increases to 25600 and 51200 for CPA and CES respectively. When the bit-based model

is used, CPA finds it harder to get a full attack while CEA decreases the MTD of

full attack to 25600 averaged measurements. Considering the most power attack cases,

VSC-AES gains security improvements as high as 20 times in front of both CPA and CEA.

This work also tested CPA attacks on variants of VSC-AES, including VSC-AES nocomp,

and VSC-AES noprch. Both designs could be broken with a similar effort to break AES,
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Figure 6.6: CPA results on unprotected AES and single-core VSC AES. (a) unprotected
AES (AES), (b) VSC-protected AES (VSC-AES). Correlation between the sampled current
and the power expectations with 5120 averaged measurements. The correct key’s trace
is plotted in black, while all other key’s traces are in gray. The emerged black trace in (a)
means a successful attack, while the buried black trace in (b) represents a unsuccessful
attack.
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Figure 6.7: CEA results on unprotected AES and single-core VSC AES. (a) unprotected
AES (AES), (b) VSC-protected AES (VSC-AES). Correlation between the sampled current
and the power expectations with 5120 averaged measurements. The correct key’s trace
is plotted in black, while all other key’s traces are in gray. The emerged black trace in (a)
means a successful attack, while the buried black trace in (b) represents a unsuccessful
attack.
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as shown in Table 6.1. This means that the design techniques that are integrated into

single-core VSC are essential.

Table 6.1 also shows that VSC-AES pays 6.5 times decrease of throughput and 3.3

times increase of footprint to achieve SCA-resistance. The energy cost is estimated to

be 6.5 times since the power remains more or less the same. The authors unrolled 10

rounds of the AES implementation. So the footprints for both AES and VSC-AES are

relatively large. However, it is reasonable to expect both footprints to decrease by 10

times if the unrolling were not done.

To quantify the security improvement, we use Measurement to Disclosure (MTD),

which means the number of measurements required for a successful attack. Larger MTD

indicates better security. Here, we define the successful attack to be uncovering all

16 bytes of the AES key. Table 6.1 presents more detailed attack results. For AES,

1280 averaged measurements are sufficient to uncover all 16 key bytes. For VSC-AES, the

number of averaged measurements for full attack increases to 25600. The improvement is

20 times. These results were obtained from the power expectation which is the Hamming

weight of the entire byte of the SubBytes’s output. We name this as byte-based Hamming

weight model. We also tested the power expectation which is the Hamming weight of

each bit of the SubBytes’s output, named bit-based Hamming weight model. In our

experiments, byte-based model is more efficient.

6.3.3 Analysis Based on Results

The experimental results shown above demonstrate that single-core VSC on the

complementary processors presents an effective way to improve cryptographic software’s

resistance against SCA. Compared with the unprotected design, VSC-AES provides 20

times improvement.

Single-core VSC did not spend much effort to the structural symmetry between direct

and complementary datapaths, although they are located in adjacent bits (Figure 6.2).

Due to this reason, it is reasonable to see a smaller improvement than the WDDL
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prototype IC [80].

Another advantage of single-core VSC is the low hardware cost. The only modi-

fication made to the hardware is two simple balanced instructions. In contrast, DRP

circuits is usually from 3.4 times [38] to 12 times [42] larger than the regular circuits.

This is a critical issue that prevents their broad acceptance by the industry. What single-

core VSC pays is not the hardware cost, but the performance and the memory storage.

Considering the memory storage is becoming cheaper and cheaper and is reusable, if

the reduced performance is still acceptable to the applications, single-core VSC sees a

promising future.

6.4 Conclusion

This chapter presents a new software countermeasure against Side Channel Attack-

s. The new countermeasure is based on the concept of VSC and implement VSC with

instruction set extensions on one single core. Due to this, the resulting balanced proces-

sor system has similar power dissipation as the secure circuits and therefore can resist

Side Channel Attacks as the secure circuits do. To support the balanced processor, this

chapter also presents a method to do VSC programming. Real attacks showed that

single-core VSC improves the security by 20 times. Although this security gain is not

that high, single-core VSC has an advantage of high flexibility and low requirement

for additional hardware cost. Unlike dual-core VSC, single-core VSC provides similar

resistance against both power and electromagnetic attacks.
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Chapter 7

SCA-Resistant Software Using

Instruction Set Extensions:

Improved Solution

The initial solution of implementing single-core VSC with instruction set extensions

obtains 20-time security improvement. Compared with other countermeasures, this im-

provement is not high, and probably not satisfying in practice. The main reason for this

is that the initial solution does not achieve identical placement and routing for the direct

and complementary paths. In this chapter, we introduce another method to implement

the same VSC concept also with instruction set extensions. This method allows us to

integrate identical placement and routing to the processor implementation. As we will

show later, the security gain is improved from 20 times to more than 1000 times.

Compared with the initial solution in Chapter 6, the improved solution here makes

two changes with the processor microarchitecture. First, instead of integrating the

instruction set extensions to the existing processor pipeline, we introduce a dedicated

pipeline to implement all the secure (balanced) instruction set extensions. Second, the

secure instruction set extensions have their own register file and local memory. This

means that sensitive data does not share any storage with non-sensitive data. Separating
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secure instructions and sensitive data from regular instructions and non-sensitive data

makes it easy to apply special design rules to secure instructions, e.g. identical placement

and routing between direct and complementary paths. It also enhances the logical

security. For example, the improved solution enables to run multiple threads at the same

time - only authorized threads have the access to the secure pipeline and its storage. As

will be shown in Section 7.2, the improved solution has a much higher SCA-resistance.

Although the improved solution has a little higher hardware costs (30% increase), we

consider the area increase is still acceptable.

The improved solution presented in this chapter is the final solution in this disserta-

tion. So besides the solution itself, we also present a comparison between this solution

and other software protection solutions. We show that our improved solution is a new

HW/SW-based solution. Among the HW/SW-based solutions [101], our improved so-

lution is the only one that can deliver high SCA-resistance. Purely hardware-based

countermeasures usually suffer from their high hardware cost. The SCA-resistant pro-

cessor presented by Tillich et al. is at least 3 times as large as a regular processor

[48]. On the other hand, software-based solutions usually have high design cost and

poor performance. From [51] to [55], it has taken researchers one decade to find proper

software-based solutions just for one algorithm: AES. The solution based on 3rd-order

masking presented by Rivain et al. decreases the performance by 234 times over the

unprotected solution [55]. In contrast, our solution is independent on any specific al-

gorithm. We implemented our countermeasure based on an FPGA-based OpenSparc

Leon-3 processor [103]. The processor area is enlarged by only 30%. The performance

is decreased by 6.5 times. With 1000 times more measurements, real-world power and

electromagnetic attacks are still far away from achieving the same level of success as on

an unprotected solution. Based on these comparisons, we conclude that our improved

solution not only delivers high SCA-resistance but also performs well in terms of cost

and performance, without obvious disadvantages in any aspect.
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7.1 An Improved Protection Solution

Similar to the initial solution, the improved solution consists of a secure processor and

a corresponding programming method. The secure processor includes a secure pipeline

with all the secure instruction set extensions based on VSC implemented in it. In such a

way, execution within such a pipeline has data-independent power consumption and elec-

tromagnetic radiation. The same as the initial solution in Chapter 6, these instructions

implement the dual-rail part (DR) of the DRP technique. An associated programming

method helps and guides the software designers to program crypto-algorithms with se-

cure instructions. The programming method implements the pre-charge part (P) of the

DRP technique, and makes sure that the use of the secure instructions results in the

desired DRP behavior.

The secure processor pipeline and associated programming method are systematically

integrated together. Thanks to the secure pipeline hardware, software programmers

do not have to worry about the low-level hardware behavior. Instead, they are only

responsible for programming cryptographic algorithms with secure instructions. In other

words, low-level hardware issues can be isolated from software by means of the secure

instructions. Furthermore, the definition of a secure instruction-set results in a cost-

effective hardware design, and it avoids complex application-specific hardware solutions.

7.1.1 Secure Processor

Processor Micro-Architecture

We propose a micro-architecture, shown in Figure 7.1. The processor has two

pipelines. One for regular processing, called regular pipeline; the other for cryptographic

processing, called secure pipeline. The secure pipeline is based on the Virtual Secure

Circuit (VSC) concept which is also used in Chapter 5 and Chapter 6. VSC divides the

secure pipeline into two parts. When running secure instructions, side-channel leakage

from one part is always complementary to the leakage from the other. This way, the
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Figure 7.1: Secure processor micro-architecture.

secure pipeline has a data-independent power consumption and electromagnetic radia-

tion. Each pipeline has its own register file and data memory. Intermediate sensitive

values of cryptographic software are always kept within the secure pipeline. As a result,

no useful side-channel leakage is leaked for power and electromagnetic attacks. Since

the instruction opcodes are not dependent on operand values, power consumption of

instruction fetching and decoding is of no use to physical attacks. So these two stages

can be shared between regular pipeline and secure pipeline.

Our processor efficiently integrates a secure logic style into its micro-architecture.

The arithmetic logic unit (ALU), the register file, and the memory, are all protected

with a single and consistent countermeasure. Unlike the regular pipeline, the secure

pipeline only implements instructions that are commonly used by crypto-algorithms. Its

secure memory is also designed to be just big enough for crypto-algorithms. This is an
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Figure 7.2: A basic slice-based secure pipeline.

important difference with previous secure processors [48, 109], which tried to support

any software and any application. We will show that this incurs a significant extra

hardware cost.

Processor Implementation

The DRP technique requires identical routing between direct and complementary

paths. This requirement also holds true for the proposed secure pipeline. For this

purpose, we introduce a slice-based pipeline, shown in Figure 7.2. The idea is to divide

an n-bit pipeline into n slices with each slice processing one bit. By putting n such

slices together in parallel, we obtain an n-bit pipeline. In an n-bit secure pipeline, n/2

slices implement the direct logic while the other n/2 implement the complementary
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logic. For each direct-logic slice, there is a corresponding complementary-logic slice.

The difference between these two slices is the complementary logic gates in ALU. Their

storage parts are identical. To obtain identical routing between these two slices, we

first implement the direct-logic slice. We then generate the complementary-logic slice

by replacing the functional gates with the corresponding complementary gates while

keeping the placement and routing the same.

Figure 7.2 illustrates such a pipeline with a basic instruction set that contains AND,

OR, NOT, MOV, SHIFT, and memory access operations. AND, OR, and NOT opera-

tions’ inputs and outputs always stay in the same slice. They can easily be implemented.

The SHIFT operation takes inputs from other slices and produces data for the local s-

lice. So we use two buses in opposite directions across the pipeline to transfer data

among different slices. For each slice, the input could come from n different slices in

an n-bit pipeline, including itself. Therefore, the SHIFT operation is a multiplexing

process. Memory access operations of the secure pipeline need special treatment, since

the address coming out of the pipeline contains both direct and complementary repre-

sentations. We only use the direct part as the address. As a result, the memory address

cannot carry sensitive values. This means, for example, that we cannot use a look-up

table to implement the AES SBox. We can go around this problem by calculating the

SubByte result on the fly. If performance is an issue, a special instruction can be added

specifically for SBox calculation. Most other countermeasures have a similar restriction

with respect to a lookup-table based SBox [48, 49, 55].

Use Model

The processor runs in two modes: regular mode and secure mode. The secure pipeline

is active only in the secure mode. Customized instructions are included to do the mode

switching and data transfer between two pipelines’ register files. To support security

at the system level, security-mode-switching instruction only runs when the software

process has a high authority; data-transfer instructions only run in secure mode. Details
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about security at this level are out of the scope of our research. A similar mode-switching

can also be found for example in the ARM TrustZone processor [110].

7.1.2 Programming Method

This section discusses how to program the secure processor presented in Section 7.1.1.

In Section 6.2, we showed that starting from bitsliced programming is a special way of

doing VSC programming for single-core VSC. Here, we give a more generalized way of

doing VSC programming as follows.

Two requirements for VSC programming on single core include:

• Only secure instructions can be used to process sensitive data. By sensitive data

we mean data values that are dependent on both the observable data (inputs and

outputs) and the secret key.

• Every secure instruction needs to pre-charge the destination before storing sensitive

value into it.

Correspondingly, we propose the generalized programming flow in 5 steps.

Step 1, for an n-bit secure processor, implement cryptographic algorithms assuming

that the processor is only (n/2)-bit wide. In such a way, running the software on a n-bit

processor results in two identical instances of the application running simultaneously.

Step 2, compile the software application to assembly source code.

Step 3, identify sensitive instructions in the assembly source code and convert them to

secure instructions. If one sensitive instruction has no corresponding secure instruction,

we decompose it into smaller instructions and find the secure counterparts. For example,

if XOR is used to process sensitive data, we can expand the XOR into AND, OR and

NOT operations. The result of Step 3 is that sensitive instructions will now be flowing

through the secure processor pipeline instead of the regular pipeline, thus achieving

side-channel resistance.

107



Step 4, add a corresponding pre-charge instruction before each secure instruction

following the method discussed above.

Step 5, assemble and link the assembly coming out of Step 4 and obtain the executa-

bles.

As we can see, the programming method is only concerned with instruction mapping,

and not with low-level hardware behavior. In this way, it is different from previous

software-based countermeasures, which aim at removing side-channel leakage above the

instruction-level. A further analysis will be discussed in Section 7.3.

7.2 Experimental Results

In this section, we show an implementation of our secure processor on FPGA. With

real-world attacks, we demonstrate that its resistance to both power attacks and elec-

tromagnetic attacks is much better than an unprotected design and the solution in

Chapter 6.

7.2.1 Implementation of Secure Processor on FPGA

We design our secure processor based on an OpenSparc Leon3 processor [103], same as

Chapter 6 does. A secure pipeline with a separate register file is added to the processor,

which contains secure instructions such as AND, OR, NOT, MOV, and SHIFT. We also

introduce a secure mode to the processor and enable data transfer between the regular

register file and the secure register file controlled by customized instructions. The secure

32-bit pipeline consists of 32 slices as described in Section 7.1.1. We use PlanAhead [111]

to constrain each slice to a rectangle with identical placement, shown in Figure 7.3.

The only difference between a direct and a complementary slice is that the AND/OR

gates (implemented with stand alone LUTs) for AND/OR instructions in direct slice

are replaced with OR/AND gates in complementary slice. Although we are not able to

control the FPGA routing directly, the identical placement on every slice yields much
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direct slice complementary slice 

Figure 7.3: Secure processor implementation on FPGA. Secure pipeline is divided into
32 slices.

more similar routing than placement without constraints. The secure pipeline has a

large 136-word general-purpose register file. The secure memory is supposed to be

implemented with Block RAMs. Since Block RAMs in FPGA are located in dedicated

positions, we were not able to integrate them in the secure pipeline. But we are still able

program the software (AES-128) under test purely with the large register file. In ASIC,

integrating RAMs to the secure pipeline is feasible. Finally, the new secure processor is

implemented on a Spartan-3E 1600 FPGA running at 50 MHz.

The basic Leon3 processor, including pipeline, cache controllers, AMBA AHB in-

terface, UART, and GPIO, takes 14103 LUTs, 4867 flip-flops, and 18 16k-bit BRAMs.

Each slice of the secure pipeline takes 149 LUTs and 32 flip-flops. The register file is

implemented as distributed RAM in LUTs. So in total, 32 slices take 4768 LUTs and

1024 flip-flops. A simple area cost comparison shows that the secure pipeline is around

30% ( 4768+1024
14103+4867

≈ 0.3) as large as the basic Leon3. If we take the BRAM into account

and keep 30% as the target, we can integrate 80k-bit RAM ( 80
18×16

≈ 0.3) to the secure

pipeline, which is enough for most crypto-algorithms.
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7.2.2 Experimental Results

We use the same measurement setup as Chapter 6 does, shown in Figure 6.5. We also

port the same full AES-128 software, including protected and unprotected, to the new

secure processor. After that, we mount real-world power and electromagnetic attacks.

Both CPA and CEA focus on the output of the SubByte step in the first round. We

use Pearson correlation between the measurement and the side-channel information hy-

pothesis (Hamming weight of SubByte’s output) to differentiate correct key bytes from

incorrect ones [62].

We gradually increase the number of averaged measurements from 512 to 512,000

and obtain the results shown in Table 7.1. With only 1280 averaged measurements,

both CPA and CEA can fully break the unprotected AES software: all 16 key bytes

are uncovered. To fully break the solution in Chapter 6, DPA needs 25600 averaged

measurements while CEA needs 51200 averaged measurements. But with 51200 averaged

measurements, CPA only breaks 8 key bytes and CEA only breaks 1 byte of our new

solution. With half a million averaged measurements, which require 16 million instant

measurements, CPA is still incapable of uncovering 7 key bytes and CEA only breaks

4 key bytes. This shows that our secure pipeline offers much stronger security than

the initial solution in Chapter 6. Compared with the unprotected AES software, our

solution obtains at least 1000 (512000/512) times security improvement. Note that the

experimental setup is optimized for attacks with clean power source and with triggers

inserted to help aligning different measurements. So even 16 million is an optimum

number of measurements for a practical attack to get around half of the key bytes.

Our new solution is 6.5 times slower than the unprotected AES. Since we use the

same software as Chapter 6, the footprints are also the same, around 3.3 times larger

than the unprotected software. We notice that even the footprint of unprotected AES

is quite large here. This is because the unprotected AES is not optimized. For example,

the 10-round loop of AES is unrolled. As the unprotected AES’s footprint decreases due

to optimization, the software for our solution will also become smaller proportionally.
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7.3 Analysis

After one decade of research, we see different types of software protection solutions.

Some researchers rewrite the cryptographic algorithms to introduce randomness to the

processing while keeping the crypto functions unchanged [49, 50, 51, 52, 53, 55]. Some

also shuffle the software instructions or insert random delays to increase the difficulty of

locating sensitive side-channel information [67, 112, 47, 54]. We call these software-based

countermeasures because they solve the problem using only software programming. We

also see researchers proposing secure microprocessors so that the software running on

top is automatically protected. Some researchers use secure logic styles [109, 48], while

others introduce randomness to the processor execution [66, 113, 114]. We call these

solutions hardware-based countermeasures since they are completely based on hardware

design techniques. Besides the above two categories, other researchers propose solutions

that involve both hardware and software [101]. We call these solutions hw/sw-based

solutions.

To analyze our solution in terms of security, cost, and performance, we compare it

with one other HW/SW-based solution in [101], one recent software-based solution [55],

and one recent hardware-based solution [48]. According to [55] and [48], we consider

the solutions presented by these two works are the best representatives in their own

categories.

In [101], Ambrose et al. map a direct AES and a complementary AES to a synchro-

nized dual-core processor, so that the total hamming weight of two related intermediate

values in two cores is data-independent. Although our dual-core VSC solution in Chap-

ter 5 is much better than their solution, we use their solution for the comparison purpose.

In [55], Rivian et al. rewrite the AES algorithm so that the intermediate values are all

randomized. In [48], Tillich et al. combines a secure logic style, to protect the instruc-

tion set extension, with architectural masking, to protect the storage. Since they did not

mention a preferred secure logic style, we assume that they use DRP-based technique

(WDDL [43]). We use the terms MUTE-AES, SW-MASKING, and HW-PROCESSOR
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to represent the above solutions.

7.3.1 Security Analysis

MUTE-AES follows the DRP technique but without pre-charge operations. Although

the total hamming weight of two related values in two cores are data-independent, it is

still vulnerable in front of attacks that use hamming distance as the power model. Our

dual-core VSC is better than MUTE-AES, shown in Section 5.6, but it still suffers from

electromagnetic attacks.

Security of SW-MASKING is based on masking. A threat to masking is higher-order

attacks. An n-order masking can be broken by an (n+ 1)-order attack. However, as the

order of attacks increases, the difficulty of attacks also increases exponentially [64]. It is

believed that to a certain order, the attacks will become infeasible. Oswald et al. and

Tillich et al. showed that first-order masking can be broken by practical second-order

attacks [77, 69]. Moreover, Coron et al. [98] even shows that 3rd-order attacks can be

successful with an acceptable number of measurements. Therefore, we use the 3rd-order

masking scheme for SW-MASKING in our cost comparison.

HW-PROCESSOR relies on secure logic circuit to protect instruction extensions.

Since the processor with secure logic style has not been implemented, there are no de-

tailed attack results published. Here, we assume that they use DRP technique. A major

problem of DRP technique is that direct circuit and complementary circuit are usually

of different lengths or widths, which results in residual side-channel leakage. Fortunately

circuit designers are able to design almost identical direct and complementary paths so

that the attacks are infeasible [81]. This means that, with careful circuit design, security

of HW-PROCESSOR could be strong enough.

Our new solution follows the VSC concept and integrates the DRP technique into

processor micro-architecture. It has similar security properties as DRP circuits. In

addition, the slice-based pipeline design makes it very easy to realize identical direct

and complementary routing. The experiments show a security improvement of at least
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Figure 7.4: Cost and performance (cycle cost) of different countermeasures. The num-
bers represent the comparison between a solution and the related unprotected design.
The height of the highest bar in each category is normalized.

1000 times over the related unprotected design. In total, 16 million measurements

only uncovered around half of the key bytes. In ASICs, where routing is controllable,

attacking it will be even harder.

Therefore, we consider that SW-MASKING, HW-PROCESSOR, and our solution

are able to achieve satisfying security. The following analysis only focuses on these 3

solutions.

7.3.2 Cost and Performance Analysis

Figure 7.4 shows our analysis on SW-MASKING, HW-PROCESSOR, and our solu-

tion for different aspects of performance and cost, including hardware cost (circuit area),

software cost (memory footprint), design cost, and cycle cost.

SW-MASKING causes no or very little hardware cost overhead. But its footprint

increase 4.1 times over non-protected AES. HW-PROCESSOR requires no significant

change on software, so the footprint should remain more or less the same. However,

it increases the hardware cost. Although the authors did not use secure circuit to

implement the entire processor, the hardware overhead of the instruction extension and
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the architectural masking support is already large. According to our calculation, their

secure processor with secure logic style implemented is at least 3 times as large as a

basic Leon3 processor [115].

The hardware cost overhead of our solution is only 30% of a basic Leon3 proces-

sor. Compared with HW-PROCESSOR, ours reduces the overhead significantly. HW-

PROCESSOR uses secure logic style to protect instruction set extension and masking to

protect memory, which increases the hardware cost of the processor micro-architecture.

In contrast, we integrate DRP technique at the architecture level, which enables us to

protect every part of the processor with a simple and consistent countermeasure. More-

over, we do not expect the secure pipeline to execute all software: the processor still has

a regular pipeline for that. The secure pipeline is only used for cryptographic software

that needs side-channel resistance and it has a reduced instruction-set. The software

footprint is increased for our solution. For secure AES, the footprint is increased by 3.3

times. But this is still smaller than SW-MASKING (4.1 times) in [55].

Another cost is design cost. In general, software-based solutions require the software

designers to be fully responsible for the security problem. As a result, software designers

need to understand cryptography and side-channel security very well. From [51] to [55],

it has taken one decade for researchers to search for masking solutions for one single

algorithm: AES. Given another algorithm, we can expect the design cost to be very high.

Besides this, software designers have to guarantee that security features are implemented

correctly. So far, we have not seen a systematic way to verify side-channel security at

software-level. This means that software designers need to test their software with low-

level methods, either hardware simulation or real attacks. This results in a high debug

cost. In contrast, HW-PROCESSOR solves the problem at the processor level, with

a one-time design effort. The design cost for software is the same as regular software

design. For our solution, we define an instruction-set architecture for SCA-resistant

programming. When using this instruction set, all that software designers have to do is

follow our programming method, regardless of the low-level hardware behavior. So, we
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see that although our solution increases the design cost (for software), it is much less

than SW-MASKING. Since it is hard to quantify design cost exactly, Figure 7.4 reflects

our estimates.

Performance is a big issue for SW-MASKING which decreases performance 234

times over an unprotected design. No result has been shown on the performance of

HW-PROCESSOR. But since HW-PROCESSOR shifts the protection from software to

hardware, it is expected that its performance is much better than SW-MASKING. Our

solution decreases the performance by 6.5 times. Moreover, our solution can increase the

performance easily by expanding the secure pipeline or adding customized instructions

for specific algorithms.

7.3.3 Analysis Summary

According to the above analysis, we can see that our solution is the only hw/sw-based

solution that delivers high SCA-resistance. The SW-MASKING’s prominent advantage

is low hardware cost. As Figure 7.4 shows, HW-PROCESSOR’s advantage is few soft-

ware modifications. But they also have obvious disadvantages. SW-MASKING has very

high design cost and poor performance. HW-PROCESSOR has a high hardware cost.

Our solution inherits advantages from both software-based and hardware-based solution-

s. In general, it performs well in all aspect, including security, cost, and performance.

In most cases, it is close to the best solutions, without obvious disadvantages.

7.4 Conclusions

Based on the experimental and analysis results, we conclude that the new solution in

this Chapter is effective and efficient. By comparing our solution and previous related

solutions, we see the importance of making hardware and software working together. We

also see that good processor micro-architecture and implementation are critical to realize

a good concept. This is why our new solution is better than the work in Chapter 6 and
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makes the VSC concept become a practical and promising SCA countermeasure.
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Chapter 8

High-Performance Montgomery

Multiplication for Public-Key

Cryptography on Multi-Core

Processors

In the previous chapters, we discussed how to use dual-core architecture and instruc-

tion set extensions to implement SCA-resistant solutions. In this chapter we focus on

improving performance on multi-core architecture. The target application is one of the

most time-consuming cryptography algorithms: RSA.

8.1 Introduction

As discussed in Section 2.2.2, multi-core architectures are replacing single-core archi-

tectures at a rapid pace. Indeed, multi-core architectures offer better performance and

energy-efficiency for the same silicon footprint [116]. As a result, multi-core architectures

can now be found in a wide range of system architectures, including servers, desktops,

embedded and portable architectures [90, 89, 88, 117].
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Parallel software development is a major challenge in the transition of single-core to

multi-core architectures. Programming environments such as OpenMP or MPI provide

a parallel programming model to abstract the underlying parallel architecture. A pro-

grammer then has to express a sequential algorithm as parallel, communicating tasks.

Under ideal circumstances, a parallel version of a sequential program will run N times

faster on N processors, yielding a speedup of N . In practice, the actual speedup is

less, because of unbalanced partitioning of the algorithm, and because of inter-processor

communication dependencies. Parallel-software programmers therefore try to balance

the computational load as much as possible, and to minimize the effect of inter-core

communication.

In this Chapter, we investigate how to parallelize the Montgomery Multiplication

(MM) [118]. This is an algorithm for modular multiplication that is extensively used

in public-key cryptography. In practice, the wordlength of such MM is many times

larger than the wordlength of the underlying processor. This leads to multi-precision

arithmetic. For example, a direct implementation of a 2048-bit multiplication on a

32-bit processor will require 4096 32-bit multiplications just to obtain all the partial

products. This is because a multiplication has quadratic complexity. For modular

multiplications, the complexity is even higher because the reduction (modular-part)

needs to be implemented as well. Koç summarized several sequential solutions for multi-

precision MM [119].

Several authors have explored straightforward parallelization of the MM by executing

multiple independent MM on multiple cores in parallel [120, 121, 122, 123, 124]. This

scenario is a fixed-latency scheme: it optimizes the throughput (MMs completed per

second), but it does not enhance the latency of a single MM (time to finish one MM).

Public-key operations such as RSA [7], DSA [8], and ECC [9] contain thousands of

MMs. However, these MMs contain strong data dependencies, and the result of one

MM may be needed as an operand for the next MM. A high-throughput, fixed latency

scheme for MM therefore cannot accelerate a single instance of RSA, DSA, or ECC. In
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an embedded-computing context, where a single user is waiting for the result of a single

public-key operation, a low-latency scheme is needed instead. In the development of a

low-latency MM, we are looking for the following properties.

• Balanced task partitioning. Partitioning divides one MM into several different parts

and assigns them to different cores for computation. A balanced task partitioning

means that each core has the same task load. Better balancing will improve the

potential speedup that the parallel program can achieve.

• High tolerance to the communication delay. Running one MM with multiple cores

inevitably leads to inter-core communication. Inter-core communication is usually

much slower than within-core communication. Therefore, inter-core communica-

tion is a likely bottleneck in parallel solutions. A high tolerance to the commu-

nication delay means that the performance of the parallel solution is not severely

influenced by inter-core communications. This feature makes it easier to port the

parallel MM to different multi-core architectures and stabilizes the performance as

the communication delay varies.

• High scalability. A good parallel design should be able to handle variations of the

algorithm as well as of the target architecture. At the algorithm level, the design

parameters of the public-key algorithms may vary (RSA-1024 and RSA-2048, for

example). Also, future multi-core systems can expected to have a larger number

of cores than the systems of today, as a result of increased integration. Therefore,

we are looking for a scalable, parallel implementation of the MM.

Several implementations of a parallel MM have been presented before, though we

believe that none of these meets all the requirements we enumerated above. Bajard et

al. proposed to formulate the MM using a residue number system (RNS) [37]. An RNS

allows to break the long-wordlength operation of the MM into a set of smaller numbers,

which then leads to a set of parallel operations. However, the resulting design is not fully
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balanced over the complete set of processors. We will show that we can achieve a multi-

precision implementation of MM that is, from a computational perspective, perfectly

balanced over all processors.

Another parallelization of MM was proposed by Kaihara et al. with the Bipartite

Montgomery formulation [34, 35]. A bipartite design breaks a MM in two parts, so that

two processors can compute a MM in parallel. This solution cannot be easily scaled

to multiple cores, since each part still runs on a single processor. Enhancements for

further parallelization, such as the tripartite MM by Sakiyama et al., show that this

parallelization is quite complex and the scalability is still limited [36].

Sakiyama et al. and Fan et al. describe parallel, scalable implementations of the

MM using custom-designed processors [125, 126, 127]. Such implementations are not

portable, and cannot be expressed on top of OpenMP or MPI because the underlying

programming language does not support the specialized operators used in their designs.

The same problem can also be found with an implementation of arithmetic modulo

minimal redundancy Cyclotomic Primes for ECC by Baldwin et al. [128]. In contrast,

we seek a portable, software-only formulation of the MM.

Our Contribution:

We propose a parallelization of the MM called parallel Separated Hybrid Scanning

(pSHS). Instead of turning to the algorithm conversions like RNS and bipartite MMs,

pSHS directly partitions a regular MM in such a way that each processing core has the

same computational load. This partitioning method can scale over different number

of cores. In addition, we present a detail analysis of the inter-core communication

overhead of pSHS, and we conclude that this algorithm has a high tolerance to inter-

core communication delays. We will show that pSHS has the 3 properties listed above:

balanced task partitioning, high tolerance to communication delay, and high scalability.

We have built multi-core prototypes with 2, 4 and 8 soft-cores on an FPGA. Through

our experiments, we see that pSHS offers a considerable speedup over the sequential so-

lution and it is easy to scale over different numbers of cores. For example, a parallel
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2048-bit MM implemented on 32-bit embedded cores has speedups of 1.97, 3.68, and

6.13 based on 2-, 4-, and 8-core architectures respectively when the inter-core communi-

cation latency is as high as 100 clock cycles. The efficiencies per core are as high as 0.99,

0.94, and 0.82 respectively. We also show that integrating pSHS to RSA does not lose

any of pSHS’s advantages. The parallelized 2048-bit RSA encryption gains almost the

same speedups as pSHS. The multi-core prototypes on the FPGA represent a category

of multi-core architectures, where different cores run independently with the communi-

cation handled by a message-passing network. We expect the results obtained from our

experiments to be portable to the similar multi-core architectures, for example the tiled

processors [99, 129, 130, 91, 131].

8.2 Sequential Montgomery Multiplication and Se-

quential Schemes

Intuitively, modular multiplication requires division operations with arbitrary di-

viders which are hard to implement. MM can replace the modular-n operation with a

division of the power of 2 (2n). Thus, the division can be achieved by simple shifting,

which is easy to implement in processors. This makes MM one of the most prevalent

ways to implement modular multiplications and exponentiations. One of its sequen-

tial implementation schemes is shown in Algorithm 3 [119]. The most time-consuming

part of Algorithm 3 is from line 2 to line 14. Our research will focus on this part and

ignore the final subtraction in line 15 and 16, since it does not affect the overall perfor-

mance too much. In addition, Walter presented Montgomery Exponentiation without

final subtractions in MM by changing the bound of MM’s operands [132]. Such case,

the influence of the final subtraction can be completely ignored. Considering the final

subtraction has a very small influence to the overall performance, although the following

discussion depends on Algorithm 3, the analysis also hold valid for the MM without final

subtractions.
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Algorithm 3 Montgomery multiplication (SOS scheme) [119]

Require: An s-word modulus N = (ns−1, ns−2, ..., n1, n0), two operands A = (as−1, as−2, ..., a1, a0),
and B = (bs−1, bs−2, ..., b1, b0) with A,B < N , A,B,N > 0, N being odd, and the constant n′ = −n−10

mod 2w. w is the word length of a system (usually 8, 16, 32, or 64). T = (t2s−1, t2s−2, ..., t1, t0) is a
temporary array. * means integer multiplication.
Ensure: R = (rs, rs−1, ..., r1, r0) = A ∗B ∗ 2−n mod N . n = w ∗ s.
1: T = 0
2: for i = 0 to s− 1 do
3: C = 0
4: for j = 0 to s− 1 do
5: (C, S) = t[i+ j] + a[j] ∗ b[i] + C
6: t[i+ j] = S
7: t[i+ s] = C
8: for i = 0 to s− 1 do
9: C = 0
10: m = t[i] ∗ n′ mod 2w

11: for j = 0 to s− 1 do
12: (C, d) = t[i+ j] +m ∗ n[j] + C
13: t[i+ j] = S
14: ADD(t[i+ s], C) {addition and propagate carry to higher part of T}
15: R = (ts, ts−1, ..., t1, t0)
16: if R > N then
17: R = R−N

After profiling Algorithm 3, we find two hot blocks: the two inner loops between line

5 and line 6 containing aj ∗ bi and between line 12 and line 13 containing nj ∗mi. To

visualize the analysis, we use a white box to represent one iteration of the first loop and

a shaded box for the second loop, shown in Figure 8.1(a). The inputs of a box include

tin and cin. min is a third input to a shaded box. Every box generates two words of

output with the higher part in cout and the lower one in tout. Figure 8.1(b) shows the

data flow and data dependency of a 4-word MM. Boxes are located according to their

index (i, j). In total, there are 8 columns and 8 rows of boxes. Adding the partial results

of all the boxes, we obtain the Montgomery product by keeping the upper half of the

final result. In Figure 8.1(b), all the vertical connections represent dependencies based

on t, while the horizontal connections represent dependencies based on c and m. All of

the shaded boxes in a row share the same m, which is generated right before the first

box in that row. Since the operations inside both the white and the shaded boxes are

similar, we assume that they take the same amount of time, and define it as calculation
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time unit (CTU). Besides the boxes, other operations, for example the generation of m

in line 10, are simpler than the operations in one box. We approximate the time cost of

them to be 0.

In [119], the authors analyzed several different sequential implementation schemes

for MM. The difference among those methods comes from the sequence to calculate

boxes. In general, two criteria are used to group the methods. 1) The way to handle

those two kinds of boxes. If we operate them in sequence (first calculate all the white

boxes and then all the shaded boxes), it is called ’separated’; if we interleave the rows

or columns (for example one row of white ones and then one row of shaded ones), it is

called ’coarsely integrated’; if we interleave the boxes (one white box (i, j) and then one

shaded box (i, j)), it is called ’finely integrated’. 2) The order to calculate the boxes.

The operation can be based on row in such a way that starting from the upmost row and

ending at the bottom row with a right to left sequence inside each row. This method

is called ’operand scanning’; another method is based on column in such a way that

starting from the rightmost column and ending at the leftmost one with a top to bottom

sequence inside each column. This method is called ’product scanning’. The above

two scanning methods can be integrated together, which is called ’hybrid scanning’.

Algorithm 3 presents a separated operand scanning (SOS) scheme.

8.3 Parallel Schemes

8.3.1 Multi-core Model

To make our programming scheme portable, we base our parallel scheme on a general

message-passing multicore model as follows. In the multicore architecture, processing

cores work independently with their own local memory. An on-chip network connects

the cores together. Different cores communicate with each other by message passing

through the network. When CORE0 needs to transfer data to CORE1, it packages the

data (one or several words) as a message, sends it to the network and moves on. The
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message will go through the network and be stored in CORE1’s local memory until

CORE1 reads it. If the message arrives later than CORE1’s read operation, CORE1

will wait or be stalled until the message arrives.

The communication latency is critical for the overall performance of a parallel sys-

tem. In the analysis, we consider the worst case and use the longest communication

latency for every message transfer and define it as transfer time unit (TTU). A parallel

programming scheme that obtains satisfying analysis results from the worst case will

yield good performance on many real multicore systems as well.

8.3.2 Comparing row-based and column-based partitioning

In order to obtain an efficient parallel program, we have to achieve two goals:

balanced task partitioning and reduction of communication and synchronization cost.

Montgomery Multiplication consists of both the regular operations, including the boxes,

and the irregular operations, including generation of ’m’ and the final subtraction. While

it is easy to partition the process of the boxes, partitioning the irregular operations is

not that easy. Fortunately, the irregular operations occur much less frequently and cost

much less time than the regular operations. Therefore, we approximate a balanced task

division to be assigning the same amount of boxes to different processors. Reduction of

communication means less data dependency among different processors. Synchroniza-

tion cost is the stalled time of a processor, which can be caused by the data dependency

and the communication delay.

Row-based partitioning

One obvious method for task division is to assign different rows of boxes from the

top to the bottom to different processors in a circular way. This method is illustrated in

Figure 8.2(a), in which eight interleaved rows of boxes are handled by 4 cores (P0 to P3).

To make the processors more synchronized, an ’integrated’ method is used. This kind

of task division follows the idea of operand scanning: each processor calculates boxes in
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Figure 8.2: Row-based and column-based task partitioning. (a) row-based task parti-
tioning; (b) column-based task partitioning.
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each row from the right to the left.

Task partitioning. If the number of rows (2 ∗ s) can be divided by the number of

processors (p), then every processor is assigned with the same amount of boxes, which

achieves a balanced task partitioning.

Communication. Based on the row-based partitioning, c and m stay at the same

row while t goes from one row to another, which means two neighboring cores need

to transfer t. Since t is the result of a box, it can only be transferred after the box’s

calculation is finished. We draw arrows to represent transferring t. For each processor,

there are s− 1 or s words of t and the final carry word for ’send’ and ’receive’. In total,

the number of communications counts for approximately 2 ∗ s2/p per processor.

Column-based partitioning

Another method to partition the task is according to columns. This kind of task

partitioning comes from the ’product scanning’ method. The approach is to assign

columns of boxes, from the right to the left, to processors in a circular way, shown in

Figure 8.2(b).

Task partitioning. The entire task can be divided into two parts: the first half

from column 0 to column s-1 and the second from column s to column 2 ∗ s − 1. We

found that these two parts are complementary - shifting the second half to the right by

s columns gives us a perfect rectangular. If the number of columns in the first half (s)

can be divided by the number of processors (p), then every processor is assigned with

the same amount of boxes, which leads to a balanced task partitioning.

Communication. In this method, m for a row of shaded boxes is generated in one

processor Pi and then transferred to the nearest box in the same row that is assigned

to the next processor Pi+1. After that, m is transferred in the same way until it reaches

a box that is assigned to Pi again. Besides m, c also needs to be transferred. The first

impression is that column-based division requires more data communication. However,

improvements can be done to accumulate all the carries in one column to form a final one
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(two words) and then transfer it to the next column. We represent the transfer of m and

c by arrows from a box to another in Figure 8.2(b). Every time when a processor handles

a column, it needs to transfer the words of m generated by the previous p−2 processors

as well as the words of m generated by itself. Plus, 2 words of c are transferred. Thus,

the number of data communication operations is (p− 1)s/p+ 2 ∗ 2s/p = s(p+ 3)/p per

processor.

Both of the above two schemes only require communication between neighboring

processors. By comparison, we find that the column-based scheme needs less commu-

nication when p < 2s − 3, which usually holds true. Therefore, we base our proposed

parallel programming scheme on column-based partitioning.

We also note that the Karatsuba optimization [133] is a well-known partitioning of

long-wordlength multiplication. Although it leads to a sub-quadratic increase of the

amount of multiplications, the Karatsuba algorithm also has a super-quadratic increase

in the number of accumulations. In parallel software, where the cost of an addition and

a multiplication is similar, Karatsuba optimization therefore does not lead to an obvious

advantage. We do not take Karatsuba optimization into account.

8.3.3 parallel Separated Hybrid Scanning (pSHS)

We first use a small example to explain the overall idea of pSHS and then generalize

it to a formal algorithm. In Figure 8.3, we show the example of a 6-word MM with 12

rows and 12 columns of boxes processed by 3 cores. We do the task partitioning based

on columns. Two adjacent columns of boxes are grouped into a Task Block (TB). Task

Blocks are assigned to cores in a circular fashion. From the right to the left, Task Blocks

are indexed from TB[0] to TB[5]. Core P0 starts with TB[0] and then continues with

TB[3]. Similarly, P1 first handles TB[1] and then TB[4]. Inside each TB, one core first

processes all the white boxes and then the shaded boxes. We put a number in the upper

right corner of each box to indicate its execution order. The operation inside one TB is

similar to the Separated Operand Scanning (SOS) scheme in [119]. On the other hand,
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Table 8.1: Meanings of Symbols.

w Word length of a processing core (usually 8, 16, 32, or 64);

s Number of words in the multiplication operands or the modulus; for
a 512-bit Montgomery multiplication on a 32-bit processor, s = 16;
s can be divided by p ∗ q;

p Number of cores used for pSHS in the multicore system;

Pi Order number of a core (from 0 to p− 1);

q Number of columns of boxes in one TB.

the overall task partitioning is similar to Product Scanning. Therefore, we refer to our

scheme as parallel Separated Hybrid Scanning (pSHS).

To integrate timing into the analysis model, we define the top of a box as the beginning

of the calculation and the bottom as the end. All data communications between different

TBs are shown as arrows in Figure 8.3. Each arrow represents one transfer operation.

mi has only one word and is sent out or required right before the rightmost shaded box

of a row in each TB. As a result, one arrow for mi starts from the top of a shaded

box(i, j) and points to the top of the shaded box(i, j + q). The carry ci has two words.

We use two transfer operations. Since ci is generated after the last shaded box(k, l) of

each TB and required by the next TB after shaded box(k, l + q), we draw two arrows

for ci from the bottom of shaded box(k, l) to the bottom of the shaded box(k, l + q) or

the top of shaded box(k + 1, l + 1).

The last boxes for P0, P1 and P2 share the same label: 23. This shows that the task

loads for different cores are the same (24 boxes). pSHS chooses column-based rather

than row-based partitioning because this results in fewer messages between different

TBs. This is because carries (c) of different rows in a TB can be accumulated and sent

to the next TB at the end of the current TB.

To generalize pSHS scheme, we define the meanings of symbols that we will use

in Table 8.1. In an s-word Montgomery multiplication, we group every q columns of

boxes to form different TBs. In total, there are 2 ∗ s/q TBs, which are assigned to p
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Algorithm 4 parallel Seperated Hybrid Scanning (pSHS)

Require: An s-word modulus N = (ns−1, ns−2, ..., n1, n0), two operands A = (as−1, as−2, ..., a1, a0),
and B = (bs−1, bs−2, ..., b1, b0) with A,B < N , A,B,N > 0, N being odd, and the constant n′ = −n−10

mod 2w. w is the word length of a system (usually 8, 16, 32, or 64). s can be divided by p∗q. N,A, andB
are stored locally for each core. RT = (rtq+1, rtq, ..., rt1, rt0) is a temporary array. * means integer
multiplication.
Ensure: T = (ts−1, ts−2, ..., t1, t0) = A ∗B ∗ 2−n mod N . n = w ∗ s. T is stored locally for each core.
The complete Montgomery Multiplication consists of p copies of the following program. On processor
Pi, execute:

1: for l = 0 to (2 ∗ s)/(p ∗ q)− 1 do {every iteration handles one TB}
2: k = Pi ∗ q + l ∗ p ∗ q;
3: pre pid = (Pi − 1) mod p;next pid = (Pi + 1) mod p;
4: initialize RT to 0;
5: for i = max(0, k − s+ 1) to min(k + q, s)-1 do {white box}
6: ca = 0;
7: for j =max(0, k − i) to min(k − i+ q, s)− 1 do
8: (ca, rt[j − k + i]) = a[j] ∗ b[i] + rt[j − k + i] + ca;
9: h =min(q, s− k + i);
10: (rt[h+ 1], rt[h]) = ca+ rt[h];
11: for i = max(0, k − s+ 1) to min(k + q, s)-1 do {shaded box}
12: if i ≥ k then {12-18 generate and communicate m}
13: m[i] = n′ ∗ t[i− k]; send(next pid, m[i]);
14: else
15: if i ≥ k − (p− 1) ∗ q then
16: m[i] = receive(pre pid);
17: if i > k − (p− 2) ∗ q then
18: send(next pid, m[i]);
19: ca = 0;
20: for j =max(0, k − i) to min(k − i+ q, s)− 1 do
21: (ca, rt[j − k + i]) = n[j] ∗m[i] + rt[j − k + i] + ca;
22: h =min(q, s− k + i);
23: (rt[h+ 1], rt[h]) = ca+ rt[h];
24: if i =min(k-1, s-1) and k 6= 0 then {24-27 communicate c}
25: receive(pre pid, c[0]); receive(pre id, c[1]);
26: ADD(rt[q + 1 to 0], c[1 to 0]);
27: send(next pid, rt[q]); send(next pid, rt[q + 1]);
28: if k ≥ s then
29: T [k − s+ q − 1 to k − s] = rt[q − 1 to 0];
30: if Pi = 0 then
31: receive(pre pid, c[0]); receive(pre pid, c[1]); T [s] = c[0];
32: send(next pid, all the results in T stored locally); {share results}
33: rt[s/p− 1 to 0]=receive(pre pid);
34: store rt[s/p− 1 to 0] to T in the correlated location;
35: for k = 0 to p− 3 do
36: send(next pid, rt[s/p− 1 to 0]);
37: rt[s/p− 1 to 0] = receive(pre pid);
38: store rt[s/p− 1 to 0] to T in the correlated location;
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cores in a circular fashion. To get balanced task partitioning, s should be divisible by

p ∗ q. The algorithm is shown in Algorithm 4. After all TBs are processed (by line 31

in Algorithm 4), the final result has been generated but not shared: each core has one

piece of it. There are many ways to distribute the result to every core. Line 32 to line

38 in Algorithm 4 implements a basic one: every piece of the result goes through every

core one by one (p− 1 steps in total).

8.4 Analysis

This section analyzes the influence of inter-core communication latency on the over-

all performance of pSHS. Given a system and the application, unlike other parameters

such as p, s, and CTU which have only a few possibilities, the inter-core communication

latency TTU is usually more dynamic. This is because it is closely related to the status

of the traffic in the communication network. Therefore, while the relationships between

the performance and other parameters can be easily profiled with only a few trials by

running the program on the system, the TTU ’s influence needs to be formulated in a

mathematical way. Actually, analyzing the influence of TTU is pretty complicated. To

make it easier to understand, we first use an example to explain our analysis method.

After that, a general quantitative analysis is presented. In the end, we are able to formu-

late the relationship between TTU and pSHS’s performance when TTU is at a typical

range, which shows that TTU ’s influence on pSHS’s performance is usually acceptable.

8.4.1 Analysis on an example

We use the same example mentioned in last section, in which a 6-word MM is pro-

cessed by 3 cores. The analysis is performed in 3 steps starting from an ideal case and

then approaching the answer to the above questions by considering practical and stricter

conditions.
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First step

Assume that TTU = 0. We first consider an ideal case where message communication

latency is 0. According to time, we draw the parallel execution based on pSHS in

Figure 8.4(a). The x-axis represents time. Six TBs with their boxes are located in six

rows. The length of every box represents its execution time: CTU. The x-position of

each box is decided by its starting time. Arrows show the message transfers. The length

of the projection of one arrow on the x-axis indicates the longest time allowed for that

message transfer, named allowance time (AT). We find that all ATs are no smaller than

0. Under the assumption that TTU = 0, all messages arrive at their destinations before

the cores try to ’receive’ them. This leads to a full parallelization of calculation. The

execution time of Algorithm 4 (TpSHS) is 24*CTU.

Second step

Assume that 0 < TTU < CTU and only one transfer exists between two cores. In

this case, all cores receiving message with AT = 0 have to wait for the messages. In

Figure 8.4(b), the black areas in TB[4] and TB[5] represent the time when P1 and P2

wait for the messages. After that, P2 needs to notify P0 the end of process. Finally,

another 2 steps of transfers are used to distribute the final result. Therefore, TpSHS is

24 ∗ CTU + 8 ∗ TTU , shown in Figure 8.4(b).

Third step

Assume that TTU > CTU and only one transfer exists between two cores. In this

case, besides P1 and P2, also P0 has to wait for messages when processing TB[3], shown

in Figure 8.4(c). Thus, TpSHS will increase even more and even faster than the second

step. As TTU increases further, black areas will eventually appear in TB[1] and TB[2],

which results in TpSHS’s fastest increasing speed against TTU.

According to the above analysis, we find that TpSHS is a piecewise function of TTU.

As TTU increases, TpSHS’s slope also increases from piece to piece.
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Figure 8.4: An example of pSHS in time domain with different TTUs. (a) TTU = 0;
(b) 0 < TTU ≤ CTU ; (c) TTU > CTU .
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Table 8.2: Meanings of Terms.

available time The time a message is sent from a core to the inter-core network;

request time The time a message is requested by a core from the inter-core net-
work;

allowance time The longest average transfer time for each communication of a mes-
sage that guarantees the receiving core does not have to wait for
the message; one message may be transferred by several commu-
nications; different messages sent from the same Task Block could
have different allowance time;

tm[i] The shortest allowance time of m messages sent from TB[i] to T-
B[i+1];

tc[i] The shortest allowance time of c messages sent from TB[i] to T-
B[i+1];

CLT Communication latency tolerance; the largest TTU that guaran-
tees that the communication latency has the smallest influence on
pSHS’s execution time..

8.4.2 Quantitative analysis on general cases

With a similar analysis method, in this section, we perform analysis on general

cases. We define 3 terms: available time, request time and allowance time, all of which

are related to the inter-core communications. Suppose core Pi needs to transfer a data D

to core Pi+1. available time of D is the time when Pi sends D to the inter-core network;

request time of D is the time when Pi+1 tries to receive D from the network; allowance

time = (request time - available time)/(number of communications). Allowance time

indicates the longest average transfer time for one communication that guarantees that

Pi+1 does not have to wait for the message. Table 8.2 summarizes the terms that will be

used in the following analysis. With the similar method as in Section 8.4.1, we perform

three steps of analysis as follows.

First step: TTU = 0

When TTU = 0, a core has to be stalled if the message received by it has a negative

allowance time. During processing a TB, one core needs to receive several words of m
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and two words of c. For example, P1 needs to receive m0 and m1 when processing TB[1]

in Figure 8.3. For different ms transferred from TB[i] to TB[i+1], their allowance time

could be different. We define tm[i] as the smallest allowance time of messages transferred

from TB[i] to TB[i+1]. If TTU is smaller than tm[i], the processing on TB[i+1] does not

need to wait for the messages sent from the process that handles TB[i]. Similarly, we

use tc[i] to represent the smallest allowance time of c transferred from TB[i] to TB[i+1].

Regardless of the data dependencies, the general expression of tm[i] is as follows, where

j = 1, 2, 3, . . . .

tm[i]

CTU
=



2b i
p
cq2 + q2, i <

s

q
− 1, i6=jp− 1

2(b i
p

+ 1c)q2 + q, i <
s

q
− 1, i = jp− 1

2(
s

pq
− 3

4
)q2 − q

2
, i =

s

q
− 1

2(
s

pq
− 1)q2,

s

q
6i <

s

q
+ p− 2

Once i ≥ s/q + p − 2, there is no need to transfer m. With the same method, we

can also obtain tc[i] as follows, where j = 1, 2, 3, . . . .
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We draw tm[i] and tc[i] in Figure 8.5 as an example with q = s/p. According to the

general expressions of tm[i] and tc[i], when i < p, tm[i] and tc[i] are both larger than

0. As i increases, both tm[i] and tc[i] decrease. For the last p − 1 TBs, their tm[i] and

tc[i] become 0. Even if we consider the data dependencies, when TTU = 0, pSHS still

achieves a full parallelization during the calculation.

Second step: TTU > 0 and only one communication exist between two cores

In this case, the full parallelization is not realizable since the last p − 1 TBs will

definitely have to wait for the messages ( tc[i] = tm[i] = 0, p ≤ i ≤ 2p−2). All the other

TBs (tm[i], tc[i] > 0, 0 ≤ i ≤ p− 1) could be uninfluenced by the communication delay,

when TTU is smaller than a certain limit (similar to the second step in Section 8.4.1).

We define this communication delay limit as communication latency tolerance (CLT).

CLT guarantees that the communication latency has the smallest influence to pSHS’s

execution time. As discussed in Section 8.4.1, pSHS’s execution time is a piecewise

function of TTU . Intuitively, CLT indicates the largest TTU of the first piece. The

following discussion discovers CLT and the execution time of pSHS.

Discovering CLT

CLT means the largest TTU that guarantees TBs with non-zero tm[i] and tc[i] not

delayed by the communication delay. We first consider the case when q = s/p (the largest

q we can choose).

For TBs with non-zero tm[i] and tc[i], the available time and request time of each
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data transfer from TB[i] to TB[i+1] can be illustrated in Figure 8.6. The horizontal axis

represents time. A bunch of horizontal lines are used to represent data transfers from

TB[i] to TB[i+1] with the starting point of a line as the available time and the end point

as the request time. We categorize the lines into three groups. In GROUP1, TB[i] sends

(p − 2) ∗ q words of m to TB[i + 1], which are received from the previous p − 2 cores.

In GROUP2, TB[i] generates q words of m, and sends them to TB[i+1]. In GROUP3,

TB[i] generates 2 words of c and sends them to TB[i+1].

For simplicity, we divide the time domain into 3 parts corresponding to the three

groups of lines: from A to B (AB), from B to C (BC), and from C to D (CD) in

Figure 8.6. Accordingly, we get AB = ((p − 2)q2) ∗ CTU , BC = ((q2 + q)/2) ∗ CTU ,

CD = (q2 − q) ∗ CTU when i = q − 1or CD = (q2 + 2q − 3) ∗ CTU when i < q − 1.

For AB, if TTU ≤ q ∗ CTU , the next TB does not have to wait for the messages

in GROUP1. For messages in GROUP2 and GROUP3, if the communication network

can finish q + 2 communications within time (3q2 − q) ∗ CTU/2, the next TB can be

processed without waiting for messages in GROUP2 and GROUP3. Therefore, if the

TTU is smaller than min(q∗CTU, (3q2−q)
2(q+2)

∗CTU), the next TB does not have to wait for

any message sent from the current TB, and this is the value of CLT . We approximate

CLT with Equation 8.1.

CLT = min(q ∗ CTU, (3q2 − q)
2(q + 2)

∗ CTU)

=


(3q2−q)
2(q+2)

∗ CTU, q = 1, 2, 3, 4

q ∗ CTU, q > 4

(8.1)

Discovering execution time

When 0 < TTU < CLT , the execution time changes as TTU changes because TB[i]

with tm[i − 1] or tc[i − 1] being 0 are delayed, which corresponds to TB[i] (i > p) in

Figure 8.4(b). In this case, core Pi is stalled by 2 ∗ i ∗ TTU . The overall calculation

is delayed by 2 ∗ p ∗ TTU (Pp−1 sends two words of c to P0 as the finishing signal). In

addition, to share the final result, p − 1 steps of data transfer are needed. Therefore,
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the total delay is (3p− 1) ∗ TTU .

When TTU > CLT , the processing cores also have to wait for messages when pro-

cessing other TB[i] (i ≤ p). Therefore, TpSHS increases more quickly than the previous

case. In detail, since the interval between two consecutive m messages are q ∗ CTU

which approximately equals to CLT , once TTU > CLT , every TB except TB[0] will

be delayed by the communication latency. The additional delay on TB[i] (i ≤ p) de-

pends on q m messages and 2 c messages. So the delay of the first half MM increases

p ∗ (q + 2) times faster than TTU . When i > p, the increase of the execution time is

exactly the same as the previous case when TTU < CLT , which is (3p− 1) times faster

than TTU . After adding these two parts together, we can see that, when TTU > CLT ,

the execution time increases pq + 5p− 1 times faster than TTU .

Considering SOS scheme is used in every TB, the time cost of pSHS can be repre-

sented by Equation 8.2, where PO means pSHS’s parallel overhead due to the increased

complexity when compared with SOS.

TpSHS
.
=

 TSOS

p
+ (3p− 1) ∗ TTU + PO, TTU ≤ CLT

(pq + 5p− 1) ∗ (TTU − CLT ) + TpSHS(CLT ), TTU > CLT
(8.2)

Following the same method, we can also analyze the cases when q < s/p. The

analysis results are similar.

8.4.3 Analysis conclusion

This section evaluates pSHS’s typical performance according to the formulas obtained

above. In addition, we also discuss how to choose optimal values for certain parameters

to achieve the best performance.
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Optimal q and p

Usually, given a platform and the application, most of the parameters are fixed, such

as s and CTU . Parameters under programmers’ control are q and p. Thus, we need to

figure out the optimal number of columns of boxes that are grouped into one TB and

the optimal number of cores that should be used to map pSHS.

From Equation 8.1, we can see that the largest q leads to the largest CLT . In

addition, a smaller q requires more iterations of the i-loop in Algorithm 4, and hence

parallel overhead is larger. Therefore, we should always choose the largest possible

number for q: (s/p).

The relationship between TpSHS and TTU is shown by Equation 8.2, when TTU

is smaller than the communication latency tolerance. When TTU is larger than the

tolerance, time cost of pSHS increases more quickly. Therefore, when TTU is small,

we expect that a large number of cores will provide a better overall performance for

pSHS. However, as TTU increase, larger p indicates higher increasing speed (3p− 1) of

the execution time. Therefore, it is possible that larger p does not always give better

performance.

To find the optimal value of p purely based on Equation 8.2, we need to further

formulate the term PO (the parallel overhead), which is related to the increased com-

plexity of pSHS when compared with the sequential implementation. However, the term

is highly system-dependent. Fortunately, we find another simpler way which can fulfill

the same purpose. Since PO is not related to TTU , it can be measured on given a

specific system. Due to the limited possibilities of other parameters, PO also have only

a few possible values. After fixing PO, we can use Equation 8.2 to compare different

choices of p under different values of TTU and finally obtain the optimal p for a given

TTU . Both of the above conclusions will be demonstrated in Section 8.6.
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Evaluation of pSHS’s typical performance

We can see that TpSHS is a piecewise function of TTU : when TTU < CLT , TpSHS

stays on the first piece with the lowest increasing slope: 3p − 1; when TTU > CLT ,

TpSHS moves to another piece with higher increasing slope.

To process a s-word MM, 2s2 boxes should be processed in total. The execution time

for a sequential program should be approximately 2s2 ∗ CTU . The optimal execution

time of pSHS should be 2s2 ∗ CTU/p. As TTU increases from 0, TpSHS’s increasing

rate, when compared with the optimal situation, is (3p− 1)p/2s2 ∗ CTU . In each box,

4 additions, 1 multiplication, 2 memory loads, 1 memory store, and 1 conditional jump

are processed. Usually CTU ’s typical value is around 20 clock cycles. Suppose the

application is 64-word MM (e.g. 2048-bit MM processed by a 32-bit 8-core processor),

then the increasing rate equals to 0.1%. Even if the on-chip communication delay reaches

CLT (q ∗ CTU = 160 clock cycles), TpSHS increases by 16%, when compared with the

optimal case. The performance is degraded to 1/1.16 = 86%. Moreover, considering

the influence of parallel overhead, the actual degradation is even less. Therefore, when

TTU < CLT , the influence of TTU on TpSHS is acceptable. Plus, 160 clock cycles

of delay also does not present a very high requirement to on-chip communications.

Moreover, larger CTU , smaller word length of the processor, and longer operands of

MM will all increase CLT and decrease TpSHS’s increasing speed.

8.5 Implementing RSA with pSHS

In order to verify pSHS’s effects on accelerating public-key cryptography, we imple-

ment a parallel RSA with pSHS. A small modification is made to pSHS in Algorithm 4

by adding the final subtraction. RSA’s encryption and decryption are modular expo-

nentiation which is shown in Algorithm 5.

As we can see in Algorithm 5, modular exponentiation is mainly a set of MMs. Line 1

to line 3 do the preparation and do not cost much time. Therefore, the parallel modular
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exponentiation’s speedup should be very close to pSHS’s.

8.6 Experimental Results

8.6.1 Experimental Setup

Experiments were built on a Xilinx Virtex 5 FPGA, where we implemented three

multi-core prototypes with 2, 4, and 8 MicroBlaze cores (w=32, running at 100MHz)

respectively. All cores are connected in a ring network, as shown with a 4-core example

in Figure 8.7. Each core works independently with its own local memory. Communica-

tions between neighboring cores are implemented with Fast Simplex Link (FSL) buses.

We modify FSL and make its delay programmable to emulate different communication

latencies. Since the on-chip communication is not likely to have errors, the communica-

tion does not include a feedback from the receiver to the sender to verify the message is

correct. A timer is attached to MicroBlaze 0 to measure the execution time. All cores

and the timer are synchronized at the starting time. After every core finishes its job,

MicroBlaze 0 reads the clock cycle counts from the timer, which is used as the execution

time.

The FPGA with soft-cores is just for prototyping. It represents a category of multi-

Algorithm 5 parallel modular exponentiation based on pSHS

Require: An s-word modulus N = (ns−1, ns−2, ..., n1, n0), base A = (as−1, as−2, ..., a1, a0), with 0 <
A < N , and exponent E = (es−1, es−2, ..., e1, e0)(E > 0). R = 2n(modN), n = w ∗ s. pSHS(A,B,N, i)
comes from Algorithm 5, which calculates A ∗B ∗R−1 (modN) in core Pi.
Ensure: T = (ts−1, ts−2, ..., t1, t0) = AE(mod N). T is stored locally for each core.
The complete modular exponentiation consists of p copies of the following program. On core Pi, exe-
cute:

1: pid = Pi;
2: A = A ∗R (mod N);
3: T = R (mod N);
4: for i = 0 to n− 1 do
5: if ei == 1 then
6: T = pSHS(A, T,N, pid);
7: A = pSHS(A,A,N, pid);
8: T = pSHS(T, 1, N, pid);
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Figure 8.7: A 4-core architecture. Distributed local memory and FSL based message
passing connection are employed.

core architectures where different cores runs independently and inter-core communica-

tion is done with a message-passing network. The programmable communication delay

enables our prototype to represent different topologies of the network. The delay in the

prototype indicates the worst case of the communication in all topologies. Therefore, we

believe the results we obtained from the FPGA prototype also holds valid when applied

to some existing and emerging multi-core architectures, for example the tiled processors

[134, 99, 129, 130, 91, 131].

8.6.2 Experimental Results

In each platform, we implemented 512 (s = 16), 1024 (s = 32), and 2048 (s = 64) bit-

long MMs and modular exponentiations. We programmed each of these in C according

to Algorithm 4 and Algorithm 5. The compiler’s optimization level is 2.
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Figure 8.8: pSHS’s execution time against q. pSHS’s execution time of processing 1024-
bit Montgomery multiplication with 4 cores (s = 32, p = 4): larger q has better perfor-
mance and larger communication delay tolerance. Execution time increases faster for
smaller q as TTU increases.

Finding the optimal number of columns in one TB

In every MM we tested, q = s/p always leads to the best performance. We show the

result with s = 32, p = 4 in Figure 8.8.

When TTU is small, the influence of communication delay is limited. However, since

a smaller q requires more iterations of the i-loop in Algorithm 4, the performance is

worse. Moreover, smaller q also leads to smaller delay tolerance, which means that

its performance deteriorates more quickly as TTU increases. These two phenomena

can both be observed in Figure 8.8. Therefore, our conclusion in Section 8.4.3 that q

should be s/p has been demonstrated. In all the experiments mentioned below, we choose

q = s/p.

146



Table 8.3: Execution Time of SOS.
operand 512 bits 1024 bits 2048 bits

execution time (cycles) 13953 53905 212145

Table 8.4: pSHS’s Execution Time (et, cycles) & Speedup (sp).

p
=
2

TTU 32 100 300 500 700 900 1100

512
et 8804 9144 10144 14563 19563 24563 29563

sp 1.58 1.52 1.38 0.96 0.71 0.57 0.47

1024
et 29382 29856 30356 31856 34174 42248 50448

sp 1.83 1.81 1.78 1.75 1.72 1.69 1.67

2048
et 107228 107568 108568 109568 110568 111568 112568

sp 1.98 1.97 1.96 1.94 1.92 1.90 1.88

p
=
4

TTU 16 50 150 250 350 450 550

512
et 5680 6054 7154 10472 13972 17472 20972

sp 2.46 2.30 2.11 1.95 1.60 1.33 1.14

1024
et 16716 17090 18190 19334 22609 27309 32009

sp 3.22 3.15 3.06 2.96 2.88 2.79 2.61

2048
et 56777 57151 58251 59351 60451 62109 66409

sp 3.74 3.71 3.68 3.64 3.61 3.57 3.54

p
=
8

TTU 8 25 75 125 175 225 275

512
et 4364 4752 6333 9003 11753 14503 17253

sp 3.20 2.94 2.62 2.20 1.83 1.55 1.34

1024
et 10762 11150 12300 13450 15486 19036 22586

sp 5.01 4.83 4.60 4.38 4.19 4.01 3.82

2048
et 32470 32858 34008 35158 36308 37458 40428

sp 6.53 6.46 6.24 6.03 5.84 5.66 5.25

Overall performance of pSHS

We compare pSHS with the sequential version of MM to see the speedup. We im-

plemented a sequential reference of SOS on MicroBlaze 0. The execution time of that

design is listed in Table 8.3.

Since one MM has 2s2 boxes, according to Table 8.3, CTU is approximately 26 cycles.

We calculate the speedup according to TSOS/TpSHS. The performance of pSHS is shown

in Table 8.4.

Execution time of pSHS is listed in Table 8.4, which is visualized in Figure 8.9 for

the case of p = 4. Each curve begins with a smaller slope followed by a larger slope
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Figure 8.9: pSHS’s execution time against different word lengths. pSHS’s execution
time of processing 512-, 1024-, and 2048-bit Montgomery multiplications with 4 cores
(p = 4, q = s/p).

after TTU becomes larger than the delay tolerances. Based on q = s/p, we obtain

q equals to 4, 8, and 16 for 512-, 1024-, and 2048-bit pSHS respectively. According

to Equation 8.1, we get the following communication latency tolerances according to

Equation 8.1: 96, 208, and 416 cycles. In Figure 8.9, the actual communication latency

tolerances are 150, 250, and 450 cycles (indicated by arrows). The results from analysis

and experiments are very close, especially for longer operands. The difference mainly

comes from approximations in the analysis process and the discrete sample points of

TTU . With TTU smaller than the communication delay tolerance, we calculate the

slope of each of the curves. The results are all 11, which equals to the analysis result:

for the case of p = 4, 3p− 1 becomes 11. Therefore, the relationship between TpSHS and

TTU shown in Equation 8.2 has been demonstrated to be true for the 4-core architecture.

With the same method, we find that it is also true for 2- and 8-core architectures.

When TTU is small, 4-core based pSHS’s speedup can be as high as 3.74, 3.22, and
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2.46 for three operand lengths. Even when TTU = 550 cycles, the speedup of 2048-bit

pSHS is still above 3.5. Based on 2 cores, the speedup of 2048-, 1024-, and 512-bit pSHS

can be as good as 1.98, 1.83, and 1.58 respectively. Based on 8 processors, they can be

6.53, 5.01, and 3.20. Generally speaking, pSHS provides a good speedup.

Modular exponentiation’s execution time highly depends on the number of ’1’s in

the exponent. In our experiment, the exponents were randomly generated. So the

probability of each bit to be ’1’ is close to 0.5. For comparison, we use the same inputs

(A, B, and N) for both sequential modular exponentiation (with SOS) and parallel

modular modular exponentiation (with pSHS). The results of the sequential and parallel

versions are listed in Table 8.5 and Table 8.6 respectively.

After integrating pSHS to the modular exponentiation, the modular exponentiation’s

speedup is very close to pSHS’s speedup, with a small drop. This lower speedup comes

from the final subtraction in the modified pSHS and the preparation process, which are

not parallelized. Therefore, our Conclusion 3 in Section 8.5 has also be demonstrated.

Finding the optimal number of cores

From Table 8.4, we realize that if the operand width (s) and the number of cores

(p) are fixed, TpSHS is only determined by TTU with the same slope shown in Equa-

tion 8.2. This demonstrates that parallel overhead is irrelevant to TTU . As a pro-

grammer, to obtain the optimal value of p, the first step is to fix ’parallel overhead’.

For example, if the application is 1024-bit MM, three measurements of TpSHS on the

dual-, quad-, and octo-core platforms under a known TTU (TTU < CLT ) would reveal

parallel overhead = 2404, 3064, and 3449 respectively in three platforms, according to

Equation 8.2. Based on that, we are able to calculate the values of TTU that result in

cross points among TpSHS’s different curves corresponding to different p values. Suppose

TpSHS of dual-core and quad-core platforms are equal when TTU = TTUcross, then if

TTU < TTUcross, quad-core platform performs better, when TTU > TTUcross, dual-

core platform performs better. We draw the curves in Figure 8.10 based Equation 8.2.
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Table 8.5: Execution Time of sequential modular exponentiation based on SOS.

operand 512 bits 1024 bits 2048 bits

execution time (cycles) 10942151 85568236 646468715

Table 8.6: Execution Time (et, 10000*cycles) & Speedup (sp) of parallel modular expo-
nentiation based on pSHS

p
=
2

TTU 32 100 300 500 700 900 1100

512
et 7006 7268 8040 11447 15307 19167 23027

sp 1.56 1.51 1.36 0.96 0.71 0.57 0.48

1024
et 46737 47270 48840 50410 54645 67239 80113

sp 1.83 1.81 1.75 1.70 1.57 1.27 1.07

2048
et 32815 32919 33226 33532 33838 34145 34451

sp 1.97 1.96 1.95 1.93 1.91 1.89 1.88

p
=
4

TTU 16 50 150 250 350 450 550

512
et 4573 4861 5710 8242 10944 13646 16348

sp 2.39 2.25 1.92 1.33 1.00 0.80 0.67

1024
et 27028 27616 29343 31142 36246 43625 51004

sp 3.17 3.10 2.92 2.75 2.36 1.96 1.68

2048
et 17738 17852 18189 18526 18863 19369 20686

sp 3.64 3.62 3.55 3.49 3.43 3.34 3.13

p
=
8

TTU 8 25 75 125 175 225 275

512
et 3505 3807 5005 7043 9166 11289 13412

sp 3.12 2.87 2.19 1.55 1.19 0.97 0.82

1024
et 17681 18295 20101 21906 24991 30552 36126

sp 4.84 4.68 4.26 3.91 3.42 2.80 2.37

2048
et 10277 10397 10749 11101 11454 11806 12706

sp 6.29 6.21 6.01 5.82 5.64 5.48 5.09

The cross point between dual- and quad-core platforms occurs when TTU = 600; the

cross point between quad- and octo-core platforms occurs when TTU = 200. From the

experiment results in Table 8.4, we can see that these two crossing points occurs around

TTU = 550 and TTU = 225. In comparison, we can see that the calculated results

and the experimental results are very close. Therefore, our method to find the optimal

number of cores is correct.
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Figure 8.10: pSHS’s execution time based on analysis. 1024-bit pSHS’s execution time
on 2-, 4-, and 8-core platforms based on calculation according to Equation 8.2.

8.6.3 Discussion

The multicore platforms we built are very close to the worst-case analysis mod-

el. Given better conditions, such as better topology, larger capacity of communication

channels, the performance and communication latency tolerance can be improved fur-

ther. However, even so, we already see a good speedup. Furthermore, using several

hundreds of cycles to transfer one message between neighboring cores is not a difficult

requirement for current on-chip multicore systems. Therefore, pSHS provides a good

performance, a good portability and a good stability.

We find that the efficiency of pSHS is closely related to the number of words in the

multiplication operand (s). Larger s leads to higher efficiency and vice versa. Based on

the results, we find that pSHS has a very high efficiency when used to accelerate RSA

and DSA on 32-bit systems. In addition, moving from Montgomery multiplication to

modular exponentiation does not require too much additional operations. Therefore, it

is reasonable to expect a good performance after integrating pSHS to RSA and DSA.
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Because of shorter operands, based on 32-bit systems, ECC may not benefit as much

of pSHS as RSA and DSA. However, in many low-end implementations where the word

length of the cores is 8 bits [135] [136], pSHS can still be a good candidate for acceleration.

Ideally, pSHS requires s to be dividable by p∗q. In some cases, this requirement can-

not be satisfied. An easy solution is to extend the operands with 0 until the requirement

is satisfied. Also, as the number of cores (p) increases to be equal to s, we can hardly

gain additional speedup by adding more cores for computation. Even so, pSHS already

shows a good scalability. For 2048-bit RSA, this limit number of p is 64 for 32-bit cores

and 256 for 8-bit cores.

Compared with the parallelization obtained by concurrently performing multiple

encryptions, whose ideal speedup could be linear, pSHS trades some throughput for

much lower latency. Future work will investigate the combination of these two methods

to find suitable tradeoffs between throughput and latency for different applications.

8.7 Conclusion

In this chapter, we propose pSHS as a parallel programming scheme for Montgomery

multiplication based on multicore systems. Both analysis and experiments on real multi-

core prototypes show that pSHS provides a good speedup, large communication latency

tolerance, good portability and good scalability. These features make pSHS a good

parallel software solution for RSA, DSA, and ECC on multicore systems.
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Chapter 9

Conclusions

In this dissertation, we have presented our work on designing SCA-resistant and

high-performance cryptography on embedded systems. As embedded systems become

ubiquitous in our daily lives, we have been dependent on these devices more than ever

before. Meanwhile, the requirements for low cost and high performance have never

been alleviated. This makes it a necessity to design dependable, trustworthy, and fast

embedded systems. Our research fits well into this purpose since SCA-resistant and high-

performance cryptography is a cornerstone to build such embedded devices. SCA has

become a great concern to embedded security due to its low cost and high effectiveness.

Faster processing of cryptography not only brings us higher performance, but also allows

designers to choose more secure cryptographic algorithms for embedded applications.

Therefore, we see a strong motivation and future application of our research.

We focus on improving embedded cryptographic software, achieving our goal by work-

ing on microarchitectures of embedded processors as well as on programming methods.

The reason why we follow this approach is that our investigation on a SCA countermea-

sure, called masking, tells us that simply using secure transformation of cryptographic

algorithms or secure logic circuits is not going to give us satisfying results. Working

on microarchitectures, which connect software and hardware, is easy to make trade-offs

between different aspects. In such a way, we hit the sweet spot in the design space.
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We make use of two state-of-the-art microarchitectures for embedded processors, in-

cluding instruction set extension and multi-core architecture. For SCA-resistance, we

propose a solution concept called Virtual Secure Circuit, which emulates the behavior

of a secure DRP circuit with microprocessors. Based on that, we implement this con-

cept with both dual-core processors and special instruction set extensions attached to

single-core processors. After three steps of research, we finally find a solution based on

instruction set extensions that performs well across the board, including security, cost,

and performance. We also note that the dual-core based Virtual Secure Circuit also de-

livers good SCA-resistance if electromagnetic attack is not a concern. For performance,

we propose a low-latency programming method for Montgomery multiplication. This

solution helps us to reduce the execution latency of one single RSA task in a scalable

and efficient way, which makes it perfectly suitable for embedded systems where only

one cryptographic task exists at the same time.

Compared with related works, our SCA-resistant solution is the only one that does

not have obvious disadvantage. Others are either not secure enough, or suffer from high

hardware costs, or have very poor performance. All these disadvantages are barriers that

prevent them from practical applications. On the contrary, our SCA-resistant solution

is flexible and performs well in security, performance, and cost. Therefore, it is more

practical than others. In addition, DRP technique has been demonstrated to be effective

to detect fault attacks [137, 138]. Our solution, which is a software version of DRP, also

inherits this feature. With all the above good features, we are confident that our solution

is able to offer good protection to cryptography in future secure embedded products.

To make our SCA-resistant solution a product, we expect the following refinements

to be done. First, programming of the secure processor with a secure pipeline is currently

done manually. This is inconvenient for programmers. Thus, automation is needed to

identify sensitive intermediate variables and to convert a program for different processor

with different widths of pipelines. Second, our SCA-resistant solution already achieved a

high SCA-resistance. Further improvement may come from solving the early evaluation
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problem [41, 139]. Some existing solutions at circuit level [140, 141, 41, 97] may give

us clues. Third, additional mechanisms at the protocol level may enhance the security

further. For example, assume an attack takes one day to break an unprotected system.

To break our solution, it takes more than one year (> 1000x improvement). This already

prevents a lot of attackers. To further improve security, we can update the secret key

every year. This protocol brings the solution to a even higher security level. Finally,

an optional improvement can be done is to integrate pre-charge behaviors to hardware.

This will save the pre-charge instructions. The software footprints will be at least halved.

Our parallel solution to Montgomery multiplication, for the first time, shows that

a good programming is able to partition a cryptographic algorithm in an efficient and

scalable manner, with a high tolerance to the inter-core communication latency. This

tells us that reducing the execution latency is viable through multi-core parallel pro-

gramming. We expect this approach to work for other algorithms. Considering most

other cryptographic algorithms have much lighter computational load, the performance

after partitioning may be more sensitive to the delay of inter-core communications.

In order to shorten the execution latency with parallel programming for other al-

gorithms, we consider the following two points would help us. First, shorten the com-

munication delay from the hardware perspective. This is already a design target for

multi-core processor design. Second, integrate the cryptographic software as primitives

to the operating systems. User-level threads usually do not have direct access to inter-

core communication. They have to call system APIs for this purpose, which consumes a

lot of time. Integrating these parallel programs to the OS can make the communication

more efficient. The cost of doing this is low because embedded systems only use a limited

number of cryptographic algorithms.

In the end, we want to mention that cryptography is only one component of embedded

security. Designing secure systems requires proper integration of cryptography, protocol,

and application. We hope that our contributions will offer us solid components for such

a process.
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