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Lee Wilmoth Lerner

ABSTRACT

A cyber-physical controller (CPC) uses computing to control a physical process. Exam-

ple CPCs can be found in self-driving automobiles, unmanned aerial vehicles, and other

autonomous systems. They are also used in large-scale industrial control systems (ICSs)

manufacturing and utility infrastructure. CPC operations rely on embedded systems having

real-time, high-assurance interactions with physical processes. However, recent attacks like

Stuxnet have demonstrated that CPC malware is not restricted to networks and general-

purpose computers, rather embedded components are targeted as well. General-purpose

computing and network approaches to security are failing to protect embedded controllers,

which can have the direct effect of process disturbance or destruction. Moreover, as embed-

ded systems increasingly grow in capability and find application in CPCs, embedded leaf

node security is gaining priority.

This work develops a root-of-trust design architecture, which provides process resilience

to cyber attacks on, or from, embedded controllers: the Trustworthy Autonomic Interface

Guardian Architecture (TAIGA). We define five trust requirements for building a fine-grained

trusted computing component. TAIGA satisfies all requirements and addresses all classes

of CPC attacks using an approach distinguished by adding resilience to the embedded con-

troller, rather than seeking to prevent attacks from ever reaching the controller. TAIGA

provides an on-chip, digital, security version of classic mechanical interlocks. This last line

of defense monitors all of the communications of a controller using configurable or external

hardware that is inaccessible to the controller processor. The interface controller is synthe-

sized from C code, formally analyzed, and permits run-time checked, authenticated updates

to certain system parameters but not code. TAIGA overrides any controller actions that

are inconsistent with system specifications, including prediction and preemption of latent

malwares attempts to disrupt system stability and safety.
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Chapter 1

Introduction

A cyber-physical controller (CPC) uses computational components to control a physical

process. CPCs vary in size and capability, from microcontrollers in small-scale consumer

products, to high-performance embedded devices in autonomous systems, such as field pro-

grammable gate arrays (FPGAs), and on to more complex devices in large-scale transporta-

tion and industrial control systems (ICSs), such as programmable logic controllers (PLCs).

They include the subset of cyber-physical systems (CPSs) which control (as opposed to only

monitor) physical processes, and process control systems (PCSs) which use a computational

(as opposed to physical) controller mechanism.

CPC operations rely on trustworthy operation of embedded systems, which control physical

processes directly. Unfortunately, trust is an increasingly difficult characteristic to sustain

in modern embedded computing as their capabilities grow and tailored security solutions

lag behind. Sophisticated cyber attacks like Stuxnet and Aurora have demonstrated that

embedded components of CPCs are penetrable, even in air-gapped environments, and when

compromised have a more devastating effect than previously observed in cyber security:

physical destruction [2, 5]. The focus on second-generation approaches for embedded security

adopted from general-purpose computing and over-reliance on network perimeter defense is

failing to protect embedded controllers. More approaches to designing trusted leaf node

components specifically are needed as it is increasingly clear that security for embedded

systems is paramount in CPCs.

This work develops a root-of-trust design architecture, Trustworthy Autonomic Interface

Guardian Architecture (TAIGA), which provides process resilience to cyber attacks. Our

1
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threat model includes malicious commands from supervisory units, network penetrations,

denial-of-service attacks on controller interfaces or external components, Trojan controller

code, surreptitious controller firmware updates, and communication compromises such as

man-in-the-middle attacks on actuator and sensor links. The primary objective of TAIGA is

autonomous preservation of physical process security and safety specifications regardless of

the cyber-initiated threat. TAIGA is integrated with an embedded controller and assumes

accurate system specifications can be enforced on its interfaces using hardware-implemented

guards. A full implementation can predict and preempt specification violations, as well as vet

firmware updates, assuming accurate models of the physical process can be integrated into

the TAIGA root-of-trust. TAIGA protection logic accepts limited, range-bounded updates

to specification guards values, but is otherwise static unless physical access is obtained.

Physical attacks on cyber-components are outside of the scope of this protection scheme.

TAIGA was conceived from the confluence of several disciplines that are normally treated

separately, including: control systems engineering, security engineering, model-based de-

sign, system-on-chip development, and source code formal analysis. We define five trust

requirements for building a fine-grained trusted computing component. TAIGA satisfies all

requirements and addresses all classes of CPC attacks using an approach distinguished by

adding resilience to the embedded controller, rather than seeking to prevent attacks from

ever reaching the controller. TAIGA provides an on-chip, digital, security version of classic

mechanical interlocks. This last line of defense monitors all of the communications of a con-

troller using configurable or external hardware that is inaccessible to the controller processor.

The interface controller is synthesized from C code, formally analyzed, and permits run-time

checked, authenticated updates to certain system parameters but not code. TAIGA overrides

any controller actions that are inconsistent with system specifications, including prediction

and preemption of latent malwares attempts to disrupt system stability and safety.

The following chapters provide a detailed overview of TAIGA and case studies of some of its

applications. They also illustrate the exploratory evolution of our work. As different proper-

ties of TAIGA, applications, and the problem landscape emerged and were better defined, our

terminology shifted to better describe these things. TAIGA, or components of TAIGA, are

referred to with different terms in later chapters (earlier work), such as trust enhancement of

critical embedded processes (TECEP), design-for-security, -trust, and -reliability (DFSTAR),

configurable hardware-assisted application rule enforcement (CHARE), and Datapath Rule

Enforcement Controller (DREC). Earlier work also often refers to CPCs as more general
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terms such as CPSs or PCSs. The remainder of this dissertation is organized as follows:

• Chapter 2 is a journal manuscript currently under review. Co-author attribution in-

cludes: Christopher J. McCarty, Kevin G. Lyn, and Cameron D. Patterson. This

work defines CPCs and provides a survey of trust and security approaches for embed-

ded systems. It also specifies five requirements for developing a fine-grained trusted

component. TAIGA is described in terms of how it satisfies the requirements. An ex-

perimental application to a robot is also described as an example of applying TAIGA

to autonomous systems.

• Chapter 3 is a manuscript presented at the 2014 International Symposium on Resilient

Control Systems. Co-author attribution includes: Ron J. Prado, Zane R. Franklin,

and Cameron D. Patterson. This work first fully defined TAIGA and studied it in

the context of ICSs. A significant advancement from previous work was adding up-

date functionality to TAIGA for specification guard values. TAIGA’s hardware mon-

itor functionality was also enhanced to average readings to be more resilient to CPC

conditions. An additional form of formal analysis, value analysis, was also applied.

Experimental results for a motor controller model are provided.

• Chapter 4 is a manuscript presented at the 2014 IEEE/IFIP International Confer-

ence on Dependable Systems and Networks. Co-author attribution includes: Zane R.

Franklin, William T. Baumann, and Cameron D. Patterson. This work developed a full

development and verification flow for TAIGA using high-level techniques. High-level

synthesis for C code is used to create TAIGA hardware protections. The C code is for-

mally analyzed using deductive reasoning with the Frama-C verification platform [3].

Experimental applications on a proportional-integral-derivative (PID) controller are

provided. The full source code, including verification proof annotations, are provided

in Appendix A.

• Chapter 5 is a manuscript presented at the 2012 International Conference on Secu-

rity of Internet of Things. Co-author attribution includes: Mohammed M. Farag and

Cameron D. Patterson. A major advancement of this work was the addition of pre-

diction of controller malware or errors to TAIGA. It also showed that this prediction

capability can be used to vet controller updates. Experiments for a aircraft pitch

controller application are provided.



Lee W. Lerner Chapter 1. Introduction 4

• Chapter 6 is a manuscript presented at the 2011 International Conference on Field

Programmable Logic and Applications. Co-author attribution includes: Mohammed

M. Farag and Cameron D. Patterson. This initial work first identified the utility of

hardware-assisted application rule enforcement in a TAIGA-like approach. We also

defined a high-level design flow for TAIGA and explored high-level abstractions for

defining specification guards, such as SystemVerilog assertions or Bluespec SystemVer-

ilog rules with guarded atomic actions. An example application in cognitive radio is

presented.

• Finally, Chapter 7 discusses conclusions and future work. It also provides a listing of

relevant publications, funded proposals, and invited talks resulting from this work as

it pertains to the author of this dissertation.



Chapter 2

Trusting the Leaf Nodes: Embedded

Security in Cyber-Physical Control

2.1 Abstract

General-purpose computing and network approaches to security are failing to protect cyber-

physical control systems from cyber attacks targeting embedded controllers, which can have

the direct effect of process disturbance or destruction. Moreover, as embedded systems in-

creasingly grow in capability and find application in control systems, embedded leaf node

security is gaining priority. We specify five requirements for building a fine-grained trusted

computing component. We then provide a survey of recent approaches to security in embed-

ded systems classified by their enforcement mechanisms. Lastly, we present a root-of-trust

design architecture which satisfies all five trust requirements and provides process resilience

to cyber attacks on, or from, embedded controllers.

2.2 Cyber-Physical Control

A CPC uses computing to control a physical process. CPCs are often referred to more

generally as cyber-physical systems or process control systems, though those terms do not

necessarily imply a cyber component controlling a process. Examples of modern CPCs can be

found in self-driving automobiles, unmanned aerial vehicles, and other autonomous systems.

5
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They are also used in large-scale ICSs, manufacturing, and utility infrastructure. Figure 2.1

illustrates a typical CPC architecture, including two classes of internal connectivity with

respect to embedded controllers: sensor and actuator connections; and networking to super-

visory, management, and human-machine interfaces. Supervisory units, and even sometimes

embedded systems, are often connected to larger corporate networks or directly to the Inter-

net to enable remote monitoring and control. The growing increase in networking is in part

driven by the need for remote actuation and monitoring which reduces expenditures related

to on-site services.

Direct Connectivity

Embedded
Controllers

Plant

Microcontroller/
FPGA

PLC/RTU

Actuators Sensors

Physical Process Physical Process

Actuators Sensors

Supervisory
Units

Human-machine 
interface

Supervisory 
Workstation Remote 

Networks

Corporate

Network

Firewall/
Intrusion 

Protection

Router/
Switch

Figure 2.1: Generic cyber-physical control system

CPCs rely on embedded devices, sometimes referred to as field devices in this context, to

control essential physical processes [23]. Examples of embedded devices for autonomous sys-

tems include single microelectronics such as general-purpose processors (GPPs) and FPGAs.
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For instance, NASA’s Mars rover Curiosity, which has closed-loop control systems for pro-

cesses such as extraterrestrial drilling, relies primarily on FPGAs [8]. Examples for ICSs

include PLCs, remote terminal units (RTUs), and programmable automation controllers.

Embedded devices connect directly to actuators to control physical processes, and sensors to

measure process state. They also connect to a network to report process status, and receive

commands and configuration updates from supervisory control components. Embedded and

supervisory systems are typically networked through traditional information technology (IT)

infrastructure. Human-machine interfaces at supervisory units are used to monitor, control,

and update processes and embedded components.

A complex CPC, such as an industrial supervisory control and data acquisition (SCADA)

plant, often contains 100’s to 1000’s of control loops. The embedded controllers are usually

networked and combined with master terminal units (MTUs), which are often just general-

purpose computers running supervisory software. Control loops can be grouped together into

subsystems and cannot always be considered independently. CPCs often contain numerous

distinct and sometimes competing subsystems, such as a car’s lane assistance and collision

avoidance controllers.

2.2.1 Cyber Threats to CPCs

A large CPC can distribute trust across many computer nodes, communication links, and

software layers within nodes. Many nodes are technologies developed initially for personal

and IT platforms that eventually appear in CPCs. As a result, cyber threats are also mi-

grating from computer systems used mostly for exchanging information and processing data

to systems controlling physical processes. Similar to general-purpose computing platforms

used mainly by people, CPCs often have the conflicting requirements of security and re-

mote access. Preventing malware infiltration is difficult in complex, networked CPCs having

zero-day exploits. Malware objectives are different for these two environments: interactive

computing platform malware seeks information or computing resources, while sophisticated

CPCs malware seeks to degrade or destroy the processes being controlled. Sources of dis-

turbances can come in many forms, including insider threat, malware, malicious control

commands, malicious controller updates, Trojans, or compromised sensor data.

CPC operations rely on embedded systems having real-time, high-assurance interactions with

physical processes. Unfortunately, embedded systems are especially vulnerable to modern
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security threats and difficult to trust as they are often assembled from designer-generated

hardware descriptions, software, and third-party cores. All of these sources can harbor

undocumented, errant, and Trojan behaviors. Most code in ICSs is not even digitally signed.

Ensuring trust in third-party modules individually is extremely challenging because there is

neither an accompanying specification to trust in nor a golden version to compare to [27].

This problem is amplified and may result in system security violations when a embedded

system is composed of numerous modules interfacing in a poorly trusted or understood

manner. Moreover, the software tools used to design and implement these modules are

themselves vulnerable to errors and insider threats. Thus, with the threats facing modern

system development, it is reasonable to assume that some of these threats are built-in to

the controllers themselves. A system in total can be considered untrusted and insecure until

novel techniques are adopted to secure its most basic underlying components, e.g. embedded

controllers [27].

Recent studies outlined potential cyber attack vectors for electronic control units (ECUs) in

a large number of automobiles [19]. Researchers also demonstrated remote code execution

on a telematics unit of a vehicle by exploiting the Bluetooth stack of an ECU [5]. There also

continues to be an increasing number of incident reports received regarding actual cyber

attacks on CPCs used in critical infrastructure. There is speculation that ICS espionage

started as early as 1982 when a Siberian gas pipeline was sabotaged via implantation of

controller malware eventually causing excessive gas pressure which lead to an explosion with

roughly one-sixth the power of the first atomic bomb [22]. The Aurora attack demonstrated

by the U.S. Department of Energy and Idaho National Labs destroys an electric generator

by causing an embedded relay to intentionally open a breaker connecting the generator to

the electric grid and then close the breaker after they shift out of synchronism, all within

allowable tolerances so as not to activate protections [5]. A takeaway from Aurora is that

CPCs must contend with not only accidental faults to the system but also targeted attacks

seeking to damage equipment.

Perhaps now the most famous CPC attack, Stuxnet, highlighted embedded system vulnera-

bilities and the inadequacy of existing security solutions. It demonstrated that malware is

not restricted to networks and general purpose computers, rather embedded systems used in

CPCs can be infected as well. The goal of Stuxnet is to sabotage a specific physical system

by reprogramming embedded controllers to operate outside their nominal bounds by inter-

cepting routines that read, write, and locate PLC commands and data. Antivirus software
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missed the attack because PLC rootkits hide Stuxnet modifications to the system, and two

stolen certificates validate new drivers. It also showed that air gaps and effective physical

security measures are not a sufficient defense [2].

Cyber-space presents a new domain of warfare that is a great equalizer, unlike the other

domains: land, sea, air, and space. In the event of large-scale hostilities, factories and

infrastructure would likely be targeted by computer viruses. Smaller entities can now be

major players as evident by the difficulty of identifying sources of attacks and the fact that

newly identified zero-day exploits are even a commodity sold on brokerages to interested

parties including nations. It is not clear how to discourage CPC attacks since anyone with

Internet access can develop and deploy cyberweapons. It is clear, however, that current

approaches to CPC security are lacking and more attention must be paid to developing and

employing them.

2.2.2 CPC Cybersecurity

Similar to classical reliability engineering, the primary security objective for CPCs should

be to bolster resilience to abnormal conditions. Traditionally, resilience for CPCs is defined

as the ability to maintain stable operation in the presence of faults and disturbances. Many

safety-critical systems, such as nuclear power plants, have self-contained mechanical inter-

locks to autonomously enforce system limits. However, interlocks are not widely used among

most CPCs and typically only guard against catastrophic physical process states, acting as

a fail-safe. Since such interlocks may halt process operation until reset, and thus not add

to resilience, triggering them could indicate a successful security breach. Control-theoretic

approaches are developed to bolster resilience by mitigating independent disturbances and

faults. However, they are not developed to cope with cyber threats [28]. Resilience in the

context of cyber components must consider a much broader set of conditions (or attack vec-

tors) leading to disturbances, such as malicious supervisory commands, network intrusions,

malicious firmware or code injections, man-in-the-middle communications compromises, and

Trojan control logic.

As a result of utilizing IT infrastructure, security issues have carried over from IT systems

to CPC systems. Networks, host operating systems (OSs), and users have traditionally been

considered the least trusted elements of the traditional IT domain. Hence, most efforts of

security researchers for CPCs have still focused on protecting networks and software from
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illegal access or malware propagation. Commonplace security measures in the IT domain that

are still finding their way into CPCs include firewalls, intrusion detection systems, encrypted

communications, user authentication, and access control. Unfortunately IT and personal

device perimeter defenses are not a sufficient countermeasure since intrusion protection is

initially reactive rather than preventative. As the Heartbleed exploit recently demonstrated,

the dependence on complex protocols for secure communications will continue to be plagued

by implementation flaws [25]. Most critically, traditional IT cyber security approaches do

not consider the interdependencies between cyber and physical system components [28].

Higher-level protections in a large CPC – including network firewalls, MTUs, and even human

operators – still rely on correct functioning of embedded systems at the leaf nodes. Yet,

modern security approaches do not safeguard against tailored embedded system threats such

as firmware or code modifications [23]. Protocols like industrial Ethernet are currently being

adopted for embedded devices used in CPCs, exposing them to network-penetrating threats.

This is worsened by the fact that embedded platforms also typically do not incorporate

sophisticated network defenses. General-purpose computing device security, such as anti-

virus software, is often reactive and not available for heterogeneous embedded systems. As a

result of the dependence on network security and because embedded device security is lacking

in this domain, there is relatively little for an attacker to do once a network is penetrated.

Recent attacks are evident of the need to mitigate CPC cyber threats not by bolstering

perimeter security, but rather by assuming that potentially all layers of networks and software

have already been compromised and are capable of launching a latent attack while reporting

normal system status to human operators. To accomplish this requires a system security

attribute that manifests quite differently in the IT and CPC domains: add safeguards as

close as possible to what is being protected. For CPCs this suggests protections in the leaf

nodes, i.e. embedded devices.

There is recent work on monitoring embedded devices in CPCs for security purposes. For

instance, the WeaselBoard connects to a PLC backplane to forward intermodule communica-

tion to an external analysis system monitoring for anomalies [23]. Approaches to bolstering

control resilience have also been researched, most of which have origins in fault detection

techniques which are typically based on observing either physical process responses to new

controller inputs or controller responses to new sensor inputs. A control protection archi-

tecture based on monitoring physical process responses to detect faults is described in [13].

The response of the physical process is monitored by decision logic that determines if a
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process violation has occurred. If a violation is detected, dedicated decision logic switches

control to a high-assurance and presumably slower version of the controller until the system

is stabilized. Unfortunately, system stability cannot always be recovered as the controller

fault is not detected until after it has caused the physical process to deviate from allowed

operational limits.

A protection architecture based on observing controller responses to new sensor inputs is

presented in [6]. A process response is sent to both the regular high-performance version of

the process controller and a trusted benchmark version of the controller algorithm. The re-

sponses of both controllers are used to generate a residual that can be evaluated to determine

if a controller fault has occurred. Unfortunately, in this architecture the physical process

is already being affected by the erroneous controller output by the time the controller fault

is detected and corrective actions, such as switching over to a high-assurance version of the

controller, can occur. This can result in the inability to return the system to a stable state

before damage is incurred.

There has also been a recent progress toward designing tailored trustworthy spaces or roots-

of-trust for embedded systems. The objective of trusted computing is to provide assurances

that a system will dependably behave as expected, and do so without concealing additional

functionality. For instance, CodeSeal tries to instill trust in an embedded device by using

an external trust anchor implemented on a separate embedded device, such as an FPGA, to

obfuscate and authenticate its code [23]. Yet in existing approaches, the main distinguishing

feature of CPCs — a singular focus on regulating the state of physical processes — is not

normally exploited. This is an important consideration for development of security solutions

as even the most complex attacks, i.e. on par with Stuxnet, cannot disguise their ultimate

goal of disturbing process stability. In the next section we examine more general, current

approaches to embedded systems security, most of which have yet to be adopted in CPC

applications.

2.3 Trust Enhancement of Critical Embedded

Processes

Trusted computing protections for embedded systems must cope with a myriad of cyber

threats. Some of the general types of attacks that should be considered when developing a



Lee W. Lerner Chapter 2. Trusting the Leaf Nodes 12

trusted component are listed in Table 2.1. The objective of a cyber attack is typically to gain

unauthorized access to, modify, or disable a system. The attacks described here are similar to

those for general-purpose computing systems. Yet, the layered security protections typically

used to address these threats in more general systems are typically lacking in embedded

systems.

Table 2.1: Examples of cyber attacks on embedded processes
Attack Category Compromise of Trusted Component
Malicious commands Supervisory or other external commands which are not

validated by the component may be used to maliciously
bypass or co-opt the component

Network intrusions Access to networked components may bypass higher-level
IT or supervisory security measures and provide an ability
to surreptitiously interact with or modify the component
directly

Denial-of-service The interfaces of the component might be removed or
flooded in an attempt to cause the component to crash or
be otherwise unable to performs its expected services

Unauthorized access and Vulnerabilities enabling access to protected layers can
privilege escalation compromise virtual separation of resources or be used to

bypass protections altogether
Code injection and Tricking the component to execute code or modify protected
memory modification memory can be used to escalate privileges or operate the

component outside of its intended use
Malicious updates Modifications (including downgrades) to firmware versions

can insert malicious functionality or disable critical
security features

Trojan logic Difficult to verify, closed (e.g. third-party), or unprotected
source code may embed malicious triggers or actions into
the component’s innermost layers

In the context of CPCs, trust strategies for embedded components should also have the

ultimate objective of ensuring physical process stability. Regardless of the cyber attack

vector or cyber component corrupted in the overall system, a trustworthy CPC process should

continue to achieve its objective of secure physical process control. Therefore, rather than

analyzing a component’s resilience against specific cyber attack types, assumptions, vectors,

and countermeasures, the relevant analysis is whether a trusted CPC component both follows

a scrutinized set of trusted computing requirements and enforces physical process stability

specifications.
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We propose five such trust requirements (TRs) which should be followed for establishing a

trusted process architecture. A fine-grained trusted component has the following design-time

and run-time attributes:

TR1 The source code and implementation for the entire component is analyzed.

TR2 The component uses private hardware resources for computation, internal communi-

cation, and memory, and does not invoke external components as subfunctions.

TR3 All external communication with untrusted components is through hardware-imple-

mented, bounded, and isolated queues.

TR4 The component cannot be bypassed or disabled, and has a fixed repertoire of essential

services, such as I/O or cryptography.

TR5 Critical functionalities of the component, such as rule checking logic, cannot be updated

without provably secure or physical access.

Existing trust enhancement efforts can be broadly classified as efforts to establish secure

design practices, efforts to validate and verify systems during development or pre-deployment,

and efforts to build-in trusted features into a system that will be enforced post-deployment

throughout the lifetime of a system. In the following section we examine approaches in each

category including how well they satisfy the five TRs. In the next section we then propose

an architecture which satisfies these TRs and preserves physical process security regardless

of cyber attacks outside of the trusted component.

2.3.1 Secure Design Practices

The overall trust of an embedded system can be improved by applying traditional secure

design practices, such as protected firmware updates with certificates, avoiding hard-coded

critical values such as maintenance passwords, and using built-in authentication and encryp-

tion features. However, for embedded controllers more careful attention needs to be paid

in the way designs are implemented. For instance, strict reliability or security driven parti-

tioning and isolation of processes and resources is a requirement in building trusted designs.

Reliance on OSs, hypervisors, virtual machines, or other multi-core security approaches to

preserve isolation can be a dangerous practice as they all multiplex the same physical system
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resources including processors, memory, buses, and peripherals, thus violating TR2. Critical

operations performed by a trusted module should be independent of any external modules

or interfaces, even if the external module has greater privilege, and should have dedicated

physical resources.

As TR2 implies, isolation considerations include not only resource sharing, but also trusted or

untrusted component relationships and interfaces. McLean and Moore showed that fences, or

reserved resources, and red/black analysis can be applied to certify a cryptographic solution

on a single FPGA device [18]. Bus macros with direct routing are carefully inserted to allow

communication between isolated regions. Huffmire et al. developed a system of moats and

drawbridges to provide module isolation and communication control for multiple interacting

cores [11]. Moats are similar in concept to fences in that they ensure modules do not share

resources enabling communication between them. Drawbridges, which can be opened or

closed, are then used to limit a module’s ability to send and receive information on an

interface, such as a connection to a shared bus. Drawbridges may also help to prevent

modules from propagating the effects of undesired behaviors to each other.

Even a design decision made for cost, performance, or ease of implementation reasons can

have security consequences. For instance, the basic choice between software or hardware as

a target technology for critical functions. Consider the small sample of code in Figure 2.2. A

software implementation would be susceptible to stack-corrupting buffer overflows, whereas

a hardware implementation would neither be susceptible to memory corruption or code

injection. A key strength of hardware over software implementation is the removed need for

a contiguously addressable memory structure. Other simple examples of where hardware

implementation would improve security, such as code with integer overflows or wraparounds,

stored hard-coded credentials, or dangerous functions, are typically easy to identify even in

code developed with good intentions.

void copy ( char ∗ arg ) {
char buf [ 1 0 ] ;
s t r cpy ( buf , arg ) ; }

Figure 2.2: Code for a simple copy function
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2.3.2 Pre-deployment Trust Approaches

Pre-deployment approaches seek to establish trust through evaluation or verification of hard-

ware and software components. Hardware fabrication might be inspected in a sample of de-

vices through a variety of destructive and non-destructive techniques, such as sophisticated

imaging of chip layers [4, 14]. In an effort to satisfy TR1, designs can be scrutinized through

static analysis and formal verification techniques, such as simulation, automatic test pat-

tern generation, assertion verification, or model and information flow checking. Evaluation

methods can also be applied on an implementation of a prototype or final system, such as

functional testing or emulation with property checkers. Equivalence checking between vari-

ous stages of the design implementation may even be used to ensure trust in the design tools

themselves.

State-of-the-art trusted computing solutions are limited in their ability to provide assurances

on control flows in embedded systems. Pre-deployment techniques generally focus on eval-

uating modules individually, especially when they are acquired from various sources. These

techniques do not always provide the ability to achieve a given trust confidence level within

a reasonable amount of time. For example, simulation and emulation techniques are some-

times ineffective in finding Trojans and illegitimate behaviors that are difficult to activate

and observe. Verification of software modules is limited by the state-explosion problem.

Verification of hardware is typically more achievable but can require detailed knowledge of

the module in question. A common limitation is that most evaluation methodologies require

the existence of golden references [27].

Perhaps the greatest limitation of pre-deployment trust techniques is the reliance on access

to source code. Unfortunately, a great deal of the code used in CPCs is only available

as binary code, which limits what can be verified with source code analysis or compilers.

Embedded systems are far less amenable to inspection than general purpose computers due to

insufficient examination (e.g. reverse engineering) tools and suitable interfaces [23]. Access

to running systems may not always be feasible making verification techniques relying on

dynamic analysis unpractical.
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2.3.3 Post-deployment Trust Approaches

The constant race to patch system vulnerabilities against newly discovered exploits and the

difficulty in constructing systems which can be fully verified are indicative of the need for

proactive protections to be built-in. Post-deployment solutions focus on building trust into

the system using dedicated resources that provide critical security functions or evaluate se-

curity aspects at run-time. While such protections may be difficult to provide for highly

complicated, general-purpose desktop and server computing platforms, it is possible to cre-

ate them for embedded systems intended for specific applications. Post-deployment trust

technologies used in general-purpose and later embedded systems can be classified by their

enforcement mechanisms. Protections are built from trusted software or hardware compo-

nents which limit untrusted processes or access to resources. Some approaches use a com-

bination of both software- and hardware-limiting schemes to distribute trust responsibilities

to meet security or performance requirements.

Software-limiting schemes establish a hierarchy of trust between software layers, the in-

nermost of which are given exclusive responsibility for allocating and managing hardware

resources such as GPPs, memory, and peripherals. Trusted software processes are used to

vet requests from less trusted processes or users. Examples technologies include software fire-

walls, virtual machines, and hypervisors. Multiple Independent Levels of Security (MILS),

for instance, uses a trusted kernel base-layer to maintain process and data separation be-

tween partitions for applications [2]. The application in each partition runs on top of a

MILS middleware service-layer that provides the mechanisms to enforce security. The archi-

tecture can use a scrutinized version of real-time Common Object Request Broker Architec-

ture (CORBA) to communicate between partitions.

Another example in the embedded computing domain is ARM’s TrustZone technology which

segments hardware and software resources based on levels of trust [1]. TrustZone assigns

applications and resources to either non-secure or secure partitions. Applications from both

partitions are executed on shared processing resources, using either a trusted or non-trusted

OS. A security monitor is used to switch between secure and non-secure kernels as needed

as needed by the applications, and those operating in the non-secure OS are restricted from

accessing trusted peripherals and memory addresses. An insecure design attribute of this

approach is resource sharing which violates TR2.

A security concern with software-limiting solutions is that they depend on software correct-
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ness and its ability to resist malware. Software’s verification complexity makes it susceptible

to known vulnerabilities, such as using buffer overflows to execute code that masquerades

as data, and the possibility for zero-day exploits. TrustZone and MILS have grown in code

complexity to the point that TR1 can no longer be easily satisfied in most implementations.

A recent TrustZone vulnerability was discovered in which an integer overflow flaw in Secure

Monitor Call requests allows an attacker with escalated kernel-level privileges to issue con-

trolled data writes to arbitrary secure memory, which could be exploited to execute arbitrary

code [21]. Along these lines, the only potential security advantage over an OS that a hyper-

visor might have is that it is simpler. However, a production hypervisor will still likely not

be amenable to formal validation. Additionally, software-oriented solutions do not always

offer the performance necessary to monitor high-speed, real-time, embedded systems.

In hardware-limiting schemes, typically static hardware units are used to separate software

processes and data. Hardware controllers can also have exclusive responsibility for managing

hardware-implemented processes or channels, and can deny requests from software at any

layer. Examples for general-purpose computers include hardware firewalls, the protected

input and graphics components of Intel’s Trusted Execution Technology [12], Intel’s upcom-

ing Software Guard Extensions (SGX) [13], and the Trusted Computing Group’s Trusted

Platform Module (TPM).

A TPM, whose main function is to preserve platform integrity, provides remote attestation

by creating hash-key summaries of system configurations as well as cryptographic functions

for secured data binding and storage [10]. Standalone TPMs satisfy all five TRs, though they

are typically used as sub-modules to software (thus violating TR2 and potentially TR4), not

to handle critical interactions with physical processes. Microsoft’s Next-Generation Secure

Computing Base (NGSCB) is a software architecture built on the security provided by a

TPM [19]. The TPM is primarily used to ensure that the system starts in a known good

state. NGSCB consists of both trusted and untrusted mode kernels, with the trusted kernel

providing a secured environment for trusted code to execute in. In the current architecture,

applications must be written to take advantage of the security features provided. This

approach also suffers to satisfy TR1. In an effort to satisfy TR3, a manager is built into

the operating system to exchange data between the trusted and untrusted modes. In Intel’s

SGX, trusted execution environments, or enclaves, are created for applications in the context

of potentially untrusted OSs, without the dependence on external TPMs.

An increasingly attractive hardware-limiting approach for embedded devices is to implement
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TPM-like, run-time, hardware-based monitors that are derived from a system’s operational

or security specifications. Assertions or test benches used to test the system during the

design phase can be translated into properties to check for in real-time. This design-for-

trust protection scheme does not assume the existence of a golden reference or the ability to

inspect the internals of third-party intellectual property modules [4]. It provides assurances

for suspected behaviors that are difficult to activate or prove. Tailored, hardware-based

checkers can easily satisfy most requirements and provide the performance necessary to

deter high-speed attacks.

An example is the specialized language developed by Huffmire et al. to specify legal memory

access policies for FPGA-based embedded systems [11]. The policies are synthesized into a

reconfigurable hardware reference module that decides the legality of every memory access

request generated from a datapath module. This work was further developed into a method of

generating hardware-based security checkers to detect processor malicious inclusions at run-

time [4]. Security-relevant invariants of a processor’s architectural specification are described

on corresponding circuits of the processor’s design using Property Specification Language

assertions. Security checkers are then automatically generated as synthesizable hardware to

verify linear temporal logic properties of expected behaviors. A drawback to this approach

to property specification is that it requires low-level knowledge of the designed circuits.

This limits the ability for more abstract, specification-level security assertions to be made

without incurring additional designer translations. The use of domain-specific and specialized

languages also have drawbacks of unfamiliarity to designers, and limited ability to concisely

capture complex monitoring and enforcement circuit behaviors.

For embedded devices Abramovici and Bradley proposed an application-dependent defense

infrastructure in which datapath signals are monitored for unexpected or illegal behaviors

[1]. The signals are selected by a designer directly in a hardware design language and

grouped to create multiplexed probe networks that source information to security monitors.

The hardware-based security monitors are configurable finite state machines that check the

current set of selected signals for behavior properties also specified by the designer. The

signal probe network and monitor configurations are controlled by a security processor,

which may initiate countermeasures to failing security monitors.

Abramovici and Bradley assert that security checkers should be invisible to embedded soft-

ware to increase security, which is consistent with TR2. Though, in their proposed protection

scheme embedded software is used to control the hardware configurations of the distributed
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defense infrastructure. This approach has the advantage of being able to reason about

complex properties of overall system performance or health testing. However, it is suscep-

tible to software vulnerabilities and is unnecessarily complex if trust and security can be

more tightly associated with suspicious modules. The system of countermeasures is also

software-initiated, which limits performance and is often inappropriate for attacks executing

at hardware speeds.

Unfortunately hardware-limiting advances from high performance desktop and server com-

puting platforms are being adopted by embedded systems at a considerably slower rate than

their software-limiting counterparts. For instance, hardware-limiting protections are typi-

cally not provided for control flow assurances in platforms that make up the majority of

embedded processing. This adoption typically lags due to concerns that security measures

will overwhelm tight cost and power constraints. When assurances are provided, they are

typically aimed at protecting against physical attacks. Adoption is further complicated by

the general-purpose nature of devices and intellectual property that embedded systems are

built from.

For CPCs trusted computing architectures must also consider appropriate countermeasures

to remain resilient against attacks. The Huffmire et al. monitoring-oriented solution does

not discuss integration of countermeasures or real-time enforcement within a system. The

authors do, however, indicate that a limitation of this approach is its susceptibility to at-

tacks that are effective before they are detected and an opportunity for countermeasures is

provided. In the scheme presented by Abramovici and Bradley, countermeasures are imple-

mented by controlling specified datapath signals. When a security violation is detected, the

software control processor may override signals or take actions to isolate a core. However,

the authors acknowledge that broader countermeasures are required to create a system-level

protection scheme. In general, it is likely an intractable problem to create real-time coun-

termeasures tailored specifically to every possible attack on every system interface. Thus,

a security designer must also be given the flexibility to create abstract countermeasures or

real-time enforcement practices that align with system specifications. Table 2.2 provides a

summary of trust requirement satisfiability for the security architectures discussed in this

section.1

1Trust requirement satisfiability may vary between implementations
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Table 2.2: Summary of trust requirement satisfiability for run-time protections
Trust Architecture TR1 TR2 TR3 TR4 TR5
Hypervisor X X X X X
MILS X X X X X
TrustZone X X X X X
TPM X X X X X
NGSCB X X X X X
Tailored HW Checkers X X X X X

2.4 Trustworthy Autonomic Interface Guardian Archi-

tecture

The TAIGA addresses all previously described classes of CPC attacks using an approach

distinguished by adding resilience to the embedded controller, rather than seeking to pre-

vent attacks from ever reaching the controller. TAIGA provides an on-chip, digital, security

version of classic mechanical interlocks. This last line of defense monitors all of the com-

munications of a controller using configurable system-on-chip (SoC) or external hardware

that is inaccessible to the controller processor. TAIGA overrides any controller actions that

are inconsistent with system specifications, including prediction and preemption of latent

malwares attempts to disrupt system stability and safety.

TAIGA is a trusted monitor which can both limit the external consequences of internal

malware and detect external attempts to use an interface in an unsanctioned manner. TAIGA

also serves as a trust anchor to check the integrity of updates, and is trustworthy even if

application and task management software are not [15]. Unlike mode-based operating

systems, hypervisors, or security extensions such as ARM’s TrustZone, TAIGA adheres to

TR2 by using true resource isolation rather than software-mediated context switching of

shared hardware resources. Source code is not needed for application and supervisory code,

and the only inputs to TAIGA are the CPC specifications and models.

TAIGA was conceived from the confluence of several disciplines that are normally treated

separately, including: control systems engineering, security engineering, model-based de-

sign, system-on-chip development, and source code formal analysis. In order to enhance

trust in critical embedded processes, TAIGA redistributes responsibilities and authorities

between a controller and a configurable, hardware-implemented interface controller, simpli-
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fying controller software without degrading performance while separating trusted compo-

nents from updatable software. The interface controller is synthesized from C code, formally

analyzed to satisfy TR1, and permits run-time checked, authenticated updates to certain

system parameters but not guard code. TAIGA’s main focus is ensuring process stability

even if this requires overriding commands from the controller or supervisory nodes. Adding

trusted, application-tailored, software-inaccessible, autonomic hardware leverages commer-

cial programmable SoC platforms without degrading real-time performance or increasing

size, weight, and power, which is especially important for autonomous systems. By being

independent of the embedded systems application, network, or OS software layers, TAIGA

greatly reduces the attack surface and possible zero-day exploits. TAIGA is not domain-

specific and can be developed for CPCs in many scenarios, such as unmanned systems,

manufacturing, industry, and transportation.

Figure 2.3 illustrates how TAIGA is the sole means by which a controller’s GPP commu-

nicates through any external interface to sensors, actuators, and networks. TAIGA uses

hardware-implemented first in, first out (FIFO) modules for intermodule communication,

thus satisfying TR3. All external traffic is monitored by the TAIGA, which can override

GPP actions if a physical process is deviating from specifications. To mitigate a Stuxnet-like

attack, the TAIGA can take corrective action (such as reverting to a backup controller) and

generate alarms without GPP assistance should a controlled physical process risk instabil-

ity due to malware-infected GPP code, malicious requests from supervisory units, or sensor

malfunctions. Hence TAIGA satisfies TR4 acting as a physical process guardian by enforc-

ing formally validated safety and liveness properties that are independent of GPP software

actions or inactions.

TAIGA specification guards can be classified as operational or safety guards. Operational

guards are enforced to meet the standard process specifications. They are typically simple,

such as hard bounds on operating limits for the sensor measurements and control signals.

Safety guards ensure that the process remains stable and protects the plant from safety

hazards. For safety guard violations, defensive mechanisms such as relief valves and auxiliary

power for electro-mechanical systems brings the process back to safety. Guards are isolated

in hardware logic and can only be updated by physical access in the most secure scenario,

thus satisfying TR5. However, to allow for flexibility in control algorithm or process tuning

(such as coping with component aging), TAIGA does validate and allow range-restricted

updates to particular guard enforcement values.
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Figure 2.3: Abstract TAIGA architecture

TAIGA is capable of predicting malware attacks rather than just reacting to them. A copy of

the controller application can communicate with an embedded model of the physical system.

This virtual control loop can be accelerated to foresee latent malware in the production

control code [7, 15]. If this occurs, the backup controller or other safety measure can be

invoked preemptively. The model, specification guards, switches, and backup controller can

all be implemented in configurable logic and therefore inaccessible to the GPP and network.

2.4.1 Illustrative Example: Robotic Control

This demonstration simulates a hazardous cargo-carrying mobile robot similar to those being

adopted in industrial settings today. In high-risk environments such as these, physical pro-

tection and availability of plant equipment are critical. The demonstration platform is the

commercially available Lynxmotion Johnny 5 robot, which utilizes differential drive treads
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as well as a small servo-controlled humanoid body. Two sets of downward facing reflectivity

sensors allow the robot to perform line-following. C-based controller code runs on an ARM

processor which receives commands via Ethernet from the plant’s control network. Network

commands may include operator or automated plant generated commands.

The robot follows a set of black and green floor markings as it uses its arms to grab and

transport cargo between two drop stations. Because the robot performs a series of complex

actions in a sequence, it utilizes different sets of control laws in each step. The set of control

laws, which determines vehicle direction, line-following algorithm, and arm positioning, is

determined by the value of a status variable. The status variable follows a state machine

that describes the robot’s behavior with respect to the overall process as shown in Table 2.3.

The status variable may be incremented by a floor marking color transition, which indicates

the robot has moved into a new physical zone, or by a timer, which indicates a specific action

is complete.

Table 2.3: Robot status and control actions for cargo transfer application
Status Control Law

Id Overall Action Tracking Hand Motor
Algorithm Position Direction

0 Wait for start None Dont care Stopped
1 Grab at station 1 Forward Dont care Forward
2 Grab at station 1 Forward Dont care Forward
3 Grab at station 1 None Ready Stopped
4 Grab at station 1 Forward Ready Forward
5 Grab at station 1 None Grabbing Stopped
6 Drop at station 2 Reverse Holding Reverse
7 Drop at station 2 Reverse Holding Reverse
8 Drop at station 2 None Dropping Stopped
9 Wait for start Reverse Locked up Reverse
10 Wait for start None Ready Stopped
11 Grab at station 2 None Ready Forward
12 Grab at station 2 Forward Ready Forward
13 Grab at station 2 None Grabbing Stopped
14 Drop at station 1 Forward Holding Forward
15 Drop at station 1 None Dropping Stopped
16 Wait for start Reverse Locked up Reverse
17 Wait for start Reverse Dont care Reverse
18 Wait for start Reverse Dont care Reverse
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To simulate a supervisory control network, remote stations are permitted to establish shell

connections to the control board. This enables control stations to update the controller code

directly on the robot. Alternatively, a station can launch a separate run-time command

executable which sends entered commands to a pre-determined file on the robot. In each

iteration of the main control loop, the controller searches and parses this file, and immedi-

ately executes any recognized commands. Commands can include higher-level motor control

actions, or lower-level modifications to controller variables and settings.

Vulnerabilities in the user interface, other plant components, or the network itself may prove

to be easy attack vectors. Attacks might aim to damage or destroy the plant by directly

commanding the robot or updating the controller code to drop its cargo and damage the

plant. The Common Vulnerability Scoring System (CVSS) created by the Department of

Homeland Security provides a method to quantify possible vulnerabilities and their poten-

tial damages on a scale from 0-10 [20]. Because moderately simple attacks on the control

network can do catastrophic losses to the plant, the system contains multiple vulnerabili-

ties with a CVSS score of 7 or higher, classifying the system as “high” risk. The CVSS

v2 vector, which summarizes the reasoning for the score using a series of abbreviations, is

AV:A/AC:L/Au:S/C:C/I:C/A:C.

TAIGA Functionality

By directly evaluating the controller commands, TAIGA’s design allows it to prevent physical

process damage regardless of the attack vector. In order to distinguish between normal and

abnormal operation, TAIGA uses status information. As TAIGA sends sensor data to the

primary controller, it also analyzes the readings to maintain its own status state machine

very similar to the primary controller. It stores the value of the status in a state register

shared with the backup controller, which enables that controller to take over correctly upon

primary controller failure.

Each TAIGA iteration begins with a check to see if a command has been received from

the primary controller, as shown in Figure 2.4. If a command has been received, TAIGA

first performs a series of logical checks to ensure that the command is in accordance with

the specification guards. The specification guards are created by the control designer as

a tailored set of conditions which should be upheld, such as keeping motors within a safe

operating speed. The specification guards are self-contained and application-specific, thus
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satisfying TR4.

Next, TAIGA verifies the command meets the operational guards, which vary depending

on the status variable. Design of the operational guards begins with the control designer

listing system stability states or possible actions which would result in system damage. The

designer then looks at what commands or sequence of commands would lead to such damage

from the each status, and blocks them in the operational guards. The operation guards

can be described a type of a control law that, instead of describing which actions to take,

describes which actions not to take. If the commands fail to meet either the specification

guards or operational guards, TAIGA reverts to the backup controller.

If no command is initially received from the primary controller, TAIGA checks to see if a

safety-critical command should have been sent in the current status. Safety-critical com-

mands are defined by the control designer as high-priority commands such as stopping,

properly dropping cargo, or performing line following. If an expected critical command does

not arrive in a specified amount of time, TAIGA assumes the primary control has failed and

reverts to the backup controller. In this experiment, the backup controller returns the cargo

to its original station, and resets the robot to its starting location.

Implementation

Our robot system consists of two commercially available, Zynq-7000 SoC FPGA-based,

ZYBO development boards. One SoC contains the physical process guardian, while the

other contains the physical process controller. To satisfy TR3, the only point of contact

between them is a dual 32-bit FIFO interface allowing for the bidirectional exchange of com-

mands and responses. In separating the updateable and untrusted control software from the

trusted physical process drivers and utilities, possible attack vectors through this FIFO inter-

face are reduced. Standard hardware description languages (HDLs) are used for some aspects

of implementation, as well as higher-level programming languages which are synthesized to

hardware using Xilinx’s Vivado high-level synthesis (HLS).

The physical process controller, outlined in red in Figure 2.5, runs a basic Linux distribution

on ARM core 0. Note that the ARM has a solid border, indicating that is a hard core, as

opposed to a dashed border which indicate soft cores. The programmable logic contains a

dual 32-bit FIFO interface, as well as a 32-bit serializer/deserializer (SerDes) for commu-

nication with the physical process guardian. Linux handles all networking and scheduling,
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and ensures the physical process control application(s) are running. The interfaces to these

FIFOs consists of a simple HLS module. The FIFO interface connects to the custom 32-bit

SerDes which handles the 32-bit full duplex communication between the two separate SoCs.

The physical process guardian is outlined in green. Commands from the process controller

are transmitted to the guardian and vice versa.

Figure 2.5: Process controller with TAIGA implementation using dual SoC devices

The process guardian runs Free Real Time Operating System (FreeRTOS) on ARM core 0.

FreeRTOS maintains a model of the physical process, and makes the current state of the

process known to the monitor via a simple four-bit process state register. It also maintains

ongoing low-level control of the physical process, such as scheduled sensor reads or servo

motion. Higher-level commands are received from the process controller SoC and executed,

being already validated by the TAIGA. Some commands require responses containing sensor

data, which FreeRTOS writes to the outgoing FIFO in the interface.

The TAIGA monitor is also implemented using HLS, and acts as an interface guardian. The

internal modules within the monitor are parts of the C application used to synthesize the

monitor hardware. Triggers determine which FIFO interface to use as the control source

based on the physical process state and incoming commands from the process controller.

When a new 32-bit command can be read from the FIFO interface, the monitor does so and

enforces the specification guards. Some guards require contextual information about the

physical process to be enforced, which is read from the four-bit state register maintained by

the process model in the real-time kernel. The monitor considers a 32-bit command that does

not violate any specification guard valid and writes it to the FIFO interface for execution by
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FreeRTOS. Command responses from FreeRTOS follow a parallel control path in the oppo-

site direction back to the physical process controller. The backup controller is implemented

in a MicroBlaze soft processor running a bare metal application in the programmable logic.

If triggered, the backup controller wakes, reads the current state of the physical process

from the four-bit state register, and then stabilizes the physical process using a verifiable

algorithm.

TAIGA protections are implemented entirely in isolated programmable logic, thus satisfying

TR4, and in adherence with TR5 are static outside of the range-checked specification guard

values. The logic configuration ports are not interfaced with any other processes in the

system. To keep TAIGA flexible yet secured, physical access to logic is required to perform

an update. Standard programmable security mechanisms, such as bitstream encryption and

authentication, are used to protect process information and require maintenance personnel

to have the appropriate credentials.

The additional hardware resources used are small percentages of the totals available on the

two SoCs. As seen in Table 2.4, the highest utilized resource is the LUT at 9%. The type

and size of FIFO used in the TAIGA interfaces is dependent on the platform and application,

not fixed. The HLS modules used to accomplish this each use 206 FFs and 291 LUTs, which

are only hundredths of a percent of the totals available. The monitor hardware, arguably

the most critical aspect of the TAIGA, uses very few resources.

Table 2.4: TAIGA FPGA resource utilization
Component I/O FF LUT BRAM SRL16E
Guardian Monitor 0 131 247 0 0
SerDes 8 316 168 0 0
Backup controller 0 980 1256 2 225
Total Available 100 35200 17600 60 6000
Percent Utilization 8 4 9 3 4

If it is not practical to add a separate chip to implement TAIGA, isolation of trusted and

untrusted regions can also be accomplished with a single SoC by instantiating an additional

MicroBlaze soft processor to run the real-time kernel. In this example application, a single

SoC implementation would be quite similar to the dual SoC implementation. The two SerDes

modules are no longer required. However, the real-time kernel application is larger than that

of the backup controller, requiring a larger instruction memory for its soft processor. This

results in additional required block memories, though much less than the quantity available.
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The process guardian uses four different clocks in total, as shown in Tables 2.5 and 2.6.

A 100 MHz clock runs process-specific cores which require that specific frequency. A 150

MHz local bus clock runs the Advanced eXtensible Interface (AXI) infrastructure, monitor

hardware, and other peripheral cores. The SerDes link utilizes the external clock from the

incoming serial channel as well as a local clock for the outgoing serial channel. These clocks

are not synchronized, and run at either 50 MHz single-ended, or 200 MHz differential. The

component which adds the most latency is the SerDes link, requiring 70 clock cycles to read

a value from a FIFO, transmit it, and write it to a FIFO on a different SoC. A unified

implementation on only one SoC would gain a significant drop in latency with a modest gain

in hardware resource utilization. The latency added by the monitor hardware depends on

the guards enforced.

Table 2.5: TAIGA latency analysis

Component Latency
Component Clock Frequency Additional Clock Cycles

MHz (Min : Max)
Monitor 150 2 : 7

32-bit SerDes 50 or 200 35 : 35

Table 2.6: TAIGA timing path analysis
Timing Path Latency

Path Worst Case Added
Latency (ns)

Linux to real-time kernel @ 50 MHz 1407
Linux to real-time kernel @ 200 MHz 38
Backup controller to real-time kernel 47

Formal Verification and Testing

Rigorous functional verification can be the most time consuming part of system development.

However, we demonstrate that a HLS design flow enables the leveraging of high-level formal

tools to expedite the verification process. Proofs are written in order to test properties

directly on the software source code design for the TAIGA-augmented controller. Hence, the

verification model does not require abstraction of the implemented source code. Proofs on the
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C code are hardware independent and are not concerned with low-level timing. Additionally,

in order to prove properties of security and promote TR1, the verification space is reduced

from the entire system to only TAIGA additions.

For security analysis we are most concerned with evaluating TAIGA additions. The source

code for a specification guard module annotated with ANSI/ISO C Specification Language

(ACSL) is shown in Figure 2.6. In this example we use multiple function contracts,

verify all valid and verify any invalid, to perform a case analysis of all possible values

that could be passed to the specification guard. An assumes clause is used in each proof

contract to provide variable ranges and make the function return value determinate in all

conditions. The first contract, verify all valid, ensures that when the variables passed

to the guard are within specification the function will evaluate to true (one). Similarly, the

second contract, verify any invalid, ensures that when a variable is out of specification

the function will evaluate to false (zero).

Frama-C’s Jessie plugin was used to verify the proofs for the specification guard [3]. Every

obligation was discharged by the Alt-Ergo prover, thus ensuring our confidence in the oper-

ation of the module. When multiple function contracts are used we are also able to reason

about the overall set of behaviors. The disjoint behaviors and complete behaviors

clauses indicate that the set of behaviors are complete and disjoint and should all be taken

into account during analysis. The Alt-Ergo prover was able to discharge both of these checks

ensuring all possible variable values were covered by the proofs. The provers were also able

to discharge additional safety checks, such as array bounds checking. However, these safety

checks are not as relevant to TAIGA since it is implemented in hardware.

Another useful Frama-C plug-in is value analysis which automatically computes variation

domains for the variables of the program [9]. In other words, value analysis provides sets of

possible values for the program variables. Value analysis is context- and path-sensitive, and

generally considered most useful for embedded code. Aside from providing final variable value

ranges for terminating functions or at various points throughout program execution, the plug-

in also computes the truth value of any precondition, postcondition, or other user assertion

as it is encountered. TAIGA supports limited updates to specification guard variables to

cope with control algorithm adjustments or process tuning. Value analysis is used to ensure

that these updateable parameters can never be set outside of specified limits [10].

The motor controller interface in our example application emulates a servo, allowing us to
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typede f unsigned u8 ;
typede f unsigned u32 ;
enum State s {DROPPED, GRABBED} ;
#d e f i n e SERVO POS MAX 2500
#d e f i n e SERVO POS MIN 500
#d e f i n e va l idateThre sho ld ( value , upper , lower ) ( ( va lue >= lower &&

value <= upper ) ? 1 : 0)
// Function f o r o p e r a t i o n a l guard on the servo p o s i t i o n value
/∗@ass igns \ r e s u l t ;
behavior v e r i f y a l l v a l i d :

assumes ( ( p r o c e s s s t a t e == DROPPED) && ( ( command <= SERVO POS MAX) &&
(command >= 1200) ) ) | |

( ( p r o c e s s s t a t e == GRABBED) && ( ( command <= 750) && (command
>= SERVO POS MIN) ) ) ;

ensure s \ r e s u l t == 1 ;
behavior v e r i f y a n y i n v a l i d :

assumes ( ( p r o c e s s s t a t e == DROPPED) && ( ( command > SERVO POS MAX) | |
(command < 1200) ) ) | |

( ( p r o c e s s s t a t e == GRABBED) && ( ( command > 750) | | (command <
SERVO POS MIN) ) ) ;

ensure s \ r e s u l t == 0 ;
d i s j o i n t behav ior s v e r i f y a l l v a l i d , v e r i f y a n y i n v a l i d ;
complete behav ior s v e r i f y a l l v a l i d , v e r i f y a n y i n v a l i d ; ∗/
u8 servoPos i t ionOperat iona lGuard ( u32 command , enum State s p r o c e s s s t a t e

) {
u8 r e t v a l = 0 ;
i f ( p r o c e s s s t a t e == DROPPED) {

r e t v a l = va l idateThre sho ld (command ,SERVO POS MAX,1200)
;}

e l s e i f ( p r o c e s s s t a t e == GRABBED) {
r e t v a l = va l idateThre sho ld (command ,750 ,SERVO POS MIN) ;}

re turn r e t v a l ;}

Figure 2.6: TAIGA specification guard function annotated with Frama-C
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consider the servo position as positive and negative velocity. The graphs shown in Figure 2.7

display the positions of servos during different events of a physical test experiment. The

gray areas indicate a range of acceptable positions for the given state, while a black line

represents a single valid position for the servo at that particular instant. A dashed red line

represents a failed attempt to set the servo to the indicated position, while a solid red line

would indicate a successful manual override (if TAIGA had not prevented them all). These

manual override attempts simulate malicious commands injected during actual run-time of

the robot.

Figure 2.7: Robot with TAIGA experimental testing results

2.5 Conclusion

In this work we surveyed cyber threats to CPCs to illustrate that perimeter and network

defenses to security are failing to protect against complex attacks on CPCs. Embedded

controllers are increasingly penetrated in cyber attacks leading to disruptions in process

operations and even physical damage. Unfortunately, tailored security at the CPC leaf

nodes is lacking. We provided a taxonomy of existing approaches to embedded systems

security, some of which have already been applied to aid in protecting CPC processes. We

proposed five requirements that should be followed when creating a fine-grained trusted

component and described how well existing security approaches adhere to them. We also
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proposed an architecture for embedded systems used in CPCs which satisfies all five of these

requirements. TAIGA is an isolated, hardware-implemented, verifiable, tailored trustworthy

space which monitors embedded controller interactions with external CPC components to

ensure system-level specifications of stability and security are maintained.

More approaches like TAIGA are needed as it is increasingly clear that security for embedded

systems is paramount in CPCs. Embedded security should not be a hand-me-down from

approaches developed for networks or general-purpose computing platforms. It should also

not be an afterthought when developing CPCs. Rather, it is up to designers and upper-level

decision makers to adopt best security principles, practices, and architectures specific to

their CPC application during system development.

An area of ongoing research is TAIGA implementation and efficiencies in a variety of CPC

environments. Complex CPCs often have many control loops which must function in a coor-

dinated fashion. Architectural modifications may be required to scale and distribute TAIGA

among multiple embedded systems in such an environment. Alternatives to implementing

TAIGA alongside during the controller development process should also be investigated.

For example, TAIGA integration with existing, third-party CPC controllers should be ad-

dressed. Alternatives to programmable logic-based TAIGA implementations might be more

appropriate in some cases. The possibility of applying TAIGA to other domains outside

of run-time CPC protections should also be investigated. For instance, TAIGA also has a

potential system development and analysis use by providing real-time interface observability

and controllability.
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Chapter 3

Isolating Trust in an Industrial

Control System-on-Chip Architecture

3.1 Abstract

A distributed industrial control system (ICS) also distributes trust across many software and

hardware components. There is a need for some malware countermeasures to be independent

of application, supervisory or driver software, which can introduce vulnerabilities. We de-

scribe the Trustworthy Autonomic Interface Guardian Architecture (TAIGA) that provides

an on-chip, digital, security version of classic mechanical interlocks. In order to enhance

trust in critical embedded processes, TAIGA redistributes responsibilities and authorities

between a Programmable Logic Controller (PLC) processor and a hardware-implemented

interface controller, simplifying PLC software without significantly degrading performance

while separating trusted components from updatable software. The interface controller is

synthesized from C code, formally analyzed, and permits runtime checked, authenticated

updates to certain system parameters but not code. TAIGA’s main focus is ensuring process

stability even if this requires overriding commands from the processor or supervisory nodes.

The TAIGA architecture is mapped to a commercial, configurable system-on-chip platform.

37
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3.2 Introduction

Many technologies developed initially for personal and IT platforms eventually appear in

high-performance embedded systems. For example, architectural enhancements such as

multi-core processors, heterogeneous accelerators, multi-level caches, and TCP/IP network

interfaces are now common in state-of-the-art embedded platforms. Malware is also mi-

grating from computer systems used mostly for exchanging information and processing data

to PLCs controlling physical processes. Unfortunately IT and personal device perimeter

defenses are not a sufficient countermeasure since intrusion protection is initially reactive

rather than preventative, and PLC platforms typically do not incorporate sophisticated net-

work defenses. Verification is not significantly easier due to the overall embedded system

complexity and periodic software updates from many sources. Yet the main distinguishing

feature of control systems — a singular focus on regulating the state of physical processes —

is not normally exploited when trying to enhance security and trust. In both environments

supervisory code may be responsible for managing system resources and processes. However

this code does not enforce process-specific rules, or any rules at all in the case of a simple

real-time kernel such as FreeRTOS.

As illustrated in Fig. 3.1, the ultimate objective of ICS malware is PLC behavior modification

from: (1) process-harming Master Terminal Unit (MTU) or human operator commands; (2)

false data injection; or (3) updates to PLC code. Replicating SCADA network gateways [5]

and MTUs [14] are examples of countermeasures for MTU-directed attacks. Compromised

communication between system components may prevent a PLC from maintaining process

stability, although physical security may mitigate this threat. Stuxnet, a virus designed

to tamper with PLCs controlling centrifuges, demonstrated a powerful attack vector via

changes to controller code [4]. Changes to both PLC software and firmware (supervisory

code and drivers) need to be considered [24]. We address all three classes of attacks, and

our approach is distinguished by adding malware resilience to the PLC rather than seeking

to prevent attacks from ever reaching the PLC.

With the advent of configurable system-on-chip (SoC) platforms combining microcontrollers

with programmable logic, we propose trust enhancement of critical embedded processes at

a level below even the kernel, namely a self-contained I/O processor. The Trustworthy

Autonomic Interface Guardian Architecture (TAIGA) is the sole means by which a PLC’s

general-purpose processor (GPP) communicates through any external interface to sensors,
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Figure 3.1: Threats to programmable process controllers

actuators, and networks. All external traffic is monitored by the TAIGA, which can override

GPP actions if a physical process is deviating from specifications. To mitigate a Stuxnet-like

attack, the TAIGA can take corrective action (such as reverting to a backup controller) and

generate alarms without GPP assistance should a controlled physical process risk instability

due to malware-infected GPP code, malicious requests from MTUs, or sensor malfunctions.

Hence the TAIGA acts as a physical process guardian by enforcing formally validated safety

and liveness properties that are independent of GPP software actions or inactions. Commer-

cially available configurable SoC platforms enable GPP software executed on ARM cores and

TAIGA implementation in programmable logic. The TAIGA’s mapping to hardware allows

the integration of security and I/O processing without incurring unacceptable performance,

power, or size trade-offs. GPP software is simplified since serial bus and network interface

device drivers are no longer needed.

In addition to offloading I/O, security, and trust responsibilities from GPP software, TAIGA

modifications are more controlled than GPP software changes. While remote or GPP-

directed updates to the configurable logic are disallowed, an encrypted, network-facing main-

tenance port allows restricted, authenticated updates to a subset of system parameters. The

GPP is not involved in these transfers since the GPP connects to the network interface

through the TAIGA. After decryption and authentication using TAIGA-internal keys and

cryptographic modules, TAIGA checks parameter update values using static code that goes

through the same formal validation steps as process monitoring code. An example of a

permitted update is a range-limited model coefficient adjustment to accommodate physi-

cal resource (e.g. motor) aging. On the other hand, changes to code such as the backup

controller are disallowed and would require replacement of the configurable logic bitstream

defining the TAIGA. This is in sharp contrast to GPP updates that may change any data,

software or firmware.
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TAIGA’s abstract organization, concrete implementation, and update safeguards are pre-

sented in Section 3.3. Section 3.4 illustrates TAIGA protections for a simple motor controller

running on a Xilinx Zynq-7000 SoC. Finally, Section 3.5 summarizes completed and ongoing

work.

3.3 TAIGA Overview

3.3.1 Interfaces and Internal Structure

As shown in Fig. 3.2, TAIGA is a module serving as the sole path between a PLC microcon-

troller’s internal bus and peripheral controllers. Hence it has two ports: a bus slave interface

to GPPs, and a bus master interface to peripherals. Neither GPPs nor peripheral controllers

require modification. Architecturally the TAIGA has similarities to I/O channel processors

still used on mainframe computers, and the overall system organization remains consistent

with modern SoC design. All communication between GPPs and external serial buses (such

as I2C, SPI, or UARTs) and the network interface (such as Ethernet) are routed through the

TAIGA, which is also responsible for initializing peripheral controllers. While a single logical

port is presented to GPPs, the TAIGA can have multiple memory-mapped physical ports

on the GPP’s bus and individual connections to one or more peripheral controllers. As a

result the TAIGA does not necessarily degrade I/O concurrency compared to a conventional

organization in which the GPPs communicate with all peripherals through a single shared

bus, although I/O latency may increase.

TAIGA’s internal blocks are listed in Table 3.1. Methods of implementation depend on the

target technology, with one mapping described in Section 3.3.2.

3.3.2 Implementation on a Commercial Configurable SoC

Xilinx’s Zynq-7000 All Programmable SoC integrates both a Processing System (PS) and

Programmable Logic (PL) on a single 28nm chip [10]. The PS uses an AXI bus to connect

an ARM Cortex-A9 dual-core GPP, two levels of cache, on-chip memory, internal timers,

and a large collection of controllers for peripherals such as external memories, serial buses,

and Ethernet. The PL uses programmable segmented routing to connect hardware resources
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Figure 3.2: TAIGA insertion in a generic PLC microcontroller

such as configurable logic blocks, block memories, arithmetic units, clock managers, and I/O

blocks. The PS can operate independently of the PL, but these two subsystems can also

communicate in several ways.

Fig. 3.3 shows a PL insertion of the TAIGA. There is only one overall AXI bus allowing

the GPPs to communicate directly with peripheral controllers without going through the

TAIGA. This mismatch with Fig. 3.2 does not prevent a TAIGA implementation, and it is

straightforward to generate addressing exceptions if the GPPs issue addresses in the range

reserved for peripheral controllers. Looking at Table 3.1, the PL already has pairs of 32-

bit AXI master and slave interfaces. In order to implement the Ethernet controller’s IP

stack, the master interface incorporates a MicroBlaze soft processor. All other TAIGA

components, except the junction box, are captured in ANSI C code and implemented in the

PL using Xilinx’s high-level synthesis (HLS) tool. HLS support of floating point simplifies

the specification guards, plant model, backup controller, and monitor. The junction box is

implemented in the Verilog hardware description language since it mostly implements 32-bit

connections between the other components.

Security ramifications of using a PS core and memory to implement prediction need to be

considered. Advantages include performance and complete production controller emulation

including firmware such as FreeRTOS. Prediction’s plant model and specification guards

reside in the TAIGA and cannot compromised by malware. At worst the prediction controller
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Table 3.1: TAIGA internal components

Name Use

Bus slave unit(s) Connects to GPPs

Bus master unit(s) Connects to peripheral controllers

Specification guards Decide if plant sensor readings have valid ranges

Plant model State prediction and sensor integrity checks

Backup controller Preserves plant stability

Monitor Checks the specification guards, current plant

state, and predicted plant model state to decide

whether the backup controller should override

the GPP’s production controller

Cryptographic unit Encrypt/decrypt and authenticate blocks using

internal keys

Parameter update Uses the crypto unit to read process parameter

update requests and write them to flash memory

Junction box Connects the above components

can cease to function correctly or attempt to interfere with the production controller, thereby

invoking the backup controller.

3.3.3 Parameter Update Process

TAIGA protections could be nullified if unrestricted updates to the PL configuration are

allowed. We assume ICS physical security or else direct sabotage of the plant or actuators

would be possible. Zynq-7000 boards can prevent PS-initiated reconfiguration of the PL

by requiring jumper changes to load an AES-encrypted bitstream into flash memory. The

bitstream encryption key must match the decryption key stored in non-volatile memory on

the Zynq device.

While remote bitstream updates to TAIGA control logic are disallowed, there is still a

need to support remote maintenance updates to system-level constants and coefficients used

by the specification guards, plant model, and backup controller. These constants form a

system parameter set whose current, minimum and maximum values are stored in TAIGA

PL resources. When a parameter update block is received from an MTU, the cryptography
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Figure 3.3: TAIGA implementation on the Zynq-7000 SoC

unit decrypts and authenticates the block. As illustrated in Section 3.4.1, the parameter

update module uses formally analyzed code to ensure new values are acceptable. Hence the

TAIGA does not rely only upon cryptographic methods and has the final authority to accept

parameter updates. Validated blocks are copied to the system parameter set and the current

value revisions are written as an encrypted and authenticated block on external flash.

3.4 Motor Control Example

A simple motor control application adapted from [3] is used to test and demonstrate TAIGA

effectiveness. In this implementation the production controller is a proportional-integral-

derivative (PID) controller and the backup controller is a proportional-only controller with

a fixed reference input to ensure stable motor operation. The motor itself is emulated in

software functions, and its speed is sampled once per millisecond. Specification guards

monitor the average speed of the motor over a given period. The MTU can securely modify

minimum and maximum limits for this average only with a formally verified update function

described in Section 3.4.1.
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3.4.1 System Parameter Update Analysis

The HLS design flow enables high-level formal analysis tools to aid the validation and verifi-

cation process. An abstracted verification model is not required and the C source is analyzed

directly. Additionally, security property reasoning reduces the verification space from the

entire system to only TAIGA additions. We formally validate TAIGA code functionality

using Frama-C, an open source, modular static analysis framework for the C language [9].

In our previous work Frama-C performed deductive reasoning on TAIGA code to verify

proofs of specification guard and backup condition functionality [7]. In this work Frama-C’s

Value Analysis confirms the TAIGA only accepts updated system parameters that are within

internally specified minimum and maximum values.

Fig. 3.4 contains a code excerpt from the TAIGA’s system parameter update module. The

first 5 lines define parameter identifiers and structures to hold minimum, maximum, and

current values for each data type. These structures are instantiated for each updatable

value, as shown in the next 3 lines. The update functions in the remaining code check

new requested values against the non-updatable min and max values stored in the structures

before allowing current values to be updated.

Frama-C’s Value Analysis plug-in computes sets of all possibles values that program vari-

ables can take. The code can be analyzed as written without the need for additional proof

annotations. Fig. 3.5 shows the value analysis for the update functions from Fig. 3.4. The

analysis confirms the current values of the y min, y max, and probation variables are kept

within the allowed ranges. Note that the range notation for some const fields arises from

floating point imprecision.

3.4.2 System Operational Flow

Fig. 3.6 is a schematic showing the integration of TAIGA with the motor controller. This

system repeatedly performs the following sequence of steps:

1. The motor produces new sensor data once per millisecond.

2. The production and backup controllers generate new control data based on the motor’s

output.
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enum Id {Y MIN, Y MAX, PROBATION} ;
s t r u c t SP f l oa t { const f l o a t min , max ;

f l o a t curr ; } ;
s t r u c t SP int { const i n t min , max ;

i n t curr ; } ;
s t r u c t SP f l oa t y min = {−3.2 f , −0.1 f , −2.0 f } ;
s t r u c t SP f l oa t y max = {0 .0 f , 3 . 2 f , 2 . 0 f } ;
s t r u c t SP int probat ion = {100 , 1000 , 200} ;

void update SP f l oa t (enum Id id , f l o a t va l ) {
i f ( id==Y MIN) {

i f ( ( val>=y min . min ) && ( val<=y min . max) )
y min . curr = va l ;

} e l s e i f ( id==Y MAX) {
i f ( ( val>=y max . min ) && ( val<=y max . max) )
y max . curr = va l ;

}
}

void update SP int (enum Id id , i n t va l ) {
i f ( id==PROBATION) {

i f ( ( val>=probat ion . min ) &&
( val<=probat ion . max) )

probat ion . curr = va l ;
}
}

Figure 3.4: TAIGA system parameter update code

3. Specification guards examine the past average speed of the motor and the predicted

average speed of the model from the previous control cycle. If these values are within

range, the production controller’s output is passed to the physical motor. If not, the

backup controller’s output is passed to the physical motor.

4. If the backup condition has been triggered, selector B passes the backup control data

to the model of the motor for confirmation of sensor data.

5. The past average speed of the motor is updated with the new sensor data.

6. The current state of the model is saved.

7. The prediction controller and motor model run for N cycles as a virtual control loop
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Values f o r func t i on update SP f l oa t :
y min . min ∈ [−3.200000 . . −3.199999]

. max ∈ [−0.100000 . . −0.099999]

. curr ∈ [−3.200000 . . −0.099999]
y max . min ∈ {0 .0}

. max ∈ [ 3 . 199999 . . 3 . 200000 ]

. curr ∈ [ 0 . 0 . . 3 . 200000 ]
Values f o r func t i on update SP int :

probat ion . min ∈ {100}
. max ∈ {1000}
. cur r ∈ [ 100 . . 1000 ]

Figure 3.5: Frama-C Value Analysis results

in order to approximate the future behavior of the motor.

8. The predicted average speed of the motor is calculated.

9. The saved state of the model is restored, and the system waits for new sensor data.

Physical Motor

Specification Guards

A

B

Production Controller

Backup Controller

Prediction Controller
(copy of production controller)

Model Motor

Figure 3.6: Motor control system with TAIGA safeguards

Production control code runs on the Cortex-A9 GPP. The prediction controller is an identical

copy of the production controller. For this work a single Cortex-A9 core is multiplexed to

operate both the production and prediction controllers. If separation is desired the prediction

controller may be moved to the second GPP core. All other components are implemented

in the PL configurable hardware including a software emulation of the physical motor on a

MicroBlaze soft processor.
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3.4.3 Controller Malware Response

A simulated sequence of events is used to demonstrate the effectiveness of TAIGA in a motor

control application. In this example, a prediction window of 200 ms is used. Specification

guards monitor the average speed of the motor over a 400 ms period (200 ms past, 200 ms

predicted). Each time the specification guards detect a fault, a probation counter is set.

During this probation period, the production controller’s output is ignored even if it returns

to an acceptable value. If the production controller output remains within a valid range

throughout the probation period, it becomes eligible for reinstatement. For this example, a

probation period of 150 ms is used.

Fig. 3.7 displays the motor’s response to certain events. The sequence begins with a unit

step response and a maximum allowable average speed (y max) of 2.0 (in normalized units).

At t = 250 ms, the reference input to the production controller changes from 1.0 to 2.5.

The predicted model output indicates the average speed of the motor will exceed y max (2.0)

within 200 ms. Therefore the backup controller assumes control and moves the motor to a

stable output of 1.3.

This increase in motor speed is deemed necessary and y max is increased to 2.75 at t = 300 ms

to accommodate this speedup. Production control outputs are now within acceptable range

but the probation period does not expire until 150 cycles later at t = 450 ms. Once the

probation ends, the production controller is reinstated and increases the motor speed to

2.5. Motor speed surpasses y max (2.75) due to overshoot at t = 518 ms, but the backup

controller is not invoked because the average speed does not exceed y max. Production

controller operation continues until t = 700 ms, at which time its reference input is increased

to 5.0. The motor cannot safely operate at this speed, and is instead returned to a known

stable speed by the backup controller.

TAIGA contains internal timers which monitor the response times of the production and

prediction controllers. In this example if either fails to respond within the allowed time,

the backup condition is triggered and a reset is required to return the system to normal

operation. This mechanism allows the TAIGA to maintain stable motor operation in the

event of component failure or communication interruption. The response to the loss of the

production or prediction controller is application-specific.

Prediction window size may be limited by the target platform’s performance and by the

model’s accuracy. The size and ratios of the period over which the average speed of the
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motor is calculated are application-dependent. A larger period may be desired, or more

weight given to past values. The given probation period was chosen to be smaller than the

prediction window in order to more quickly return to full operation. This is especially useful

in systems frequently targeted by denial-of-service attacks. For critical systems, however,

this period should be extended or a more robust system for safely reinstating the production

controller may be implemented. Alternatively it may be desirable to have no means of

reinstatement and instead require a reset before returning to full operation.
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Figure 3.7: TAIGA response to malware in a motor control application

3.4.4 Time and Resource Analysis

Table 3.2 provides the latency of critical timing paths. The Cortex-A9 GPP operates at

667 MHz while its programmable logic is clocked at 130 MHz. As listed, the runtime of

one iteration of the prediction control loop is 1660 ns. However, I/O and communication

protocols consume roughly 72% of this latency, as the combined runtime of the prediction

controller and model is only 472 ns. Based on this runtime, the system can safely predict

over 500 control cycles into the future.

On average, TAIGA requires roughly 1 µs to complete its operations. This additional latency

should normally be acceptable for a system with a 1 ms sensor sampling rate. In addition, a

1 µs latency is modest compared to implementing TAIGA functions with software, network
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communication, or a separate chip. The time required by the system to produce a new

control command after receiving new sensor data is approximately 2 µs. Considering the

runtimes of the production controller and TAIGA, 66% of this latency is due to I/O and

communications.

Table 3.2: Timing analysis

Timing path Latency

(ns)

Production controller runtime 280

Model runtime 192

TAIGA runtime 1040

One iteration of prediction control loop 1660

Sensor sample → New control command 2000

TAIGA logic resource consumption is shown in Table 3.3. Two BRAMs are required for

tracking past values of sensor data, and multiple floating point units utilize 10 DSP slices.

The junction box’s footprint is negligible as its primary function is simply monitoring, passing

and redirecting signals. The MicroBlaze soft processor, which functions as the TAIGA’s bus

master component, is responsible for the majority of the resources used. For example, 64KB

of processor local memory requires 15 BRAMs, and a floating point unit uses 4 DSP slices.

Total resource consumption does not exceed 20% for any particular resource type. This

utilization is relatively modest as the Zynq-7000’s PL is a fraction of that available in high

density FPGAs. An abundance of unused resources would permit further TAIGA latency

reduction using HLS time/area tradeoff directives. Relative to a microprocessor with a single

monolithic memory, HLS can improve performance through the parallel execution of code

accessing data structures mapped to independent multi-ported memories.

Table 3.3: Programmable logic resource usage

FF LUT DSP BRAM

TAIGA HLS components 4321 6229 10 2

Junction box 139 205 0 0

Total with MicroBlaze 10579 10260 14 17

Available 106400 53200 140 220

Utilization 10% 19% 10% 8%
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3.5 Conclusions and Current Work

Our overarching research goal is platform-based architectural support for, and rigorous val-

idation of, Trust Enhancement of Critical Embedded Processes (TECEP) [7, 16]. We are

guided by a design philosophy that the most trusted layers of a system should validate re-

quests from less trusted layers, and otherwise take corrective actions. While this may not be

easily accomplished in systems interacting with people, process control has the advantage of

precise specifications and accurate models that can be used to check the immediate or even-

tual consequences of a controller’s malicious or inadvertent actions. Our prior work sought

to make these enhancements transparent to any GPP code, including the OS. While suc-

cessful, resource duplication and the lack of a controlled update mechanism were deficiencies

addressed by TAIGA.

Many embedded systems tailor the platform architecture to the application, with the Zynq-

7000 offering a great advance in this respect. TAIGA uses this flexibility for improving

security and trust rather than only performance and power. Many security and trust exten-

sions add external hardware components which would complicate ICS reliability analysis, or

internal software layers which likely exceed the capabilities of formal analysis tools. In con-

trast TAIGA improves resilience of the existing PLC node and simplifies its GPP software

by removing device drivers. While network security measures are necessary in an ICS to

protect MTUs, PLCs are the bridge between the cyber and physical worlds and should have

self-contained safeguards such as TAIGA.

Ongoing work includes observing that production and prediction controllers are nearly inter-

changeable since both get sensor data and write actuator commands through opaque FIFOs.

In addition to prediction, this symmetry could vet software updates first with a plant model,

and provide a hot-standby controller. Update control mechanisms are also being developed

for other domains such as the Internet of Things. Finally, we are transitioning from simu-

lated results to physical experimentation with a Zynq-based motor controller [1] running on

GTRI’s ICS Security Test Bed.
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Chapter 4

Application-level Autonomic

Hardware to Predict and Preempt

Software Attacks on Industrial

Control Systems

4.1 Abstract

We mitigate malicious software threats to industrial control systems, not by bolstering

perimeter security, but rather by using application-specific configurable hardware to mon-

itor and possibly override software operations in real time at the lowest (I/O pin) level of

a system-on-chip platform containing a microcontroller augmented with configurable logic.

The process specifications, stability-preserving backup controller, and switchover logic are

specified and formally verified as C code commonly used in control systems, but synthe-

sized into hardware to resist software reconfiguration attacks. In addition, a copy of the

production controller task is optionally implemented in an on-chip, isolated soft processor,

connected to a model of the physical process, and accelerated to preview what the controller

will attempt to do in the near future. This prediction provides greater assurance that the

backup controller can be invoked before the physical process becomes unstable. Adding

trusted, application-tailored, software-invisible, autonomic hardware is well-supported in a

commercial system-on-chip platform.
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4.2 Introduction

The dark side to an increasingly automated physical world is the potential for large scale dis-

ruption and destruction caused by the malicious reprogramming of process control systems.

Militaries and extremist groups are aware of these vulnerabilities and opportunities, and

the geopolitical effects may be as significant as the development of nuclear weapons. There

is a summative effect from the small (individual process control systems) to the large (an

electric grid). Power generation systems, in particular, have demonstrated vulnerabilities,

and cannot be quickly repaired or replaced [5]. Descriptions of industrial control system

(ICS) zero-day exploits can be purchased from hackers through on-line brokerages [19]. It

is not clear how to discourage these attacks since anyone with Internet access can develop

and deploy cyberweapons, a country’s military offers little protection of manufacturing and

infrastructure from cyberattacks, an attack’s ultimate source may be difficult to determine,

and the threat of retaliation may not be an adequate deterrent. While ICS attacks are

considered a recent threat fast becoming “an element of almost any crisis” [23], there is

speculation that a Siberian gas pipeline was sabotaged in 1982 by CIA-directed implanta-

tion of malware causing excessive gas pressure [22]. The explosion had roughly one-sixth the

power of the first atomic bomb.

There are similarities but also important differences between protecting information and

safeguarding physical infrastructure [26]. ICSes structured as Supervisory Control and

Data Acquisition (SCADA) systems have hierarchical, networked computer infrastructure

and human-computer interaction, as well as edge nodes consisting of ruggedized microcon-

trollers called Remote Terminal Units (RTUs) or Programmable Logic Controllers (PLCs)

that bridge the cyber and physical worlds [7]. (Henceforth references to PLCs also in-

cludes RTUs.) The non-edge PC nodes such as Master Terminal Units (MTUs) monitor,

coordinate, optimize, and update the PLCs. This mixture of conventional and embedded

computing platforms enables attack vectors common to IT environments while also expos-

ing microcontrollers running simple kernels designed for real-time performance rather than

intrusion protection. Many ICS attacks focus on network protocol and supervisory plat-

form exploits to modify commands given to PLCs. Modifying PLC firmware or control code

achieves the same ends [24].

Protecting manufacturing, infrastructure, and future cyber-physical systems requires unqual-

ified resistance to cyberattacks created by adversaries with nation-scale resources. While ro-
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bust perimeter security and supervisory node intrusion resilience are necessary and should be

the primary defense, we consider the worst-case scenario where SCADA networks have been

penetrated, MTUs have been compromised, and even PLCs have been reprogrammed [15].

This may be accomplished through one or more avenues: insiders, manufacturer’s mainte-

nance ports, third party code, zero-day exploits, and PC updates. Air gaps and effective

physical security measures are not a sufficient defense, as evidenced by Stuxnet [4]. TECEP

(Trust Enhancement of Critical Embedded Processes) is our method of ensuring process

stability in a way that that does not rely on trust in any software layer on any ICS node.

Isolation is achieved using high-level synthesis (HLS) targeting configurable hardware in a

commercial system-on-chip IC used to implement the PLC’s microcontroller [16]. Predict-

ing future deviation from normal operation is enabled by reuse of specifications for normal

system operation and accurate models for the physical process. Normally these models are

used only during development, but TECEP retains them in the fielded platform.

While using redundancy to cope with sensor faults is a reasonably well-solved problem, ma-

licious software attacks are a new and distinct area of concern [8]. Middle ground is needed

between viewing ICS cybersecurity as solely a network- or supervisory-level concern, and

overburdening control system engineers with additional roles. Our approach tries to accom-

plish this through integration with a conventional model-based design flow, synthesizing and

formally verifying hardware-implemented functions to monitor the current and future state

of physical process, and switching to a stability-preserving backup controller if necessary.

HLS avoids the added complexity of using hardware description languages, and modest per-

formance requirements permit hardware generation without iterative timing optimization.

Section 4.3 describes the conventional ICS development process, and summarizes existing

ICS-specific strategies used to enhance security. TECEP’s system-on-chip platform orga-

nization, and synthesis/analysis extensions to the model-based design flow are presented in

Section 4.4. Section 4.5 illustrates and assesses TECEP with the synthesis and verification of

monitoring, predictive and preemptive enhancements to a simple motor controller. Finally,

Section 4.6 summarizes completed and ongoing work.
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4.3 Current Approaches to ICS Development and Se-

curity

PLCs periodically read sensor data y(t) from a physical process (referred to as the plant),

compute the error e(t) between y(t) and the desired plant state w(t), and adjust plant inputs

u(t) (such as mechanical actuators) in order to minimize |e(t)|. A simple example is adjusting

the fuel supply to a furnace when the furnace temperature changes. Commonly used PID

controllers compute e(t) by summing proportional (present error), integral (past error), and

derivative (future error) terms [7].

Control system engineering has enjoyed an enviable marriage of theory and practice, and

is one of the most widely adopted examples of model-based design which has the following

steps:

1. Create a mathematical model of the plant either from physical laws or by acquiring

and analyzing real data.

2. Use the plant model to develop an effective control algorithm.

3. Simulate the response of the system to inputs such as a unit step change on w(t).

4. Synthesize controller code for a particular embedded platform.

MATLAB/Simulink supports this methodology, and generates code with the Embedded

Coder toolbox [18].

4.3.1 ICS-independent Security Techniques

Hardware and software architectures trickle down from personal computing systems to em-

bedded platforms in order to match capabilities. Unfortunately threats also migrate, and the

defenses used to protect information are also needed to protect control processes. We do not

consider side-channel or fault-injection attacks often associated with embedded platforms

since if one already has physical access to a controller then there would be a more direct

means of degrading or destroying the physical processes. Rather, the main attack vector to

be mitigated is unsanctioned use of a network for the purposes of sending new commands
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or software to a PLC while perhaps simultaneously reporting normal operating status to

human operators. This was precisely the modus operandi for Stuxnet.

Most defenses define one or more zones of trust, with increased trust granted to the software

and hardware inside a given zone. Inner zones typically provide services to outer zones as

in the case of an operating system kernel. Hardware mechanisms may help to prevent the

unauthorized use of resources inside a trusted zone. The first security architecture described

in Table 4.1 requires privileged operations, such as hardware and process management, to

be performed by a single kernel such as Linux. As the number of services increases, however,

the complexity of the service-providing code makes it likely that bugs exist that can be

probed in an automated way and possibly used to the adversary’s advantage. Potential

weaknesses in this scheme include: all applications run in the same zone, the kernel must

be all things to all applications, and reliance on defenses such as firewalls receiving regular

updates. According to Eugene Spafford, firewalls were originally introduced as a stopgap

measure until host security was improved [13].

System architecture extensions may be provided to reduce the attack surface for a subset of

applications. For example, TrustZone is ARM’s extension allowing certain applications to

run in a secure zone (SZ) running under a distinct kernel in a separate memory space and able

to access particular hardware resources unavailable to applications that run in the normal

zone (NZ) [1]. Both zones share the same physical processor(s), which execute monitor

mode code when switching between zones. Although the SZ’s kernel may be simpler than

the NZ’s kernel, considerable complexity and possible exploits likely remain. For example,

a vulnerability in the SZ kernel was used to jailbreak an Android device [21].

As seen above, the standard approach for enhancing the security of platforms required to

run a variety of applications has been to impose or extend a set of hardware-enforced,

restrictive processor modes. However, another approach may be used if the platform is

dedicated to domain-specific applications such as process control. The current generation of

Field-Programmable Gate Arrays (FPGAs) permit functions to be implemented as software

running on hard or soft processors, or directly in custom hardware. Normally this capability

is used to improve system performance and/or power attributes, perhaps by increasing the

time and power efficiency of cryptographic functions. As previewed in the third row of

Table 4.1 and described further in Section 4.4, TECEP instead exploits this flexibility to

invert software and hardware authorities by implementing critical ICS functions in formally

verified PLC hardware blocks that cannot be controlled or modified by any local or remote
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Table 4.1: Separating a system-on-chip (SoC) platform into a normal zone (NZ) and a secure
zone (SZ)

Security
Architecture

SZ Internal
Vulnerabilities

SZ External
Vulnerabilities

Software and
Hardware
Authentication

Standard single soft-
ware kernel

× No normal
zone (NZ) and
secure zone (SZ)
separation.

× Kernel complex-
ity exceeds current
formal analysis ca-
pabilities and may
have exploitable
bugs.

× Network access
for reporting and
updates.

× Relies on proto-
cols and perimeter
security techniques
requiring software
patches

Trusted execution
environment such
as ARM TrustZone
provides a NZ and a
SZ

× SZ kernel com-
plexity still exceeds
formal analysis ca-
pabilities and may
have exploitable
bugs.

× Software needed
to switch proces-
sor(s) between NZ
and SZ.

√
SZ software is iso-

lated from NZ soft-
ware.

× Some SZ hard-
ware resources such
as processors are
shared with NZ
hardware resources.

√
Secure boot of SZ

kernel.
√

NZ versus SZ
state awareness
can extend to bus
peripherals such
as memory and
input/output (I/O)
controllers, and
custom IP.

TECEP adds a SZ
with application-
specific, autonomic
hardware and soft-
ware

√
Formal analysis

of SZ’s trusted,
application-specific,
hardware monitor.

√
SZ hardware

and software are
fully isolated from
NZ hardware and
software.

√
Cannot remotely

update SZ hard-
ware.
√

Prediction ca-
pability performs a
secure boot load SZ
sandbox memory
from external flash.
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software.

4.3.2 ICS-specific Security Techniques

Security solutions proposed for general embedded platforms are usually not optimized for

ICS applications [2]. Because many plants are physically secure, intra-plant communication

integrity (to thwart false data injection on sensors or false command injection on actuators)

is not the sole concern. Existing reliability analysis can use redundancy to mitigate faults

occurring in sensors and actuators. If malicious sensor jamming is a possibility, Cárdenas et

al. apply anomaly-based intrusion detection theory for computer systems and networks [3].

However, the ultimate objective of ICS malware is PLC behavior modification from process-

harming MTU commands or updates to control, kernel, and driver code. Recent ICS-specific

protection schemes seek to close these attack vectors by replicating SCADA network gate-

ways [5] and MTUs [14].

Alternatively run-time monitoring software could attempt to determine if an attack has been

successful, much like a vigilant human operator. However, these techniques are generally re-

active since they detect attacks beginning in the past or present. The problem with reactive

methods is that the plant is already affected, and corrective action must be taken to restore

equilibrium. There is a point of no return, formalized by the control-Lyapunov function,

beyond which the system becomes unstable. These techniques typically observe either plant

reactions to new controller inputs, or controller responses to new sensor measurements. An

example of the former was developed by Sha [13]. In this architecture, sensor measure-

ments are monitored by decision logic that determines if a process violation has occurred,

as illustrated by Fig. 4.1. If a violation is detected, the decision logic switches control to

a high-assurance controller until the system is stabilized. Dai et al. described a fault de-

tection architecture based on observing controller responses to new sensor inputs [6]. Plant

measurements are sent to both the production controller and a trusted benchmark version

of the controller algorithm. A controller fault is determined by computing the residual of

responses of both controllers, as shown in Fig. 4.2. Unfortunately, in either architecture the

plant is already affected by the time the fault is detected and interventions are applied.

What we instead propose is an active defense that cannot be disabled by any MTU command

or PLC software update, is transparent to the control system designer, and can anticipate

controller behavior and plant state for a short period into the future. Section 4.4 describes
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Figure 4.1: Plant fault detection [13]

how this is accomplished using high-level and interface synthesis, C code formal analysis,

hard and soft processors, and configurable logic targeting a configurable system-on-chip

platform.

4.4 TECEP Overview

Control system engineers commonly use the model-based design steps outlined with trans-

parent boxes in Fig. 4.3. System specifications are identified, followed by modeling of the

plant and control algorithm. Simulation checks that the controller keeps the plant in a stable

state within operating specifications. Extensions to modeling environments such as Simulink

can automatically generate C code optimized for a particular target processor architecture.

System-on-chip platforms containing microcontrollers and FPGA fabric are an appealing

target for high-performance controllers because functions may be mapped to either software

or hardware. This permits the allocation of independent computational and memory re-

sources to each controller in order to maintain fixed response times, rather than timeshare

processors competing for the same memory bandwidth. The post-implementation simulation

checks that TECEP additions do not change the original behavior. Component generation
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Figure 4.2: Controller fault detection [6]

and integration are discussed in Sections 4.4.1 and 4.4.3.

The extra steps added by TECEP are highlighted in Fig. 4.3 with translucent boxes. A rela-

tively small amount of independent system monitoring code is concerned only with meeting

the operating specifications, and is checked with a rigorous software verification framework.

Specifics are discussed in Section 4.4.2. The analysis tools require familiarity with formal

methods, but do not require hardware verification knowledge even though the monitoring

code is ultimately rendered in hardware. Hence the flow separates application, platform,

and formal analysis to allow these tasks to be performed by different specialists, with the

ultimate goal being semi-automatic synthesis and validation of the additional components.

4.4.1 Platform Components

The system overview shown in Fig. 4.4 includes two software-implemented blocks (produc-

tion controller code running on both hard and soft processors) and two hardware-targeted

blocks (a hardware monitor synthesized from formally analyzed C code, and a junction box
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Typical controls design
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physical Plant response

Plant Modeling
E.g., Matlab models of 
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TECEP Protected Device System Integration
E.g., in a closed loop with Plant sensors and actuators

TECEP Protected Device System Integration
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algorithms in C

Controller Modeling
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algorithms in C
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Verification Sketching
E.g., deductive proofs of 
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Figure 4.3: TECEP design flow
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Figure 4.4: Platform components

captured and validated in a hardware description language). Both hardware blocks are in-

visible to the software blocks, even at the OS driver level. Because the FPGA fabric is

not dynamically configured, software or network access to programmable logic configuration

ports are disabled. Changes to the programmable logic could require physical access to a se-

cure plant, and are needed only if the process specifications, plant model, backup controller,

or switchover policies change. Routine software updates, including production control code

revisions, would be stored on network-accessible, external flash memory, and loaded into

RAM after a reset.

Production Controller

Implemented in software functions running on the ARM Cortex-A9 processor present on

the Zynq-7000, the production controller sends and receives data through an I/O module

(IOM), which in turn interacts with the programmable fabric through an AXI bus. Using a

real-time kernel such as FreeRTOS, the production controller and IOM are tasks managed

by the kernel. Real-time guarantees are generally needed by process control applications.
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Hardware Monitor / Backup Controller

The hardware monitor is implemented in the FPGA fabric of the Zynq-7000. Inputs include

the u(t) output of the production controller, the y(t) output of the physical plant, the output

of the prediction unit, and a status code. Using C code rather than a hardware description

language (HDL) allows the hardware monitor to easily integrate a stability-preserving backup

controller and the plant model. A specification guard tests whether the outputs of the plant

model, physical plant, and prediction unit are within an acceptable range. If any of these

values are outside specifications or if the status code indicates an error, the output from the

backup controller overrides the production controller’s output.

Production to backup controller transitions may be reversed if the production controller

fault was merely temporary. This feature is useful in the event of a denial-of-service attack

wherein the objective is simply to degrade performance. A probation period ignores the

production controller’s output for a predetermined number of cycles after a fault is detected

even if the controller’s output returns to an acceptable value. Hence, the probation period

ensures that the production controller is not reinstated too quickly.

It is also important that the backup controller not be invoked at the slightest disturbance,

with one implementation defining an upper bound on the number of small disturbances

within a given time period. Noise in the system, which may cause false error reporting, will

be greatly reduced with the future addition of a Kalman filter. Fault tolerance and any

return to the production controller are left to the system specification as requirements differ

among various applications.

Prediction Unit

A copy of the production controller and a model of the plant comprise the prediction unit

implemented on a MicroBlaze soft processor in the programmable fabric of the Zynq-7000.

We ultimately plan to use a soft-core version of the ARM Cortex-M1 processor for Xilinx

FPGAs [2] since the production controller may only be available as object code. Since

timing characteristics need not be preserved, other options are ARM-to-MicroBlaze binary

code translation or ARM emulation on the MicroBlaze. The Zynq-7000’s second ARM

Cortex-A9 core is not used because it may be needed in multi-threaded control applications.

In addition, using an ARM core for prediction requires careful memory and I/O separation
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from the production core in order to minimize trust assumptions.

Controller and plant functions send and receive data across an AXI bus through an IOM. The

production controller IOM forwards MTU commands to the prediction unit IOM, although

this link is not yet implemented. FreeRTOS may also be ported to the MicroBlaze/Cortex-

M1 in order to more closely mirror the Cortex-A9, with the production controller, plant

model and IOMs implemented as tasks managed by the kernel. This will also enable the

production Cortex-A9’s complete software stack to be executed on the soft processor, al-

lowing the prediction unit to preview attacks that corrupt control algorithm scheduling or

driver-level I/O.

Four modes of operation are available in the prediction unit: Save, Restore, Normal and

Accelerate. Save stores the current state of both the plant and the controller, while Restore

overwrites the current state with the last saved state. Normal runs the closed loop system

of the plant and controller for one cycle, and Accelerate runs the closed loop for a predefined

number of cycles. The specific number of prediction cycles used is left to the application.

Once the IOM on the soft processor receives a start signal from the junction box, the closed

loop is run in Normal mode. The current state is then saved, and the closed loop is run in

Accelerate mode. Upon completion, the state of the controller and plant before acceleration

is restored, and the accelerated plant model’s output is passed through the IOM to the AXI

bus.

Junction Box

The production controller, physical plant, prediction unit, and hardware monitor are con-

nected via a junction box which contains all connections between modules in the system,

manages the system’s flow of control, and scrutinizes all external transfers to and from the

physical plant. ARM Cortex-A9 connections to the junction box include AXI interfaces

for the production controller’s input and output, while soft processor connections consist

of AXI interfaces for handshaking and the prediction unit’s output. The hardware monitor

interfaces to the junction box using simple 32-bit data ports for inputs from the production

controller, plant, and prediction unit, as well as the hardware monitor’s output and hand-

shaking signals. Two watchdog timers in the junction box monitor the response time of both

the production controller and prediction unit; if either unit fails to respond, the hardware

monitor is notified with the appropriate status code. The junction box is captured with
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HDL code that mostly defines connections and is independent of the production and backup

controllers, plant model, and operating specifications. This simplicity makes verification

straightforward using established hardware analysis techniques such as model checking.

4.4.2 Hardware Monitor Formal Analysis

Formal analysis tools are incorporated into the high-level design flow to verify functional and

security specifications by evaluating mathematical proofs of design code semantic properties.

We verify the PID code and TECEP additions using Frama-C, an open source, modular static

analysis framework developed specifically for the C language [9]. The framework enables

collaboration between various static analysis techniques implemented as plug-ins which can

share information. Desired behaviors and other annotations to analyze are captured in the

ANSI/ISO-C Specification Language (ACSL). Annotations can specify preconditions and

postconditions of a function, predicates, lemmas, axioms, and other assertions and custom

logic functions [4]. Formal analysis flows are often complicated by the need to translate or

abstract the code under test. However, in this scenario formal tools are easily leveraged as

proof annotations are added directly to the design source code. The modular framework

also enables verification of isolated functions. This is useful in our security scheme where in

order to prove properties of system security the verification space is reduced to only TECEP

additions.

ACSL is added directly to the code to be verified and is written as C comments so as not to

interfere with standard compilation or HLS tools. These annotations can, however, modify

Frama-C’s interpretation of function behaviors and variables if they are specifically written

to do so. The semantics of ACSL logic expressions are based on mathematical first-order

logic, which eases translation of conventional proof languages into proof code. A special type

of ACSL annotation, called ghost code, is only evaluated by Frama-C and can be independent

of any function contract. Ghost code is typically used to specify variable, logic, or functions

that are outside of or not related directly to the code under analysis, but are useful in building

up proof annotations. Ghost code can also be used within a function to overwrite variables

or capture their values for analysis outside of the function. However, using ghost code to

interfere with regular program code must be done with care as it can result in inaccurate

proofs.

ACSL annotations are verified using various plug-ins within the Frama-C framework in order
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to offer a variety of provers and analysis techniques. Frama-C can be used to verify the values

returned by the hardware monitor when a specification guard detects an out-of-specification

condition, and to validate the behavior of modules called by the hardware monitor. Here we

use the Jessie plug-in to ensure that the hardware monitor result is driven by the appropriate

controller module under all possible conditions. Jessie is a Hoare logic-based plug-in used

to prove functional properties via deductive verification [3]. Jessie automatically translates

ACSL annotations into verification conditions in the Why language, which can then be

submitted to external automatic theorem provers such as Simplify, Alt-Ergo, Z3, Yices, and

CVC3. Interactive theorem provers or proof assistants can also be used, such as Coq, PVS,

Isabelle/HOL, HOL 4, HOL Light, and Mizar. Frama-C’s use of multiple provers combines

the strengths of different provers, while time limits cope with undecidability.

4.4.3 High-level and Interface Synthesis

Hardware Monitor

After formal verification, the hardware monitor’s software-defined functions are implemented

in the programmable fabric using HLS. The set directive allocation command is applied

to the C-synthesis process to restrict the number of floating-point cores generated, and the

config bind command reduces the resources used by those instantiated cores. An ap none

interface is added to each of the inputs to create simple data ports with no additional

handshaking signals. An ap ctrl hs interface added to the top level function provides basic

handshaking signals such as start and done for the operation of the hardware monitor.

No AXI slave adapters are needed, as the hardware monitor is connected directly to the

junction box using simple 32-bit data ports. Once HLS and interface synthesis processes are

complete, the hardware monitor is exported as an IP block for use in Vivado Design Suite.

AXI Interconnects

The junction box itself uses simple 32-bit input and output ports; however, the ARM and

soft processors require an AXI interface for sending and receiving data. Vivado Design Suite

has no simple means of adding an AXI slave adapter to a simple 32-bit data port, but Vivado

HLS does. A trivial C function that returns its input argument is used to create the interface

adapter. Depending on the direction of the data transfer, an AXI4-Lite slave adapter is added
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to either the input argument or the return port. The ap none interface protocol is added to

each of the interface adapters with two exceptions: the production controller’s output and

the prediction unit’s output use the ap ctrl hs protocol. Each interface module utilizes on

average 74 flip-flops and 20 lookup tables, though there is some variation based on the data

type being used in the C function. After completion of HLS and interface synthesis, the

interface adapters are also exported as IP blocks for use in Vivado Design Suite.

4.4.4 Limitations and Tradeoffs

There are always cost concerns arising from platform and development flow complications.

For example, Frama-C requires significant manual intervention and expertise. However the

TECEP additions are independent in a trust sense from the base ICS architecture and code,

and offer a lower cost, on-chip, digital logic alternative to classical mechanical interlocks

used in safety critical environments. A configurable SoC’s cost premium over a standard

microcontroller may be eclipsed by the value of the plant.

The plant state preview window is ultimately limited by processing power and the need

to periodically synchonize the model with the physical plant to keep up with changes due

to disturbances or commands. Prediction may be omitted if process state also depends on

events outside the model.

While the inability to remotely update TECEP logic is a security asset, the need for PLC

access to modify the model, process specifications, and backup controller incurs a higher

maintenance cost. We are investigating a remote update protocol permitting range-limited,

authenticated changes to certain system parameters in order to adjust for effects such as

aging.

4.5 Motor Controller Example

A simple motor controller example described in [3] is used to test and demonstrate the

security features described in this work. For this example, the production controller is a

proportional-integral-derivative controller while the backup controller is a proportional-only

controller with a fixed reference input. The plant is a motor emulated in software functions

on the ARM. This closed-loop system is run once per millisecond.
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4.5.1 Control Flow

The system’s flow of control is event-driven and is shown in Fig. 4.5. Each cycle begins

after a 1 ms delay dictated by an AXI Timer interfaced with the ARM. During the delay

the production controller, prediction unit and hardware monitor lie dormant. Although the

physical plant will operate on its own timing, the currently emulated plant begins operation

once the ARM recognizes 1 ms has elapsed. The emulated plant function reads its input from

the IOM, processes it, and sends its output to the IOM. The plant’s I/O is simply passed

through the junction box, with no handshaking and non-blocking reads and writes. When

the plant’s process is complete, the production controller similarly reads its input from the

IOM, processes it, and writes the output to the IOM. The HLS interface module between

the junction box and the production controller performs a blocking read on the controller’s

output. A new value is passed to the junction box, which signals the MicroBlaze prediction

unit to begin, and a blocking read is then performed on the prediction unit’s output. When

the prediction unit finishes, the junction box sends the outputs of the production controller,

physical plant, and prediction unit to the hardware monitor and signals it to begin operation.

The hardware monitor’s output is written to the physical plant, and the system lies dormant

until the next cycle begins.

The junction box’s watchdog timers monitor the response time of the production controller

and the prediction unit. If either unit fails to respond before its timer expires, a corre-

sponding status code is sent to the hardware monitor. Because security needs vary among

control systems, the hardware monitor’s reaction to various status codes is not fixed. A zero

status code implies normal operation, and any non-zero code results in a transfer of control

to the backup controller. The backup controller is then invoked each cycle based on the

junction box’s internal timer rather than upon the completion of the production controller

and prediction unit.

4.5.2 Application-specific Attributes

Some aspects of the implementation process are specific to the motor controller example and

will differ among various control systems. One such aspect is the hardware monitor’s response

to the loss of the production controller or prediction unit. In some systems, the production

controller may be allowed to recover, or the loss of prediction may not be considered critical.
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Figure 4.5: Control system event sequence
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1//@ ghost f l o a t ghost y model = 0 .0 f ;
2//@ ghost i n t ghost backup = 0 ;
3//@ ghost f l o a t ghost u hw = 0.0 f ;
4/∗@
5a s s i g n s \nothing ;
6behavior v e r i f y a l l v a l i d :
7assumes y p h y s i c a l >= y min && y p h y s i c a l <= y max &&
8ghost y model >= y min && ghost y model <= y max &&
9y a c c e l >= y min && y a c c e l <= y max ;
10ensure s ghost backup == 0 ;
11behavior v e r i f y a n y i n v a l i d :
12assumes y p h y s i c a l < y min | | y p h y s i c a l > y max | |
13ghost y model < y min | | ghost y model > y max | |
14y a c c e l < y min | | y a c c e l > y max ;
15ensure s \ r e s u l t == ghost u hw ;
16d i s j o i n t behav ior s ;
17complete behav ior s ;
18∗/
19
20#d e f i n e BACKUP HOLD COUNT 200
21f l o a t hw monitor ( f l o a t u sw , f l o a t y phys i ca l , f l o a t y a c c e l )
22{
23s t a t i c i n t backup hold ;
24s t a t i c f l o a t y model ;
25
26i f ( r e s e t )
27y model = hw plant model ( u sw ) ;
28
29f l o a t u hw = h w c o n t r o l l e r ( y p h y s i c a l ) ;
30//@ ghost y model = ghost y model ; // Assignment here a l l ows

y model r e s e t
31i n t backup = ! hw spec guard ( y p h y s i c a l ) | |
32! hw spec guard ( y model ) | |
33! hw spec guard ( y a c c e l ) ;
34
35backup hold = ( backup ) ? (BACKUP HOLD COUNT) : ( backup hold − 1) ;
36backup hold = ( backup hold < 0) ? 0 : backup hold ;
37f l o a t u = ( ! backup && ! backup hold ) ? u sw : u hw ;
38y model = hw plant model (u) ;
39//@ ghost ghost backup = backup ;
40//@ ghost ghost u hw = u hw ;
41return u ;
42}

Figure 4.6: hw monitor function annotated with Frama-C
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In this example, if the junction box determines that either unit has failed, the invocation of

the backup controller is permanent until the system is reset. The prediction unit’s forecast

window and the probation counter length are 200 system cycles (i.e. 200 ms), as shown in

line 20 of Fig. 4.6. However, these values may be adjusted.

Currently, saving and restoring state in the prediction unit is performed by changing global

variables; this method is feasible only if control system source code is available. Running

FreeRTOS on the MicroBlaze avoids the need for source code. This new method uses a

second production controller and plant model. The primary set runs in Normal mode.

An administrative task copies the primary set’s stack, including state variables, onto the

secondary set’s stack, which is run in Accelerate mode. Alternatively one can clone the

primary production controller and plant model tasks, run the cloned tasks in Accelerate

mode, pass the accelerated output to the IOM task, and delete the cloned task.

4.5.3 Hardware Monitor Code Analysis

Formal methods can be used at this stage in the design process to confirm TECEP security

additions such as the hardware-implemented backup controller module taking over when

a process parameter goes out of specification. To accomplish this we analyze the TECEP

hardware monitor module, which calls the controller prediction, specification guard, and

backup controller modules. The hardware monitor source code and Frama-C annotations

are provided in Fig. 4.6. A combination of ghost code and function contracts are used to

reason about hardware monitor behaviors under valid and invalid specification conditions.

The assigns clause on line 5 simply specifies that the hw monitor function does not have

any side effects (i.e., does not assign any values which are not local). This clause is followed

with two function contracts consisting of behavior clauses which test various conditions.

The first behavior, verify all valid starting on line 6 of Fig. 4.6, aims to verify that the

hw monitor does not trigger the backup condition whenever the specification guard does not

detect an out-of-specification condition. To test this normal operating condition we assume

that the plant response, plant model response, and predicted plant model response are all

within stability specifications. The assumes clause can specify valid y physical and y accel

value ranges directly because they are inputs of the function. Value ranges of y model, which

is local to the function, can be overridden within the function with a ghost code variable,

ghost y model, on which assumptions can be made in the same manner as function inputs
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and outputs. Another ghost variable, ghost backup is used to store the value of the local

backup variable within the function. This enables an ensures clause using ghost backup

which tests if the backup controller is ever set to active at the completion of the function.

The second behavior, verify any invalid starting on line 11 of Fig. 4.6, seeks to prove that

the hw monitor will always choose the backup, hardware-implemented controller response

when any unit is out of specification. For this behavior we assume that either y physical,

y accel, or y model has a value below y min or above y max. Under this assumption the

hardware specification guard should detect an out-of-specification condition and switch con-

trol to the hardware implemented backup controller, u hw. A ghost variable, ghost u hw, is

used to capture the local value of u hw at the end of the function. The ensures clause on

line 15 tests that the function returns a value which equals this captured value. Lines 16

and 17 test that this and the previous behavior form a set of proofs that are both disjoint

and complete, respectively. The set of behaviors is considered disjoint when they do not

overlap and complete when all cases are covered.

The Jessie to Why translation for the verify all valid and verify any invalid function

contracts each results in 96 total postcondition verification conditions (or proof obligations)

representing various possibilites for input values and corresponding branches of the function

that could be executed, as seen in Fig. 4.7. Two additional proof obligations of interest are

also created to check if our set of behaviors are disjoint and complete. Other obligations that

were generated for the hw monitor function’s default behavior and safety were not considered

in this analysis. The simplicity of the analyzed code and its hardware implementation as

a sequential state machine reduce the likelihood of semantic mismatches between Frama-C

and HLS.

The results of running two proof checkers are also shown in Fig. 4.7. All conditions must be

discharged for the behaviors to be proven valid, which is accomplished using the Alt-Ergo

prover within only a few minutes. We used a 10 second timeout threshold for this experiment.

The Z3 prover was unable to prove some of the postconditions before hitting the timeout

limit, e.g., Postcondition 7 in Fig. 4.7. Increasing the timeout limit could possibly enable

the Z3 prover to discharge this verification condition. However, this is unnecessary as these

problematic proof obligations have been discharged by the other prover. The two obligations

checked in the default behavior section prove that the set of behaviors are both disjoint and

complete. Thus, Frama-C is able to provide confidence that our TECEP protections both

correctly select the production controller output under normal operating conditions and
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select the backup controller in the event of malicious production controller behaviors or

anomalous plant sensor data.

Figure 4.7: Jessie deductive verification results

4.5.4 Module Integration

The system is implemented with Vivado Design Suite 2013.2 on a 64-bit Linux workstation

host running the 2.6.32-28-generic kernel on an 4-core, 2.8 GHz Intel Core i7 processor with

24GB of RAM. A Vivado Design Suite project is used to create the junction box using HDL

files and to export it in IP block format. This IP block, along with the hardware monitor

and interface adapter IP blocks generated by Vivado HLS, are imported into the IP catalog

of a new Vivado Design Suite project.

A block diagram is created with the Zynq processing system and a performance-optimized

MicroBlaze soft processor with 16KB of local memory. Three interface adapters (the pro-

duction controller’s input and output, and the emulated plant’s I/O) are added as AXI

peripherals to the ARM. Two interface adapters (the prediction unit’s output, and hand-
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shaking signals) are added as AXI peripherals to the MicroBlaze. The hardware monitor is

instantiated in the system and connected to the junction box, as are each of the interface

adapters. After implementation, a bitstream is exported to the Xilinx SDK, wherein all

software is compiled and downloaded to the ARM and MicroBlaze processors.

4.5.5 System Behavior

In this example, latent malicious behavior is inserted into the production controller. The

system begins with a unit step response followed by activation of the latent malware. This

malware attempts to drive the plant’s output to its maximum (clipped) value beginning at

t = 350 ms. With no countermeasures in place, Fig. 4.8 shows the plant’s output exceed-

ing the safe limit of 3.2. Plant behavior with the hardware monitor appears in Fig. 4.9.

Without prediction, the plant’s output approaches the acceptable limit at t = 480 ms before

being corrected by the backup controller. With prediction, the hardware monitor proac-

tively invokes the backup controller at t = 280 ms, thereby preventing the physical plant

from reaching an unsafe state. The backup controller will remain active until the system is

reset. Fig. 4.10 shows the plant’s output with prediction and automatic resumption of the

production controller. As in Fig. 4.9, the prediction unit forecasts the future consequences of

the malware, and the hardware monitor again preemptively switches to the backup controller

at t = 280 ms. The hardware monitor’s probation counter expires and the production con-

troller is reinstated when the malware ends at t = 650 ms since 200 ms before this time the

physical plant, plant model, and predicted plant state are found to be within specifications.

General mechanisms are being developed to manage transitions between controllers in order

to avoid excessive overshoot caused by stale state information.

4.5.6 Time and Resource Utilization

Despite the implementation of software functions in hardware, performance is not an ob-

jective in this work, as the system needs to operate only once per millisecond. The ARM

processor operates at 667 MHz; the MicroBlaze processor, along with the remaining hard-

ware, operates at 140 MHz. Both processors utilize full optimization and hardware floating

point instructions. One iteration of the prediction unit requires 1.43 microseconds to com-

plete. Considering this runtime, the comparatively minimal runtimes of the production
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Figure 4.8: Unprotected plant behavior
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Figure 4.9: Protected plant behavior with and without prediction
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Figure 4.10: Protected plant behavior with return to the production controller

controller and hardware monitor and all communication overheads, it is possible to predict

over 500 cycles into the future during each 1 ms system cycle. This prediction window is

currently limited by the MicroBlaze’s computational throughput. If a larger prediction win-

dow is required, more intensive optimization of the MicroBlaze or a faster platform speed

grade may be necessary.

The resources consumed by the components and the overall system are shown in Table 4.2.

The prediction unit’s MicroBlaze processor has a large resource usage because it is configured

with a five-stage pipeline, hardware support for floating point addition and multiplication,

and an AXI timer peripheral for measuring code latency.

4.6 Conclusions and Current Work

Existing approaches to control system security add generic hardware or software layers to help

isolate and secure applications. We instead use rigorous verification of application-specific

hardware to counter software reconfiguration attacks on critical processes, accomplished
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Table 4.2: Zynq-7020 programmable logic resource usage

FF LUT DSP BRAM

Hardware Monitor 677 1046 5 0

HLS interfaces 295 78 0 0

Junction Box 70 80 0 0

Prediction Unit 2813 3174 2 4

Total Used 3855 4378 7 4

Available 53200 106400 140 220

Percent Used 7 4 5 2

through the non-standard use of existing languages, tools, platforms, process specifications

and models. C is used for all application-specific software- and hardware-implemented func-

tions in the system-on-chip platform. This conforms with the C code automatically synthe-

sized from model-based design tools or manually generated by control system designers, and

enables the novel use of C code static analysis tools for functions implemented in hardware.

The Frama-C analysis tool best suits our needs because of ACSL’s first-order logic expressive

power for annotating partial functional specifications, support for floating point arithmetic

so that fixed point error analysis is not needed, and use of several provers to check the validity

of assertions. Although HLS from C is a commercial technology, our additional use of for-

mal specifications expressed in ACSL addresses the equally important matter of high-level

verification of hardware functionality, and further unifies hardware and software develop-

ment. We use a three-level abstraction hierarchy from ACSL (for specifying security-related

system properties) to C (for capturing the system implementation without any hardware-

level complications) to configurable logic (where hardware utilization can be controlled and

reported by the Xilinx synthesis and implementation tools). The lack of aggressive timing

goals promotes hardware generation without any manual intervention.

We are presently applying TECEP to an electromechanical physical plant where non-ideal

effects such as noise, disturbances, and actuator limitations are present. The Quanser

ROTPEN-SE apparatus allows testing our approach on an increasingly complex set of sys-

tems, from simple rotary motion control, to an inherently stable gantry crane system, and

finally to an inherently unstable inverted pendulum system [20]. Because the ZedBoard is

not yet supported by Quanser, we created a custom SPI interface to the physical system as

well as custom Simulink blocks to allow the automated implementation of our controllers.
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A Kalman filter will serve as a natural way to accurately estimate the controlled system’s

state for short time horizons. TECEP’s ability to scale up to cyber-physical systems and

applicability to non-control domains are also being investigated.
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Chapter 5

Run-time Prediction and Preemption

of Configuration Attacks on

Embedded Process Controllers

5.1 Abstract

Embedded electronics are widely used in cyber-physical process control systems (PCSes),

which tightly integrate and coordinate computational and physical elements. PCSes have

safety-critical applications, such as the supervisory control and data acquisition (SCADA)

systems used in industrial control infrastructure, or the flight control systems used in com-

mercial aircraft. Perimeter security and air gap approaches to preventing malware infiltration

of PCSes are challenged by the complexity of modern networked control systems incorporat-

ing numerous heterogeneous and updatable components such as standard personal computing

platforms, operating systems, and embedded configurable controllers. Global supply chains

and third-party hardware components, tools, and software limit the reach of design verifica-

tion techniques. As a consequence, attacks such as Stuxnet have demonstrated that these

systems can be surreptitiously compromised.

We present a run-time method for process control violation prediction that can be lever-

aged to enhance system security against configuration attacks on embedded controllers. The

prediction architecture provides a short-term projection of active controller actions by em-

84
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bedding an accelerated model of the controller and physical process interaction. To maintain

convergence with the physical system, the predictor model state is periodically synchronized

with the actual physical process state. The predictor is combined with run-time guards in

a root-of-trust to detect when the predicted process state violates application specifications.

Configurations can be screened before they are applied or monitored at run-time to detect

subtle modifications or Trojans with complex activation triggers. Advanced notification

of process control violations allows remedial actions leveraging well known, high-assurance

techniques, such as temporarily switching control to a stability-preserving backup controller.

Experimental simulation results are provided from a root-of-trust developed for an aircraft

pitch control system.

5.2 Introduction

A process control system (PCS) is an embedded computer platform used to monitor and

control physical processes. PCSes are a subset of cyber-physical systems, which tightly

integrate and coordinate computational and physical elements. One example of a PCS is

feedback control, where an embedded controller uses sensor measurements of a physical

plant to compute feedback signals preserving system stability. PCSes are widely used in

safety-critical infrastructure applications such as power grids, assembly lines, water systems,

pipelines, power plants, and other industrial systems [1, 5]. Recent PCS attacks such as

Stuxnet, which is described as the real start of cyber warfare, have highlighted embedded

system vulnerabilities and the inadequacy of existing security solutions.

The Stuxnet worm infects Windows computers, spreads via networks and removable stor-

age devices, and exploits four zero-day attacks (previously unknown vulnerabilities). An-

tivirus software missed the attack because programmable logic controller (PLC) rootkits

hide Stuxnet modifications to the system, and two stolen certificates validate new drivers.

The goal of Stuxnet is to sabotage a specific physical system by reprogramming embedded

controllers to operate outside their nominal bounds by intercepting routines that read, write,

and locate PLC commands and data. Many security companies state that Stuxnet is the

most sophisticated attack they have ever analyzed [3], and it is estimated to have infected

50,000–100,000 computers. The primary target is believed to be the Bushehr nuclear plant

in Iran, and likely caused a 15% drop in production of highly enriched uranium [4].
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PCSes are usually assembled from commercial-off-the-shelf (COTS) components and third-

party intellectual property (IP). Despite the lack of trust in such components, feasible alter-

natives may not exist for the timely development of new systems. Trojans can be introduced

into the global supply chain as either hardware or software modifications to embedded com-

ponents. Since controllers are often programmable, many Trojans need only be implemented

in software. Even hardware trust may be misplaced in configurable platforms, such as those

utilizing field programmable gate arrays (FPGAs). PCS threats can originate from numer-

ous sources, including hostile governments, terrorist groups, disgruntled employees, malicious

intruders, and untrusted insiders.

Embedded system security solutions can be classified as either design-time or run-time tech-

niques [15]. Design-time approaches typically seek to verify that a system is error-free pre-

deployment. An example method is formal verification of system implementation to design

specifications. However, system-level verification is difficult to achieve for complex assem-

blies of heterogeneous components. Such design-time techniques are expensive in terms of

both time and effort, and can be only afforded for a limited set of applications.

Run-time techniques add trusted components to provide assurances about certain aspects

of system behavior. An example of a trust anchor component is a trusted platform module

(TPM) commonly used in modern personal computers [10]. Common additions include

encryption and authentication modules that help assure information integrity and provide

isolated compartments for applications with various levels of privilege. Such techniques can

be costly in terms of design overhead and added latency and thus are often not appropriate

for applications such as high-performance or general purpose computing. Yet for many ap-

plications, such as embedded cyber-physical systems, the security gains that can be achieved

through trusted run-time anchors justify their presence.

We generate run-time components to simultaneously address design-for-security, -trust, and

-reliability (DFSTAR). To protect against Stuxnet-like cyber threats, a secure cyber-barrier

is placed around the system’s control path. System behavior checks are synthesized at design-

time from an application’s operational and security specifications. Using this methodology,

a tailored trustworthy control flow is created for the target application. This fundamentally

new approach is not domain-specific and provides a proactive solution for sustaining system-

level security with reliable control. Existing verification techniques are complemented but not

exclusively relied upon to ensure functional system trust and security compliance. System-

level PCS reliability is also addressed by incorporating specifications that should already be
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defined for high-reliability systems.

Farag et al. presented a configurable hardware-assisted application rule enforcement

(CHARE) protection scheme to ensure an embedded system adheres to system specifica-

tions [8]. CHARE addresses several aspects of control security, including high-assurance

module interactions and configuration programming in embedded systems. A centralized

CHARE trust anchor serves as the most privileged root-of-trust for control flow, and inserts

a distributed set of policy-aware specification guards on module interfaces. Specification

guards provide on-line monitoring and proactive enforcement of policy rules emanating from

security, performance, or reliability specifications. CHARE components tailor the hardware

surrounding a system’s datapath and control logic to the intended application, but do not

affect the implementation of the original logic itself. A hardware-oriented solution offers

resistance to software attacks and the performance necessary to implement real-time checks.

CHARE reconfiguration allows for policy changes, but the trust anchor itself can only be

updated with physical access or trusted channels.

The DFSTAR methodology encourages the synthesis of behavioral expectations of an entire

system, including physical processes themselves. The models developed during the design

stage of a cyber-physical system can be viewed as a manifestation of such system expec-

tations. We propose that a security architecture for PCSes providing secure configuration

management can be synthesized from these models following the DFSTAR methodology.

In this work, a protection scheme utilizing CHARE extended with a novel process control

violation prediction method is developed for embedded PCS controllers. Prediction logic in-

corporates a second instance of the embedded controller connected to a physical plant model

running faster than real time in order to predict the future state of the physical system. The

model’s state is periodically synchronized with the physical plant’s state to prevent state

divergence. CHARE specification guards check if future system states will violate system-

level policies. Controller configuration updates are tested against the current state of the

process before they are applied. Additionally, if a violation is predicted after applying an

update, guards switch from the faulty controller to a high-assurance, stability-preserving,

backup controller until the system is stabilized. For process control networks, CHARE may

be collectively applied over the network of controllers, sensors, and supervisory software.

The remainder of this paper is organized as follows: Section 5.3 surveys existing run-time

approaches to embedded PCS reliability and security. Section 5.4 describes the concept of

process control violation prediction and how it can be used to defend against configuration
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attacks on networked PCS controllers. This section also describes a prototype architecture

and implementation flow for the protection system. Experimental results from applying the

prediction method to a flight pitch controller simulation are provided in Section 5.5. Finally,

conclusions and future work are summarized in Section 5.6.

5.3 Background

The need for high-assurance control of physical processes by cyber-systems has led to the

development of several fault detection techniques. In the case of embedded controller faults

or attacks, erroneous controller behavior is ideally detected and corrected while the physical

process can still return to equilibrium. PCS fault detection techniques typically observe

either physical process measurements to new controller inputs or controller responses to new

sensor measurements. Sha introduced a protection architecture based on monitoring physical

process measurements to detect faults [13]. In this architecture, sensor measurements of the

physical process are monitored by decision logic that determines if a process violation has

occurred, as illustrated by Figure 5.1. If a violation is detected, the decision logic switches

control to a high-assurance and presumably slower version of the controller until the system

is stabilized. A limitation of this scheme is that system stability cannot always be recovered

as the controller fault is not detected until after it has caused the physical process to deviate

from allowed operational limits.

Dai et al. advanced a fault detection architecture based on observing controller responses

to new sensor inputs [6]. Physical process measurements are sent to both the regular high-

performance version of the process controller and a trusted benchmark version of the con-

troller algorithm. The responses of both controllers are used to generate a residual to deter-

mine if a controller fault has occurred, as shown in Figure 5.2. Unfortunately, the physical

process is already affected by the erroneous controller output by the time the controller fault

is detected and corrective actions, such as switching over to a high-assurance version of the

controller, can occur. This may result in the inability to return the system to a stable state

before damage is incurred.

Cárdenas et al. presented a physical model-based attack detection method with foundations

in anomoly-based intrusion detection theory for computer systems and networks [3]. The

specific threats addressed with this protection scheme include embedded controller intrusion
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Figure 5.1: Plant fault detection [13]

attacks arising from compromised plant sensor data. Instead of using models of network traf-

fic or software behavior, physical system models are used to develop a change detection-based

intrusion detection algorithm. An embedded system implementation of a physical plant lin-

ear model runs concurrently with the plant, as illustrated in Figure 5.3. Controller responses

are sent to both the physical plant and the embedded model. An anomaly detection module

is then used to compare how sensor data measured from the physical plant compares to the

response of the embedded plant model. When no differences are detected, the physical plant

measurements are sent to the embedded controller which can then compute the feedback

response. Sensor data intrusion is suspected when a difference is detected, in which case the

embedded model’s estimated physical plant state is sent to the embedded controller in an

effort to filter out compromised measurements and continue plant control. This work devel-

ops a rigorous analysis and classification of PCS intrusion attacks and associated detection

methods. However, it does not provide a means to detect and circumvent direct threats to

controllers themselves such as configuration updates and Trojans.

Although many security solutions have been proposed for legacy embedded systems [2],

these solutions are not optimized for process control applications. Design-time security tech-

niques are very expensive and may not anticipate all system vulnerabilities. Such techniques
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Figure 5.2: Controller fault detection [6]

often do not address vulnerabilities raised by software patches and updates, hardware re-

configurations, and zero-day exploits. This leads to a demonstrated possibility of controllers

being surreptitiously compromised. An alternative approach is admitting the possibility of

unanticipated threats and trying to cope with them using run-time security solutions. How-

ever, most existing run-time solutions are reactive, and can only detect erroneous controller

behavior after its occurrence. Such detection methods may allow a physical processes to

become unstable before corrective action can be taken. These techniques also tend to be

threat-specific, leading to increased overheads for integrated solutions.

5.4 Controller Attack Prediction and Preemption

Our research stems from the observation that novel, deeply embedded protections are needed

to cope with Stuxnet-class threats to process control systems. The specific goal of the work

in this paper is to protect embedded controllers from configuration threats using a run-time

security architecture synthesized with the DFSTAR methodology. Trust is neither required
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in the active controller-under-protection nor its update and communication infrastructure,

and applies only to a small set of simple, self-contained, synthesized, and verifiable CHARE

add-ons. A CHARE root-of-trust is established to ensure an application’s security and re-

liability specifications are being observed, and essentially serves the role of an ideal control

room operator. Specification guards enable the root-of-trust to directly monitor system oper-

ation and override the controller-under-protection. The DFSTAR methodology incorporates

security enhancements to the system structure and automatic tool extensions to the existing

design flow.

Our threat model does not distinguish between hardware faults, software bugs, and malware

such as Trojans since the common denominator is non-compliant controller behavior. A

Stuxnet-like threat can hide itself using sophisticated means, but is less able to disguise its

ultimate goal of disturbing system stability. Regardless of how the threat originates, the

role of trusted protection system is to anticipate and deter consequences to the controlled

process. Based on this philosophy, we present a novel method to predict and preempt

erroneous behavior in physical process control. For the PCS domain, specifications for normal

system behavior are already known, and accurate models for the controlled process usually

exist. Our solution is complementary to other approaches that try to validate the design or

prevent malware infiltration, and serves as a last line of cyber-defense against various threats

to embedded controllers.

Physical systems and processes are characterized by quantitative temporal properties such

as process response time, actuator delays, and sensor time constants. These physical la-
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tencies are not inherent in system models. The vast majority of physical processes can be

described and modeled as linear time invariant systems with a high degree of accuracy un-

der very realistic assumptions. Often, a plant model running on an embedded processor

can be executed much faster than a real plant operating in a physical system. In a PCS,

an embedded controller responds to variations in the state of a physical plant in order to

maintain system stability. Execution speed of an embedded controller corresponds to the

temporal characteristics of the associated physical process. The typical operating frequency

of a digital embedded system controlling a physical process is proportional to the sampling

rate of the physical process. Our approach to detect erroneous behavior of embedded con-

trollers exploits potential speed differences between a physical plant and its model, which is

analogous to the difference between running a physical system and simulating it.

The main idea of our approach is examining what the controller implementation will try

to do in the future by embedding a second instance of the controller with an accelerated

model of the plant. The model can be implemented in either hardware (such as an FPGA)

or software (perhaps on a separate processor) depending on the required speed-up. The

second controller instance can be identical to the original controller and implemented on

the same platform. To maintain convergence with the physical system, the model’s state is

periodically synchronized with the plant’s state. The embedded controller instance should

be subject to the same conditions as the active controller by synchronizing the model’s

input with the system reference input, and applying the same patches and updates to both

instances. A redundant embedded subsystem incorporating these measures can accurately

predict the behavior of an embedded controller for several time steps in the future.

The operation of the added protection system is illustrated in Figure 5.4. During regular

operation, the prediction unit continuously scans projected states of the active control al-

gorithm against the corresponding projected states of the physical process. If a fault or

Trojan activity causing the physical process to deviate from allowable bounds is detected

by the specification guards, the root-of-trust immediately transfers control from the active

controller to the high-assurance, stability-preserving controller, such as that used in [13].

The root-of-trust is also used to interface with all new configuration and parameter updates

to the active controller. When a new update is received, it is first tested in the prediction

unit using the current process state as a basis. The update is rejected if the prediction unit

detects a deviation from allowable process bounds during initial screening. The update is

only applied to the active controller when no violations are projected. After the update has



Lee W. Lerner Chapter 5. Prediction and Preemption of Configuration Attacks 93

been applied, the root-of-trust resumes predictive monitoring of the active controller to deter

latent attacks introduced through the new update.

5.4.1 Prototype Controller Architecture

Some of the relevant, basic concepts of feedback control and modern control systems are pre-

sented in [7, 9]. In order to enhance the security, trust, and reliability of an embedded PCS,

the existing system is augmented with a root-of-trust synthesized from a process model and

specifications. As shown in Figure 5.5, major components of the predictive and preemptive

architecture are:

• The original controller module containing an active controller-to-be-protected, a high-

assurance, stability-preserving controller, and a mechanism to switch between them.

This embedded system module runs at the typical sampling rate of the physical process.

• A prediction module consisting of a process model and a second instance of the active

controller. This subsystem runs n times faster than the active control system module.

• A CHARE module that wraps the controller and prediction modules. This subsystem

consists of specification guards as well as specialized model synchronization and timing

blocks.

CHARE specification guards can be used to monitor either the physical process or the

controller module input/output activity to assure compliance with the desired behavior of the

physical process or a high-assurance benchmark controller. In this architecture specification

guards monitor the process model output, as shown by Figure 5.5. Detection of anomalous

behavior in the predictive subsystem triggers the guards to switch from the active controller

of the physical process to a high-assurance controller. Recursion is possible with more than

one backup controller and their predictive counterparts. The specialized synchronization unit

is responsible for periodically updating the state of the model with the estimated state of

the physical process. A specialized sample and hold unit updates the predictive subsystem

input with the physical process reference input. The timing unit is responsible for clock

generation and time emulation for the predictive subsystem.

The specification guard attached to the prediction module contains a maximum likelihood

detector and a fault detector to predict faults before they actually occur in the controller-
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under-protection. Theoretically, if the predictive controller is secure and no threats are

affecting it, the output of the controller will conform to the normal operating criteria de-

scribed by the security policies embedded in the fault detector module. Any threat affecting

the prediction module controller will show up later in the actual controller and, if not pre-

empted, will increasingly affect the predictive controller’s output. In practice, many factors

other than those related to security threats can cause such a deviation from the normal

operating conditions, such as mistuning of the controller parameters and the random noise

resulting from the process. To address the challenge of distinguishing faults resulting from

cyber-attacks from noise, accurate descriptions of the controller characteristics, operating

conditions, and the statical distribution of noise are needed.

The fault detector does not rely on a single sample to decide the controller’s integrity. For

PCSes, it has been shown that as the number of the observed samples increases, the statis-

tical distribution of the process noise becomes Gaussian with constant mean and variance

values [6]. Consequently, the statistical distribution of the controller’s output follows the

Gaussian noise distribution as it is the only random variable in the output equation. Devia-

tion from the normal operating conditions caused by either cyber-threats or controller faults

shifts the predictive controller’s output mean and variance computed over a significant num-

ber of samples to new values outside the range defined by the security policy. In other words,

deviation of the output root mean square (RMS) value from nominal bounds indicates a fault

or attack in the controller-under-protection. The maximum likelihood detector unit shown

in Figure 5.5 is used to evaluate the RMS value of the embedded model’s output in the pre-

diction module. The fault detector then tests the predictive controller’s output against the

the RMS value generated by the maximum likelihood detector to determine if the likelihood

ratio lies within the predefined threshold range captured by the security policies.

5.4.2 Timing and Synchronization

Our approach advances new terminology such as: the time scaling factor n which indicates

the predictive subsystem speed-up; the prediction window W pred which denotes the foreseen

time period; and synchronization time T sync which determines the updating frequency of

the model’s state in the predictive subsystem. W pred is function of n and T sync, as

shown by equation 5.1. T sync is application-dependent whereas n is both application- and

platform-dependent. Assuming flexibility in assigning n and T sync, increasing n improves
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W pred at zero cost in terms of the updating frequency, while increasing T sync augments

W pred on the expense of reducing the updating frequency. T sync is often the more flexible

and tunable parameter when significant changes to W pred are needed. Multiple trade-

offs must be evaluated when assigning values of n and T sync where the physical process

characteristics and the embedded platform features are the assignment criteria.

W pred = n · T sync (5.1)

Time scaling is accomplished by applying modifications to both system and input signals.

System modifications vary for continuous- and discrete-time models of the physical process.

For a continuous-time model, time scaling is achieved by multiplying system state space

matrices by the desired time scaling factor n. For discrete-time embedded systems employing

digital controllers, scaling down the sampling time of the physical process by a factor of n

automatically scales down the time of the system internal signals. Input signal time cannot

be scaled down because this requires prior knowledge of signal contents. To tackle this

problem, the model’s input can be periodically synchronized with the reference input at the

physical system sampling rate by assigning T sync to be T sampling seconds. However, this

approach limits the prediction window to n · T sampling seconds.

Another approach can be adopted where the process model and the physical system are

synchronized whenever the reference input to the physical system is changed. Such an

approach produces an adaptive prediction window, which may not be preferred for security

reasons. In a PCS, the reference input to a physical process is often the desired stable

output of the system which implies that reference input changes are limited in terms of

both amplitude and frequency. This implies that a sample and hold technique can be used

to periodically update the model’s input with the reference input without the need for an

adaptive synchronization method. We adopt this approach to establish a security scheme

with a controllable synchronization time and a fixed prediction window.

We consider both event-driven and time-driven faults. Accurate detection of event-driven

faults depends on the proper and frequent updating of the model’s state in the predictive

subsystem. Figure 5.5 shows the switching technique created to update the model’s state

x k with the estimated plant’s state x e generated by the Kalman filter state observer.

The model’s state updating frequency is a function of the desired prediction window and the

model’s input synchronization scheme. Predictive subsystem time must emulate the real time
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in order to successfully detect time-driven faults and properly operate time-driven modules

and processes. Time emulation requires generating the predictive subsystem time in terms

of n and T sync, and relating it to the real time t. The predictive subsystem time is directly

proportional to n, whereas T sync formulates the reference time base which periodically

resets the predictive time T pred to the real time t as shown by equation (5.2). Figure 5.6

illustrates the predictive subsystem time for the case study described in Section 5.5 where

the the time scaling factor n is 10, and two values of T sync (1 and 10 seconds) are used for

different prediction windows.

T pred = T sync · b t

T sync
c+ n ·mod(

t

T sync
) (5.2)
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Figure 5.6: Relationship between real time and predictive subsystem time

5.4.3 Model-based Design Flow Enhancements

Figure 5.7 illustrates a prototype design and implementation flow to create a root-of-trust for

an embedded controller-under-protection. We focus on model-based design used to generate

solutions for problem domains that have a well-established mathematical basis, such as pro-
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cess control, signal processing, and communications. Although model creation and analysis

are a routine part of engineering, models are mostly used to explore and validate abstract

solutions such as structures and algorithms, while the actual solution is implemented from

scratch. In contrast, model-based design automatically synthesizes the solution—usually

either hardware or software—directly from the model.
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Figure 5.7: CHARE design flow

Controller design begins with functional specification, often initially captured as plaintext

documentation or assertions of expected behaviors of the system for the the intended ap-

plication. Specifications reflecting application-specific security or reliability policies for the

controller and physical process can similarly be developed at this time. Specifications guide

the functional design of control algorithms in a tool such as MATLAB Simulink or Stateflow.

The process model’s structure is often captured graphically also using these tools in an effort

to evaluate control algorithms. Tools such as Simulink Coder or HDL Coder then automate

software and hardware generation of the controller, which is mapped to embedded platform

components such as dedicated processors or configurable FPGA fabric.

The root-of-trust in Figure 5.7 consists of the process control violation prediction and
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CHARE modules detailed in Figure 5.5. The model developed to describe the process can

be reused in the prediction module and implemented with the same tools used to synthesize

the controller. An optimized implementation of the process model helps to reduce the time

and space overheads of our predictive subsystem, which is especially important in embedded

control environments that do not use PC-class hosts. As with specifications, this design flow

assumes that the process model is accurate and can be trusted. Fortunately, process and

high-assurance backup controller models tend to be stable, synthesized, self-contained, and

subject to formal verification.

Functional and security policy specifications are inputs to the design flow for creating

CHARE specification guards, as shown in Figure 5.7. Application-independent specifica-

tion languages are used to prepare policies for synthesis, such as acceptable ranges for pro-

cess sensor and controller outputs. Clearly specifying permitted ranges and rates-of-change

for process and controller I/O specifically guards against Stuxnet-like attacks on processes

requiring smooth control changes.

Though the DFSTAR methodology is neither hardware- nor software-specific, we choose to

focus primarily on the development of root-of-trust hardware. A hardware-oriented solution

provides the access and performance necessary to implement run-time protections with in-

creased tamper resistance [11]. An example of CHARE implemented on a modern embedded

processing platform marketed for industrial control applications is shown in Figure 5.8 [16].

The CHARE root-of-trust is synthesized to programmable hardware fabric. Processes to

be monitored, such as the active controller and prediction module, can be hosted on the

embedded processor cores.

The specification guard components to be validated are simple, independent, and largely

synthesized from high-level abstractions, such as SystemVerilog assertions or Bluespec Sys-

temVerilog rules with guarded atomic actions, as described in [8]. Our future work will

explore methods for generating relevant assertion automata guards in detail. For the sake

of verification, Simulink wrappers can be generated to enable simulation of the synthesized

predictive subsystem, synchronization, and switchover blocks.
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5.5 Example Control Application

In order to illustrate and evaluate our approach, an aircraft autopilot pitch controller is used

as a case study [12]. Flight control is a safety-critical application where controller faults

can have catastrophic consequences. Linear Quadratic Gaussian (LQG) control is a modern

approach adopting time-domain analysis, state space representations, and state observers to

enhance the control process. It concerns uncertain linear systems disturbed by additive white

Gaussian noise and undergoing control subject to quadratic costs [14]. LQG controllers are

widely deployed, and their structure helps to present our concepts and architecture effectively.

Nevertheless, our approach is still applicable to other control techniques.

5.5.1 Pitch Control Process Model

The motion of an aircraft is governed by a set of six non-linear differential equations. These

equations can be decoupled into longitudinal and lateral equations under certain assump-

tions [12]. The pitch angle is a third-order longitudinal problem and is controlled by adjusting

the angle of the rear elevator. Figure 5.9 shows the basic coordinate axes and forces acting

on an aircraft.
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α: Angle of attack

θ: Pitch angle

δ: Elevator deflection angle

γ: Flight path angle

Figure 5.9: Coordinate axes and forces acting on an aircraft [12]

As described in [12], the equations of motion of a Boeing commercial aircraft can be written
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as:
α̇ = −0.313α + 56.7q + 0.232δe

q̇ = −0.0139α− 0.426q + 0.0203δe

θ̇ = 56.7q

where α is the angle of attack; q is the pitch rate; q is the pitch angle; and δe is the elevator

deflection angle.

Using the differential equations controlling the plane motion, the state space representation

of the pitch angle system is as follows:α̇q̇
θ̇

 =

 −0.313 56.7 0

−0.0139 −0.426 0

0 56.7 0


αq
θ

 +

 0.232

0.0203

0

[
δe

]

y =
[
0 0 1

]αq
θ

 +
[
0
] [
δe

]
In the presence of noise, this equation can be expressed in a state space form:

ẋ = Ax+Bu+ ωproc

y = Cx+Du+ vsensor

where x is a column matrix composed of α, q, and q elements representing system’s state;

the input u is the elevator deflection

5.6 Conclusions and Current Work

Comprehensive rather than point solutions are needed to help PCS infrastructure withstand

an emerging malware onslaught. As illustrated by Stuxnet, preventing malware infiltration

is difficult in complex, networked control systems having zero-day exploits. Trojans may also

arise from the global supply chain and use of third-party IP. This leads to a demonstrated

possibility of controllers being surreptitiously compromised. Erroneous controller behavior

must be detected before it critically affects a physical process.

Existing solutions to run-time bug and fault detection include monitoring the process state
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arising from past controller actions, or comparing present outputs from independent con-

trollers. Our run-time system includes a second instance of the active controller connected

to a model of the plant giving a short-term projection of future controller actions and pro-

cess state. The model’s state is periodically synchronized with the plant’s state to prevent

divergence. Erroneous controller behavior is detected before it affects the physical process,

allowing preemptive alarms or actions.

The blocks conferred with trust should be minimal in complexity and number so that syn-

thesis and formal verification methods may be applied. In addition, these blocks should

have rigorous update procedures, and use distinct software and hardware resources. Ideally

the trusted blocks do more than just protect against malware by also enhancing reliability

in the presence of software bugs and hardware faults. The DFSTAR methodology meets

these goals by exploiting: (1) the inherent controllability and observability of a PCS; (2)

the existence of specifications for normal PCS operation; and (3) the model-based design

approach commonly used during PCS development.

Tools are under development to automatically generate the trusted components described

in this paper. FPGA platforms enable the use of integrated yet independent resources for

monitoring functions, and allow both hardware and software implementation of synthesized

blocks. Once the tools are complete, we will be able to assess the design-time and run-time

overheads of the DFSTAR methodology. After targeting simple controller applications such

as pitch control, we will look at inserting a system monitor in a network of process controllers.

We also plan to see how these tools scale up to to more complex multiple-input-multiple-

output (MIMO) controllers used in modern PCS platforms.

Acknowledgments

The CHARE framework used in this work was developed in the AUSTIN (An Initiative

to Assure Software Radios have Trusted Interactions) project supported by the National

Science Foundation, Grant No. CNS-0910557.



References

[1] M. Brundle and M. Naedele. Security for process control systems: An overview. Security

Privacy, IEEE, 6(6):24–29, Nov–Dec 2008.

[2] A.A. Cárdenas, S. Amin, and S. Sastry. Secure control: Towards survivable cyber-

physical systems. In Distributed Computing Systems Workshops, 2008. ICDCS ’08.

28th International Conference on, pages 495–500, Jun 2008.

[3] Alvaro A. Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen Huang,

and Shankar Sastry. Attacks against process control systems: risk assessment, detection,

and response. In Proceedings of the 6th ACM Symposium on Information, Computer

and Communications Security, ASIACCS’11, pages 355–366, 2011.

[4] T.M. Chen. Stuxnet, the real start of cyber warfare? [editor’s note]. Network, IEEE,

24(6):2–3, Dec 2010.

[5] F. Cohen. Automated control system security. Security Privacy, IEEE, 8(5):62–63,

Sep–Oct 2010.

[6] C. Dai, S.H. Yang, and Liansheng Tan. An approach for controller fault detection. In

Fifth World Conference on Intelligent Control and Automation (WCICA), volume 2,

pages 1637–1641, Jun 2004.

[7] Richard C. Dorf and Robert H. Bishop. Modern Control Systems. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 9th edition, 2000.

[8] Mohammed M. Farag, Lee W. Lerner, and Cameron D. Patterson. Thwarting software

attacks on data-intensive platforms with configurable hardware-assisted application rule

enforcement. In Field Programmable Logic and Applications (FPL), 2011 International

Conference on, pages 207–212, Sep 2011.

105



Lee W. Lerner Chapter 5. Prediction and Preemption of Configuration Attacks 106

[9] Gene F. Franklin, David J. Powell, and Abbas Emami-Naeini. Feedback Control of

Dynamic Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 4th edition,

2001.

[10] Steven L. Kinney. Trusted Platform Module Basics: Using TPM in Embedded Systems

(Embedded Technology). Newnes, 2006.

[11] Lee W. Lerner, Mohammed M. Farag, and Cameron D. Patterson. Interacting with

hardware Trojans over a network. In Hardware-Oriented Security and Trust (HOST),

2012 IEEE International Symposium on, June 2012.

[12] W.C. Messner and D.M. Tilbury. Control tutorials for MATLAB and Simulink: User’s

Guide. Addison-Wesley, 1998.

[13] Lui Sha. Using simplicity to control complexity. Software, IEEE, 18(4):20–28, Jul–Aug

2001.

[14] L.M. Surhone, M.T. Tennoe, and S.F. Henssonow. Optimal Projection Equations. VDM

Verlag Dr. Mueller AG & Co. Kg, 2010.

[15] M. Tehranipoor and F. Koushanfar. A survey of hardware trojan taxonomy and detec-

tion. Design Test of Computers, IEEE, 27(1):10–25, Jan–Feb 2010.

[16] Xilinx, Inc. Zynq-7000 EPP Overview, DS190 (v1.1.1), June 2012.



Chapter 6

Thwarting Software Attacks on

Data-intensive Platforms with

Configurable Hardware-assisted

Application Rule Enforcement

6.1 Abstract

Security is difficult to achieve on general-purpose computing platforms due to their com-

plexity, excess functionality, and resource sharing. An alternative is the creation of a Tai-

lored Trustworthy Space for the system or application class of interest. We focus on data-

intensive computing systems using reconfigurable hardware to implement streaming opera-

tions, and provide security assurances that are independent of application software, middle-

ware, or operating system integrity and correctness. All interaction between software and the

dataflow hardware passes through an automatically synthesized and formally verified hard-

ware controller incorporating enforcement and real-time monitoring of application-specific

rules. Abstractions provided by the Bluespec high-level language assist in the translation

of domain-specific policy rules to synthesized logic. For the cognitive radio example used,

hardware-enforced policies include physical layer rules such as sanctioned spectrum usage.

Policy changes cause the secure generation and transfer of a new controller-wrapped dat-

apath hardware plug-in. Datapath dynamic block swaps and cryptographic operations are
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managed entirely by the hardware controller rather than software drivers. Design for per-

formance and design for security are therefore simultaneously addressed since the datapath

is configured and monitored at hardware speeds, and software has no access to datapath

configurations and cryptographic keys.

6.2 Introduction

There is a trickle-down of architectural advances from high performance desktop and server

computing platforms to embedded computer systems. Larger address spaces, more effec-

tive caches, RISC instruction sets, multi-gigabit serial I/O, multi-core and heterogeneous

architectures are commonly used to satisfy performance and power constraints on systems

performing computations on streaming data. However, embedded system adoption of desk-

top platform security mechanisms tends to lag adoption of performance techniques. Several

reasons are usually given: power and cost concerns, a belief that software-based attacks are

less likely compared to desktop platforms, and a focus on physical attacks. As embedded

platforms are increasingly networked, the primary threat will likely shift to malware.

The trusted computing technologies used in large-scale, personal, and later embedded sys-

tems have the following progression:

1. SLS: Software limits access to software and data. Software is structured in layers, and

application or user requests requiring services from a more privileged layer are vetted

by software-implemented processes. The goal is to separate layers with robust APIs

that cannot be circumvented. Java virtual machines and packet filters are examples

of software stratification. Attacks generally have executable code masquerade as data,

and use vulnerabilities such as buffer overflows to execute the data.

2. SLH: Software limits raw hardware resource access. Innermost software layers have

exclusive responsibility for allocating and managing hardware resources such as CPUs,

memory, and peripherals. Examples of layers interacting directly with hardware are

virtual machines and operating systems. Access to hardware does not necessarily

imply access to (possibly encrypted) software and data. Direct programmatic access to

hardware is different from physical access to hardware, which introduces the possibility

of side-channel and probing attacks.
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3. HLS: Hardware limits access to software and data. Static hardware units, possibly

controlled by the innermost and trusted software layer, assist in the separation of

software processes and layers. Examples are memory management units (MMUs),

Trusted Platform Modules (TPMs) [23], protected execution and launch portions of

Intel’s Trusted Execution Technology (TXT) [13], and the use of eTokens. Although

hardware provides enforcement, trust in supervisory software may still be needed.

4. HLH: Hardware limits raw hardware resource access. Static hardware controllers have

exclusive responsibility for managing hardware-implemented processes or channels, and

can deny requests from software at any layer. Examples are the protected input and

graphics parts of Intel’s TXT, Intel’s Virtualization Technology [14], and hardware

firewalls.

The programmability and performance of reconfigurable hardware suits data-intensive em-

bedded computing applications. As shown in Fig. 6.1, traditional computing platforms have

a fixed trust hierarchy consisting of static hardware, operating system, middleware, and

application software. However, trust inheritance becomes complicated in configurable plat-

forms when software updates the underlying hardware structure. “In hardware we trust” is

no longer axiomatic since the hardware can be modified to violate specific policies. Current

practice places dynamic hardware configuration under the control of application-level soft-

ware, and even proposed OS-managed reconfiguration remains an SLH solution in the above

taxonomy. Dynamic hardware blocks are application-tailored and potentially untrusted.

Software modification of hardware structure is analogous to self-surgery, and independent

hardware should provide oversight rather than rely solely on the correctness and integrity

of application software and circuits. We insert a hardware-implemented, application-specific

controller and monitor on the boundary between static hardware (which hosts software) and

dynamic application hardware. This HLH approach retains most of the flexibility of ap-

plication software directly controlling dynamic hardware, while enhancing trustworthiness,

performance, and hardware abstraction.

The remainder of the paper is structured as follows: Section 6.3 surveys existing and proposed

approaches to enhancing platform security. Section 6.4 describes an architecture combining

a reconfigurable datapath with a synthesized controller to enforce and monitor application-

specific rules. The use of the platform and associated tools are illustrated in Section 6.5 with

a cognitive radio application. Finally, Section 6.6 draws conclusions.
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Figure 6.1: Static versus reconfigurable platforms

6.3 Existing Security Approaches

Current support for secure computing uses fixed hardware to enforce resource separation

between applications. The Trusted Computing Group (TCG) developed a trusted platform

(TP) specification to provide consistent behavior for a specific purpose using software and

hardware enforcement [23]. Root of Trust for Management (RTM), Trusted Platform Mod-

ule (TPM), and Trusted Software Stack (TSS) components provide three basic features:

protected capabilities, attestation, and integrity measurement and reporting. Microsoft’s

Next Generation Secure Computing Base (NGSCB) is a software architecture exploiting the

security provided by a TPM. The NGSCB consists of two kernels: an untrusted mode kernel,

and a trusted NEXUS mode kernel that provides a secure environment for trusted code [19].

Intel’s TXT uses processor enhancements, a TPM, operating system extensions such as the
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NGSCB, and enabled applications to protect sensitive information from software-based at-

tacks [13]. ARM’s TrustZone processor extensions support normal and secure environments,

with a monitor mode providing robust context switches [3]. In all of these commercial exam-

ples, the sole focus is software separation, the execution model does not consider hardware

adaptability, and there is excessive reliance on software correctness and integrity [21].

Reconfigurable hardware has been used to implement policy-driven memory protection mech-

anisms [12]. This work develops an access policy language to describe fine-grained memory

separation of modules on an FPGA. A policy compiler converts the specified memory ac-

cess policies into enforcement hardware modules. Reconfigurable hardware has been used to

implement a TPM [6]. Modifications to existing FPGA architecture are required, including

updates to the AES core bitstream decryptor and adding an on-chip non-volatile memory.

An FPGA has been augmented with a Trust Block consisting of a TPM, a secure ROM

storing FPGA configuration data, and switch logic used to configure the FPGA solely from

secure ROM during system boot [8]. Unfortunately, these efforts do not target platforms

where the hardware structure potentially changes during operation.

Reconfigurable systems often use third party IP cores. Although ideally these cores would be

verified by a trusted party, cost and source code requirements can make such a development

model impractical. Reliance on off-the-shelf IP modules provided by multiple vendors with

different levels of trust introduces serious security concerns [11]. A moat and drawbridge

model provides spatial module isolation and statically verifiable communication flow [10],

but does not address modules with self-contained trojan horses.

6.4 Minimizing Software and IP Trust in a Reconfig-

urable Platform

Separation is a fundamental tool in secure system design and should be used in reconfigurable

platforms with hardware and software interactions. In such platforms, software control of

hardware configuration introduces new security concerns compared to static hardware sys-

tems. System trust can be enhanced by enforcing application-specific access control policies

using either software or hardware. Hardware, which has greater tamper resistance and is

better suited to formal analysis than software, provides policy oversight in the Configurable

Hardware-assisted Application Rule Enforcement (CHARE) platform.
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As shown in Fig. 6.2, the CHARE architecture has four major components: an embedded

application processor, a reconfigurable controller-wrapped datapath, dedicated hardware to

securely configure the datapath, and secure access to a shared configuration server. Fig. 6.3

shows the separate regions allocated to these components on the Xilinx Virtex-5 FX130T

FPGA used in the initial prototype, with controlled communication between regions. Xil-

inx’s Embedded Development Kit (EDK) connects one of the embedded PowerPC 440 pro-

cessors to peripherals over a Processor Local Bus (PLB). The processor runs real-time Linux

for data-intensive applications implemented with both software and custom hardware. A

general-purpose I/O (GPIO) control interface stores datapath update request parameters

while buffers transfer data between software and the reconfigurable hardware. There are few

static routes crossing the dynamic region since most of the I/O signals connected to the two

processors reside in the leftmost I/O banks. Roughly 70% of the chip area, including all 320

DSP slices and the majority of the Block RAM, is allocated to the reconfigurable plug-in

region.

The reconfigurable hardware block consists of a datapath wrapped in a Datapath Rule En-

forcement Controller (DREC). Parameterized IP cores are connected to implement streaming

algorithms in domains such as DSP, communication, and video. The DREC is a hardware-

based finite state machine responsible for checking that software-issued datapath update

requests conform to policy rules embedded in the DREC. Software-visible datapath update

registers contained in the GPIO bus interface are not directly connected to the datapath, and

may not even have a one-to-one correspondence with actual datapath parameters. Invalid

update requests return an error, while requests conforming to policy rules can result in a

parameter update, individual module swaps, or a complete datapath plug-in replacement.

The DREC also serves as a datapath hardware abstraction layer. This has two advantages:

software interaction with the hardware is simplified to enhance portability, and the datap-

ath’s detailed implementation is not revealed to software. For example, software is oblivious

to the possible use of reconfiguration for swapping cores in response to datapath update re-

quests. The hardware model presented to software restricts the set of control capabilities to

that of a virtual ASIC implementing only the configuration options currently authorized. An

additional advantage of custom hardware plug-ins is the provision of software-independent

cryptographic services. For example, data may be automatically encrypted or decrypted

by the plug-in using a key embedded in the datapath controller. Configurable hardware is

generally more efficient than software for cryptographic algorithms [18], yet can be changed
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Figure 6.2: CHARE prototype platform

as readily as software implementations. Session keys may be used as a means of imposing

expirations on particular capabilities.

DREC logic is never updated independently of the datapath, and any policy updates necessi-

tate a complete plug-in replacement. Plug-ins may include monitors to check the operation

of individual cores that may be untrusted or subject to single-event upsets. Detection of

anomalous behavior signals the DREC to reload the plug-in if an upset occurred or a trojan

horse was enabled. New plug-ins are securely (and perhaps wirelessly) transferred from a

remote, shared and trusted Dynamic Module Server (DMS). Server-class hardware suits the

time- and memory-intensive EDA tools required to generate new FPGA configurations; these

tools exceed the resources available in embedded platforms. The DMS runs the PATIS tools

to accelerate hardware plug-in implementation through the automatic parallel application

of standard implementation tools [5].
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Figure 6.3: CHARE floorplan on a Xilinx Virtex-5 FX130T FPGA
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The CHARE platform has a configuration firewall containing a dedicated Plug-in Assist

Unit (PAU) processor for secure communication with the DMS. Similar to the protocols

and safeguards used in cryptographic co-processors and TPMs, the configuration firewall

performs critical functions in isolated hardware and does not share processor, logic, memory

or routing resources with other CHARE subsystems. A private key embedded within the

PAU provides a public key-based authentication protocol with the DMS. Decrypted partial

FPGA configurations for hardware plug-ins are not revealed outside the configuration firewall

or even to PAU software. External flash memory stores encrypted partial bitstreams received

from the DMS, with just-in-time decryption of bitstreams transferred to the FPGA’s Internal

Configuration Access Port (ICAP). For the sake of both speed and security, a hardware-

implemented flash memory controller controls the ICAP.

6.5 A Cognitive Radio Example

The need for flexibility and better spectrum management gave impetus to the cognitive radio

(CR). A CR is a smart software defined radio that adapts its configuration based on per-

ceived changes in its environment [15]. By sensing the spectrum, a CR detects and leverages

opportunities by tuning communication variables such as the waveform, transmission power,

modulation scheme, and operation frequency. Reconfigurable hardware suits both the per-

formance and flexibility required by a CR [16]. To ensure integrity of the shared spectrum

resource, the CHARE platform provides hardware oversight of physical-layer radio policies.

A simple digital AM transceiver with variable parameters is selected to demonstrate the

application of CHARE to a CR platform. The AM transceiver architecture shown in Fig. 6.4

implements:

Y (t) = A0S(t) cos(ω0t+ φ), (6.1)

where carrier frequency ω0 and gain A0, the two transmission parameters, are updated

by issuing software update requests based on the radio’s interaction with its environment.

Xilinx’s System Generator for DSP is used to construct the datapath. The carrier frequency

is adjusted by modifying a Direct Digital Synthesizer (DDS) core parameter, while gain is

adjusted by modifying an input to a multiplier core.
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Figure 6.4: Digital AM transceiver architecture.

6.5.1 Policy Synthesis and Enforcement

Policies are derived from specifications of expected system behaviors. Specifications may

describe, for example, expected software or hardware interactions with physical processes.

Modern trust solutions fail to ensure that software functions, such as the embedded cognitive

engine program in this CR example, conform to the policies in all instances without intro-

ducing additional, unknown behaviors. The CHARE platform demonstrates that policies

can, however, be compiled into a hardware root-of-trust that is tightly integrated with a

datapath to prevent undesired outside influence and erroneous internal behaviors.

In the CR example, configuration update requests are issued by the software-based cognitive

engine to the reconfigurable hardware datapath. Policies are used to describe specifications

that the datapath must always conform to, regardless of outside influence. Datapath update

requests are specified as a set of registers which store update values for the DREC to evaluate

against independently supplied policies, and update procedures which instruct the DREC on

how to apply the updates to the datapath. Policies are compiled into satisfiability groupings,

which are inferred from policy types. These groupings validate update requests and perform

online monitoring of the datapath. When all policies are satisfied, the DREC performs the

datapath update procedure associated with an update request.
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Table 6.1: Policies with corresponding update registers.

Policy Type/Grouping Frequency Range (MHz) Maximum Gain (dBm) Time Range

P1 Allow/G1 2.0-3.0 -10 0100-0200

P2 Allow/G1 2.0-3.0 -15 0300-0400

P3 Allow/G1 2.0-3.0 -10 0500-0600

P4 Allow/G1 3.5-4.5 -10 0700-0800

P5 Allow/G1 3.5-4.5 -15 0900-1000

P6 Monitor/G2 - - 0000-1800

Table 6.1 illustrates policies applied to a CR datapath. The policies are initially specified as

a collection of the signal frequency and gain updates that can be made at certain times. Poli-

cies are typically associated with datapath update registers, parameters, or signals. Registers

corresponding to policies P1 through P6 are shown in the rightmost three columns of Ta-

ble 6.1. The CHARE compiler synthesizes policy specifications into declarative assertions in

the form of Bluespec SystemVerilog (BSV) rules that make up a policy set within the body

of the DREC [4]. Targeting BSV enables efficient and verifiable generation of hardware

transactors. BSV’s atomicity and expressivity also aid policy specification, and provide ab-

stractions familiar to software-oriented datapath designers. Atomicity ensures that rules are

entirely executed as they are always enabled in the DREC. The CHARE compiler leverages

Bluespec to manage potential interactions between rules through the automatic generation

of arbitration and scheduling logic.

The CHARE compiler translates registers associated with a datapath update request into a

BSV action method enabled when the request occurs. Any number of update requests may

be used with all or a subset of the datapath registers. In this application, a single update

request named UR1 is specified which requires the DREC to check the entire set of datapath

registers for policy conformance, as seen in Fig. 6.5. UR1 is used to send updates to the freq

and gain datapath update registers.

Enabling the update method causes the DREC controller to evaluate the datapath register

values corresponding to frequency, gain, and time against the policies P1 through P6. Be-

cause update requests are not linked directly to policies, every request must conform to all

groupings of policy rules. Unlike DARPA’s neXt Generation platform, policies cannot be

added, removed, or deactivated without performing a complete DREC hardware replacement

[7]. For applications where only a subset of policies are active at a given time, the remote

DMS issues new DREC-wrapped datapath plug-ins.
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Figure 6.5: Update request format.

Policies P1 through P5 are all of type Allow and are grouped into a single satisfiability BSV

rule G1 that disables further DREC processing of the update request if none of the policies are

satisfied. Update requests that do not satisfy any of the Allow policies are always rejected.

The DREC can provide feedback as to which policies are not satisfied in a given update

request, which may be useful for software learning or strategy development. Policies may

also be hidden from software generating the update requests, in which case only a DREC

accept or deny response is returned.

Policies can also act as monitors of datapath update registers and datapath parameters.

Policy P6 is specified as type Monitor and is used to observe the time register. P6 asserts

that the time register will always fall within 0000 to 1800. When the time falls outside of

this range, the policy’s satisfiability, G2, is no longer met and a response action is triggered

in the DREC. This action could be used to disable datapath modules for various reasons,

for example to save power in certain sections of a satellite’s orbit, to enforce a mandatory

offline built-in self-test cycle, or to expire IP after some period of system operation.

Monitors can also be placed on module interfaces or internal signals when specified as contin-

uous or dynamic assertions. Monitors may be used in this manner to provide assurances on

untrusted or poorly understood IP interfaces. Continuous assertions are specified directly in

the DREC module and checked at each clock cycle. Similar to policies on datapath update

registers, dynamic assertions are compiled to BSV rules in the DREC and evaluated when-

ever the rules are enabled. An optional guard may be placed on a rule containing dynamic

assertion logic causing the rule to be enabled only when some condition is met [4, 20].

The CHARE compiler can also be extended to support commonly used libraries of asser-

tions. For example, assertions found in the Acellera Standard Open Verification Library

(OVL) are compiled to the DREC using the BSV interfaces and wrappers found in the

OVLAssertions package [1]. Incorporating such monitors increases run-time observability
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which helps alleviate design verification and fault tolerance concerns.

Update requests are linked to update procedures that perform datapath plug-in reconfigu-

rations or parameter adjustments on dynamically reconfigurable modules. When a plug-in

reconfiguration is requested, the update procedure is written simply as an update code that

the DREC passes to the PAU. If a datapath module parameter update is performed, the up-

date procedure is written as the succession of values that the DREC must apply to registers

representing datapath parameter values. The CHARE compiler synthesizes these procedures

into sequences of BSV actions. In this application, a datapath parameter update procedure

UP1 is associated with update request UR1. UP1 is specified as a series of parameter values

that are written in order to phase shift the datapath’s DDS modules and apply a new coeffi-

cient to the gain controller. The datapath parameter values written in UP1 do not correspond

directly to datapath update registers used in the request and are not visible to the source of

the request. Simultaneous, non-conflicting update procedures are parallelized in the DREC

controller through the use of BSV par blocks.

Integration of the DREC with the underlying datapath is achieved with the Bluespec Im-

portBSV package. The DREC wraps the datapath, either applying procedures to interface

signals or simply passing them through to data buffers or external interfaces. Applying

policies on all datapath interfaces helps to ensure external devices cannot cause datapath

updates. The Bluespec compiler is then used to generate RTL Verilog containing the orig-

inal datapath and integrated DREC. A black-box version of the datapath is used during

compilation to reduce implementation time and ensure Bluespec does not introduce internal

modifications. The generated RTL and original datapath are then processed by the PATIS

and ISE PR implementation flow to produce a device programming bitstream. Any logic

overhead incurred using BSV is acceptable for many applications as the resultant implemen-

tation is often more timing efficient than what would be produced using conventional HDL

[2, 22].

6.5.2 Operational Verification

A trustworthy security solution requires rigorous verification to ensure defined and correct

behavior in all situations. Rather than rely solely on functional simulation to validate a

solution, formal verification is also used to provide a correctness proof. The two main

elements of formal verification are an accurate design model and precise specifications of
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required properties.

Operation of CHARE subsystems are formally verified through both policy-dependent and

policy-independent property checking. This is accomplished using compositional model

checking, which relies on a simple set of proof techniques and a domain-specific strategy

[17]. The goal of this strategy is to reduce the verification of a large system to smaller and

more tractable sub-modules. A proof system supporting this approach generates verification

subgoals discharged by Cadence’s SMV symbolic model checker. In such a verification frame-

work, the DREC is modeled as a finite state machine with an access state corresponding to

the BSV update request action method. The access state directly enforces spectrum access

policies given in Table 6.1 by responding to an update request UR1 and checking its con-

formance to policies. An update response is specified as a propositional formula capturing

policies P1 through P6. The update procedure UP1 is granted for requests satisfying policy

constraint predicates.

The DREC security specifications include safety and liveness properties. Liveness properties

ensure a response for every update request occurs without deadlocks or livelocks, whereas

safety properties guarantee that policies are correctly applied [9]. All datapath update

requests should eventually have a response, an update request that complies with policy

rules should be granted access, and an update request that does not comply with policy

rules should be denied. These security properties have the following form in first-order

temporal logic:

always (request→ eventually respond),

always (valid request→ eventually grant),

always (invalid request→ immediately deny).

6.6 Conclusions

Most of the major advances in computer system security rely on hardware for enforcement.

Data-intensive embedded platforms may require a hardware reorganization capability, in-

troducing development complications and new types of security threats including zero-day

attacks. CHARE automatically generates application-specific dynamic hardware plug-ins

consisting of controller-wrapped datapaths. Software drivers are simplified by the controller’s
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encapsulation and abstraction of the datapath structure. Hardware augments software mon-

itoring and enforcement through the synthesis and formal verification of a controller incorpo-

rating datapath policy rules. As a result, CHARE simultaneously addresses the performance,

power, developer productivity, and security requirements of high-throughput, reconfigurable

platforms.
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Chapter 7

Conclusions

7.1 Contributions

Embedded CPCs are increasingly penetrated in cyber attacks leading to disruptions in pro-

cess operations and even physical damage. Unfortunately, tailored security at the CPC leaf

nodes, i.e. embedded systems, is lacking for this domain. This dissertation work devel-

oped TAIGA, an architecture and design methodology for trustworthy embedded computing

in CPCs. TAIGA is an autonomic, isolated, hardware-implemented, verifiable, tailored

trustworthy space which monitors embedded controller interactions with external CPC com-

ponents to ensure system-level specifications of stability and security are maintained at

run-time. TAIGA protects physical processes by enforcing specification guards which are

derived directly from a system’s stability and security specifications. TAIGA can also pre-

dict and preempt unsanctioned controller behavior by leveraging precise models developed

for physical processes.

TAIGA is an example of a fine-grained architecture that addresses five requirements of

trusted components:

TR1 The source code and implementation for the entire component is analyzed. TAIGA

is designed and implemented using high-level code, formal verification, and hardware

synthesis tools. Since protection logic is tailored to the application, and only TAIGA

additions need to be verified to assure security, the verification space is reduced to a

manageable amount.

125



Lee W. Lerner Chapter 7. Conclusions 126

TR2 The component uses private hardware resources for computation, internal commu-

nication, and memory, and does not invoke external components as subfunctions.

TAIGA’s trusted components are self-contained and implemented entirely in isolated,

programmable hardware. TAIGA is situated on the external interfaces of an embedded

controller-under-protection to observe and potentially override all inputs and outputs

to the controller.

TR3 All external communication with untrusted components is through hardware-imple-

mented, bounded, and isolated queues. TAIGA uses opaque, fixed, hardware FIFOs

to interface with embedded controllers and data from external units. TAIGA has full

observability over its queues and can override their contained values as needed when

specification guards are violated.

TR4 The component cannot be bypassed or disabled, and has a fixed repertoire of essential

services, such as I/O or cryptography. TAIGA is autonomic and does not rely on an

external components for operation or to preserve system stability and safety. TAIGA

enforces specification guard logic which is derived from a system’s stability and safety

specifications and tailored to the application.

TR5 Critical functionalities of the component, such as rule checking logic, cannot be updated

without provably secure or physical access. TAIGA is immutable at run-time outside of

tunable specification guard values, which are bounded by system safety limits. TAIGA

is implemented in isolated, programmable hardware, uses standard programmable logic

device security mechanisms, and requires physical access to change rule checking logic.
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ence on Engineering of Reconfigurable Systems and Algorithms (ERSA’12), Las Vegas,
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• Mohammed M. Farag, Lee W. Lerner, and Cameron D. Patterson, “Interacting with
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7.2 Future Work

We have identified some current limitations with TAIGA and our proposed design method-

ology and architecture:

• High-level hardware synthesis tools are marketed as being nearly as easy to work with

as source code compilers. However, significant learning and hardware debugging is

typically required.

• The formal verification approach outlined which uses Frama-C also requires significant

manual intervention and expertise.

• The recommended target TAIGA implementation technology, configurable SoCs, cur-

rently has a cost premium over standard microcontrollers. However, this may easily

be eclipsed by the value of the physical process in many CPCs.

• The plant state preview window is ultimately limited by processing power and the need

to periodically synchronize the model with the physical plant to keep up with changes

due to disturbances or commands.

• Prediction may not be possible if process state also depends on events outside the

model.

• While the inability to remotely update TAIGA guard logic is a security asset, the need

for physical access to modify the model, process specifications, and backup controller

incurs a higher maintenance cost. However, such updates are rarely needed.

1Performed in cooperation with Georgia Tech Research Institute
2Performed in cooperation with Luna Innovations Incorporated
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• Architectural modifications may be required to scale and distribute TAIGA among

multiple embedded systems in a complex CPC environment with many control loops.

Potential improvements can be made to TAIGA through the use of offline computations to

make online TAIGA monitoring more efficient. To improve switchover logic we are investi-

gating a neural network-based classifier to make intelligent decisions in real-time based on

current sensor measurements. The functional purpose of the switchover mechanism is to

decide when to switch from the production to backup controller and can be described as

a classification problem. A classifier can be constructed using a multilayer perceptron as a

feed-forward artificial neural network model that maps a set of inputs to outputs using a

nonlinear activation function. Back propagation can be used to calculate a gradient of the

loss function with respect to all the weights of the neural network followed by an optimization

method to reduce the loss function [4]. Plant states are the classifier input and the data set

for training the neural net is collected by applying the backup controller to a model of the

plant for different sets of initial conditions corresponding to the current state. An algorithm

can then be developed to monitor the plant states and check if transitioning to the backup

controller at that instant can be done without violating specification guards.

Another area of ongoing research is TAIGA implementation and efficiencies in a variety of

CPC environments. For instance, we are currently pursuing TAIGA integration with a rotary

pendulum at Virginia Tech and with a Zynq-based motor controller running in Georgia Tech

Research Institute (GTRI)’s ICS security test bed [1]. We are also investigating alternatives

to implementing TAIGA during the controller development process, such as addressing how

TAIGA integrates with existing, third-party CPC controllers. Alternatives to programmable

logic-based TAIGA implementations might be more appropriate in some cases. Therefore

software-based implementations might also be investigated, including a rigorous evaluation

of corresponding efficiency and security.

In addition to making further architectural improvements to TAIGA and continual analysis

of effectiveness, one final area of investigation is the possibility of applying TAIGA to other

domains outside of run-time CPC protections. For instance, TAIGA also has a potential

system development and analysis use by providing real-time interface observability and con-

trollability. The ability to inject data or events and monitor reactions on interfaces facilitates

analysis and test of such assertions under a variety of hypothesized scenarios, and without

modifying the system components under test. This approach also permits investigation of

sophisticated attacks exploiting unusual software and hardware interactions such as a reset or
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interrupt during a critical system operation. Multiple TAIGA layerings permit concurrent,

real-time evaluation of attacks and defenses.
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Appendix A

#pragma Jess i eF loatMode l ( d e f e n s i v e ) // Comment out f o r HLS f low

s t a t i c const f l o a t C = −0.7931 f ; // Der iva t ive constant

s t a t i c const f l o a t Gd = 6.0324 f ; // Der iva t i ve gain

s t a t i c const f l o a t Gp = 35.3675 f ; // Propor t i ona l ga in

s t a t i c const f l o a t Gi = 0.5112 f ; // I n t e g r a t i o n gain

s t a t i c const f l o a t c l i p min = −64.0 f ; // Minimum c o n t r o l l e r output

s t a t i c const f l o a t c l ip max = 63 .0 f ; // Maximum c o n t r o l l e r output

s t a t i c const f l o a t y min = −3.2 f ; // Minimum al lowed senso r input

from a c o r r e c t l y f u n c t i o n i n g p lant

s t a t i c const f l o a t y max = 3 .2 f ; // Maximum al lowed senso r input

from a c o r r e c t l y f u n c t i o n i n g p lant

s t a t i c const f l o a t w sa fe = 0 .0 f ; // Quiescent r e f e r e n c e

c o n t r o l l e r input

s t a t i c i n t r e s e t = 0 ; // Global s t a t e r e s e t : 0 = i n a c t i v e ; 1 = a c t i v e

// Returns argument ( din ) c l i pped to the range [ c l ip min , c l ip max ]

// Implemented in both hardware and so f tware

/∗@
r e q u i r e s c l i p min <= cl ip max ;

a s s i g n s \nothing ;

behavior v e r i f y c l i p : // Ver i fy c l i p ( ) with J e s s i e

ensure s \ r e s u l t >= c l ip min && \ r e s u l t <= cl ip max ;

∗/
s t a t i c f l o a t c l i p ( f l o a t din )

{
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//#pragma HLS a l l o c a t i o n i n s t a n c e s=Fcmp l i m i t=1 core // Comment out

f o r Frama−C a n a l y s i s

f l o a t dout = din ;

i f ( din < c l i p min )

{
dout = c l i p min ;

}
e l s e i f ( din > c l ip max )

{
dout = cl ip max ;

}

re turn dout ;

}

// Production , so f tware−implemented , PID c o n t r o l l e r

// Has la t ent , ma l i c i ou s behavior

// Inputs are the r e f e r e n c e s i g n a l (w) and c l o s e d loop s i g n a l ( y )

// Output i s PID c o n t r o l l e r output (u)

/∗
s t a t i c f l o a t s w c o n t r o l l e r ( f l o a t w, f l o a t y )

{
s t a t i c f l o a t prev x1 , prev x2 , prev yd , p r e v y i ; // Previous PID

s t a t e s : X1(n−1) , X2(n−1) , Yd(n−1) , Yi (n−1)

s t a t i c i n t cyc l e count = 0 ; // Enables l a t e n t behavior

i f ( r e s e t )

{
p r e v y i = 0 .0 f ; // Reset I n t e g r a t o r s tage

prev x2 = 0 .0 f ;

prev yd = 0 .0 f ; // Reset Der iva t ive s tage

prev x1 = 0 .0 f ;

}
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f l o a t e = c l i p (w − y ) ; // Error s i g n a l

f l o a t yp = Gp ∗ e ; // Propor t i ona l s tage

f l o a t x2 = Gi ∗ e ; // I n t e g r a t o r s tage

f l o a t y i = c l i p ( p r e v y i + prev x2 + x2 ) ;

f l o a t x1 = Gd ∗ e ; // Der iva t ive s tage

f l o a t yd = x1 − prev x1 − (C ∗ prev yd ) ;

prev x2 = x2 ; // Update i n t e r n a l PID s t a t e s f o r the next

i t e r a t i o n

p r e v y i = y i ;

prev x1 = x1 ;

prev yd = yd ;

f l o a t u = c l i p ( yp + y i + yd ) ; // P + I + D

cyc l e count++;

return ( ( cyc l e count < 100) ? u : c l ip max ) ; // Mal i c ious

behavior

}
∗/

// Backup , s t a b i l i t y −prese rv ing , hardware−implemented , p r o po r t i o n a l

c o n t r o l l e r with a constant r e f e r e n c e input

// Input i s c l o s e d loop s i g n a l ( y )

// Output i s the c o n t r o l l e r output (u)

s t a t i c f l o a t h w c o n t r o l l e r ( f l o a t y )

{
//#pragma HLS a l l o c a t i o n i n s t a n c e s=fAddSub l i m i t=1 core // Comment out

f o r Frama−C a n a l y s i s

f l o a t e = c l i p ( w sa fe − y ) ; // Error s i g n a l

f l o a t yp = Gp ∗ e ; // Propor t i ona l s tage

f l o a t u = c l i p ( yp ) ;
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re turn u ; // Clipped output == (Gp ∗ ( w sa fe − y ) ) | | (Gp ∗
c l i p min ) | | (Gp ∗ c l ip max ) | | c l i p min | | c l ip max

}

// Plant model , implemented in hardware

// Input i s the c o n t r o l l e r output (u)

// Output i s the p lant ’ s s enso r output ( y )

s t a t i c f l o a t hw plant model ( f l o a t u)

{
//#pragma HLS a l l o c a t i o n i n s t a n c e s=fmul l i m i t=1 core // Comment f o r

Frama−C a n a l y s i s

s t a t i c f l o a t y z2 , y z1 , u z2 , u z1 ; // Previous p lant

s t a t e s

i f ( r e s e t )

{
y z1 = 0 .0 f ; // Reset p lant s t a t e

y z2 = 0 .0 f ;

u z1 = 0 .0 f ;

u z2 = 0 .0 f ;

}

f l o a t y = (1 .903 f ∗ y z1 ) − (0 .9048 f ∗ y z2 ) + (0 .0000238 f ∗ u) +

(0 .0000476 f ∗ u z1 ) + (0 .0000238 f ∗ u z2 ) ;

y z2 = y z1 ; // Update i n t e r n a l p lant s t a t e s f o r the next

i t e r a t i o n

y z1 = y ;

u z2 = u z1 ;

u z1 = u ;

re turn y ;

}
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// Returns whether the p lant i s opera t ing with in s p e c i f i c a t i o n s , and

implemented in hardware

// Input i s the p lant ’ s s enso r output ( y )

// Output : 0 = f a l s e ; 1 = true

/∗@
a s s i g n s \ r e s u l t ;

behavior v e r i f y y i n v a l i d :

assumes y < y min | | y > y max ;

ensure s \ r e s u l t == 0 ;

behavior v e r i f y y v a l i d :

assumes y min <= y <= y max ;

ensure s \ r e s u l t == 1 ;

d i s j o i n t behav ior s v e r i f y y i n v a l i d , v e r i f y y v a l i d ;

complete behav ior s v e r i f y y i n v a l i d , v e r i f y y v a l i d ;

∗/
s t a t i c i n t hw spec guard ( f l o a t y )

{
re turn ( ( y >= y min ) && ( y <= y max ) ) ;

}

// Hardware−implemented monitor ( swi tchover c o n t r o l l o g i c us ing the

p lant model , s p e c i f i c a t i o n guards , and backup c o n t r o l l e r )

// Data inputs are the product ion c o n t r o l l e r ’ s output ( u sw ) and the

p h y s i c a l p lant ’ s s enso r output ( y p h y s i c a l )

// Return ’ s e i t h e r the product ion or backup c o n t r o l l e r ’ s output (u)

// As s e r t i on s should conf i rm the subset o f c o n t r o l code that remains

a c t i v e ( the backup c o n t r o l l e r ) when a proce s s parameter goes out o f

spec

//@ ghost f l o a t ghost y model = 0 .0 f ;

//@ ghost i n t ghost backup = 0 ;

//@ ghost f l o a t ghost u hw = 0.0 f ;

/∗@
a s s i g n s \nothing ;
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behavior v e r i f y a l l v a l i d :

assumes y p h y s i c a l >= y min && y p h y s i c a l <= y max &&

ghost y model >= y min && ghost y model <= y max &&

y a c c e l >= y min && y a c c e l <= y max ;

ensure s ghost backup == 0 ;

behavior v e r i f y a n y i n v a l i d :

assumes y p h y s i c a l < y min | | y p h y s i c a l > y max | |
ghost y model < y min | | ghost y model > y max | |
y a c c e l < y min | | y a c c e l > y max ;

ensure s \ r e s u l t == ghost u hw ;

d i s j o i n t behav ior s ;

complete behav ior s ;

∗/
#d e f i n e BACKUP HOLD COUNT 200

f l o a t hw monitor ( f l o a t u sw , f l o a t y phys i ca l , f l o a t y a c c e l )

{
s t a t i c i n t backup hold ;

s t a t i c f l o a t y model ;

i f ( r e s e t ) y model = hw plant model ( u sw ) ;

f l o a t u hw = h w c o n t r o l l e r ( y p h y s i c a l ) ;

//@ ghost y model = ghost y model ; // Assignment here a l l ows

y model r e s e t

i n t backup = ! hw spec guard ( y p h y s i c a l ) | |
! hw spec guard ( y model ) | |
! hw spec guard ( y a c c e l ) ;

backup hold = ( backup ) ? (BACKUP HOLD COUNT) : ( backup hold − 1) ;

backup hold = ( backup hold < 0) ? 0 : backup hold ;

f l o a t u = ( ! backup && ! backup hold ) ? u sw : u hw ;

y model = hw plant model (u) ;

//@ ghost ghost backup = backup ;

//@ ghost ghost u hw = u hw ;

re turn u ;

}


