CS4624 Multimedia/Hypertext

Spring 2015

21st Century Inventory App

BRANDON DEAN, ELLIOT GARNER, BRANNON MASON

Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

Date: May 5, 2015

Emails: deanbr@vt.edu,
elliot94@vt.edu,
brannoni@vt.edu

Submitted to: Prof. Edward Fox

mailto:deanbr@vt.edu
mailto:elliot94@vt.edu
mailto:brannon1@vt.edu

Executive Summary

Currently, Network Infrastructure & Services (NI&S) takes inventory of equipment
assigned to employees (computers, laptops, tablets, tools) and sends reports of higher
value items to the Controller’s Office. All items have a VT tag number and a CNS
number, which can currently only be matched up via an Oracle Forms interface. An
inventory clerk must personally verify the existence and location of each piece of
equipment. An improvement would be an app that scans an inventory number or bar
code and the GPS location where it is scanned and the custodian of that equipment.
This data could then be uploaded to a more accessible Google spreadsheet or similar
web-based searchable table.

The 21st Century Inventory app aims to solve this problem by employing barcode
scanning technology integrated into a mobile app which would then send the
accompanying asset ID to a CSV formatted output file. By directly tying a product’s
asset ID to the user and their information, along with having the capability to scan a
product’s barcode to simplify inventory lookup, saving product information to a CSV
file, and giving the user the ability to edit the current information of a product in the
application, we are providing a significant upgrade to a system that currently solely
relies on an Oracle Forms interface.

Table of Contents

._Problem Specification - pg. 4

1.1 Purpose - pg. 4

1.2 Description of App’s Expected Functionality - pg. 4
1.3 Relation to Existing System - pg. 5

1.4 Expected Impact of the Project - pg. 5

1.5 Stakeholders - pg. 5

1.6 Roles in Project - pg. 5

1.7 Timeline and Milestones - pg. 5

._Requirements Specification - pg. 6

2.1 Specific Requirements - pg. 6
._Architecture Specification - pg. 6

._Design Specification - pg. 7

4.1 Wireframes - pg. 7
4.2 Data Flow - pg. 7
. Implementation Specification - pg. 7

5.1 Implementation Summary - pg. 7
5.2 Project Timeline/ Milestones - pg. 8
5.3 Technologies - pg. 8

5.4 Implementation Steps - pg. 8

5.5 Documentation - pg. 9

. Prototyping - pg. 9

6.1 Process - pg. 9

6.2 Implementation of Prototype - pg. 10
6.3 Expected Changes Planned - pg. 10
6.4 Refinement Stage - pg. 10

6.5 Implementation Steps Update - pg. 11
6.6 Status Since Refinement | - pg. 12

. Testing - pg. 12

7.1 Changes Since Last Revision - pg.12
/.2 Prototype - pg. 13
7.3 Problems Encountered - pg. 13

8. User’s Manual - pg. 13
8.1 Contents - pg. 13
8.2 Manual - pg. 14

9. Developer’s Manual - pg. 17
9.1 Front End - pg. 17
9.2 Drive Integration - pg. 19

10. Final Notes - pg. 20

10.1 Lessons Learned - pg. 20
10.2 Acknowledgements - pg. 21
10.3 References - pg. 21

Appendix A: Flow Chart - pg. 22

Appendix B: Work Schedule - pg. 24

Appendix C: Sample Data - pg. 25

Appendix D: Sample Databases - pg. 27

Appendix E: Prototype as of Refinement Report 2 - pg. 28

Appendix F: Prototype as of Testing Report - pg. 30

1. Problem Specification

The current system in use by the CNS department at Virginia Tech lacks a
central-standard identification unit, leading to difficulties for staff members to have an
accessible way to track the communication inventory. For this reason, the
21s-Inventory will mobilize and centralize the tracking of the inventory through the
development of a mobile application.

A motif for the 21%t-Inventory project is the potential for it to be a prototype for future
updates to the Oracle Docs system employed by the CNS department at Virginia Tech.
Documentation, a friendly user interface, and ease-of-use will be key factors in trying
to convince the department to upgrade their system.

Employees of the CNS department have expressed their difficulty in navigating the
archaic Oracle Docs system. The current set-up requires entering different
identification values to track down a single object in the system. Further, employees
manually have to enter information about the items that they add into the system,
increasing the chance of random error.

21%-Inventory will act as a buffer between the employee and the Oracle Docs system
by accessing a central .csv file to acquire and store information. It should be noted that
the employee will be able to take a picture of a bar-code that will update the .csv file
with the real-time information rather than solely having to enter the information
manually. Expected gains from implementing 21%-Inventory include an increase in the
workflow and a decrease in the expected cost from untracked inventory.

To improve performance costs, the current revision for the inventory list will be
downloaded to the mobile device in use by a CNS employee, where it will be parsed to
allow for easy management if the user needs to constantly update the list. After
finishing the necessary updates, the user can then upload the file back into the central
document. The previously downloaded file and updated file will then be deleted for
security purposes.

The Oracle Docs system that is in use by the CNS department at Virginia Tech suffers
from multiple standards to look-up information about the inventory currently in the
department’s possession. This dated technology and with the vast availability of
mobile products has led to the chance for the department to upgrade how the
inventory is tracked. 21%-Inventory will not take the place of Oracle Docs, as the
application will still need to access the central database provided by Oracle Docs;
however, 215-Inventory will be a proof-of-concept application that hopefully will pave
the road for the shift away from Oracle Docs.

The time lost in NI&S inventory tracking and reporting is staggering. With this app, we
could quickly dispatch this task, and probably extend the functionality to find inventory
on trucks and warehouse shelves.

The main stakeholder is the client, NI&S, whom for the app is being developed. The
three students, Brandon Dean, Elliot Garner, and Brannon Mason, also have a stake in
that their semester project grades are dependent upon the delivery of the stated
requirements. Lastly, Dr. Edward Fox is a stakeholder as he represents the students
who are developing this app.

Brandon Dean and Elliot Garner are the designated main programmers. As such, they will
implement programmatically the desired design once in the prototyping phase of the project.
Brannon Mason is the designated designer, a role in which he will be primarily responsible
for the design of the app. This comes with the responsibility of creating sketches, wireframe
diagrams, and use/case descriptions.

March 5: App GitHub repo created.

March 19: We want testing database to be sanitised and set up for use. We also will
have a preliminary version of a barcode scanner implemented.

April 2: The app will be able to read a barcode and get its associated product data.
We want to also manually update product info and add new items.

April 16: Finalized all barcode technology used, all information stored into a .csv file,
and prototype running on a test device.
April 30: All deliverables completed

2. Requirements Specification

The following list contains the planned features that the application will handle:

Barcode scanning to update product information
Manual entry to update product information
Asset-ID look-up
Items loaned to a Custodian-ID look-up
A central Google Document in .csv format
Revision History
Adding new items into the central inventory catalogue
A security system to block unauthorized users
The following fields of information to be stored:

o Asset-ID

o Custodian-ID

o Description

o Last known GPS Location

o MAC Address

3. Architecture Specification

The 21st Century app will be developed in Swift, using XCode, targeted for devices
running iOS 8. Our test emulator target is the iPhone 6 Plus, but can also be run on other
devices running iOS 8, including the iPhone 4s, 5, 5s, and iPhone 6. In addition, any iPad
which can run iOS 8 can also run this app. So this user pool also includes the iPad 2, iPad 3,
iPad 4, iPad Air and iPad Air 2. Every effort will be taken to use plug ins that are written in
Swift and use free software to reduce costs and complexity.

4. Design Specification

In the preliminary design, the 21st Inventory will support 3 different methods to
manipulate the inventory database. This includes a method to add inventory objects, a
method to update inventory objects, and a method to get information on inventory
objects. For more information on the design and flow of the current user interface see
the wireframe in Appendix A.

When the user opens the first thing the application will present to them will be
presented with a camera view to take a picture of the barcode with. The user will then
line up the barcode inside of a predefined box, so that the application can recognize
the barcode properly, and will take a picture of it.Once the user has taken a picture of
the barcode the application will scan the picture, read the barcode, and get the
information stored in that barcode. Then we will download the information stored in a
google spreadsheet and transform it into a table. Our application will then search
through that table for the barcode data.

If the barcode lookup was successful and the data for the barcode was found then the
user will be presented with the data associated with the barcode. Then the user will be
have the option to edit the information. If they do the the edited information will be
pushed back to the spreadsheet and overwritten.

If the barcode lookup was unsuccessful and the data was not found then the user will
be presented with the option to create data associated with that barcode. When the
user has filled out all of the information available to them then that new information will
be written to the google spreadsheet.

5. Implementation Specification

Our project will be an iOS application written for the following apple devices: iPhone 4s,
iPhone 5, iPhone 5s, iPhone 6, and iPhone 6 +., as well as any iPads newer than iPad 2. It

will be developed in XCode using the Swift programming language. We will be using the
Google Docs AP,

As covered in Section 1.7, we have identified milestones at approximately 2 week intervals,
during which project stakeholders can evaluate project progress with the team.

March 5: App GitHub repo created.

April 2: We want testing database to be sanitised and set up for use. We also will have a
preliminary version of a barcode scanner implemented.

April 9: The app will be able to read a barcode and get its associated product data. We
want to also manually update product info and add new items.

For graphical layout on the timeline see Appendix B

As specified in the Architecture Specification (Section 3), we plan to develop our app in
XCode, using the Swift programming language for iPhone devices. We will have to identify
and implement an external plugin for handling the capture of barcodes and exportation of
relevant data to a .CSV file. The testing database will be hosted in Google Docs, using
relevant APIs.

The project repository is privately hosted on Virginia Tech’s GitLab site. This can be found at
git@git.cs.vt.edu:deanbr/21stinventory.git. This has already been created, and has all three
team members listed as collaborators. The advantage for this setup is that it will be easy to
share code with all stakeholders, while being able to migrate the project at any time if such
an action is desired.

The actual application will take place in a set of seven steps as follows:

1. The given data and information will be checked whether or not it currently is a
parseable .csv file. If not, the data will be scripted to create a .csv file that will be
hosted on Google Drive.

2. To easily update and search the .csv file, the information that will be entered into the
.csv file will be sorted by barcode number (ideally the ID number that is part of every
device).

3. With the parse-able files set up in their correct form, the next portion will be the
implementation of generic data structures to hold the information that will be parsed
in from the .csv file. The data structure to hold the information will most likely be a
combination of a Hash Table and a balanced binary search tree, which will be an AVL
tree or a Fusion tree.

4. Once the data structures have been tested and finished, the look-up functions will be
derivative methods that pull from the data structure methods. We will be checking
the barcode against a server of data on the back end of the project, supplied by the
client.

5. The barcode scanner will set-up to specifically test that the information from the
barcode can be supplied to the model portion of the application

6. The view portion and the controller portion of the application will be finally synced
together. The lookup functions will be attached to specific widgets on the GUI pages
created.

7. Finishing touches and testing the full functionality will be the final step to the
implementation of the application

Throughout the project, any code that is written will be commented thoroughly, with efforts
taken to ensure ease of understanding for developers working with our code base after this
semester. After the project, a short “Developer’s Manual” will be published as part of the
final report which will contain our experience with developing the project, how it is
structured, and how everything is implemented.

6. Prototyping

We have not yet made any prototypes, but have discussed what the prototype shall ook like.
It will be done in Swift and made with the XCode IDE so that commonality with the final
product is easily achieved.

We will start with programming front end interface first, such that the user will be able to
navigate (i.e. click around) the app, but it will not actually do anything behind the scenes (i.e.
connect to a server, send results after scanning, etc.).

Following that step, we will behind incrementally adding features, in the order of complexity.
So we will tackle a small problem, finish it, and move to the next. We will continue this
iterative process until our final product is ready to be delivered.

As covered above in 6.1, we will implement this in the language and development
environment expected of the final product. Features will be expected to be minimal at first,
but incrementally added as time approaches the final deadline (optimally also in line with our
projected milestones).

Right now, we have mockups of the system given to us by Kimberley (our main stakeholder).
These can be found in Appendix C (the Excel spreadsheets with data provided). We are
going to take this data, in the form of a .csv file, and send this to the server currently
handling the current implementation.

Further, due to the design of the files given to us by the main stakeholder, we will try to
further collaborate all the information that has been given to us to possibly re-design how the
information is presented. In its current form, most of the information is scattered across over
14 files. This needs to be fixed so that we can move on from here. Will we be meeting with
our stakeholder on the week of 3/29 to possibly update and secure the correct design for our
prototype going forward.

At the current time, the project has been updated from storing multiple different types of
inventory items to just one type. The 21st Inventory project will now be used to help the
implementation of installing multiple wireless access points (WAPs) throughout the dorms
and buildings on the Virginia Tech campus. Specifically, the application will track where the
WAPs will be placed, from the warehouse to the room, as well as holding the information on
the MAC addresses on the inventory numbers.

The reason for this update is to make sure there is no loss of materials when the installation
of access points begins, as well as making sure that all the items are installed in the correct
locations for the quality assurance team to double check quickly and effortlessly. Further, the
.csv file created will help the CNS department easily tell the finance committee which
buildings they will have to bill and how much each building will have to be billed. The
information will be stored in a similar file as shown in Appendix D.

10

As it currently stands, the application will take, as input, a photo of a barcode. The barcode
will be of either the the serial number, the CNS, or the P-tag, the last two are added onto the
back of the WAP. Upon scanning, if the scanned information cannot be found, then it will be
added to the database, along with the rest of the required barcodes, the MAC address of the
device, and the location of the user. When the user scans any of the four barcodes and the
information is found, it will update the location of the corresponding item, and allow the user
to edit the current information to the item if it was inputted incorrectly.

As of the April 8, 2015, the projected number of items to be scanned is in the vicinity of 3000
| devices. There are going to be roughly 5 or 6 corresponding pieces of data attached to
each device (i.e. MAC address, text location, gps location, serial number, CNS number, ID
number, and ptag). The last few pieces of data being tracked were added in as of that last
meeting, on April 3, 2015. In addition, it was requested we add in another screen so the app
could also store whether the device is hanging on the wall or ceiling. And while it isn’t very
intensive necessarily to store a few additional pieces of data, this change of scope has also
changed how we need to design our app and has sent us back to the drawing board to
rework our approach. As such, the (demo-able) prototype is on track for an April 13th debut
in our meeting with our client.

Some items we need to keep in mind going forward are whether there will be different
barcode types, how we will need to treat retrieving gps data within buildings here at Virginia
Tech, where wireless transmissions have trouble indoors, and how to integrate our data with
a sample database. We are hoping making a working prototype will help answer the
questions and give the client a chance to test out their product.

With the new update of the project spec we have updated the wiki to accurately reflect the
current project.

With the new specifications wanted by the client, the implementation of the updated
application will take place in a set of 6 steps as follows:

1. The design for the model of the application will be created following the given data
elements that the client has provided. This includes, but is not limited to, writing up
the basic functions that will be a wrapper to be called by the controller portion of the
application and the making of the parsing unit for the file to be updated.

2. Resolving final bug testing with barcode scanning and photo recognition. This

includes acquiring an Apple product for every member of the team for reliable testing.
These products will be rented from Innovation Space.

11

3. To overcome the slowness of multiple I/O calls to update each line, the application
will store the file a second time over as strings in a hash table. This allows for a quick
look-up time, as well as, only forcing the file to actually be updated upon closing of
the application.

4. The barcode scanner will set-up to specifically test that the information from the
barcode can be supplied to the model portion of the application.

5. The view portion and the controller portion of the application will be finally synced
together. The lookup functions will be attached to specific widgets on the GUI pages
created.

6. Finishing touches and testing the full functionality will be the final step to the
implementation of the application.

Our team met with Kimberley on Monday April 13, 2015 to show the prototype and discuss
progress. Here, we clarified what data she is expecting from the app, and what she should
expect as the deadline approaches. We agreed to two more meetings before the deadline,
with the next one being Wednesday, April 22 and the next a week after. At this first meeting,
we will have everything in the app working, with the exception of it communicating to the
database. At the latter date, the database functionality will hopefully be implemented, and, if
not, it will export to .CSV (as was originally planned and expected). See Appendix F for
photos of the views of the prototype shown to Kimberley in the meeting.

7. Testing

Since the last report, the system has been updated to download files from the drive and to
correctly parse the files into the application. Further, the authorization screen has been
finished, as well as, the ability to jump from window to window as envisioned. Finally, the
barcode scanner works and correctly scan all three possible barcode IDs that the client had
required to be produced. In addition, we have expanded the scope of the app to include a
main splash screen, which the user will first see upon loading the app. From here, the user
can select to use the camera, or navigate to the settings screen. If the user selects the
camera, they then proceed along the same logical flow described in the previous report.

12

The prototype has been further updated to include the full scope of the project. At this point,
the prototype exists to show the full functionality of the final product. The next step is for our
group to hold our scheduled meeting on April 28, 2015 to combine the two parts of the project:
The app interface with which the user interacts, scans a barcode, and enters any data. And
the code interacting with Google’s Spreadsheet API which will allow us to take any data
entered by the user in the app and push it to a database hosted in a Google Spreadsheet.

In addition, we can also plan to have our app output a .CSV file for the client to manage at
their convenience, as was the original plan. However, our code working with Google’s
Spreadsheet API supercedes this functionality and makes any changes directly to a database
owned and maintained by NIS.

This latest prototype, which should have the “final product” designation applied to it following
a successful meeting with Kimberley Homer on April 29, 2015 during which we will sign off on
deliverables met and hopefully leaves with a “final,” or “near-final” product to which we will
make the necessary changes.

Multiple problems and bugs have been encountered with our system, including, but not limited
to, the following:

e If barcodes are too close, the scanner is unable to correctly read the barcodes. This
can be remedied by either placing the barcode strips on the inventory item further
apart or by covering adjacent barcodes so the scanner only has a single code to look
at.

e Due to the lack of an actual API for Google’s Drive, there was a major difficulty in
trying to even get the files from the Google Drive. At this time, we have successfully
gotten around trying to constantly look up the address to the file, and rather are using
the metadata from the file.

e There were a couple of minor bugs with actually parsing the file correctly and making
sure that the application wrote to the right location, but these were easily resolved
when debugged.

8 User’s Manual

The following is a list of files that have been included in the ScannerTest.zip file with our
submission to VTechWorks and a description of each:

13

- This folder contains all of the assets for our project. Source code, images,
files to write to while the application is running. Look below to find out how to properly view
the contents of this folder

- This folder is how you properly view the project using XCode on a
Mac. By using XCode to open this folder you can edit all aspects of the project. It is strongly
recommended that if you alter the project in any way you do it through XCode.

- This folder is meant to host all of the test files for the project. For our
purposes of the project we didn’t write any tests for the project, so the folder is mostly empty.
But this is where test files were to go if you were to write them on a future date

- This folder is a folder downloaded from the Google
Drive API. It contains all of the files required for getting an application integrated with any
Google Service. WARNING: Do not move the location of the project on a computer
without resetting the “User headers search path” in build settings to the path of the
Source folder within his folder. Please make sure that the path to the source folder has
no spaces in it either.

The 21%-Inventory application was developed to mobilize and centralize the tracking of
the inventory of the Network Infrastructure & Services (NI&S) while they installed new
equipment inside Virginia Tech buildings.

In order to use the application the user must have access to the “arubawaps.csv” file
on Google drive. If the user does not have access to the file, access can be granted to
them by sharing the file with them through the Google drive.

Upon opening the application, if the user has not already done so, they should wait
until the application presents them with a Google account login screen. This screen
will ask the user to sign into a Google account and can be seen in Figure 8.2.1. For
ease of access the user should sign into the approved NI&S account that already has
access to the appropriate file on the drive. For the username and the password to this
account please email Kimberley Homer at homerk@gmail.com.

14

mailto:homerk@gmail.com

47 P

Google

SiEn in with your Google Accaunt

Figure 8.2.1. The layout of this screen is similar to any standard Google Login screen,
as this is trying to access the User’s Google Drive

Once the user has signed in they should press the camera button on the main screen
to scan barcodes. This will take the user to the following screen, where they will then
be allowed to scan barcodes. At the bottom of that screen are buttons “VT ID”, “C
Number”, “Serial Number”, and “MAC Address”. When the user scans a barcode with
the respective button selected it will store that information under the respective field.

In order to scan a barcode the user must have the barcode in the center of the camera
display, allow it to correctly adjust to the distance from the barcode, and wait the for
green box to appear. Once the green box has appeared it is then appropriate to scan
another barcode. After the user has scanned all barcodes needed, then press the
“Proceed” button to move onto the next screen.

This screen has all of the information that the user can input. If the user scanned
barcodes while the buttons “VT ID”, “C Number”, “Serial Number”, and “MAC
Address” that information will be presented to the user. They must then input the
current location of the device, the stock number, current custodian, and room number
of the device’s current status. If any of these fields do not apply, please leave them
blank. The layout of the screen and what can be found on it is presented in Figure
8.2.2.

15

iPad = 8:52 PM 989 ()

£ Scan Barcode Enter Data

Virginia Tech ID Number

MAC Address
0184078000015

C Number
000817488
Serial Number
0022000115805
Location
Warehouse
Stock Number
AP-224
Custodian
Elliot Garner
Room

1516

Next

Figure 8.2.2. An example of the filled in fields with information that has been manually
entered or scanned in

When clicking next the user will be allowed to select whether or not the device is wall
mounted or ceiling mounted or will be able to enter a custom location of the device by
hand.

When hitting next another time the user will be presented with all data that the user has
entered so far. If any of this data is incorrect, they will be able to go back to the
appropriate screen and correct it. If all of the information is correct the user should hit
the next button. Then select the Submit button. Upon doing that the updated
information will be uploaded to the appropriate file on the Google Drive. All of this can
be found in Figure 8.2.3. If the user as anymore issues understanding how the flow of
the application works, they can consult the wireframe in Appendix F.

16

iPad = 8:52 PM 97% .

£ Select Mounting Review Your Data

Virginia Tech ID Number

MAC Address
0184078000015
C Number

000817488
Serial Number
0022000115805
CNS Number
AP-224
Location
Warehouse
Stock Number
AP-224
Custodian
Elliot Garner
Room
1516
Mounting
Wall

Next

Figure 8.2.3. The final information review screen that allows the user to check over
what currently resides in the fields and allows them to either move forward or change
values

9. Developer’s Manual

For our project we have two variables inside of our AppDelegate that we use as global
variables throughout the entire application so we don’t have several instantiations running
around at the same time. First we have the fileParser variable, a FileParser21 object, which
holds a copy of all of the data read from the Google Drive File, so it’s important to not have
more than a single instance of that variable. Next we have the scanner variable, a
DriveScanner object, which is the item that you call all of the Google Drive operations
through and holds your validation information in it. Again, it’s important to not have more
than one copy of that variable.

17

When the user first opens the application they will be presented with the main screen. Inside
of the ViewDidAppear method we check a flag to see if we have asked the user to sign into
Google Drive yet. If they have, we move straight to retrieving the file contents from the file
hosted in the Drive. If we haven’t, then we need to set up the
GTMOAuth2ViewControllerTouch View Controller shown in Figure 8.2.1. This process is
described in depth in Section 9.2. Once the user has logged in, they are then free to press
the Main Screen button to segue into the camera view.

The camera view, where the user actually scans the barcode, uses a lot of code inspired by
code at The Bowst Blog (Bowst). The few maijor differences are that we added a segmented
control to the bottom. This allows the user to select which barcode they are scanning, and
stores it in memory based on what portion of the segmented control was selected when the
barcode was scanned. When the user scans an object, we do a look up in the dictionaries
stored in memory, described in more detail in Section 9.2. If that data already exists we
present it to the user in the next screen immediately. If it's not found, this data is stored into
the variables strVTIDNumber, strMacAddress, strCNumber, and strSerialNumber. Then when
the user presses the next button, a segue is performed passing those variables to the next
screen, the DataEntryViewController.

This screen is just a list of labels and text fields. The application populates the VTID, the Mac
Address, the C Number, and the Serial Number, based on whether or not the barcode was
scanned on the previous screen. If it was, then the data was passed to this screen and
automatically set as the values of those text fields, else they will be blank. The user is then
able to edit any of the other text fields as they see fit. We do not do any validation on any of
the user input. They are able to input any combination of characters together that they want.

Once the user has finished inputting the data and have pressed next, all of that data is passed
to the next screen, WallMountViewController. This screen has two buttons and a text field.
One button for wall mounted, one for ceiling mounted, and the text field is so that they can
enter their own location of the device. If they pressed either of the buttons that passes to the
next screen, in addition to all of the previous data, the model number of the device. If they
entered a custom value that value will be passed as the part number.

Next all of the data that has been passed will be presented to the users in the form of labels.
These are non-editable and the values of the labels are populated with the respective data
that has been passed forward. The alignment on these labels can be kinda wonkey and will
not always look perfect.

Once the user has pressed next that specific record has been recorded into the files memory.

If they hit the submit button on the next screen, the current list of records is sent to be written
to the Google Drive. The user is then brought back to the main screen.

18

The Drive Integration is mainly contained within three different classes, the DriveScanner
class, the Record class, and the FileParser21 class. The Record class is used to create
record objects to store all of the value pertaining to a single device. You create a new record
by passing it all of the relevante information that you have pertaining to the device. Inventory
number, serial number, mac address, stock number, building id, building name, building
abbreviation, room number, model humber, and description. You can turn a record object
into a string by taking each portion of the record, adding a comma do it, and concatenating
them. This is done because we are writing them to a csv file, so we need to separate fields
by commas.

The FileParser21 class has 3 main functions. First is addToHash. This reads in all of the
data written to a file within memory and, because the file on the Drive is a csv file, seperates
them by commas, and then creates a Record out of those and stores those into a dictionary
where the key is the inventory number and the value is the record object. We also have two
other dictionaries. One connection the serial number to the inventory number, and one
connecting the mac address to the inventory number. This is so that if the users scans
another barcode other than the inventory number, we can look up if the item exists in the
dictionary for them to edit. Next is the writeToFile function. This function takes every object
stored in the primary dictionary, convert the records to strings, and then write them to the file
in memory. Finally you can add an item to the dictionary by passing it all of the relevant
information described previously.

Third we have the DriveScanner class. This class is where all of the drive integration comes
into the project. First we have the userLogin function. Each project registered with Google
has a client ID and a secret. The userLogin function sends those to google for authorization
and returns and authorizer if those are correct. We store that authorizer inside of the global
drive scanner. We then call createAuthController to create the login screen to present to the
user. After storing that inside of a variable we return it to the main screen to be presented.

The createAuthController function creates and returns a new
GTMOAuth2ViewControllerTouch screen with the client secret and client id. However, once
the view controller has been created it calls viewController when it finished through a
selector. The viewController function sets all relevant information for authorization on
completion. If there was an error creating the authController we present it to the user and do
nothing else. If there wasn’t, we set the error to the authentication result, set the access
token to the authentication result token, then dismiss the view controller, and finally retrieve
the file contents through the retrieveFileContents function.

The retrieveFileContents function is where the data is retrieved from the file in the Drive. To
do this you create a GTLQueryDrive with the query that you want. We create a
queryForFilesList query, which returns all of the files that the user has access to. we use the

19

driveService to execute that query with a completion handler. On completion if there was no
error we need to iterate through the GTLDriveFileList that the query returns. We then check
each file’s originalFileName against the file that we’re looking for. Once we’ve found the file
we need to retrieve the file’s downloadUrl, the url that actually downloads the file’s data. we
create a NSURL request using the download url and then convert that NSURL request into a
NSMutableNSURL request. We do this because we need to attach a custom header to each
request to google drive in the following form “Authorization: Bearer [accessToken].” We set
the value of the mutable request and open a new NSURLConnection sending an
asynchronous request with a completion handler. If that request returns an error then we
don’t have proper validation and we need to create a new auth controller, which recalls
retrieveFileContents on completion. If there is no error then we read the data from the file,
write that data to the file i memory, and then add the data in the file to the dictionaries using
the addToHash function.

WARNING: Because all of this is done during the viewDidAppear method there there is the
possibility of the user to try to interact with the main screen while all of this is running. This
leads to the possibility of them interacting with the screen while file contents are being
retrieved. This can lead to unexpected results. An appropriate way to fix this in the future
would be to show a loading view while the contents of the file are being read. One the
contents are downloaded, you could remove the view and let the user interact with the
application again.

The last important method in the DriveScanner is the uploadFile function. This creates a new
query, a queryForFilesUpdateWithObject query, which is used to overwrite a file already
existing on the drive. We attach the file in memory to that query. We then execute that query
with the driveScanner.

The drive scanner interacts with the application in two main places. Firstin the Main Screen
view controller. The user login function, and by extension the retreiveFileContents function
are all called in the viewDidAppear method. Finally, when the user returns to the Main Screen
from the Finished Screen, it calls the uploadFile function in drive Scanner. The DriveScanner
methods are very self contained and were made to interact with the user and the front end as
little as possible. Any questions about the Drive API should be directed to Google’s Website.

10. Final Notes

In the beginning, the client wanted an inventory system that would be able to store multiple
different objects ranging from computers to telephones that could become mobile and allow
for employees to reliably track inventory items. However, over time this had to change. For

20

over a month, the team had to remain in a delayed-development state, as information on
what specifically was wanted, like the file set-up, continued to oscillate.

About a month before the project deadline, the product objective was finalized. Instead of
tracking all inventory values, the team needed to create an application that only focused on
storing Wireless Access Points (WAPs) information, as the NI&S department would be
installing a large amount of them in the near-future.

What we learned from this was for us to need to have more communication with the client
and have more communication with each other. Without good communication, we had
difficulties understanding what we needed to do for a long period of time that could have
been better spent creating a larger scale product, as well as, having difficulties on solidifying
out design. However, this is an internal critique of what we could do better in the future.

We would like to thank both Kimberley Homer and Sarah Crowder, our clients at the NI&S,
for their incredible help and flexibility when it comes to this project. They have been very
understand and patient when it comes to the project and its specifications.

Next we would like to thank Dr. Coleman Fox for setting up original communications with
Ms. Homer and Ms. Crowder and the project.

Finally we would like to thank Virginia Tech’s Innovation Space for letting us rent iPads to do
testing of our software on.

"The Bowst Blog." Simple Barcode Scanning with Swift. Bowst, n.d. Web. 30 Apr. 2015.
<http://www.bowst.com/mobile/simple-barcode-scanning-with-swift/>.

“Introduction to the Google Drive Platform for I0S." Google Developers. Google, 20 Mar. 2015. Web. 30
Apr. 2015. <https://developers.google.com/drive/ios/intro>.

"The Swift Programming Language: About Swift." The Swift Programming Language: About Swift. Apple,
n.d. Web. 30 Apr. 2015.
<https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Lang

uage/>.

Appendix A: Flow Chart

21

Z 1STLVan 4‘@4’3

| Lagi’nfﬂ{_;ﬂ‘ T

| Password

S con 8 ATED Jﬂ» }
Vo we .
i"‘\ anuval Emn %"n'; j t}:{)ﬁ

n
CS;

L.

Assed IDT

Costadinasn i

22

[Asset Dz e e
CUS‘H)&M IE); ATy g

: %MA @aﬁ f“;,f;} B s
Las¥ Known Locations

e

Asset
Td

Update
Suaas}fﬁ sl

THem
SU{.&&S‘S gufl’y

Added

23

Appendix B: Work Schedule

Gantt Chart

3/5/2015 3/10/2015 3/15/2015 3/20/2015 3/25/2015 3/30/2015 4/4/2015 4/9/2015
GiHub repo .
parsng Logi Cong I
Parsing Logic Unit Tests _

Data Structure Creation

O Srucure Ui Tt —

Ul Deden

GUI Coding

Barcode Coding

Fina Tesing —

24

Appendix C: Sample Data

HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW Sign ir
o X - =, Do Ty FPH 2 AutoSum - A
& . Calibri - EFWrap Text General - g‘& Q & ;X @ . Al H
Paste . B I U- &35 EMegetCenter - § - % G § Conditionsl Formatas Cel - insert Delete Format Sort & Find &
- Formatting - Table~ Stylesw - - - £ Clear Filter+ Select
Clipboard Font o Alignment] Number [F] Styles Cells Editing -
Al - device_name v
A B C D E E G H 1 J K L M N o P Q R S -
1 |device_ncslot_id port_id circuit_id status building_ibuilding_t building_:room outlet_id start_timestop_time event_tirmr event_soiretention event_id
2 |LEE-F9A-2. 0 23 118171 ACTIVE 30 LEE HALL LEE All TPO2A HHEHHEEE BHHERRE SRR nemisys 105000
3 |R1901-AA- 0 2 111291 ACTIVE 646 1901 R1901 1000 940AA102 HEHHHHHH HHHHHIHH | HHHHHET nemisys 98580
4 |PWC-201- o 2 106026 ACTIVE 2060 POINTE WPWCOM 207A TPO4B HHHHARE | S | R nemisys 95944
5 |STCTR-11C 0 4 121253 PENDING. 242 STERRETT STCTR 239 TPO1B TR HHHA | T nemisys 115362
6 |WHI-A46-(0 1 35661 ACTIVE 134 WHITTEM! WHIT 174C 199EALQ3. s | Hrtint | AR nemisys 113303
7 |STCTR-11C 0 4 121253 PENDING 242 STERRETT STCTR 239 TPO1B TR HHHA | T nemisys 115363
8 |STCTR-11C 0 6 121257 PENDING 242 STERRETT STCTR 241 TPO1A SRR WA | S nemisys 115367
9 |STCTR-11C 0 7 121351 PENDING. 242 STERRETT STCTR 233 TPO1A HHEHHEEE BHHERRE SRR nemisys 115368
10 [STCTR-11C 0 7 121251 PENDING 242 STERRETT STCTR 233 TPO1A HHFRFHHR A | T nemisys 115369
11 |[PACK-103- o 7 43637 PENDING . 257 PACK BUILPACK 144 TPO1A HHHHARE | S | R nemisys 115742
12 [PACK-103- 0 7 43637 PENDING 257 PACK BUILPACK 144 TPO1A TR HHHA | T nemisys 115743
13 [TOR-C11-C o 2 122250 UNDEFINE 174 TORGERSETORG 3046 TPO3A HHHHHARE | S | R nemisys 112956
14 [WHIT-EA- 0 25 87437 PENDING . 134 WHITTEMI WHIT 287C 199EALQ7¢ HHHHHIHE | HAHRRI | #HHREHER nemisys 113473
15 |vM2-378-(0 16 35515 PENDING 150 VET MEDFVM 2 301 TPOGB SRR WA | S nemisys 115376
16 [BIOI1-C22 0 16/ 113036 UNDEFINE 119 BIOINFOR BIOI1 316 TP14D HHEHHEEE BHHERRE SRR nemisys 115204
17 |WRGHT-34 0 L 32224 ACTIVE 276 WRIGHT H WRGHT 101 |387AA10L I HHHHHHG | T nemisys 111751
18 [AJW-EA-0 o 42 111531 ACTIVE 33 AMBLER JtAJ E 1317|411BA1A3| sHEHHHHHE | HHRHERHE | HEEHH#E nemisys 112161
19 [STCTR-11C 0 3| 121249 PENDING. 242 STERRETT STCTR 237 TPO1A TR HHHA | T nemisys 115360
20 [EMP-102-(o 15! 59269 ACTIVE 2190 MATH EMIEMPOR 112 TPO7B HHHHHARE | S | R nemisys 84740
21 |WRGHT-3 0 1 32232 PENDING 276 WRIGHT H WRGHT 1TPO1B TR HHHA | T nemisys 111874
22 |NHW-AA-| 0 10/ 103488 UNDEFINE 55 NEW HALLNHW 110 B77AAL03! AR | Wi | T nemisys 111011
23 [WRGHT-3; 0 1 323232 PENDING 276 WRIGHT H WRGHT 3B7AAI00 HEHHEHH HEHEHEE SHHERHEE nemisys 111875
24 |WRGHT-34 0 2 32233 PENDING 276 WRIGHT H WRGHT 1 TPOGE HHFRFHHR A | T nemisys 111876
25 [WRGHT-3 o 2 32233 PENDING 276 WRIGHT H WRGHT 3BTAAL0L HHHHHHE | HHHHHHG | HERHHE nemisys 111877 -
® [v

circuit_tracking_event

AVERAGE: 36265.

FILE HOME
D Calibri
By -

Pasts
aste B I

Clipboard
Al -

A B
WRGHT-34
BIOI1-C22
WRGHT-34
WHIT-BA-
BIOI2-177
CRCK2-B5-
WHI-403-(
LAN-A2-02
LANE-BB-(
GOODW-L
SQUIR-DB
STA-WA2L
WRGHT-A.
LANE-BB-(
BIOI2-151-
WHIT-EA-(
PAM-DA-(
WRGHT-34
WRGHT-34
WRGHT-A
STCTR-201
WHI-A46-1
BIOI2-151-
WHIT-EA-(
STCTR-11C

26
27
28
20
30
31
3
33
34
3!
36
37
38
3
40
Ll
4
Pt
44
4
46
47
48
49
5

r~

©

W

=

circuit_tracking_event

INSERT

fe

=il

coocoocooo0o0 000000000000 00
BB ER vl wubuaBnwalbEsoeshde

PAGE LAYOUT

7]

device_name

D E
72621 ACTIVE
113038 UNDEFINE
32232 PENDING
106863 ACTIVE
100938 UNDEFINE
121460 PENDING .
90006 UNDEFINE
101415 ACTIVE
48438 UNDEFINE
119676 ACTIVE
116616 UNDEFINE
121064 UNDEFINE
32224 ACTIVE
101415 ACTIVE
105094 UNDEFINE
121808 PENDING .
48854 PENDING .
32234 PENDING
72621 ACTIVE
32219 PENDING .
44511 UNDEFINE
40413 ACTIVE
112836 UNDEFINE
121862 UNDEFINE
121257 ACTIVE

®

FORMULAS

DATA REVIEW

-

EF Wrap Text

Alignment

F G H
276 WRIGHT HWRGHT
119 BIOINFOR BIOI1
276 WRIGHT HWRGHT
134 WHITTEM WHIT
120 BIOINFOR BIOI2
638 VT KNOW CRCK2
134 WHITTEMIWHIT

1 LANE HALILANE

1 LANE HALILANE
136 SIGNATUR SEB
180 SQUIRES 5SQUIR
185 LANE STAISTAD
276 WRIGHT HWRGHT

1 LANE HALILANE
120 BIOINFOR BIOI2
134 WHITTEMIWHIT
153 PAMPLIN PAM
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT
242 STERRETT STCTR
134 WHITTEMIWHIT
120 BIOINFOR BIOI2
134 WHITTEMIWHIT
242 STERRETT STCTR

Merge & Center ~

VIEW Sign in
= = AutoSum
General - ’;‘J Q &5 E" @ émv éY i
§ .95+ <4 ey Conditional Formatas Cell Insert Delete Format Sort& Find &
Formatting- Table~ Styles~ - - - £ Clear~ Filter - Select ~
[F1 Number [F1 Styles Cells Editing rs
v
1 J K L M N o P Q R s -
106 TPO3B | it #EHESHE HASHAEEE nemisys 111872
316 TP12B | sttt #fiE | SaHERH nemisys 115205
1TPOIB | i Sususny Sayssgs nemisys 112481
252 TPOLA | stisistiiss SIS HEMHEN nemisys 115512|
186 TPOAB | it HESHESHE HASHASEE nemisys 110990
2238 BS9BAISE it AEHHEHHEE S nemisys 112162
1618 APOIB HEEHHESE SEHSESE EHHEAEEE nemisys 114716
215 TPODA | stisistiiss #EHHERIE HEMHIEM nemisys 114972
215 100BB10L #Ai #EntEAE HAMHAEEA nemisys 114973
451 110DA100, s #uEIE HEHEH nemisys 98228
226 233DB10S! #AwEE HEAHEANE HANHAEER nemisys 110991
TRUCK PEI245AA107, ikttt At ##E# nemisys 110992
101 387AALOL H#iaEs HERHENIE HAEEAEET nemisys 111763
215 TPODA | stisistiiss #EHHERIE HEMHIEM nemisys 114974
162 TPOSA | ittt HEHESHE HASHAEEE nemisys 115206
199EA125: #iii HEAHENE SN nemisys 105794
3103 222DA128 #AHEAIE AEAHEANE HANHAEE nemisys 115559
D TPOIA | i AEMHEMEE BSEEEH nemisys 111878|
38TAALO2 B HESHEAE HAEHEEES nemisys 111873
102 387AAL0D EsHtn AEMHEMIE BAEEAEEE nemisys 111766
118 345BA107, ittt HEHHENE HHEHIEN nemisys 110992
174E 199EAL03 Haiain HEMHHIE SIS nomisys 113307,
162 TPOSC | Hstitititil HEHHEHHE HHEHHENE nemisys 115208
300C 199EA131 Hapuin SIS SAEHEEE nomisys 113881
241 TPOLA | Hawau SESHESHE HESHEEE nemisys 115374 -
4 »

AVERAGE: 36265.

COUNT: 1503

25

HOME INSERT PAGELAYOUT FORMULAS
"D B [Calor MUY =
By ~
Paste B I U- P A -
Clipboard G Font)
Al A _f\ device_name
A B C D E
50 |STCTR-11C [6 121257 ACTIVE
51 |STCTR-201 [12 77661 UNDEFINE
52 |STCTR-201 0 X 93211 UNDEFINE
53 [STCTR-201 [7 77652 UNDEFINE
54 [STCTR-201 o 9 77658 UNDEFINE
55 [STCTR-201 0 21 90425 UNDEFINE
56 |WHIT-BA- o 13| 85166 PENDING .
57 [BIOI2-151 [7 91573 UNDEFINE
58 [PRIT-D18- o 10 99677 UNDEFINE
59 |WHI-A8-0 [4 46130 ACTIVE
60 [WHI-A8-0: [4 46130 ACTIVE
61 |WHI-A8-0 0 6 59700 ACTIVE
62 [WHI-A8-0: [7 59701 ACTIVE
63 [BIOI2-177- o 13| 91603 UNDEFINE
64 [STCTR-11C 0 3 121249 PENDING
65 [WRGHT-31 o 4 32235 ACTIVE
66 |WRGHT-34 [4 80707 ACTIVE
67 |WHI-AB-0! o 7 59701 ACTIVE
68 |BIOI2-177- [14 91604 UNDEFINE
69 [MIL-BA-02 [29 114914 UNDEFINE
70 | WHI-A8-0. 0 1 69403 ACTIVE
71 |WHI-A8-0. [1 69403 ACTIVE
72 |WHIT-EA- o 1 121888 ACTIVE
73 |WRGHT-A, 0 16 80706 ACTIVE
74 |WRGHT-A o 5 32232 PENDING

circuit_tracking_event

®

DATA REVIEW

- EFWrap Tet

Alignment

G H
242 STERRETT STCTR
242 STERRETT STCTR
242 STERRETT STCTR
242 STERRETT STCTR
242 STERRETT STCTR
242 STERRETT STCTR
134 WHITTEM WHIT
120 BIOINFOR BIOI2

31 PRITCHAR PRIT

134 WHITTEMIWHIT
134 WHITTEMIWHIT
134 WHITTEMIWHIT
134 WHITTEMIWHIT
120 BIOINFOR BIOI2
242 STERRETT STCTR
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT
134 WHITTEM WHIT
120 BIOINFOR BIOI2
203 MILITARY MIL
134 WHITTEMIWHIT
134 WHITTEMIWHIT
134 WHITTEMI WHIT
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT

[l Merge & Center =

61C
61D
B61A
61B

1408

1408

241 TPO1A HHARHAN | HEHH
JASBALLY HEEHAEEE SUBHESEE
345BAL1: HHHHHART | HEHHHHT
345BANIA HiHHH HEHHHHE
3A5BA112| HHAHHART | HHHHEHE

61 3A5BALL3! HHHAHHHT | HEFHHAHE

199BA105! HiHaHHART | HHHHRHEE
162 TPOGB HHARHAN | HEHH
TPO2B FHHHHHAH | SHEHHHH

146 199BA10DN #HHHHHT HFHHAHE
146 TPO1B EHREESHE SERHEREE
TPO2B HHHARHAR | S
144 199BA108 s HiFHHRHE
172 TPO7B A | SHEHH
237 TPO1A HHARHAR | HEHH
3BTAAL0S! HiHeHHART | HHHHAH
3BTAALOL HiHHHHH HEHHHHE

144 TPO2A FHHHHHAH | SHEHHHH
172 TPOBC HHARHAN | HEHH
105 27ABAN0Y #BtEHER SEREEIEE
151 199BA109 #HHHHH | HEHARHH
151 TPOSB HHARHAN | HEHH
290 199EA133(HiHAHHART | HHHHHAHE
1 TPO3B HHARHAR | HEHH

1 TPO1B FHHHHHAH | SHEHHHH

VIEW
[==]
General - e p} &
$ -9 s+ %2 20 Condiional Formatas Cell Insert
Formatting - Table~ Styles~ ~
[Number [Styles
1 J K L M N

I nemisys
HHHRES nemisys
FHHHHHE nemisys
HitHHH nemisys
i nemisys
I nemisys
i nemisys
I nemisys
i nemisys
I nemisys
HHHRES nemisys
FHHHHHE nemisys
HitHHH nemisys
i nemisys
I nemisys
i nemisys
I nemisys
i nemisys
I nemisys
HHHRES nemisys
FHHHHHE nemisys
HitHHH nemisys
i nemisys
I nemisys
i nemisys

COUNT: 1503

Signin
1e—31

=54

e H

Delete Format

2 AutoSum
[¥] Fill -

& Clear~

A

or ik
Sort & Find &
Filter = Select -

Cells Editing

P
115374/
110983
110984/
110985
110986
110994/
111322
115209
113783
113009
113010
112978
112979
115210
115361
111953
111959
112980
115211
115212
113011
113012
114051
111960/
111881

HOME INSERT PAGE LAYOUT FORMULAS
"D ‘*’ Calibri - A E=a
By ~

Paste B I U- fy . A -

Clipboard Font n

Al - _fi device_name

A B C D E

75 |WRGHT-A, 0 5| 32232 PENDING
76 |WRGHT-A o 6 32233 PENDING
77 |WRGHT-A, 0 6 32233 PENDING
78 |WRGHT-A o 18 72621 ACTIVE
79 |WRGHT-A, 0 18 72621 ACTIVE
80 [WHI-AB-0: o 7 100269 ACTIVE
81 |WHIT-BA-| 0 21 85177 PENDING
82 |GRNDS-10 o 10 97936 UNDEFINE
83 |GRNDS-10 0 15 72532 UNDEFINE
84 |WHI-AB-0. o 14 87788 ACTIVE
85 |[WHI-A8-0! 0 13 114334 ACTIVE
86 |WRGHT-A o 7 32234 PENDING
87 [MIL-BA-02 [30 114913 UNDEFINE
88 |MIL-BA-02 o 7 81537 UNDEFINE
89 [STCTR-11C [5 121254 PENDING.
90 |HUT-2121- o 17, 44496 UNDEFINE
91 |WRGHT-A, [3 32228 ACTIVE
92 |WRGHT-A, o 3 32228 ACTIVE
93 |WRGHT-34 [5| 32224 PENDING
94 |WHI-AB-0. o 2 69404 ACTIVE
95 |PAM-DA-([16 48854 ACTIVE
96 |PAM-DA-C o 1 107675 ACTIVE
97 |WRGHT-A. [6 32233 ACTIVE
98 |WRGHT-A, o 6 32233 ACTIVE
99 |WRGHT-31 [5| 32224 PENDING

()]

circuit_tracking_event

DATA REVIEW

- EFWrap Tet

& 3= [Merge & Center ~

Alignment

G H
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT
134 WHITTEMI WHIT
134 WHITTEMIWHIT
241 GROUNDS GRNDS
241 GROUNDS GRNDS
134 WHITTEM WHIT
134 WHITTEMIWHIT
276 WRIGHT HWRGHT
203 MILITARY MIL
203 MILITARY MIL
242 STERRETT STCTR
103 HUTCHESCHUTCH
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT
134 WHITTEM WHIT
153 PAMPLIN PAM
153 PAMPLIN PAM
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT
276 WRIGHT HWRGHT

3BTAAL00 HihHHHH HiHHHHE

1 TPO6B A | SHEHH
3BTAALOL i HEHHHHE
106 TPO3B A | SHEHH
3BTAAL02 i HEHHHHE
154 | 199EAL00 #HHHAHHHE | HHEHHEHHE
199BA10A] HiHitH | HiHHHHE

138 TPOSD FHHHHHAH | SHEHHHH
161 199EAL02: #HHHHH#H HiFHHAHE
2 TPO1A FHHHHHAH | SHEHHHH
105 274BA109) #HHHHHH HFHHRHH
101 | 27ABA100! #HHHRHHH | HHEHHEHH
231 TPO1A HHARHAN | HEHH
220 TPO1A FHHHHHAH | SHEHHHH
103 TPO2B HHARHAN | HEHH
3BTAAL03, HHAHHART | HHHHAHE

101 387AAL0L #HHHHHHH HFHHAHE
151 TPO6A FHHHHHAH | SHEHHHH
3103 222DA12B| HHHHHH | HEFHHAHE
222DA115, HiHrHHAR | SR

1 TPOGB HHARHAN | HEHH
3BTAAL0YL| HHAHHART | HHHHAH

101 TPO2B HHARHAN | HEHH

VIEW
m
General - 9“ p.} EEIED
-0 9 0 oM Conditional Formatas Cell Insert
Formatting - Table~ Styles~ -
[Number [Styles
1 J K L M N

HitHHEH nemisys
i nemisys
HitHHEH nemisys
i nemisys
HitHEH nemisys
i nemisys
HitHEH nemisys
i nemisys
I nemisys
i nemisys
I nemisys
i nemisys
I nemisys
i nemisys
I nemisys
i nemisys
I nemisys
i nemisys
I nemisys
i nemisys
I nemisys
i nemisys
I nemisys
i nemisys
I nemisys

Signin
&1

=54

e H

Delete Format

2 AutoSum
[¥] Fill -

& Clear~

A

cadl |
Sort & Find &
Filter = Select~

Cells Editing

P
111882
111883
111884/
111879
111880/
112811
111292
114989
114938/
113016
112761
111885
115213/
115214
115364/
111707
111966/
111967
111831
113018
115560/
109577
111970/
111971
111832

COUNT: 1503

26

Appendix D: Sample Databases

ArubaWAPS sample data given by client - for us to understand required data.

Al - f; Scanin
B C D E F G H | J K
1 |Scan in 1Scan in Scan in Type in Type in Type in Derive Derive Type in Derive Derive
2 INVENTORY_NU SERIAL_NUMBE MAC_ADDRESS STOCK_NUMBE CUSTODIAN BUILDING_ID NAME ABBREVIATION ROOM MODEL DESCRIPTION
3 C80540 CT0116787 186472CADDFA E-1409 RKELLER 54 Hillcrest Hall HILL 116 AP-224 WIRELESS ACCESS POINT,
4 C80775 CT0116269 186472CADIEE E-1409 RKELLER 54 Hillcrest Hall HILL 212 AP-224 WIRELESS ACCESS POINT,
5 C80783 CT0116798 186472CADE10 E-1409 RKELLER 54 Hillcrest Hall HILL 143 AP-224 WIRELESS ACCESS POINT,
5 C80539 CT0116772 186472CADDDC E-1409 RKELLER 21 Eggleston Hall - IEGG M 328 AP-224 WIRELESS ACCESS POINT,
7 C80538 CT0116744 186472CADDA4 E-1409 RKELLER 21 Eggleston Hall - IEGG M A32 AP-224 WIRELESS ACCESS POINT,
3 CB80553 CT0116736 186472CADDI4 E-1409 RKELLER 21 Eggleston Hall - IEGG M 107 AP-224 WIRELESS ACCESS POINT,
9 C80552 CT0116756 186472CADDBC E-1409 RKELLER 22 Eggleston Hall - 'EGG W 118 AP-224 WIRELESS ACCESS POINT,
10 C80754 CT0116817 186472CADE36 E-1409 RKELLER 22 Eggleston Hall - 'EGG W 118 AP-224 WIRELESS ACCESS POINT,
11 C80749 CT0116833 186472CADESE E-1409 RKELLER 42 Harper Hall HARP 1015 AP-224 WIRELESS ACCESS POINT,
12 C80761 CT0116829 186472CADEAE E-1409 RKELLER 42 Harper Hall HARP 1025 AP-224 WIRELESS ACCESS POINT,
13 CT78266 BX0023403 9gc1c12co190c E-1409 RKELLER 25 Vawter Hall VAW c9 AP-224 WIRELESS ACCESS POINT,
14 C78291 BX0023751 9Cc1C12C01BCA E-1409 RKELLER 25 Vawter Hall VAW B9 AP-224 WIRELESS ACCESS POINT,
15 C80570 CT0116746 186472CADDAS E-1409 RKELLER 25 Vawter Hall VAW A22 AP-224 WIRELESS ACCESS POINT,
16 C80568 CT0117588 186472CAE43C E-1409 RKELLER 35 Slusher Hall SLUSH 328 AP-224 WIRELESS ACCESS POINT,
17 CB0567 CT0117281 186472CAE1D6 E-1408 RKELLER 35 Slusher Hall SLUSH 327 AP-224 WIRELESS ACCESS POINT,
18 CB0529 CT0116211 186472CADITA E-1408 RKELLER 35 Slusher Hall SLUSH 228 AP-224 WIRELESS ACCESS POINT,
19 CB0528 CT0116775 186472CADDE2 E-1408 RKELLER 35 Slusher Hall SLUSH 120 AP-224 WIRELESS ACCESS POINT,
20 C80760 CT0116861 186472CADEBE E-1408 RKELLER 35 Slusher Hall SLUSH 100 AP-224 WIRELESS ACCESS POINT,
21 C80a3t CT0116209 186472CADITE E-1409 RKELLER 35 Slusher Hall SLUSH 100 AP-224 WIRELESS ACCESS POINT,
22 CB056Y CT0116740 186472CADDIC E-1409 RKELLER 29 O'Shaughnessy OSHA F3 AP-224 WIRELESS ACCESS POINT,
23 Ca0T1e CT0117451 186472CAE32A E-1409 RKELLER 30 Lee Hall LEE H15 AP-224 WIRELESS ACCESS POINT
CT0117606 186472CAE460 E-1409 RKELLER 30 Lee Hall LEE G21 AP-224 WIRELESS ACCESS POINT
CT0117270 186472CAE1CO E-1409 RKELLER 30 Lee Hall LEE G15 AP-224 WIRELESS ACCESS POINT
CT0117626 186472CAE488 E-1409 RKELLER 30 Lee Hall LEE E21 AP-224 WIRELESS ACCESS POINT
CT0117707 1864T2CAES2A E-1409 RKELLER 37 Campbell Hall - ECAM E 113 AP-224 WIRELESS ACCESS POINT
CT0117585 186472CAE436 E-1409 RKELLER 40 MNew Residence t NRHE B8 WIRELESS ACCESS POINT,
Sheetl 4
EEARY 53 mo-——+
Building Abbreviations for User Accessibility
Tx D
A B [+ D E F G H
1 1D .ABBREVIATIOh NAME VT_BL ID LOCATION
2 171 BURCH Burchard Hall 171 Tumer Street Main Campus Blacksburg
3 22 EGGW Eggleston Hall - 22 EGG Drillfield Drive (Lower Quad) Main Campus Blacksburg
4 31 PRIT Pritchard Hall 31 PRIT Washington Street (Lower Quad) Main Campus Blacksburg
5 32 AJW Ambler Johnston 32 AJ Washington Street (Lower Quad) IMain Campus Blacksburg
6 36 CAM M Campbell Hall - i 36 CAM Drillfield Drive (Lower Quad) Main Campus Blacksburg
7 541 SWINE Swine Center Bu 541 Plantation Road (Swine Center) Main Campus Blacksburg
8 186 RFH Rector Field Hou 186 Spring Road Main Campus Blacksburg
9 187 COL Cassell Coliseun 187 Washingion Street Main Campus Blacksburg
10 188 MAC Moss Arts Cente 188 Tumer Street (Upper Quad) Main Campus Blacksburg
1 189 DTRIK Dietrick Hall 189 West Campus Drive (Lower Quad) Main Campus Blacksburg
12 180 SGCTR Southgate Cente 190 Southgate Drive Main Campus Blacksburg
13 193 GBJ Johnston Studen 193 West Campus Drive Main Campus Blacksburg
14 195 OWENS COwens Hall 195 Kent Street (Lower Quad) Main Campus Blacksburg
15 196 ART C Art and Design L 196 Tumer Street (Upper Quad) Main Campus Blacksburg
16 201 SEC Old Security Bui 201 Stanger Street Main Campus ~ Blacksburg
17 202 POWER Power House 202 Tumer Street Main Campus Blacksburg
18 203 MIL Military Building 203 Tumer Street Main Campus Blacksburg
19 204 AIRCN North Chiller Plai 204 Barger Street Main Campus Blacksburg
20 205 OSP Oil Storage Pum 205 Barger Street Main Campus Blacksburg
21 115 WAL Wallace Hall 115 West Campus Drive Main Campus Blacksburg
+ = | BuidingListcsv ©

. A
. A
. A
L Af
L AR
LAl
| A
| A

Af

27

Appendix E: Prototype as of Refinement Report 2

Wi Contraller

Capiure

‘Wal Mount Wiew Saniraller

Wiall Mounded

or

Ceiling Mourted

Dt Brry Warw Controller

Asszal ID Number

MAC Addrass

CHS Nuember

Serial Nurnber

Location

Wourntain View
Sunnyvale

Cupertino

Santa Clara
San Jose

Rats Reviaw View Corsrallar

\irginia Tach ID Numbar
Labal
MAC Address
Labal
CNE Mumbser
Labal
Model Murnber
Label
Lecation
Labal

Submit

28

Viow Conlraiier

Captiirs

Daia Eréry View Conirofler

Agsat 1D Number

MAC Addross
CNS Number

Serial Nurmber

Location
Mountain View
Sunnyvale

Cupertino
ta Clara

San Jose

W Mours view Conirofler

Wiall Moundedd

o

Cailing Maured

Diata Reviam View Corérolier

Wirginia Tech 1D Mumber
Label
MAC Address
Label
CNS Number
Label

Model Nurmber

submit

29

Appendix F: Prototype as of Testing Report

center he berende Lo be scanned snd haid sl
Virginia Tech 1D umber
il Mt

MAC Adcrass
© Numser
CHS Nusmibor

‘Serial Numbar

Camera

Settings [——

20l be abls to change DB hers)

Rasey to Submit?

enier the bercerte 1o e scanned s heid st 000000000030
Virgnia Tech ID Number MAG Acdress
prr—
© Number
ONS Numbar

Caling Moutod
00000000000

MAC Addross

€ Number
Madel Number
Finisheal

000000000000

NS Nurmber
Losation
Warshouse

‘Seral Numbar ——

dafault

Warsheuza

Top Image: The first part of the logical flow for the app, including the main screen to which it

diverts into the settings or the camera.
Bottom Image: The continuation of the camera’s logical flow since it gets cut off after three

screens in the top image.

