
Document Clustering for IDEAL
Final Project Report

Date: 05/13/2015

CS5604 Information Storage and Retrieval
Virginia Polytechnic Institute and State University

Blacksburg, Virginia
Spring 2015

Submitted by

Names of Students Email ID

Kalidas, Rubasri krubasri@vt.edu
Thumma, Sujit Reddy sujitt@vt.edu
Torkey, Hanaa htorkey@vt.edu

Instructor
Prof. Edward A. Fox

Abstract

Document clustering is an unsupervised classification of text documents into groups
(clusters). The documents with similar properties are grouped together into one cluster.
Documents which have dissimilar patterns are grouped into different clusters. Clustering
deals with finding a structure in a collection of unlabeled data. The main goal of this
project is to enhance Solr search results with the help of offline data clustering. In our
project, we propose to iterate and optimize clustering results using various clustering
algorithms and techniques. Specifically, we evaluate the K-Means, Streaming K-Means,
and Fuzzy K-Means algorithms available in the Apache Mahout software package. Our
data consists of tweet archives and web page archives related to tweets. Document clus-
tering involves data pre-processing, data clustering using clustering algorithms, and data
post-processing. The final output which includes document ID, cluster ID, and cluster
label, is stored in HBase for further indexing into the Solr search engine. Solr search
recall is enhanced by boosting document relevance scores based on the clustered sets of
documents. We propose three metrics to evaluate the cluster results: Silhoutte scores,
confusion matrix with homogeneous labelled data, and human judgement. To optimize
the clustering results we identify various tunable parameters that are input to the clus-
tering algorithms and demonstrate the effectiveness of those tuning parameters. Finally,
we have automated the entire clustering pipeline using several scripts and deployed them
on a Hadoop cluster for large scale data clustering of tweet and webpage collections.

Contents

1 Introduction 1

2 Literature Review 3
2.0.1 Flat clustering algorithms . 3
2.0.2 Hierarchical clustering algorithms 3
2.0.3 Clustering in Solr . 4
2.0.4 Data Collection . 5
2.0.5 Mahout clustering . 5
2.0.6 Clustering Evaluation . 8
2.0.7 Cluster Labeling . 8

3 Requirements 10

4 Design 11
4.0.8 Workflow . 12
4.0.9 Tools . 12
4.0.10 Programming Languages . 12
4.0.11 Dependencies . 12

5 Implementation 14
5.0.12 Milestones and Deliverables . 14
5.0.13 Timeline . 14

6 Evaluation 17
6.1 Silhoutte Scores . 17
6.2 Confusion Matrix . 18
6.3 Human Judgement . 21

6.3.1 Clustering Result for Ebola Data Set 21
6.4 Clustering Statistics . 21

7 Conclusion and Future work 24
7.0.1 Conclusion . 24
7.0.2 Future Work . 24

Appendices 26

A User manual 27
A.0.3 Pre-requisites . 27
A.0.4 Data preparation . 27

i

A.0.5 Data Clustering . 27
A.0.6 Cluster Labeling . 28
A.0.7 Cluster output . 28
A.0.8 Hierarchical Clustering . 28
A.0.9 Working with many collections 29

B Developers manual 30
B.0.10 Solr Installation . 30
B.0.11 Mahout Installation . 30
B.0.12 Solr and Mahout Integration . 31
B.0.13 Clustering Webpages . 32
B.0.14 Clustering tweets . 33
B.0.15 Hierarchical Clustering . 36
B.0.16 Clustering small collection of tweets 37
B.0.17 Code Listings . 37
B.0.18 The Cluster Labeling Process . 42

C File Inventory 45

Acknowledgement 47

References 48

ii

List of Figures

1.1 Project overview . 2

2.1 Hierarchical clustering . 4
2.2 The three stage K-Means clustering in Mahout 7

4.1 Offline Document Clustering in Hadoop Environment 11
4.2 System architecture . 12

6.1 Confusion Matrix for Concatenated Small Tweet Collection 19
6.2 Confusion Matrix for Concatenated Big Tweet Collection 20

B.1 Snapshot of Solr user interface . 31
B.2 Cluster dump output for fuzzy k-means 34
B.3 Cluster dump output for streaming k-means 35
B.4 Labeled output for K-Means clustering 36

iii

List of Tables

5.1 Weekly status report . 16

6.1 Silhoutte Scores for Small Tweet Collection 18
6.2 Silhoutte Scores for Big Tweet Collection 18
6.3 Silhoutte Scores for Web page Collections 19
6.4 Silhoutte Scores for Concatenated Tweet Collection 20
6.5 Clustering result for ebola S data set . 21
6.6 Human judgement matches that of clustering results 22
6.7 Clustering statistics for various document collections 23

C.1 Inventory of files in Clustering project 45
C.2 Inventory of files in ClusteringCodeFiles.zip 45
C.3 Inventory of files in adhoc scripts directory 45
C.4 Inventory of files in bin directory . 46
C.5 Inventory of files in clustering evaluation directory 46
C.6 Inventory of files in data preprocessing directory 46
C.7 Inventory of files in Hierarchical Clustering directory 46

iv

Chapter 1

Introduction

We deal with clustering in almost every aspect of daily life. Clustering is the subject of
active research in several fields such as statistics, pattern recognition, and machine learn-
ing. In data mining, clustering deals with very large data sets with different attributes
associated with the data. This imposes unique computational requirements on relevant
clustering algorithms. A variety of algorithms have recently emerged that meet these re-
quirements and were successfully applied to real life data mining problems [1]. Clustering
methods are divided into two basic types: hierarchical and flat clustering. Within each
of these types there exists a wealth of subtypes and different algorithms for finding the
clusters. Flat clustering algorithm goal is to create clusters that are coherent internally,
and clearly different from each other. The data within a cluster should be as similar as
possible; data in one cluster should be as dissimilar as possible from documents in other
clusters. Hierarchical clustering builds a cluster hierarchy that can be represented as a
tree of clusters. Each cluster can be represented as child, a parent and a sibling to other
clusters. Even though hierarchical clustering is superior to flat clustering in representing
the clusters, it has a drawback of being computationally intensive in finding the relevant
hierarchies [8].

The initial goal of the project is to use flat clustering methods to partition data into se-
mantically related clusters. Further, based upon the clustering quality and understanding
of the data we enhance cluster representation using hierarchical clustering. This may also
result in hybrid clusters between flat and hierarchical arrangement. Clustering algorithms
provided in the Apache Mahout library will be used in our work [2]. Mahout is a suite
of generally designed machine learning libraries. It is associated with Apache Hadoop [4]
for large scale machine learning in distributed environment. Currently Mahout supports
mainly recommendation mining, clustering and classification algorithms. For our project
we identified to evaluate a set of clustering algorithms - k-means, Canopy, fuzzy k-means,
streaming k-means, and spectral k-means available in the Mahout library. We have used
various collections: web pages and tweet as our data set to evaluate clustering.

Since clustering is an unsupervised classification finding the appropriate number of
clusters apriori to categorize the data is a difficult problem to address. The most efficient
way to learn about the number of clusters is to learn from the data itself. We address
this challenge by estimating the number of clusters using methods like cross-validation
and semi-supervised learning. Figure 1.1 shows an overview of the project.

In the project we evaluate a flat clustering algorithm on tweet and web page data sets
using Mahout K-means clustering. The algorithm is initialized with random centroid
points. We found, by emperical evaluation, that the best possible number of clusters for

1

• Input tweets
• Input Webpages

AVRO=> sequence
file

• K-means
clustering

• Label extraction

Divide input
based on results • Hierarchical

clustering
• Merge results

from previous
stage

Load data into
HDFS

Figure 1.1: Project overview

small data set is 5 and large data set is 10. For the divisive hierarchical clustering, we
have done two layer clustering. The first layer corresponds to clustered points output
from a flat cluster like K-Means. The second layer corresponds to further flat clustering
of clustered points from layer 1. For labeling, we chose the top terms (based on frequency
of occurrence) in the clustered points closed to centroids. These top terms are identified
from the K-means cluster dump results using Mahout tools. Future work include multiple
layers of hierarchical clustering and advanced cluster labeling techniques.

The report is organized as follows: chapter 2 provides a brief literature review on ex-
isting clustering algorithms including flat clustering and hierarchical clustering, labeling
procedures, and open-source tools such as Apach Solr and Apache Mahout. In chapter 3,
we present our project requirements with pointers to relevant sections. In chapter 4, the
design and implementation of the project is discussed along with the tools and dependen-
cies. Project milestones and brief time line of weekly progress is presented in chapter 5.
In chapter 6, we discuss the techniques used in clustering evaluation including Silhoutte
scores, confusion matrix, and human judgement. Conclusion and future work is pre-
sented in chapter 7. Three appendix chapters are included: Appendix A provide detailed
instructions to reproduce the clustering results we have obtained and a user guide to
run various scripts we have developed over the course of the project. In appendix B we
have detailed the implementation and evaluation of clustering algorithms to aid future
developers to continue on this project. In appendix C we present a list of inventory files
developed as part of this project and VTechWorks submissions.

2

Chapter 2

Literature Review

Clustering objects into groups is usually based on a similarity metric between objects,
with the goal that objects within the same group are very similar, and objects between
different groups are less similar. In this review we focus on document clustering for web
pages and tweet data. The application of text clustering can be both online or offline.
Online applications are considered to be more efficient compared to offline applications
in terms of cluster quality, however, they suffer from latency issues.

Text clustering algorithms may be classified as flat clustering and hierarchical clus-
tering. In the next two subsections we elaborate more details about these algorithms.

2.0.1 Flat clustering algorithms

Flat clustering explains how to create a flat set of clusters without any explicit structure
that would relate clusters to each other [6]. Flat clustering methods are conceptually
simple, but they have a number of drawbacks. Most of the flat clustering algorithms, like
k-means, require a pre-specified number of clusters as input and are non-deterministic.

2.0.2 Hierarchical clustering algorithms

Hierarchical clustering builds a cluster hierarchy, or in other words, a tree of clusters.
Figure 2.1 shows an example of hierarchical clustering for a set of points. Hierarchical
clustering outputs is structured and more informative than flat clustering.

Hierarchical clustering algorithms are further subdivided into two types (1) agglom-
erative methods - a bottom-up cluster hierarchy generation by fusing objects into groups
and groups into higher clusters. (2) divisive methods - a top-down cluster hierarchy gen-
eration by partitioning a single cluster encompassing all objects successively into finer
clusters. Agglomerative techniques are more commonly used [10].

Hierarchical clustering does not require knowing the pre-specified number of clusters.
However this advantage came with the cost of the algorithm complexity. Hierarchical
clustering algorithms have a complexity that is at least quadratic in the number of doc-
uments compared to the linear complexity of flat algorithms like k-means or EM [10].

3

Figure 2.1: Hierarchical clustering

2.0.3 Clustering in Solr

Solr is an enterprise search engine that is optimized to search a given query in huge
volumes of text centric data. The results obtained from the search are often sorted and
ranked by relevance. Currently, Solr’s built-in clustering component provides search result
clustering. Solr’s clustering component is responsible for taking in the request, identify-
ing the clustering engine to be used and then delegating the work to that engine. Once
the processing is done, the results are added to the search response. Its implementation
is based on the Carrot2 framework [19]. Carrot2 has three algorithms: Lingo, STC, and
k-means. Lingo was built to handle search results clustering. Due to complex operations
to obtain semantically related documents in clusters, Lingo is effective only with for small
amounts of data. STC (Suffix Tree Clustering) algorithm is a Generalized Suffix Tree
(GST) built for all input documents. The algorithm traverses the GST to identify words
and phrases that occurred more than once in the input documents. Each such word or
phrase gives rise to one base cluster.The last stage of the clustering process is merging

4

base clusters to form the final clusters. K-Means is a generic clustering algorithm that
can also be applied to clustering textual data. As opposed to Lingo and STC, bisecting
k-means creates non-overlapping clusters.
Carrot2 is suited for clustering small to medium collections of documents. It may work
for longer documents, but processing times will be too long for online search. The integra-
tion between Solr and Carrot2 is implemented as APIs [20]. Learning about Solr-Carrot2
integration will help us in integrating our clustering techniques with Solr.

2.0.4 Data Collection

We evaluate clustering techniques on various tweet and web page collections. The collec-
tions include small data sets (< 500MB) and big data sets (> 1GB) and are related to
various events of historical importance such as Ebola outbreak, Charlie Hebdo shooting
incident, various incidents that took place on January, 25, Plane crash incident, Winter
storm, Suicide bomb attack, Elections, Diabetes, tweets related to Egypt, Malaysia Air-
lines, Shooting, Storm, and Tunisia. The web pages for corresponding events are crawled
using web links in each of the tweet collection.

Web pages and tweets clustering

In clustering of web pages, clustering approaches could be classified in two broad cate-
gories: term-based clustering and link-based clustering. Term-based clustering is based
on common terms shared among documents [13]. However, it does not adapt well to the
web environment since it ignores the availability of hyperlinks between web pages. Link-
based clustering could cluster web pages based on the information in the link. However,
it suffers from the fact that pages without sufficient information in the links could not be
clustered. It is natural to combine link and content information in the clustering algo-
rithms to overcome the above problems [14]. For tweets, a standard document clustering
algorithms can be used [12]. One interesting point in tweet clustering is the automatic
detection of tweet topics, for example, the hash-tags that appear in tweets can be viewed
as an approximate indicator of a tweet topic.

2.0.5 Mahout clustering

Mahout provides both in-memory and map-reduce versions of various clustering algo-
rithms. These algorithms are K-Means, Canopy, Fuzzy K-Means, and streaming k-mean,
and Spectral Clustering [9]. All these algorithms expect data in the form of vectors, so
the first step is to convert the input data into this format, a process known as vector-
ization. Essentially, clustering is the process of finding nearby points in n-dimensional
space, where each vector represents a point in this space, and each element of a vector
represents a dimension in this space [21]. It is important to choose the right vector format
for the clustering algorithm. For example, one should use the “Sequential Access Sparse
Vector” for k-means. Other possibilities are the “Dense Vector” and the “Random Access
Sparse Vector” formats. The input to a clustering algorithm is a sequence file containing
key-value pairs of objects.

5

Document clustering using Mahout

For Mahout, we need to generate sequence files from cleaned data in HDFS and vectorize
them in the format understandable by Mahout. Once the vectors are generated they will
be input to common clustering algorithm like k-means. Due to the nature of text data
with high dimensional features it is possible that dimensionality reduction techniques will
be used to transform feature vectors for improving cluster quality.

For clustering text data, vector generation can be improved by removing noise and us-
ing a good weighting technique. Mahout allows specifying custom Lucene analyzers to its
clustering sub-commands for this. Also, cluster quality depends on the measure used to
calculate similarity between two feature vectors. Mahout supplies a large number of Dis-
tance Measure implementations (Manhattan, Squared Euclidean, Euclidean, Weighted
Euclidean and Weighted Manhattan) and also allows the user to specify his/her own if
the defaults don’t suit the purpose. Within each dimension, points can be normalized to
remove the effect of outliers - the normalization p-norm should match the p-norm used
by the distance measure. Finally, if the dimensions are not comparable, then one should
normalize across dimensions, a process known as weighting (this should be done during
the vectorization process, which the user controls fully) [3].

Once the data is vectorized, the user invokes the appropriate clustering algorithm ei-
ther by calling the appropriate Mahout sub-command from the command line, or through
a program by calling the appropriate driver run method. All algorithms require the initial
centroids to be provided, and the algorithm iteratively modifies the centroids until they
converge. The user can either guess randomly or use the Canopy cluster to generate the
initial centroids.

Finally, the output of the clustering algorithm (sequence files in binary format) can
be read using the Mahout cluster dumper sub-command to get a human readable format.

K-Means Algorithm

The k-means clustering algorithm is known to be efficient in clustering large data sets.
This algorithm is one of the simplest and the best known unsupervised learning algo-
rithms. It solves the well-known clustering problem. The K-Means algorithm aims to
partition a set of objects, based on their attributes/features, into k clusters, where k is
a predefined constant. The algorithm defines k centroids, one for each cluster. The cen-
troid of a cluster is formed in such a way that it is closely related, in terms of similarity (
where similarity can be measured by using different methods such as Euclidean distance
or Extended Jaccard) to all objects in that cluster [9]. Technically, what k-means is
interested in, is the variance. It minimizes the overall variance, by assigning each object
to the cluster such that the variance is minimized. Coincidentally, the sum of squared
deviations, one objects contribution to the total variance, over all dimensions is exactly
the definition of squared euclidean distance.

In Mahout implementation of k-mean, Each object will be represented as vector in
space. Initially k points will be chosen by the algorithm randomly and treated as centers,
every object closest to each center are clustered. There are several algorithms for the
distance measure and the user should choose the required one.

6

Creating Vector Files:

• Unlike Canopy algorithm, the k-means algorithm requires vector files as input,
therefore you have to create vector files.

• To generate vector files from sequence file format, Mahout provides the seq2parse
utility.

• After creating vectors, proceed with k-means algorithm.

K-means clustering job requires input vector directory, output clusters directory, dis-
tance measure, maximum number of iterations to be carried out, and an integer value
representing the number of clusters the input data is to be divided into. The next figure
shows K-Means in action for Mahout implementation.

Figure 2.2: The three stage K-Means clustering in Mahout

Fuzzy K-Means

Fuzzy K-Means (also called Fuzzy C-Means) is an extension of K-Means, the popular
simple clustering technique. While K-Means discovers hard clusters (a point belong to
only one cluster), Fuzzy K-Means is a more statistically formalized method and discovers
soft clusters where a particular point can belong to more than one cluster with certain
probability.

7

Like K-Means, Fuzzy K-Means works on those objects which can be represented in
n-dimensional vector space and a distance measure is defined. The algorithm is similar
to k-means.

• Initialize k clusters

• Until converged

1. Compute the probability of a point belong to a cluster for every pair.

2. Recompute the cluster centers using above probability membership values of
points to clusters.

Similar to K-Means, the program doesn’t modify the input directories. And for every
iteration, the cluster output is stored in a directory cluster-N. The code has set number
of reduce tasks equal to number of map tasks. FuzzyKMeansDriver - This is similar
to KMeansDriver. It iterates over input points and cluster points for specified number
of iterations or until it is converged.During every iteration i, a new cluster-i directory
is created which contains the modified cluster centers obtained during FuzzyKMeans
iteration. This will be feeded as input clusters in the next iteration. FuzzyKMeansMapper
- reads the input cluster during its configure() method, then computes cluster membership
probability of a point to each cluster. FuzzyKMeansReducer - Multiple reducers receives
certain keys and all values associated with those keys. The reducer sums the values to
produce a new centroid for the cluster which is output.

2.0.6 Clustering Evaluation

Our evaluation approach is iterative and we aim to produce clustering results that can be
improved over time by optimizing feature vectors and clustering algorithms. To ensure
best results our approach is to: research → identify improvements → implement (or
find an equivalent open source implementation) → integrate and evaluate. The end goal
will be to document our experience with various clustering algorithms and techniques
for identifying feature vectors using different set of data which ensures quality clustering
with optimal performance.

2.0.7 Cluster Labeling

Clusters that are obtained as a result of the clustering process need to be labeled ap-
propriately in order to understand the purpose of each cluster and to evaluate the ef-
fectiveness of clustering. Cluster labeling is based on selecting words from each cluster
and then use them to label the clusters. There are three ways of selecting words for
cluster labeling. The first method (discriminative labeling) assumes the existence of a
document hierarchy, either manually constructed and/or populated, or a hierarchy re-
sulting from application of a hierarchical clustering algorithm. Using chi square tests of
independence at each node in the hierarchy starting from the root, we determine a set
of words that are equally likely to occur in any of the children of a current node. Such
words are general for all of the sub-trees of a current node, and are excluded form the
nodes below. The second method (non-discriminative labeling) selects words which both
occur frequently in a cluster or effectively discriminate the given cluster from the other
clusters. While the third method, using titles for labeling clusters, is based on the titles

8

of the documents within each cluster to find the most representative words for the cluster.

The work in [25] briefly describe a technique to label clusters based on how many
times a feature is used in a cluster. By utilizing this information, and also drawing
on knowledge of the code, short titles are manually selected for the obtained clusters.
Although labeling is performed manually, they point out that the automatically developed
feature summary of each cluster makes the labeling process much easier. In 2001 Tzerpos
et al. [26] emphasizes that a clustering algorithm should have certain features to make its
output easier to comprehend. These features include bounded cluster cardinality, which
ensures that any single cluster does not contain a very large number of entities, and
effective cluster naming. They use a pattern based approach to recognizing familiar sub-
system structures within large systems. The identified patterns are expected to occur in
large systems with around 100 source files. The same pattern-based approach is used for
cluster labeling. In 2003 Tonella et al. [27] describe the use of keywords within web pages
to cluster and label similar pages. Both single words and a contiguous sequence of two
words i.e., bigrams are considered as representative keywords of a webpage. Clustering
as well as cluster labeling are carried out on the basis of keywords within a webpage.
Cluster labels are ranked according to inverse keyword frequency

9

Chapter 3

Requirements

The goal of our project is to improve the quality of the document searching by clustering
the documents and using the results to influence the search results. We propose to do the
clustering in an iterative manner such that a hierarchy is developed between the different
iterations. This would further improve the search results quality since the hierarchical
results could result in a scoring mechanism with different weights for different levels of
hierarchy.

Below, we summarize our tasks for the project:

• Hands-on with various big data technologies like Hadoop, Map Reduce, HDFS, Solr.
See subsection B.0.10.

• Gaining expertise in Apache Mahout clustering algorithms. See subsection B.0.11,
subsection B.0.12.

• Flat clustering of tweets and webpages using K-means, Streaming K-means and/or
Fuzzy K-means. See subsection B.0.13, subsection B.0.14.

• Evaluating and optimizing clustering results using three metrics which includes
Silhoutte scores, confusion matrix with labelled data, and human judgement. See
chapter 6.

• Cluster label extraction from the clustering results. See subsection B.0.18

• Hierarchical Clustering of tweets and webpages. See subsection B.0.15

• Merging the results of various levels of hierarchy to help the scoring mechanism in
order to improve the search results quality. See subsection B.0.15

10

Chapter 4

Design

Offline document clustering is shown in Figure 4.1. For a major part of the project we
emphasize on offline document clustering and optimize the scores based on the clustering
results. The input to document clustering are tweets and web pages in Avro format in
HDFS. The input data is cleaned and pre-processed using various techniques discussed
in reducing noise team’s report. The yellow boxes in Figure 4.1 is developed as part of
this project. The blue boxes represent our leverage of Mahout clustering algorithms and
tools. For divisive hierarchical clustering we leveraged K-Means clustering of Mahout
and iteratively calling those algorithms at various hierarchical levels. Finally, the output
produced is in Avro format with schema presented in the Hadoop team’s report. The
clustering output is further ingested into HBase and pipeline is completed by indexing
the clustering information into Solr fields.

TWEETS /
WEBAPGES
TWEETS /

WEBAPGES

KMEANS
CLUSTERING LABEL EXTRACTION

HIERARCHICAL
CLUSTERING MERGE RESULTS

LOAD DATA
IN

HBASE

DATA EXTRACTION

MAHOUT

MAHOUT

JAVA/Python

JAVA/Python

JAVA/Python

Evaluation

Figure 4.1: Offline Document Clustering in Hadoop Environment

11

4.0.8 Workflow

We adapt flat clustering methods for offline document clustering initially and then move
on to hierarchical clustering methods. The Apache Mahout project provides access to
scalable machine learning libraries which includes several clustering algorithms. Thus,
in our project we leverage various clustering algorithms in Apache Mahout library. The
input format to clustering algorithms is an Avro file. The output format of clustering
is also an Avro file. Since we don’t need any meta-data for clustering the actual input
data format (Avro) will be converted to sequence files while providing input to Mahout
clustering algorithms. For generating human readable representation of sequence files
we use the clusterdumper tool in Mahout. The information from the output of the
clusterdumper tool would be used to add two more fields to the Solr schema. For flat
clustering, the final output from our team is the addition of two fields “Cluster ID” and
“Cluster label”. The overall workflow is presented in Figure 4.2

Cleaned
TweetsMand
WebMpages

Avro

Cleaned
TweetsMand
WebMpages

SequenceMFiles

TF-IDFMVectorM
Generation

SequenceMFiles K-Means
Clustering

SequenceMFiles

ClusterMDump
Centroids
ClusteredMPoints

SequenceMFiles

TopMTerms
ClusterMLabel
Extraction

SequenceMFiles

Mapping:
-MClusterMLabel
-MDocumentMID
-MClusterMIDM

SequenceMFiles

ClusteredM
Output

Avro

DataMPre-processing

DataMPost-processing

Clustering

Figure 4.2: System architecture

4.0.9 Tools

For document clustering we use Apache Mahout clustering algorithms and relevant tools
provided as part of the Mahout library. The document collections are saved in HDFS
and the output of clustering is saved in HBase. The format of input and output files will
be sequence files. KEA is used for labeling the clustering result. KEA is implemented in
Java and is platform independent and an open-source software.

4.0.10 Programming Languages

Apache Mahout and HBase are written in Java. Thus, any driver programs we use to
generate sequence files to interact with Mahout/HBase will be in Java. Further, the
Python and bash scripting languages are used to perform post-processing operations and
clustering evaluation.

4.0.11 Dependencies

The dependencies we had during our work progress and performance evaluation are listed
below.

12

• Feature extraction team: This is a mutual dependency. We are dependent on the
feature extraction team to provide optimized feature vectors that are necessary for
improving clustering. Currently, the feature vectors extracted from sequence files
are directly fed to Mahout algorithms. However, cluster results can be improved
if important features are extracted and fed to Mahout algorithms. We collabo-
rate/leverage the results from the feature extraction team to optimize the docu-
ment clustering. We have used very basic feature extraction methods like pruning
high frequency words, pruning very low frequency words, stop word removal and
stemming to reducing the dictionary size.

• LDA team: As part of the output we provide appropriate cluster labels and eval-
uate those labels with the LDA team to ensure that relevant topics are clustered
as expected. As an evaluation measure we have collaborated with LDA team and
provided a cosine similarity matrix for documents within each cluster and for two
collections ebola S and Malaysia Airlines B tweet collections. This mutual evalua-
tion helps to compare statistical document clustering with probabilistic document
clustering based on topic modeling from LDA team. More details on evaluation
can be found in LDA team report for project IDEAL. To aid the clustering evalua-
tion with respect to statistical measures we have provided three evaluation metrics
discussed in detail in chapter 6

• Reducing Noise team: We have obtained cleaned versions of the data from reducing
noise team that helped us to improve the document quality and quality of the cluster
results.

• Solr team: Helps us to provide feedback on scoring the Solr search results based on
offline clustering.

• Hadoop team: While we work with large volumes of data, we seek help to config-
ure the Hadoop environment and resolve issues related to developing map-reduce
programs used in clustering.

13

Chapter 5

Implementation

5.0.12 Milestones and Deliverables

– Hadoop-ready driver program to run Mahout clustering algorithms on hadoop
cluster with large collections.

– Flat clustering of tweets and webpages collections

– Hierarchical clustering of tweets and webpages collections

– Merging of the results of various levels of clustering

– Collecting Statistics on the runtimes

– Clustering quality evaluation using Silhoutte scores, confusion matrix and hu-
man judgement

– Integration of the cluster output into Solr fields to improve recall of relevant
documents

5.0.13 Timeline

The implementation time line of the and member contributions are listed in the
Table 5.1 in chronological order.

14

Weekly Reports Task Done by

1 Installation of SOLR on laptops.
Sujit,
Rubasri,
Hanna

1 Clustering literature review
Sujit,
Rubasri,
Hanna

2 Understanding of workflow
Sujit,
Rubasri,
Hanna

2 Mahout setup and integration with Lucene vector packages Sujit
3 Carrot clustering in SOLR Sujit
3 SOLR and Mahout integration Sujit

3
Reorganization of previous week’s report
according to Report15 requirements

Sujit,
Rubasri,
Hanna

4
Downloading of webpages mentioned in tweets
by using the script provided by the TA

Rubasri

4 Indexing of Webpages and tweets in SOLR
Sujit and
Hanna

4
Exploration of clustering options in Mahout
(Kmeans, Streaming Kmeans, Fuzzy Kmeans)

Sujit

5
Extraction of all the tweets from the CSV file
using the python script to sequence file since Mahout
requires sequence file as input.

Rubasri

5 Clustering of sample Tweets using Mahout Rubasri
5 Clustering of sample Webpages using Mahout Rubasri

6
Conversion of AVRO format to sequence file and
extraction of the cluster results from Mahout.

Sujit

6
Identification of 100 relevant tweets for training data set and
100 other random tweets for the test data set to be provided to
the Classification team.

Sujit

6
Crawling of webpages using Nutch in our local machine and
cluster for small collections

Rubasri

15

8
Implemention of K-means clustering in Mahout and
association of the results of clustering with the input data collection

Sujit, Rubasri

8
Extraction of the cluster labels (used the top most term)
from the cluster results and association of the labels with each tweet

Rubasri

8

Modification of the AVRO schema to include the cluster id and
cluster label for each of the tweets.
We were able to get the output files in AVRO format
which has the clustering results.

Sujit

9
Analysis of Mahout clustering algorithms
(Streaming K means, fuzzy k means, K means)

Sujit

9
Crawling of webpages using Nutch in our local machine and
cluster for big collections

Sujit

9 Automation of clustering using bash script Sujit
9 Implementation of Hierarchical clustering Rubasri

10
Merging of the results from different levels of
hierarchical clustering

Rubasri

10 Implementation of KIA labelling Hanna
10 Statistics for evaluation Sujit
10 Clustering of cleaned webpages Sujit

10
Automation of the hierarchical clustering process
using bash script

Rubasri

Final
Clustering evaluation using Silhoutte scores,
confusion matrix, and human judgement

Sujit

Final Final project presentation and report
Sujit,
Rubasri,
Hanna

Table 5.1: Weekly status report

16

Chapter 6

Evaluation

We have chosen three metrics for evaluation which includes Silhoutte scores, confu-
sion matrix, and human judgement. In the following sections we provide our results
that includes evaluation for tweet and web page collections.

6.1 Silhoutte Scores

The goal of clustering is to ensure that the documents that are similar are clustered
into their own cluster and documents that are dissimilar are clustered into separate
clusters. Silhoutte scoring is a well known technique to evaluate cluster results when
labelled data is not available [28]. Since clustering is an unsupervised learning we
have chosen to evaluate our clustering results using Silhoutte scores which does not
require labelled data.

After obtaining clustering results from the work flow described in previous chapter,
we categorize the the documents into their own clusters using the document ID
and cluster ID mapping. Further, we compute the dissimilarity (a(i)) of each data
point i with respect to all other data points within the same cluster k. In addition,
we compute the lowest average dissimilarity (b(i)) from data point i to any other
cluster. Silhoutte coefficient for the data point i is computed as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(6.1)

Silhoutte score for the document collection is the mean average of all coefficients
computed for each of the data points. To efficiently compute the Silhoutte score we
use scikit learn python package. A Silhoutte score of +1 represents that the docu-
ments are clustered with high quality, a score of −1 represents that the documents
are clustered with poor quality. Normally, the Silhoutte score for text documents
will be close to zero due to the sparsity of the documents (99%). For our evaluation
we assume that the Silhoutte score of anything greater than zero is considered to
be decent clustering result.

Table 6.1, 6.2, and 6.3 provide Silhoutte scores for small tweet collection, big tweet
collection and web page collection respectively.

17

From the scores we interpret that for most of the collections the clustering results
are good enough as the Silhoutte scores are greater than zero. As a future work
we propose that the scores can be improved by performing more advanced feature
selection, dimensionality reduction, and various other clustering procedures.

Data Set Silhoutte Score
charlie hebdo S 0.0106168

ebola S 0.00891114
Jan.25 S 0.112778

plane crash S 0.0219601
winter storm S 0.00836856

suicide bomb attack S 0.0492852
election S 0.00522204

Table 6.1: Silhoutte Scores for Small Tweet Collection

Data Set Silhoutte Score
bomb B 0.0114236

diabetes B 0.014169
egypt B 0.0778305

Malaysia Airlines B 0.0993336
shooting B 0.00939293

storm B 0.011786
tunisia B 0.0310645

Table 6.2: Silhoutte Scores for Big Tweet Collection

6.2 Confusion Matrix

In our corpora we observed that document collections are already categorized into
various event types. For example, ebola S tweet collection mostly comprises tweets
related to Ebola disease. Thus, we have concatenated data sets of small collections
and big collections into single data set and performed clustering to evaluate the
effectiveness of unsupervised clustering algorithm we have used.

We have concatenated data sets from small tweet collection which includes tweet
collections from seven different event types: charlie hebdo S, ebola S, Jan.25 S,
plane crash S, winter storm S, suicide bomb attack S, election S and performed K-
Means clustering on the concatenated data set. Since we now know the labels of each
of the cluster we demonstrate the effectiveness of clustering procedure by building
a confusion matrix as presented in Figure 6.1. The figure represent a heat map of
number of documents in the cluster normalized by the total number of documents
in the partitioned collection. The higher the intensity of heat map (blue to red) the
larger the number of documents concentrated in that cluster.

Similarly, we have concatenated big data sets which includes tweet collections from
seven different event types: bomb B, diabetes B, egypt B, Malaysia Airlines B,

18

Data Set Silhoutte Score
classification small 00000 v2 (plane crash S) 0.0239099
classification small 00001 v2 (plane crash S) 0.296624

clustering large 00000 v1 (diabetes B) 0.124263
clustering large 00001 v1 (diabetes B) 0.0284772

clustering small 00000 v2 (ebola S) 0.0407911
clustering small 00001 v2 (ebola S) 0.0163434

hadoop small 00000 (egypt B) 0.206282
hadoop small 00001 (egypt B) 0.264068
ner small 00000 v2 (storm B) 0.0237915
ner small 00000 v2 (storm B) 0.219972

noise large 00000 v1 (shooting B) 0.027601
noise large 00000 v1 (shooting B) 0.0505734
noise large 00001 v1 (shooting B) 0.0329083

noise small 00000 v2 (charlie hebdo S) 0.0156003
social 00000 v2 (police) 0.0139787

solr large 00000 v1 (tunisia B) 0.467372
solr large 00001 v1 (tunisia B) 0.0242648
solr small 00000 v2 (election S) 0.0165125
solr small 00001 v2 (election S) 0.0639537

Table 6.3: Silhoutte Scores for Web page Collections

Figure 6.1: Confusion Matrix for Concatenated Small Tweet Collection

shooting B, storm B, tunisia B. Confusion matrix for concatenated big data set
is shown in Figure 6.2

19

Figure 6.2: Confusion Matrix for Concatenated Big Tweet Collection

Unlike confusion matrix for classification, in the context of clustering we are inter-
ested in just homogeneous labeling than accurate labeling, i.e., we are interested
only in the groupings of documents rather than the exact class which they belong
to. Thus, instead of providing exact labels to the clusters obtained, we label the
clusters ranging from A to G in both figures.

An interesting insight into the confusion matrix lead us that in both the data sets
we observe that approximately 4 collections out of 7 collections are placed in the
same cluster. After manually analyzing the data sets we concluded that most of the
data sets that belong to single cluster have the event type bomb, shooting, tunisia,
etc. Thus, we concluded that the clustering output is reasonable.

In addition to the confusion matrix, we have calcualated the Silhoutte scores for
each of the concatenated data sets. Table 6.4 shows the scores obtained for the
collections. Even if there is mis-classification as judged by confusion matrix we still
see Silhoutte scores to be greater than zero, which further confirms our expectation
that the tweets in those documents might be similar.

Data Set Silhoutte Score
Small Tweet Collection 0.0190188
Big Tweet Collection 0.0166863

Table 6.4: Silhoutte Scores for Concatenated Tweet Collection

20

6.3 Human Judgement

A third metric we have chosen to evaluate clustering results is to compare the
results of clustering and labeling method with that of human judgement. Due to
time constraints we haven’t evaluated final results of all of the document collections.
In this section, we provide an evaluation of Ebola data set.

6.3.1 Clustering Result for Ebola Data Set

Since ebola S is a small data set in our experiments we have found that an optimal
number of clusters such data sets is 5. After this count even if we increase the
number of clusters we observe that only a small fraction of documents (possibly
outliers) are present in the clusters and thus are sparsely clustered. Table 6.5 shows
the labeling information of the clustering result along with number of documents
in each of the cluster.

Cluster ID Cluster Label Number of Tweets
1 Death 28361
2 Doctor 32527
3 Obama 25108
4 Ebola 274040
5 Drug 20123

Table 6.5: Clustering result for ebola S data set

By comparing the cluster results and manually analyzing random samples of the
documents in each of the cluster we present a summary table 6.6

6.4 Clustering Statistics

Table 6.7 provides details on the runtime of clustering procedures. For small tweet
collections clustering takes approximately 5.5 minutes while big tweet collections
take around 16 minutes. Web page collections are small and take around 5 minutes
to converge. The sparsity index column represents the sparsity (# of zeros

size of matrix
) of

the TF-IDF matrix after performing feature selection using high frequency word
pruning, stemming, lemmatization. The sparsity can be further reduced by per-
forming feature transformation techniques like Latent Semantic Analysis (LSA) or
Singular Value Decomposition (SVD) on the data matrix. However, such feature
transformation techniques are not scalable to large data. Typically, in our evalua-
tion Apache Mahout SVD took 10 hours to reduce the dimensions of concatenated
small tweet collection previously mentioned.

21

H
u
m
a
n

L
a
be

l
S
a
m
p
le

T
w
ee

ts

D
ea

th

E
b

ol
a

k
il
ls

fo
u
rt

h
v
ic

ti
m

in
N

ig
er

ia
T

h
e

d
ea

th
to

ll
fr

om
th

e
E

b
ol

a
ou

tb
re

ak
in

N
ig

er
ia

h
as

ri
se

n
to

fo
u
r

w
h
i,

R
T

D
on

t
b

e
v
ic

ti
m

82
7

E
b

ol
a

d
ea

th
to

ll
ri

se
s

to
82

6,
R

T
E

b
ol

a
ou

tb
re

ak
n
ow

b
el

ie
ve

d
to

h
av

e
in

fe
ct

ed
21

27
p

eo
p
le

k
il
le

d
11

45
h
ea

lt
h

offi
ci

al
s

sa
y,

R
T

T
w

o
p

eo
p
le

in
h
av

e
d
ie

d
af

te
r

d
ri

n
k
in

g
sa

lt
w

at
er

w
h
ic

h
w

as
ru

m
ou

re
d

to
b

e
p
ro

te
ct

iv
e

ag
ai

n
st

D
o
ct

or
s

U
S

d
o
ct

or
st

ri
ck

en
w

it
h

th
e

d
ea

d
ly

E
b

ol
a

v
ir

u
s

w
h
il
e

in
L

ib
er

ia
an

d
b
ro

u
gh

t
to

th
e

U
S

fo
r

tr
ea

tm
en

t
in

a
sp

ec
i,

M
os

co
w

d
o
ct

or
s

su
sp

ec
t

th
at

a
N

ig
er

ia
n

m
an

m
ig

h
t

h
av

e

P
ol

it
ic

s

R
T

F
or

re
al

O
b
am

a
or

d
er

s
E

b
ol

a
sc

re
en

in
g

of
M

ah
am

ao
th

er
A

fr
ic

an
L

ea
d
er

s
m

ee
ti

n
g

h
im

at
U

S
A

fr
ic

a
S
u
m

m
it

P
at

ri
ck

S
aw

ye
r

w
as

se
n
t

b
y

p
ow

er
fu

l
p

eo
p
le

to
sp

re
ad

E
b

ol
a

to
N

ig
er

ia
F

an
i

K
ay

o
d
e

h
as

re
ac

te
d
,

R
T

T
h
e

E
co

n
om

is
t

ex
p
la

in
s

w
h
y

E
b

ol
a

w
on

t
b

ec
om

e
a

p
an

d
em

ic
V

ie
w

v
id

eo
v
ia

,
O

b
am

a
C

al
ls

E
ll
en

C
om

m
it

s
to

fi
gh

t
am

p
W

A
fr

ic
a

S
y
m

p
to

m
s

H
ow

is
th

is
E

b
ol

a
v
ir

u
s

tr
an

sm
it

te
d
,

R
T

E
b

ol
a

sy
m

p
to

m
s

ca
n

ta
ke

2
21

d
ay

s
to

sh
ow

It
u
su

al
ly

st
ar

t
in

th
e

fo
rm

of
m

al
ar

ia
or

co
ld

fo
ll
ow

ed
b
y

F
ev

er
D

ia
rr

h
o
ea

E
b

ol
a

v
ir

u
s

fo
rc

es
S
ie

rr
a

L
eo

n
e

an
d

L
ib

er
ia

to
w

it
h
d
ra

w
fr

om
N

an
ji

n
g

Y
ou

th
O

ly
m

p
ic

s

D
ru

gs

E
b

ol
a

F
G

O
ka

y
s

E
x
p

er
im

en
ta

l
D

ru
g

D
ev

el
op

ed
B

y
N

ig
er

ia
n

T
o

T
re

at
,

R
T

D
ru

gs
m

an
u
fa

ct
u
re

d
in

to
b
ac

co
p
la

n
ts

b
ei

n
g

te
st

ed
ag

ai
n
st

E
b

ol
a

ot
h
er

d
is

ea
se

s,
T

ob
ac

co
p
la

n
ts

p
ro

ve
u
se

fu
l

in
E

b
ol

a
d
ru

g
p
ro

d
u
ct

io
n

E
B

O
L

A
W

es
te

rn
d
ru

gs
fi
rm

s
h
av

e
n
ot

tr
ie

d
to

fi
n
d
va

cc
in

e
b

ec
au

se
v
ir

u
s

on
ly

aff
ec

ts
A

fr
ic

an
s

Table 6.6: Human judgement matches that of clustering results

22

Data Set Dictionary Size Sparsity Index Time (Minutes)
charlie hebdo S 13452 99.85911799 5.39
ebola S 25648 99.89573479 6.37
Jan.25 S 17639 99.91855227 5.45
plane crash S 16725 99.86282832 5.82
winter storm S 23717 99.86906727 6.28
suicide bomb attack S 3748 99.72621082 5.45
election S 59643 99.92313503 6.93
Concat S 100548 99.92509434 NA
bomb B 508347 99.85911799 14.68
diabetes B 224233 99.89573479 15.32
egypt B 159347 99.91855227 8.87
Malaysia Airlines B 18498 99.86282832 15.6
shooting B 600305 99.86906727 16.6
storm B 516101 99.72621082 16.22
tunisia B 175966 99.92313503 7.34
Concat B 1559466 99.9460551 NA
classification small 00000 v2 3839 97.39412057 5.1
classification small 00001 v2 536 97.62272621 5.1
clustering large 00000 v1 11374 99.18097229 5.3
clustering large 00001 v1 15593 99.23332298 5.2
clustering small 00000 v2 385 97.96474954 4.9
clustering small 00001 v2 384 96.78017164 5.1
hadoop small 00000 4387 99.17565805 5.4
hadoop small 00001 4387 99.17561654 5.1

Table 6.7: Clustering statistics for various document collections

23

Chapter 7

Conclusion and Future work

7.0.1 Conclusion

In our project, we performed flat clustering on the various input data sets using
Mahout K-means clustering. In the Mahout K-means algorithm, the initial cen-
troids of the cluster are chosen as random and it is required to specify the number
of clusters. Using empirical analysis we found that the best number of clusters for
the small data set is 5 and large data set is 10. In order to further improve the
search quality results, we performed hierarchical clustering on the input data sets
by further clustering the results obtained in flat clustering. We chose the top terms
present in the cluster as the cluster label. These top terms are identified from the
K-means cluster dump results using Mahout tools. Although top terms are not the
best way to label the clusters they work well for tweet collection (short text).

In order to verify the effectiveness of the clustering, we have evaluated the clustering
results using Silhouette scores, confusion matrix and human judgement. Silhouette
scores measure how similar the documents are within each cluster and how dissimilar
the documents are in different clusters. We obtained positive Silhouette scores for
all of the data sets which shows that the quality of the clustering is commendatory.
In addition to Silhouette scores, confusion matrix was also used to evaluate the
quality of the clustering where in we used K-means algorithm with various tunables.
Due to high sparsity in the data set the Silhoutte scores are low (close to zero).
However, feature transformation methods like Latent Semantic Analysis (LSA) can
be applied to transform the data set into lower dimensional space decreasing the
sparsity and increasing the Silhoutte scores. We also found that the Silhouette
scores of web pages are higher than the tweets mainly because of the length of the
web pages and sparsity index compared to that of tweets.

7.0.2 Future Work

This work can be extended to perform incremental way of clustering as new data
is streamed in. Also, identifying appropriate number of clusters for a particular
data set through some kind of evaluation instead of empirical analysis could also
be a possible extension. In addition to labeling the clusters using the top terms,
methods like Wikipedia cluster labeling which identifies top terms from the cluster

24

results and search in Wikipedia for best possible titles that match top terms can
be an enhancement to this work.

25

Appendices

26

Appendix A

User manual

A.0.3 Pre-requisites

Users are recommended to have following environment setup prior to performing
data clustering as described in the later subsections.

– Access to Hadoop cluster (for example, hadoop.dlib.vt.edu)

– Access to data loaded in HDFS (cleaned version of data is optional but highly
recommended)

– Data loaded in HDFS is in Avro format as specified in schema reported Hadoop
team

– Installed Mahout and Hadoop utilities and configurations are setup properly

A.0.4 Data preparation

Input data in Avro format does not work with Mahout clustering algorithms. Hence,
as a first step the input must be converted to sequence files with “key” as document
ID and “value” as cleaned text. Following commands convert Avro files to sequence
files.

1 $ hadoop f s −copyToLocal / user / c s 5604 s15 no i s e /TWEETSCLEAN/
ebo la S .

2

3 $ java −j a r AvroToSequenceFilesCleanedTweetDocId . j a r . / ebo la S /
part−m−00000. avro . / ebo la S /part−m−00000. seq

4

5 $ hadoop f s −mkdir c l e aned twee t s doc i d
6

7 $ hadoop f s −copyFromLocal . / ebo la S c l e aned twee t s doc i d /

A.0.5 Data Clustering

Once input format is converted from Avro to sequence files, clustering procedure
involves executing a bash script as shown below.

27

1 $. / c l u s t e r i n g c s 5 6 0 4 s 1 5 . sh <input> <output> 2>&1 | t e e
l o g f i l e n ame . l og

2

3 # Note that <input> and <output> arguments above w i l l be HDFS
paths

4 # fo l l ow the i n s t r u c t i o n s i f you want to change the c l u s t e r i n g
procedure (kmeans , streaming kmeans , fuzzy kmeans)

A.0.6 Cluster Labeling

Once clustering is done, we need to copy the cluster output to local file system
before executing cluster labeling

1 # ensure c l u s t e r i n g output i s pre sent
2 $ hadoop f s − l s <output>/output−kmeans
3

4 # copy c l u s t e r output to l o c a l f s
5 $ hadoop f s −copyToLocal <output>/output−kmeans .
6

7 # execute c l u s t e r l a b e l i n g
8 $ java −j a r labelWithIDAvroOut . j a r <output f o l d e r name> <output

f i l e name>
9

10 # f i n a l output w i l l be l o ca t ed in :
11 $ l s −a l <output f o l d e r name>/output−kmeans/<output f i l e name>.

avro

A.0.7 Cluster output

As a final step, copy the cluster output in local filesystem to HDFS. This output
will be of the Avro schema presented in Hadoop team’s report. Once the output is
uploaded to HDFS, execute Hbase loading scripts as mentioned in Hadoop team’s
report.

A.0.8 Hierarchical Clustering

In order to do hierarchical Clustering on the flat clustering results, the following
steps have to be followed

1 # ensure input sequence f i l e i s p re sent in l o c a l f s
2 $ l s <input>
3

4 # Sp l i t the datase t accord ing to the f l a t c l u s t e r i n g r e s u l t s
5 $ java −j a r HCluster ing . j a r <input sequence f i l e f o l d e r> <output

o f c l u s t e r r e s u l t s f o l d e r> <dataset>
6

7 # Copy the f o l d e r to HDFS

28

8 $ hadoop f s −put <output o f c l u s t e r r e s u l t s f o l d e r> < l e v e l 2
input f o l d e r>

9

10

11 # Execute K−means c l u s t e r i n g on each o f the sequence f i l e
generated

12 $. / c l u s t e r i n g c s 5 6 0 4 s 1 5 . sh < l e v e l 2 input f o l d e r>s/<dataset> <
l e v e l 2 output f o l d e r>/<dataset> 2>&1 | t e e l o g f i l e n ame . l og

13

14 # ensure c l u s t e r i n g output i s pre sent
15 $ hadoop f s − l s < l e v e l 2 output f o l d e r>/<dataset>/output−kmeans
16

17 # copy c l u s t e r output to l o c a l f s
18 $ hadoop f s −copyToLocal < l e v e l 2 output f o l d e r>s/<dataset>/

output−kmeans .
19

20 # execute c l u s t e r l a b e l i n g on each o f the r e s u l t s generated
21 $ java −j a r labelWithIDAvroOut . j a r < l e v e l 2 output f o l d e r>/<

dataset> <dataset>
22

23

24

25 # merge the r e s u l t s o f both the l e v e l s o f c l u s t e r i n g
26 $java −j a r merge . j a r < l e v e l 1 output f o l d e r> < l e v e l 2 output

f o l d e r>

A.0.9 Working with many collections

To avoid repetitive tasks for many collections, users can look into scripts that
automate most of the clustering process described in above sections.

1 # perform c l u s t e r i n g
2 $. / tw e e t c l u s t e r i n g . sh < c l u s t e r i n pu t b i g . txt
3

4 # perform c l u s t e r l a b e l i n g and gene ra t ing output in Avro format
5 $. / putkmeans . sh < c l u s t e r i n pu t b i g . txt
6

7 # Hi e r a r c h i c a l c l u s t e r i n g and merging (da ta s e t s have to be
ed i t ed in the s c r i p t)

8 $. / h i e r a r c h i c a l c l u s t e r i n g . sh

29

Appendix B

Developers manual

This section details implementation of our project and provides further information
for a developer who is interested in extending this work.

In this manual it is assumed that the development environment is configured as
following:

Operating System: Ubuntu 14.04 Linux
CPU Architecture: x86 64
CPU cores: 4
Memory: 4GB
Java version: 1.7.0 75
JVM: 64-bit Server
IDE: Eclipse (Luna with Maven repositories indexed)

B.0.10 Solr Installation

Solr is an open source enterprise search platform. Its major features include full-text
search, hit highlighting, faceted search, dynamic clustering, database integration,
and rich document (e.g., Word, PDF) handling.

Installation of Solr can be done either on a local machine or server environment.
Developers are recommended to go through the quick start tutorial [22] for in-
stalling Solr and indexing data into Solr. To index customized data ensure that the
schema.xml [23] is updated with necessary fields and values.

After successful installation http://localhost:8983/solr/ shows as in Figure B.1.

B.0.11 Mahout Installation

– Download latest source code from Apache Mahout git repository:

1 $ g i t c l one g i t : // g i t . apache . org /mahout . g i t

– Ensure Maven is installed:

1 $ sudo apt−get i n s t a l l maven

30

Figure B.1: Snapshot of Solr user interface

– Compile and install Mahout:

1 $ cd mahout
2 $ mvn −DskipTests=true c l ean i n s t a l l

Note: Several problems might arise during installation.
1) Java JDK is not installed or JAV A HOME environment variable is not
set properly
2) Some compilation issues like scala installation failures
To avoid such issues ensure Java JDK is installed properly. In addition, Maven
version in ubuntu repositories may not be compatible with the Mahout source.
Use Maven v3.2.5 from
official Maven download page [24] and installation will be successful.

B.0.12 Solr and Mahout Integration

After successfully installing Solr and Mahout, document index output from Solr
can be used to generate feature vectors in a format understandable by Mahout.

Solr index data is available in:
<solr dir>/solr/collection1/data/index

Use Mahout lucene.vector package to get term vectors:

1 $ bin /mahout lucene . vec to r \

31

2 −−d i r / s o l r / c o l l e c t i o n 1 /data/ index \
3 −− f i e l d content \
4 −−dictOut d i c t . txt \
5 −−output d i c t . out

In order to ensure that the term vectors can be extracted using the lucene.vector
package the Solr schema.xml should be modified as following:

1 < f i e l d name= ‘ ‘ content ” type= ‘ ‘ t ex t gene ra l ” indexed= ‘ ‘ t rue ”
s to r ed = ‘ ‘ t rue ” termVectors = ‘ ‘ t rue ”/>

B.0.13 Clustering Webpages

As a first step, webpages are extracted from the URLs in the tweets using the
script provided by the RA (tweet URL archivingFile.py). The input file is a small
tweet collection focusing on the Ebola disease collection (z224t.csv) provided in
scholar under Resources/Data. The threshold in the script was set to 1 to extract
the contents from all the URLs that appeared in the tweets at least once. Upon
running the script, 302 URLs were extracted as text files. The steps involved in
clustering the webpages are described below.

A new directory is created in HDFS for storing the webpages collection

1 $ hadoop f s −mkdir webpages

The webpages collection is put in the HDFS using the following command.

1 $ hadoop f s −put Webpages webpage/

Since Mahout accepts only Sequence file as input format, the extracted webpages
which are in the form of text files are converted to a sequence file using the following
command.

1 $ mahout s e qd i r e c t o r y − i webpages/Webpages/ \
2 −o webpages/WebpagesSeq −xm s equ en t i a l

“-xm sequential” is given to specify that the conversion has to be done sequentially.
If it is omitted, the conversion would be done in the form of mapreduce jobs.

The TFIDF vectors from the sequence file are generated using the following com-
mand.

1 $ mahout seq2parse − i webpages/WebpagesSeq \
2 −o webpages/WebpagesVectors

Canopy clustering is done before K-means clustering to guess the best value of K.
Output of this stage becomes the input of K-means clustering.

1 $ mahout canopy \
2 − i webpages/WebpagesVectors/ t f i d f −vec to r s / \
3 −o webpages/WebpagesCentroids −t1 500 −t2 250

32

Each canopy cluster is represented by two circles. The radius of the outer circle is
T1 and the radius of the inner circle is T2. The options “-t1” and “-t2” specifies
the T1 and T2 radius thresholds respectively. The option “-dm” specifies which
distance measure to use (default is SquaredEuclidean).

The results of canopy clustering can be dumped to a text file using the following
command. This step is optional.

1 $ mahout clusterdump −dt s e q u e n c e f i l e −d \
2 webpages/WebpagesVectors/ d i c t i ona ry . f i l e −∗ \
3 − i webpages/WebpagesCentroids/ c l u s t e r s −0− f i n a l \
4 −o webpages report . txt

K-means clustering is done using the following command.

1 $ mahout kmeans \
2 − i webpages/WebpagesVectors/ t f i d f −vec to r s \
3 −c webpages/WebpagesCentroids/ c l u s t e r s −0− f i n a l \
4 −o webpages/WebpagesClusters \
5 −cd 1 .0 −x 20 −c l

The option “-cd” specifies the convergence delta. The default is 0.5. “-x” specifies
the maximum number of iterations and “-cl” specifies that K-means clustering has
to be done after the canopy clustering.

Finally, the results of K-means clustering is dumped using the following command.

1 $ mahout clusterdump −dt s e q u e n c e f i l e −d \
2 webpages/WebpagesVectors/ d i c t i ona ry . f i l e −∗ \
3 − i webpages/WebpagesClusters / c l u s t e r s −2− f i n a l −o \
4 webpages report kmeans . txt

B.0.14 Clustering tweets

With Avro ebola S AVRO/part-m-00000.avro file we were able to extract the se-
quence files that can be used to provide input to the Mahout clustering algorithms.
The code for converting Avro data file to sequence file is provided at the end of
this section. The current implementation is only with sequential reading and writ-
ing. We plan to implement Map-Reduce conversion with further help from the
Hadoop team. The sequence file is generated using two fields in the Avro schema
- “tweet id” and “text clean”. For clustering we need not use all the meta-data
provided in the Avro file. In addition, most of the fields in the Avro schema are
unused.

We have used cleaned tweets (ebola S) data set to perform clustering. We have
performed three types of clustering (1) streaming k-means (2) fuzzy k-means and
(3) K-means. To avoid manual command line input each time to execute clustering
algorithms we have developed a bash script that performs most of the clustering
steps. The script is still evolving in terms of feature additions. A working script is
appended at the end of the next section.

Fuzzy K-means:

33

Figure B.2 shows an example output of fuzzy k-means cluster dump. As Fuzzy
K-Means is a soft clustering algorithm, each document in the cluster can be in
multiple clusters.

From the observed output we have identified that alphabet “i” is appearing as a
top term in the cluster output. This is expected since we are using uncleaned data.
This is reported to the reducing noise team.

Figure B.2: Cluster dump output for fuzzy k-means

Streaming K-Means:

Choosing approximate cluster centroids using canopy clustering and further using k-
means to provide cluster output is inefficient and the hadoop cluster might take long
time to process the jobs. This is especially due to the squared euclidean distance
measurement between each data point in the collection. When the collection is
too large clustering take long time to converge. Streaming k-means overcomes
this disadvantage. It has two steps - (1) streaming step (2) ball k-means step. In
streaming step, the algorithm passes through all the data points once and computes
approximate number of centroids. In the ball k-means step, an optimized algorithm
is used to compute clusters efficiently and accurately compared to conventional k-
means algorithm.

The command used in streaming k-means is as listed below:

1

2 $ mahout streamingkmeans −−numClusters 10 \
3 − i / user / c s 5 6 0 4 s 1 5 c l u s t e r / tweets S mar28 / ebo l a v e c t o r s / t f i d f −

vec to r s \
4 −o / user / c s 5 6 0 4 s 1 5 c l u s t e r / tweets S mar28 / ebo l a v e c t o r s /

streamingkmeans \
5 −km 2000

In our further evaluation, we have generated a tiny collection with just 1000 tweets
to ensure that our clustering flow is correct. We have extracted 1000 tweets from
the Avro file and generated a sequence file in the format understandable by Ma-

34

hout. Further, we have used canopy and k-means algorithms (similar to webpage
clustering) to perform clustering on this tiny data set.

In the Figure B.3, we present brief statistics while performing Streaming K-Means
on cleaned ebola S tweet data set. The statistics are collected using the “qualclus-
ter” tool in the Mahout library. The statistics indicate that the choice of tunable
parameters are reasonably performing well with streaming k-means. The average
distance in all of the clusters is around 400 while maximum distance from centroid
to farthest point is 2295. This difference is expected as the k-means algorithm is
susceptible to outliers. In our future evaluation, we attempt to identify such outliers
and filter them out during pre-processing stages.

Figure B.3: Cluster dump output for streaming k-means

The results are interesting. Out of 5 clusters (k in k-means is set to 5) we have
accumulated about 310 tweets in cluster-1, about 684 tweets in cluster-2 and the
remaining tweets in small clusters. These big clusters has top terms: cluster-1 -
“sierra”, “leone”, “emergency”, “declares”, “wabah” which roughly represents the
affected places of ebola disease. cluster-2: “ebola”, “http”, “t.co” which represents
the disease itself. cluster-3: “world”, “alert”, “fears” which represents general terms
in the tweets. Due the noise involved we are observing some unrelated top terms
such as “http” and non-english characters. We have reported this to the reducing
noise team and has corrected the data set with cleaned version.

K-means:

We performed K-means clustering on the whole of our small collection, Ebola data
set. K-means provided by the Mahout package is a hard clustering algorithm.
Although it is slower than streaming K-means, it produces clustered points also as
an output. This output is essential in order to obtain the cluster IDs to associate
with each tweet. We tried to modify streaming K-means and Fuzzy K-means to
output the clustered points as well. But Mahout is not very flexible and it required
us to modify the entire algorithm. We felt the effort required is not worth the speed
up we got. Considering the fact that we are doing offline document clustering, the
inefficiency of K-means clustering can be tolerated and hence we resorted to K-
means clustering at this point. We have reported this to Apache Mahout forums

35

for further evaluation - https://issues.apache.org/jira/browse/MAHOUT-1698.

Figure B.4: Labeled output for K-Means clustering

Figure B.4 shows the clustering results. The first column is the tweet ID, second
column is the cluster ID and the third column is the cluster label. We used Python
to extract the cluster ID and the cluster label associated with each of the clusters
from the cluster dump output. Another Python program would extract the tweet
IDs and the cluster IDs associated with each of the tweets and use the label output
obtained from the previous step to associate each of the tweets with the cluster
it belongs too. We then modified the AVRO schema with the results obtained to
produce an Avro output file with cluster results. The Avro output for ebola data set
can be found in the cluster at user/cs5604s15 cluster/clustered tweets/ebola S

B.0.15 Hierarchical Clustering

Mahout does not have any inbuilt packages for hierarchical clustering. We used the
cluster output we got from applying Mahout clustering algorithms on the cleaned
dataset to separate the input sequence file into several sequence files. Thus each new
sequence file generated represents a cluster. The figure below shows the sequence
file directories generated.

36

We iteratively applied the Mahout K-means clustering algorithm on each of these
clusters(sequence files) to obtain another level of hierarchy in clustering of docu-
ments. The results obtained are merged with the initial clustering output. These
are then converted to Avro format. We have used Python to parse the clustering
results obtained from Mahout to create a text file with tweet IDs and cluster labels.
The final merged output is also a text file. We then converted it to Avro format.

B.0.16 Clustering small collection of tweets

We have concatenated all of the small collections (tweets) and attempted to cluster
all of them at once using the K-Means algorithm. The results we expected are segre-
gating documents into each of their clusters. We have used charlie hebdo S, ebola S,
election S, plane crash S, suicide bomb attack S, winter storm S small tweet collec-
tion to perform clustering and labeling. Since we are using terms with one word we
obtained the following labels:

Cluster ID Cluster Label
1822952 Plane
1969538 Winter
1899881 I
2048395 Election
1018103 Reelection
2079107 Storm
134706 did
1265069 My
1612349 We
1609831 General

As we can observe from the cluster labels the noise is still present and words like My,
We, I appear frequently which contributes heavily to top terms. We have reported
this observation to noise reducing team to further optimize the noise reduction.
In addition, we have used feature selection to reduce such occurrences of the stop
words.

B.0.17 Code Listings

Following is the Java code to extract sequence files from Avro input. The generated
sequence file has “tweet id” as Key and “tweet text” as Value.

1

2 package edu . vt . cs5604s15 . c l u s t e r i n g ;
3

4 import java . i o . F i l e ;

37

5 import java . net .URI ;
6

7 import org . apache . avro . f i l e . DataFileReader ;
8 import org . apache . avro . i o . DatumReader ;
9 import org . apache . avro . s p e c i f i c . Specif icDatumReader ;

10 import org . apache . hadoop . conf . Conf igurat ion ;
11 import org . apache . hadoop . conf . Conf igured ;
12 import org . apache . hadoop . f s . Fi leSystem ;
13 import org . apache . hadoop . f s . Path ;
14 import org . apache . hadoop . i o . IOUt i l s ;
15 import org . apache . hadoop . i o . SequenceFi l e ;
16 import org . apache . hadoop . i o . Text ;
17 import org . apache . hadoop . u t i l . Tool ;
18 import org . apache . hadoop . u t i l . ToolRunner ;
19

20 pub l i c c l a s s AvroToSequenceFiles extends Conf igured implements
Tool {

21

22 pub l i c i n t run (St r ing [] a rgs) throws Exception {
23 F i l e f i l e = new F i l e (”/home/ s u j i t /workspace/ cs5604 /

ebola S AVRO/part−m−00000. avro ”) ;
24 DatumReader<sqoop import z 224> datumReader = new

Specif icDatumReader<sqoop import z 224 >(sqoop import z 224 .
c l a s s) ;

25 DataFileReader<sqoop import z 224> dataFi leReader = new
DataFileReader<sqoop import z 224 >(f i l e , datumReader) ;

26 sqoop import z 224 data = new sqoop import z 224 () ;
27

28 St r ing u r i = ”/home/ s u j i t /workspace/ cs5604 /ebola S AVRO/
t i ny ebo l a / ebo l a t i n y . seq ” ;

29 Conf igurat ion conf = new Conf igurat ion () ;
30 FileSystem f s = Fi leSystem . get (URI . c r e a t e (u r i) , conf) ;
31 Path path = new Path (u r i) ;
32 Text key = new Text () ;
33 Text value = new Text () ;
34 SequenceFi l e . Writer wr i t e r = nu l l ;
35

36 wr i t e r = SequenceFi l e . c r ea teWr i t e r (f s , conf , path , key .
ge tC la s s () , va lue . ge tC la s s ()) ;

37

38 System . out . p r i n t l n (”Prepare to wait . . . ”) ;
39 whi le (dataFi leReader . hasNext ()) {
40 data = dataFi leReader . next () ;
41 key . s e t (data . ge t Id () . t oS t r i ng ()) ;
42 value . s e t (data . getText () . t oS t r i ng ()) ;
43 wr i t e r . append (key , va lue) ;
44 //System . out . p r i n t l n (key + ” : ” + value) ;
45 }
46 dataFi leReader . c l o s e () ;
47 IOUt i l s . c loseStream (wr i t e r) ;
48 System . out . p r i n t l n (”Done”) ;

38

49 re turn 0 ;
50 }
51

52 pub l i c s t a t i c void main (St r ing [] a rgs) {
53 i n t r e s u l t = 0 ;
54 System . out . p r i n t l n (” S ta r t i ng Avro to Sequence f i l e

gene ra t i on ”) ;
55 t ry {
56 r e s u l t = ToolRunner . run (new Conf igurat ion () , new

AvroToSequenceFiles () , a rgs) ;
57 } catch (Exception e) {
58 e . pr intStackTrace () ;
59 }
60 System . e x i t (r e s u l t) ;
61 }
62 }

Following code is used to perform clustering job on Hadoop cluster. The input to
clustering cs5604s15.sh script is HDFS sequence file generated from Avro output
in above code listing. The output of clustering as of now is statistics in case of the
streaming k-means and cluster dump with top terms in case of the fuzzy k-means.
Our implementation for the cluster labeling is still under progress. Once cluster
labeling is complete the final output will be produced in Avro format.

1 #!/ bin /bash
2

3 # Author : Su j i t Thumma
4 # in sp i r e d from https : // github . com/apache/mahout/blob /master /

examples / bin / c l u s t e r−r e u t e r s . sh
5 # Clus t e r i ng job f o r CS5604 c l a s s
6

7 ### Usage ###
8 i f [”$1” == ””] | | [”$1” == ”−−help ”] | | [”$1” == ”−−?”] ;

then
9 echo ”This s c r i p t c l u s t e r s tweet and webpage data in HDFS”

10 echo ”TODO: more he lp on usage ”
11 e x i t
12 f i
13

14 ### change d i r e c t o r y to s c r i p t path ###
15 SCRIPT PATH=${0%/∗}
16 echo ”$SCRIPT PATH”
17 i f [”$0” != ”$SCRIPT PATH”] && [”$SCRIPT PATH” != ””] ; then
18 cd $SCRIPT PATH
19 f i
20

21 ### se t environment v a r i a b l e s ###
22 MAHOUT=mahout
23 HADOOP=hadoop
24

25 ### check f o r r equ i r ed packages ###
26 #i f [! −e $MAHOUT] ; then

39

27 # echo ”Can ’ t f i nd mahout d r i v e r in $MAHOUT, cwd ‘pwd ‘ ,
e x i t i n g . . ”

28 # ex i t 1
29 #f i
30

31 a lgor i thm=(streamingkmeans fuzzykmeans)
32 i f [−n ”$3”] ; then
33 cho i c e=$1
34 e l s e
35 echo ”Please s e l e c t a number to choose the corre spond ing

c l u s t e r i n g a lgor i thm”
36 echo ” 1 . ${ a lgor i thm [0] } c l u s t e r i n g ”
37 echo ” 2 . ${ a lgor i thm [1] } c l u s t e r i n g ”
38 read −p ”Enter your cho i c e : ” cho i c e
39 f i
40

41 echo ”ok . You chose $cho i ce and we ’ l l use ${ a lgor i thm [$choice
−1]} Clus t e r i ng ”

42 c l u s t e r t yp e=${ a lgor i thm [$choice −1]}
43

44 ### check f o r input and output d i r e c t o r i e s ###
45 INPUT DIR=$1
46 OUTPUT DIR=$2
47

48 $HADOOP f s − l s $INPUT DIR
49 i f [$? −eq 0] ; then
50 echo ””
51 e l s e
52 echo ”hadoop f s − l s $INPUT DIR f a i l e d ”
53 e x i t 1
54 f i
55

56 $HADOOP f s −mkdir $OUTPUT DIR
57 i f [$? −eq 0] ; then
58 echo ” c r e a t i n g d i r e c t o r y $OUTPUT DIR”
59 e l s e
60 echo ”hadoop f s −mkdir $OUTPUT DIR f a i l e d ”
61 echo ” p o s s i b l e reasons− d i r e c t o r y not empty”
62 e x i t 1
63 f i
64

65 ### get input avro f i l e s and convert to sequence f i l e ###
66 # as o f now we have a l l the sequence f i l e s ready . Ignore t i l l

f i n a l submiss ion
67 # wri t e another s c r i p t f o r t h i s when c leaned data a r r i v e s
68

69 ### perform mahout c l u s t e r i n g and output r e s u l t s ###
70 i f [” x$ c l u s t e r t ype ” == ”xstreamingkmeans”] ; then
71 echo ”Step1 : s eq2spar s e ” && \
72 $MAHOUT seq2spar s e \
73 − i ${INPUT DIR}/ input−s e qd i r / \

40

74 −o ${OUTPUT DIR}/output−s eqd i r−sparse−streamingkmeans −ow −−
maxDFPercent 85 −−namedVector \

75 && \
76 echo ”Step2 : Mahout streamingkmeans” && \
77 $MAHOUT streamingkmeans \
78 − i ${OUTPUT DIR}/output−s eqd i r−sparse−streamingkmeans/ t f i d f −

vec to r s / \
79 −−tempDir ${OUTPUT DIR}/tmp \
80 −o ${OUTPUT DIR}/output−streamingkmeans \
81 −sc org . apache . mahout . math . neighborhood . Fas tPro j ec t i onSearch

\
82 −dm org . apache . mahout . common . d i s t anc e . CosineDistanceMeasure

\
83 −k 10 −km 130 −ow \
84 && \
85 echo ”Step3 : q u a l c l u s t e r f o r streaming kmeans” && \
86 $MAHOUT qua l c l u s t e r \
87 − i ${OUTPUT DIR}/output−s eqd i r−sparse−streamingkmeans/ t f i d f −

vec to r s /part−r−00000 \
88 −c ${OUTPUT DIR}/output−streamingkmeans/part−r−00000 \
89 −o ${OUTPUT DIR}/output−streamingkmeans−c l u s t e r−d i s t anc e . csv

\
90 && \
91 cat ${OUTPUT DIR}/output−streamingkmeans−c l u s t e r−d i s t anc e . csv
92 echo ”Check streamingkmeans r e s u l t s in $OUTPUT DIR/output−

streamingkmeans−c l u s t e r−d i s t anc e . csv ”
93 e l i f [” x$ c l u s t e r type ” == ”xfuzzykmeans”] ; then
94 echo ”Step1 : Running seq2spar s e f o r fuzzykmeans” && \
95 $MAHOUT seq2spar s e \
96 − i ${INPUT DIR}/ input−s e qd i r / \
97 −o ${OUTPUT DIR}/output−s eqd i r−sparse−fkmeans −ow −−

maxDFPercent 85 −−namedVector \
98 && \
99 echo ”Step2 : Mahout fkmeans” && \

100 $MAHOUT fkmeans \
101 − i ${OUTPUT DIR}/output−s eqd i r−sparse−fkmeans/ t f i d f −vec to r s /

\
102 −c ${OUTPUT DIR}/output−fkmeans−c l u s t e r s \
103 −o ${OUTPUT DIR}/output−fkmeans \
104 −dm org . apache . mahout . common . d i s t anc e . CosineDistanceMeasure

\
105 −x 10 −k 20 −ow −m 1.1 \
106 && \
107 echo ”Step3 : clusterdump f o r fkmeans” && \
108 $MAHOUT clusterdump \
109 − i ${OUTPUT DIR}/output−fkmeans/ c l u s t e r s −∗− f i n a l \
110 −o ${OUTPUT DIR}/output−fkmeans/ clusterdump \
111 −d ${OUTPUT DIR}/output−s eqd i r−sparse−fkmeans/ d i c t i ona ry .

f i l e −0 \
112 −dt s e q u e n c e f i l e −b 100 −n 20 −sp 0 \
113 && \

41

114 # cat ${WORKDIR}/ reute r s−fkmeans/ clusterdump
115 echo ” check fkmeans r e s u l t s in $OUTPUT DIR/output−fkmeans/

clusterdump”
116 e l s e
117 echo ”uknown c l u s t e r type : $ c l u s t e r t yp e ”
118 f i
119 echo ”Done ! ”
120

121 ### TODO: c l u s t e r l a b e l i n g ###
122 ### TODO: <doc ID , c l u s t e r ID , c l u s t e r l abe l> ###
123 ### TODO: put the f i n a l output to Avro schema ###

B.0.18 The Cluster Labeling Process

The most common cluster labeling method is to use the most frequent or central
phrases in a document cluster as labels. We treat document cluster labeling as a
ranking problem of the keywords in each cluster.

Keyword selection

We incorporate The keyphrase extraction algorithm KEA [?] method to identify
important terms (words) from the documents. KEA is an algorithm for extracting
keyphrases from text documents. It can be either used for free indexing or for
indexing with a controlled vocabulary. KEA is implemented in Java and is plat-
form independent. It is an open-source software distributed. KEA gets a directory
name and processes all documents in this directory that have the extension ”.txt”.
Therefore we write first convert the AVRO files into txt, before feeding it to KEA
to get the key words for each cluster. For each candidate phrase KEA computes 4
feature values; first, TFxIDF is a measure describing the specificity of a term for
this document under consideration, compared to all other documents in the corpus.
Candidate phrases that have high TFxIDF value are more likely to be keyphras-
es/keywords. Second, the first occurrence is computed as the percentage of the
document proceeding the first occurrence of the term in the document. Terms that
tend to appear at the start or at the end of a document are more likely to be key-
words. Thirst, the length of a phrase is the number of its component words. Finaly,
the node degree of a candidate phrase is the number of phrases in the candidate set
that are semantically related to this phrase.

Kea first needs to create a model that learns the extraction strategy from manually
indexed documents. This means, for each document in the input directory there
must be a file with the extension ”.key” and the same name as the corresponding
document. This file should contain manually assigned keywords, one per line. Given
the list of the candidate phrases, Kea marks those that were manually assigned as
positive example and all the rest as negative examples. By analyzing the feature
values for positive and negative candidate phrases, a model is computed, which
reflects the distribution of feature values for each phrase. As we can not manu-
ally assign an keys (.key files) for the documents, we used the words from the first

42

line of each document at the .key file. Later we planned to enhance this method
using the result from the clustering method, Map-Reduce our put, which give the
most frequent words in the cluster as input for .key files for KEA. When extracting
keywords from new documents, KEA takes the model and feature values for each
candidate phrase and computes its probability of being a keywords. Phrases with
the highest probabilities are selected into the final set of keywords. The user can
specify the number of keywords that need to be selected. We select the highest 10
probability keywords for each cluster to output from KEA.

Installation and Testing KEA:

1

2 a) Download the complete package and unzip i t .
3

4 b) Set KEAHOME to be the d i r e c t o r y which conta in s t h i s README.
5

6 e . g . : export KEAHOME=/home/ o lena /kea−5.0 f u l l
7

8 c) Add $KEAHOME to your CLASSPATH environment va r i a b l e .
9

10 e . g . export CLASSPATH=$CLASSPATH:$KEAHOME
11 \ item Hadoop−ready d r i v e r program to run Mahout c l u s t e r i n g

a lgor i thms on hadoop c l u s t e r with l a r g e c o l l e c t i o n s .
12 \ item V i s u a l i z a t i o n to judge how we l l the c l u s t e r i n g i s

per forming . The v i s u a l i z a t i o n need not be g raph i c a l . Textual
r ep r e s en t a t i on i s f i n e f o r the scope o f the p r o j e c t .

13 \ item Inputs from the LDA and So c i a l Network team to improve
c l u s t e r i n g r e s u l t s .

14 d) Add $KEAHOME/ l i b /∗ . j a r to your CLASSPATH environment va r i ab l e
.

15

16 e . g . export CLASSPATH=$CLASSPATH:$KEAHOME/ l i b /commons−l o gg ing .
j a r

17 export CLASSPATH=$CLASSPATH:$KEAHOME/ l i b / i c u 4 j 3 4 . j a r
18 export CLASSPATH=$CLASSPATH:$KEAHOME/ l i b / i r i . j a r
19 export CLASSPATH=$CLASSPATH:$KEAHOME/ l i b / jena . j a r
20 export CLASSPATH=$CLASSPATH:$KEAHOME/ l i b / snowbal l . j a r
21 export CLASSPATH=$CLASSPATH:$KEAHOME/ l i b /weka . j a r
22 export CLASSPATH=$CLASSPATH:$KEAHOME/ l i b / xerces Impl . j a r
23 export CLASSPATH=$CLASSPATH:$KEAHOME/ l i b /kea −5.0 . j a r
24

25

26 e) Compile and run TestKea
27

28 e . g . javac TestKea
29 java −Xmx526M TestKea

Build the keyphrase extraction model by running KEAModelBuilder:

1

2 java kea . main . KEAModelBuilder − l <name o f d i r ec to ry> −v <none>
−f <text>

43

To extract keyphrases for some documents, put them into an empty directory. Then
rename them so that they end with the suffix ”.txt”

Extract thee keyphrase extraction model by running KEAKeyphraseExtractor:

1

2 java KEAKeyphraseExtractor − l <name o f d i r ec to ry> −v <none> −f
<text>

Keyword ranking

The keywords are ranked by the number of documents where they serve as important
terms. It ranks the terms by the sum of their TF-IDF scores in each document
cluster. The top 20 forms a label list. The top 10 are cluster labels.

44

Appendix C

File Inventory

Document clustering project file inventory list is provided in the Table C.1

File Description
ClusteringReport.pdf Final project technical report
ClusteringReport.zip Latex source code for generating report (includes Readme.txt to reproduce report)
ClusteringPPT.pdf Final project presentation in pdf format
ClusteringPPT.pptx Final project presentation in editable pptx format
ClusteringCodeFiles.zip Project source code and binaries (See C.2 for more details)

Table C.1: Inventory of files in Clustering project

File or Folder Description
adhoc scripts/ C.3 Various Python and Bash scripts that help in automation
bin/ C.4 Pre-compiled binary JAR files
cluster evaluation/ C.5 Various scripts that help Clustering evaluation - Silhoutte and Confusion matrix
clustering cs5604s15.sh Main clustering script that queues K-Means jobs in Hadoop Cluster
cluster labeling.sh Main script to label clusters
data preprocessing/ C.6 Includes code for Avro to Sequence file conversion and short to long URL expansion
Hierarchical Clustering/ C.7 Code for cluster labeling and Hierarchical Clustering (includes JAR binary files)

Table C.2: Inventory of files in ClusteringCodeFiles.zip

File Description
extract docid from points.sh Extracts document ID from Clustered points
lda-team-eval.sh Wrapper script to compute row similarity
rows-similarity-computation.sh Row similarity computation using Mahout
cluster out to avro/cluster out to avro.py Cluster output to Avro file conversion

Table C.3: Inventory of files in adhoc scripts directory

45

File Description
AvroToSequenceFilesCleanedTweetDocId.jar Converts Avro input to Sequence Files with Tweet schema
AvroToSequenceFilesCleanedWebpages.jar Converts Avro input to Sequence Files with Web page schema

Table C.4: Inventory of files in bin directory

File Description
confusion matrix for clustering.py Build confusion matrix for data sets with known labels
dictsize.sh Dictionary size calculator for various data sets
silhoutte concat tweets.sh Silhoutte score calculator for concatenated tweet data sets
silhoutte evaluation clustering.py Main script to calculate Silhoutte scores
silhoutte.sh Silhoutte score calculator wrapper script
sparsity.py Sparsity index calculator
sparsity.sh Wrapper script to calculate sparsity index
tweets.txt, webpages.txt Data set names for input to above Bash scripts

Table C.5: Inventory of files in clustering evaluation directory

File Description
clustering/src/main/java/edu/vt/cs5604s15/clustering/ Source code for Avro to Sequence file conversion
shorturlexpansion/src/main/java/edu/vt/cs5604s15/shorturlexpansion/UrlExpander.java Source code for short URL to long URL expansion

Table C.6: Inventory of files in data preprocessing directory

File Description
Hierarchical clustering.sh Bash script to perform hierarchical clustering
HClustering.zip Source code and binary for hierarchical clusteirng
LabelCluster.zip Source code and binary for cluster labeling
Merge.zip Source code and binary for merging hierarchical cluster results
Readme.txt Provides further information on how to execute binaries

Table C.7: Inventory of files in Hierarchical Clustering directory

46

Acknowledgement

We would like to thank our sponsor, US National Science Foundation, for funding
this project through grant IIS - 1319578.

We would like to thank our class mates for extensive evaluation of this report
through peer reviews and invigorating discussions in the class that helped us a lot
in the completion of the project.

We would like to specifically thank our instructor Prof. Edward A. Fox and teaching
assistants Mohamed Magdy, Sunshin Lee for their constant guidance and encour-
agement throughout the course of the project.

47

References

[1] Jain, Anil K., M. Narasimha Murty, and Patrick J. Flynn. “Data clustering: a
review.” ACM Computing Surveys (CSUR) 31.3 (1999): 264-323.

[2] The Apache Mahout project’s goal is to build a scalable machine learning
library. http://mahout.apache.org/

[3] Learning Mahout: Clustering. http://sujitpal.blogspot.com/2012/09/

learning-mahout-clustering.html Last accessed: 02/19/2015

[4] Apache Hadoop. http://hadoop.apache.org/ Last accessed: 02/19/2015

[5] Jain, Anil K. Data clustering: 50 years beyond K-means. Pattern recognition
letters 31.8 (2010): 651-666.

[6] Berry, Michael W. Survey of text mining. Computing Reviews 45.9 (2004):
548.

[7] Beil, Florian, Martin Ester, and Xiaowei Xu. Frequent term-based text clus-
tering. Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2002.

[8] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schtze. Introduc-
tion to information retrieval. Vol. 1. Cambridge: Cambridge university press,
2008.

[9] Steinbach, Michael, George Karypis, and Vipin Kumar. A comparison of doc-
ument clustering techniques. KDD workshop on text mining. Vol. 400. No. 1.
2000.

[10] Zhao, Ying, and George Karypis. Evaluation of hierarchical clustering algo-
rithms for document datasets. Proceedings of the eleventh international con-
ference on Information and knowledge management. ACM, 2002.

[11] Dhillon, Inderjit S., Subramanyam Mallela, and Rahul Kumar. Enhanced word
clustering for hierarchical text classification. Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2002.

[12] Rosa, Kevin Dela, et al. Topical clustering of tweets. Proceedings of the ACM
SIGIR: SWSM (2011).

[13] Zamir, Oren, and Oren Etzioni. Web document clustering: A feasibility demon-
stration. Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 1998.

[14] Strehl, Alexander, Joydeep Ghosh, and Raymond Mooney. Impact of similarity
measures on web-page clustering. Workshop on Artificial Intelligence for Web
Search (AAAI 2000). 2000.

48

http://mahout.apache.org/
http://sujitpal.blogspot.com/2012/09/learning-mahout-clustering.html
http://sujitpal.blogspot.com/2012/09/learning-mahout-clustering.html
http://hadoop.apache.org/

[15] Cooley, Robert, Bamshad Mobasher, and Jaideep Srivastava. Data preparation
for mining world wide web browsing patterns. Knowledge and information
systems 1.1 pp:5-32 (1999).

[16] Python package scikit-learn: different clustering algorithm implemented
in python. http://scikit-learn.org/stable/modules/clustering.html#
clustering Last accessed: 02/19/2015

[17] Python package collective.solr 4.0.3: Solr integration for external index-
ing and searching. https://pypi.python.org/pypi/collective.solr/4.0.
3 Last accessed: 02/19/2015

[18] Python Package Pattern2.6: a web mining module for data mining (Google
+ Twitter + Wikipedia API, web crawler, HTML DOM parser), machine
learning (vector space model, k-means clustering, Naive Bayes + k-NN + SVM
classifiers) and network analysis (graph centrality and visualization). https:
//pypi.python.org/pypi/Pattern Last accessed: 02/19/2015

[19] Carrot2 is an Open Source Search Results Clustering Engine. It can automati-
cally organize small collections of documents. http://project.carrot2.org/
Last accessed: 02/19/2015

[20] Apache SOLR and Carrot2 integration strategies. http://carrot2.github.
io/solr-integration-strategies/ Last accessed: 02/19/2015

[21] Gruss, Richard; Morgado, Daniel; Craun, Nate; Shea-Blymyer, Colin,
OutbreakSum: Automatic Summarization of Texts Relating to Disease
Outbreaks. https://vtechworks.lib.vt.edu/handle/10919/51133 Last ac-
cessed: 02/19/2015

[22] Apache Solr: Quick Start Tutorial. http://lucene.apache.org/solr/

quickstart.html. Last accessed 02/13/2015

[23] Apache Solr: SchemaXML Wiki. http://wiki.apache.org/solr/SchemaXml
Last accessed: 02/13/2015

[24] Apache Maven: Downloads. http://maven.apache.org/download.cgi Last
accessed: 02/13/2015

[25] Schwanke, R. W., and Platoff, M. A. Cross References are Features. Proc.
ACM 2nd Intl. Workshop on Software Configuration Management, Princeton,
N. J., October 1989, 86-95.

[26] M. Shtern and V. Tzerpos, On the comparability of software clustering algo-
rithms, Intl Conf. on Program Compre., ICPC, pp. 64-67, 2010.

[27] Tonella, P., Ricca, F., Pianta, E., and Girardi, C. (2003, September). Using
keyword extraction for web site clustering. In Web Site Evolution, 2003. Theme:
Architecture. Proceedings. Fifth IEEE International Workshop on, 41-48.

[28] Rousseeuw, Peter J. “Silhouettes: a graphical aid to the interpretation and val-
idation of cluster analysis.” Journal of computational and applied mathematics
20 (1987): 53-65.

49

http://scikit-learn.org/stable/modules/clustering.html#clustering
http://scikit-learn.org/stable/modules/clustering.html#clustering
https://pypi.python.org/pypi/collective.solr/4.0.3
https://pypi.python.org/pypi/collective.solr/4.0.3
https://pypi.python.org/pypi/Pattern
https://pypi.python.org/pypi/Pattern
http://project.carrot2.org/
http://carrot2.github.io/solr-integration-strategies/
http://carrot2.github.io/solr-integration-strategies/
https://vtechworks.lib.vt.edu/handle/10919/51133
http://lucene.apache.org/solr/quickstart.html
http://lucene.apache.org/solr/quickstart.html
http://wiki.apache.org/solr/SchemaXml
http://maven.apache.org/download.cgi

	Introduction
	Literature Review
	Flat clustering algorithms
	Hierarchical clustering algorithms
	Clustering in Solr
	Data Collection
	Mahout clustering
	Clustering Evaluation
	Cluster Labeling

	Requirements
	Design
	Workflow
	Tools
	Programming Languages
	Dependencies

	Implementation
	Milestones and Deliverables
	Timeline

	Evaluation
	Silhoutte Scores
	Confusion Matrix
	Human Judgement
	Clustering Result for Ebola Data Set

	Clustering Statistics

	Conclusion and Future work
	Conclusion
	Future Work

	Appendices
	User manual
	Pre-requisites
	Data preparation
	Data Clustering
	Cluster Labeling
	Cluster output
	Hierarchical Clustering
	Working with many collections

	Developers manual
	Solr Installation
	Mahout Installation
	Solr and Mahout Integration
	Clustering Webpages
	Clustering tweets
	Hierarchical Clustering
	Clustering small collection of tweets
	Code Listings
	 The Cluster Labeling Process

	File Inventory
	Acknowledgement
	References

