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In this paper, an approximate analytical model is developed for the excitation of a thin beam 
by a single piezoelectric actuator bonded to the surface of the beam. The premise of this work 
is to investigate the excitation of beams by piezoelectric actuators on a more fundamental level 
than present work, and then use the asymmetric model to predict a wave response, rather than 
a modal response, on more complicated structure/actuator systems. It is determined that the 
single surface mounted piezoelectric actuator simultaneously excites both flexural and 
extensional motion in beams whose relative amplitudes are functions of beam/actuator 
geometry and properties. The model is then applied to the excitation of an infinite beam by two 
colocated arbitrarily driven actuators. It is shown that this configuration can produce any 
desired combination of flexural and extensional waves in beams by varying the degree of 
asymmetry between the actuators. 

PACS numbers: 43.40.Cw, 43.88.Fx 
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INTRODUCTION 

Over the past 5 years, a significant amount of research 
has been dedicated to the use of piezoelectric actuators and 
sensors to control vibration in beam like structures. Early 
work by Crawley and de Luis 1 demonstrated the effective 
use of piezoelectric actuators in controlling transient vibra- 
tions in beams. Both Fanson and Chen, 2 and Crawley and 
Anderson 3 have analyzed the forcing functions associated 

a) Presented at the 121st Meeting of the Acoustical Society of America, Bal- 
timore, MD 29 April-3 May 1991 [J. Acoust. Soc. Am. 89, 1890(A) 
(1991)]. 

with two piezoelectric actuators bonded symmetrically on 
opposite sides of a thin beam. In their work, it is shown how 
the actuators, when driven with the same input voltage but 
180 deg out-of-phase, effectively exert equal and opposite 
line moments on the beam at the ends of the actuators and 

subsequently generate flexural motion in the beam. Crawley 
and Anderson 3 have also shown that when the actuators are 

driven in-phase (symmetric excitation) the effective forcing 
functions are in-plane line forces of opposite direction, again 
concentrated at the ends of the actuator. The resulting mo- 
tion in the beam in this case is purely extensional. 
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Recently Clark et al. 4 have experimentally and analyti- 
cally studied the harmonic excitation of a simply supported 
beam using multiple pairs of piezoelectric actuators config- 
ured to excite pure flexure in the beam. Their work demon- 
strated that arrays of suitably driven actuators can be used to 
excite selected modes in the beam. The analytical model for 
the piezoelectric actuator forcing function, was also con- 
firmed by the experimental results. Dimitriadis et al. 5 have 
also extended the one-dimensional (l-D) analysis of Craw- 
ley and de Luis • to excitation of thin plates by rectangular 
two-dimensional (2-D) piezoceramic patches. Their work 
showed that, for an infinitely thin bonding layer, the forcing 
function was a line moment around the complete periphery 
of the patch. This patch forcing function is the basis of analy- 
tical studies on active control of vibration and sound radi- 

ation from vibrating panels using piezoelectric actuators and 
sensors (see, for example, the work by Clark and Fuller 6 ). 

It is interesting to note that all of the previous work has 
been concerned with excitation and control of short finite 

beams dictating that the system response to the piezoelectric 
actuators is modally based. However, many structures in 
applications such as Naval vessels and aerospace structures 
are constructed from long slender beam elements in which 
the vibrational response is transmitted dominantly in wave 
type motion. Due to the inherent damping in these beams 
due to joints, attachments, etc., it is often inappropriate and 
unrealistic to use a modally based model. In connection with 
this, it has been demonstrated that long beams tend to trans- 
mit vibrational power in a wave flow type process and it is a 
better control goal to isolate or reduce the traveling energy 
rather than, say, the modal response. Experiments by Gibbs 
and Fuller ? have shown that narrow-band flexural power 
flow in thin semi-infinite beams can be reduced significantly 
by using a single pair of piezoelectric actuators configured to 
produce pure flexure. In order to analytically study long 
beam systems, it is thus necessary to derive the system re- 
sponse to the piezoelectric actuator from a wave rather than 
a modal approach. Note, however, that the two approaches 
are inherently related just as modes can be thought of as a 
superposition of opposite traveling waves of equal ampli- 
tudes. 

A complete analysis/control of marine and aerospace 
type structures with long beam elements is further compli- 
cated by the presence of structural discontinuities such as 
joints, attachments, etc. Cremer et al. 8 has shown that arbi- 
trary boundary conditions at beam discontinuities can cause 
wave conversion between different forms (i.e., flexural, and 
extensional). As beams are significantly.stiffer in extension 
than flexure, they may carry large vibrational energy in this 
form for relatively little detectable displacement. This in- 
plane energy may subsequently be converted into other wave 
forms at discontinuities such as structural joints and reap- 
pear as large flexural motion. It is thus important to control 
all wave forms in complex vibrating structures to ensure glo- 
bal reductions. Experimental work by Fuller et al. 9 has dem- 
onstrated that it is possible to simultaneously control exten- 
sional and flexural waves in semi-infinite beams using 
asymmetric pairs of piezoceramic actuators and sensors in 
conjunction with a two-channel adaptive LMS controller. 

To analytically study such control configurations, it is thus 
necessary to derive the more general situation of excitation 
of thin beams by a single actuator bonded to the beam or 
pairs of asymmetrically arranged actuators. As noted above, 
all previous actuator models have been either for pure flex- 
ure or extension; no general model for asymmetric excitation 
is presently available. 

It is thus the thrust of the paper to develop new analyti- 
cal relations based on wave approaches for the excitation of 
thin long beams by a single piezoceramic element bonded to 
the surface (asymmetric excitation). The approach is to 
consider that the single piezoceramic actuator drives both 
extensional and flexural waves in the beam. The strain field 

under the piezoceramic element is thus, by superposition, 
the sum of the two wave components, and is coupled by the 
actuator. Once the waves leave the actuator location they are 
assumed to travel uncoupled in the beam. Similar ap- 
proaches have been used in analysis of point force excitation 
of beams by forces that are not normal to the beam surface; •o 
the normal component of the force is considered to drive the 
flexural waves while the in-plane component drives exten- 
sional waves. 

The analytical results can then be applied to more com- 
plicated arrays of actuators and sensors. As an example, the 
new analytical relations will then be used to study the excita- 
tion of infinite thin beams in terms of the resulting vibration- 
al power flow in extension and/or flexure. The influence of 
relative actuator length and phase on flexural and extension- 
al power flowing into the beam is also studied. The model 
can be used to study how flexural or extensional motion is 
effected by other actuator or beam parameters, and will be 
the basis for future analytical work concerned with 
multiwave control approaches. 

I. THEORETICAL DEVELOPMENT 

Figure 1 shows the strain distribution for pair of perfect- 
ly bonded piezoelectric actuators configured to excite either 
pure flexure of pure extension as analyzed by Crawley and 
Anderson. 3 In the case of pure flexure, the finite patch effec- 
tively acts as equal and opposite line moments acting at its 
ends, and applied to the beam. In the case of pure extension, 
the finite patch effectively acts as equal and opposite in-plane 
point forces acting at the ends of the element on the neutral 
axes. In the followihg analysis, it will be shown how the 
asymmetrically bonded piezoelectric actuator simulta- 
neously produces both extensional and flexural motion in 
thin beams and how their relative magnitudes are deter- 

i Z ,___?•Piezoelectrics Z 

Flexural Strain Distribution Extensional Strain Distribution 

FIG. 1. Pure flexural/extensional strain distributions of symmetrically 
bonded piezoelectric actuators. 
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mined by the actuator/beam configuration. The asymmeti'ic 
actuator is thus assumed to be a superposition of the two 
strain distributions. 

A. Asymmetric piezoelectric element--infinite extent 

Piezoelectric elements are excited by applying an elec- 
trical voltage along their polarization direction. When the 
piezoelectric actuator is unconstrained, the actuator will 
strain an amount epe proportional to the applied voltage as 
shown in the following relation (where d3 • is the strain sensi- 
tivity of the material, Vis the excitation voltage, and Tis the 
material thickness): 

ff'pe = (d3,/T) V. (1) 
For the purpose of this analysis, the single piezoelectric actu- 
ator is taken to be a piezoceramic G 1195 material • assumed 
to be perfectly bonded to the beam with zero glue layer thick- 
ness, as shown in Fig. 2 (top). The actuator is also assumed 
to be very long and thin compared to the beam thickness. 
The beam is infinite in the x direction and has a height of 2h 
in the z direction. The beam has a modulus of elasticity Eo 
and an area moment of inertia L 

It is assumed that a plane through the material perpen- 
dicular to the middle surface of the beam remains planar and 
perpendicular to the middle surface during deformation. 
This assumption is equivalent to ignoring shear strains in 
planes perpendicular to the middle surface of the beam, and 
is the basis of the Kirchhoff hypothesis of laminate.plate 
theory. •2 When a voltage is applied across the transducer in 
the z direction, the beam/piezoelectric element laminate will 
have an asymmetric strain distribution as shown in Fig. 2 
(top) based on the assumptions of the Kirchhoff hypothesis. 

The strain distribution in the z direction, e(z), within 
the cross section assuming an infinite extent piezoceramic 
element (i.e., no end effects) is shown in Fig. 2 (top) and can 
be written in the form shown in Eq. (2), where C is the slope 
and eo is the z intercept: 

e(z) = Cz + eo. (2) 

Equation (2) can be decomposed into the sum of an anti- 
symmetric distribution Cz (i.e., flexural component) about 
the center of the beam, and a'uniform strain distribution eo 
,, [ 

Piezoceramic Z 

T 

Beam X 

Asymmetric 

•1 '' ! ! - - 

Beam ,• i:i... .j-:. ..... • X "{" .... 

Flexural Extension 

FIG. 2. Strain distribution of an asymmetric piezoelectric actuator. 

(i.e., extensional component) as shown in Fig. 2. 
Using the strain distribution of Fig. 2 (top) and Hooke's 

law, the stress distribution within the beam cb (z) is given as 
follows: 

o-•,(z) = E•,(Cz + 6o), (3) 

where, Eo is the Young's modulus of the beam. The stress 
distribution within the piezoceramic actuator O'pe (Z) is a 
function of the unconstrained piezoceramic actuator strain, 
Young's modulus of the piezoelectric actuator Epe, and the 
strain distribution shown in Fig. 2 (top) as follows: 

O'pe (Z) = gpe (Cz-[- •o -- •'pe)' (4) 
Applying moment equilibrium about the center of the beam 
produces the relation: 

;h o'•,(z)zdz+ O've (Z)Z dz = 0. (5) 
--h 

Next applying force equilibrium in the x direction is as fol- 
lows: 

ao (z)dz + %e (z)dz = O. (6) 
--h 

After integration equations (5) and (6) can be solved for the 
two unknowns, namely eo and C, which are presented (after 
some manipulation) as follows: 

eo =Keeve, 
where 

•? [ T4/6 3. (4E•,/3Epe)h 3T ] 
[ T4/6 -3- (8E •/3E 2 4 pe)h 3- (4E•,/3Eve)(4h3T3. 3h2T2 3. hT3) ] 

C= Kfepe, 
where 

gf= 

, (7) 

(8) 

The general equation of motion of a solid medium in terms of 
motion in all three coordinate directions is inherently cou- 
pled. 8 However, as stated in Ref. 8, if a beam's thickness is 
less than a quarter wavelength in the direction of propaga- 

! 

tion, then the beam motion can be accurately separated into 
its out-of-plane (flexural) motion and its in-plane (exten- 
sional) motion. 

The next step is to separate out the flexural and exten- 
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sional components. The antisymmetric portion of the strain 
distribution will induce bending moments in the beam and 
will subsequently drive flexural waves. The induced moment 
distribution in the beam in the proximity of the actuator, 
rn (x), is equal to the product of the bending stiffness, E0/, 
times the slope C: 

m(x) = Et, IC= Eo/Kfepe ß (9) 
The uniform strain distribution portion eo will excite purely 
extensional waves. The uniform strain across the section 

e(x) is also constant in the x direction and equal to the fol- 
lowing: 

e(x) =e o =Keepe. (10) 

B. Flexural equation of motion 

The Euler equation of motion for flexural vibration of 
the thin beam is given as follows: 8 

c• 2 [M,, -- m(x) ] _ro2pAw=O, (11) 
where Mx is the internal bending moment within the beam 
and m (x) is the actuator induced bending moment. Follow- 
ing the approach of Crawley, Eq. (9) can be modified for a 
finite length patch of length L, and then substituted into Eq. 
( 11 ). For a finite length element, Eq. (9) is written as fol- 
lows: 

m(x) = EblKfep• [u(x) -- u(x -- L) 1, (12) 
where u ( ) is the unit step function. 

The moment distribution is substituted into Eq. (11 ) 
and the second partial derivative with respect to x is then 
taken. The result is brought to the fight-hand side of the 
equation as shown: 

• 2M x 
• -- w2pAw = EblKfep• [$'(x) ' $'(x -- L) ]. 

(13) 

The right-hand side is equivalent to equal and opposite line 
moments, proportional to epe [where ep• is related to the 
applied voltage by Eq. (1)], and acting at the ends of the 
element. Equation (13) is the equation of motion for flexural 
excitation by a single asymmetric piezoelectric actuator. 
This equation can be applied to a thin beam subjected to 
arbitrary boundary conditions whether the solution is found 
using a modal or wave approach. 

Equation (15) is then substituted into Eq. (14), which pro- 
duces the following nonhomogenous equation of motion: 

d2• a•2P [•5(x) •5(x L)]. (16) • -F • = K effpe -- -- 
dx 2 Een 

In this case, the finite element can be seen to be equivalent to 
two equal and opposite line forces acting in the x direction at 
the ends of the element. Equation (16) is the equation of 
motion for extensional excitation by a single asymmetric pie- 
zoelectric actuator. This equation can also be applied to a 
thin beam subjected to arbitrary boundary conditions 
whether the solution is found using a modal or wave ap- 
proach. 

D. Application to infinite beam power flow 

Simultaneously controlling both flexural and extension- 
al motion in beams has been shown to be an important prob- 
lem. 7 In order to efficiently control these types of vibration, 
it is important to be able to effectively drive both forms of 
motion or waves with a single pair of actuators. 

In order to demonstrate the usefulness of the asymmet- 
ric beam excitation, an infinite beam will be analyzed that 
has two symmetrically bonded finite piezoceramic actuators 
as shown in Fig. 3. The actuators are located with one edge at 
x = 0 and have a length L. Each piezoceramic will be treated 
as a single independent actuator with variable relative com- 
plex amplitude in order to study how parameters such as 
length, relative phase and frequency effect the power flow of 
the subsequent flexural and extensional waves. Note in this 
case, since the beam is infinite, waves will be generated in 
contrast to the modal response of a finite structure. In the 
previous work, the response of the beam structures to excita- 
tion by piezoelectric elements was primarily from a modal 
approach not a wave approach, however, the two situations 
are inherently related. It is believed that the wave approach 
allows a better understanding of the coupling between the 
actuator and beam as it is less restricted by boundary condi- 
tions. The following analysis assumes continuity of strain 
energy from under the actuator to the infinite beam inter- 
face. 

The flexural equation of motion, Eq. (13), is solved for 
each individual element (with excitation voltages V• and 
V2 ), and the motion, W(x,t), for the two collocated ele- 
ments is found by superposition to be (as derived in Appen- 
dix A): 

C. Extensional equation of motion 

The equation of motion for extensional vibration is giv- 
en as follows:8 

d 2• ' o2p de(x) •+ •=•, (14) 
dx 2 Ee• dx 

where • is the in plane beam displacement, p is the density, 
and e(x) is the actuator induced in plane strain distribution. 
Equation (10) can be thus modified for a finite length patch 
by assuming excitation strain only under the element as fol- 
lows: 

6(x) = K e%e [U(X) -- U(X -- L) ]. (15) 

z 

Independent / Piezoelectric 
Actuators 

FIG. 3. Infinite beam arrangement with two actuators. 
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W(x,t) = 
d3, Kf( V• -- V: ) 

4)T 

X [ ( 1 -- e•)e - • -- ( 1 -- e-J•)ei•]e -jo•, 
(17) 

where co is the rotational frequency, and kf is the flexural 
wave number. The power flow for the flexural wave is found 
by taking the sum of the time-averaged dot product of the 
shear force with the velocity, and the bending moment with 
the rotational velocity. 8 As derived in Appendix B, the pow- 
er flow Hs(cO) at the frequency of interest is equal to: 

EoI( K ø) 2d • co 
= IV, - - ]. 

8r2kj• 
(18) 

The extensional equation of motion, Eq. (16), is solved as 
shown in Appendix A for one element and the displacement, 
Z(x,t), for two collocated elements is found by superposi- 
tion to be 

Z(x,t) = _jK ed31 ( V 1 -+- V 2 ) ( 1 -- e-J•eL)ei•Xe-Jot 
2keT ' 

(19) 

where k e is the extensional wave number. The power flow for 
the extensional wave is found by taking the time-averaged 
dot product of the longitudinal force with the longitudinal 
velocity. 8 As outlined in Appendix B the power flow, 
I'I e (0)), for the frequency of interest is found to be 

(K e) 2 d • coE½•A 
lie(O ) = 

4ke t2 

X IV • q- V 212[ 1 - cos(keZ) ]. (20) 
It is interesting to note that in the previous work two pairs of 
actuators and sensors would have been necessary to excite 
both forms of motion; one dedicated to purely flexural, and 
the other dedicated to purely extensional motion. As will be 
shown in the next section, simultaneous excitation of both 
flexural and extensional motion of arbitrary complex ampli- 
tudes can be accomplished with a single actuator pair. 

120 

10(> 

20' 

0 
0 

......................... •Bending Wave 
Extensional ave ..... '"',.,,, 

, 

2'o 4'0 •o 8'0 16o 1:[o 11tO 1•)0 180 
Relative Phase V1-V2 (deg) 

FIG. 4. Infinite beam power flow, 800 Hz, L = 3.81 cm. 

stated that when both of the piezoceramics are driven in 
phase only an extensional wave is generated and correspond- 
ingly only extensional power flow is seen in Fig. 4 at this 
phase angle. When the piezoceramics are driven 180 deg out 
of phase only a flexural wave is produced as can be seen in the 
figure. For phase angles between these ranges, both exten- 
sional and flexural waves can be driven simultaneously. The 
relative magnitude can be determined by choosing the ap- 
propriate phase from Fig. 4. 

In the second illustrative result, the excitation frequen- 
cy is 800 Hz and the magnitudes of the input voltages are 
again set equal to 400 V peak to peak. The phase of V• is 
chosen as 90 deg ahead of V2 such that both types of motion 
are present. The power flow for both the extensional and 
flexural waves as a function of actuator length is presented in 
Fig. 5. It can be seen that as the actuator length approaches 
zero the power flow for both wave types approaches zero. 
When the actuator length is equal to 9.6 cm (corresponding 
to half a flexural wavelength at this frequency) the bending 
wave is at a maximum because, as shown previously, an indi- 
vidual piezoceramic actuator effectively acts as two opposite 
phase moment sources externally applied to the beam at the 

II. RESULTS 

A computer algorithm was written to demonstrate 
asymmetric excitation of an infinite thin beam. The results 
derived show how both the flexural and extensional power 
flow in the infinite beam [Eqs. (18) and (20) ] varies as a 
function of the magnitude and phase of the inputs V• and V2 
(i.e., the degree of asymmetry), as well as the actuator 
length L. The beam for this simulation was considered to be 
made of standard aluminum and had a height 2h equal to 
3.175 mm and a width equal to 7.62 cm. 

For the first result the excitation frequency of the piezo- 
ceramic actuators is 800 Hz. The length of the piezoceramic 
actuators is taken as 3.81 cm. The magnitude of V• and V2 is 
fixed at 400 V peak to peak. These values are representative 
of typical applications. The flexural and extensional power 
flow (dB relative to 10-•2 W) is plotted as a function of the 
phase between V• and V2 in Fig. 4. It has been previously 

120] 
110 l 

g 80 

7O 

6O 
0 0.b2 0.b4 0.b6 0.b8 0'.1 0.t12 0)14 0.'16 0.'18 0.2 

Actuator Length, L (m) 

FIG. 5. Infinite beam power flow, 800 Hz, relative phase = 90 deg. 
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element ends. The waves generated at each end are thus per- 
fectly in phase. When the actuator is 19.2 cm long, the length 
corresponds to a flexural wavelength, and the flexural power 
flow is a minimum (equal to zero) because the two opposite 
moment inputs produce wave fields which when superim- 
posed produce zero displacement in the far field. The results 
imply that there is an optimal length actuator for each fre- 
quency of excitation. 

The above conclusions can be extended to the response 
of a system from a modal point of view, as described in the 
following simple example. If an actuator pair, configured for 
pure flexure, completely covers the length of a simply sup- 
ported beam, then the actuator length will be equal to a flex- 
ural wavelength for the second mode of vibration. The above 
wave point of view predicts the second mode would not be 
excited. The corresponding modal point of view is that while 
the actuator forcing function is uniform over the beam 
length, the second mode has equal lengths of positive and 
negative strain distributions and thus will not be excited. 
This simple example illustrates the equivalence of a wave 
and modal approach in terms of a finite beam response. The 
wave approach, however, is more fundamental in that it can 
be applied to infinite structures and can be extended to in- 
clude evanescent near fields for flexural motion. 

From the results, it is also apparent that the extensional 
wave does not have a maximum power flow until the actu- 
ator length is significantly increased. This behavior is due to 
the much higher phase speed of the extensional wave. The 
far-field power flow is a maximum when the actuator is a 
half-wavelength (3.1 m), but this is impractical with the 
current size availability of piezoceramic actuators. It can be 
seen that if extensional motion is desired, then it is more 
efficient to make the actuator as long as possible. 

III. CONCLUSIONS 

An approximate analysis of excitation of a thin beam by 
an asymmetric piezoceramic element is presented for the 
first time. The analysis shows that the single actuator is 
mathematically equivalent to equal and opposite moments 
(i.e., the •5' functions in the out-of-plane force equation), and 
simultaneously equal and opposite in-plane forces (•5 func- 
tions in the in-plane displacement equation) located at the 
ends of the actuator. The relative magnitudes of these 
forces/moments are shown to be dependent upon the actu- 
ator asymmetry and can be controlled by using a pair of 
collocated actuators with independent input voltage magni- 
tudes and phases. 

The model is then used to study excitation of both flex- 
ural and extensional waves in beams for various degrees of 
asymmetry and actuator length. The representative struc- 
ture in the example is an infinite beam, but the analysis can 
be equally applied to relatively long beamlike structures or 
finite structures. The work presented here represents an im- 
portant step because it represents the analytical basis by 
which simultaneous active control of both flexural and ex- 

tensional motion in flexible structures can be studied, and 
optimized. 
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APPENDIX A: SOLUTIONS TO THE FLEXURAL AND 

EXTENSIONAL EQUATIONS OF MOTION 

As presented in the paper, the equation of motion for 
flexural excitation by a single piezoelectric element is 

i•x 2 
• -- co2pAw = EblKfepe [(5' (x) -- (5'(x -- L) ]. 

(A1) 

Equation (A 1 ) is solved by taking the Fourier transform of 
both sides and the result is presented as follows: 

EIv• ( v ) -- co2pA • ( v ) = jvEb lK f ep• ( 1 -- e - •L ) . 
(A2) 

Equation (A2) is solved for w(v) and then the inverse Four- 
ier transform is applied to find w(x), which is presented as 
follows: 

w(x) = • 
d31KfV 

4k3T 

X[(1 -- ekd•)e -k• -- (1 -- e-•k3)e/k•]. 
(A3) 

For the case where two elements are collocated axially on 
opposite sides of the beam the total solution is found to be 

W(x,t) = 
d31Kf( V1 -- V2 ) 

4k)T 

x [ ( l __ ek•L)e-- k/' -- ( 1 -- e--jkfL)eJkfx] e--jot. 
(A4) 

The equation of motion for extensional excitation by one pi- 
ezoelectric element as presented in the paper is as follows: 

dx 2 
cø2P •'= K e•'pe [(5(X) -- (5(X -- L)1. (A5) 

Equation (A6) is solved by taking the Fourier transform of 
both sides and the result is presented as follows: 

V2•($ ') -'l- c021o •('V) = f e•pe (1 -- e-J"L). (A6) 

Equation (A7) is solved for •(v) and then the inverse Four- 
ier transform is applied to find •(x), which is presented as 
follows: 

•(X) = jKed31 V __jkeL)ikex. (A7) -- (1 --e 
2keT 

For the case where two elements are collocated on opposite 
sides of the beam the total solution is found to be 
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Z(x,t) = --jK ed31 ( V 1 d- V 2 ) ( 1 -- e--Jk•L)eik•e--J•ø'. 
2keT 

(A8) 

APPENDIX B: DERIVATION OF FAR-FIELD POWER 
o 

FLOW FOR FLEXURAL AND EXTENSIONAL 
EXCITATION 

The total response for flexural excitation of a thin beam 
by two axially colocated actuators bonded symmetrically on 
opposite sides of the beam is 

d31Kf(V1 -- V2) 
W(x,t) = 

4k•t 

X [ ( 1 -- ekA•)e- • -- (1 -- e-J•3)ei•]e-Jø-'t. 
(B1) 

The power flow due to the flexural excitation is found by the 
following relation:8 

Hœ(co) -- __1 Re(Fw V*• d- M0*), (B2) 
2 

where Fw is the shear force, v• is the out-of-plane velocity, M 
is the bending moment, and O is the rotational velocity given 
by 

3w jcod3• K-r( V• -- V2 ) 

•3t 4k)T 

X [ ( 1 -- d%)e - t,•, _ ( 1 -- e-Y•'3)e#'•']e -yø-'t, 
(B3) 

,:9 3w ',,rkfl3, v, - ) 
69x 3 4T 

X [ -- ( 1 -- e•:-'Z)e- t,• 

+j(1 -- e-•t%)gt'•']e-Yø-'t, (B4) 

0 = 69v•o = cod3• K-r( V• -- V2 ) [j( 1 -- et'-'Z)e - •'• 
ax 

-- ( 1 -- e-J•d•)e/•] e -jø", (B5) 
•3 2w Eo Id3 • Kœ( V• -- V2 ) 
cgx 2 4T 

X [ -- ( 1 -- ekd•)e- • 

-- ( 1 -- e-J•)e/•/']e -•ø't. (B6) 
The argument of Eq. (B2), namely F• V*• d- MO*, after 
Eqs. (B3)-(B6) are substituted is presented as follows: 

F• Vw d- MO* Eold]• (Kf)2w * = I V• - V212•(1 - e •) 

- cos [ x - ] 

-- sin(kfx) + sin[kf(x - L)])e -• 
+ [2 - 2 ]). 

It is interesting to note that in the above relation the near 
fields associated with the actuators only affect reactive ener- 
gy, and are thus not part of the real power flow. When Eq. 
(B7) is further reduced to the form of Eq. (B2), the result- 
ing flexural power flow is 

= IV, - 1. 
8T:kf 

(B8) 

The total response for the extensional excitation of a thin 
beam by two axially colocated actuators bonded symmetri- 
cally on opposite sides of the beam is 

Z(x,t) = --jKed31 ( V 1 d- V 2 ) ( l -- e--Jk•'L)•k•Xe--Jwt. 
2keT 

(B9) 

The power flow due to extensional excitation is found by the 
following relation' 

H e (O) = •Re(F• V•), (B10) 

where F• is the in-plane force and v• is the in-plane velocity 
given by 

gZ E•AK ed3, ( V• + V 2 ) 
= - = -- 

gx 2T 

• ( 1 - e-YaA)g•e -•ot, (B11 ) 
gZ wKed3, ( V• + V2) 

•t 2keT 

X ( 1 -- e-½•A)ga•e-cot. (B12) 
When Eqs. (B 10) and (B 11 ) are substituted into (B9) the 
resulting extensional power flow is 

(f e)2d ]1 oEeffA 
•e (O) = I Vi + V212[ 1 - cos(keL ) ]. 

4ke T2 
(B13) 
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