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A Modular Flow for Rapid FPGA Design Implementation

Andrew R. Love

(ABSTRACT)

This dissertation proposes an alternative FPGA design compilation flow to reduce the back-

end time required to implement an FPGA design to below the level at which the user’s at-

tention is lost. To do so, this flow focuses on enforcing modular design for both productivity

and code reuse, while minimizing reliance on standard tools. This can be achieved by using

a library of precompiled modules and associated meta-data to enable bitstream-level assembly

of desired designs. In so doing, assembly would occur in a fraction of the time of traditional

back-end tools. Modules could be bound, placed, and routed using custom bitstream assembly

with the primary objective of rapid compilation while preserving performance. This turbo

flow (TFlow) aims to enable software-like turn-around time for faster prototyping by lever-

aging precompiled components. As a result, large device compilations would be assembled in

seconds, within the deadline imposed by the human attention span.
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Chapter 1

Introduction

The path from idea to implementation can be a long and arduous one. This path can go

by many routes. Choosing the best path to follow depends on the user’s requirements. For

example, what drives the user; what priorities must be met? Is it cost, efficiency, time,

or some other factor? If cost is the driver, then minimizing the most costly portions is

appropriate. In industrial production, skilled labor can be a driving cost; thus, the skilled

can make tools that the unskilled can supervise [2]. This reduces the number of necessary

skilled laborers, cutting costs. If design efficiency is most important, then each component

should be created with exacting standards and optimization. This leads to time-consuming

handcrafted results. Lastly, if time is the driver, then creating a working solution as quickly as

possible is best. Wartime projects are normally done under this constraint. The Manhattan

Project, the SAGE air defense system, and the V-2 Rocket all qualify [3]. In practice, each

of these components and many others are weighed against one another to determine the best

1



2

approach. Very rarely are any of them disregarded.

Another consideration is to determine how many times the design or its components will

be used. If the design is a one-off where it will be tested and then either used as-is or

improved, then performance requirements can be less stringent. There is a trade-off between

the number of uses and production time. Many cars can be built from the same design; thus,

small improvements to the design will be multiplied considerably. Prototype vehicles, on the

other hand, are limited in number. Time spent on small improvements may be better spent

on analyzing the prototype and generating a final design. Small tweaks may be inapplicable

to the final design and thus a waste of resources at this juncture.

Even with this trade-off, building multiple smaller modules that can connect to one another

has its advantages. The International Space Station (ISS) was built using multiple smaller

modules and then assembled in orbit. Additional modules were added on over time, expand-

ing the station’s capabilities. There are many advantages that accrued due to this assembly

process. For one, since the modules can be independent, failure of one module does not

cause failure of the station. More capabilities could be added over time, as additional mod-

ules were put into orbit, without changing the existing station. The modules could be built

separately, by teams all over the world, and then combined using standard connections. This

distribution of labor improves productivity when divided into appropriately sized modules.

Again, the balance of priorities had its influence on the design, as redundancy became an

additional requirement.

This work focuses on balancing these requirements, with the focus on maintaining the users
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focus, or ’flow’ [4]. The goal is to maximize ’flow’ and minimize wait time. This will reduce

wasted time, increase designer efficiency, and improve productivity. To do so, this work plans

to leverage the benefits of modular design.

1.1 Machine Tools and Modular Design

One field that has embraced modular design is that of machine tools [5]. These are the

tools that are used in production environments. For example, car factories use automated

machine tools to create vehicles. Car designs are modified often to refresh and update the

models. If new tools were needed each time the design changed, it would be expensive and

inefficient. Instead, the tools are built using modular components, so the factory only needs

to swap out or create a few new components to get the desired functionality. One machine

tool center at Opel has an eighty percent reuse rate when updating products because of

its modularity [5]. To ensure that these modules are interchangeable, the International

Organization for Standardization (ISO) has standards governing these tools [6]. Modular

design thus combines standardization with flexible configuration to create something better

then both.

Modular design has four main principles, separability, standardization, connectivity, and

adaptability [5] [7] . Separability describes the determination of the size of a module. A large

and complex module can be split up into multiple smaller modules. This yields increased

design flexibility; however, the additional principles will create a trade-off where smaller
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modules are not always better. Standardization deals with standard sizes and shapes of

modules, such that interchangeability is enhanced. With these standard sizes, splitting up

modules may create overhead in the form of wasted space and resources. Connectivity deals

with the interfaces between modules. A standard connection method may again create

overhead, were the smallest modules used. Additionally, standard interfaces allow modules

to interface with one another to create arbitrary designs. This leads to adaptable modules,

that can be reused in new and interesting ways. When dealing with machine tools, these

principles were first presented in the 1960s, and have maintained their importance as they

evolved into the current modular design flows.

Additional modular design techniques have been put forward to better improve the design

process, including improvements of the graphical interface and modular structure [8]. Defin-

ing modules properly lets designers create the desired modules, resulting in interchangeability

and a paper trail of documentation. One such language is the Unified Modeling Language

(UML) [9]. This allows for the module connectivity and relationships to be well-defined.

1.2 Software Design and Reuse

Hardware and software labor productivity have taken different paths as technology improved.

In the electronics industry, hardware labor productivity has improved markedly, while soft-

ware labor costs has grown to more than 90% of the total system installation price [10]. This

is partially due to the high amounts of reuse of hardware.
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To generate solutions quickly and effectively, one methodology is to use preexisting compo-

nents as much as possible. Code reuse has a long history, and the idea can be traced back

to the start of software design [11]. In software design, many benefits accrue from reuse:

quality improvements, productivity, and cost reduction [12]. Depending on the application,

this can be referred to as COTS (Commercial Off the Shelf) or as a component library.

The benefit of using existing sub-solutions is that their functionality has already been tested

and optimized. As a software example, sorting can be easily implemented by a designer.

However, the standard software sorting algorithm has not only been tested for functional

correctness, but guarantees minimum performance. The creation and analysis of sorting

algorithms is a complex field, and should more stringent constraints be required for a spe-

cific design, different algorithms could be explored. For a quick and effective solution, the

standard methodology is sufficient.

A software library example is for Digital Signal Processing (DSP), with the Liquid DSP

library [13]. This lightweight C library contains a full set of DSP functions that can be

inserted as necessary into a design. A DSP application can be rapidly built using these

abstract functional blocks. Implementation and testing of these blocks has already been

completed by the library designer.

Another example are the C++ boost and standard libraries. Software programmers do

not need to handcraft the lowest level of their functions and can instead build upon prior

work. One reason these libraries can have widespread acceptance is that they have useful

functionality and standard interfaces.
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For best design principles for a digital tool, Bürdek states ”Deep complexity requires surface

simplicity” [10]. The front end of a tool should be simple in nature, but the implementation

can be highly complex. TFlow, a modular assembly tool presented in this dissertation, has

this property. The front end is a standardized design description, while implementation

involves complex low-level manipulations. Additionally, by enforcing modular design, block

reuse becomes an integral part of TFlow.

1.3 Software Development Cycle

The software development cycle is iterative in nature and modular if possible [14]. There

are a wide variety of techniques, but each of them require a feedback loop linking design,

implementation, and testing. Figure 1.1 shows an example of the process. Initially, the

requirements are given to the programmer. These requirements are used to build a design.

This design must be implemented and tested. Once this is complete, feedback is necessary

to verify that the design properly implements the requirements and that these requirements

have not changed. This process continues until the design is acceptable. One situation where

this loop is most evident is when dealing with prototyping.

For rapid prototyping, quick feedback is essential. This is especially true when dealing with

throwaway prototyping [15], where quick implementation and modification are prioritized.

The quicker a throwaway prototype can be analyzed, the quicker an evolutionary prototype

or full design can begin production. With a quicker prototyping stage, the requirements can
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Figure 1.1: Evolutionary Prototyping Software Development Cycle [1]

be corrected and the design documents updated faster. Dead-end design space exploration

can be determined quicker, yielding a much more efficient design process.

When performing evolutionary prototyping, a simple version of the design is programmed and

tested [1]. If issues are found, the programmer will fix these issues. Should the prototype meet

specifications, the next iteration will evolve further capabilities, until the full requirements

are met and a final design created.

These techniques can be applied to Field Programmable Gate Arrays (FPGAs), but one

drawback is that the time necessary to go from design to test can be very long. This would

increase the size of the feedback loop and reduce productivity. Shortening this loop would
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allow for more design space exploration and/or additional testing and verification time.

1.4 Productivity and Attention Span

Improving productivity is an important issue facing designers in a wide range of applications.

With increased productivity, designers are able to produce more and better results within

the same amount of time. The design flow methodology is an important factor influencing

productivity. Although there are many variants, design flows are normally iterative in nature.

An iterative design process loops through a number of phases before a final result is generated.

A high-level view of this process can be seen in Figure 1.1. Before an iterative design loop,

a design concept is generated. Next, the design requirements are specified. After this, a

design is built to meet these requirements. The design is then implemented, and the result

is evaluated against the requirements. The result of this evaluation will be used as feedback

for the next iteration. Each of the phases has significant user interaction except for the

automated implementation phase.

The user’s response to an automated computation phase follows one of two possible paths.

Either the process finishes quickly, and the user continues on with their task, or there is

a long delay and the user switches to another task. These mental context switches have a

cost in time and cognitive load, and thus are undesirable [16] [17]. A design process that

can remove the need for context switches will be better streamlined and have increased

productivity.
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In order to remove the need for context switches, the process must complete before losing

the attention of the user. This attention span is a finite amount of time after which there is

a mental discontinuity as attention is lost [18] [19] [20]. Should the user sit and wait without

performing a context switch, the ordeal reduces both user motivation and productivity [18].

This effect can be ameliorated by adding a percent complete indicator [21]. This indicator

enables a user to determine whether they can safely switch to secondary activities.

Analysis of attention span has shown that people are willing to wait for a response for about

15 seconds [18]. After this wait time, the user will begin filling the wait time with secondary

activities and will switch metal contexts [18]. Card [19] expands this wait time to around 5

to 30 seconds for task completion, while Nielsen [20] places the limits of user’s attention at

10 seconds. Giving a response within this window removes the need to switch to other tasks.

The effect of switching to other activities has been studied by O’Conaill [22]. In this study,

interruptions sometimes caused the task to be discontinued entirely. After an interruption,

approximately 40% of the time the waiting person will go on to other work instead of

returning to their original task. Should a task take some time to complete, the user will

most likely have switched to another task. There is only a 60% chance that the user will

return to the first task once it completes [22]. At this point the user has moved on, and

the flow will need to wait indefinitely for user input. Removing these interruptions by

having tasks complete before losing a user’s attention therefore has significant advantages in

productivity and mental focus, and losing the user’s attention has a productivity penalty.
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1.5 FPGA Design and Reuse

While there are a number of different tools used to generate designs for FPGAs, they all

have a bottleneck when creating the physical design. Partially, this is due to the highly

device-specific nature of physical back-end implementation. Back-end implementation for

FPGAs consists of the post-synthesis design phases, including device mapping, routing, and

bitstream generation. With the advent of frameworks like the Tools for Open Reconfigurable

Computing (TORC) [23], physical device information is exposed. Unlike generic tools such

as Versatile Place and Route (VPR) [24], real-world designs can be built and implemented.

This gives the capability to modify the back-end. Modifications must be chosen that yield

the desired improvements.

The existing tools focus on a slew of competing requirements when generating a final design.

These factors include resource utilization, packing, routing, and timing closure. The total

run-time to optimize these requirements is less important than the quality of the result.

For the current target audience, maximum performance and resource packing are the focus.

Larger designs can fit into the same physical device with global optimization and better

resource utilization. Timing closure is necessary to wring out the fastest designs. While

the traditional tools aim to minimize the time necessary to run these optimizations, this is

secondary to improving the results.

There are other use cases for FPGAs that do not require optimal results. Two of these

use cases are productivity and rapid prototyping. Focusing on mature software design ap-
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proaches can maximize productivity. These are normally predicated on quick turn-around

times for generating a design so that it can be promptly evaluated. Another use case is rapid

prototyping. Prototypes can be used for tests on real hardware. Currently, simulations are

a good way to test designs without needing to run through the time-consuming tool flow,

which may take hours to finish. Rapid prototyping can replace some of these simulations.

An untapped audience for FPGAs is software designers. To enable the use of FPGAs, one

method is to abstract away the physical details and use a higher level approach. Graphical

tools such as LabVIEW can perform this sort of FPGA design. Unfortunately, these tools

do not ameliorate the long back-end compilation time required. This time is on the order

of minutes or hours. Software designers accustomed to compilation taking seconds may

not be willing to make this sacrifice. However, if a faster way to generate FPGA designs

from high-level representations are available, software designers could gain the advantages

of FPGAs without some of the shortcomings. Tight integration has been used successfully

for hardware/software codesign [25]. With recent advances, acceleration using Graphical

Processing Units (GPUs) can be seamlessly integrated into software designs as well [26].

FPGA usage should follow suit.

In the FPGA design compilation process, 90% of the compile time is spent doing FPGA

place and route [27]. Amdahl’s Law thus guides any effort to reduce compile time to first

focusing on reducing the compile time for these steps.

Modular design is a principle where a design with performance and functionality specifica-

tions can be designed and built by picking and combining the necessary modules from a



12

preexisting library [5]. With well-defined interfaces, these modules can be worked on inde-

pendently. Changes to one module do not necessitate changes to the rest of the design. This

approach fits in well with speeding up compilation time. For software designers, the modules

abstract away the hardware details and can be treated as building blocks. These building

blocks can be pre-built, reducing the time required to create the design. Since the modules

are independent, rapid prototyping of a new component will not require changing the rest

of the design.

While prior attempts have been made at implementing modular design for FPGAs, they are

not without their drawbacks. They rely on licensed tools to generate the final designs. This

limits the environments that these solutions can be deployed and restricts the modifications

that can be made. A few examples of prior modular design flows are HMFlow [28], QFlow

[29], and Xilinx Partitions [30]. While design compilation time is reduced - in some cases

significantly - the results are still in the realm of minutes to generate a design. Software

compile time normally completes in seconds, so ideally FPGA compilation would be the

same. These example flows rely on some stages of the standard pipeline to generate the

final results. While this does generate more optimized FPGA designs, the goal of this work

is to meet the speed requirements. For example, QFlow and Partitions require the Xilinx

router [29] [30], HMFlow requires the Xilinx Design Language (XDL) conversion utility [28],

and all three rely on the Xilinx bitstream generation tool. Custom tools can be designed

with a focus on speed, so reducing the reliance on vendor tools will help achieve this goal.
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1.6 FPGA Design Approach

In the design process from Figure 1.1, the implementation phase is automated. Both the

design and evaluation phase require user feedback. To keep the user on task, the imple-

mentation phase needs to complete before losing the user’s attention. This places a hard

time limit on completing the implementation phase if the resulting productivity gains are

to be achieved. Current FPGA design flows do not finish within this narrow window, as

implementation takes minutes or hours to complete.

The goal of this FPGA design flow is thus to implement a design within the narrow window of

human attention span. To meet this goal of second long compilation times, the conventional

algorithms need to be reformulated. Modeling the flow has shown that an effective approach

is to perform as much work as possible during precompilation. For FPGAs, compilation ends

with a bitstream, and so the closer a design is to this final bitstream, the faster the flow.

If map is performed ahead of time, it is no longer necessary for it to run at design time.

The same holds true for placement and routing. This leads to the logical extension that if

modules can be precompiled into their end state - bitstreams - maximal performance can be

wrung out of the assembly flow.

To enable this capability, a full design flow needs to be built. The module bitstreams must be

created, and a method of storing information about these designs is necessary. The module

bitstreams need to be added to a library for later assembly. A static design must be created

and compiled into the bitstream library as well. Routing for each of these library blocks
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needs to be constrained to remain inside each block. A method to fetch these library blocks

at assembly time needed to be created. These blocks need to be placed and routed at the

bitstream level, and so a module placer and a inter-module router are necessary. To put it

all together into a usable bitstream, these components must all be stitched together. This

whole process is predicated on running the modules through the entire standard flow, so that

assembly no longer needs to run any of the standard flow tools. As such, assembly can be done

as a custom, standalone process. By performing as much work as possible during library

creation, design assembly can occur rapidly. Requiring only seconds for design assembly

greatly increases the number of designs that can be built and can keep the user’s attention

from wandering. This gives more time for the remainder of the design process - design,

testing, and verification.

This work presents a turbo flow, TFlow, that implements this rapid design implementation

flow. This flow is a novel method whereby modules are run through the entire Xilinx flow

and are stored as bitstreams for assembly at design time. Other techniques do not fully

compile the modules and require additional processing before a design bitstream could be

used. Nor do other techniques meet the strict time requirements necessary.

Module creation relies on the standard tools, where optimizations such as timing closure and

resource allocation can be done on a per-module basis. With the appropriate safeguards in

place to prevent module-module collisions or timing issues, these modules can thus be used

in combination to create a full design.

This technique is not without its drawbacks. Additional information describing the fine-
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grained module structure is necessary. Additional micro-bitstreams are needed to perform

inter-module connectivity. The proposed methodology will generate these modules into a

library and later - independent of the vendor tools - assemble them into a full design in

seconds.

TFlow consists of multiple stages, each of which combine to produce a significant contribution

to the field. TFlow is predicated on stitching module bitstreams together to create a full

design. The data inside the bitstreams is unknown, so meta-data describing the module is

necessary. Currently, no one source contains the full picture of the module. This includes

physical information, consisting of port locations and routing, the logical port structure, and

additional shaping and placement information. This big picture module meta-data is just

one contribution of this flow.

For module packing to occur optimally, the modules should be created in such a way that

no excess resources are included within their boundaries. Module bitstreams cannot overlap.

To enable packing, the module requirements are analyzed and a minimum sized block is

reserved on the device. Module relocation is taken into account, so that these blocks can be

rearranged appropriately. Module shaping reduces the area overhead of each module.

From a user perspective, TFlow abstracts away the implementation details. The Gajski-

Kuhn Y-chart [31], seen in Figure 1.2, deals with the abstraction levels of design. In the

structural domain, TFlow’s modules are seen as subsystems. Behaviorally, the user sees

TFlow’s modules as algorithms to be used, while internally the register-transfer information

is needed. With respect to the physical domain, TFlow needs to consider the floor plan of
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Module layout
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Figure 1.2: TFlow’s Gajski-Kuhn Y-chart

the device during assembly, and the module layout during module creation. This puts TFlow

at a mid to high level of abstraction with respect to the device.

1.7 Contributions

Improving productivity remains an import goal for designers. Productivity can be enhanced

by improving design experience. One key factor in the design experience is producing im-

mediate feedback [4], within the limitations of the human attention span [18]. This work

improves the FPGA design experience through the following contributions.

1. The primary contribution of this work is proof that FPGA design implementation can
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Figure 1.3: Human Attention Span Time Constraints

finish within the deadline imposed by the human attention span. This proof takes the

form of the presented modular design flow, TFlow. Meeting this deadline allows for

increased design productivity and enables new approaches to FPGA design.

Figure 1.3 shows the various time limits to the human attention span [18] [19] [20]. Other

applications might focus on the response times necessary for instant response or maintaining

flow of though, but the goal of this work is to complete implementation before reaching the

attention span limit. As soon as this limit is reached the user’s attention will be lost and

productivity will drop [18].

TFlow provides proof that FPGA design assembly can comfortably fit within the window of

the human attention span. This is a significant improvement on the state of the art, as all

other techniques remain outside this narrow window. With this advance, user focus can be

maintained while traversing the design-implement-test process flow.

All other contributions are in service to meeting the hard deadline imposed by the limitations

of the user’s attention span. Implementing and automating a flow that can meet this deadline
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required the creation of a number of capabilities, many of which are contributions in their

own right.

2. To maintain performance while speeding up design implementation, the conventional

design process needs to be reformulated. The presented approach uses modular design

techniques to split the conventional algorithms into compile time and design time

components. Compile time computation involves building the component library ahead

of time. This moves a significant amount of computational effort out of the critical

path. The design time complexity is thus reduced significantly, enabling the creation

of a flow that can complete within the allotted time.

(a) TFlow includes a fast and efficient module placer designed to meet the time

deadline imposed by the overall flow. Placement completes within two seconds

with the most complicated test design running on a 2.83 GHz Intel Core 2 Quad

with 3 GB of DRAM.

(b) TFlow includes a quick router that is designed to meet the time budget allocated

for routing. Routing using this inter-module router produces results 7.8 times

faster than the standard ISE tools on an Intel i7-2600 with 8 GB of DRAM.

(c) TFlow assembly occurs at the lowest possible level to reduce any temporal over-

head. For FPGAs, this lowest level is the bitstream. Bitstream level manipulation

tools were created to perform bitstream relocation and bitstream routing.

(d) A metadata description methodology was created which which contains all of the
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necessary information that TFlow will require for design assembly. The module

blocks could not be used for this purpose because they are bitstreams, which are

opaque to the design tools.

3. Existing tools are built for a different problem space than TFlow. Forcing TFlow to

complete within the given timespan has required a simplified custom assembly process.

These simplifications have given TFlow the added capability to run on embedded

devices where it would otherwise be impossible to create a design. This embedded

design assembly toolflow is a secondary contribution of this work.

1.7.1 Purpose

TFlow is intended as a way to build designs such that the user transitions from design to test

without their attention wandering during implementation. This forces a hard time constraint

on the implementation flow that can be best met through the use of modular design and

precompilation. This seamless transition enables design space exploration, as well as rapid

prototyping.

There are always trade-offs, however, and so TFlow is not a design panacea. Because of

its focus on deadline completion, TFlow trades away the ability to achieve the best design

density and the fastest circuit. It cannot be used for implementation space exploration,

where different implementations are analyzed to determine optimality. Lastly, TFlow is not

a partial reconfiguration flow - the modules are not intended for on-line replacement.
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In addition, there are costs to performing precomputation. The total amount of computation

is not reduced overall, but may in fact increase. These increases can be due to the loss of

global optimization as well as the overhead incurred by building the modules independently.

Since computation is shifted, at design time most computations are already complete. As

such, some design flexibility is lost - the precomputed modules are now static constraints.

The concept also has limitations. When dealing with modular design, determining the ap-

propriate way to split up functionality is difficult. Choosing too large of a module loses

flexibility, while the overhead incurred from small modules in both space and time can cause

the flow to no longer complete within the allotted time. In addition, determining the capa-

bilities of the non-modular area - the static region - will impact what sort of designs can be

built. Changing this static region uses the slow, standard method of design implementation,

with all its drawbacks.

TFlow shows that it is possible to implement designs within the time constraints for user

’flow’ [4], enabling a paradigm shift in FPGA design.

1.8 Dissertation Organization

The rest of the dissertation is organized in the following manner. Chapter 2 discusses prior

work in FPGA modular design and some background on the many facets of TFlow. Chapter

3 discusses TFlow’s model and implementation. It covers how TFlow works and its driving

motivation. Chapter 4 shows the results from implementing TFlow on real FPGAs and



21

how it compares to other compilation flows. Chapter 5 discusses the impact of TFlow, its

contributions, and avenues for future work.



Chapter 2

Prior Work

As the size of FPGAs increase, Parkinson’s law of design complexity implies that the size

and complexity of designs will increase to fill the space [32]. The time required to build these

larger and more complex designs also grows unless FPGA productivity keeps pace. Code

reuse and high-level design can help to improve productivity without a significant impact

on the end result. Current tools have the capability to utilize these techniques, but do not

enforce their use. As with modular design [5], there is some additional work that must

be done to have reusable code. Interfaces need to be standardized and documentation of

the block must be maintained. Without enforcement, many designers will skimp on these

stages to get a viable one-off product out the door. While this does work for the first

design, the lack of reusable blocks means that design needs to start from the beginning each

time. Thus, despite the set-up overhead, well documented and structured code can give

significant productivity gains. General-purpose programming libraries, such as the C++

22
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boost library, or the Xilinx IP CORE library [33] are powerful productivity tools. However,

application-specific libraries can yield these same improvements, targeted at the required

design. This type of library can be built by the programmer, if they followed stringent code

reuse guidelines.

One such guideline for FPGAs is modular design. Modular design is a principle where

a design with performance and functionality specifications can be designed and built by

picking and combining the necessary modules from a preexisting library [5]. These modules

have standard interfaces to ensure connectivity. By building a design as a series of modules,

mixing and matching these components can allow for the creation of different end results.

In addition, the blocks can be combined and used without needing to know how they are

implemented.

As FPGAs continue to grow, the amount of time necessary to implement a synthesized design

remains considerable. A significant factor is the complexity of the desired designs. If the

design goal is to meet the attention span deadline, then trade-offs must be made. One way

to obtain the desired time reduction is to leverage the benefits of modular design. Modular

design has been used to good effect in software [11], machine tools [5], and construction [34],

among others. Modules can be precompiled to be as complex as necessary. Assembling these

modules into a final design is a simpler problem then building the final design all at once.

This work will demonstrate the significant time reduction possible when assembling modular

designs. With this modular design flow, the attention span deadline can be met.
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2.1 Chapter Organization

This chapter covers prior work that has relevance to the creation of a sub-attention span

toolflow. Section 2.2 will cover a prior case where there were significant wait times and

long feedback loops when creating a design, and how this problem was solved. Section 2.3

discusses the placement problem and how it applies to TFlow’s placement strategy. Section

2.4 takes a look back at how modular design has been built and used in the past to improve

the performance of FPGA design, as well these methods advantages and disadvantages. The

next section, Section 2.5 compares and contrasts different FPGA design flows to emphasize

the benefits of TFlow. Section 2.6 discusses how previous work represented the necessary

information to create a cohesive flow, while Section 2.7 covers the history of bitstream

relocation and how it works, which will be applied to TFlow. Lastly, Section 2.8 summarizes

the lessons learned from this prior work and discusses how this information will inform the

implementation design of TFlow.

2.2 Analogous Use Case

Prior to the advent of personal computers, shared mainframes were used for compiling and

running software programs. Programming and data entry on these shared mainframes were

done with the use of punch cards. Punch cards were physical cards that had holes which

could be punched out to indicate the data stored on them; the standard IBM card could

store as many as 80 characters per card [35].
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Building a design using punch cards took multiple phases, each one of which could have day-

long turn around times. Initially, the program would be written and the appropriate punch

cards created. This process required users to submit their code for entry into a keypunch

machine which would create the cards.

This set of punch cards would then need to be compiled to create the program, which was also

stored on punch cards. Compilation jobs were submitted to a mainframe. This process was

manual, and a user would have to wait until it was their turn for compilation. Compilation

errors or any other problems would require changing the code and then resubmitting these

bug fixes to the keypunch machine. The turn around time on these jobs was such that

only two or three compilation jobs could be run in a day [36]. With a dedicated keypunch

machine, the number of turns per day could double. Once a program was compiled, it would

need to be resubmitted to the mainframe in order to run. The results would be returned to

the programmer, who would begin the process all over again. Each step in this process had

a long wait time for completion, reducing the number of times a program could be compiled

and run.

The next bottleneck occurred once programs could be stored and run on the mainframe.

Since submitting jobs no longer required an additional person in the loop, more jobs could

be done in a day. Sharing the mainframe limited the number of people that could compile

and run their program at once. As the number of people and projects increased, the load on

these systems would slow down the number of turns-per-day. This problem was solved by

adding multiple smaller machines to the computer pool. The process of splitting work up and
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running it in parallel is analogous to the module and static creation processes performed by

TFlow. This yields a similar result, with the speed and number of turns-per-day improving

considerably.

2.3 Placement

In the CAD placement field, placement algorithms can be categorized into two types, (a)

constructive placement and (b) iterative placement improvement [37]. Additionally, the

metrics to evaluate a placement depend on the desired goal. For example, timing, packing,

and wire-length are all valid metrics to determine the efficacy of a placement strategy. These

placement techniques each have advantages and disadvantages, with research ongoing to

improve them.

Constructive placement is a rule-based method used to generate a constructed placement [37].

This method, in turn, has two main approaches, partitioning-based placement and analytic

placement. Partitioning-based placement involves splitting up the design such that the

number of nets crossing partition boundaries is minimized. This leaves areas with dense

networks in the same partition. Once the partitions are small enough, they are placed

on the FPGA. This is a speedy method of placement, but it revolves around minimizing

the number of cut nets without regard to wire length. This can yield some un-optimized

solutions [38].

Analytic placement strategies treat placement as a top-down problem. Design connectiv-
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ity is used for deciding placement optimization. Solving the generated system of linear

equations is best done when this connectivity is represented by a continuously differentiable

value. One such placer, StarPlace [39], uses linear wire-length as its objective function. This

generates a system of non-linear equations that must be minimized to obtain an optimal

placement. However, this placement is unlikely to be valid. Another pass is necessary to

remove collisions, and the placements need to be adjusted to integer locations that represent

the physical structure of the FPGA. StarPlace’s final placement is thus no longer guaranteed

to have minimal linear wire-length.

Constraint-based placement is a method of analytic placement where the problem space is

drastically reduced. This significantly reduced problem space allows for faster run-times, at

the expense of a much lower placement granularity [40] [41].

Iterative placement improvement repeatedly performs operations such as placement swaps

and moves to obtain a better result. This requires a seed placement as a starting point for

these optimizations. This seed placement is normally generated by a constructive placement

technique. One iterative placement algorithm is simulated annealing. Simulated annealing

is a technique based on metallurgical cooling. It iteratively improves an initial placement

to find the optimal solution. These small iterations take a significant amount of time before

settling into the final placement. Versatile place-and-route (VPR) [24] uses a simulated

annealing placement algorithm that is used as a metric for comparing placement algorithms.

VPR can find good solutions, but run-time is long. As such, there are analytic placers [42]

that achieve competitive results against VPR’s simulated annealing methods, while reducing
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run-time.

Prior placement strategies for modular design included random and simulated annealing

techniques [43]. However, one drawback of these techniques is that they are heavily platform

specific, and thus, are locked into the Virtex 5 device. This is despite the fact that this

modular flow otherwise uses the TORC framework [23], which should allow for platform

flexibility.

Modular design lowers the granularity of the placement space due to module collision avoid-

ance. Therefore, device utilization will be poorer than when global optimization is possi-

ble [44]. Thus, properly designed modules and a good placement strategy are necessary to

overcome this hurdle.

A deterministic placer will ensure that a design that meets the time requirements will con-

tinue to do so no matter how many times it is run. QFlow’s [43] placer is non-deterministic

and can take differing amounts of time for the same design. In addition, QFlow does not

support recent devices. HMFlow [28] is not designed with hard time requirements in mind.

As iterative placement requires a significant time investment, the presented module placer

will use a constructive placement algorithm. As this problem is well suited to the fast

placement times and high granularity of constraint-based placement, this work will present a

constraint-based solution for rapid assembly within a time budget. In addition, the algorithm

will be deterministic, to ensure consistent results.
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2.3.1 Constraint Generation

Generating many of the necessary constraints for the placer can be done during modular

design. These constraints will include the set of valid placements for a module on the tar-

get device. One prior approach generated the valid placements using the Xilinx Relatively

Placed Macros (RPM) grid [43]. This grid is different for every design, but Frangieh created

a method for generating this coordinate system for the Virtex 5 architecture. Unfortunately,

building an RPM grid for other architectures is a manual process. Instead, a different place-

ment coordinate system, based on Xilinx tiles, is built into the TORC framework and thus

works with all TORC-supported devices. This tile-based coordinate system will therefore be

used for this work.

By creating these constraints prior to assembly, less computation will be needed at assembly

time, increasing the speed at which assembly can occur. Not all of the constraints can

be precompiled; these additional constraints will be generated during assembly time. For

example, the number of valid placements will be reduced, because some regions of the device

will be unavailable for module placement at assembly time.

2.4 Modular Design

If a progression of the densest FPGA devices over the past two decades is considered, back-

end compile time has remained nearly constant. There have been notable improvements
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in EDA algorithms over this period, yet these have not kept pace with device densities. In

recent years, much work has been done to improve the efficiency of the front-end processes of

design entry and synthesis. Xilinx has developed System Generator for DSP [45] to capture

a design and convert it to Hardware Description Language (HDL). Impulse Accelerated

Technologies [46] created a C-to-HDL flow for FPGAs. Instead of directly coding in HDL,

high level abstractions like C or system block diagrams are successfully being used to reduce

the time for design entry. Research into incremental synthesis started as early as the 1990s

[47]. Commercial synthesis tools like Xilinx XST and Synopsis Symplify have long supported

incremental compilation, which sharply decreases the time required to synthesize a modular

FPGA design.

Back-end post-synthesis processing consumes a large portion of the full FPGA development

flow; with 90% of the compile time spent on FPGA place and route [27]. Therefore, reduction

in the computation time for the back-end flow would result in the largest gains. Early work on

improving this computation time was done using VPR [24], but this tool was not implemented

on real devices. Incremental techniques have been exploited for single back-end steps. [48] and

[49] investigate incremental techniques for the mapping stage of lookup table (LUT) based

FPGAs. [50] and [51] explore incremental placing algorithms. [52] and [53] develop algorithms

for incremental routing. While these techniques are effective for improving portions of the

back-end flow, TFlow is focused on deadline assembly for the entire back-end. Another

approach is to reuse precompiled modules, a technique that is used in [54] and [28]. Hortal

and Lockwood [54] propose the idea of Bitstream Intellectual Property (BIP) cores. BIP cores
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are precompiled Intellectual Property (IP) modules that are represented as relocatable partial

bitstreams. HMFlow [28] creates precompiled modules that are represented as hard macros in

the Xilinx Design Language (XDL), a human readable format for physical level information.

As in [54], the precompiled modules in TFlow are represented as bitstreams. However, [54]

is essentially a Xilinx Partial Reconfiguration (PR) flow and thus has limited flexibility.

The modules only fit inside a few pre-defined regions. These regions are specifically for

modules and are known as sandboxes. Inter-module connections must match specific bus

macro interfaces with fixed routes. If a design needs a new module, the full vendor tool flow

needs to be run on the whole design again, although other modules in the design may not

have changed. By contrast, TFlow does not use the vendor’s partial reconfiguration model;

hence, it does not require fixed-location sandboxes or fixed-location bus macros. Modules

can be relocated to wherever there are enough resources available and can dynamically route

the connections. New modules are compiled independently, improving parallelism.

This contrasts with the Xilinx PR flow [55], where a module is compiled with respect to

a single design framework. This framework is the static design. For a module to be used

in a different design framework, it must be recompiled. TFlow can reuse modules between

static designs. Xilinx PR uses an island-style approach to modules, with each sandbox

only permitting the placement of one module at a time. TFlow has no such restriction.

Additionally, Xilinx PR is intended for run-time reconfiguration, while TFlow assembles full

bitstreams off-line.

OpenPR [56] is an open-source run-time reconfiguration tool that follows the same approach
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as the Xilinx PR flow, and has many of the same drawbacks. It has an island style approach,

with only a single module permitted in each designated static sandbox region. As such, this

is not a design assembly tool, but a run-time reconfiguration tool.

Another approach, Wires-on-Demand [57], is also designed for run-time reconfiguration. It

has a slot-less model with reserved routing channels between modules. TFlow is not a run-

time reconfiguration tool, and it is also a more general solution to modular design, as it does

not require reserved routing channels. Instead, TFlow has its own inter-module router.

GoAhead [58] is a partial reconfiguration framework designed to efficiently build run-time

reconfigurable systems. It is built as a newer, upgraded version of ReCoBus-Builder [59]. As

such, it has some similarities with modular design flows. The design process is split between

a static design and modules. These components can be built in parallel to speed up design

generation. GoAhead does not have a placer or a router. Instead, selecting placements is

done manually. For routing, GoAhead uses a route blocker. Instead of blocking all routes,

it blocks all but one for a specific connection. When the Xilinx router is run, these blocking

routes force the router to use the only remaining path for each route. In so doing, GoAhead

can constrain an exact path for each route in the sandbox. The same holds true for the clock

lines; the clocks are prerouted into the static for integration with the modules.

As with other flows, placements need to match the resource pattern of the original module to

be valid. In addition GoAhead requires that the static design has specific existing routes that

pass through the desired placement slot. This is due to the fact that routing is not performed

at design time. Instead, routing is static, and the modules interrupt this existing path. This
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is effective, so long as no changes to routing are desired. In addition, every sandbox slot

must have these routes passing through them to be valid placements for a module.

GoAhead’s modules and static design are thus tightly coupled due to these shared routing

prerequisites. While the order of modules can be changed, the inter-module connectivity

cannot be changed without recompilation of either the module or the static. Since the routing

is predefined, if new fan-out or different connectivity is desired, recompilation is required. In

contrast, other modular design flows can reroute connectivity without recompilation; inter-

module connectivity is performed at design time, not during precompilation.

Due to the tight coupling of the modules and the static in GoAhead, they are not truly

independent. These components must be built to a routing standard if they are to be

compatible. In comparison, other modular flows can build modules that are compatible with

a generic static.

The Dynamically Reconfigurable Emdedded Platforms for Networked Context-Aware Mul-

timedia Systems (DREAMS) design flow builds and assembles modules for partial reconfig-

uration [60]. The goal of DREAMS is to minimize the need for human intervention in the

design process. Modules and static designs can be built independently, and module reloca-

tion can occur. Modules are built such that their interfaces are directly compatible when

placed adjacent to one another. This is ensured through the use of the DREAMS router.

Modules have specific interfaces at each of their four boundaries for connectivity. So long as

these interfaces are compatible and the modules properly align, they can be relocated within

the placement grid. Connectivity is therefore limited; modules cannot connect to more than
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four others. Modules must be built to be compatible with one another and the static. Any

changes to the module interfaces will cause recompilation of all compatible blocks. On the

static side, the reconfigurable region is manually specified by the designer.

QFlow [29] uses modular design like TFlow, but is not as well-optimized for speed. Whereas

TFlow generates modules for the library at the bitstream level, QFlow stops after the map

stage. These modules must then be routed at run-time, slowing down design assembly. By

using unrouted modules, QFlow gains routing quality at the cost of speed.

Both HMFlow [28] and TFlow make use of XDL (the Xilinx Design Language). HMFlow

stores all of the module information in XDL, including logical instances, their placements,

and their routing. TFlow, however, mainly uses XDL to as an input mechanism for its meta-

data, extracting physical and net information. More importantly, to create a full design,

HMFlow must convert the final design XDL it produces into a Netlist Circuit Description

(NCD), a Xilinx physical description file, before it is able a bitstream for use on a device.

This XDL-to-NCD conversion and subsequent bitstream generation takes considerable time

and scales with the size of the design. Tests will show that this overhead exceeds the total

TFlow runtime, acting as a performance bottleneck (see Section 4.2.2). This makes meeting

the performance deadline impossible when using HMFlow’s approach. Instead, TFlow, like

QFlow, uses a different approach that does not require this costly XDL-to-NCD conversion

process and thereby speeds up bitstream creation.

Building higher level design flows requires significant low-level knowledge of the device archi-

tecture. TORC [23] and RapidSmith [61] are two open-source tools that have been built to
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enable this capability. These two tools are analogous; some capabilities differ, but the main

distinction is that RapidSmith is a Java framework and TORC is C++. HMFlow [28] and

DREAMS [60] both build on the RapidSmith framework [61]. QFlow [29] and TFlow [40]

build on TORC [23].

GoAhead [58] also builds on top of prior work in the form of the ReCoBus-Builder tool [59].

However, while this tool is publicly available, it is not open-source, and thus is not available

as a framework for additional work.

2.5 Flow Comparison

Table 2.1 compares the goals of different design flows. Xilinx ISE aims for the highest quality

results. The design can be tightly packed and have high utilization, global optimizations can

consolidate or improve the design, and clock rates can be pushed to their limits. These

are all important considerations, but other goals may have precedence depending on the

application. Xilinx ISE also supports partial reconfiguration.

QFlow [29] uses modular design to attempt to speed up the back-end design flow. The

modules it uses are unrouted, but are otherwise locked to a specific resource pattern. While

QFlow is faster than ISE, it does not meet the necessary time requirements for attention

span assembly. This is because, post-placement, QFlow uses ISE for routing and bitstream

assembly.

HMFlow [28] also aims for rapid assembly. In fact, it is faster than QFlow at generating a
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design because its modules are pre-routed. However, design restrictions mean that HMFlow

cannot meet the attention span deadline either.

Conceptually, TFlow treats modules as immutable objects. Once created, their resources

are reserved and their shape is locked. In contrast, HMFlow does not have this constraint.

Instead, it manipulates internal module logic; in [62] it does so to obtain better timing results.

Conceptually, HMFlow treats modules as convenient logic groupings, not immutable blocks.

HMFlow’s module XDL must also include internal logic and resource utilization. In com-

parison, TFlow’s module meta-data only needs the shape of the module for assembly. This

can be an asset when dealing with proprietary modules, because in TFlow the internal logic

does not exist in the meta-data, whereas HMFlow’s approach requires this information to

generate the final bitstream. Conceptually, TFlow’s design approach is better suited for

proprietary assembly.

GoAhead [58] is a PR flow, and is design accordingly. The modules are immutable; they

are stored as bitstreams. However, GoAhead’s goal is to improve on Xilinx PR, not the

Xilinx ISE tool. As such, its features are designed for more capable and flexible partial

reconfiguration and not for back-end acceleration or deadline assembly.

TFlow is designed from the ground up towards meeting the attention span deadline and has

succeeded. To do so, it uses immutable modules and assembles them with an eye towards

meeting these time constraints. Device utilization and packing are sacrificed for time.
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Table 2.1: Flow Goals Comparison
Quality Partial

Reconfiguration
Immutable
Modules

Speed Meets Attention Span
Deadline

ISE x x

QFlow x x
HMFlow x
GoAhead x x
TFlow x x x

2.5.1 Flow Capabilities

Table 2.2 compares the capabilities of different design flows. Xilinx ISE is the reference, as

it has full functionality, except for running in an embedded environment. To duplicate this

functionality while speeding up execution time is the goal of these flows. QFlow [29] has its

own placer, but routing and bitstream generation are done by reintegrating with the Xilinx

toolchain. As such, it is not a standalone environment. HMFlow [28] goes further and has

a router as well, but must return to the Xilinx tools for bitstream generation of the design.

GoAhead [58] is an interesting case, because it is designed as a PR flow and not a modular

flow. It does not have a placer or a router, but it does create a library of partial bitstreams

for use during run-time for partial reconfiguration. As such, these partial bitstreams could be

used in an embedded environment, although the GoAhead tool would not run. To contrast,

TFlow [40] implements placement, routing, and bitstream generation. TFlow assembly is a

standalone process that can occur in an embedded environment.

To look at these flows from a different perspective, placement is a constant for modular

flows. Only GoAhead does not implement one, but it is designed to be a PR flow first and
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Table 2.2: Flow Capabilities
Placer Router Bitstream* Standalone Embedded

ISE x x x x

QFlow x
HMFlow x x
GoAhead x x
TFlow x x x x x

*Generates a bitstream at design time without using outside tools

foremost. Routing the design without reliance on the Xilinx tools is done by HMFlow and

TFlow. Having this capability removes the need for either Xilinx to perform the routing, as

in QFlow, or for there to be pre-built static routes for connectivity, as in GoAhead. When

looking at bitstream generation, only ISE and TFlow generate bitstreams at assembly time.

GoAhead is marked as having bitstream support because the partial bitstreams it generated

when creating the modules are drop-in components to the flow. It does bitstream-level

module relocation, but no bitstream-level routing.

Only TFlow offers a non-Xilinx standalone design assembly flow. This removes Xilinx from

the equation and gives significant control back to the flow. As assembly is not reliant on the

closed-source Xilinx tools, no license is necessary. In addition, this is what enables TFlow

to run on embedded platforms. GoAhead’s library of partial bitstreams can also be run on

an embedded environment, although the actual GoAhead tools might be incompatible.
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2.6 Meta-data Description

To best describe a full design, information regarding the logical and physical properties is

necessary. In most current representations, only a subset of this information is in any one

place. In [63], a module-based design strategy with core reuse and abstracted linking between

modules is presented. To describe these cores in an abstracted manner, a set of meta-data is

created using the IP-XACT standard. However, this information solely describes the system

at the logical level.

A standard netlist also represents a module or design at the logical level; this information is

then passed to another tool where physical information is created. For Xilinx tools, physical

information can be read in the form of XDL. XDL contains a full picture of the physical

device, but in so doing it simplifies away much of the logical level information. Doing so can

optimize the solution and remove unnecessary information. However, when attempting to

reuse cores at the bitstream level, both physical and logical level information is necessary.

One representation technique that combines both physical and logical level information was

presented by Tavaragiri [64]. This technique meets all of the requirements for describing

a design, and so will be adopted in an updated form by TFlow. However, automatically

generating this information was not supported. A logical-level import tool was built [65] to

initialize the meta-data from a netlist. Automatically back-annotating the meta-data with

the full design data is implemented in this work.
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2.7 Bitstream Relocation

Xilinx device programming is done through a file called a bitstream. This bitstream contains

information on how every part of the FPGA will be configured, from the routing resources

to the values in look-up tables. The mapping for a specific logical value is proprietary, but

the general structure of the bitstream is not [66].

Bitstreams for Xilinx devices are split up into frames. Each frame is one clock region high.

Clock regions are named because the clock routing resources have a horizontal spine that

serves all of the resources in a clock region. The height of a clock region is dependent on the

device architecture. For the Virtex 5, a clock region is 20 tiles high.

Each frame has a 32-bit address that uniquely identifies its position on the device. Figure 2.1

shows the frame addressing scheme for the smallest Virtex 5 device, the XC5VLX20T. The

clock region is represented as the Major Row, and the tiles are ordered by column. A single

frame is insufficient to represent all of the data inside a tile, so a set of minor addresses are

used to determine which internal column of the tile this frame represents. From the figure, a

full frame tile is circled. This tile contains Configurable Logic Blocks (CLBs), and so requires

36 frames to fully describe the configuration.

Since these frame addresses are known, they can be changed to move the frame contents to

a new location. With the circled set of CLB tile frames of Figure 2.1, if the ”Bottom Bit”

value in the frame address is changed from a ’1’ to a ’0’, the CLB frame contents would

move to the top of the device. In this way, module relocation can occur. Of course, since
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Figure 2.1: Xilinx XC5VLX20T Frame Layout

these frames represent a specific type of tile, in this case CLBs, the new frame location must

match or else the behavior is unknown.

This process is known as bitstream relocation, which is a well-explored capability for Xil-

inx devices [67] [68]. Since bitstream relocation only changes the frame address, it does

not require any proprietary Xilinx knowledge of the contents of the frame. As such, any

information about what the frame represents would need to be extracted before bitstream

generation, which is the purpose of meta-data. One important note about relocating a frame
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to a new location is that the new location should be empty. If it has logic or routing, this

information will be lost when the new frame overwrites it.

Bitstream relocation only moves frames around. Should additional routing be required, as

it is in TFlow, a method to add this to the bitstream is necessary. [69] presents a method

of generating routing micro-bitstreams. Each micro-bitstream represents a specific wire

segment on the FPGA. When multiple micro-bitstreams are logically OR-ed together, they

can create a full route. Knowing which wire segments to select is a router’s job. These micro-

bitstreams can be logically OR-ed with an existing design to add routes to this design. This

capability does not allow for removing routes, so the desired path must be free of routing.

By combining bitstream relocation with micro-bitstreams, new bitstream designs can be cre-

ated from pre-built pieces. Without micro-bitstreams, routing between relocatable modules

would need to occur on pre-defined interfaces, as occurs with DREAMS [60] and GoA-

head [58]. This new capability makes relocated bitstreams much more flexible, since com-

munication is no longer a bottleneck and dynamic routes can be produced. Leveraging this

work into a larger productivity flow will enable full design assembly without the need to

return to the standard tool flow.

2.8 Summary

TFlow builds on many of the successes and lessons of prior work. To improve the compilation

speed of design assembly, prebuilding modules and static designs are necessary, as seen in
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QFlow and HMFlow.

The Dreams flow impressed the importance of minimizing human intervention in the design

process, and so automation of placement footprint selection was implemented.

HMFlow shows the drawback to relying on the Xilinx tools for bitstream generation, in that

it adds significantly to the assembly overhead. Therefore, methods of bitstream manipulation

were explored.

Bitstream manipulation techniques for both relocation and routing are needed to generate

the final design for programming the physical FPGA. These techniques need to be seamlessly

integrated into the flow.

Once the designs are represented as unreadable bitstreams, a meta-data description of the

design is necessary. This meta-data must contain all of the necessary information for the

design assembly process. Prior work has shown what sorts of information are necessary and

how best to represent it.

Each of these lessons are necessary to meet the attention span deadline assembly time re-

quirement.



Chapter 3

Implementation

Modular design is an approach that subdivides a system into smaller parts – or modules –

that can be independently created and then combined and recombined into different systems.

Designs for FPGAs typically consist of a hierarchy of primitive elements combining to form

larger components until eventually resulting in a full system. The benefits of modular FPGA

design become apparent when an incremental change or expansion of a design is required

[70] [71].

To gain the most benefit from modular design speedup, as much work as possible should be

completed prior to the iterative phase of the design process (e.g., during module creation).

The motivating principle behind this work is to meet the deadline imposed by the human

attention span. As such, it aims to complete as much back-end computation as possible

ahead of time, even if this makes module preparation more computationally expensive. Full

44



45

compilation of modules yields module-level bitstreams for later iterative assembly.

TFlow moves computation earlier by precompiling modules, in many permutations, into a

library. These precompiled modules can then be stitched together during design assembly.

Use of precompiled components dramatically decreases design assembly time. These modules

are analogous to software libraries, where precompiled functions are used to reduce compile

time. This analogy must be extended when applied to FPGAs since the additional steps of

module placement/relocation and inter-module routing are required. TFlow’s precompiled

modules can be reused in different designs, a capability not common to all modular flows.

This modular reuse mimics the technique of code reuse in software development, a method

proven to increase productivity [72] [73].

Another productivity technique for software design is a rapid feedback loop. A user can

change a design, compile it, and run it within a very short time frame (on the order of

seconds). This positively impacts the number of turns-per-day. Additionally, this capabil-

ity provides a psychological change in behavior where the user may make many changes

incrementally and interactively, encouraging the user to explore more design alternatives.

Standard FPGA design flows can take a considerable time to complete, which reduces the

feedback loop to the order of minutes to hours. In some cases, small changes to the design

require full re-compilation. This reduces the number of turns-per-day, restricting the time

available for prototyping. TFlow aims to reduce FPGA compilation times down to the soft-

ware speed of seconds. This increase in the speed of compilation will improve the number of

turns-per-day. In addition, TFlow’s driving goal is to complete design implementation within
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the narrow window of the user’s attention span and thereby increase productivity [19].

3.1 Flow Motivation

Implementing the design within the window of human attention span enables significant pro-

ductivity enhancements to the design process. TFlow must be able to meet this requirement,

and it does so by splitting up the design flow into work that can be done beforehand and

work that must be done at assembly time. This design split will significantly speed up as-

sembly time. The majority of the computation time is thus front-loaded into library creation.

While other techniques have used this same strategy, none of them have met the strict time

requirements necessary to maintain the user’s attention. To meet this deadline and improve

upon the other attempts, the modules are compiled completely. This consists of running

the modules through the full compilation flow, from synthesis through bitstream generation.

These bitstreams are pushed into the module library. TFlow’s maximally compiled modules

can be assembled to create a full bistream design in seconds, well within the thirty second

attention span window.

3.2 Flow Design

TFlow gets its large productivity boost by splitting the flow into two distinct phases, as seen

in Figure 3.1. The first phase, referred to as the module creation phase, occurs when new
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functionality is needed. This phase is intended for an HDL programmer, or a librarian [74].

This librarian designs a module that supplies this capability using a front-end tool, much like

a dynamically loadable library in software development. This module design is then passed

to TFlow, which shapes it and passes it into the vendor flow. This creates a bitstream and

meta-data that is stored in a component library for later use.

Figure 3.1: TFlow Use Model

The second phase, referred to as the design assembly phase, is performed by the engineer

implementing the design. This designer creates high-level plans consisting of a set of modules

representing a final design. TFlow will fetch the pre-created modules and assemble them
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using the TFlow design assembly process. The resulting bitstream can then be loaded onto an

FPGA. So long as the necessary components are in the library and the library components are

sufficiently parameterizable, the design loop can be traversed quickly for rapid prototyping.

These phases will be discussed in further detail.

The decision as to where design ends and implementation begins is a mutable one and

depends on perspective. The design (or front-end) process can be the requirements docu-

mentation, with the rest of the process considered implementation details. On the other

hand, it can also consist of everything prior to actually setting the bits on a device, where

this programming is considered the implementation (or back-end).

This work takes the more common middle ground, where the back-end process begins after

synthesis. Synthesis consists of translating a design into a set of primitive blocks and their

logical connections. This process can be device-agnostic, although in most cases device-

specific optimizations are used. The result from synthesis can be represented as an Electronic

Design Interchange Format (EDIF) file, which is a standard netlist format [75]. This standard

is front-end and vendor agnostic. The first phase of TFlow begins with an EDIF netlist.

Any front-end tool that ultimately produces an EDIF netlist can be used with TFlow. This

includes standard HDL flows, C-to-gates flows, and graphical front-end flows. The vendor

implementation flow, including the mapper, placer, router, and configuration bit generator, is

run once for each module, incorporating user constraints. Key attributes of the module, such

as Input/Output (I/O) interface, anchor point, and resource usage, are extracted from the

EDIF using custom tools based on the Tools for Open Reconfigurable Computing (TORC) [23]
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and stored in a meta-data file as Extensible Markup Language (XML). The vendor flow,

including the appropriate bit generation tool, is used to create a module bit file. The

configuration bit file and the meta-data for each module are stored in the module library.

The second phase of TFlow is design assembly. To build a design, the user only has to specify

which modules to use and how to connect them. Using the same EDIF format to create a

design description, the assembly flow then fetches these modules to create the design. This

assembly flow goes through TFlow’s placer, router, and bitfile generation phases. No time-

consuming vendor tools need to be run, enhancing platform flexibility. A modified TORC

router is run to make the inter-module connections. These connections are done at the

bitstream level.

The compilation time saved by TFlow can be seen by comparing it to the traditional Xilinx

back-end compilation flow. Starting from the initial synthesized netlist, the traditional flow

has four phases. Initially, the design is mapped, which converts the post-synthesis logic

gates to FPGA primitives. Then, these primitives are laid out onto the target FPGA device

in the placement phase. Next, the primitives are connected together with wires in the

routing phase. Finally, the bit generation phase converts the connected primitives into a

final bitstream that will be used to program the FPGA. TFlow reduces the time required

for each of these phases.

The mapping of logic to slices and physical components can be skipped entirely since the

modules in the library have already been compiled. No additional mapping is required during

assembly. The placing time is significantly reduced due to the coarser granularity of module
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placement versus the slice or logic placement of the standard flow. These modules have a

selection of specific sizes and shapes, but are still restricted to a limited number of possible

locations due to the properties of the module. This does mean that some excess area is used

due to the inability to do cross-module or global optimizations. No overlap is permitted

between modules. As modules were internally routed during module compilation – using

vendor tools – the routing phase is reduced to inter-module connectivity. Lastly, bitstream

generation time is reduced since a modified bitstream merge is performed, replacing the full

vendor-provided generation process.

Five aspects of TFlow distinguish it from conventional back-end compilation:

1. It boosts the productivity of FPGA assembly by significantly reducing compilation

time. This increases the number of turns-per-day possible for designers;

2. It explores the possibility of applying software engineering practices to FPGA devel-

opment, in this case a library of precompiled components;

3. It demonstrates the power of using TORC to augment or enhance vendor-supplied

compilation flows;

4. It broadens the applicability of FPGAs to a wider selection of applications; and

5. It further boots productivity by completing compilation within the user’s attention

span.

By speeding up the number of turns-per-day and reducing the complexity of the design pro-
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cess, FPGA design can begin to attract users accustomed to software design. Consequently,

FPGAs can expand into fields that would otherwise choose to remain pure software, such as

emerging applications like GNU Radio [76].

TFlow is not without some drawbacks. Timing for the routes that TFlow creates can be

longer than that of the vendor tools, as there is no global optimization. Similarly, there may

be resource optimization issues, because modules cannot share resources. Additionally, since

modules cannot overlap, any unused resources in a modules footprint are unavailable to the

design.

3.3 Flow Model

A model of the computational effort required for the full design flow is necessary to best

determine how to meet the assembly deadline. With this model in hand, TFlow can properly

perform modular design and determine what work can be performed ahead of time - during

Module Creation or Static Creation - and what the remaining run-time effort will be for

Design Assembly. This model will then be applied to multiple modular design approaches

to determine suitability.

For the model, D is the total design computation effort. Computational effort is the amount

of work necessary to complete a computation. In other fields, the joule represents the amount

of effort required to move an object one meter using one newton of force. For this work,

computational effort is defined as the running time needed to reach a solution [77].



52

The computational effort required can be divided into any number Z of stages, T , depending

on the properties of the flow. Tn is the computational effort necessary for the nth stage.

Equation 3.1 represents the baseline modular design flow which does not perform any pre-

computation. While it is likely that there are some savings possible by combining stages

together, it is assumed at this point that any benefit is minimal.

D = T1 + T2 + · · ·+ TZ (3.1)

To obtain the appropriate complexity reduction, the design process is split into three different

portions. Static Creation S and Module Creation M both occur prior to design time. Design

Assembly A consists of the computations that must be performed at run-time. Each stage T

will contain S, M , and A. Equation 3.2 represents how any stage Tn can be split into these

precomputed and run-time portions.

Tn = TnS + TnM + TnA (3.2)

One additional factor that can impact the gains from splitting the design process are global

optimizations, G. This influences Equation 3.2, transforming it into Equation 3.3.

Tn = TnS + TnM + TnA −Gn (3.3)
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This means that there is some overhead added when splitting the design stages, as some

optimization cannot be performed. The gains from precompilation must therefore be judged

against the total time requirements to determine the comparative size of Gn. Splitting the

stages is contraindicated only when TnA ≥ Tn. Otherwise, extra computation in S or M is

acceptable, as it occurs during precompilation. This adds another factor when performing

minimization of A.

Design time thus consists only of performing those computations that occur during assembly,

A. The equation for this computational effort is shown in Equation 3.4.

A = T1A + T2A + · · ·+ TZA (3.4)

From this, it can be seen that the more computations that can be moved into S and M , the

less that will be necessary at design time. Maximizing S and M while minimizing A without

removing the desired flow capabilities is the desired goal.

3.3.1 Model Application

The model presented in Section 3.3 can be applied to the various existing flows to determine

how well they meet the requirements of reducing computational effort and thus enabling

hard deadline-based implementation.

To apply the model properly, the number of stages needs to be determined. The best fit to the
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existing flows are three stages. The first stage is P , which represents module logic mapping

and placement. The next step, R, is the stage responsible for connecting the modules to

one another. The last step, B, compiles the design into the final device-usable form - the

bitstream.

Equation 3.5 represents the required computations necessary to compile a post-synthesized

netlist into a bitstream. This ignores precompilation, and is a representation of the Xilinx

standard design flow, ISE, or I.

DI = PI + RI + BI (3.5)

Equations 3.6, 3.7, and 3.8 break down the design time still further, into three distinct

portions: static creation, module creation, and design assembly. For this flow, all of these

steps occur at design time; no preprocessing is done.

Each stage is split between three different portions of the design: the static design S, module

creation M , and design assembly A. When compiling an ISE flow, each step is performed

atomically. Global optimization occurs, but this is not visible at the scale of the model.

PI = PS + PM + PA (3.6)

RI = RS + RM + RA (3.7)

BI = BS + BM + BA (3.8)
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The computational effort required to compile a design in ISE can therefore be represented

as shown in Equation 3.9.

DI = PS + PM + PA + RS + RM + RA + BS + BM + BA (3.9)

Contrast this with the way that TFlow, T , is structured. TFlow performs many calculations

prior to design time. This preprocessing can be seen in Equations 3.10 and 3.11. In these

preprocessing steps, all of the static and module calculations are performed.

ST = PS + RS + BS (3.10)

MT = PM + RM + BM (3.11)

This leaves few calculations to occur during design assembly, as seen in Equation 3.12.

DT = PA + RA + BA (3.12)

The difference in the number of calculations required between ISE and TFlow can be seen in

Equation 3.13. As seen, since many of the TFlow calculations occur prior to assembly time,

there are significant savings.

DI −DT = PS + PM + RS + RM + BS + BM (3.13)
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QFlow [29], Q, prebuilds unrouted hard macros as its modules and then assembles the design

and performs routing and bitgen with the Xilinx tools. Equations 3.14 and 3.15 show the

work done prior to design time, while Equation 3.16 shows the work necessary at design

time.

SQ = PS + RS (3.14)

MQ = PM (3.15)

DQ = PA + RM + RA + BS + BM + BA (3.16)

Comparing QFlow with TFlow, it can be seen that routing and bitsteam generation are

additional QFlow computations; thus QFlow will take longer to complete than TFlow.

DQ −DT = RM + BS + BM (3.17)

HMFlow [28], H, builds both placed and routed modules, but it populates its library with

XDL. The static and module work can be seen in Equations 3.18 and 3.19.

SH = PS + RS (3.18)

MH + PM + RM (3.19)
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Assembling these modules also occurs in XDL. The result must then be converted to the

correct format for Xilinx Bitgen. To do so, additional conversion overhead, OH , represents

running Xilinx xdl2ncd. This is represented in Equation 3.20.

DH = PA + RA + OH + BS + BM + BA (3.20)

TFlow does not have OH , and already has prebuilt bitstreams. Equation 3.21 has the

difference in computational requirements between these flows. So long as Bitgen and OH

remain computationally intensive, TFlow will require less computational effort than HMFlow

and thus complete faster.

DH −DT = OH + BS + BM (3.21)

3.3.2 Model Preprocessing Trade-Offs

This model can be analyzed to determine the preprocessing trade-offs. Table 3.1 covers

each term in the model from Equation 3.9 and the impact from preprocessing. This table

summarizes the trade-offs from preprocessing. For example, TFlow precompiles every term

except for PA, RA, and BA. This reduced the computational effort below the attention span

deadline while maintaining flexibility. The effect of precompiling these terms can be seen

throughout this work. However, the precompiling the remaining three terms also trade-offs

to consider. OpenPR [56] performs PA during preprocessing by having a designated slot
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Table 3.1: Model Terms and Impact
Preprocess Effect Design Time

Computations
Preprocess Evaluation

Pros Cons

PS Preplace Static Map / Place
Static

Less computational
effort

Static locations and
resources locked; Lacks
global optimization

PM Preplace
Modules

Map / Place
Modules

Less computational
effort

Module footprint
locked; Resources
reserved; Lacks global
optimization

PA Preselect Design
Placement; Slot-
based design

Flexible
Placement

Less computational
effort; Known
module location

Inflexible; Module takes
full area despite size;
One-to-one mapping

RS Preroute Static Route Static Less computational
effort; Internal
timing can be
guaranteed

Routes may cause
collisions

RM Preroute
Modules

Route
Modules

Less computational
effort; Internal
timing can be
guaranteed

Routes may cause
collisions; Module
relocation restricted to
locations with
appropriate routes

RA Preroute Design;
Route blocking;
Preset route
interfaces

Route Design Less computational
effort; Timing can
be guaranteed since
routes are known

Less flexible
connectivity; Limited
number of prebuilt
connections

BS Precompile
Static Bitstream

Compile
Static
Bitstream

Less computational
effort

Metadata description of
static required

BM Precompile
Module
Bitstreams

Compile
Module
Bitstreams

Less computational
effort

Metadata description of
modules required

BA Precompile
Design
Bitstream; Select
from library of
full bitstreams

Compile
Design
Bitstream

Minimal
computational
effort; High quality
design

No flexibility; Only
prebuilt designs
available
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for the module. Only one module is permitted in each slot, so excess area is wasted but

placement can proceed rapidly. The DREAMS flow [60] performs RA during preprocessing,

sacrificing routing flexibility for simplified connectivity. Performing BA during preprocessing

is equivalent to precompiling full designs and having a selection of bitstreams to load at design

time. Changing the design requires recompilation, but if the design space is predictable,

bitstreams can be supplied instantly. Depending on the design philosophy and goals for a

flow, preprocessing any or all of these terms can be desirable. Flow designers can use Table

3.1 to make an informed decision.

3.3.3 Module Reuse Model

To model the improvement that a modular flow has over a standard flow with respect to

reuse, consider Equation 3.22, where N is the total number of modules. Each of the modules

must be built. Now compare this with Equation 3.23, a modular flow, where U is the number

of unique modules. The improvement given is due to modular reuse, even within the same

design. From Equation 3.24, the modular flow can be seen to perform at least as well as the

standard flow. As the number of duplicated modules grows, the modular flow’s advantage

grows likewise.

MI =
N∑
i=1

Mi (3.22)

MF =
U∑
i=1

Mi (3.23)
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U ≤ N,MF ≤MI (3.24)

3.3.4 Module Parallelism Model

Equation 3.25 shows the behavior of a modular flow when each module is independent and

can be built in parallel. Since this is a perfectly parallel process, the amount of time spent on

modular design is equal to the maximum amount time it takes to build any single module.

From this, it can be seen that the more modules that are built in parallel, the larger the

gain that a modular flow has over the standard flow, as represented by Equation 3.26.

MF‖| = MAX(M1,M2, . . . ,MU) (3.25)

U � 1 ⇐⇒ MF‖| �MI (3.26)

3.3.5 Strategy to Meet a Hard Placement Deadline

Applying strict time constraints to TFlow restricts the time allotment for each step of the

process. One way to meet this requirement is to simplify each stage. For placement, using

larger, more heavily constrained blocks simplifies the placement problem. Algorithmically,

this larger granularity enables significant gains relative to computational effort.

The drawback to this approach is that, when performing fully granular placement, simplifi-

cation and optimization between the different components can be performed. This can lead
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to resource sharing and a higher density design, which can simplify the number of required

computations during placement. TFlow’s modular design approach cannot take advantage of

these options, but the gains in design assembly time supersede this benefit when attempting

to meet the assembly deadline.

To best determine how this modular design process is helpful when attempting to meet a

deadline, consider the following thought experiment. Assume that the algorithm for place-

ment between a highly granular approach and a low granularity approach have the same

computational complexity O(m,n), where m is the number of modules and n is the number

of placements for a module.

A module m can contain many submodules s, where s ≥ m. Since s ⊆ m, the number of

placements for s, p, must also be defined as p ≥ n. This is because each placement for m

is also a valid placement for the set of all submodules, s. Therefore, O(m,n) ≤ O(s, p). In-

creasing the granularity for a given design will also increase the computational complexity of

that design, and reducing the granularity likewise will reduce the computational complexity.

When dealing with a hard time constraint for placement, speeding up the placement process

can thus be done by decreasing the granularity. This is true regardless of the algorithm used.

Since TFlow has a strict time limit on execution, efforts must be made to reduce the time

necessary for each stage of the flow. These significant gains in runtime can be obtained

through the use of this strategy for reducing the computational complexity of the placement

process. To increase the size of a block to be bigger than primitives, modules need to be
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available. This is done by creating them ahead of time so that internal placement compu-

tations are already complete before entering the critical path. This informs the modular

structure to which TFlow must adhere. In this way, TFlow’s placer can complete within its

time allotment.

3.3.6 Strategy to Meet a Hard Routing Deadline

Another step of the TFlow process is routing the design. This step must also complete within

its time budget. Reducing the number of routes necessary simplifies the routing problem.

One approach to reducing the number of routes is to use prerouted modules. Every route

inside these modules is a route that will not need to be computed during implementation.

The more routes that are moved into these modules, the less flexibility in routing that the

final design will have. The hard deadline in routing time informs the amount of routing that

should be pushed into the modules and how much can be left to occur during implementation.

This informs the size and complexity of TFlow’s modular structure. With these prerouted

modules, TFlow’s inter-module router can complete within the allotted time.

3.4 TORC

TFlow relies heavily on TORC [23], an open-source C++ infrastructure and tool-set for

reconfigurable computing. The TORC infrastructure is able to read, write, and manipulate

EDIF, Berkeley Logic Interchange Format (BLIF), and XDL netlists, as well as Xilinx bit-
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stream frames. The TORC tools include placing and routing capabilities for full or partial

designs, along with additional capabilities to facilitate design manipulation and analysis.

Many of the TORC APIs and tools are used by TFlow. The EDIF importer extracts a

module’s logical level information for use in creating TFlow meta-data. The XDL importer

extracts physical information from the module’s XDL, including anchor point, shape, and

routing information. TORC also contains a device database (DDB) that can track wire and

logic resource usage information for a wide range of target devices. Importantly, TORC also

includes a router that can treat previously used wires as constraints to avoid contention. The

bitstream parser can map from the frame indices of a bitstream file to the frame addresses

on a device.

3.5 Module Relocation

Module relocation is an important component of TFlow. FPGAs consist of different types

of tiles, such as Configurable Logic Blocks (CLBs), Block RAM (BRAM), and Digital Signal

Processors (DSPs). These tiles are arranged in a regular pattern throughout the device.

TFlow leverages this regular structure for module bitstream relocation.

A Xilinx FPGA is configured by loading a bitstream file. This file is organized into frames,

the smallest addressable segment of the Virtex-5 configuration memory space [66]. A frame

address maps to a tile on the FPGA, and is represented as 32 bits. Multiple frames may

point to different portions of the same tile. Each frame is one clock region tall, so frame
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Table 3.2: Vertical expansion of clock region size for modern Xilinx FPGA devices.
Xilinx FPGA Family CLB BRAM DSP

Spartan 6 16 rows 4 rows 4 rows
Virtex 4 16 rows 4 rows 8 rows
Virtex 5 20 rows 4 rows 8 rows
Virtex 6 40 rows 8 rows 16 rows
Series 7 50 rows 10 rows 20 rows

height and clock region height can be used interchangeably.

The size of the frame has expanded with the newer and larger FPGA architectures. Table

3.2 shows how the frame size has increased. For example, the Virtex 5 has a frame height

of twenty CLBs while the Xilinx 7 Series of devices has a frame height of fifty CLBs. More

importantly, while Virtex 5 has four BRAMs and eight DSPs, the Virtex 7 frame has ten

BRAMs and twenty DSPs (These BRAM36s can also be used as two BRAM18s).

By manipulating the frame address, the frame data can be moved around the device. Knowl-

edge of the contents of a frame is unnecessary for this bitstream level relocation.

Other Xilinx FPGA families, such as the Virtex 4, have frame addresses that work in a similar

way. Several research teams have demonstrated methods for module bitstream relocation.

[67] uses frame relocation as part of its fault tolerance tool for the Virtex II Pro. Becker [68]

discusses a way to do more flexible bitstream relocation on the Virtex 4. Becker’s work allows

module relocation onto regions with different resources at the expense of underutilizing the

region.
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3.6 TFlow Phases

To best understand how the desired flow works, an in-depth analysis of each phase is neces-

sary. These phases are Module Creation, Static Creation, and Design Assembly. The phases

are split such that as much computational work as possible is offloaded to the Module and

Static Creation phases to minimize the work done during Design Assembly. This will mini-

mize the time necessary for Design Assembly.

3.7 Module Creation Phase

The Module Creation step is predicated on the idea that the more work that can be done

prior to assembly time, the faster assembly can occur. Other modular flows have different

approaches to how much precompilation should occur when creating modules. QFlow [29]

uses unrouted modules that were represented as Xilinx hard macros. These hard macros

would need both routing and bitstream generation at assembly time. HMFlow [28] goes

further, and uses both placed and routed hard macros. However, these files are represented

as Xilinx XDL, and thus need to be converted back to a Xilinx NCD prior to bitstream

generation. These approaches do not offload all of the available computations from assembly.

The maximum amount of processing that can occur on a module, without knowledge of the

eventual use case, results in a module bitstream. As such, all possible computations are

moved into this stage, leaving a minimal amount of work for assembly. This enables assembly

to complete quickly.
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One of the key contributions of TFlow is the library of precompiled components for later

assembly. The hardware designer creates and synthesizes a module to pass to the flow.

This module design has some minor constraints to make it properly fit into a modular

design strategy. To reduce arbitrarily long combinatorial paths during assembly, all ports

for a module must be registered. This constraint adds an additional clock cycle whenever

entering or leaving a module. Timing closure for each module is thus guaranteed. During

assembly, inter-module timing closure will only require routes that complete within a clock

cycle. Additionally, the module should be selected such that it does not contain highly

unique components, such as Input/Output Blocks (IOBs). A module with an IOB would be

locked to a specific location on the device, and thus would be a much better candidate for

use in the static design. Should direct IOB connectivity be desired, a better approach would

be to add additional static ports that interface directly with these IOBs. This would allow

design placement to have more flexibility while maintaining connectivity.

3.7.1 Module Creation

The entry point for TFlow module creation is a post-synthesis EDIF. EDIF files are an open

standard [75] that can be automatically created by most front-end tools [78] [79] [80]. EDIF

contains a logical level representation of a module, including connectivity, logic, ports, and

other information. TFlow compiles the module through an enhanced version of the Xilinx

Partition Flow [30]. Once this flow is complete, the module and its associated meta-data are

added to the library.
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3.7.2 Module Shaping

Before compiling a module, an appropriate shape must be selected. The shape and resource

utilization of a module will decide how it can be integrated into a final design. To choose a

shape, an estimation of the number and type of resources is required. TFlow uses PlanAhead

for resource estimation. This yields an estimate of the number of CLBs, DSPs, and BRAMs

required for the module. TFlow’s custom shaping tool then creates a minimum footprint for

the module that meets both resource and TFlow-specific requirements. TFlow has additional

shaping rules that improve area utilization during design assembly.

When shaping a module for the Xilinx 7 Series devices, its shared clocking mechanism must

be addressed. As will be discussed in the next section, TFlow relies on Xilinx Partitions to

create modules. Xilinx Partitions requires every module to have an even number of columns

because each clock line is shared between two columns. This further reduces the number of

unique shapes that are available for a module, and reduces the placement granularity still

further.

The bitstream for each module will be used during assembly. As such, no overlap between

modules will be possible. Any unused resources within a module are wasted, so finding a

minimal shape will reduce these wasted resources and improve module packing is important.

The resulting region is given in the form of a Xilinx User Constraints File (UCF). This

file will be used as a constraint for the Xilinx Partition Flow that TFlow uses for module

compilation.
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3.7.3 Module Compilation

TFlow uses an enhanced version of Xilinx Partitions for compilation. Unlike the standard

Xilinx tools, Xilinx Partitions will enforce routing constraints. Module routing will there-

fore remain inside the shaped region. This results in a reduced footprint for each module,

improving module packing.

For Xilinx Partitions to work, there must be a specified hierarchy. An additional EDIF

manipulation program is run, creating a seamless top level wrapper for the module. This

top level wrapper has the appropriate structure required by Xilinx Partitions.

Additionally, Xilinx Partitions automatically performs port consolidation. Port consolidation

takes a large set of inputs to a module and reduces them to a single port using bus macros.

In the literature, it refers to these bus macros as proxy logic. This proxy logic decreases the

fan-out required during the final assembly stage, allowing the assembly-time router to do

less work. This reduction in routing complexity results in increased speed when routing the

design, at the cost of a slightly longer combinatorial path.

Metadata Creation

In addition to the module bitstream, TFlow will also generate meta-data describing both

the physical and logical properties of the module. The initial logical-level data extraction

occurs from the module EDIF. Physical-level information is obtained from the module XDL.

The flow for creating meta-data for a module can be seen in Figure 3.2.
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Figure 3.2: Meta-data Annotation Process

The physical-level information includes the location of each port, the used routes (denoted

as PIPs), and the physical boundaries of the module. The boundaries are needed because

no other logic utilization information is extracted.

Module Pre-Placement

Additional placement information is also generated and added to the module meta-data. This

information consists of a list of all possible placements for the module to be located on the

device. To generate this information, the southwest and northeast tiles of the module are used

to generate a bounding box. This bounding box is used to generate the tile resource pattern
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for the module. For example, ’CLB—DSP—CLB—CLB—BRAM’ might be the horizontal

resource pattern. The tile patterns are compared against the TORC FPGA database for this

device to determine where this pattern exists. Subsequently, the rows are also compared.

Once all the fully matching placements are discovered, a final routing check is performed.

Each of the routes in the module are tested to determine if a placement has identical routing

resources. This behavior will normally occur along the edges of the device or in other

irregular regions. Those locations that do not pass this test are removed from the set of

viable placements. These results will be used as constraints during the placement step of

design assembly. More information about module pre-placement can be found in [81].

By generating this pre-placement data during compile time, less effort is necessary during

assembly time. These additional constraints reduce the granularity. This pre-placement data

leverages to TORC framework to determine the device structure. In so doing, pre-placements

can be generated for all TORC-supported architectures. Contrast this with the RPM grid

mechanism mentioned in Section 2.3.1, where each new device family would need to have its

structure be recreated by hand.

Module Clock Analysis

Another required step is to unroute the clock nets from the module. Because the Xilinx Par-

titions flow is run without a standard clock input, Xilinx does not distinguish between clock

nets and standard nets. All nets are routed as though they were standard nets. Therefore,

these ’clock’ nets must be unrouted, so that the clock ports are available for clock routing
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during design assembly.

TFlow Module Requirements

As mentioned, modules created for TFlow have a few additional requirements. The foremost

requirement is that modules register all input and output signals. This removes inter-module

timing issues that may otherwise occur. One property of modular design is that timing

closure is most often an issue within the module, and does not span across modules [82].

The vendor place-and-route tools are used for this intra-module routing to ensure timing is

met.

Module Library

Once module generation is complete, the module is added to the FPGA device library, where

it can be used by any design for this device. Should changes to the module be required, or

if it will be targeted at another device, the process can be rerun with the new information.

Different versions of the same module, distinguished by differing shapes or resource utiliza-

tion, can also be constructed. However, integrating these additional versions into the flow

remains in the realm of future work.
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3.7.4 XML Meta-data

Since the modules are stored in the library as bitstreams, meta-data describing these modules

must contain all of the necessary information for implementation. This meta-data describes

the module at both the logical level and the physical level. Neither XDL nor EDIF contain

a complete description of the module, but by combining information from both, a full pic-

ture can be obtained. Some of the information contained within the meta-data includes port

information, clock names, pre-placement locations, and utilization boundaries. Port informa-

tion consists of the physical and logical names of the ports for later translation of high-level

connectivity into physical-level routes. Clock names are necessary for design- and static-

level meta-data. The position and utilization boundaries are required for module placement

during design assembly. By performing this data extraction prior to design assembly, design

compilation time can be reduced.

An example of how physical port information is defined in XML can be seen in Figure 3.3.

This information defines the exact location of the port for routing purposes. The name

is necessary to translate from the logical net defined by the assembler to the physical net

desired by the router. The coordinate system used is based on the tile framework of the

device. This tile coordinate system is cohesive between different types of tiles. In contrast,

a site coordinate system uses a different coordinate system for each type of resource. As

an example using the site coordinate system, SLICE X24Y3 is adjacent to DSP X0Y3. As

tiles, however, they are CLB X12Y3 and DSP X13Y3 respectively. This cohesive coordinate

system allows for a single modular reference point for all resources. This permits easy
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<mName>G</mName>
<xml anchor>

<mType>CLBLM</mType>
<mX>0</mX>
<mY>1</mY>
<mIndex>0</mIndex>

</xml anchor>
<mPin>A</mPin>

Figure 3.3: XML Port Information

relocation of the module.

To uniquely define a site, the type of the tile, the relative location, and the index are

necessary. The index is necessary to specify which site on the tile is desired. For some

components, such as DSPs, only one site is associated with each tile. However, for Slices,

the Virtex 5 architecture has two per CLB tile. The index defines which one is requested.

Lastly, the pin is needed to route the net to its destination.

A simplified version of the net representation in XML can be seen in Figure 3.4. The net

name and each of the ports are described. These ports are uniquely defined as a port name

and a module instance. In this case, the reset net connects the reset port of instance ZB1

with the reset port of instance BT0. Additional information about the direction of the net is

inferred by the direction of each of the ports. This net and port information combine to give

the router the exact physical locations of each of the ports and their desired connectivity.
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<mName>r e s e t</mName>
<mPins>

<item>
<mPort>r e s e t</mPort>
<mInstance>ZB1</mInstance>

</item>
<item>

<mPort>r e s e t</mPort>
<mInstance>BT0</mInstance>

</item>
</mPins>

Figure 3.4: XML Net Information

3.8 Static Creation Phase

Static creation is done under the same premise as module creation, except instead of looking

for modules that can be combined, duplicated, and connected to form working designs, static

design looks at those parts of a design that should not change. These include I/O ports,

internal interfaces, and other static logic, such as memory controllers or Ethernet interfaces.

Again, to reduce the number of computations, and thus time, required during assembly

as much work as possible should occur beforehand. The logic that holds true for module

creation is applicable to static creation - a bitstream consists of the maximum amount of

work possible prior to assembly. Thus, the static design stage completes all of the sandbox

creation, placement, routing, and bitstream generation steps. The resulting bitstream has

completed as much processing as possible prior to knowledge of the requested design. This

top-level static design bitstream is then added to the library.

A static design requires additional bus macros – to interface with the modules – and a module
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sandbox at both logical and physical levels. The physical-level sandbox is created during

the static compilation process. This physical sandbox will be completely void of any logic

or routing; thus providing a clean region for module placement.

To create this clean region, the static design must be constrained such that neither its

logic nor any routes cross into the module sandbox region. This is necessary because the

module’s routes and logic cannot be changed once the module is built, so any logic or

routing already existing in the sandbox could conflict with resources reserved by the module.

Constraining the logic can be done through the Xilinx User Constraints File (UCF), but

constraining routing is more difficult. GoAhead [58] forces the Xilinx router to follow a

set of predefined routes by marking all of the other wires as occupied. This would be an

acceptable approach for TFlow, but it overconstrains the problem. OpenPR [56] has another

method for constraining routing. It uses a Route Blocker, which marks wires entering or

leaving a region as unavailable. Routing within or outside the region can be done as normal.

This method can be used to constrain routing to either stay inside a region or to keep out.

TFlow has adapted the OpenPR Route Blocker to keep the static design from routing into

the module sandbox.

Compilation of the static is performed using the normal Xilinx tool-chain and results in

a bitstream for use by the design assembly tools. The XDL and EDIF representations of

the static design are processed and their meta-data is created. This meta-data contains

information about the port interfaces to the assembly sandbox. It also contains boundary

information. For the static, this boundary information describes what areas are in use, and
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thus what areas will be available for placement during assembly. Routing information is also

extracted, as the assembly router will need to avoid used nets when routing a final design.

The clock nets in the static design are also analyzed for eventual clock routing. Since the

clocks already exist in the static, clock routing is done independently of standard routing.

Additionally, clock nets use their own clock network, different from the general purpose PIPs,

and will therefore have their own clock router during assembly.

Additional general information about the static design, such as port information, is exported

as well. This information can be used to interface with the later design creation tools.

Currently, the GReasy framework [76] imports this information for use when creating TFlow

designs. GReasy will be discussed in more detail later.

3.9 Design Assembly Phase

Design assembly consists of those computations that cannot be precomputed because they

require knowledge of the requested design. Each step is analyzed to determine if any part

of the assembly process is redundant or could be moved earlier in the process. For example,

clock analysis to determine the sources of all of the clock nets is performed during assembly

in QFlow. In TFlow, this analysis process has been moved into the static creation phase,

as all of the required prerequisites can be met there. By pushing as much work as possible

into the previous steps, design assembly is left with little to do and thus takes little time.

Meeting the time budget of TFlow requires these kinds of optimizations, and doing so is one
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of the major contributions of this work.

The design assembly process can proceed quickly due to the pre-built library of components.

This section describes the major steps in the iterative design creation phase.

3.9.1 Design Entry

Any front-end tool that generates an EDIF file can be used to create a design for TFlow

assembly. One such tool is GReasy [76]. GReasy is a TFlow enhanced version of the GNU

Radio [83] environment, an open-source environment for software-defined radios. Many

radio applications could be improved by using FPGAs, but the target audience is software

designers. By having a librarian with FPGA knowledge create the radio components, these

software designers can use TFlow to enhance their designs with FPGAs without programming

HDL. To keep the librarian/designer divide, GReasy automatically creates the design entry

EDIF from its graphical user interface.

The design assembly EDIF file specifies the modules and their connectivity. The connectivity

information details how the modules connect to one another and to the static design.

Figure 3.5 shows the graphical user interface for a GReasy radio design. The connectivity

information is shown as multi-bit wires. The static interfaces are seen at the edges of the

design. This design implements a Binary Phase-Shift Keying (BPSK) radio from library

components. The data path goes from the static, through three components, and then

back into the static interface. This high-level description of a design will use TFlow to
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Figure 3.5: Design Connectivity Example

implement itself on an FPGA, without the user needing to know FPGA design or module

implementation details.

To process this EDIF, TFlow fetches the meta-data for each of the components from TFlow’s

pre-built library. This information includes the ports and resource requirements. The static

design information, including available space for placement, is also fetched.

3.9.2 Module Placement

Once the modules have been fetched from the library, they must be assigned a location

inside the static’s sandbox region. Prior work on placement was done using an extended

version of TORC as a framework [43]. These extensions required additional device-specific

information to be added to TORC. This information was created and added for the Virtex
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5 device family. However, as it was an extension, any conversion to another device family

would require the recreation of this database. Therefore, a new generic placer was designed

that only required information already existing in TORC.

Many of the placement computations can be performed during the module creation phase to

reduce the amount of time required during assembly. First, TORC’s databases are queried,

as they contain information about the device resources and the structure of the FPGA. From

this, the placer finds valid module locations. Modules have placement restrictions because

each tile, such as BRAMs or DSPs, must be properly matched, since the module bitstream

cannot be changed; thus, a module’s placement must match in both resources and routing.

Additionally, modules have restricted movement within a frame, due to the requirements for

bitstream relocation as discussed in Section 3.5. This forces the module to maintain the same

alignment within a clock region as when it was built. Modules can only relocate vertically

in steps equal to the size of the clock region on the FPGA. Horizontal relocation does not

have this additional constraint. These additional constraints reduce the granularity of the

placement space. Precompiling several versions of a module, each with a different shape, can

provide more flexibility during module placement.

Additionally, the module height does not need to fill the full frame. Sub-frame modules

can also be placed, with the same alignment constraints. Precompiling modules with the

same shape but different frame offsets can counteract the resource wastage from larger clock

regions at the cost of dramatically increasing the number of placements. For example, the

new minimum granularity would be based on the size of a BRAM block. For a Virtex 7
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device, this would increase the number of placements by a factor of ten. Table 3.2 in Section

3.5 has more information about the differing sizes of the Xilinx FPGA architectures.

Since valid placement computation [81] takes place during module creation (Section 3.7.3),

module placement at assembly time can occur much faster. Thus, during module assembly,

placement consists of fetching the pre-placements and bounding boxes for each module.

Bounding boxes are necessary because modules may not overlap to share resources. This

draw-back may increase the size of the final design. Additionally, the module placements are

evaluated, and those locations which overlap with the static design are removed from the

pool of possible placements. This constraint could not be created earlier, as modules only

become associated with a static design during design assembly. Additional information about

connectivity is also fetched, so that optimizations can be made to minimize wire length. This

constraints-based placement methodology can give rapid results.

Placement Complexity

When picking a placement algorithm, both the quality of the results and the computational

complexity must be analyzed. For modular design, the placer must quickly yield a result, or

else it will bottleneck the rest of the flow. In turn, this means that the quality of the result

can be compromised. A balance between these two factors will determine the algorithm that

is best suited. Thus, an analysis of the computation complexity of different algorithms is

necessary.
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The placement process will involve m modules each with n placements. The number of

placements may vary between modules, depending on the pre-placement results.

A straight-forward approach for solving the placement problem is to use a brute force al-

gorithm. Brute force has a computational complexity of T (m,n) ∈ O(mn). This will scale

poorly with respect to either m or n.

Another placement algorithm simply attempts to find the first valid placement for the full

design using a depth-first search. This approach has a best case performance of T (m,n) ∈

O(m) when the first choice is a valid one, but a worst case performance equivalent to brute

force. Thus, as the placement problem scales, there is no guarantee that the placer will

return a result within a reasonable time frame.

[41] uses an a variant of this simplified placement algorithm. It places one module at a time

in the first valid location it finds. When adding additional modules, prior modules can block

placement; there is no multi-module optimization. Thus, it is possible for a valid solution

to exist, but this algorithm may not discover it. On the other hand, the result - either a

placement or failure to place - will occur rapidly. In either event, the quality of the result is

not used to guide placement in any way.

An approach that sequentially places each module without backtracking has complexity of

T (m,n) ∈ O(m ∗ n), but for best performance requires a sorted list of modules; sorting

requires T (m) ∈ O(m logm). The modules are sorted by ascending number of placements.

Thus, those modules with the most restrictive footprint will have their placements determined
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first, based on placement quality. Despite not allowing for backtracking, this approach still

yields a much better complexity than the other options. Although global optimization is still

not performed, choosing an appropriately sorted module list can yield near-optimal results

with minimal time requirements. This is a better approach than [41] both because the best

placement for a module is selected based on the placement quality, and because the order

the modules are placed can be optimized for best results.

To determine the quality of the results, the modules’ connectivity information is fetched

from the design. This information tells how each of the modules connect to one another

and to static modules outside of the placer. This connectivity is weighted by the number of

connections between each module. The final calculation uses Manhattan distance, such that

a placement has a value equal to that in Equation 3.27.

m∑
i=1

m∑
j=i+1

wi,j

(
|mix −mjx|+ |miy −mjy |

)
(3.27)

In this equation, m is the number of modules, wi,j is the weight of the connectivity between

module i and module j, and mix and miy are the x and y coordinates, respectively, of

the centroid of module i. This will preferentially choose module positions aligned in the

vertical or horizontal plane; this can simplify the routing step. This calculation is run on

each placement for a module to determine its best valid placement. Once selected, the next

module is placed, until all the modules have been placed or placement fails. Either result

will occur quickly, as desired to meet the deadline.
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Finalizing Placement

The completed module placement is then added to the meta-data, which is then used during

final assembly to (a) relocate the component in the bitstream, and (b) identify the exact

position of the module’s terminals for subsequent routing.

This placement step can thus be completed in seconds due to the large granularity of the

placement problem and the considerable precomputation performed during module creation.

3.9.3 Inter-module Routing

Once the modules are placed, the next step is to route the desired inter-module connectivity.

TORC’s routing capability [23] was expanded into a router for TFlow [84]. The terminals

of the precompiled modules and their inter-module connectivity form a routing task list.

The pre-existing routes inside the static and each module are also imported into the routing

task list as constraints. These routes cannot be modified, because they already exist in the

bitstream. With this information, the custom router can route through the static and the

modules without impacting existing connectivity.

TFlow’s custom router then generates a list of the Programmable Interconnect Points (PIPs)

necessary to route the design. This custom router is designed primarily for execution speed,

routability, and lastly, timing performance. As mentioned in Section 3.7, the I/O signals of

the modules are registered, so the inter-module timing constraints are lessened. The PIP

listing is then passed to the next phase of TFlow for transformation into bits.
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3.9.4 Clock Routing

The clock information is extracted from the static meta-data and incorporated into the

design. Due to the different routing resources needed for clock routing, the TORC router is

insufficient. A separate clock router extracts the desired module clocks from the meta-data

and routes them using the FPGA clock tree. The required PIPs are passed on to the next

stage for their micro-bitstreams to be added to the design.

3.9.5 Bitstream Stitching

The final step creates a bitstream that implements this design. The static bitstream is fetched

from the library as a starting point. As mentioned in Section 3.8, this static bitstream has

clean regions that have no logic or routing. These are the sandbox regions where the modules

are to be placed.

The meta-data specifies the module bitstream frames for relocation into the static bitstream.

The new location for these frames is given by the placement meta-data. This overwrites the

region, which is why the sandbox region must be empty; otherwise, existing logic will be

erased. The contents of the frames are not changed for relocation.

Lastly, the connectivity PIPs for routing are translated into micro-bitstreams. Writing these

bits readies the bitstream for transit onto the physical device. See [69] and [85] for more

details about bitstream generation. When dealing with assembly at the bitstream level, no

additional processing, such as XDL-to-NCD conversion or bit generation, is necessary, in
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contrast to flows like HMFlow [28] or QFlow [29].

3.10 Debugging

One of the drawbacks to skipping directly to a bitstream is that debugging becomes difficult.

Of course, physical prototyping allows for the design itself to be analyzed by testing the actual

inputs and outputs to a design. This yields the true behavior of the system and can give

results immediately.

Were a problem to arise, there are a few possible approaches. As mentioned, the physical

response of the design may be sufficient to determine the behavior. However, if further anal-

ysis is required, a tool such as ChipScope [86] can be used. ChipScope can be implemented

as part of the static design, and either would probe the normal inputs and outputs of the

sandbox, or it could have its own set of ports. These ChipScope ports would be treated like

any other port by TFlow, and thus any signal internal to the sandbox could be extracted.

Another approach to debugging is to use the standard Xilinx tools to analyze the design.

These tools require an NCD, and the output of TFlow is a bitstream. To overcome this

issue, TFlow includes a debugging toolflow extension. Just before bitstream stitching, but

after placement and routing, TFlow can build an XDL representation of the design. This

effectively turns TFlow into a variant of HMFlow; as with HMFlow, this XDL then com-

pletes the time consuming xdl2ncd process. Because of the additional time requirements for

running the debugger, it is only run when specifically requested to keep the normal TFlow
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bitstream generation time fast. Once the NCD is created, the flow can be analyzed however

the designer prefers. Thus, using TFlow does not lock a designer from performing design

analysis.

3.11 Summary

This flow uses multiple stages as a cohesive whole to create a rapid modular assembly design

process. Modules are automatically shaped, built, and added to the library, with significant

meta-data, including a list of valid possible placements.

The static design has both logical constraints through the Xilinx tools and routing constraints

through the custom route blocker to create a clean sandbox for design assembly.

With this library creation phase complete, design assembly can begin. The desired modules

are fetched from the design and their meta-data is used as an input to the fast module placer.

Combined with the sandbox information stored in the static meta-data, this placer rapidly

generates high-quality placements for the design.

With the new placements known, connectivity between the modules can be implemented by

the TFlow router. Using the included meta-data as a guide to existing routes, this router

generates new valid paths to connect all of the components. Since this routing is built during

assembly, changing the connectivity can be done almost instantly should a new design request

it.



87

At this point, a full picture of what the desired design should look like has been built. The

last step is to implement it. Module bitstreams are fetched and relocated to the desired

location, and routing micro-bitstreams are added to the design.

This full assembly process takes only seconds to complete, and can immediately be deployed

onto the FPGA for use. As can be seen, each component of TFlow is necessary to build a

cohesive flow that can meet the hard deadline imposed by the human attention span.



Chapter 4

Results

To determine if TFlow manages to succeed in its goal of deadline design assembly, it is

necessary to ascertain the efficacy of each component of the flow as well as the overall

behavior.

4.1 Flow Optimization

While precompiling modules should already enable a significant compilation time improve-

ment over other flows, the design assembly process should also be optimized. As such, flow

analysis was performed to determine how the design assembly process performed and where

it could be improved. The router, the placer, and the metadata were all found to have

inefficiencies, and the following sections will discuss what these problems were and how they

were overcome.

88
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Table 4.1: Router Run-time Improvements
Iteration

1 2 3 4 5
Time 1:19.541 55.963 53.647 39.050 38.602

4.1.1 Router Optimization

Router run-time analysis revealed that there was significant room for improvement. This

router [87] implements a pathfinder algorithm using A*, and extends the capabilities of the

TORC router. For a more in-depth discussion of the router, refer to [84].

The router performance was analyzed through tools such as kcachegrind and it was found

that when attempting rip-up and retry, the information gained from the prior attempts

were deleted and the router started over. This issue only began to reveal itself with more

complicated designs, since if the first routing attempt was successful, it did not occur. These

tests were run on a 2.83 GHz Intel Core 2 Quad with 3 GB of DRAM.

The same test bench design was run through the router, and the impact of each iteration

of code improvements can be seen in Table 4.1. These optimizations halved the necessary

run-time for this test case.

4.1.2 I/O Optimization

Next, I/O performance for accessing the module and static meta-data was analyzed and long

time requirements were discovered. I/O performance scaled poorly with the size of the XML

meta-data. The initial test cases used small designs where this I/O time was overshadowed
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by the rest of the assembly time. However, when run on larger designs or less capable CPUs,

benchmarking the flow revealed the issue.

To solve this problem, the serialization process, which uses the standard C++ boost library,

needed to be studied.

Accessing the module meta-data involved reading the XML files and importing them into

the TFlow data structures through the standard C++ boost serialization function. It was

found that although the human-readable XML files were quite useful for debugging, the C++

boost libraries also supported a binary format. The advantages of the XML format are that

it is human-readable and platform-independent. As such, transferring modules from one

architecture to another required no additional overhead. Examples of different architectures

are 32-bit vs 64-bit x86 processors, as well as the ARM architecture. The binary format is

not human-readable, and is no longer platform-independent. A binary metadata file is not

guaranteed to be transferable to another machine. When looking at the size of these files,

the binary file was found to be almost one-third smaller. For example, one large design was

72 MB in XML and only 25 MB as binary. The run-time gains from using a binary format

are significant, as will be shown later.

To gain the advantages of both formats of metadata, a metadata converter was built to

switch between the different formats. This is necessary if a module library is to be platform-

independent. When this library is on the assembly machine, the metadata will be converted

into the binary format for fast assembly.
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These metadata improvements are demonstrated in Section 4.2.1 and Section 4.3.6.

4.1.3 Placer Optimizations

The placer was also analyzed to determine its performance with respect to different placement

algorithms. The sequential placement algorithm consists of stepping through a sorted list of

the modules and searching for the best location for that module before proceeding to the next

module. There is no backwards traversal allowed. The first valid algorithm uses a depth-first

search to find a valid placement. It stops once it discovers a valid design placement. The

brute force approach uses the same depth-first search, but it searches the entire placement

space for the best result. The random approach creates N placements for the design, which

are then evaluated to determine if they are valid; the best one, if any, is selected. This gives

a better view of the expected quality of the results than the first valid algorithm, because

that approach is heavily reliant on the order the search tree is traversed.

Each test case uses modules that have already had the pre-placement process completed

and are awaiting final placement. This may involve multiple instances of the same module,

or a mix of modules. The design also includes connectivity information describing how the

modules are to connect to one another and to any existing parts of the design.

The timing information has a resolution of 0.01 seconds. Tests were run on a 2.83 GHz Intel

Core 2 Quad with 3 GB of DRAM. Tests were allowed to run for a maximum of 200 hours

before being marked as incomplete. The modules were placed on the Xilinx Zynq 7 Series,
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Table 4.2: Placement Results, 15 Streaming Blocks
Streaming Design 15 modules 62 placements
Algorithm Time (s) Quality
Sequential Placement 0.01 4228
Random 10000 0.06 7556
Random 100000 0.52 7150
Random 1000000 5.16 6814
First Valid <0.01 9072
Brute Force >200 hours N/A

XC7Z045 architecture. Placement on other architectures has been performed, but this only

influences the number of placements available for each module and thus is not included. The

placements were graded on both time and quality of results. The quality of the results is

the Manhattan distance for all the connections, but the actual value should only be used

to judge placement efficacy within a test case. In the designs where brute force results are

available, they are used as an optimal reference for determining the quality of the results.

Table 4.2 describes a placement design which consists of m = 15 modules each with n = 62

valid placements. These modules are streaming, in that each one connects only to the next

one in the sequence. This streaming design is an appropriate use case for many real world

applications, such as radio designs [76]. In this case, the brute force approach did not run

to completion. As seen, the sequential placement algorithm delivered the highest quality

results while completing within a hundredth of a second.

Table 4.3 involves a placement design that consists of 100 modules, each with 62 valid

placements. These modules represent a 10 x 10 grid with connectivity from each module to

its eight neighbors. With this large number of modules and placements, brute force again
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Table 4.3: Placement Results, 10x10 Grid
Compact Grid Design 100 modules 62 placements
Algorithm Time (s) Quality
Sequential Placement 0.4 14846
Random 10000 0.15 111016
Random 100000 1.48 105360
Random 1000000 14.8 102704
First Valid <0.01 48202
Brute Force >200 hours N/A

Table 4.4: Placement Results, 7x7x3 3D Grid
Compact 3D Design 147 modules 62 placements
Algorithm Time (s) Quality
Sequential Placement 1.56 74819
Random 1000000 - Failed
First Valid <0.01 299473
Brute Force >200 hours N/A
Hand Optimized N/A 102089

could not run to completion. The sequential placement algorithm yielded results more than

three times better then its nearest competitor.

Table 4.4 involves a design that consists of a 7x7x3 array, where each neighbor is connected

to one another. For this case, the random approach did not yield any valid placement results.

An additional hand optimized manual placement was performed, but this still did not yield

better results than the sequential placement algorithm. As seen in the prior examples, the

brute force design could not complete with the large placement space, and finding the first

valid placement, while fast, yields suboptimal results.

Figure 4.1 is a video representation of the 7x7x3 array, using the sequential placement algo-

rithm. Note that each module goes through the full set of placements before choosing the

current best option based on the quality of the current results.
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Table 4.5: Placement Results, ZigBee Radio Design
Streaming Radio Design 5 modules 32 placements
Algorithm Time (s) Quality
Sequential Placement <0.01 19415
Random 10000 0.2 19699
Random 100000 1.97 19481
First Valid <0.01 24987
Brute Force 2.39 19407

The final set of results can be seen in Table 4.5. This design consists of five modules, three

of which have 32 placements and the remainder with only two placements. This yields a

total number of placements of 131,072, which is small enough that brute force can finish in

a reasonable amount of time. As expected, the brute force approach has the best quality of

results; however, the sequential placement algorithm has an almost identical quality, takes

less time and, as seen previously, scales much better.

A number of possible placement algorithms were explored. The initial algorithm was a simple

brute force design. Unfortunately, while the quality of the results is optimal, this method

scales poorly and may not complete. To overcome this problem, the first valid placement

was selected. This ran quickly when a valid solution was found, but would yield poor quality

results. In addition, when no valid solution exists, this technique would run for the same

length of time as brute force and so might not complete. The next set of algorithms involved

a random placement strategy. Some number of random placements were generated, and these

placements were evaluated for validity and quality. The time requirements for this algorithm

were static, in that the time increased with the number of random placements. The quality

of the results could be good, run time could be kept to a manageable level, and best of all,
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Figure 4.1: Sequential Placement (In Windows Adobe Reader, click for video)

it was guaranteed to complete one way or the other. However, with much more complex

designs, it was found that the random placer would spend most of its time generating invalid

placements. Thus, the sequential placement algorithm was explored. This algorithm also is
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guaranteed to complete quickly, and the quality of its results are comparable with that of

brute force.

Thus, in situations where m or n are sufficiently small, the brute force algorithm runs for an

acceptable amount of time and the resulting placement is guaranteed to be optimal. Brute

force and the first valid approach are also guaranteed to find a valid placement if one exists.

This guarantee comes at the price of time, quality of results, or both. Thus, once m or n

begin to grow, faster algorithms must be used. For TFlow, the sequential placer algorithm

is used due to its high quality and rapid completion time.

4.2 TFlow on Virtex 5

Performing module creation ahead of time is one of the main ways that TFlow can complete

so rapidly at assembly time. To get some perspective on how much work this step will save,

and how large the MT term is in Equation 3.11, analysis of module creation is necessary. The

following tests deal with how long it takes to create each module and some of the properties

of these modules.

For this set of tests, modules were compiled on a 4th generation Intel i5 processor with 32

GB of ram. This set of modules was compiled for the Virtex 5 XC5VLX110T device. Table

4.6 has the resulting maximum clock frequency and build time requirements.

The run-time for compiling a module is a good indication of how much computation is occur-

ring during this preprocessing step. This will tell the complexity of module preprocessing,
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Table 4.6: Virtex 5 Module Run-time and Timing Analysis
Module Frequency (MHz) Run-time (s)

add 503 105.5
bpskDemod 54.2 172.6
complex conjugate 517.87 101.2
data recovery 371.89 107.5
decimateBy16 344 136.6
decimateBy64 358.29 128.2
passthrough 588.58 101.5
rms 117 130.0

MT , as mentioned in Equation 3.11 and determine the amount of work that has been pre-

computed. The larger MT , the more work that has been done ahead of time and the less

that will need to occur at assembly time. In addition, by splitting the design process into

small, independent pieces, the process can easily occur in parallel. This set of modules could

be created and added to the library independently, taking only 172.6 seconds to generate

them all.

One drawback of this independent module creation approach is that the modules are built

without knowing the eventual timing constraints of the final design. As such, each module

has a different supported maximum clock rate. Should a module not meet timing during

assembly, the module specification can be updated and a new version of the module can be

built. Modules are built such that they take up a minimal footprint. If this new timing

cannot be met, this area constraint can be relaxed to create a larger module that achieves

the desired clock rate.

Another drawback of precompiling modules is that area reserved by a module is reserved for

only that module. No other part of the design can use those resources. This restriction can
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Table 4.7: Virtex 5 Module Resource and Placement Analysis
Module Requested Resources Allocated Resources Placements

CLBs BRAMs DSPs CLBs BRAMs DSPs
Add 26 0 0 40 0 0 156
BPSK Demod 272 3 7 280 4 8 6
Complex Conjugate 18 0 0 20 0 0 168
Data Recovery 24 0 0 40 0 0 156
Decimate By 16 186 0 4 200 0 8 6
Decimate By 64 187 0 4 200 0 8 6
Passthrough 18 0 0 20 0 0 168
Root Mean Square 273 0 0 280 0 0 20

be exceptionally onerous when dealing with the sparser BRAM or DSP resources. Table 4.7

shows the resource overhead for modules that fill the Virtex 5 clock region. The important

resource overhead occurs when requesting excess BRAMs or DSPs. This will be contrasted

with the Xilinx 7 Series devices in a later section. The 7 Series has a much larger clock

region that is fifty CLBs high instead of the twenty in the Virtex 5 architecture.

The area reservation of a module also impacts the number of possible different placements

for that module. From these examples, the number of placements for these modules span

from as few as six to over one hundred and sixty. This relatively small number of available

placements for a module will allow the placement process to occur much more rapidly than

standard high-granularity flows.

Static designs are also included in TFlow’s component library. The static contains I/O,

static logic, and interfaces into the sandbox. Static logic can grow large when including

blocks like Ethernet or memory controllers. However, the amount of static logic must be

balanced against the need for flexibility during design assembly. If all of the logic is moved
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Table 4.8: Virtex 5 Static Timing Analysis
Clock Frequency (MHz)
sys clk 134.9

into the static, design assembly will consist of simply loading the static design, as no modular

assembly will be necessary. However, this comes at the cost of being unable to rapidly change

the design. Therefore, selection of the static to determine the maximal static design that

does not compromise flexibility is an important task when building the TFlow library.

The following static design is used for GReasy radio designs [76]. As this static is fairly

complex, it takes 318 seconds to compile. This consists of work that has been offloaded from

design assembly, ST , as represented in Equation 3.10. Table 4.8 has the timing information

for the clock(s) that feed into the blacktop. This design only connects a single clock into the

module sandbox. This is the fastest supported clock rate for this static design. The clock in

this static runs at 60 MHz, well within this range.

4.2.1 Design Assembly on the Virtex 5 Architecture

TFlow’s assembly run-time must be compared against other techniques and against the

attention span window. The comparison flows are Xilinx ISE and QFlow [29]. Xilinx ISE

does not perform modular design, while QFlow only processes modules prior to routing. The

most important metric for TFlow success is the speed of the assembly process, as meeting

the time requirement is TFlow’s primary contribution.

The following test results, shown in Table 4.9, uses the GReasy BPSK radio design given
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in Figure 3.5, which consists of a decimate-by-16 block, a BPSK demodulator block, and a

data recovery block. This test case was run using three different flows, the standard ISE

flow, the hard-macro based QFlow, and the bitstream assembly flow TFlow. It was run on

an Intel i7-2600 with 8 GB of DRAM. Each step of the process has been split apart so that

the stages can be compared. The first step, map, has results that reflect the granularity

difference between the tool flows. Where ISE has no reduction in granularity, QFlow places

pre-mapped modules into the sandbox based on resource constraints. TFlow’s modules are

both pre-mapped and pre-routed, so they have a reduced number of possible valid locations

for placement. TFlow also requires module alignment with the clock region, which reduces

the granularity still further, speeding up placement. For the routing stage, both ISE and

QFlow use the Xilinx Place and Route tool, yielding similar results. TFlow only routes the

inter-module connectivity during assembly due to its pre-routed modules. Lastly, bitstream

generation for both ISE and QFlow use the Xilinx Bitgen tool, whereas TFlow has integrated

bitstream generation into its routing stage. While QFlow has a speed advantage over the

Xilinx flow, TFlow has the clear speed advantage at every step and completes within the

allotted time.

TFlow Model Validation

These results can be compared against the flow model in Section 3.3. The terms DI , DQ, and

DT can be found from Equations 3.5, 3.16, and 3.12 respectively. From this, it can be seen

that the modular and static components of these equations are significant; for ISE, DI −DT
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Table 4.9: Assembly Time for BPSK Radio (s)
Map Route Bit gen Total

ISE 109 47 34 190
QFlow 43 49 42 134
TFlow 11 6 - 17

from Equation 3.13 clocks in at approximately 173 seconds. The RM term for QFlow is also

large at 43 seconds, while DQ−DT from Equation 3.17 evaluates to 85 seconds. In addition,

these results reveal the simplification of the model. QFlow and TFlow have different times

required to complete the Map (Place) step. For the model, these two are treated identically

because both of them have precompiled modules, but in practice the time requirements can

be different. Still treating them as identical yields Equation 3.17, which gives a reasonable

model for determining how the complexity of the flows differ at design time. The current

results show that this underestimates TFlow’s speed advantage. Still, the model accurately

reflects the gains possible from precompilation and will enable deadline assembly.

4.2.2 Further Virtex 5 Design Assembly Exploration

To expand on the comparison between ISE, QFlow, and TFlow, the next set of tests will

further investigate TFlow’s implementation of the modular flow model to achieve deadline

assembly. The model predicts that the more computations that occur prior to assembly,

the faster the flow. TFlow should be the fastest as it precomputes bitstreams, followed by

QFlow’s placed but unrouted hard macros, and last should be ISE, while computes everything

at assembly time. Only TFlow should be able to complete within the desired time window.
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The following test cases compare the Xilinx ISE compilation time with that of both QFlow

and TFlow. These test cases were run on a 2.83 GHz Intel Core 2 Quad with 3 GB of DRAM.

For consistency, both QFlow and TFlow use the same XDL RPM grid placer from [43].

TFlow uses the binary metadata format; a run-time comparison with the XML metadata

will follow.

The first three test cases in the next example target the Xilinx Virtex-5 XC5VLX110T

FPGA board. The first design is for a video edge filter. As can be seen in Table 4.10,

TFlow runs approximately twelve times faster than the other flows. The second design

swaps out the edge filter for a video Gaussian filter. Assembly of the Gaussian filter also

has a 15x speedup over the other methods. The time required to run TFlow is the total

time from having an edge filter design to having a Gaussian filter design, because both of

these designs share the same static. The third design has a different static and uses modules

for a ZigBee Radio. This static is more complex, resulting in a more pronounced difference

between QFlow and ISE. However, TFlow maintains its lead in all three cases and meets the

assembly deadline. This lead is due to the significant pre-processing of TFlow’s components,

reducing the computation necessary for assembly.

The fourth test case was run targeting a Xilinx Virtex-5 XC5VLX330 board. This board

is considerably larger and the static design is for the more complicated Convey environ-

ment [88]. A vector-add module was used for this test. With this more complex design, the

differences between the flows are emphasized. While QFlow has some significant gains over

ISE, TFlow completes assembly in forty-two seconds. This exceeds the attention span limit,
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Table 4.10: Virtex 5 Design Assembly Comparison
Time (s) TFlow Speedup

ISE QFlow TFlow Over ISE Over QFlow

Edge Filter 184.6 170.8 14.8 12.5x 11.5x
Gaussian Filter 159.8 156.7 10.2 15.7x 15.3x
ZigBee Radio 236.2 157.7 15.2 15.5x 10.4x
Vector Add 3891.7 805.1 42.2 92.2x 19.1x

so a thorough analysis was done to determine what improvements could be made. Analy-

sis showed that more computations could be moved into the static creation process at no

penalty. Doing so reduces the run time to twenty-five seconds, meeting the deadline. This

optimization is incorporated into the 7 Series test cases. Even without this change, TFlow

performs over ninety times faster than ISE, as shown in 4.10. The static and the routing for

this design are complicated, but TFlow’s use of precompiled modules allows for quick and

flexible modular design.

The next set of results show the improvement possible due to the I/O optimization mentioned

previously. As the functionality does not change, any speed improvement will validate the

new metadata representation.

Table 4.11 shows the performance difference obtained for the two different metadata formats,

XML and binary. The binary files are approximately three times smaller than the XML files,

and the parsing is faster. From this data, it can be seen that using binary metadata runs

approximately twice as fast as XML. The gain is proportional to the size of the module and

static metadata. The edge and Gaussian filters both use the same static, so their speedup is

about the same. On the other end of the spectrum, the Vector Add example uses the large
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Table 4.11: Virtex 5 TFlow I/O Comparison
TFlow (s) TFlow Speedup

XML BIN

Edge Filter 26.2 14.8 1.8x
Gaussian Filter 19.7 10.2 1.9x
ZigBee Radio 19.8 15.2 1.3x
Vector Add 98.7 42.2 2.3x

Convey static design, so a significant gain can be obtained.

HMFlow Comparison

To compare these results against HMFlow [28], one approach is to look at its best-case end-

to-end solution. As mentioned, HMFlow performs hard macro placement and routing at the

XDL level. HMFlow can generate results quickly, but since FPGAs require a bitstream for

use, the conversion process must be taken into account. Assuming HMFlow’s placement and

routing require zero time, the XDL design must still be converted to a bitstream. Should

this best-case scenario still not meet the deadline, HMFlow can be removed from contention

as a solution to sub-attention span assembly.

Conversion of the XDL to a bitstream is performed through the use of the Xilinx xdl2ncd

tool, which converts the XDL file to the Xilinx NCD format. This is the required input to

the next Xilinx tool, Bitgen. Bitgen takes this NCD and compiles a useable bitstream file.

HMFlow’s additional requirements over TFlow were shown in Equation 3.21, and consists

of the HMFlow overhead, OH , and the bitstream generation time for the static design and

the modules, BS + BM . Evaluating DH − DT for its time requirement can indicate how
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Table 4.12: Virtex 5 HMFlow Overhead (seconds)
Module XDL to NCD Bit gen Total Overhead TFlow Reference

Edge Filter 105.6 41.7 147.3 14.8
Gaussian Filter 101.2 38.2 139.4 10.2
ZigBee Radio 17.8 45.8 63.6 15.2
Vector Add 86.6 213.2 299.8 42.2

HMFlow’s approach performs. This set of tests was run on a 2.83 GHz Intel Core 2 Quad

with 3 GB of DRAM.

According to the simplified model in Equation 3.21, the difference between HMFlow and

TFlow is represented by the overhead incurred from running xdl2ncd plus the bitstream

generation time. This time can be determined by taking the XDL versions of completed

TFlow designs and running them through these processes. This controls for any difference

in the prior steps for TFlow or HMFlow. Were this difference to be small, it would mean

that pushing bitstream generation into the library creation phase may be unwarranted.

Fortunately, this is not the case; Table 4.12 shows that regardless of the speed of HMFlow,

just the overhead to completing assembly requires more than four times longer to finish

than the time it takes to complete the full TFlow design and can be thirteen times longer.

This overhead exceeds the desired completion window. In practice, HMFlow’s placement

and routing will also require non-zero time to complete as well, extending TFlow’s lead still

further.

Bitstream generation time is highly dependent on the size of the target FPGA. Since the

first three designs are each on the Virtex-5 XC5VLX110T, Bitgen takes approximately the
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same amount of time. The fourth design is on the much larger XC5VLX330, and takes a

proportionally longer time to complete. As device size continues to grow with newer devices,

HMFlow’s overhead should remain a bottleneck during assembly.

Thus, HMFlow only solves part of the problem of putting the design on a device within

the allotted time. While their XDL generation time may be excellent, the bottleneck from

converting XDL into a useable bitstream means that this approach is unable to complete

within the attention span deadline.

4.2.3 Attention Span Comparison

Figure 4.2 shows the attention span time constraints relative to the best completion time

for each flow. Note that the time scale is logarithmic. Only TFlow completes within the

critical time limit. HMFlow, QFlow, and ISE each require additional time to assemble a

design. Any excess time required will cause the user’s attention to be lost and productivity

to drop. TFlow is able to complete within the deadline using precomputed modules and

rapid assembly. Since the other flows are unable to do so, TFlow’s modular approach is

validated.
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Figure 4.2: Flow Assembly Time Relative to Attention Span

4.3 TFlow on the Xilinx 7 Series

The previous examples used the older Xilinx Virtex 5 architecture. A more recent Xilinx

generation is the Xilinx 7 Series, which includes the Virtex-7, Kintex-7, and Artix-7 devices

as the high-end, mid-range, and low-end respectively. It also includes the Zynq-7000 devices,

which have an embedded ARM processor.

This newer architecture is larger and more complicated than the Virtex 5. An analysis of

each of the components of the flow is necessary to ascertain if these complications will help

or hinder TFlow’s modular approach.

When updating the code base to the Xilinx 7 Series, some significant architectural differences

were found. These devices have a paired tile structure, which impacts module shaping,

tile names, and a different clocking structure. Additionally, new micro-bitstreams were

necessary, as well as incorporating an updated version of TORC [23]. Each of these changes

were successful, and the following examples demonstrate the performance of TFlow for the

7 Series devices.
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Again, performing prior module creation is a key component to the performance gains of

TFlow. The time necessary to build these modules is a good indicator of how much work

would otherwise be necessary in a standard flow. Additionally, the overhead and properties

of these modules will inform the types and speed of the final design.

The following examples include designs built for the Zynq-7000, as the on-chip ARM CPU

enables additional application opportunities. TFlow is fully compatible with the full 7 Series

portfolio. The device used in these examples is the Zynq XC7Z045 and the modules were

built on an Intel i7-2600 with 8 GB of DRAM.

Table 4.13 shows the module creation times and the maximum clock frequency. Generating

these Zynq modules takes longer than those for the Virtex 5; this will be a consistent theme

when comparing the different generations. As with Virtex 5, this is a fully parallel process;

multiple modules can be built independently. With this longer compile time for the mod-

ules, TFlow should reduce assembly times drastically, as these computations will already be

complete at assembly time.

These modules are also built without regard for the eventual design. As such, no target clock

rate is specified. Nevertheless, most of these modules support reasonable clock rates. Should

a faster rate be desired, the tool can add in clocking constraints or relax the footprint so

that module creation can meet these more stringent restrictions. When generating a module

in this manner, the flow will inform the user if these constraints cannot be met.

These modules are designed to take up the minimum amount of resources necessary. Table
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Table 4.13: Zynq Module Run-time and Timing Analysis
Module Frequency (MHz) Run-time (s)
Decimate By 16 428.082 480.3
BPSK Demod 57.2 490.5
Data Recovery 433.7 502.1
Frequency Tuner 358.9 461.7
DES Encryption 288.4 523.2
Zigbee Receiver 149.4 455.9

4.14 shows the resource overhead for generating a design using TFlow. The clock region is

larger for the Zynq device family, and the clock architecture uses a shared clock between

pairs of columns. Therefore, the number of columns in a module will always be an even

number. This overhead is part of the cost of precomputing independent modules. Modules

cannot overlap, because their bitstream representation cannot be modified at assembly time.

As anticipated, the overhead when dealing with this larger block size on the Zynq as com-

pared to the prior Virtex 5 example in Table 4.7 is considerably worse. The larger minimum

module size for newer devices is a serious detriment to efficient resource utilization, and

needs to be addressed.

This overhead can be ameliorated by building sub-frame blocks. Sub-frame blocks no longer

need to fill the full clock region, and thus the sparser BRAM and DSP resources can be

better utilized. While this process is supported by the tools, this example demonstrates the

overhead required by using modules of clock region height. Additionally, sub-frame place-

ment increases the number of Zynq placements by a factor of ten, increasing the complexity

of the placement problem. Thus, the use of sub-frame modules should involve an analysis of

the resource overhead versus placement complexity.
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Table 4.14: Zynq Module Resource and Placement Analysis
Module Requested Resources Allocated Resources Placements

CLBs BRAMs DSPs CLBs BRAMs DSPs
BPSK Demod 302 3 7 350 10 20 7
Data Recovery 24 0 0 50 0 0 55
Decimate By 16 168 0 4 200 0 20 7
DES Encryption 495 1 0 500 10 0 7
Frequency Tuner 50 2 3 100 10 20 12
Zigbee Receiver 281 0 10 300 0 20 7

The number of placements a module can have will influence both the flexibility of the placer

as well as the complexity. This is a careful balancing act. Too many placements will slow

down module placement, while too few may preclude placement altogether. Looking at

these modules gives some perspective on the expected number of placements for a range

of modules. Placements for these designs vary, with some modules limited to only a few

options, while others can migrate throughout the board.

4.3.1 Placement Overhead

Tables 4.7 and 4.14 show the area overhead incurred from building modules instead of using

a single build stage. To delve deeper into this issue, Table 4.15 shows the area required for

a design that consists of three modules. The Full BPSK Design represents the area required

if these three modules are built independently and assembled at design time. From this, it

can be seen that there is a considerable number of reserved but unused resources.

The Full BPSK Design looks at the resource overhead for a combination of three modules

from Table 4.14: Decimate By 16, BPSK Demod, and Data Recovery. Because there can be
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Table 4.15: Zynq Large Module vs Small Modules
Module Requested Resources Allocated Resources Placements

CLBs BRAMs DSPs CLBs BRAMs DSPs
Full BPSK Design 494 3 10 600 10 40 2695*
Full BPSK Module 415 3 11 500 10 20 5

no shared resources between these blocks, the overhead is significant. For example, although

only 10 DSPs are required, 40 are allocated to this design. The number of placements for this

design is calculated by assuming each of the placements for the submodules are independent.

Placement for this will be the responsibility of the design assembly module placer. The best

case is that there are 55∗7∗7 = 2695 different ways to place this design, but in practice some

of these will conflict with one another and the static will restrict the number still further.

The second Full BPSK Module entry shows the area requirements for a single module that

contains the full functionality of the previous three modules. Note that the number of

requested resources changes between these two methods. The number of placements for

this combined module is significantly less than for the separate modules: 5 vs 2695. This

results in a significant loss of flexibility while placing. In addition, there is a reduction of

design flexibility. Should one of the submodules need to change, the full module must be

recompiled. If, instead, the three module version requires the same change, substitution

only requires fetching the new module from the library. If this changed module is not in the

library, only the smaller submodule would need to be built and recompiled, instead of the

larger combined module.
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Table 4.16: Zynq BPSK Design Area Penalty
Resource Usage Percent Overhead

CLBs BRAMs DSPs CLBs BRAMs DSPs
ISE Reference 415 3 11 - - -
1 Combined TFlow Module 500 10 20 20% 333% 81%
3 Separated TFlow Modules 600 10 40 44% 333% 363%

4.3.2 Area Overhead

Building designs using TFlow adds area overhead. Module size is locked during assembly,

and modules can reserve unused resources due to their size and shape. This is one of the

prices that TFlow pays to complete assembly within the strict time requirement.

Table 4.16 describes three different module design possibilities and their area utilization.

The first option is to build the module using ISE, the second option is to build it as a

single TFlow module, and the third option is to build it as three separate TFlow modules.

Functionality will remain identical between these three options. As seen in the table, creating

a TFlow module adds significant overhead compared to the ISE reference module, reserving

over 300% more BRAMs than the module requires. Separating the design into multiple

modules adds even more overhead. Therefore, the logic density for a TFlow design will be

less than ideal. However, this loss of design density is one of the trade-offs necessary to meet

TFlow’s assembly deadline. As such, TFlow is not an appropriate tool when attempting to

maximize design density. For this application, ISE would be a better choice.
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4.3.3 Area Penalty Amelioration

To ameliorate some of TFlow’s area overhead, it is possible to reduce the size of the modules

by no longer adhering to clock region boundaries during module shaping and placement.

Instead, the smallest granularity is constrained by the size of the largest physical resource.

For the Zynq, this is the BRAM36, which is five tiles high. In addition, the Zynq has a paired

clocking structure. Thus, the minimum granularity is a height of five tiles and a width of two

tiles. Table 4.17 shows the reduced overhead when dealing with the same reference modules

as in Table 4.16. While this achieves a significant reduction in area overhead, it also adds

considerable complexity to the placement problem. The penalty is due to the significantly

larger number of placements possible for each module. With the new five tile granularity

instead of the clock region’s fifty tile size, at least ten times as many placements are possible.

Therefore, if n is the number of placements normally, nmax = 10∗n. The selected placement

algorithm, as mentioned in Section 3.9.2, has complexity O(m ∗ n), with m as the number

of modules. The placement problem is thus O(m ∗ nmax) = O(10 ∗ m ∗ n). Therefore,

reducing the granularity of the modules will add an order of magnitude more complexity to

the placement problem. As the overriding concern of TFlow is time, this is an unacceptable

trade-off. However, should the placement complexity drop significantly or additional time

budgeting be given to placement, this issue can be revisited.
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Table 4.17: Zynq BPSK Design Area Penalty With Sub-frame Modules
Resource Usage Percent Overhead

CLBs BRAMs DSPs CLBs BRAMs DSPs
ISE Reference 415 3 11 - - -
1 Combined Sub-frame Module 420 6 12 1% 200% 9%
3 Separated Sub-frame Modules 545 4 14 31% 33% 27%

4.3.4 Area Overhead Versus Placement Time

Section 4.3.3 discussed the overhead penalty for the 7 Series devices. This overhead penalty

can be generalized onto other Xilinx devices. The actual overhead in the form of resource

wastage cannot be determined for a generic module because TFlow has a limited number

of possible module sizes. For example, the smallest CLB-only TFlow 7 Series module will

be allocated 100 CLBs. Any unused CLBs are wasted. Depending on the module’s resource

usage, wastage can vary wildly. The only way to categorize possible module wastage for a

generic module is to determine the device’s minimum granularity.

TFlow module granularity can extend from the size of the device’s clock region granularity

down to size of the largest single resource, normally the BRAM. Changing the size of a TFlow

module will only be useful if module placement is no longer aligned with the device’s clock

region. Removing this restriction increases the number of possible placements significantly.

This is a fixed increase based on the properties of the architecture, as shown in Table 4.18.

Placement will require additional computational effort to deal with these new placements.

This new placement strategy will allow for smaller modules. Since the penalty is fixed, the

best option for the new module size is the minimum possible granularity.
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Table 4.18: Minimum Granularity Vs Placement Time
Architecture Minimum Granularity Sub-frame Granularity Sub-frame

CLBs BRAMs DSPs CLBs BRAMs DSPs Placement Penalty
Spartan 6 16 4 4 4 1 1 x4
Virtex 4 16 4 8 4 1 2 x4
Virtex 5 20 4 8 5 1 2 x4
Virtex 6 40 8 16 5 1 2 x8
Series 7 100 10* 20* 10 1† 2† x10

*Also requires 50 CLBs. †Also requires 5 CLBs.

Table 4.18 shows the minimum module granularity for both clock region and sub-frame

modules for multiple Xilinx architectures. Newer architectures tend to have larger clock

regions, so sub-frame modules can have a larger impact in reducing area overhead. However,

the larger clock region also means that there is a larger placement penalty when no longer

aligned placement to the clock region boundaries. In addition, the 7 Series devices must

always have an even number of columns due to the structure of their clock tree. This

increases the minimum module size and can increase area overhead.

Depending on the time budget for placement, this penalty may be worth paying to gain access

to smaller modules and less area overhead. TFlow currently prioritizes speed over area, and

thus does not use sub-frame modules. However, this would change were the amount of time

given for placement increased.

4.3.5 Zynq 7 Static Design

The amount of logic and routing that can be pushed into the static design directly influences

both the eventual speed of design assembly as well as the capabilities of the design. As the
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static grows in size, the resources available for the modules shrinks. Moving logic into the

static increases the speed of design assembly at the cost of flexibility.

For the static portion of the design, the timing information that is relevant to TFlow is the

rate of the clocks going into the blacktop region. Clocks that are wholly internal to the static

are not relevant to TFlow, although if they do not meet timing, the static will not function

correctly. This, however, would be solved during static creation using the standard timing

tools.

Static creation for this complex Zynq design takes 1407.5 seconds. This static is built for

the Zynq implementation of GReasy [89]. This is much longer than the Virtex 5 static, as

it is a much larger device and a more complex design. From TFlow’s perspective, this long

static creation time will not impact the speed of assembly, but it does mean that ST from

Equation 3.10 will be large and so the compilation time saved should be considerable.

The relevant clocks for this design can be seen in Table 4.19. Unlike the Virtex 5 example,

this static design has two clocks available for the modules. These are the maximum possible

clock rates; the clocks are run at a lower frequency. BT CLK runs at 61.44 MHz while

BT CLK DAC runs at exactly twice that - 122.88 MHz. Either or both clocks can be routed

to a module in the design using TFlow’s clock router.

This static design is complex, and includes interfaces with both the on-die ARM and an

external DAC. Therefore, it is expected that TFlow will show a significant improvement

over the standard flow, since all of these calculations are cached in the library. The following
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Table 4.19: Zynq-7000 Static Timing Analysis

Clock Frequency (MHz)
BT CLK 148.1
BT CLK DAC 161.4

section will show that these improvements enable TFlow to meet the attention span deadline.

4.3.6 Design Assembly on the Zynq 7 Architecture

Multiple different designs were built using TFlow’s rapid design assembly technique. As

anticipated, TFlow’s design assembly process took orders of magnitude less time than the

standard Xilinx flow, fast enough to meet the hard deadline.

TFlow was compared against the Xilinx reference flow for this set of test cases. Neither

QFlow nor HMFlow support the 7 Series, and thus direct comparison is not possible. The

amount of time it takes to run back-end compilation and generate a bitstream is used to

measure the performance difference between TFlow and the Xilinx flow.

These designs were built for the Zynq XC7Z045 architecture on a desktop machine using

an Intel i7-2600 with 8 GB of DRAM. Four different designs were assembled. TFlow used

GReasy as the front-end, while the Xilinx flow used ISE.

The BPSK design includes three modules. The first is a decimator, which reduces the signal

by 16. This is followed by the BPSK demodulator to convert the waveform into binary. This

is followed by the data recovery module, which takes this stream and converts it into ASCII

to recover the initial text.
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The tuner example takes a signal as input and will tune the frequency to the desired carrier

wavelength. It has additional functionality to allow this frequency to be selected at run-time,

but this is not done using TFlow. Instead it has an integrated parameterization port that

connects into the static for frequency adjustment. Connecting these parameterization ports

into the static is done using TFlow’s router.

The DES Encryption design implements the Data Encryption Standard (DES) symmetric-

key algorithm. This algorithm is highly parallelizable and thus is a reasonable design to

implement on an FPGA.

The ZigBee Receiver is a radio receiver that takes in a modulated ZigBee waveform and

returns the binary signal. This data can then pass through a data recovery stage to be

converted into ASCII or fed into other modules or outputs for additional processing.

The time requirements for assembly of these designs can be seen in Table 4.20. Three

different options were explored. The first was using the standard Xilinx toolflow to generate

the full design. The next two options both use TFlow. However, one uses the XML metadata

format and the second uses the binary metadata format. As seen, TFlow runs significantly

faster than the standard flow. While compiling the full design for ISE took approximately

twenty minutes, TFlow completed in seconds. The difference between the time required for

XML and binary metadata formats can also be seen due to the large read and write times

required for XML. A production version would use the binary format, which can complete

a design in less than ten seconds. This is more than two orders of magnitude faster than

ISE and handily completes within the attention span deadline. This validates the model’s
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Table 4.20: Zynq Design Build Time
Design Time (s) BIN vs ISE

ISE TFlow
XML BIN

BPSK Receiver 1184 22 8.5 139x
Frequency Tuner 1015 17 6.5 156x
DES Encryption 1122 18 8.7 129x
ZigBee Receiver 1106 21 7.4 149x

modular design approach. In addition, this puts TFlow assembly time squarely in the realm

of software compilation.

Comparing the ISE assembly time against the static creation time in Table 4.19 reveals an

interesting data point: static creation takes longer than assembling the full design in ISE.

This is due to the additional processing that must be done to constrain the static to keep

out of the sandbox region. Logic placement for the static is limited, and thus the optimal

placements for this design may not be available. Additionally, route blockers are added

to the design to force routing to stay outside the sandbox. When the Xilinx tools then

route the static, they are again limited in how they can optimize. Many routes may end up

congesting the region just outside the sandbox, as these are the closest they can get to their

optimal cross-sandbox path. Adding and removing the route blocker also adds to the time

requirement for static generation. These static constraints slow the compilation time for

static generation. In return, TFlow can assemble the design in seconds. While the overhead

for populating and assembling the TFlow libraries may be longer than building the design

once, every subsequent run of TFlow yields significant gains and can be done without losing

the user’s attention.
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Table 4.21: Total Design Time including Precompilation (s)
Design Static Module(s) Assembly TFlow ISE
BPSK Receiver 1407.5 (480.3 + 490.5 + 502.1) 8.5 2888.9 1184
Frequency Tuner 1407.5 461.7 6.5 1875.7 1015
DES Encryption 1407.5 523.2 8.7 1939.4 1122
ZigBee Receiver 1407.5 455.9 7.4 1870.8 1106

To put TFlow’s assembly time into perspective, running just Xilinx Bitgen for the Zynq

takes 96.7 seconds, over eleven times longer than the time TFlow takes to assemble a full

design.

Model Analysis

TFlow’s approach does not perfectly mirror the idealized version of the model from Equation

3.2. Instead, global optimizations and overhead must be added as a negative term, G, as

shown in Equation 3.3. Since TFlow’s static and modules are built independently, no global

optimization can take place. In addition, any overhead will occur for each block. For

example, there is initialization overhead when running the Xilinx router. This overhead

will occur when compiling every library component. When running as one monolithic flow,

initialization only needs to occur once. G could therefore be added to equations 3.6 and 3.7 in

Section 3.3, where combining each of the placement or routing steps into a monolithic process

can reduce the total complexity. However, this is only an issue if these global optimizations

can overcome the speed advantages from precomputation.

Equation 4.1 can be used to determine the amount of time that can be saved through global

optimization. From this equation, only when global optimization, GI , is large enough to make
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monolithic design time DI less than TFlow assembly time TA does modular precomputation

become contraindicated.

TS + TM + TA −GI = DI (4.1)

For example, when creating the DES Encryption design, TS = 1407.5, TM = 523.2, TA = 8.7,

and DI = 1122. These are static creation time, module creation time, assembly time, and

monolithic design time, respectively. The following equation determines the time savings

from a monolithic flow.

1407.5 + 523.2 + 8.7−GI = 1122

GI = 817.4

Global optimization can yield significant time savings, were the process to be considered

as a whole. The overall price in time for separating the stages can be seen in Table 4.21.

Fortunately, the strict time deadline for TFlow only involves the amount of time the assembly

stage must take, not the setup and precompilation time. Since TA � DI , ∀(TA, DI), these

optimizations do not overcome the significant gains that come from precomputation, as

seen in Equation 3.12. Global optimizations are therefore insufficient when attempting to

perform deadline assembly. Pushing these computations out of the critical path is what

enables TFlow to meet its goal, despite the drawbacks.
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Table 4.22: Zed Design Build Time
Design TFlow (s)

BPSK Receiver 60.9
Frequency Tuner 50.7
DES Encryption 52.5
ZigBee Receiver 50.4

Embedded TFlow

Another capability of TFlow is that it can run on embedded platforms such as ARM. The

assembly speed for TFlow carries over to make embedded assembly occur rapidly. Unlike

the standard tool flow, which does not run on these processors, TFlow is fully compatible.

However, TFlow may be unable to meet the deadline with these less capable processors, and

would therefore target different applications.

The Zynq architecture includes an embedded ARM processor. The TFlow design examples

were run in this embedded environment, using a ZedBoard with a Zynq-7000 ZC702 FPGA.

The included ARM processor is a dual-core Cortex-A9, running at 866 MHz with 1 GB of

DRAM.

As seen in Table 4.22 the embedded version of TFlow takes about a minute to complete the

same designs that finished in just seconds on the desktop. However, this is still more than an

order of magnitude faster than running these test cases using ISE on a desktop, as reported

in Section 4.3.6. As ISE does not run on the ARM, even this is not a fair comparison. With

this capability, a ZedBoard can both implement a design and reconfigure its own FPGA.

Dobson [90] has a more in-depth look at this capability.
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Zynq Flow Analysis

Most importantly, the full flow, from the end of the design process where the user presses

the button to begin implementation to having a functioning design programmed onto the

FPGA, must complete within the allotted time to meet the strict time requirements of human

attention span. As such, the implementation overhead for beginning TFlow and putting the

design on the board, combined with the TFlow assembly time, must be less than the thirty

second window.

To test whether this is possible, the best case design time performance must be analyzed.

Assuming that TFlow can take zero seconds to assemble a design, the implementation over-

head must still be taken into account. For this test case, the GReasy flow overhead will be

analyzed. This overhead eats into TFlow’s time allotment, and is the reason that HMFlow is

unable to meet the time constraints, as seen in Section 4.2.2. HMFlow’s overhead exceeded

the time requirement significantly, removing it from contention.

A naive approach would program the Zynq FPGA via the JTAG interface with a full bit-

stream. This takes 68 seconds, and so is unacceptable. In addition, some of the ARM

interfaces on the Zynq use the FPGA fabric. For the GReasy static design, the HDMI

video port and the external Analog-to-Digital Converter (ADC) both have their connectiv-

ity routed through the FPGA. Fully reprogramming the FPGA resets these interfaces and

the ARM does not properly recover. To address these issues, the GReasy flow for the Zynq

board takes advantage of the embedded ARM’s capability to program the FPGA. Since the
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TFlow sandbox can be treated as a partial bitstream design, a method of partial bitstream

generation using the differences between the base static design and the new bitstream is

used. The ARM can then load this partial bistream; this maintains its critical interfaces and

can complete within the critical time window.

Table 4.23 shows the overhead for the GReasy flow on the Zynq architecture. The desktop

used in these tests is a Intel i7-2600 with 8 GB of DRAM and the Zynq ARM is an 866 MHz

dual-core Cortex-A9 with 1 GB of DRAM. Design setup generates the input EDIF file for

TFlow from the GNU Radio Flow Graph. This is fed into TFlow. After TFlow completes

and gives GReasy a bitstream, the partial bitstream file is generated. This generation and

programming stage also includes the ssh and scp communication between the ARM and

the CPU. The scp communication is the transport mechanism for the bitstream. The ssh

communication includes ARM configuration. After the FPGA is programmed, there is still

additional FPGA configuration for systems like the ADC. Overall, this overhead adds up to

12.8 seconds. This leaves TFlow with 17.2 seconds to assemble a design.

4.4 Summary

As seen in Table 4.20, TFlow completes under 17 seconds, the adjusted time window includ-

ing all implementation overhead. This is within the narrow window of human attention span.

FPGA design implementation using TFlow can therefore complete within the human atten-

tion span window, validating the modular design model and opening up new productivity
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Table 4.23: GReasy Zynq Overhead
GReasy Stages Time (s)

Design Setup 1.3
TFlow See Table 4.20
Partial Bitstream Generation / Programming 8.5
FPGA Configuration 3.0

Total Overhead 12.8

opportunities.



Chapter 5

Conclusion

This work is a significant improvement on the state of the art. Working designs can be built

without losing the attention of the user, enabling the design flow to proceed smoothly. This

capability is realized through the use of reusable and clonable modules that can be rapidly

fetched and assembled in seconds. Throughout the process, assembly completion within the

deadline has been the overriding concern that has informed each design decision. With large

portions of the process performed prior to use, when speed is unnecessary, the amount of

work required for assembly is drastically reduced.

5.1 Contributions

The presented model suggests that it is possible to achieve human span-scale results through

aggressive modular design precomputation. The implementation and subsequent tests of

126
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TFlow validate that assertion. Thus, FPGA design assembly can be made a seamless part

of the tight design-build-test cycle, improving user focus and productivity. In addition

to maintaining user attention, quicker build times also permit more runs to occur within

the same time span. This leads to faster design space exploration as well as increased

productivity.

1. FPGA Design Model for Sub-Attention Span Implementation

This work reformulates the design process to perform assembly within the constraints

of the human attention span. It implements this reformulation using modular design

and module precompilation. The presented model describes a way to move much of

the computational effort of implementation out of the critical path. This is done by

separating the design into modules, and running each of them through most of the

implementation process beforehand. These modules are then used as building blocks

when assembling the desired design, significantly speeding the process.

2. Model Proof - TFlow

The proof that the presented design process model is effective is shown through the

use of the rapid assembly tool, TFlow, which can assemble bitstreams within the thirty

second window required by the limits of human attention span. Designs built by TFlow

on the Zynq have assembly times that are less than nine seconds. No other existing

flow can assemble designs within the thirty second requirement, as prior attempts did

not fully precompile the modules. For example, HMFlow does not precompile the
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bitstream, as shown in Equation 3.20, and thus is unable to complete within the time

constraint, as shown in Section 4.2.2. ISE, QFlow, and TFlow ZigBee Radio designs

were assembled for the Virtex 5 XC5VLX110T, using a 2.83 GHz Intel Core 2 Quad

with 3 GB of DRAM. Whereas ISE completes in 236 seconds and QFlow in 158 seconds,

by following the design model, TFlow meets the attention span deadline with a time

of 15 seconds.

(a) Placement

To implement deadline assembly, a modular preplacement constraints-based solver

was implemented and used during precompilation. A module placer was imple-

mented to simplify and deterministically solve the placement problem on a range

of devices within the specified time constraint.

The module preplacer is enables moving computations out of the critical path,

in accordance with the model. The module preplacer generates a set of all valid

placements for a module prior to design assembly [81]. This tool is competitive

with other placement tools [81], but unlike the alternatives, it is portable to all

TORC-supported devices. All of the work done by this preplacer is work that

the module placer will not need to perform at design time, enabling the module

placer to meet the deadline.

The implemented deadline placer is both fast and efficient; placement can com-

plete in fractions of a second. Placement time for the sequential placement algo-

rithm is less than two seconds for the most complicated test case with the number
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of modules, m = 147 and the number of placements, n = 62, running on a 2.83

GHz Intel Core 2 Quad with 3 GB of DRAM. As was shown in Table 4.4, the

brute force method fails to yield a result and other, faster placement strategies

yield results 4 times worse. Even hand-optimized placement for this design yields

a result that has 1.4 times worse quality. These results are consistent, with the

sequential placer rapidly producing high quality results for complex placement

problems. While placement is a well-explored field, most placers have focused on

high granularity placement strategies. Modular placement is much more restric-

tive, and TFlow requires deadline placement as well. Thus, TFlow’s placement

strategy focuses on achieving the best solution within the strict time budget. This

placer is built on top of the TORC tools, and thus can be easily moved to other

TORC-supported architectures. This high granularity placer contributes to the

field by being flexible and efficient while still meeting the deadline imposed by

the user attention span.

(b) Router The router from [84] was adapted for use with TFlow. This router

performed 7.8 times faster than the standard ISE tools on an Intel i7-2600 with

8 GB of DRAM. The router performs inter-module connectivity; intra-module

connectivity occurs during module creation using the standard router.

(c) Bitstream Assembly TFlow assembly occured at the bitstream level. This was

possible through the created bitstream relocation tools. Module bitstreams [66]

and routing micro-bitstreams [69] were stitched together at run-time to generate
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the desired design.

(d) Meta-data Description A data structure that could contain the overarching

logical and physical description of each module, static, and design was built.

This data structure is automatically populated and processed to control TFlow

assembly.

3. Tool Independence Corollary

Analysis of the standard tools revealed that they could not meet the time deadline.

Consequently, the created assembly flow is not tied into the Xilinx toolchain, and thus

can be used in otherwise unsupported applications.

Other approaches to modular design assembly, such as HMFlow [28] and QFlow [29]

require reintegration with the Xilinx tool flow prior to bitstream generation. In contrast

TFlow’s design assembly approach is independent from the Xilinx tools. Removing

the reliance on on the Xilinx tools is a significant contribution that enables standalone

applications such as embedded and autonomous applications [90]. Running TFlow on

a 866 GHz dual-core Cortex-A9 with 1 GB of DRAM can generate bitstreams in less

than 60 seconds, while this is impossible using other contemporary tools.

This modular design methodology rearranges the computational effort to enable second-long

assembly times to meet the constraints of human attention.
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5.2 Ongoing and Future Work

TFlow has been integrated as the back-end for the GNU Radio environment. GNU Ra-

dio normally uses software blocks to perform software radio design. The TFlow extension

to GNU Radio, GReasy, adds in the capability to have hardware FPGA blocks for soft-

ware/hardware radio design [91] [92] [93]. This library of hardware FPGA blocks has been

successfully integrated into the GReasy environment [76].

As always, there is room for additional work to expand TFlow’s core competencies into a

wider range of applications.

While the current tools support sub-frame modules, the process is only semi-automated.

Each sub-frame version of a module is treated independently by the tools. This is only

an issue during placement, when choosing different sub-frame versions of a module is done

manually. Sub-frame modules are fully supported by TFlow’s current routing and bitstream

generation tools. However, library management of these independent sub-frame modules is a

manual process. Proper library management would allow for the correct sub-frame version of

the bitstream to be fetched. At the moment, each module has a single associated bitstream.

Adding in a one-to-many mapping for library management is necessary for full automation.

This issue is also applicable when discussing multiple shapes for a module. The current

independent module flow requires manual intervention to determine which shapes should be

used. Expanding the library management procedure to handle these types of one-to-many

mappings are necessary if the gains for multiple shapes and smaller module granularity are
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to be realized; thus, a fully automatic library management system is a promising avenue for

future work, as it would enable sub-frame modules and multiple shapes to be used easily.

TFlow could be extended to perform hierarchical design. Smaller TFlow modules could

be built, placed, and assembled together into a larger TFlow module. This larger module

could then be either combined with other modules or used as part of a design. Complicated

modules could be built from a library of smaller modules. Using these larger modules gives

the benefit of hierarchical design, including abstracting away implementation details for

ease of use. However, area overhead incurred by each submodule is cumulative, making the

combined module larger than if it were built as a single module.

The current TFlow device support consists of those architectures supported by TORC. This

limits the flow to Xilinx devices. Altera devices are completely unsupported, due to their

tool’s closed nature. A future area for research is to investigate Altera’s willingness to allow

for more in-depth information regarding low-level device architecture, module implementa-

tion, and bitstream organization so that TFlow support is possible.

TFlow currently restricts the design process from exceeding the attention span limit. As the

time necessary for downstream stages is not known, each step seeks to complete as rapidly

as possible. One avenue for future work is to give each stage its own hard deadline. Each

stage could use an iterative algorithm to fill the time searching for better solutions. Once its

deadline is reached, the current best solution can be passed to the next stage. This would

yield better results without violating the attention span deadline. Placement could run both

a sub-frame and clock region placer. If sub-frame placement completed within the allotted
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time, the advantages for sub-frame modules could be gained without penalizing the ability to

meet the attention span deadline. Sub-frame modules yield better packing and less resource

wastage.

Another opportunity for growth is to release an open-source or service-based version of TFlow

for use by outside parties. This would enable real-world rapid assembly and testing. With

additional users, areas for improvement could be better identified, and the advantages of

TFlow could be realized by a wider audience.

In addition, releasing TFlow to outside parties would enable users from a wider range of

application domains to use this tool. Currently, TFlow has been integrated with GReasy

to explore the software-defined radio domain. Other application domains, such as digital

signal processing, communication interface translation, or machine learning, can use TFlow

to good advantage. For example, a machine learning application could run TFlow to update

connectivity or internal blocks based on current performance. Cognitive radio, with access

to TFlow modules, could choose new radio modules based on spectral analysis and rapidly

reconfigure for better performance. Applying TFlow to these domains is a promising avenue

for future work.

Section 3.3.2 covered the trade-offs inherent to preprocessing portions of the design. TFlow

does not precompile every term in the model, and so it would be possible to reduce the

computational effort still further at the cost of design flexibility. Future work investigating

design strategies that preprocess these additional terms would be valid avenues for meeting

tighter deadlines. Future work could also reduce the amount of precompilation should more
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time be available. Determining which terms to precompile and which ones to leave for design

time is a promising avenue for future work.

The model terms from Equation 3.9 could also be used as a framework for categorizing

precompilation flows. This spectrum would extend from flows without precompilation, such

as ISE, down to a flow that has a library of prebuilt design bitstreams. Future work could

categorize these flows based on which of the nine terms are precompiled. Any new precom-

pilation flow could be slotted into this system to determine similar design tools and yield

more precise comparisons.
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