
Open-Source Bitstream Generation for FPGAs

Ritesh K Soni

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Peter M. Athanas, Chair
Patrick R. Schaumont

Mark T. Jones

Date: August 9, 2013
Blacksburg, Virginia

Keywords: FPGA, bitstream, low-level assembly, open-source

Copyright 2013, Ritesh K Soni

Open-Source Bitstream Generation for FPGAs

Ritesh K Soni

(ABSTRACT)

Bitstream generation has traditionally been the single part of the FPGA design flow that has
not been openly reproduced. This work enables bitstream generation for “limited” resources
without reverse-engineering or violating End-User License Agreement terms. Two use cases
in particular have motivated this work—embedded bitstream generation and fast bitstream
generation for small changes in design—both of which are not feasible with the Xilinx’s
bitstream generation tool.

The approach is to first define a set of primitives which can implement an arbitrary digital
design and create a library of micro-bitstreams of the primitives. An input design is then
mapped to the set of primitives and a bitstream for the design is generated by merging the
corresponding micro-bitstreams. This work uses architectural primitives. Initial support is
limited to the Virtex-5 and Virtex-7 family of FPGAs from Xilinx, but it can be extended
to other Xilinx architectures. Nearly all routing resources in the device, as well as the most
common logic resources are supported by this work.

Acknowledgments

First and foremost, I am sincerely thankful to my advisor, Dr. Peter Athanas, for giving me

an opportunity to be a part of the Configurable Computing Lab. His approach to research

is very motivating and I have learnt a lot working under him. I would also like to thank

Dr. Mark Jones and Dr. Patrick Schaumont for serving as members of my committee. The

courses that I took under Dr. Jones and Dr. Schaumont in the first semester of my Masters

laid a good foundation for my graduate studies.

My special thanks to Neil Steiner of USC-ISI for his guidance during my internship there.

This thesis is a continuation of the work I did during the internship and the central idea

of this work is Neil’s brainchild. He has also been very helpful with Torc support without

which this work would not be successful.

I am thankful to my parents and my brother, who have been there for me through thick and

thin and encouraged me to do my best in this research.

I would like to thank my lab mates; Krzysztof, for sharing his knowledge of bitstreams;

Kaiwen, for his advice on the writing work; Kavya, for her advice with all the official work,

and the rest of the CCM family, for the bike rides, the lunch sessions, and all the interesting

discussions.

I am thankful to all my friends in Blacksburg for the fun times outside work. I am also

thankful to all my other friends around the world whose confidence in me have kept me

going.

I am thankful the the VT Ping Pong club; the regular practice sessions helped me keep fit

and maintain a competitive spirit.

I am grateful to God for everything.

iii

Contents

1 Introduction 1

1.1 Motivation . 3

1.1.1 Embedded Bitstream Generation . 3

1.1.2 Fast Bitstream Generation . 3

1.2 Contributions . 4

1.3 Thesis Organization . 5

2 Background 6

2.1 FPGA Architecture . 6

2.1.1 Tile Layout . 7

2.1.2 Tile Resources . 9

2.2 Bitstream Structure . 11

2.3 XDL File Format . 15

2.4 Torc Library . 17

2.5 Summary . 18

3 Prior Work 19

3.1 Bitstream Format Released . 19

3.2 Bitstream Relocation . 21

3.3 Bitstream Reverse-Engineering . 22

4 Hypothesis and Approach 24

iv

4.1 Hypothesis . 24

4.2 General Approach . 27

4.2.1 Primitive Selection . 28

4.2.2 Library Creation . 30

4.2.3 Bitstream Generation . 32

5 Implementation Details 34

5.1 Primitive Selection . 35

5.1.1 Routing Primitives . 35

5.1.2 Logic Primitives . 36

5.1.3 Unsupported Resources . 36

5.2 Library Creation . 37

5.2.1 XDL Generation . 37

Routing Primitives . 38

Logic Settings . 39

Logic Site Harnesses . 40

LUT Equations . 41

LUT RAM Masks . 42

BRAM Initialization . 43

Compound Resources and Exceptions 43

5.2.2 Micro-bitstream Generation . 44

5.2.3 Library Organization . 47

5.3 Bitstream Generation . 48

5.3.1 Design Traversal . 48

5.3.2 Resource Processing . 48

Routing PIPs . 49

Logic Settings . 49

Special Case: LUT Equations . 49

Special Case: Hex Strings . 50

v

Special Case: Compound Primitives 51

5.3.3 Frame Address And Offset Calculation 51

5.3.4 Bitstream Merging . 52

5.4 Code Structure And Usage . 52

5.4.1 Bitstream Merging Code . 52

5.4.2 Library Generation Code . 54

6 Results and Analysis 55

6.1 Resource Coverage . 55

6.2 Validation and Fidelity . 56

6.3 Extensibility . 57

6.4 Portability . 58

6.5 Runtime Performance . 59

6.6 Library Size . 59

7 Conclusion 61

7.1 Future Work . 62

Bibliography 64

Appendix A: Harness for site SLICEL of Virtex-5 family 67

vi

List of Figures

1.1 FPGA design flow . 2

2.1 Simplified FPGA tile layout . 7

2.2 Partitioning of an FPGA into clock regions 8

2.3 A routing tile . 9

2.4 A SLICEL site . 10

2.5 Composition of a frame address word for Virtex-5 bitstreams 11

2.6 Bitstream structure . 12

2.7 A row of bitstream frames. 13

2.8 Simplified view of a bitstream file . 14

4.1 Merging bitstreams . 26

4.2 General bitstream generation flow . 27

4.3 Example 2-bit counter built out of coarse-grained blocks 28

4.4 Example 2-bit counter built out of fine-grained blocks 29

4.5 Shifting configuration bits . 31

4.6 Micro-bitstream merging . 33

5.1 Simplified bitstream generation flow . 34

5.2 Routing and logic primitives . 35

5.3 Logic resource dependency . 40

5.4 A D-LUT in site SLICEL . 42

5.5 Primary bitstreams and reference bitstream for resource AOUTMUX 45

vii

5.6 Mapping of frame bits to a CLB column . 46

5.7 Class hierarchy for bitmerge . 53

5.8 Class hierarchy for library generation . 54

viii

List of Tables

1.1 Resources supported . 4

2.1 Virtex-5 tile types . 7

2.2 Virtex-5 bitstream column width . 14

6.1 Comparison with previous works. 56

6.2 Bitmerge performance results. 59

ix

Chapter 1

Introduction

Field-Programmable Gate Arrays (FPGAs) are configurable digital integrated circuits that

can be programmed to implement arbitrary digital functions. FPGAs consist of a matrix

of configurable logic blocks, I/O blocks, embedded memory, routing switches, and other

dedicated functional blocks. The configurable resources can be programmed to one or more

predefined options, which is controlled by configuration bits called a bitstream. The bitstream

contains information about how each resource on an FPGA is to be configured and it is

used to program the FPGA. Modern Xilinx FPGAs support active, partial, and repeated

configuration, meaning that devices can be reconfigured as often as necessary, in whole or in

part, while the device continues to operate. These properties provide a wide range of benefits,

but some of the benefits are unintentionally limited by the available bitstream generation

tools [1].

FPGA designers usually don’t have to know about the bitstream layout or how it is created.

They enter the design in a Hardware Description Language (HDL), which is converted to a

bitstream after a series of steps as shown in Figure 1.1. A design in HDL is first synthesized

and then mapped to a given FPGA device. The mapped design only informs what type of

1

2

Design
Entry
HDL /

Schematic

Synthesis Mapping
Place and

Route
Bitstream

Generation

001011011111
000001010101
011101001000
000001000000
000000001111
111100000011

Figure 1.1: FPGA design flow

logic resources of the FPGA will be used and how they will be configured. Next, the design

is placed to select the logic resources on the FPGA chip and then routed to connect the

placed logic resources. The placed and routed design contains all information about how

the FPGA resources should be configured to implement the design. Finally, the placed and

routed design is converted to bitstream, which is used to program the FPGA.

Bitstream generation is the only part of the FPGA design flow that has not been openly

reproduced; open-source tools are available to map, place, and route an HDL design. The

Verilog-to-Routing (VTR) Project [2] is a popular open-source tool which can synthesize,

pack, place, and route a Verilog design. The reason for lack of open-source bitstream genera-

tion tools is that the FPGA manufacturers do not disclose details of the bitstream structure

[3]. Manufacturers provide bitstream generation tools that work well for the majority of their

customers, but sometimes fall short of what researchers need. Nonetheless, attempts to un-

derstand or reverse-engineer bitstreams are consistently discouraged by the manufacturers

[4].

This work presents a way to generate bitstreams that does not require reverse-engineering.

The idea is to map a design to a set of predefined primitives, and generate bitstream for the

design by merging bitstreams of the constituent primitives.

3

1.1 Motivation

Though the bitstream generation tool provided by vendors work great, there are some use-

cases for which the tool is not suitable. Two possible use cases that motivated this work are

given below.

1.1.1 Embedded Bitstream Generation

Many reconfigurable applications, specially FPGA based autonomous systems, might need to

dynamically generate bitstreams at runtime [5]. Any fault tolerance application can make use

of embedded bitstream generation capability. Such an application can detect faulty resources

in FPGA, re-place, re-route the design accordingly, generate a bitstream, and configure the

device with the new bitstream, all without help of any external resource. The Xilinx tool for

bitstream generation, called bitgen, is not suitable for use in most embedded systems as it is

an x86 executable and it has significant data and OS dependencies. The special constraints

of embedded systems require a bitstream generator with a modest memory footprint that

can be compiled for available hard- or soft-processors.

The bitstream generation tool created in this work is entirely based on the Torc library [6],

which is known to run on an embedded system. Thus, by extension, this tool can also be

compiled to run on any embedded system.

1.1.2 Fast Bitstream Generation

Design scenarios like customization, dynamic tuning, interactive debugging, fault injection

or autonomous control require numerous small changes to designs. In traditional flows, even

though the changes are small, each design change requires rebuilding the design, placing

4

and routing, and re-generating the bitstream. And even for very small partial bitstreams,

Xilinx bitgen generates a full bitstream and compares it to a reference bitstream before it

can generate the partial bitstream. For small changes in a design, bitstream generation for

the changes should happen rapidly.

The approach used in this work allows an application to convert small design changes directly

into partial bitstreams.

1.2 Contributions

A bitstream generation API in C++ has been created as a part of this work. This API

will be available as a part of the open-source library Torc [6]. Initial support is provided

for Virtex-5 and Virtex-7 family of Xilinx FPGAs, but can be extended to other families

of Xilinx FPGAs. Bitstream generation is not supported for all resources present in the

two family of FPGAs; the supported resources are listed in Table 1.1 1. These tiles can

implement most of the logic part of a design and can cover more than 90% routing resources

of an FPGA.

Supported tile types
Logic CLB, DSP, and BRAM
Routing INT and CLBLM

Table 1.1: Resources supported

The custom bitstream generator is also demonstrated to run on an embedded system based

on XUPV5-LX110T development platform[7].

1Xilinx FPGA resources are grouped into tiles of different types; he tile types supported in this work are
listed in the table.

5

1.3 Thesis Organization

This thesis is organized as follows.

Chapter 2: Background provides information on Xilinx FPGA layout, bitstream structure,

and XDL file format, knowledge of which will help understand this work better. A short

introduction to Torc library, on which this work depends heavily, is also given.

Chapter 3: Prior Work discusses the previous efforts made on independent bitstream gen-

eration.

Chapter 4: Hypothesis and Approach begins with the hypothesis on which this work is based

and then goes on the explain the general approach to create a bitstream generator based on

the hypothesis.

Chapter 5: Implementation Details explains all the steps of bitstream generation as imple-

mented in this work.

Chapter 6: Results and Analysis evaluates the bitstream generator API on aspects of resource

coverage, fidelity, extensibility, portability, run-time performance, etc.

Chapter 7: Conclusion concludes this work.

Chapter 2

Background

This chapter first discusses the Xilinx FPGA architecture and then the Xilinx bitstream

structure, both based on the Virtex-5 family. Format of an XDL file, which is an input to

the bitstream API, is discussed next. Finally, an introduction is given to the open-source

library Torc [6] which is used by this work.

2.1 FPGA Architecture

The resources of Xilinx FPGAs are grouped together into tiles. Depending on functionality

of the resources, tiles can be of different types—routing, logic, memory, clock, input/output,

etc. The Virtex-5 architecture includes 111 tile types, each of which is instantiated in one or

more devices in the family, and most of which contain routing resources [8]. Table 2.1 lists

some of the tile types present in Virtex-5 FPGAs along with their functionality.

6

7

Tile Type Functionality
INT (Interconnect) Routing resources
CLB (Configurable Logic Block) Logic resources
BRAM (Block RAM) Block RAM
DSP (Digital Signal Processing) Dedicated multipliers, barrel shifters, etc.

Table 2.1: Virtex-5 tile types

2.1.1 Tile Layout

A Xilinx FPGA is arranged as a two-dimensional array of heterogeneous tiles described by

a tile map. The tile layout is very regular and in most of the chip one column contains

tiles of one type only. As the tiles of different types vary in size, each column contains a

different number of tiles. Figure 2.1 shows a conceptual tile layout of an FPGA based on the

Virtex-5 architecture. The sequence of tile types along the row differs for different devices.

For example, the device xcv5lx50 of the Virtex-5 family starts with an IOB column, then

a BRAM column, followed by six CLB columns, and so on.

IO INT CLB DSP BRAM Clock

Coordinates
of the shaded
CLB tile-
Global: X4Y3
Tile specific:
CLB_X1Y3

X0Y0

Figure 2.1: Simplified FPGA tile layout

8

10 CLBs

10 CLBs

Clock region height

Clock line Clock region width

Central tile column

Figure 2.2: Partitioning of an FPGA into clock regions. In the FPGA shown above, there
are eight clock regions; the green region is one of the eight clock regions. The central tile
column is included in either the right or the left clock region.

Ever since the Virtex-4 series, Xilinx FPGAs have been partitioned into clock regions for

efficient and zero skew distribution of the global clock signal [9]. The width of a clock region

spans half the chip area [8] and the height of a clock region, in terms of tile count of a

particular tile type, remains fixed for a given family of FPGA. In the Virtex-5 family the

height of a clock region is 20 CLB tiles. Figure 2.2 shows clock regions in an FPGA. The

number of clock regions varies across devices in a family. Clock regions are relevant to this

work because of the way they map to bitstreams.

There is a global coordinate system to identify each tile on a FPGA. There is also a coordinate

system for each tile type. Therefore, each tile gets two coordinates—one from the global

coordinate system and one from the coordinate system of its type. Information about the

tile layout of any Xilinx FPGA can be obtained from the Xilinx tool xdl 1 [10]. This tool

produces out both the global and the tile specific coordinates for every tile in the device and

also details of the resources present in the tiles. Torc has a database of the tile layout and

the resources for the devices it supports.

1xdl -report -pips -all conns <device name>

9

In short, an FPGA can be depicted as tiles of different types and sizes arranged regularly

on a plane with one column containing tiles of one type only. Each tile can be uniquely

identified by a tile coordinate system. The tiles are further grouped into rectangular regions,

called clock regions.

2.1.2 Tile Resources

A routing tile, also called a routing multiplexer or routing switch, consists of programmable

resources to make connection between wires linked to the tile. These programmable re-

sources are called Programmable Interconnect Points or in short PIPs. Figure 2.3 shows a

conceptual routing tile, where the wire A can be connected to wires B, C, or D and each of

these connections is controlled by a separate PIP. Some of the tile types containing routing

resources are—INT, CLBLM, and CLK.

A

B

C

D

Figure 2.3: A routing tile

Resources in logic tiles are further grouped into sites. For example, in Virtex-5 FPGAs the

logic tile CLBLL contains two sites of type SLICEL and a DSP tile contain two sites of type

DSP48E and routing resources [11]. The logic sites contain different types of configurable

resources. Figure 2.4 shows a SLICEL site as present in the Virtex-5 FPGAs.

10

Figure 2.4: A SLICEL site. This figure has been taken from Xilinx User Guide 190 [8]

The slice has four look-up tables (LUTs)—A, B, C, and D—each of which can be configured

to implement an arbitrary Boolean function of six inputs or two arbitrary Boolean functions

of five inputs each. The LUTs in another site type, SLICEM, can be configured as memory

elements also. SLICEL has four storage elements which can be configured either as edge

triggered D flip-flop or level-sensitive latches. Each storage element has two more config-

urable attributes that control its initial state and set/reset behavior. The site also has a

few configurable multiplexers to control data flow within the slice. For example, the input

11

of the storage element AFF is driven by the configurable multiplexer AFFMUX, which can be

configured to pass one of the six input signals.

The configurable resources present in DSP and BRAM sites are mainly multiplexers and at-

tributes. Some of the attributes that can be configured in a BRAM site are read/write widths

of ports, initial content of the BRAM site—both data and parity, and address extension.

2.2 Bitstream Structure

There is a correspondence between the tile map and the configuration space of the device as it

exists in the bitstream, but that correspondence is generally complex. In Xilinx architectures

beginning with the Virtex-4 family, a device is divided into top and bottom halves in the

configuration space—see Figure 2.6. The top and bottom halves may not be of the same

height. Those halves are further divided into rows of equal height, such that the rows align

with the clock regions of the tile layout. The rows are divided into columns, where each

column in bitstream corresponds to a column in tile layout. The columns are further divided

into frames—the smallest addressable part of the FPGA configuration space. Together with

one additional coordinate called a block type, the half, row, column, and frame define a

unique frame address [12]. Figure 2.5 shows composition of a frame address.

23 21 20 19 15 14 7 6 0

FrameColumnRowTop/
Bottom

Block

Figure 2.5: Composition of a frame address word for Virtex-5 bitstreams

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 0 1

Block 0 Block 1
Top H

alf
B

ottom
 H

alf
To

p
R

ow
 2

To
p

R
ow

 1
To

p
R

ow
 0

B
ot

 R
ow

 0
B

ot
 R

ow
 1

Figure 2.6: Bitstream structure for device XC5VLX30 drawn to scale. The bitstream consists
of block types 0 and 1, where 1 is only used for BRAM content. The device is divided into
top and bottom halves, each with multiple rows. Clock regions are bounded by rows and
by the center of the device. Column numbers are displayed along the top. IOB columns are
blue, DSP columns are red, BRAM columns are green, and CLB columns are white. A clock
word runs through the center of every row. The highlighted area at coordinates <block 0,
bottom half, row 0, column 2> consists of 36 frames.

13

A bitstream frame spans the height of a clock region in the sense that a frame affects all tiles

in a column within a clock region. Frames can be thought of as a vertical stack of bits placed

along the height of a clock region and a few of these stacks put side by side make a bitstream

column—see Figure 2.7. The size of the frames depends upon the device or architecture that

they belong to, but remains constant across a particular family. Size of a frame in Virtex-5

family bitstreams is 1312 bits, whereas in Virtex-7 family bitstreams, size of a frame is 3232

bits [13].

Frames
span the
height of
a clock
region

IOB+INT
Column

CLB+INT
Column

DSP+INT
Column

BRAM+INT
Column

Figure 2.7: A row of bitstream frames. A row is divided into columns which are further
divided into frames. A frame spans the height of a clock region. The width of a column
depends on the tile type of the associated column in the FPGA tile layout.

Columns in the bitstream correspond to logic columns in the tile map, and vary in width

according to their underlying tile types—see Table 2.2. Many columns in the tile map are

not separately addressable in the bitstream as in the case of interconnect tiles. The tile map

may show adjacent columns for interconnect and logic, such as INT + CLB, INT + DSP,

and INT + BRAM, but only the CLB, DSP, and BRAM columns exist in the bitstream

addressing and these columns contain configuration data for adjacent INT tiles also.

Bitstream files consist of a header and a collection of packets of various sizes as shown in

Figure 2.8. The header contains meta-data like design name, file modification time, target

device, etc. The packets contain configuration commands and configuration data. The

configuration commands read from or write to configuration controller registers and drive a

14

Column type Width in frames
CLB 36
DSP 28
Block RAM 30
IOB 54

Table 2.2: Virtex-5 bitstream column width

Design name
Architecture
Date
...

Synchronization word
Write to CMD reg
Write to FAR
...

Frames

Header Configuration
Commands

Configuration Data

Synchronization word
Write to CMD reg
Write to FAR
...

Frames

Configuration
Commands

Configuration Data

Packet 1 Packet 2 Packet N

Figure 2.8: Simplified view of a bitstream file. Configuration commands and data can be in
same or different packets.

small state machine in the FPGA. The configuration data can be a single frame, a contiguous

set of frames, or the full configuration space of the device. Each frame is directed to the

right location on the FPGA by the Frame Address Register (FAR) present on the FPGA.

When a contiguous set of frames are written, the FAR is set for the first frame and then it

increments automatically. Multiple packets can be used when discontiguous sets of frames

need to be written, as is often the case during partial reconfiguration.

Correspondence between FPGA tile layout and bitstream configuration space at the column

level can be derived from the information released by the Xilinx configuration user guides and

the information collected from Xilinx tools on FPGA layout and bitstream frame addresses.

As discussed earlier, the tile layout information of an FPGA can be obtained from the Xilinx

xdl tool. The Xilinx bitstream generation tool, bitgen, gives the option to generate debug

bitstreams that has every frame tagged with its FAR address. By combining these pieces of

information, mapping from a tile coordinate to a bitstream column can be created.

15

All of the bitstream information discussed here is supported by Torc. This work adds the

ability to configure frame contents with XDL logic and routing settings.

2.3 XDL File Format

The input to bitstream generator created in this work is a design in XDL format. Xilinx

Design Language (XDL) is a human readable file format provided by Xilinx to represent

a design netlist after mapping to the FPGA primitives. An XDL design can be optionally

placed and routed. Xilinx provides the xdl tool to convert an XDL file to a NCD file, the

binary equivalent of XDL format, which can be converted to a bitstream using bitgen. An

NCD file can be converted back to XDL file using the same xdl tool. XDL provides a very

powerful interface to Xilinx devices, and is very popular in research community [10].

Listing 2.1 shows a placed and partially routed XDL design. The XDL header in Line 1

declares the design name, system, and the device, xc5vfx130t, on which the design will be

implemented. The part number of the device is ff1738 with a speed grade of −2. After the

header comes the body of the XDL, which contains instances, nets, and optionally modules.

1 des ign ” system” xc5v fx130t f f 1738−2 v3 . 2 ;

2

3 i n s t ” b l i nk coun t e r ” ”SLICEL” , p laced CLBLM X36Y139 SLICE X56Y139 ,

4 c f g ” A5LUT::#LUT:O5=0 A6LUT::#LUT:O6=(A6+˜A6) ∗ ((A1@˜A4))

5 ACY0 : : O5 AFF: id :#FF AFFINIT : : INIT0 AFFMUX: :XOR AFFSR : :SRLOW” ;

6

7 i n s t ”LED” ”IOB” , p laced RIOB X66Y23 AL7 ,

8 c f g ” DIFFI INUSED::#OFF DIFF TERM::#OFF IMUX::#OFF OUSED: : 0 PADOUTUSED::#OFF

9 PULLTYPE::#OFF TUSED::#OFF OUTBUF:LED OBUF: PAD:LED:

10 DRIVE: : 1 2 OSTANDARD: : LVCMOS25 SLEW: :SLOW ” ;

11

12 net ”clk BUFGP” ,

13 outpin ” b l i nk coun t e r ” AQ ,

16

14 i np in ”LED” O ,

15 pip CLBLM X47Y75 SITE CLK B1 −> MCLK ,

16 pip CLBLM X47Y76 SITE CLK B1 −> MCLK ,

17 pip INT X47Y75 GCLK0 −> CLK B1 ,

18 pip INT X47Y76 GCLK0 −> CLK B1 ;

Listing 2.1: Example of an XDL design

The logic sites or tiles used by a design are called instances in XDL and specified by the key-

word instance or inst. Line 3 introduces an instance named blink counter. The instance

is of site type SLICEL and placed on location SLICE X56Y139. The following three lines

describes how different resources of this instance are configured. The format for specify-

ing a resource setting is <resource>:<identifier>:<setting>, where the middle part,

<identifier>, is optional and does not affect bitstream. For example, AFF:id:#FF means

resource AFF is configured as #FF(flip-flop). Similarly, A5LUT::#LUT:O5=0 means resource

A5LUT is configured in LUT mode and its output O5 is assigned to 0. Configuration value

#OFF means the resource is not configured. The resources present in the site but not men-

tioned in the XDL design are either considered as not configured, or they get a default value

depending on configuration of connected resources. The XDL design in Listing 2.1 contains

another instance, of site type IOB, declared in Line 7.

After instances, netlists (nets in short) are declared. A net is declared by the keyword net,

followed by the net name. Every net has a source pin and one or more sink pins, where each

pin belongs to an instance declared earlier in the XDL design. For example, the inpin in

Line 14 is mapped to pin O of instance “LED”. A source pin is connected to sink pins by

configuring Programmable Interconnect Points (PIPs) in one or more routing tiles. In XDL,

PIPs are specified by keyword pip followed by the tile location and the two wires connected in

the tile. For example, Line 15 of listing 2.1, pip CLBLM_X47Y75 SITE_CLK_B1 -> M_CLK,

17

specifies a PIP located on tile CLBLM_X47Y75 and connecting the wires SITE_CLK_B1 and

M_CLK. A net can have zero pips configured, in which case the net is completely unrouted.

The input to the bitstream generator created in this work is a fully placed and routed design

in XDL. A placed and routed XDL design provides details of which tiles on FPGA are used

by the design, and how resources in the tiles are configured. Torc provides APIs to read/write

XDL files and also traverse and modify all the parts of an XDL design.

2.4 Torc Library

This work uses the Torc [6] library for XDL support, bitstream frame and packet processing,

and device exploration. Torc uses an open-source C++ infrastructure and toolset for re-

configurable computing, intended for custom research applications, CAD tool development,

architecture exploration, or applications that need to work with real device data. Torc in-

cludes four main APIs. The Generic Netlist API provides an object model and read/write

capabilities for unmapped EDIF netlists. The Physical Netlist API provides an object model

and read/write capabilities for mapped XDL netlists. The Device Architecture API provides

exhaustive logic and wiring descriptions for numerous Xilinx architectures. The Bitstream

Frames API provides read/write capabilities for configuration bitstreams down to the frame

granularity. No information is provided about bits inside the frames, except as documented

in the various Xilinx configuration guides. Torc also includes tools for routing, placement,

and other CAD functions. This work uses the Physical Netlist API, Device Architecture

API, and Bitstream Frame API.

A few utility functions were added to Torc’s Virtex-5 and Virtex-7 Bitstream Frames API

to support this work. These functions primarily facilitate looking up configuration column

data by frame address and by XDL coordinates. Frame addresses are the natural coordinate

18

system for all bitstream information, but XDL coordinates are more natural for design

information.

The XDL functions can also return the range of bits within the requested frames that corre-

spond to the desired tile. There are some assumptions inherent in this process because the

configuration guides do not discuss tile boundaries in frames, but it is reasonable to work

from what is documented: look up the frame height, remove the middle clock word, and

divide the remaining bits by the number of tiles in the frame. In the case of Virtex-5, this

is 41 words minus one clock word, divided by 20 CLB tiles, or two words per tile—a total of

64 bits.

One additional function helps to map the interconnect tiles to their associated logic tiles in

the configuration space. Bitstream frame addressing does not provide separate addresses for

interconnect columns: those columns share an address with the primary logic column that

they support. In Virtex-4, Virtex-5, and Virtex-6 architectures, the tile map has interconnect

tiles immediately to the left of their corresponding logic tiles. In 7-Series architectures, the

interconnect columns alternate between the left and right sides of their logic tiles.

The bitstream generation API created in this work will be release as a part of Torc in future.

2.5 Summary

This chapter discussed FPGA architecture, bitstream structure, XDL file format, and the

Torc library. Knowledge of these topics will help to understand this work better.

Chapter 3

Prior Work

Independent bitstream generation has been attempted before and different approaches have

been taken for it. The approaches can be put in three categories—bitstream format released,

bitstream relocation, and bitstream reverse-engineering.

3.1 Bitstream Format Released

In this category, the details of the bitstream format, including mapping from FPGA resources

to bits in the bitstream, are known to the developer of the bitstream generation API/tool.

JBits [14] falls in this category. It was developed by Xilinx and Virginia Tech with the aim of

providing better software support for run-time reconfiguration. The earlier version of JBits

provided APIs to modify existing bitstreams at the level of per configuration for XC4000

and later for Virtex and Virtex2, but it was unable to generate complete bitstreams from

scratch. A completely rewritten update extended support to include VirtexE, Virtex2P,

Spartan2E, and Spartan3, and was able to generate complete bitstreams with the same

fidelity as bitgen. That extended capability was never officially acknowledged or released,

19

20

and was simply described as a “Device API” [5], but it was successfully embedded into a real

hardware system and used for the purpose of autonomously modifying itself while running.

JBits was not supported for the later FPGA families.

JBits consists of two parts—APIs giving read/write access to the bitstream at the resource

level and a library of hardware modules in the form of Java classes. A Java application can

use the JBits APIs to get/set bits in a bitstream corresponding to individual resources. Two

example functions of the JBits API are given in Listing 3.1. JBits also provided APIs to

read back configuration from a device and write a partial bitstream to a device to facilitate

dynamic reconfiguration. The library contains parameterizable and relocatable modules of

common functions like adder, multiplier, counter, etc. Using JBits requires knowledge of the

low-level FPGA architecture.

1 /∗ Conf igure the F LUT of the S l i c e 0 o f row , c o l to be XOR ∗/

2 s e t (row , co l , Slice0 FLUT , XOR) ;

3 /∗ Get the value o f the Clock Input at row , c o l ∗/

4 c = get (row , co l , ClockInput) ;

Listing 3.1: JBits API example

Another Java library, called abits [3], was released for Atmels FPSLIC series of FPGAs after

detailed documentation of the bitstream format for the series was published [15]. The abits

library, similar to the JBits library, gives access to a bitstream at the resource level. Three

applications were created to demonstrate the use of the bitstream API—live debugging,

self-timed circuits, and frequency division of layout sensitive signals.

21

3.2 Bitstream Relocation

Another approach taken for bitstream generation is to create a library of partial bitstreams

for modules and routing resources, and stitch these partial bitstreams, after relocation, to

generate bitstream for a design. This approach has been used for various purposes, ranging

from fast bitstream generation [16], to run-time reconfiguration [1], to creating bitstream IP

[17]. A limitation common to all the bitstream generators taking this approach is that they

don’t support bitstream generation for arbitrary digital functions.

Work by Silva and Ferreira [1] uses the bitstream relocation approach, in that it assembles

bitstreams out of discrete components. The components are of very coarse granularity and so

the work is not suitable for arbitrary bitstream generation. Silva and Ferreira are specifically

interested in fast embedded bitstream generation for directed acyclic graphs, and their work

consequently carries a number of restrictions to simplify placement and routing and hence

improve performance. The bitstreams are built from components like “adders, comparators,

and multipliers” that may not overlap and are placed in a reserved dynamic region. These

components must be placed in vertical stripes, and connectivity is only permitted between

adjacent stripes, based upon a defined subset of routing resources. In practice the approach

is closer to late-binding of components [18] than it is to the generation of arbitrary bitstreams

that this work aims.

A similar approach was taken by Hübner et al. [19] to increase flexibility of run-time re-

configuration. They use partial bitstreams of prerouted modules with interfaces based on

LUT-based communication primitives [20]. Configuration data of the modules is extracted

from full bitstreams using the JBits API. The modules can be placed on any of the valid

locations in allocated vertical slots and connection between modules is made by configuring

routing primitives in vertical channels adjacent to the vertical slots. Even though the routing

22

primitives were of fine granularity, routing for a net between modules was restricted to be

within the allocated vertical channels.

The central idea of Horta’s work [17] is to create IP cores at bitstream level, or Bitstream IP

(BIP) as mentioned in their work. A tool, called PARBIT, extracts partial bitstream from a

full bitstream such that the partial bitstream can be placed in a limited region of any device

in the family to which the full bitstream belongs. Koch and Teich [21] use a conceptual

FPGA layout and bitstream structure to elaborate the idea of extracting partial bitstreams

for modules by correlating with a base bitstream, and also shifting of a partial bitstream

to relocate the module on the FPGA. Though the conceptual FPGA layout and bitstream

structure used by them resemble Xilinx’s FPGA tile layout and bitstream structure, they

never implemented a bitstream generator for a real device.

A number of research groups have developed bitstream generation capabilities for internal

purposes, but have not drawn attention to those capabilities. This is true of Wires-on-

Demand [22], tFlow [16], and ERDB [23]; all three can generate configuration data for

routing PIPs. Others have simply manipulated bitstreams at the frame granularity without

providing any generation capability of their own [17].

This thesis is an extension of the recent work by Soni, Steiner, and French [24]. This work

takes a similar approach but at much finer granularity of modules. As such, this work

supports bitstream generation for arbitrary designs.

3.3 Bitstream Reverse-Engineering

Bitstream reverse-engineering is another way to go about creating independent bitstream

generation tool, but it appears to defy the vendor’s end-user license agreement. Reverse

23

engineering bitstreams can help in gathering bitstream details, which are otherwise withheld

by vendors, necessary for creating a bitstream generation tool. These details can be used to

create a bitstream generation tool like abits.

One of the early efforts on bitstream reverse-engineering came from a tool named debit by

Note and Rannaud [4]. They started with a few assumptions on regularity of Xilinx FP-

GAs and corresponding bitstreams and applied a cross-correlation algorithm on few selected

bitstreams to obtain mapping between the routing resources and bitstream bits. Using this

mapping database, they provided a bitstream generation tool, called xdl2bit, which could

generate configuration data for routing resources and some resources of slices for Virtex2,

Virtex4, Virtex-5, and Spartan3. They obtained the bitstream mapping for LUTs form

Xilinx tools, but they haven’t mentioned how they got the mapping information for other

resources in slices. The host site of debit, http://www.ulogic.org/trac, was permanently

removed from service in summer of 2010.

Though not endorsed by FPGA vendors, reverse-engineering is till attempted by researchers.

BIL [25] extended the debit work by improving the algorithm to correlate XDL data to bit-

stream data and expand the bitstream analysis capability. Ding et. al. [26] devised a

composite analysis method to create mapping from configuration bits to resource configu-

ration and created a tool named Bit2NCD to convert bitstreams back to NCD files. Even

though one of the goals of this work is to create a tool to modify bitstreams, the results

focus only on converting a bitstream to an NCD.

Though the research on bitstream reverse engineering focuses on converting bitstreams back

to netlists, creating a bitstream generation tool is a possible outcome of such a research.

But as reverse engineering of bitstream violates end-user license agreement [27], a bitstream

generation tool created out of such a research might not be released.

http://web.archive.org/web/20100829010809/http://www.ulogic.org/trac

Chapter 4

Hypothesis and Approach

This chapter first introduces the hypothesis on which this work is based and then gives a

overview of the generic bitstream generation approach based on the hypothesis.

4.1 Hypothesis

Before stating the hypothesis, the concept of micro-bitstream has to be introduced which is

used in the hypothesis.

Definition 1 A micro-bitstream is a building block of configuration data—logic or

routing or both—that can be used to compose bitstream of a larger function

or design.

A micro-bitstream may exist as a partial bitstream, as a collection of bitstream frames, or as

a collection of sparse frame vectors and may represent a single logical setting, a single routing

segment or a mix of both. Regardless of its representation or granularity, a micro-bitstream

contains the information necessary to configure some portion of a circuit. The prefix micro

24

25

stresses that micro-bitstream corresponds to a few settings or small a functional block and

not a full design.

Hypothesis 1 A valid bitstream of arbitrary complexity can be composed by offsetting and

logically OR-ing a suitable set of micro-bitstreams.

The function of a bitstream is to configure resources in an FPGA so that circuit of intended

design gets implemented on it. Suppose there exist several micro-bitstreams, each individu-

ally configuring a set of resources on FPGA, and these micro-bitstreams are logically OR-ed

together into a full bitstream. The set of resources configured by the resultant bitstream will

be union of all the sets of resources configured by input micro-bitstreams. Mathematically,

the hypothesis can be expressed by the equations given below.

If B = M1‖M2‖M3‖ . . . ‖Mk

Then RB = RM1 ∪RM2 ∪RM3 ∪ . . . ∪RMk

Where,

B is full bitstream

Mi is ith micro− bitstream

RB is set of resources configured by B

RMi
is set of resources configured by micro− bitstream Mi

If the micro-bitstreams are chosen suitably, the resultant bitstream can represent a valid

design. And if a set of suitable micro-bitstreams is created, a full bitstream for an arbitrary

digital function can be created by OR-ing a subset of the micro-bitstreams.

This hypothesis was derived from the simple fact that an empty bitstream consists mostly of

logic zero bits, suggesting that logic one bits generally turn resources on (or configure them).

This was tested non-rigorously in hardware with a simple design: a number of settings

were removed from one XDL design and inserted into another XDL design and bitstreams

26

were generated for both. Neither bitstream worked correctly by itself, but when the two

bitstreams were merged by logically OR-ing their frame data, the resultant bitstream had

original functionality. The main assumption behind this hypothesis is that configuring a

resource leads to some set bits in the bitstream, and so logically OR-ing bitstreams results

in union of resource configurations of all the input bitstreams. Though this hypothesis was

tested only on a Xilinx FPGA (xc5vfx130t), it may apply to FPGAs from other vendors

too.

From the hypothesis it can be deduced that if a number of bitstreams are OR-ed together,

the resultant bitstream will contain configuration of all the input bitstreams. Figure 4.1

illustrates the concept with two bitstreams. The deduction can be extended to say that

bitstream of a full design can be created by disassembling the design into smaller components,

creating a bitstream for each component, and merging bitstreams of the smaller components.

Going a step further, a set of Turing-complete primitives can be defined, and a library

containing micro-bitstreams of the primitives can be set up. Now, a design can be mapped

to the defined primitives, and bitstream for the design can be created by fetching micro-

bitstreams of the composing primitives from library and merging them.

Figure 4.1: Merging bitstreams. Bitstream 1 has configuration 1, bitstream 2 has configura-
tion 2. The resultant ORed bitstream has both configuration 1 and configuration 2.

Creating a library of micro-bitstreams and generating bitstream by merging micro-bitstreams

is core idea of this work.

27

4.2 General Approach

This section gives an overview of the generic process of selecting primitives, creating library

of micro-bitstreams, and generating bitstream by merging the micro-bitstreams. Although

the steps described here are generic, they are influenced by the work on Xilinx devices.

All the steps involved in the bitstream generation process are shown in Figure 4.2. The red

path shows the creation of the micro-bitstream library and its subsequent use in bitstream

generation for user designs. The blue path shows the general case in which primitives are

coarse-grained. In the general case, a custom device database must be created based on the

defined primitive set, and a special mapper, placer, and router must be developed to target

the virtual device. This work uses architectural primitives and so the steps in blue are not

discussed.

Circuit Implementation and Bitstream Generation

Library Creation

Select & Define
Primitives

Logic
Primitives

Routing
Primitives

Generate XDL Generate Partial
Bitstreams

Create Micro-
Bitstream Library

Restricted
Wiring Graph

Architecture
Description

Create
XDLRC

Generate
DB (Torc)

Circuit EDIF Map & Pack Place Route Read Design
Into Torc

Look Up Micro-
Bitstreams

Calculate Frame
Address Offsets

Expand Micro-
Bitstreams In Place

Write Bitstream
File

Figure 4.2: General bitstream generation flow

28

4.2.1 Primitive Selection

The first step in the whole process is primitive selection. The set of primitives should be

Turing-complete, i.e. a suitable subset of primitives can be assembled to implement any arbi-

trary digital function. The other points to consider for primitive selection are granularity—

coarse-grained or fine-grained—and feasibility of generating micro-bitstreams using vendor

tools. Figure 4.3 shows an example of 2-bit counter implemented with coarse-grained prim-

itives, while Figure 4.4 shows the same circuit implemented with fine-grained primitives.

BX
O5

A1

A3
A2

A4
A5
A6

06
05

B1

B3
B2

B4
B5
B6

BX

F8
CY
XOR
O5
O6

F8
CY
XOR

O5
O6

BX

FF
LATCH
INIT1

SRHIGH
SRLOW

INIT0

CE
CK

D Q

SR REV

S1

DI1
O1

CO1

B

BMUX

BQ

CE
CK
SR

BX
O5

A1

A3
A2

A4
A5
A6

06
05

B1

B3
B2

B4
B5
B6

BX

F8
CY
XOR
O5
O6

F8
CY
XOR

O5
O6

BX

FF
LATCH
INIT1

SRHIGH
SRLOW

INIT0

CE
CK

D Q

SR REV

S1

DI1
O1

CO1

B

BMUX

BQ

CE
CK
SR

Figure 4.3: Example 2-bit counter built out of coarse-grained blocks. The upper block consists of
a preconfigured XOR gate with synchronous and asynchronous outputs. The lower block consists
of a preconfigured inverter with synchronous and asynchronous outputs. Both of these would be
preconfigured primitives that could be instantiated but not modified, and could form part of a
Turing-complete set. This approach is simple and portable but scales very poorly and does not
efficiently use the underlying hardware resources.

Coarse-grained primitives can be basic functional blocks like 1-bit adder, 4-bit multiplier,

2-to-1 multiplexer, counter etc. A coarse-grained primitive can also be formed by combining

some logic resources along with routing PIPs, which may not form a meaningful functional

29

A1

A3
A2

A4
A5
A6

06
05

1
0

AX
O5

BX
O5

A1

A3
A2

A4
A5
A6

06
05

1
0

A1

A3
A2

A4
A5
A6

B1

B3
B2

B4
B5
B6

BX

F7
CY
XOR
O5
O6

F7
CY
XOR

O5
O6

AX

F8
CY
XOR
O5
O6

F8
CY
XOR

O5
O6

BX

AX10

10

FF
LATCH
INIT1

SRHIGH
SRLOW

INIT0

CE
CK

D Q

SR REV

FF
LATCH
INIT1

SRHIGH
SRLOW

INIT0

CE
CK

D Q

SR REV

S0

DI0

CYINIT CIN

O0

CO0

S1

DI1
O1

CO1

AX

CE
CK
SR

A

AMUX

AQ

B

BMUX

BQ

O6=0
O5=A1

O6=0
O5=A1

Figure 4.4: Example 2-bit counter built out of fine-grained blocks. The blocks are archi-
tectural primitives. Arbitrarily complex LUT masks are composed from input passthrough
functions according to the equations given. The circuit looks as complicated as the coarse-
grained version for this very simple example, but is far more flexible, scales linearly, and
makes efficient use of the high-speed carry chains. When architectural primitives are used,
there is no need for custom mapping, placing, or routing.

block by itself but can be used to create a larger design as shown in Figure 4.3. In case

of coarse-grained primitives, the design must first be mapped to the primitive set, and

subsequently placed and routed within the custom architecture that the primitives define.

Fine-grained primitives map to FPGA architectural primitives. For example a PIP con-

figured in a routing multiplexer or a logic resource setting can be considered fine-grained

primitives. Some of the primitives present in Figure 4.4 are—passthrough LUTs, storage

elements configured in flip-flop mode, and some multiplexer configurations. Fine-grained

primitives are more flexible, make efficient use of underlying architecture, and do not require

custom mapping, placing, or routing, so the path shown with blue arrows in Figure 4.2 be-

comes unnecessary. But generating micro-bitstreams for fine-grained primitives might not

30

be straight forward. This work uses fine-grained primitives and some of the problems faced

while generating micro-bitstreams for fine-grained primitives are discussed in Section 5.2.

4.2.2 Library Creation

After deciding on primitives, micro-bitstreams have to be created for the primitives and

stored in a library.

First, the primitives have to be expressed in a format from which a bitstream can be gener-

ated. Hardware Description Languages (HDLs), such as Verilog and VHDL, can be used for

primitives that represent functional blocks. The non-functional compound primitives and

fine-grained primitives have to be expressed in lower level format such as EDIF, BLIF, etc.

Some vendors release their custom format to represent mapped design, which can also be

used to represent such primitives. XDL, discussed in Section 2.3, is a format from Xilinx

to represent mapped and optionally placed and routed design and is used in this work to

represent primitives.

Next, primitives have to be generated in the chosen format, mostly in form of files, and then

mapped, placed, and routed. Special constraint files can be used to restrict FPGA resources

used by the primitives. Xilinx provides User Constraint Files (UCF) for this purpose. In

case custom format to represent mapped design is used, these steps might not be necessary.

Finally, a bitstream has to be generated for the placed and routed design. Either vendor

tools or any custom tools can be used to map, place, and route, but vendor tools have

to be used for generating a bitstream. Instead of full bitstreams, partial bitstreams 1 can

be generated to reduce library size. Since the primitives correspond to a small number of

1Partial bitstream contains only a few frames to configure a small portion of FPGA

31

FPGA Tile Layout Bitstream Frames

Configuration
bits for tile

Figure 4.5: Shifting configuration bits

resource settings, even the partial bitstreams will have few set bits and so can be highly

compressed. A bitstream generated for a primitive is called micro-bitstream.

It is very likely that a primitive can be mapped to multiple locations on an FPGA because

of its regular architecture and repetition of resources. FPGAs have multiple instances of a

single resource type laid out in a regular fashion. For example in Xilinx device xc5vlx110t

there are 8, 640 instances of resources in a CLB tile arranged as a matrix of size 160 x 54 [8].

At this scale of resource repetition, a primitive can be mapped to large number of locations

on the FPGA. If micro-bitstreams are created for every location of primitive, the library size

will become very large.

Regularity of the resource layout on an FPGA can be explored to reduce the library size. As

the FPGA architecture is very regular, it can be assumed that the pattern of configuration

bits for a particular setting of a resource type will remain same irrespective of the location

of the resource. Also, the configuration data for one location can be shifted in the bitstream

to map to similar resource in another location. Figure 4.5 shows the idea of shifting of

configuration bits. To calculate the amount of shift, knowledge of the tile layout on the

FPGA and mapping from tile location to bitstream frame is required. With this knowledge

it will be sufficient to generate micro-bitstream for primitives in one location only. During

32

bitstream merging, the micro-bitstream can be offset to match the location of the primitive

in the input design.

4.2.3 Bitstream Generation

The basic idea of bitstream generation is to first map an input design to defined primitives,

traverse the primitives, fetch micro-bitstreams for each primitive from library and merge

them with a base bitstream as shown in Figure 4.6. The base bitstream can be empty or

have some static design. If coarse-grained primitives are used, there is need for special device

databases and special mapping, placement, and routing tools. Figure 4.2, placed at the

beginning of this section, shows bitstream generation process for coarse-grained primitives.

If the primitives selected are architectural primitives, then the mapping part will not be

required.

If the library stores micro-bitstreams for primitives on only one location, offset calculation

of configuration data will be required. As stated earlier, this offset calculation requires

knowledge of the tile layout on the FPGA and mapping from tile location to bitstream

frame. Figure 4.5 shows the idea of shifting of configuration bits.

33

Figure 4.6: Micro-bitstream merging. The circuit on top-left contains three primitives—an
adder, a sine function, and a 2:1 multiplexer. A bitstream for the circuit can be generated
by fetching micro-bitstreams of each of the three primitives from library and merging them,
optionally with a base bitstream.

Chapter 5

Implementation Details

This chapter gives details of all the steps of bitstream generation—primitive selection, li-

brary generation, and bitstream merging— as implemented in this work. As this work uses

architectural primitives the steps of creating custom architecture, mapping, placing, and

routing are not required. Figure 5.1 gives an overview of the whole process.

Bitstream Generation

Library Creation

Architectural
Primitives

Logic Config
Primitives

Routing PIP
Primitives

Generate XDL Generate Partial
Bitstreams

Create Micro-
Bitstream Library

Traverse Design
Elements

Look Up Micro-
Bitstreams

Calculate Frame
Address Offsets

Expand Micro-
Bitstreams In Place

Write Bitstream
File

Figure 5.1: Simplified bitstream generation flow. The top half shows library creation process
and the bottom half shows bitstream merging process.

34

35

5.1 Primitive Selection

For this work primitives of finest granularity were selected, such that they map to the

architectural primitives. The primitives will be discussed in details in this section. As the

routing resources and logic resources have different characteristics, the two will be discussed

separately.

5.1.1 Routing Primitives

In a routing tile, a configured PIP connects a sink wire to a source wire of the tile. Figure

5.2a shows a routing tile where the red wire on left is a sink wire and it can be connected to

three source wires. There is a separate PIP to control each of the three connections. Usually,

multiple PIPs across multiple routing tiles have to be configured to route a net. In an XDL

design, nets are bounded by a source and one or more sink pins, and are composed of routing

PIPs. Only the routing PIPs affect the bitstream.

For routing resources, every PIP is considered a primitive. The INT and CLB routing tiles

are supported in this work.

A

B

C

D

(a) The sink wire on right can be con-
nected to three source wires.

(b) A multiplexer resource in logic site
SLICEL.

Figure 5.2: Routing and logic primitives

36

5.1.2 Logic Primitives

Logic sites have variety of resources and configuration options. Each configuration option

of a resource is considered a primitive. For example, the logic site SLICEL contains a

configurable multiplexer called AOUTMUX. This multiplexer can be configured to pass any of

the five input signals as shown in Figure 5.2b. Each of the five possible configurations of

the resource AOUTMUX is a primitive. Site types supported for logic primitives are—SLICEL,

SLICEM, RAMB, and DSP48E.

Selection of primitives was influenced by multiple criteria, including usage in typical designs

and absence of peculiar configurations: logic sites SLICEL and SLICEM and routing PIPs

in INT tiles are used by every design, so supporting these sites and tiles was a top priority.

BRAM and DSP primitives were similarly selected because of their prevalence.

5.1.3 Unsupported Resources

Some resources are configured with complex or arbitrary strings, while others are configured

by complex code. For example, the Virtex-5 device data does not enumerate valid I/O

standards for IOBs, so generation of micro-bitstreams for those settings is not automated.

As another example, the rules that determine whether IOBs must be configured as VREF

pins are dynamically evaluated by bitgen based upon the entire design and the I/O standards

used in each I/O bank. The first example is easy to resolve because the list of supported

I/O standards is published, but the second example is difficult to resolve without reverse-

engineering, and is consequently not supported in this work.

37

5.2 Library Creation

Micro-bitstream library creation is a multi-step process. To begin with, an XDL design

is created for each primitive. The XDL designs are converted to NCD format and then

to corresponding bitstreams using Xilinx tools. Each bitstream is compared to a reference

bitstream and commonalities are discarded, so that what remains is the effect of the XDL

primitive. The resulting micro-bitstreams are compressed and stitched together into a library.

Each step is discussed in details in the following subsections.

5.2.1 XDL Generation

As stated before, an XDL design is created for every primitive. For the logic primitives, a

reference XDL design is also created for every resource with the resource turned off. Torc

provides APIs to read/write XDL files and also iterate over tile types, the sites and routing

PIPs within a tile, the resources in a site, and the possible settings of a resource.

Before generating XDL designs for primitives, the target device and the tile location for

primitives have to be decided. Generating a library for just one device of a FPGA family

works for all other devices of the family as long as the supported resources are present in

the chosen device. This is possible because the height of a clock region in an FPGA, and

consequently height of a bitstream frame, is the same for all the devices of a family, and

the micro-bitstreams are stored only for the first tile of a column in a clock region. For a

given FPGA family, the smallest possible device should be chosen for generating a library as

the process of creating NCDs and bitstreams is faster for a smaller device. For the Virtex-5

family device xc5vlx110t was used and for the Virtex-7 family xc7a110t was used.

The chosen set of primitives can be mapped to multiple locations on an FPGA, but micro-

38

bitstreams are generated for only one location. The tile location of micro-bitstreams should

be such that the offset calculation becomes simple during bitstream merging. In this work,

micro-bitstreams correspond to first tile in a tile column within a clock region. Location

of the tile for primitives can be arbitrary as after generating a bitstream for the primitives,

configuration data can be shifted during micro-bitstream compression to make it correspond

to the first tile.

The process of XDL generation is different for routing tiles and logic sites and each will be

discussed separately.

Routing Primitives

An XDL design generated for a routing primitive contains a dummy instance with no con-

figuration and a fake net with just one PIP. Listing 5.1 shows an example of an XDL design

for a routing primitive. Even though this XDL design is invalid, the Xilinx tools provide

options to convert such a design to a bitstream.

1 des ign ”Virtex−5−INT−rout ing−EN2END1−IMUX B15” xc5vfx130tFF1738−2 v3 . 2 ;

2 i n s t ”dummyInst” ”SLICEL” , p laced DUMMY SLICE X1Y1 ;

3 net ”dummyNet” ,

4 outpin ”dummyInst” BQ,

5 i np in ”dummyInst” B4 ,

6 pip INT X1Y199 EN2END1 −> IMUX B15 ;

Listing 5.1: XDL for a routing primitive

Torc APIs were used to cover the supported routing tile types, and iterate through all the

PIPs available in the routing tile. For each tile type a tile location has to be provided in

which the PIP will be configured. Torc provides a list of all tiles present on a device and

the first tile of each tile type was selected for placement. To get all the PIPs in a routing

tile, first the source wires are iterated over, and for each source wire all its sinks are visited.

39

Each source-sink pair corresponds to a PIP. Below is the pseudo code for generating XDLs

for routing tiles.

1 For a l l supported rout ing t i l e types

2 Get f i r s t t i l e o f the type

3 For every source wire in t i l e

4 Get a l l s i n k s o f the source wire

5 For each s ink

6 Generate XDL with source−s ink PIP .

Listing 5.2: Pseudo code for genrating XDLs for routing primitives

Logic Settings

XDL design files are generated corresponding to each setting of every configurable resource

present in the supported logic sites. So for resource AOUTMUX present in site SLICE, shown

in Figure 5.2b, five XDL files are generated, one each for the configurations F7, CY, XOR,

O5, and O6.

Xilinx tools treat logic settings differently from routing PIPs. Even though a single PIP in

a design does not make sense, bitstream generated for such a design contains configuration

bits corresponding to the PIP. But in case of logic settings, if a resource setting’s associated

resources are not instantiated in the design, Xilinx tools don’t generate configuration bits

for the resource. In other words, if a resource setting doesn’t make sense, Xilinx tools

ignore it. This condition was interpreted from the finding that for some resources, micro-

bitstream was same for all the settings. In some cases, micro-bitstreams were empty for all

the settings. The resource AFFMUX present in site SLICEL is a good example to show the

problem of dependencies. This configurable multiplexer drives the input of flip-flop AFF,

40

shown in Figure 5.3, but if AFF is not instantiated, then setting of AFFMUX has no effect

upon the bitstream regardless of its setting.

Figure 5.3: Logic resource dependency. AFFMUX setting gets ignored if AFF is not configured.

To properly generate micro-bitstreams for resources with dependencies, XDL design must

include the dependency. Some logic resources depend upon other logic resources, while some

depend upon the presence of a net driving or being driven by the resource. To counter these

situations, the concept of a harness design was used which is described next.

Logic Site Harnesses

The harness XDL design contains a net that connects to every input and output pin of the

logic site of interest. The fact that such a net is nonsensical and unroutable is irrelevant.

Secondly, all of the primary site resources—all LUTs and flip-flops in the case of slices— are

instantiated, regardless of which ones may be implicated by the resource of interest. These

two steps seem to generate enough signal path to satisfy the dependencies and prevent the

dependent resources from being discarded during bitstream generation. One harness design

was created for every supported logic site type.

Harness design creation is a manual process. Resources of a site have to be analyzed to

find how they are inter-connected and which resources might have dependencies. The rule

41

of thumb is to configure all resources in a site. Setting of some resources have to be fine

tuned to make sure the dependent resource’s output is used and also make sure Xilinx tools

generate bitstream for the harness. The warning messages generated by the Xilinx xdl tool

while converting an XDL file to a NCD file is a good way to find out if any resource might

be ignored by bitgen. The harness for SLICEL of Virtex-5 family is given in Appendix A.

The harness XDL serves as the basis for generating XDLs for the logic configurations. For

every resource, an XDL is generated with the resource turned off which serves as “reference

XDL” for all the settings of the resource. Then XDLs are generated for every configuration

of the resource. The rest of the configurations of the harness remains in-tact. Below is the

pseudo code for generating XDLs for logic settings.

1 For a l l supported l o g i c s i t e types

2 Get harness f o r the s i t e type

3 For every r e sou r c e in the s i t e

4 Generate XDL with r e sou r c e s e t o f f

5 For every c o n f i g u r a t i o n o f the r e s ou r c e

6 Generate XDL with r e sou r c e con f i gu r ed

Listing 5.3: Pseudo code for generating XDLs for logic primitives

LUT Equations

LUT equations are a special case because their settings do not come from a predefined list.

They are instead expressed as Boolean functions of their inputs and the constants 0 or 1.

The inputs are named A1 through An, n being the degree of the LUT. Valid operators

are ‘˜’ (NOT), ‘+’ (OR), ‘*’ (AND), and ‘@’ (XOR). Virtex-5 slices have four fracturable

LUTs—named A, B, C, and D—that can generate separate functions of five and six inputs.

An example of LUT setting in XDL is D6LUT::#LUT:O6=˜(A1*A2), also shown in Figure

42

5.4. Here, the D-LUT is configured in LUT mode, as opposed to RAM or ROM mode, to

implement the Boolean equation ˜(A1*A2) assigned to output O6.

A6

A5

A1

O6

O5LUT
inputs

LUT
outputs

O6 = ~ (A1*A2)

D-LUT

Figure 5.4: A D-LUT in site SLICEL

There is no feasible way to generate micro-bitstreams for all possible Boolean equations with

the LUT inputs and given operators. But it is possible to generate micro-bitstreams for

functions O6=A1, O6=A2, O6=A3, O6=A4, O6=A5, O6=A6, O6=1, and O6=0, and to compose

the desired function at run-time by applying the equation in bit-wise fashion to these micro-

bitstreams. The same is done for output O5. XDLs generated for LUTs do not use harness

design as incompatible equations for the two outputs—O5, and O6— result in faulty micro-

bitstreams. Xilinx tools generate configuration bits for LUTs even without the harness.

LUT RAM Masks

LUTs can also be configured in RAM or ROM modes, in which case a hexadecimal LUT

mask takes the place of a LUT equation. A 6-input LUT has 64 memory bits and can

therefore take on 264 values. Instead of generating a micro-bitstream for each of possible

value of LUT memory, the Logic Allocation (LL) file, that bitgen creates when given the

’-l’ (ell) flag, was used. The LL file can be parsed and used to identify the relative frame

address and offset of each bit in the LUT. The LUT mask can then be applied in bitwise

fashion to each of the configuration bits.

inst "lutram" "SLICEM", placed CLBLL X16Y59

43

SLICE X27Y58, cfg "

A6LUT::#RAM:O6=0xAC52660033A966F1

...";

BRAM Initialization

BRAM data uses hexadecimal initialization strings for both parity and data, in the same

manner as LUT RAM masks. For 16,384 + 8,192 bits of content and parity, the amount

of data is much larger, but the LL file provides the same location information as for LUT

masks.

Compound Resources and Exceptions

There are cases where a group of bits is controlled by more than one logic resource. This

is not a dependency, where one resource must be enabled for another one to affect the

bitstream, but rather a case where the bitstream values truly are determined by two or

more separate resources. For example, in DSP sites, the resources AREG and ACASCREG

jointly affect the same set of bits in the bitstream. In such cases, XDL designs are generated

for each combination of settings of the related resources. In the above example, resource

AREG can take three settings (0, 1, and 2) and resource ACASCREG also takes the same three

settings. A total of nine XDL designs are generated for the compound resource composed

of AREG and ACASCREG, though Xilinx User Guide [11] mentions some restrictions on what

combinations are legal.

No formal method was devised in this work to detect compound resources. Such resources

were detected only by accident and the specification given in Xilinx User Guides [11]. To

44

exhaustively test all combinations of logic resource settings would be intractable. Compound

resources that are supported behave like super-primitives.

Another exception occurs when resources that are configured off, set bits in the bitstream.

For example, when a DSP site is instantiated, resources LFSR_EN_SET and TEST_SET_P both

set bits in the bitstream, even when turned off. This is problematic because the approach

of generating micro-bitstreams presupposes that unused resources have no impact upon the

bitstream. To deal with such resources, concept of reference setting was used—a setting of

the resource that does not set bits in the bitstream. While generating XDL designs for logic

resources, a reference XDL design is also created in which the resource is turned off. But for

resources like LFSR_EN_SET and TEST_SET_P, the reference XDL design had the reference

configuration of resource which does not set bits in the bitstream.

5.2.2 Micro-bitstream Generation

All the XDL files generated in the previous step are converted to NCD files using the Xilinx

xdl tool and the NCD files are then converted to bitstreams using the Xilinx tool bitgen.

The bitstreams corresponding to resource configuration are compared to respective reference

bitstream and the their diff is compressed and saved. Since the XDL designs of primitives

are invalid, option -force has to be used with the xdl tool to force generation of NCD. For the

same reason option -w has to be used with bitgen to disable Design Rule Checker (DRC).

The reference bitstream varies with the resource type. For routing resources, i.e. PIPs, ref-

erence bitstream is an empty bitstream. A reference bitstream for a logic resource is created

from the reference XDL which has the resource turned off, or set to reference configuration

that does not produce configuration bits. A bitstream corresponding to a resource configu-

45

ration is termed as “primary bitstream”. Figure 5.5 shows the primary bitstreams and the

reference bitstream for resource AOUTMUX.

0010
1101

0010
1101

0010
1101

0010
1101

0010
1101

F7

CY

XOR

O5

O6

0010
1101

AOUTMUX

AOUTMUX::F7

AOUTMUX::CY

AOUTMUX::XOR

AOUTMUX::O5

AOUTMUX::O6

AOUTMUX::#OFF

Reference
bitstream

Primary
bitstreams

Figure 5.5: Primary bitstreams and reference bitstream for resource AOUTMUX

Comparison of bitstreams is done bit-by-bit and the difference is stored frame wise. If a

frame in the primary bitstream has set bits not present in reference bitstream, then the

frame is stored with only those set bits. The frames are identified by an index normalized

to the first frame in the current column, and the column index is not stored in the library.

That means data stored in library are independent of tile column index. The set of frames

obtained after diffing should only contain configuration bits corresponding to the resource

configuration.

The resultant micro-bitstream (or set of frames) consists of sparse binary data that is highly

compressible, typically by two or more orders of magnitude. As such, the frames are com-

pressed before storing in library. Every bit that was set in the primary bitstream but not

in the reference bitstream is represented as a very compact <frame index, word index, bit

index> tuple in a 32-bit word. Here, frame index refers to the relative index of a frame

within a column. Word index is relative to frame, and bit index is index of bit within the

word.

A frame contains configuration data for all the tiles in a column within the corresponding

46

clock region. Depending on the location of a tile within a column, the configuration data for

the tile shifts within the frame, but the bit pattern remains the same. It was assumed that

this shift of configuration bits is proportional to the tile position within the column, which

was verified to be true later. So, in the tuple of <frame index, word index, bit index> word

index and bit index depend on the tile location within the column. Configuration data is

stored for only the first tile in a column and during bitstream merging the word index and

bit index are offset as required.

Word 1

Word 2

C
LB

 1

Word 19

Word 20
C

LB
 1

0

Word 22

Word 23

C
LB

 1
1

Word 40

Word 41

C
LB

 2
0

Word 21CLK

A frameCLB Column

640 bits for 10 CLB
columns above CLK tile

640 bits for 10 CLB
columns above CLK tile

CLK configuration and
ECC bits

Figure 5.6: Mapping of frame bits to a CLB column

For example, in the case of Virtex-5 FPGAs, a bitstream frame consists of 41 32-bit words

out of which the middle word is for ECC and CLK tile configuration [12]. In a column of

CLB tiles there are 20 CLB tiles in one clock region. Assuming that rest of the 40 words

of a frame are evenly distributed over 20 CLB tiles gives two words (or 64 bits) per CLB

tile—see Figure 5.6. This assumption can be extended to deduce that shifting a CLB tile

by one row in a column will shift configuration data by two words in the respective frame.

47

Similar calculation can be done for DSP and BRAM columns also. This logical assumption

was tested to be true after implementation.

Micro-bitstreams stored in library correspond to the first tile of a column in a clock region.

For LUTs in RAM/ROM mode and BRAM’s memory and parity initial value configuration,

the tuple information (<frame index, word index, bit index>) is directly obtained from

the LL file, which is generated by bitgen when ’-l’ options is provided. The LL files were

generated for the first tile of column so that bit shifting is not required when using data

from the LL file.

5.2.3 Library Organization

The compressed micro-bitstreams are stitched together into a single file for convenience and

speed. Internal structure of the library file is as follows:

Tile Type Count
Tile Type 1

Site Type Count
Site Type 1 / Routing

Resource Count
Resource 1

Config Count
Config 1

Micro-Bitstream Data
...

In the above file structure, micro-bitstream data is an array of the <frame index, word index,

bit index> tuples.

48

5.3 Bitstream Generation

Bitstream generation process was shown in Figure 5.1 at the start of this chapter. Since

this process essentially merges micro-bitstreams together, the tool created in this work is

called bitmerge. The input to bitmerge is a placed and routed XDL design, or subset thereof.

Bitmerge traverses the design and processes the resources one by one. Micro-bitstreams for

each supported design element is fetched from the primitive library, positioned according to

frame and word offsets, and merged into the base frame set, which may be empty or may

have been read from an existing bitstream. These steps are detailed below.

5.3.1 Design Traversal

Bitmerge uses Torc APIs to traverse the XDL design, first visiting all the instances and then

all the nets. In every instance all the resource settings are traversed, and in every net all the

PIPs are traversed. Every placed instance gets a tile location, so all the resource settings

in the placed instance belong to the same tile location. Whereas, in a net each PIP gets its

own tile location. The frame set and offset calculation is done for every instance and every

PIP.

5.3.2 Resource Processing

Processing is simple for most of the resources—read the configuration, look up corresponding

compressed micro-bitstream in library and merge with base bitstream. For some resources,

a few extra steps have to be taken. Processing of different types of resources is described

below.

49

Routing PIPs

Processing of PIPs is straightforward—fetch the micro-bitstream from the library based on

parent tile type, source, and sink.

Logic Settings

Processing of most logic settings is also straightforward—fetch the micro-bitstream from the

library based on parent tile type, site type, the resource, its setting. Site type is present in

instance declaration and tile type can be obtained from the tile location.

There are some special cases in logic resources.

Special Case: LUT Equations

LUTs configured in LUT mode use a Boolean equation as the setting. The output is as-

signed a function of the LUT inputs and the constants 0 or 1. The library contains micro-

bitstreams for each variable and each literal: A6LUT::#LUT:O6=A1, A6LUT::#LUT:O6=A2,

A6LUT::#LUT:O6=1, and so on. The desired function is formed by applying the Boolean

expression to the appropriate micro-bitstreams. This concept is better understood with an

example.

Consider the LUT setting A6LUT::#LUT:O6=(A1*A2)@(A3+A4). Here output O6 of A LUT

is assigned to Boolean equation (A1*A2)@(A3+A4). The library does not contain micro-

bitstream for this equation, but it contains micro-bitstreams for each input variable, i.e. A1,

A2, A3, and A4. The micro-bitstream for the equation is formed by fetching the micro-

bitstream of each input and performing the Boolean operations on the micro-bitstreams as

50

present in the equation. Mirco-bitstreams are first expanded to a frame set to do the Boolean

operation at the frame level. This can be expressed in form of an equation.

M(A1∗A2)@(A3+A4) = (MA1 ∗ MA2) @ (MA3 + MA4)

Where,

MX is micro− bitstream of variable X

To generate the configuration bits for a LUT equation, bitmerge parses and evaluates the

expression with code generated by Bison and Flex. When the code encounters a variable

or literal in the equation, it fetches the corresponding micro-bitstream from the library,

expands it to set of frames, and pushes it onto a stack. When the code encounters a Boolean

operation, it pops two frame sets from the stack, applies the operation in bitwise fashion to

the frames, and pushes the resulting frames back onto the stack. The unary NOT operator

cannot be implemented directly, because bitmerge does not know which frame bits to invert.

It instead implements inversion by XOR-ing the current set of stack frames with the micro-

bitstream for logic 1. XOR-ing is applied in bitwise fashion, and the result is pushed back

onto the stack. When the parsing completes, the only set of frames remaining on the stack

is merged with the base frame set.

Special Case: Hex Strings

A few resources use fixed length hex strings as values. The library contains micro-bitstreams

for each individual bit position of applicable resources, so bitmerge fetches these using the

bit position as the key. It expands and merges each of these into place. For example, the

hex string 0x38 can be composed by OR-ing the micro-bitstreams for bits 0x20, 0x10, and

0x08. Some examples of resources which have hex string as configuration setting are—LUTs

51

in RAM/ROM mode, BRAM’s data and parity initialization settings, and DSP’s MASK and

PATTERN resources.

Special Case: Compound Primitives

As explained in Section 5.2.1, there are a few cases of compound primitives, where two or

more resources jointly affect a set of frame bits. When one of the resources of compound

primitive is encountered, other resource of the primitive are also gathered and the corre-

sponding micro-bitstream is fetched based upon the combined settings of the individual

resources.

5.3.3 Frame Address And Offset Calculation

Micro-bitstream of a primitive fetched from library contains tuples of the form <frame index,

word index, bit index>. Here, frame index is relative to the first frame of a column in a

bitstream, word index relative to the first word in the frame, and bit index within the

word. From the XDL design the tile index of the primitive can also be identified. With the

information of the tile index and micro-bitstream tuples, the location in a bitstream has to

be identified where the micro-bitstream should be merged.

Given a tile index, Torc can return set of all the frames present in the corresponding bitstream

column. This frame set is same for all the tiles in a column within a clock region. Frame

index from a micro-bitstream tuple can be directly used in the frame set to identify the frame

which should be modified by the tuple. The word index and bit index of tuples correspond

to the first tile of the tile column in clock region and have to be offset as per tile location in

design. The offset calculation was explained earlier in Section 5.2.2.

52

5.3.4 Bitstream Merging

Torc can create an empty frame set for any supported device. Data from full or partial

bitstreams can be loaded into those frames, and bitmerge can modify the frame contents.

As each resource is processed, the corresponding micro-bitstreams are merged into the base

frame set. Each tuple from micro-bitstream is merged individually with frame set. When

all resources have been processed, the resulting frames are wrapped into bitstream packets

and written to a bitstream file.

An option to clear bits in bitstream, as opposed to set bits in bitstream, is also provided

in the bitstream generation API. This option has been provided keeping the fault tolerance

application in mind. A typical scenario of a fault tolerance application would be to unplace

instances from faulty sites, unroute all nets connected to the unplaced instances, and then

place and route the design. In such a scenario, instead of generating full bitstream for the

new design, the bits for the resources which were removed from design can be cleared out,

and then bits for the newly introduced resources can be set.

5.4 Code Structure And Usage

A high level discussion of the code structure and class hierarchy will be helpful if anyone

wants to extend this work. The code is written in C++ and will eventually become part of

the Torc library.

5.4.1 Bitstream Merging Code

Class hierarchy of bitstream merging code is shown in Figure 5.7. The base class Assembler

is an abstract class but most of the implementation goes into that class. The derived

53

class VirtexAssembler is also abstract and serves to contain some data types, like the

Frame word type, common to all Virtex families. The leaf classes—Virtex5Assembler and

Virtex7Assembler— contain family specific attributes and implementation. The code to

parse LUT equation was created by Bison and Flex and is encapsulated in a separate class

named LutParser. A factory class, not shown in the figure, was also created to facilitate

easy creation of family specific class objects.

<<friend>>

+generateBitstream()

-xdlDesignPointer
-deviceDataBase
-library

Assembler

+generateBitstream()

-frameSet

VirtexAssembler

#initialize()

-compoundPrimitives

Virtex5Assembler

#initialize()

-compoundPrimitives

Virtex7Assembler

LutParser

Figure 5.7: Class hierarchy for bitmerge

The base class implements tasks which should be same across all families. Some of the

tasks implemented in base class include traversing XDL design, iterating over the resource

settings in an instance and PIPs in net, parsing LUT equations and hex strings, and loading

the library. Classes for families contain attributes that are expected to change with the

family and also code for object initialization and bitstream manipulation.

When this code gets added to Torc, micro-bitstream libraries for Virtex-5 and Virtex-7 will

also be added. So, anyone who wants to use this open-source bitstream generation API for

Virtex-5 or Virtex-7 families will primarily use the bitstream merging API.

54

5.4.2 Library Generation Code

The class hierarchy of library generation code is shown in Figure 5.8. As in case of bitstream

merging classes, the base class AssemblerLibGen here too is an abstract class and imple-

ments most of the tasks. Some of the tasks implemented in the base class are—generating

XDL files for logic and routing primitives, converting XDLs to bitstreams, and stitching

micro-bitstreams to one file.

+generateLogicXdls()
+generateRoutingXdls()
+generateRoutingXdls()
+compressMicroBitstream()
+stitchMicroBitstream()

-deviceDatabase
-harnessFolder
-xdlGenerationFolder

AssemblerLibGen

-supportedLogicSites
-supportedRoutingTiles
-crcWordIndex

Virtex5LibGen

-supportedLogicSites
-supportedRoutingTiles
-crcWordIndex

Virtex7LibGen

Figure 5.8: Class hierarchy for library generation

The derived classes have family specific attributes such as list of supported logic site types, list

of supported routing tile types, list of compound resources and a map of reference setting for

the logic resources. They also implement the functions related to bitstream reading/writing.

Chapter 6

Results and Analysis

This chapter presents evaluation of bitmerge in terms of resource coverage, range of sup-

ported devices, fidelity, portability, extensibility, run-time performance, and library size. A

comparison of bitmerge with previous works on some of these points is provided in Table 6.1.

6.1 Resource Coverage

In Virtex-5 family, bitmerge supports logic sites SLICEL, SLICEM, DSP, and BRAM. Except

for some DSP locations, all resources in these sites are supported, and most of the logic in

real designs can be implemented with these sites. For routing, bitmerge supports INT and

CLB tiles. These routing tiles cover the majority of the routing resources in any device. In

Virtex-7 family, only SLICEM and SLICEL are supported among logic sites and for routing,

INT and CLB tiles are supported. An attempt was made to support the BRAM sites, but

the bitstreams generated by bitmerge for BRAM sites in Simple Dual Port (SDP) mode do

not match with bitgen’s bitstreams. Support for the DSP site was not tried because of time

constraint.

55

56

Bitmerge Bit2NCD JBits Partial Bit-
streams [1]

Resource
Coverage

Logic: CLB,
BRAMs, and
DSP.
Routing : INT
and CLB

Logic: CLB,
BRAMs, and
DSP.
Routing : INT
and CLB

Logic: CLB,
BRAMs, and
DSP.
Routing : INT
and CLB

Module depen-
dent

Supported
Devices

All Virtex-5
and Virtex-7
family devices.

Spartan-3,
Spartan-3E,
Virtex-II,
Virtex-4,
Virtex-5 series

Xilinx XC4000
and Virtex
family.

Virtex-II Pro

Method Merging micro-
bitstreams

Reverse-
engineering

Bitstream
format
available

Bitstream mod-
ule relocation

Granularity Fine Fine Fine Coarse
Embeddable Yes N/A Yes Yes

Table 6.1: Comparison with previous works.

Without logic support for IOBs and global clock buffers, bitmerge cannot yet create bit-

streams for complete designs. Many additional logic resources can be supported, but some

others cannot because they would require vendor privileged data. A simple solution is to

configure any unsupported resources in a base bitstream that is then imported by bitmerge.

6.2 Validation and Fidelity

The micro-bitstream library was validated by creating test designs in XDL, generating bit-

streams for those designs, and comparing the bitstreams to the corresponding bitgen output.

A tool was created to do word-by-word comparison of the configuration data of two input

bitstreams. Torc does not currently calculate and update frame ECC values, so “clock” word

at the center of each frame is ignored when comparing bitstreams.

57

Individual XDL designs were created for every supported logic site and for a sample of

routing PIPs. Some XDL instances for logic sites and PIPs for routing tiles were taken

from real designs, while some were custom created to try different resource settings. For the

smaller designs (containing 2-3 instances and 15-20 PIPs), bitmerge’s bitstreams matched

bitgen’s. A design of Reed-Solomon encoder, taken from OpenCores [28], was also tested

for validation and bitmerge’s output did not match bitgen’s for this design. The design

contained 345 instances and 823 nets after removing instances and PIPs of unsupported tile

types. While it can be deduced that bitmerge does not generate configuration data correctly

for all resource configuration, it is difficult to quantify fidelity in terms of a percentage of the

supported resources. This is because the mismatched configuration bits cannot be mapped

back to FPGA resources, and so it is difficult to identify which resource setting resulted in

wrong configuration data.

6.3 Extensibility

This work initially supported the Virtex-5 family devices; later support for the Virtex-7

family devices was added. Extending support to other architectures will require the creation

of a suitable harnesses for every logic site and addition of family specific classes for both

library generation and bitstream merging. Adding new classes will need little effort as most

of the implementation is done in the base class. Creating a harness design will require

substantial work as inter-dependency of the resources of a site have to be analyzed and some

trials might be required to find the useful combination of resource configuration. Supporting

routing PIPs will not require any extra effort.

Harness designs of one family of FPGAs cannot be used for another family as resources in a

site might differ. For example, the logic site SLICEL in the Virtex-7 family contains more

58

resources than its Virtex-5 family counterpart; there are four extra flip-flops and the output

of the flip-flops is tied to inputs of multiplexers within the site. A particular setting of the

multiplexers ensures that the setting of these extra flip-flops is not ignored by the Xilinx

tools. The harness for the logic site BRAM also differs for the two families. For Virtex-5

family, the harness for BRAM contains an instance of BRAM with no configuration, but

such an harness did not work for the Virtex-7 family.

Extending support to a new family is dependent on the Torc library and Xilinx tools also.

Torc should have a database for the family architecture, support reading/writing of a bit-

stream of the family, and be able to map from the FPGA tile index to the bitstream column.

Support for the Virtex7 family was added only after these features were added to Torc for

the family. Xilinx tools are used during the creation of a micro-bitstream library. The next

version of the Xilinx tools might be stricter with invalid designs. For example, the tools

might not generate a bitstream for a design with just one PIP in it even with the option

to ignore Design Rule Check (DRC). If such situations arise, it will be a good idea to use

coarse-grained primitives.

6.4 Portability

Implementation of bitmerge is dependent on, and later will be a part of the open source

library Torc, which uses the C++ standard library, and the open source libraries Boost

[29] and zlib [30]. As the source code of all the dependencies of bitmerge is available, it

can be theoretically compiled for any platform. The tool bitmerge has been compiled and

run on several desktop machines with different flavors of Linux and also on a Linux based

embedded platform. The embedded platform was built on XUPV5 development board [7]

which has a Virtex-5 family FPGA—xc5vlx110t. The MicroBlaze Soft Processor [31]

59

Design bitmerge (s)
Single Routing PIP Design 2.5
Single Logic Setting Design 2.5
Large Design (100 % full XC5VFX130T, 20,518 logic sites) 216.0

Table 6.2: Bitmerge performance results.

core was instantiated on the FPGA and Linux kernel and bitmerge were cross-compiled for

MicroBlaze using Xilinx tool chain.

6.5 Runtime Performance

Runtime performance was tested for a single PIP change, for a single logic resource change,

and for a large design, on a workstation with a 3 GHz Intel Xeon 5160 and 4 GB of mem-

ory. The large design targets xc5vfx130t and includes 20, 518 configurable instances with

405, 431 logic settings, and 92, 227 nets with 1, 425, 932 PIPs. The design also utilizes 100 %

of the slices in the device. 19 of the 20, 518 configurable instances in the design are not

currently supported—primarily items like IOBs, DCMs, and clock buffers.

Table 6.2 shows the runtime performance of bitmerge. License agreement terms preclude

benchmarking bitmerge against Xilinx software, but is was noted that bitmerge compares

quite favorably, particularly when the data originates in XDL form.

6.6 Library Size

The micro-bitstream library for Virtex-5 family is 547 KB in size. This includes everything

necessary for logic resources in SLICEL, SLICEM, DSP48E, and RAMB36 EXP sites, and

for routing PIPs in INT, CLBLL/CLBLM, and clock tiles. The RAMB initialization and

60

parity data occupies a little over half of this space. The Virtex-7 library is slightly over

1 MB, which includes the BRAM initialization and parity data but does not include micro-

bitstreams for BRAM and DSP sites. The reason for increase in Virtex-7 library size is that

the tile columns are pair-wise mirrored and so every tile type has two variants—left and

right.

In the future, this data will be compressed using gzip, as Torc already does for its device

databases.

Chapter 7

Conclusion

An open-source bitstream generator has been described here that does not require reverse-

engineering of tools or configuration bitstreams. The motivation originates from two possible

applications: the ability to quickly make a large number of customizations to existing bit-

streams, and the ability to embed bitstream generation inside the system that it targets.

Generating bitstream directly from an XDL design will remove the overhead of converting

the XDL design to NCD and also the overhead of bitgen’s DRC and full bitstream generation,

which are involved with the vendor’s tool flow. Also, if changes to an XDL design are done

using Torc APIs, making bitstream changes from inside Torc will amortize the overhead of

program start-up, database initialization, and file I/O.

Making bitstream changes from inside an embedded system will allow us to perform dynamic

tuning, or to change the system autonomously while it is running. A stand-alone fault

tolerance application can make good use of embedded bitstream generation capability.

The approach taken in this work is to create a library of micro-bitstreams corresponding to

architectural primitives, and combine them into arbitrarily complex designs by expanding

61

62

and OR-ing their frame contents after relocation. The input is a placed and routed design in

XDL format, with an optional base bitstream, and the output is a new or modified bitstream.

The resources coverage currently includes logic sites SLICEL, SLICEM, DSP, and BRAM,

and for routing the INT and CLB tiles. While this capability does not support the full

set of device resources, it is sufficient for changes to the vast majority of the device. The

routing PIP coverage can be extended to nearly 100 %. The logic resource coverage can be

extended up to a point with the approach described in this thesis, but there is a subset of

resources and settings that would require reverse-engineering. Those resources and settings

are excluded from future work.

The micro-bitstream library currently supports Xilinx Virtex-5 and Virtex-7 devices, but

the approach can be extended to other Xilinx architectures. In practice, every architecture

has its own peculiarities, especially at the bitstream level—asymmetries in the number of

top and bottom clock regions, or CLB mirroring in 7-Series devices, for example. Even for

regular parts of other architectures, it will still be necessary to build a site harnesses to

enable dependent resources.

This work presented a bitstream generation API in C++ which will be a part of the open-

source Torc library. This API takes a placed and routed XDL design as input and based on

the XDL data, modifies the configuration frames directly. The bitstream generator was also

run on an embedded system based on XUPV5-LX110T development platform.

7.1 Future Work

The following enhancements and improvements can be tried out to stretch the concept of

open-source bitstream generation by merging micro-bitstreams.

63

1. Applications to demonstrate the usefulness of this work will boost research in field

of open-source bitstream generation. A simple fault tolerance application using the

bitstream generation capability in an embedded system was planned as a part of this

thesis but it is still a work-in-progress. Completing the application will help the cause.

Also, once this work is released as a part of Torc, other researchers might use the API

in their applications.

2. To increase the fidelity of bitmerge, harness designs should be created for every resource

instead of one common harness for all the resources in a site. For example, the BRAM

site in Virtex-7 family has different restrictions for the two modes of operation—True

Dual Port (TDP) and Simple Dual Port (SDP)—which results in incorrect bitstreams.

Different harness for the two modes of BRAM might help to generate proper micro-

bitstreams for its resource configurations.

3. This idea of creating library of micro-bitstreams can be tried with coarse-grained primi-

tives. It will be interesting to observe what granularity of primitives can still implement

a wide range of digital functions and if coarser primitives can help in improving fidelity

and extending the resource coverage.

Bibliography

[1] M. L. Silva and J. C. Ferreira, “Creation of partial FPGA configurations at run-time,” in
Proceedings of the 13th Euromicro Conference on Digital System Design: Architectures,
Methods and Tools, DSD 2010 (Lille, France), September 1–3, pp. 80–87, 2010.

[2] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B. Kent,
P. Jamieson, and J. Anderson, “The vtr project: Architecture and cad for fpgas from
verilog to routing,” in Proceedings of the 20th ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 77–86, ACM, 2012.

[3] A. Megacz, “A Library and Platform for FPGA Bitstream Manipulation,” in Proceed-
ings of the 15th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, FCCM 2007, (Napa, California), April 23–25, pp. 45–54, 2007.

[4] J.-B. Note and Éric Rannaud, “From the bitstream to the netlist,” in Proceedings of
the 2008 ACM/SIGDA 16th Annual International Symposium on Field-Programmable
Gate Arrays, FPGA 2008 (Monterey, California), February 24–26, pp. 264–264, 2008.

[5] N. J. Steiner, Autonomous Computing Systems. PhD thesis, Virginia Tech, March 2008.

[6] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French, “Torc: Towards
an Open-Source Tool Flow,” in Proceedings of the 2011 ACM Nineteenth International
Symposium on Field-Programmable Gate Arrays, FPGA 2011, (Monterey, California),
February 27–March 1, 2011. http://torc.isi.edu.

[7] Xilinx Inc., “Xilinx University Program XUPV5-LX110T Development System.” http:
//www.xilinx.com/univ/xupv5-lx110t.htm, January 2012.

[8] Xilinx Inc., “Virtex-5 FPGA User Guide,” March 2012.

[9] Xilinx Inc., “Virtex-4 FPGA User Guide (v2.6),” December 2008.

[10] C. Beckhoff, D. Koch, and J. Torresen, “The xilinx design language (xdl): Tutorial
and use cases,” in Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
2011 6th International Workshop on, pp. 1–8, 2011.

[11] Xilinx Inc., “Virtex-5 FPGA XtremeDSP Design Considerations,” January 2012.

64

http://torc.isi.edu
http://www.xilinx.com/univ/xupv5-lx110t.htm
http://www.xilinx.com/univ/xupv5-lx110t.htm

65

[12] Xilinx Inc., “Virtex-5 FPGA Configuration User Guide,” October 2012.

[13] Xilinx Inc., “7 Series FPGAs Configuration,” January 2013.

[14] S. Guccione, D. Levi, and P. Sundararajan, “JBits: Java based interface for reconfig-
urable computing,” in Proceedings of the Second Annual Military and Aerospace Appli-
cations of Programmable Devices and Technologies Conference, MAPLD 1999, (Laurel,
Maryland), September 28–30, 1999.

[15] W. S. Gosset, “Atmel AT40k/94k Configuration Format Documen-
tation.” Posted to comp.arch.fpga and archived with message-id
20050812150910.29614.qmail@nym.alias.net.

[16] A. Love, W. Zha, and P. Athanas, “In Pursuit of Instant Gratification for FPGA De-
sign,” in Field-Programmable Logic and Application (FPL 2013). International Confer-
ence on, September 2013.

[17] E. L. Horta and J. W. Lockwood, “Automated method to generate bitstream intellec-
tual property cores for Virtex FPGAs,” in Field Programmable Logic and Application
(J. Becker, M. Platzner, and S. Vernalde, eds.), vol. 3203 of Lecture Notes in Computer
Science, pp. 975–979, Springer Berlin Heidelberg, 2004.

[18] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings, “HM-
Flow: Accelerating FPGA compilation with hard macros for rapid prototyping,” in
Proceedings of the 19th Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines, FCCM 2011 (Salt Lake City, Utah), May 1–3, pp. 117–124, 2011.

[19] M. Hübner, C. Schuck, M. Kiihnle, and J. Becker, “New 2-dimensional partial dynamic
reconfiguration techniques for real-time adaptive microelectronic circuits,” in Emerging
VLSI Technologies and Architectures, 2006. IEEE Computer Society Annual Symposium
on, vol. 00, pp. 6 pp.–, 2006.

[20] M. Hübner, T. Becker, and J. Becker, “Real-time lut-based network topologies for dy-
namic and partial fpga self-reconfiguration,” in Integrated Circuits and Systems Design,
2004. SBCCI 2004. 17th Symposium on, pp. 28–32, 2004.

[21] D. Koch and J. Teich, “Platform-independent methodology for partial reconfiguration,”
in Proceedings of the 1st conference on Computing frontiers, pp. 398–403, ACM, 2004.

[22] P. Athanas, J. Bowen, T. Dunham, C. Patterson, J. Rice, M. Shelburne, J. Suris,
M. Bucciero, and J. Graf, “Wires on demand: Run-time communication synthesis for
reconfigurable computing,” in Proceedings of the 17th International Conference on Field-
Programmable Logic and Applications, FPL 2007, (Amsterdam), August 27–29, pp. 513–
516, 2007.

comp.arch.fpga

66

[23] K. Kepa, F. Morgan, and P. Athanas, “ERDB: An embedded routing database for re-
configurable systems,” in Proceedings of the 21st International Conference on Field-
Programmable Logic and Applications, FPL 2011, (Chania, Crete), September 5–7,
pp. 195–200, 2011.

[24] R. Soni, N. Steiner, and M. French, “Open-source bitstream generation,” in Field-
Programmable Custom Computing Machines (FCCM), 2013 IEEE 21st Annual Inter-
national Symposium on, pp. 105–112, 2013.

[25] F. Benz, A. Seffrin, and S. Huss, “Bil: A tool-chain for bitstream reverse-engineering,” in
Field Programmable Logic and Applications (FPL), 2012 22nd International Conference
on, pp. 735–738, 2012.

[26] Z. Ding, Q. Wu, Y. Zhang, and L. Zhu, “Deriving an NCD file from an FPGA bitstream:
Methodology, architecture and evaluation,” Microprocessors and Microsystems, vol. 37,
no. 3, pp. 299 – 312, 2013.

[27] Xilinx Inc., “End User License Agreement.” http://www.xilinx.com/support/
documentation/sw_manuals/end-user-license-agreement.txt, March
2012.

[28] OpenCores. http://www.opencores.org.

[29] Boost. http://www.boost.org.

[30] zlib. http://www.zlib.net.

[31] Xilinx Inc., “MicroBlaze Soft Processor Core.” http://www.xilinx.com/tools/
microblaze.htm.

http://www.xilinx.com/support/documentation/sw_manuals/end-user-license-agreement.txt
http://www.xilinx.com/support/documentation/sw_manuals/end-user-license-agreement.txt
http://www.opencores.org
http://www.boost.org
http://www.zlib.net
http://www.xilinx.com/tools/microblaze.htm
http://www.xilinx.com/tools/microblaze.htm

Appendix A: Harness for site SLICEL

of Virtex-5 family

1

2 # ===

3 # This i s a harness c i r c u i t . The purpose o f t h i s XDL i s to r e t a i n the

4 # ind i v i dua l s e t t i n g o f some muxes which ge t s removed during XDL to NCD convers ion , when

app l i ed i n d i v i d u a l l y .

5 # time : Wed 20 th June

6

7 # ===

8

9 des ign ” h a r n e s s s l i c e l ” xc5v fx130t f f 1738−2 v3 . 2 ;

10

11 i n s t ”SLICEL” ”SLICEL” , p laced CLBLM X1Y38 SLICE X2Y100 ,

12 c f g ” A5LUT: SLICEL .A5LUT:#LUT:O5=A1 A6LUT: SLICEL .A6LUT:#LUT:O6=A1

13 ACY0 : : O5 AFF: SLICEL .AFF:#FF AFFINIT : : INIT0

14 AFFMUX: :XOR AFFSR::#OFF AUSED: : 0

15 B5LUT: SLICEL .B5LUT:#LUT:O5=A1 B6LUT: SLICEL .B6LUT:#LUT:O6=A1

16 BCY0 : : O5 BFF: SLICEL .BFF:#FF BFFINIT : : INIT0

17 BFFMUX: :XOR BFFSR::#OFF BUSED: : 0

18 C5LUT: SLICEL .C5LUT:#LUT:O5=A1 C6LUT: SLICEL .C6LUT:#LUT:O6=A1

19 CCY0 : : O5 CEUSED::#OFF CFF: SLICEL .CFF:#FF

20 CFFINIT : : INIT0 CFFMUX: :XOR CFFSR::#OFF CLKINV : :CLK COUTMUX::#OFF

21 COUTUSED: : 0 CUSED: : 0

22 D5LUT: SLICEL .D5LUT:#LUT:O5=A1 D6LUT: SLICEL .D6LUT:#LUT:O6=A1

23 DCY0 : : O5 DFF: SLICEL .DFF:#FF DFFINIT : : INIT0

24 DFFMUX: :XOR DFFSR::#OFF

67

Appendix 68

25 PRECYINIT : : 0 CARRY4: SLICEL .CARRY4:#OFF CYINITGND: SLICEL .CYINITGND:#OFF ”

26 ;

27

28 net ”SLICEL” ,

29 outpin ”SLICEL” A,

30 outpin ”SLICEL” AMUX,

31 outpin ”SLICEL” AQ,

32 outpin ”SLICEL” B,

33 outpin ”SLICEL” BMUX,

34 outpin ”SLICEL” BQ,

35 outpin ”SLICEL” C,

36 outpin ”SLICEL” CMUX,

37 outpin ”SLICEL” COUT,

38 outpin ”SLICEL” CQ,

39 outpin ”SLICEL” D,

40 outpin ”SLICEL” DMUX,

41 outpin ”SLICEL” DQ,

42 i np in ”SLICEL” A1 ,

43 i np in ”SLICEL” A2 ,

44 i np in ”SLICEL” A3 ,

45 i np in ”SLICEL” A4 ,

46 i np in ”SLICEL” A5 ,

47 i np in ”SLICEL” A6 ,

48 i np in ”SLICEL” AX,

49 i np in ”SLICEL” B1 ,

50 i np in ”SLICEL” B2 ,

51 i np in ”SLICEL” B3 ,

52 i np in ”SLICEL” B4 ,

53 i np in ”SLICEL” B5 ,

54 i np in ”SLICEL” B6 ,

55 i np in ”SLICEL” BX,

56 i np in ”SLICEL” C1 ,

57 i np in ”SLICEL” C2 ,

58 i np in ”SLICEL” C3 ,

59 i np in ”SLICEL” C4 ,

60 i np in ”SLICEL” C5 ,

61 i np in ”SLICEL” C6 ,

62 i np in ”SLICEL” CE,

63 i np in ”SLICEL” CIN ,

Appendix 69

64 i np in ”SLICEL” CLK,

65 i np in ”SLICEL” CX,

66 i np in ”SLICEL” D1,

67 i np in ”SLICEL” D2,

68 i np in ”SLICEL” D3,

69 i np in ”SLICEL” D4,

70 i np in ”SLICEL” D5,

71 i np in ”SLICEL” D6,

72 i np in ”SLICEL” DX,

73 i np in ”SLICEL” SR

74 ;

Listing 1: Harness for site SLICEL of Virtex-5 family

	Introduction
	Motivation
	Embedded Bitstream Generation
	Fast Bitstream Generation

	Contributions
	Thesis Organization

	Background
	FPGA Architecture
	Tile Layout
	Tile Resources

	Bitstream Structure
	XDL File Format
	Torc Library
	Summary

	Prior Work
	Bitstream Format Released
	Bitstream Relocation
	Bitstream Reverse-Engineering

	Hypothesis and Approach
	Hypothesis
	General Approach
	Primitive Selection
	Library Creation
	Bitstream Generation

	Implementation Details
	Primitive Selection
	Routing Primitives
	Logic Primitives
	Unsupported Resources

	Library Creation
	XDL Generation
	Routing Primitives
	Logic Settings
	Logic Site Harnesses
	LUT Equations
	LUT RAM Masks
	BRAM Initialization
	Compound Resources and Exceptions

	Micro-bitstream Generation
	Library Organization

	Bitstream Generation
	Design Traversal
	Resource Processing
	Routing PIPs
	Logic Settings
	Special Case: LUT Equations
	Special Case: Hex Strings
	Special Case: Compound Primitives

	Frame Address And Offset Calculation
	Bitstream Merging

	Code Structure And Usage
	Bitstream Merging Code
	Library Generation Code

	Results and Analysis
	Resource Coverage
	Validation and Fidelity
	Extensibility
	Portability
	Runtime Performance
	Library Size

	Conclusion
	Future Work

	Bibliography
	Appendix A: Harness for site SLICEL of Virtex-5 family

