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Micro-Moving Target IPv6 Defense for 6LoWPAN and the Internet of

Things

Matthew Gilbert Sherburne

(ABSTRACT)

The Internet of Things (IoT) is composed of billions of sensors and actuators that have

varying tasks aimed at making industry, healthcare, and home life more efficient. These

sensors and actuators are mainly low-powered and resource-constrained embedded devices

with little room for implementing IP security in addition to their main function. With

the fact that more of these devices are using IPv6 addressing, we seek to adapt a moving-

target defense measure called Moving Target IPv6 Defense for use with embedded devices in

order to add an additional layer of security. This adaptation, which we call Micro-Moving

Target IPv6 Defense, operates within IPv6 over Low power Wireless Personal Area Networks

(6LoWPAN) which is used in IEEE 802.15.4 wireless networks in order to establish IPv6

communications. The purpose of this defense is to obfuscate the communications between a

sensor and a server in order to thwart a potential attacker from performing eavesdropping,

denial-of-service, or man-in-the-middle attacks. We present our work in establishing this

security mechanism and analyze the required control overhead on the wireless network.
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Chapter 1

Introduction

The proliferation of the Internet of Things (IoT) has developed a massive increase in IP-based

traffic originating not from computers and mobile devices, but from autonomous sensors, ac-

tuators, and even home appliances. These devices and appliances include ovens, refrigerators,

air conditioners, smoke detectors, baby monitors, thermostats, door locks, light bulbs, and

power outlets just to name a few. These devices are also commonly sold with poor security

incorporated and default passwords that consumers never change. These factors, combined

with the fact that they are constantly connected to the Internet, have led to an increase

in malicious activity. Proofpoint, Inc. discovered that between December 23, 2013 and

January 6, 2014, more than 100,000 Internet-connected devices such as home-routers, Smart

TVs, media centers, and at least one refrigerator were involved in a cyber attack consisting of

750,000 malicious emails sent to Enterprises and individuals around the world [44]. Now that

these devices are handling important tasks in the evolving Smart Home such as appliance

1
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control, personal monitoring, and physical security, there is more at stake. Hewlett-Packard

and their Fortify unit conducted a study in 2014 which found that, “90 percent of devices

collected at least one piece of personal information via the device, the cloud, or its mobile

application,” and, “70 percent of devices used unencrypted network service.” [25] Collection

of personal information combined with unsecured communications presents a clear security

risk and can allow an attacker to eavesdrop. An even more ominous scenario could play

out if an attacker can gain full access to a smart home. They can use sensors and monitors

to observe when the residents are away and shutoff the thermostat in the winter to cause

the water pipes to break. These devices are not just limited to Internet-connected objects

around the home. There are also wearable devices in sectors such as security and safety,

medical, wellness, sport and fitness, lifestyle computing, communication, and glamour [3].

These applications include fitness monitoring, emotional response, and responsive learning.

This means that this subset of the IoT will have longer and closer access to personal data.

With so many different devices operating in a smart home, a framework that can assess

their security vulnerabilities can help develop and standardize solutions. Denning et al. [12]

discuss a framework for evaluating security risks of technology used in the home. There are

many reasons to fix security risks found in this framework. For example, we want to keep the

identities of our devices private so that attackers can not find out their true and sometimes

sensitive purpose such as a weight scale. We also want to ensure command authenticity so

that attackers can not send a malicious command to the device. In the case of our research,

we want to secure the communications between devices in the home that communicate with
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servers in the cloud.

1.1 Purpose and Goals

In this thesis, we seek to implement and evaluate a moving target defense called Moving Tar-

get IPv6 Defense (MT6D) in order to hide the fact that a conversation is taking place between

a sensor in the home and a server in the cloud by changing and obfuscating IPv6 addresses

thus implementing end-to-end security. Micro-Moving Target IPv6 Defense (µMT6D) as

proposed here is designed to provide this security on low-powered and resource-constrained

sensors. We seek several goals in this implementation. The first goal is to implement this

defense technique on a common Internet of Things wireless network operating IPv6. Next

we want to implement the technique at the sensor level and make no changes at the wireless

border router of this network. Last, we want to minimize the code space and additional

energy consumption this technique could have on the sensor.

1.2 Structure of Thesis

This thesis is organized by first discussing the background of the IoT in Chapter 2. A

survey on related work is provided in Chapter 3. We then explain our choice of hardware

and software in establishing a physical IoT testbed in Chapter 4. In Chapter 5 we describe

how we implemented µMT6D on our testbed. The results of our evaluation of µMT6D are
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reported in Chapter 6. Finally, in Chapter 7 we offer our conclusions and suggestions for

future work.



Chapter 2

Background

In this chapter we will discuss the Internet of Things and an example of a smart home. We

will then discuss IPv6 communications that take place between a sensor in the home with

a server in the cloud. Next we will discuss the open standard, 6LoWPAN, that allows IPv6

communications to extend to wireless sensors. This information will provide the information

necessary to understand the IoT standards and protocols in which we will implement MT6D.

2.1 Internet of Things

According to Beecham Research, the IoT can be broken down into nine service sectors:

buildings, energy, consumer and home, healthcare and life science, industrial, transporta-

tion, retail, security and public safety, and IT and networks [49]. They all contain sensors

and actuators performing various tasks. Each service sector seeks to make our lives more

5
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efficient by surrounding ourselves with sensors and actuators all connected via the Internet.

Never before have we had so much data reporting on our daily lives that is produced by

autonomous sensors. In the future, we will be enjoying efficiencies in this automated lifestyle

e.g., returning home from work with a house set to a comfortable temperature and an oven

pre-heated for cooking. This is very exciting, but it also presents major security challenges

when it comes to protecting the data these sensors produce or the commands sent to actu-

ators and devices. An overview of an example smart home, found within the consumer and

home service sector of the IoT is seen in Figure 2.1

Figure 2.1: Smart Home Connectivity Diagram

In this example of a smart home, an IoT wireless border router connects various sensors

and actuators to the Internet represented by the cloud. Service providers, manufacturers,

environmental data, vehicles, and mobile devices also interface with the cloud in order to

communicate with the smart home. Weather forecasts can give the smart home preparation

to adjust to temperature changes. The manufacturer of the sensors and actuators used in the

smart home can monitor the maintenance requirements of an appliance or push new updates
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to the sensors and actuators themselves. As we have discussed in the last chapter, a large

majority of these devices do not implement a satisfactory level of security. The United States

Federal Trade Commission, tasked with protecting consumers, has only recently weighed

in on security discussions about consumer-purchased IoT devices used within the home.

Their staff report, however, does not require but only recommends very generic security

best practices to manufacturers [6]. The FTC has very good reason to start this discussion,

since the sheer number of devices that make up the IoT will be large. ABI Research, a

market forecast research company, estimates that there will be 40.9 billion wireless connected

IoT devices in 2020 [48]. Similarly, Cisco's Internet Business Solutions Group (IBSG) is

predicting similar figures. They predict that 25 billion devices will be connected to the

Internet in 2015 and increasing to 50 billion by 2020 [18]. IBSG also recognizes that the

slow transition to IPv6, disparate standards, and developing new energy sources have acted

as barriers in slowing IoT development. Billions of IoT devices will require unique IPv6

addresses and new energy sources to keep them powered longer. Companies, such as Texas

Instruments are actively engaged in energy harvesting as an alternative energy source for

the IoT using various sources such as solar, thermal electric, electromagnetic, and vibration

energy [55]. There are many different groups forming to organization and standardize the

IoT. The three main groups today in competition are the AllSeen Alliance [54], the Thread

Group [22], and the Open Interconnect Consortium [7]. Each group has representation from

major technology companies.

It is prudent that we engage in developing new methods of security to maintain confiden-
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tiality, availability, and integrity. That is easier said than done considering the numerous

different standards that operate on the IoT. Our research is focused specifically on the subset

of IoT devices that communicate wirelessly using the IEEE 802.15.4 standard [1] and IPv6

over Low power Wireless Personal Area Networks (6LoWPAN) [27] to communicate at Layer

3 using IPv6 addressing. We will discuss the details of IPv6 in our next section.

2.2 IPv6

A basic understanding of Internet Protocol version 6 (IPv6) [11] is needed to understand

why MT6D and address hopping can work without causing issues for the Internet. IPv6

was developed in response to the shortage of IPv4 addresses. IPv6, with 128-bits of ad-

dressing, has a significantly larger addressing space than IPv4's 32-bits of addressing. To

be precise, there are 296 = 7.9x1028 more IP addresses in IPv6 than in IPv4. In fact, each

square nanometer of the Earth's surface, including all the oceans, can represent 667,000 IPv6

addresses. Figure 2.2 shows the structure of an IPv6 header. This header includes the IP

version, traffic class, flow label, payload length, next header, hop limit, and the source and

destination addresses. In our discussion of 6LoWPAN in the next section we will show how

this header is compressed in order to traverse a low-powered wireless network.

Within IP networking we have networks and hosts. Hosts are defined as computing endpoints

of the network that have an IPv6 address. IPv6 typically subnets networks to 64 bits, or the

first half of the IPv6 address. The last 64 bits are then used for the host address. Figure 2.3
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Figure 2.2: IPv6 Header

shows how the IPv6 global link address is formatted. The first 64 bits of the IPv6 address

represents the network portion. The last 64 bits represent the host portion. The 64 bits

of this host portion is provided by the interface ID (IID). We will now explain how IPv6

addresses are generated and assigned to hosts.

Figure 2.3: IPv6 Address Format
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2.2.1 IPv6 Address Assignment

IPv6 uses two different ways to automatically assign addresses on a network: Stateless

Address Autoconfiguration (SLAAC) [56] and Dynamic Host Configuration Protocol for

IPv6 (DHCPv6) [14]. SLAAC is the most commonly used address assignment method,

especially for networks where strict control of addresses is not a concern as long as host

addresses are valid and routable. DHCPv6 lets network administrators have control over

host address assignment

2.2.1.1 SLAAC

SLAAC enables a simplified method to address assignment that requires no servers. With

an IPv6 router configured for use with SLAAC, hosts can form their own IPv6 addresses

and advertise them to the router. This self-address creation process is typically performed

by using the host's MAC address, used as an interface identifier (IID), to form the link-local

host address and further described in RFC 4291 [26]. The host, after forming this address,

will verify that it is unique and not a duplicate on the network by sending a Neighbor

Solicitation (NS) message to the network. If the host receives no response from the network,

then a valid address is formed and the address is assigned to the interface. The host, now

with a valid link local address, transmits a Router Solicitation (RS) message to see if a

router is present. If a router, configured to run SLAAC, is present on the network, it will

respond with a Router Advertisement (RA) message that will contain its network address
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(subnet prefix) and lifetime value. Once the host has received this RA message, it now can

form its global link address be combining the subnet prefix including its host address with a

valid lifetime set in the RA message. The advantage to this address assignment is that it is

simple, but the disadvantage is that the host could be configured to use the same interface

ID for its host address. If the host is mobile while traversing different IPv6 networks, an

attacker could track that host logically and physically by filtering traffic for the same last

64 bits that form the interface ID. Next we will describe the alternate address assignment

process, DHCPv6.

2.2.1.2 DHCPv6

DHCPv6 as defined in RFC 3315 [14] allows the network to assign the host an address.

The address assignment process for DHCPv6 starts by a host sending a Solicit message to

the IANA defined DHCP relays and servers multicast address. A DHCPv6 server that can

service the host's request will respond with an Advertise message. In the case that multiple

servers respond to the Solicit message, the host will pick one of the servers to which it

will send a Request message. The server to which the Request message is sent will then

respond with a Reply message. The Reply message will confirm address assignment and

other related configuration information. DHCPv6 is now concluded once the host receives

the Reply message. The lifetime of the address is specified by the server. The host will send

a Renew message to the server to request an extension. The server will send a Reply message

with the new lifetime. Normally the host will send a Solicit message every time it boots up.
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Even if the host has an address with a valid lifetime, the parameters of the network could

have changed. Our next section will discuss how IPv6 is implemented in IEEE 802.15.4

wireless networks.

2.3 6LoWPAN

Wireless sensor networks operating with IEEE 802.15.4 will utilize IPv6 over Low power

Wireless Personal Area Networks (6LoWPAN) [27] in order to extend IPv6 addressing to

wireless sensors. RFC 4919 [30] and RFC 4944 [36] discuss the issues of assigning IPv6 to

wireless sensor network devices. 6LoWPAN is an adaption layer that lies between the data

link and network layers. This adaptation layer performs three different functions: packet

fragmentation and reassembly, header compression, and data link layer routing for multihop

connections. Packet fragmentation and reassembly is required because the Maximum Trans-

mission Unit (MTU) of an IPv6 packet is 1280 bytes and the 802.15.4 frame has a MTU of

only 127 bytes. Therefore packet fragmentation will occur and 6LoWPAN will handle the

control of these fragments. If the IPv6 packet can fit within the frame MTU, then no frag-

mentation takes place. 6LoWPAN can also can compress the IPv6 header to further reduce

its size and make more room for payload data. In the case of implementing MT6D, we do

not want to enable compression of the IPv6 addresses. Figure 2.4 shows the architecture of

6LoWPAN. As this network is an ad-hoc mesh network, there needs to be a routing protocol

present. A node, such as a wireless sensor, participating in the 6LoWPAN can act either as



Matthew G. Sherburne Chapter 2. Background 13

a router, host, or both depending on the mobility of the nodes. Communications that route

from host nodes to the border router are said to travel upstream. Communications traveling

from the border router to the host node moves downstream. Solid lines between router nodes

and host nodes represent the paths communications take. The dashed line between the two

router nodes represents an alternate route that can change to a primary route if another

router node is no longer in communication with the border router. Routing protocols take

care of establishing primary routes and alternate routes so that routing loops do not occur.

Our next section will discuss the underlying ad-hoc mesh network routing protocol used in

6LoWPAN called RPL.

Figure 2.4: 6LoWPAN Architecture
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2.4 RPL

IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) is defined in RFC 6550

[57]. It was developed by the IETF Routing over Low-power and Lossy Networks (ROLL)

working group. It is a hybrid of the Ad-Hoc On-Demand Distance Vector Routing (AODV)

[41] and Optimized Link State Routing (OLSR) [5] protocols producing a proactive distance-

vector routing protocol. RPL is necessary in order for wireless sensors to learn about their

neighbors and border router. We will discuss more about RPL and the control messages it

uses as it pertains to our research in Chapter 5.

We have discussed the background information of the IoT and how it will continue to increase

in size and complexity. IPv6 and its addressing size will be able to assign unique, globally

routable IP addresses to all the IoT devices. We have covered the basic standards and

protocols that exist for a predominant portion of the IoT whose sensors use IEEE 802.15.4

for low-powered wireless communications. Finally we discussed how 6LoWPAN and RPL

are used to extend IPv6 communications, addressing, and routing to these sensors. In our

next chapter, we will discuss several techniques of securing 6LoWPAN and provide their

advantages and disadvantages. We will then discuss the operation of MT6D in detail.



Chapter 3

Related Work

There is a vast amount of research into securing the embedded Internet at various layers

of the Open Systems Interconnection (OSI) model and with different techniques. We will

discuss several security schemes that are designed for use with 6LoWPAN. Finally, we will

describe in detail how MT6D works since it forms the basis of our research.

3.1 TLS and DTLS

Perelman [40] implements a limited version of Transport Layer Security (TLS) [13] and Data-

gram Transport Layer Security (DTLS) [47] for use with an AVR Raven running Contiki

OS. TLS is a security scheme that encrypts Transport Layer TCP datagrams. DTLS is a

security scheme, based off of TLS, that encrypts Transport Layer UDP datagrams. Wireless

sensors, depending on the application and function, will use either TCP or UDP commu-

15
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nications. The challenge with implementing TLS or DTLS is the memory resources they

consume on a resource-constrained sensors. Perelman concluded that this implementation

is viable, but only using a cipher suite lightweight enough to run on a resource-constrained

sensor. This research brings continued emphasis on securing the IoT through encryption.

The overall shortcoming here is that TLS or DTLS, in any form, still allows the observation

of the conversation because the IP addresses are static at each end of the communications.

Next we will describe a general purpose security standard built-in to IPv6.

3.2 IPsec

Raza et al. [45] propose adapting IPsec [29], an authentication and encryption protocol,

already included in IPv6 for use with 6LoWPAN. IPsec communications enables end-to-

end confidentiality, integrity, and authentication at the Network Layer and is independent

on what Transport Layer method is used. Due to the compression that 6LoWPAN can

conduct on IPv6 communications, these researchers adapted IPsec within 6LoWPAN so

that it can function with other hosts and networks also enabled with IPsec on the Internet.

The shortcoming to this implementation is that an attacker can still observe the conversation

due to the fact that the IPv6 source and destination addresses are visible in the basic setting

of IPsec. Even IPsec Encapsulated Security Protocol (ESP) [28] in tunnel mode will still

produce a static IPv6 tunnel address. If an attacker gains access to the trusted, internal

network, they can observe which host is communicating. Next we will describe another
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security technique designed to detect malicious behavior on the network.

3.3 Intrusion Detection System

Le et al. [31] assessed that encrypting traffic alone does not secure the wireless sensor network

from external or internal attack. Their approach is to introduce an intrusion detection

system (IDS) as another layer of defense in order to monitor malicious activity internal

and external to the wireless network. Having such a security mechanism employed does

provide an additional layer of defense that can alert if a potential attack is taking place. The

shortcoming here is that an IDS in combination with encryption e.g., TLS, DTLS, or IPsec,

still does not protect the network from passive eavesdropping. The static IPv6 addresses

used at each end of communications allows for an attack to be specifically targeted at those

addresses that an IDS may or may not be able to detect. Next we will explain MT6D and

how it is designed to hide the fact a conversation is even taking place to solve this potential

vulnerability.

3.4 MT6D

Dunlop et al. [17], developed an IPv6 defense scheme that provides security through obscu-

rity by rapidly changing IPv6 addresses of two end points participating of a conversation,

similar to frequency hopping in radio communications. The idea of extending MT6D into em-
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bedded devices, more specifically the Smart Grid, came with Groat et al. [21]. Although they

proposed this extension, they did not evaluate the efficacy of implementing MT6D on such

resource-constrained devices. This paper provided the motivation for us to develop a version

of MT6D that can be adapted for use on common, low-powered and resource-constrained

devices. We will now fully explain how MT6D works.

3.4.1 Motivation to Use MT6D

As discussed in the previous chapter, there are two methods of address assignment in IPv6:

SLAAC and DHCPv6. These methods potentially cause privacy and security issues based

on how they build the host address. If these addresses are formed using the same unique

identifier process across any network, then it is possible to track the same last, and unique, 64

bits of the IPv6 address if that host moves between networks. This process is true for the case

of embedded devices using 6LoWPAN since they normally implement SLAAC. The SLAAC

method will normally generate its interface identifier using the globally unique MAC address.

As discussed before, this forms the link local address and also the global link address. A

similar issue arises in DHCPv6, but the privacy and security concerns stem from the use of

the same DHCP unique identifier (DUID) the host connects with across any network. This

vulnerability requires an attacker to have internal access to the network in order to observe

this DUID. Although DUIDs are a concern, SLAAC-generated unique host addresses do not

require internal network access to exploit tracking of hosts across the network.
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MT6D was designed to address the issue of static IPv6 addresses and unique host addresses

communicating across the network by taking advantage of SLAAC. MT6D works by changing

the source and destination host's IPv6 addresses at predetermined time intervals in order to

hide the fact a conversation is taking place. It does this by calculating the addresses based

on a cryptographic hashing algorithm making it computationally difficult for an attacker to

know which addresses the two hosts in communication will change to next.

3.4.2 Purpose of MT6D

MT6D's purpose is to hide the fact that two hosts are communicating over an untrusted

network by not disguising their true identities. An attacker attempting to follow a conver-

sation based on observing the IPv6 source and destination addresses will have a difficult

time trying to establish the conversation in the first place. This difficulty is due to the fact

that the addresses constantly rotate with time. In addition, and besides obfuscating IPv6

address, MT6D can also tunnel traffic encrypted or unencrypted.

3.4.3 MT6D Address Hashing

MT6D implements a cryptographic algorithm in order to hash and generate the next source

and destination address a host. MT6D generates the new addresses by hashing the following

inputs: the initial IID of the source or destination host, the session key, and timestamp.

Using a hashing algorithm such as SHA256, MT6D will concatenate the IID, session key,
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and timestamp in order to calculate a new IID. A host will perform this hash for both its

next source address and destination address. Likewise, the other host in communication

will also perform this same hashing calculation. The session key discussed is a symmetric,

pre-shared key communicated out-of-band. As long as each host hashes with the same initial

IID, symmetric session key, and timestamp, they can successfully compute a matching set

of source and destination addresses at both ends of the communication. Due to slight

inaccuracies of network time used for the timestamp, each host has a sliding window of

addresses bounded to its interface. A later revision of MT6D also includes changing source

and destination ports to further obfuscate communications.

3.4.4 MT6D Implementation

MT6D can be implemented in one of two ways: on the wireless sensor itself (host mode)

or on a device that borders the untrusted network (gateway mode). These two operating

modes are shown in Figure 3.1. MT6D is designed to look at all packets and will either

handle MT6D communications or let non-MT6D traffic pass. Implementing MT6D on the

sensor itself means that the sensor must use its own resources to compute the addresses. A

gateway mode implementation allows a separate device to handle the computation instead

of a sensor or sensors within the trusted network the gateway borders. The gateway can also

be a central management point for all MT6D links terminated to that network and allows

easier management of session keys. Gateway mode, in its current form, has some inherent

drawbacks such as representing a single point of failure and also containing all the session
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keys for MT6D links terminated on that gateway. In host mode, each sensor will change its

own address and maintain its own MT6D parameters.

Figure 3.1: MT6D Operating Modes

We have decided to implement the host mode of MT6D operation for use in 6LoWPAN.

A gateway mode implementation could easily be established for 6LoWPAN based off the

findings of the creators of MT6D. We wanted to investigate if MT6D could be implemented

directly on resource-constrained devices for end-to-end security. Figure 3.2 shows MT6D

host mode as visualized with our smart home example. In this case, a MT6D secured link

exists between a home appliance and its manufacturer's appliance maintenance server. The

appliance, which can be thought of as a wireless sensor and actuator, and the server are both

changing IPv6 addresses on their communications interface.

In summary, there are security methods that exist in 6LoWPAN such as TLS and DTLS,
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Figure 3.2: Smart Home with MT6D Protection

compressed IPsec, and intrusion detection systems that can be employed. They do have

merit when it comes to a defense-in-depth approach to security of a network, but they still

leave open the ability to identify a conversation taking place between a sensor and a server.

We have discussed, in detail, how another method to security exists called MT6D that is

designed to hide the fact a conversation is even taking place between two endpoints. In the

next chapter, we will discuss the establishment of a 6LoWPAN testbed in order to implement

MT6D.



Chapter 4

Testbed Creation

Building a physical, Internet-connected testbed involved researching the latest hardware

and software environments designed for IoT development. The most critical element of the

selection process is that both hardware and software need to be open-source. It also needs

to best replicate what is or will be used in the smart home and communicate using IPv6. In

this chapter we will discuss the software and hardware we used to replicate a smart home

and implement MT6D onto a wireless sensor.

4.1 Software Selection

The software to establish our testbed includes the main operating system for the wireless

sensor and border router. We also needed to select software to use for a wireless packet

sniffer in order to observe the 802.15.4 traffic. This section explains our selection of the

23
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Contiki operating system and the Foren6 802.15.4 packet sniffer.

4.1.1 Contiki OS

Contiki OS, developed by Adam Dunkels [16], is an operating system for low-powered and

resource-constrained devices. It includes a full network stack called µIP that allows embed-

ded devices to communicate with the rest of the Internet using IPv6 addressing. Contiki

OS has development support with a fully built virtual machine called Instant Contiki. This

VM includes all the compilers and toolchains necessary to compile code for several common

embedded devices. The operating system is written in C. It has a socket-like API that ap-

plications can use called protosockets. The operating system utilizes a lightweight thread

model called protothreads. There are other open-source operating systems such as TinyOS

[32] and RIOT [2], but Contiki OS offered a simple development environment including the

fact that several products on the IoT market use this operating system such as the LiFX

Smart Bulb [4].

4.1.2 802.15.4 Packet Sniffer - Foren6

A wireless network sniffer is required to observe and record the communication exchange

between the wireless sensor and the border router. The third Tmote Sky we used runs a

802.15.4 sniffer [9]. When this sniffer is combined with a program called Foren6 [10], we

are able to passively capture 6LoWPAN traffic and render the network state in a graphical
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user interface. The Center of Excellence in Information Technology and Communication

(CETIC) developed Foren6 and the 802.15.4 sniffer. The sniffer program is designed to read

in all 802.15.4 frames that it captures and immediately forwards them to Foren6. Foren6

can capture the data and save the observation period as a pcap file for later analysis. Its

greatest strength is showing the network visually; representing nodes as circles that contain

the last two hexadecimal digits of a node's IPv6 address. When Foren6 observes a packet

from a node indicating it is on the network, it will show it as a circle on the screen. If that

node forms a route to the border router, it will then connect the circles representing the

node and the border router with a line. Foren6 is run on a 24” Apple iMac with 4 GB RAM

and a 2.66 GHz Core 2 Duo Processor operating Ubuntu 14.04. The Tmote Sky running the

sniffer program connects to the USB port on the back of the iMac.

Figure 4.1: Foren6 Screenshot
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A sample screenshot is seen in Figure 4.1. The top window of Foren6 is used to display

the frame and packet header details including addresses and flags. The bottom-right of

the program shows a real-time display of all packets heard. The bottom-center window is

where the nodes and border router are graphically displayed. To the left is a more generic

breakdown of the packets.

4.2 Hardware Selection

The hardware for our testbed had to be both open-source and representative of a low-

powered and resource-constrained wireless sensor. For this research, we define this as a

sensor powered by a microcontroller with less than 256kB of RAM that can be battery

powered. The hardware must communicate using IEEE 802.15.4 on the 2.4 GHz ISM band.

The reason for constraining hardware selection to devices that communicate on the 2.4 GHz

ISM band is that this band is approved for use globally. This fact also means that future

sensors will also communicate on this band due to reduced cost of producing a sensor with

a single frequency range for consumers around the world.

4.2.1 Tmote Sky

The Tmote Sky [42] is a very popular wireless sensor network test platform. It also comes

integrated with several sensors such as temperature, pressure, and light. Contiki OS fully

supports this platform with several example programs such as sky-websense.c which is a
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web server that displays the temperature and light sensor data via a web page. This device

represents a typical low-powered and resource-constrained wireless sensor. It is powered by

an 8MHz, 16-bit Texas Instruments MSP430 microcontroller with 10kB of RAM and 48kB

of flash memory. It includes a USB port for ease of connection and rapid programming and

reprogramming. The Tmote Sky is used for the first phase of µMT6D implementation by

first developing the code necessary to conduct address changes.

4.2.2 Econotag II

The Econotag II [46] is a more capable platform powered by a Freescale MC13224v ARM7

microcontroller with 32-bit processor operating at 24MHz and has 96kB of RAM. The Econo-

tag II also includes a USB port for rapid programming and reprogramming. This platform

was used in the development of WigWag [24] which is a planned home automation system.

This wireless sensor is more representative of what is currently being used in tech-startup

production. The Econotag II is used in the later phase of µMT6D development because of

the additional memory it offered that is necessary to include the code that allows for hashing

of IP addresses.

4.2.3 Raspberry Pi

We also want the border router to be similar in form factor and processing capabilities of

a home Wi-Fi router. In order to establish a connection to the Internet, the 6LoWPAN
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wireless network must bridge to a platform that can route these packets. A Raspberry Pi

model B [19] is a small computer that best represents what a home border router is like

both in size and computing power. It offers 512MB of RAM, a 100Mbps Ethernet Port, and

a 700-MHz ARM11 Broadcom BCM2835 processor. This Raspberry Pi runs the operating

system Debian Wheezy version 7.8.

4.3 Hardware and Software Integration

The physical testbed needs to best replicate a wireless sensor in a smart home communicating

with a server in the cloud. Figure 4.2 shows a network diagram of what this looks like. From

right to left we see the wireless sensor communicates with the 6LoWPAN Border Router

across the Internet until it reaches the first-hop router of the destination server in the cloud.

The 6LoWPAN Border Router and wireless sensor would both be located inside the smart

home within line-of-sight range of each other.

Figure 4.2: IoT Network Diagram
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In the development of this testbed and implementation of µMT6D, it is assumed that only

one wireless sensor is on the wireless network and communicating with the border router.

We also assume no threat to the RF channel from attack and only look at the work needed

to change IP addresses while having those addresses added to the routing table of the border

router. Although the MT6D protocol could be implemented at the border router (gateway

mode), we sought to establish a true end-to-end security solution by running a condensed

form of this protocol on the wireless sensor itself (host mode). The establishment of this

testbed can be found in Sherburne et al. [53].

Tmote Sky wireless sensors were the first sensors we could obtain in building the testbed.

Using Contiki OS version 2.7, we loaded one Tmote Sky with a program called RPL-Border-

Router. This program allows the Tmote Sky to act as the DAG root node in the 6LoWPAN

network. With the Tmote Sky connected to the USB port of the Raspberry Pi, a program

called connect-router is executed and establishes a tunnel interface, tun0, using the program,

tunslip6. The Raspberry Pi's eth0 interface is connected to the Virginia Tech's network that

provides both IPv4 and native IPv6 connectivity. We need a routable IPv6 subnet to allow

global communication on the 6LoWPAN wireless network. Virginia Tech does not provide

routable IPv6 subnets for such cases. In order to have the border router route an IPv6 subnet,

we utilized Hurricane Electric's tunnelbroker.net service that assigns /48 IPv6 subnets. An

interface labeled he-ipv6 is created on the Raspbery Pi that terminates a 6in4 tunnel. A 6in4

tunnel [39], establishes a dedicated fixed endpoint for the tunnel and maintains a reliable

and easier to troubleshoot link. From here we assign a /64 subnet within the /48 subnet
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to the tun0 interface created when we execute the connect-router program. When connect-

router is executed with the network address, the border router will broadcast this prefix to

its 802.15.4 wireless network and allow wireless sensors to establish their global-link IPv6

addresses.

In order to test the Internet connectivity of the testbed all the way to the wireless sensor, we

loaded another Tmote Sky with Contiki OS example program Sky-Websense. This program

allowed us to establish TCP communications over IPv6 to the Tmote Sky from across the

Internet and access the web page hosted by the web server running on the Tmote Sky. It

also allowed us to observe that the Tmote Sky formed its host address based off of its MAC

address. This host address is known as the Interface Identifier (IID). In this case, no matter

which network the Tmote Sky connects to, it will maintain the same IID and thus could be

tracked across the Internet by correlating the last 64 bits of the IPv6 address. This was one

major motivation for the authors of MT6D to design a system in which the IID constantly

changes.

Figure 4.3 shows the physical testbed used in development of µMT6D. The Tmote Sky

wireless sensor on the right communicates with the border router comprised of another

Tmote Sky connected to a Raspberry Pi. The Foren6 sniffer is located between the wireless

sensor and the border router.

We have now described a testbed that, from the open-source perspective, represents an

Internet-connected smart home wireless sensor network. We chose an open source operating

system, hardware, and communications standards in order to have maximum flexibility in
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Figure 4.3: Physical Testbed

development and implementation of µMT6D. In the next chapter we will present our work

in implementing µMT6D onto a wireless sensor.



Chapter 5

Implementing MT6D Functionality in

Contiki OS

In this chapter we will explain how to implement the MT6D protocol, in a reduced form,

on our testbed that we have just described in the previous chapter. We first will describe

a flowchart that displays the overall functionality of µMT6D before describing each step in

further detail. Figure 5.1 shows the steps necessary to carry out MT6D functionality on a

wireless sensor. We begin with the boot up sequence of the wireless sensor followed by the

initialization and transmission of its Layer 2 and Layer 3 addresses. Next, a process that tests

whether the wireless sensor has found a border router will then start NTP synchronization if

a border router is found or else the process will wait until the wireless sensor does link with

a border router. Another process will test whether valid NTP time is synchronized before

the hashing of addresses begins. If no valid time exists on the sensor, the process will hold

32



Matthew G. Sherburne Chapter 5. Implementing MT6D Functionality in Contiki OS 33

until another NTP synchronization takes place. With the successful synchronization of NTP

time, a new source and destination IPv6 address pair is calculated with the mt6d hash()

function. Next, the IID of the new source address is passed to the set global address()

function. This function builds the new Layer 3 and Layer 2 addresses of the wireless sensor

and then advertises them to the border router. An event timer, called an etimer, is set for

a specific address change interval. If the timer expires, then a new source and destination

address pair are recalculated. If the timer has not yet expired, the sensor will check for any

outbound or inbound traffic.

Figure 5.1: µMT6D Flowchart

Now that we have described the high-level functionality of µMT6D, we will next describe the

neighbor and routing control messages used in 6LoWPAN and RPL. Since we are working
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with a wireless ad-hoc mesh network, we must use the existing RPL routing protocol in order

to perform address advertisements of the new address bound on the radio interface of the

wireless sensor to the border router. We will discuss this control message exchange process

in our next section.

5.1 ICMPv6 RPL Control Messages

RPL control messages specified in RFC 6550 [57] are a new ICMPv6 message. The base

ICMPv6 messages are specified in RFC 4443 [8]. There are three main control messages:

DODAG Information Object (DIO), DODAG Information Solicitation (DIS), and Destina-

tion Advertisement Object (DAO). These are important and relevant to the implementation

of MT6D in the wireless sensor because they update address information to the wireless net-

work and the border router. We will now better explain the purpose of each of these messages.

A DIO control message, much like a neighbor advertisement, contains information that al-

lows other nodes on the wireless network to discover and learn the configuration parameters

of an RPL Instance, select a DODAG parent set, and maintain the DODAG. These messages

are constantly being sent from RPL nodes at controlled time intervals. Within Contiki OS,

rpl-conf.h defines a variable RPL DIO INTERVAL to default 12. The minimum interval is

defined as 2n milliseconds. With our default set to n = 12, a DIO packet will be sent every

4.096 seconds. With this default set for every node, this means a DIO will be sent approxi-

mately every 4.096 seconds while there is activity from other nodes on the network. This will
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be a factor to consider when trying to send address updates from one node and the border

router sending a DIO packet at this interval. The second control message, DIS, is much like

a neighbor solicitation packet and is used to solicit a DIO (neighbor advertisement) from

another node. A DIS is also analogous to a Router Solicitation in IPv6 Neighbor Discovery.

Any node in a wireless sensor network can act as a host or a router and is why this type

of solicitation is used. The final control message, DAO, is used to conduct an IPv6 address

advertisement to the DAG root, better known as our border router. This message is required

to store the wireless sensor's global link address in the border router's route table. The DIO

and DAO pair of messages are important in maintaining and establishing a global route. The

packet diagram in Figure 5.2 shows the baseline operation of ICMPv6 RPL control messages

in order to establish neighbors and routes in 6LoWPAN.

Figure 5.2: Base Configuration RPL Packet Exchange

The wireless sensor boots up and first sends a DIS neighbor solicitation packet in order to
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request neighbor information from other nodes on the wireless network. The border router

responds with the DIO neighbor advertisement packet that contains the prefix address of the

IPv6 network and the fact it is a border router. The wireless sensor then sends back a DIO

neighbor advertisement packet and DAO IPv6 address advertisement packet that provide

the border router with the wireless sensor link-local and global-link addresses. Note that

the DIO neighbor advertisement destined for multicast so other nodes that may be present

on the network may also add the wireless sensor to their neighbor table. The DAO IPv6

address advertisement packet is sent unicast to the border router directly.

We have now explained the necessary control messages that handle neighbor and routing

updates to the 6LoWPAN. These are important to understand because they are used to

update the border router with the new address information on the wireless sensor performing

µMT6D. Next we will discuss how we implemented dynamic address changes and explain

why it is a necessary component of implementing MT6D within 6LoWPAN.

5.2 Dynamic Addressing Changes

In order to implement MT6D, we must establish a function that can set a new address and

bind it to the wireless sensor's radio interface. That address must also be advertised to

the border router so that incoming packets destined to the new address will have a route

established. Since 6LoWPAN, by default, does not query the wireless network for who has

an inbound packet destination address that is not in the routing table, communication can
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only continue if the border router has the updated address already in its routing table. It

was our decision not to make modifications on the border router with this implementation

as we were investigating only implementation of MT6D on the wireless sensor. The research

conducted by Preiss et al. [43] identified the critical files, methods, functions, and global

variables required to establish dynamic address changes within Contiki OS. Wireless sensors,

by default, only set their MAC, link-local, and global-link addresses once upon boot up and

discovery of their DAG root. There is no need to change their address again. µMT6D, on

the other hand, requires that the sensor be able to establish a new address and advertise

that address to the border router.

Figure 5.3 shows the basic flowchart of the set-global-address.c file that is executed when we

call set global address(). We first start by passing, as a parameter, the new 64-bit IID. From

here, we perform the EUI-64 conversion followed by removing the old addresses from the

array and next adding the new link-local and global-link addresses to that array. We then

set the Layer 2 addresses and send the RPL messages needed to advertise our new addresses

to the border router. This is the general flow of set-global-address.c. We will explain in more

detail how each of these steps are carried out.

We will now describe what these wireless sensors do by default upon boot up in order to

establish an address on the network. The code in contiki-sky-main.c starts by performing a

conversion to a global array labeled ds2411 id. This conversion changes the 802.15.4 MAC

address to a compatible EUI-64 bit address [26]. This variable, for the Tmote Sky, forms

the basis to which all addresses are created. This global array contains a unique value, once
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Figure 5.3: Address Change Function Flowchart

initialized, that derives from the Tmote Sky hardware specifications including family, type,

and node id. The Tmote Sky uses ds2411 id as its MAC address since it is unique to an

individual node and does not change. After the ds2411 id EUI-64 conversion is performed, a

local method, set rime addr(), performs a memcopy of ds2411 id and sets the Rime address

by using rimeaddr set node addr(&addr). The Rime stack is a lightweight network stack

that can be used instead of the full IPv6 stack. This method, set rime addr(), is important

as it is the first method that relies on ds2411 id. We can begin building our own dynamic

address by inserting our address into this method instead of it reading from ds2411 id.

The next method explained, cc2420 init(), is specific to the 802.15.4 radio used on the

Tmote Sky and is used to initialize it. The method sets the radio's PAN (Personal Area

Network) address to the Rime address. The CC2420 radio acknowledges all inbound packets'
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destination addresses by performing a cross-check of its PAN address with the destination

of the packet. Next, a memcopy of the ds2411 id into the global variable, uip lladdr.addr,

is performed. The uip lladdr.addr variable contains the IPv6 link local address. A global

array called uip ds6 if stores the global and link local addresses. Once the Rime and PAN

addresses are initialized, uip lladdr.addr, the link local address, is added to this uip ds6 if

array. This address is used as the source address of the first DIS, or neighbor solicitation,

control message that is sent upon initialization of the Tmote Sky. In response to this DIS,

neighboring nodes will send back a DIO which contain the information about the wireless

network. The DIO from a border router will contain the IPv6 network prefix address. If

the node receives a DIO from the border router, it then adds this prefix to a global array of

prefixes. Then the node uses the received prefix to create a full global address by combining

the prefix with its link local address. This newly formed global link address is then added

to the same global array, uip ds6 if, that just recently stored the link local address. With a

global address formed, the Tmote Sky will now send a DAO, or IPv6 address advertisement,

control message back to the border router to indicate that this is the address it wants as a

global address in the border router routing table.

Using the above initialization information, we were able to replicate this process in order to

set new addresses at specified intervals. Working in the memory constrained environment of

the Tmote Sky, we first produced new addresses by simply iterating an address to increase

the value of its last octet by 0x01. This was a simple way to change addresses and ensure

the code was working properly. We also tested that specified address change intervals, one
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through ten seconds increasing in one second intervals, were being executed. These address

change intervals were selected during initial testing which showed a 100% global address

route addition in the border router at 10 second interval changes. We then evaluated system

performance by increasing the rate of address changes to see how quickly we can send address

updates on the wireless network.

We set, in a method, the IID, or last 64 bits of the IPv6 address via eight, 8-bit unsigned

integers with the network address prefix hard coded for use in forming the global address.

This was used in initial testing until a more suitable alternative can be found to pull the

prefix from the DIO packet of the border router. We then convert the IID to make the

address Ethernet compliant. This is done by bitwise XOR bits 40-47 with 0xfe and changes

the 7th bit to 1 to be Ethernet compliant. We now remove the previous link local and global

link addresses from the global array mentioned previously that stores the addresses for the

node. We changed the global array that stores the addresses for the node and mark the

addresses as not used; mirroring the behavior of uip ds6 addr rm in order to reduce code.

These array positions will now be overwritten upon a following add into the array. If we had

not done this, then adding a new set of addresses would have failed rather than overwrite.

Now we add the new address into the uip net if list and set the global variables mentioned

previously. We create a uip ipaddr t struct for the local and global addresses and initialize

them using the uip ip6addr u8() method. This method takes, as a parameter, a 128-bit

number broken into sixteen, 8-bit numbers. We then use uip ds6 addr add(), that takes as

parameters: the IP address, lifetime, and address type. We set the lifetime to 0 to make
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it infinite. The lifetime could be set to a specified interval, but because we are changing

addresses that will cause an old address in the routing table of the border router to be

overwritten, it was not necessary at the time to find an optimal interval. The address type is

set to ADDR PREFERRED since this is the same type used in the initialization of the first

address. Other address types include ADDR MANUAL and ADDR TENTATIVE. Next, we

perform the bookkeeping of global variables in which we set the Rime address, CC2420 PAN

address, and global uip lladdr.addr. This allows any address that will be used throughout

the messaging and stack protocols to be updated to the new address. A 64-bit Rime address

struct rimeaddr t named addr is created and its values are set by accessing the address as

an 8-bit array. This is performed by accessing the rimeaddr as addr.u8[i] where i is the

index, from 0-7, to change the Rime address to the new address. We set the Rime address

using rimeaddr set node addr(). Then we set the CC2420 PAN address by copying the Rime

address and using cc2420 set pan addr. Our last bookkeeping of global variables consists of

setting up uip lladdr.addr by using memcopy to copy the newly set Rime address into this

structure.

Our final task is to send the DIS, DIO, and DAO control messages now that our new

address is set. DIS and DIO control messages are sent to the destination multicast address

of ff02::1a. The DIO control message will add the link local address to the neighbor table

of the border router. The DAO, which is sent directly to the address of the border router,

will add the global link address to routing table of the border router. We use dio output()

and dao output() in order to send the DIO and DAO control messages. Initially we called
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dio output() only and let the DAO control message be sent via a built-in timer that calls

dao output(), but that timer was designed to be randomized between 0.8 and 9.8 seconds

based on our analysis. This means that the next address changes before the DAO can even

be sent if we have an address change interval faster than ten seconds. You can see the impact

this timer has on the successful addition of addresses per address change interval in Figure

5.4.

Figure 5.4: Route Addition Success Rate

It was necessary to disable the DAO delay timer call found in rpl-timers.c and manually

call dao output() directly after dio output(). The purpose of the random delay timer is to

decrease contention on the RF channel since it is assumed there are multiple wireless sensors

on the network. This is the one change we made to RPL from the standpoint of the wireless

sensor. In order to implement MT6D functionality, we had to send address change control
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messages immediately with no randomized delay.

The packet exchange that occurs based on this new dynamic address change method is shown

in Figure 5.5.

Figure 5.5: RPL with Address Changing

This exchange now shows the wireless sensor changing addresses based on the address change

interval with DIO and DAO control messages sent in pairs. Initially, when we called both

functions, one right after the other, we had unsuccessful route additions. We found that the

DAO packet was attempting to send before the DIO was finished transmitting. A 0.3 second

delay was established in order to provide enough delay between the completion of the DIO

packet being sent and the start of transmission of the DAO packet. This delay was selected

because it was the minimum delay needed for us to achieve an approximate 99% to 100%

route addition success rate.
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Upon completion of implementing the dynamic address change code, set-global-address.c, we

reached the near limit of the memory on the Tmote Sky. Another wireless sensor platform

was needed with more memory in order to add the address hashing algorithm libraries and

requisite code. For this reason, research was moved to the Econotag II platform. Due to

the network stack of Contiki OS and the way addresses are changed and set in our code,

set-global-address.c, only one minor change was made to the code in order to use with the

Econotag II. We commented out cc2420 set pan addr since the Econotag II does not have

this radio. The same tests as performed with address changes on the Tmote Sky were

performed on the Econotag II. Having achieved the same successful results, we continued

work on implementing the use of hashing algorithms to obtain the new IPv6 address just

as in MT6D. Next we will discuss establishing the timestamp that MT6D requires for its

address hashing function through the use of the Network Timing Protocol.

5.3 Establishing NTP

The timestamp parameter in the mt6d hash function in addr gen.c that is used in the calcu-

lation of the next IPv6 address is the Network Timing Protocol time [34], which uses Unix

time. Unix time was chosen by the creators of MT6D because it is a value that can change

on both ends that is accurately synced across the Internet on both hosts running MT6D.

This means that hosts on each end of the Internet can calculate matching addresses and

necessary in order for communication to be successful.
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Consideration was made on whether NTP should be used in the implementation of µMT6D

on an embedded device. There needed to be a way for a value to constantly change that

is processed accurately on both ends of the communication. The only logical choice is to

implement a version of a NTP client that can run on embedded devices and within the

framework of Contiki OS. After researching for NTP clients that were designed to be run

on Contiki OS, two candidates were found and evaluated. The first NTP client is by Josef

Lusticky [33]. His implementation is specifically designed for the AVR Raven embedded

platform with precision timing. Due to this fact, the code was written in such a way that

it was only compatible for AVR devices and the specific timers their architecture utilizes.

There was not a practical way to port this code for use with either the Tmote Sky or the

Econotag II.

The second NTP Client, by Anuj Sehgal [51], was developed for use on any generic device

that Contiki OS supports. It utilizes the Simple Network Timing Protocol (SNTP) [35].

Although not precise on the order of nanoseconds, it does provide a means to establish NTP

on the sensor. This client has the option to request NTP time either from the border router

that the sensor discovers or a set address to a NTP server. The advantage of selecting the

border router that the sensor discovers is that the time is more accurate due to lower delays

than if requesting time from a distant server. Requesting time from a distant server also

allows mobility, but its address could potentially be blocked by the local network access

control list.

For implementation of SNTP into µMT6D, the tun0 IPv6 address of the Raspberry Pi is used
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because rpl-border-router.c did not include code in order to establish the sensor connected to

the Raspberry Pi as a NTP server. The code in the NTP client running on the wireless sensor

is set to find the wireless 802.15.4 address of the border router and use that as the NTP

server address. This obviously presented an issue and is why the IPv6 address of the tun0

interface is used. As stated before, the interface, tun0, is created when connect-router is run

on the Raspberry Pi which establishes a Serial Line Internet Protocol (SLIP) connection [50]

with tunslip6 between the Raspberry Pi and the Tmote Sky through the USB port, in this

case, /dev/ttyUSB0. The Raspberry Pi, to be a NTP server, has to have its NTP daemon

running in order to pull NTP time from a higher stratum server and to serve this time to

requests from the NTP client running on the wireless sensor. It is important to note that

the appropriate security should be in place on the Raspberry Pi in order to ensure that NTP

port 123 is not accessible from the outside Internet. Upon boot up of the wireless sensor,

Contiki OS sets its initial addresses and begins to establish connectivity with the border

router. A control measure is added to the SNTP client code that delays the client from

sending an NTP time synchronization UDP packet until the wireless sensor has a default

route established that is indicated by uip ds6 defrt choose() being true. This test allows

time for the global link address of the wireless sensor to be added into the routing table of

the border router. With this route added, the NTP server can now successfully send the

NTP time packet to the wireless sensor. Another necessary control measure added is to

perform a test of whether valid NTP time is now being kept on the wireless sensor before

starting the address change process. This is implemented using a simple if statement that
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tests whether getCurrTime(), the function that returns the Unix time value, is not equal to

0. Once the wireless sensor synchronizes its NTP time with the server, it will no longer have

a value of 0 and then proceed to change addresses as often as the interval is set. This NTP

client will also periodically re-synchronize its time with the NTP server. With our wireless

sensor now able to maintain time using NTP, we will now explain in the next section how

we implemented the MT6D hashing function using the SHA256 hashing algorithm in order

to calculate the next source and destination address information.

5.4 Performing Hashing of New IPv6 Address

In order to perform hashing of the new IP address on the wireless sensor, some work was

conducted in porting the MT6D file, addr gen.c [37], to work correctly with Contiki OS.

The original file assumed functionality on a full Linux OS that could perform its buffer

memory initialization and allocation. Contiki OS' memory management is contained in a

file called mmem.c. Here the memory size is defined, default to 4096B, and includes the

initialization, allocation, and memory free functions. These are used to establish a memory

heap in addr gen.c in order to process the hashing of the address and return a new address.

Many different hashing functions can be used with MT6D, so long as they are the same ones

used on each end of the communications. We decided to use SHA256 by using a version of

SHA2 written in C [20]. This decision was based on the fact that Anuj Sehgal also developed

TLS and DTLS clients [52] for use with Contiki OS and they also utilized this version of
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SHA2. Additionally, this same hashing algorithm is used with MT6D.

Since the wireless sensor's address change function requires a 64-bit value - the Interface

Identifier (IID), the last 64-bits of the returned hashed IID is copied into the IID array. This

value is then passed to the set global address function in order to update the link local and

global link addresses and send them to the border router to be added to the neighbor and

routing tables.

In this chapter we have discussed how we used the ICMPv6 RPL control messages utilized in

6LoWPAN in order to send address updates to the router. We covered how we implemented

dynamic address changes and the functions and methods necessary to build new addresses

both at Layer 2 and Layer 3. Then we showed how the border router was successfully storing

these new addresses from the wireless sensor in its neighbor and routing tables. We then dis-

cussed how we were able to integrate a NTP client that allows us to maintain a synchronized

network time for use as our timestamp parameter for the MT6D hashing function. Finally,

we discussed how we integrated the SHA256 hashing algorithm and memory management

so that the MT6D hashing function can successfully calculate new source and destination

address information. In our next chapter, we will evaluate the performance of µMT6D in

order to assess the viability of implementing MT6D on a wireless sensor.



Chapter 6

Evaluation of µMT6D

In this chapter we will evaluate µMT6D on its performance based on three parameters:

address creation and route addition success rate, binary file size, and average current con-

sumption. The results of these parameters will allow us to draw a conclusion on the viability

of using MT6D on a wireless sensor. We will explain the methodology of the testing for each

of these parameters followed by the results of the tests.

6.1 Methods

We will discuss in this section the methods used to measure address creation and route addi-

tion success rate, binary file size, and average current consumption and why we chose these

methods. These methods were developed as the baseline test measures to assess performance

of µMT6D. They will provide a satisfactory baseline to which we can draw conclusions from
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the data results.

6.1.1 Address Creation and Route Addition Success Rate

It is important to assess that the wireless sensor is able to compute the SHA256 hash of

the next source and destination addresses. It is equally important that the wireless sensor

can also advertise the source address to the border router so that the border router can

properly route inbound packets destined for that sensor. The experiment performed in [43]

was performed again, but this time with addresses being calculated with the SHA256 hashing

algorithm function, mt6d hash instead of a simple 0x01 increment of the last octet of the

IID. In order to test the full capabilities of the Econotag II, the hashing function was also

calculating the destination address and destination port addresses for the same time interval

as the source. This test is designed to show that the wireless sensor can handle calculating

both source and destination address information and advertising its address to the border

router. In addition to this test, we want to also make measure the amount of code size that

µMT6D adds.

6.1.2 Binary File Size

We want to assess the size of µMT6D in terms of binary file size. This, at a minimum, shows

the amount of RAM, in this case code space, that is required on the Econotag II. We can

then compute the percentage of the loaded binary file dedicated to µMT6D. The Econotag
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II has a maximum RAM size of 96kB which it uses for code execution. This low memory

size is why it is relevant to conduct this measurement. Next we will discuss our testing

methodology for measuring the average current consumption.

6.1.3 Average Current Consumption

As discussed earlier, most devices on the Internet of Things are powered by batteries. It is

important to assess what additional current is consumed by implementing µMT6D. There are

several methods in which to collect this data. Contiki OS has a software-based calculation

program called Powertrace [15]. The program calculates the time a device spends using its

CPU, operating in a sleep state, sending data, or receiving data. It can then approximate

the average current consumption based on how long the device spends in each of these states.

This program is unfortunately not compatible with the Econotag II as of this research. We

proceeded to measure the average current consumption of a device running µMT6D and

compare it to a device in baseline configuration.

The baseline configuration, called the control configuration for this experiment, is the wireless

sensor not running µMT6D. The baseline program is from the Contiki OS example called

udp-echo-server.c. This is the same code base used for implementation of µMT6D. In order to

sample a sufficient time period of data, we will record the average current consumption over

a time period of five minutes. The average current consumption of the control configuration

sensor will be recorded along with the device running µMT6D operating at address change
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intervals of one through ten seconds in one second increments. The purpose of this evaluation

is to observe the average current consumption of µMT6D running at different address change

intervals to then draw a conclusion on whether there is an optimal configuration of µMT6D

with respect to average current consumption.

We utilized the shunt resistor method to record the average current consumption of the

Econotag II. With this method, the Econotag II, shunt resistor, and power source are wired

as seen in Figure 6.1.

Figure 6.1: Average Current Consumption Measurement

We then measure and sample the voltage drop across the shunt resistor. In order to find the

current from the sampled voltage at time, t, we use Equation 6.1.

I = V/Rshunt resistor (6.1)

To measure this voltage drop, we used a Mooshimeter data acquisition multimeter with 0.5%

accuracy. It has a 24-bit ADC and can process 256 samples per second. A 1 Ohm resistor

is used as the shunt resistor. A Hewlett Packard 3478A Multimeter was used to measure
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the resistance of the shunt resistance and accurate to approximately 0.1%. The resistor was

measured at 1.347 Ohms. To power the Econotag II, we have to use a power source separate

from the USB port of the computer that programs the Econotag II with the binary file.

For our testing, we used a Hewlett Packard E3631A Triple Output DC Power Supply. The

output voltage was set to 3.60 volts and measured at 3.598 volts in order to replicate the

typical battery voltage that would be used to power the Econotag II. One such example of

a 3.6 volt battery is the LAA 3.6 volt Lithium-Thionyl Chloride (Li-SOCl2) battery. These

batteries have a typical capacity of 2600mAh. This fact will be used in the results to show

the approximate lifetime of a battery when used to power a device. We will use Equation

6.2 in order to show approximately how many hours and minutes a battery can last when

executing the control versus µMT6D.

Lifetime[H] = Battery Capacity[mAh]/Current Draw[mA] (6.2)

We will only account for the effects of the address hashing process and RPL control over-

head on the average current consumption. No additional data communications between the

Econotag II and the border router are performed. The radio transmit power is set to 0 dBm.

6.2 Results

In this section, we report our results using the above methods. These results will provide

the data necessary to conclude whether the implementation of MT6D host mode onto a

low-powered and resource constrained wireless sensor running Contiki OS in a 6LoWPAN
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is viable. This data includes the ability to calculate both source and destination address

information and for the wireless sensor to advertise the new source address to the border

router. It also includes data on the size of the control configuration binary file in comparison

to the µMT6D binary file. Last we provide the results of the average current consumption

of the control configuration and µMT6D.

6.2.1 Evaluation of µMT6D Hashing Process

We now evaluate the performance of the µMT6D hashing and address advertisement process.

We present the success rate of the border router storing the wireless sensor address adver-

tisements in its routing table. With this address in the routing table, an inbound MT6D

packet can be further routed to the wireless sensor. Figure 6.2 shows the results of this test

with address change intervals ranging from one to ten seconds.

One second address change intervals averaged a 95% route addition success rate for one or

two hashing processes. The reason for this rate is the packet collisions when the border

router's DIO neighbor advertisement packets are sent. This fact is also true for the other

address change intervals. There were test runs at one second address changes that caused the

sensor to halt. This was later attributed to the numerous printf's being sent to the screen

used in earlier troubleshooting of the code. Those printf's were removed for all but the ones

that indicated what IPv6 address the sensor was currently bound. This then allowed the

sensor to function properly. It is important to note that 100% of the IPv6 link-local neighbor
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Figure 6.2: Route Addition Success Rate with Hashing

addresses are being added at all address change intervals with the border router. In order

for the sensor to initialize addresses with the border router to conduct NTP synchronization

before the start of the µMT6D process, rpl-timers.c was configured so that DIS, DIO, and

DAO packets were sent. As the set global address() function sent DIO and DAO packets,

rpl-timers.c was also sending DIS and DIO packets for that new address. These extra packets

contributed to the occasional loss in DAO packets that led to a 95% route addition success

rate.

6.2.2 Binary File Size

The file sizes are listed in the table below. µMT6D adds 2948 bytes to the base code. This

leaves 37584 bytes available for additional code or memory usage.
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Table 6.1: Comparison of Binary File Sizes.

File Size [B]

Control Configuration 55468

µMT6D 58416

6.2.3 Average Current Consumption

The below table shows the average current consumption over the course of five minutes. The

average is taken across 1950 current measurements for each test. The margin of error is

± 0.6% A or, in the case of the control, ± 98 µA. The battery lifetime is calculated from

Equation 6.2.

Figure 6.3 shows a graphical representation of the average current consumption. There is a

clear increase in current consumption between the control at 16.274mA and µMT6D at its

maximum address change interval of one second, 16.346mA. This difference, however is not

as large as we first expected. With an increase in packet transmission to update the address

change to the border router, it was first thought that the difference would be on the order

of mA and not µA. The explanation comes from the fact that the power required to receive

and to transmit, at least at 0 dBm, is nearly the same. Instead of the radio mostly in receive

mode as with the control code, we are now replacing those time periods with transmission.

The extra current consumed then comes from processing the hashing of new addresses with
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Table 6.2: Comparison of Average Current Consumption.

Current [mA] Battery Lifetime

Control 16.274 159H 46M

µMT6D 1 second 16.346 159H 4M

µMT6D 2 seconds 16.333 159H 11M

µMT6D 3 seconds 16.311 159H 24M

µMT6D 4 seconds 16.308 159H 26M

µMT6D 5 seconds 16.292 159H 35M

µMT6D 6 seconds 16.294 159H 34M

µMT6D 7 seconds 16.297 159H 32M

µMT6D 8 seconds 16.292 159H 35M

µMT6D 9 seconds 16.301 159H 30M

µMT6D 10 seconds 16.298 159H 31M

SHA256. The difference of µA is within our error of margin, but we can still conclude that

the addition of µMT6D does not greatly increase the average current consumption.

With our results now presented and described, we can form a conclusion as to the efficacy of

implementing a reduced form of MT6D onto a wireless sensor from the perspective of control

overhead. This is important in understanding how effective this security scheme performs

under operation on a low-powered and resource-constrained sensor. As these sensors are
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Figure 6.3: Average Current Consumption

battery powered with a small amount of memory and communicate over a low-powered and

lossy network, we have to keep in mind whether the security scheme we implement will,

in the end, cause a greater impact on resources than the attacks this security scheme was

designed to thwart. In our last chapter we will conclude our findings and offer suggestions

for future work.



Chapter 7

Conclusion and Future Work

We have provided the background to the Internet of Things and potential security risks

involved with the communications between sensors and servers. We described a specific

subset of the IoT that use IEEE 802.15.4 and 6LoWPAN to communicate. We presented a

testbed that implements this network and the work conducted to implement MT6D onto a

wireless sensor. We reported our results and are now ready to conclude the viability of using

MT6D within 6LoWPAN and the Internet of Things.

7.1 Conclusion

The MT6D protocol can be implemented in reduced form for use with embedded devices

that run Contiki OS. Our results show that wireless sensors with similar specifications as

the Econotag II can successfully compute the next source and destination address and port
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information. The results also show that a wireless sensor's new address can be added to the

border router's routing table with 95% reliability. µMT6D adds less than 1 mA of energy

consumption to a wireless sensor. µMT6D adds only a 5.3% increase to the binary file size.

This proposed version of µMT6D currently requires excessive control overhead in order to

ensure the border router maintains a route to the wireless sensor so that inbound packets

can be routed successfully to the sensor. This overhead is due to our design decision to only

manipulate code and protocols on the sensor without needing to make changes at the border

router. The excessive overhead has a potentially negative impact for the communications

of other sensors that are on the same wireless network that need to communicate. Our

implementation not only changes a sensor's global link address, but also the IPv6 link local

and MAC addressing. This means that a sensor can completely change its identity at Layer

3 and Layer 2. An observer to the layer 2 traffic will not be able to follow a conversation

taking place. Had we implemented MT6D only at the border router, then we can still see

the conversation take place with access to layer 2. The last aspect of this implementation

we would like to discuss is key management. µMT6D in its current version uses the same

symmetric key system as MT6D. This will not scale to the intended size of the IoT. Next

we will discuss suggestions for further work.
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7.2 Future Work

Future work should consist of analyzing the impact µMT6D has on the successful trans-

mission of deterministic and non-deterministic sensor data under varying address change

intervals. It is also important to assess the impact µMT6D will have on RPL when multiple

wireless sensors are present on the same RF channel. The RPL standard, by default, does

not require the border router to handle inbound packets with unknown destination addresses.

This means that when a server has traffic for a wireless sensor addressed with a global link

address not in the border router's routing table, the router drops the packet. In order to

reduce control overhead within the wireless network, an assessment should be conducted in

whether a border router can handle inbound MT6D traffic with unknown destination ad-

dresses by using a multicast Neighbor Solicitation to query the wireless network if anyone is

bound to that address. In order to scale µMT6D to the size of the described IoT with respect

to key management, future work should also consider implementing the work of Morrell et

al. [38] in order to enable MT6D communication between a large number of sensors with a

respective server.
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