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Statistics

(ABSTRACT)

In the regression framework of the generalized linear model (Nelder and Wedderburn (1972)), iter-

ij ative maximum likelihood parameter estimation is employed via the method of scoring. This iter-
\\/3

ative procedure involves a key matrix, the information matrix. I11·conditioning of the information

matrix can be responsible for making many desirable properties of the parameter estimates unat-

tainable. Some asymptotically biased altematives to maximum likelihood estimation are put forth

which alleviate the detrimental effects of near singular information. Notions of ridge estimation

(Hoerl and Kennard (l970a) and Schaefer (1979)), principal component estimation (Webster et al.

(1974) and Schaefer (1986)), and Stein estimation (Stein (1960)) are extended into a regression set·

ting utilizing any one of an entire class of response distributions.
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Chapter I

INTRODUCTION

1.1 SCOPE OF THE DISSERTATION y
‘

Nelder and Wedderburn (1972) have broadened the domain of the usual linear model. Their

development of the generalized linear model (GLM) can accommodate a great variety of response

variables, capturing distributional forms ranging from discrete to continuous, from symmetric to

asymmetrlc. The model can be a design, regression, or a mixture. The GLM is extremely versatile

and has a wealth of applications including standard multiple regression, analysis of variance, log-

linear models, logistic and Poisson regression, among many others. A detailed overview of the

generalized linear model is forthcoming in Chapter 2. Of course with a framework so well suited

for a variety of applications, this dissertation must focus only on specific problems. These primarily

include problems in the regression setting with all continuous explanatory variables. The GLM’s

regression parameters are typically estimated via an iterative maximum likelihood process. Conse-

quently, a distributional form must be specified; one which is a member of the exponential family.

Problems can exist with the maximum likelihood process paxticularly when a key matrix, entangled

in the iterative procedure, is near-singular. The key matrix will be shown to be the information

mmonucrrou I



matrix for the parameter estimates. Near-singular information matrices can often make desirable

properties of accurate parameter estimation, precise prediction and testing with high power unat-

tainable. Normal response data and the identity link simplify to least squares multiple regvession

and near singularity of the information matrix is equivalerrt to problems resulting from

multicollinearity among the explanatory variables. However, this is not the case in general. Na-

turally, the next step is to develop alternate estimation procedures which alleviate problems asso-

ciated with maximum likelihood in the presence of ill-conditioned information matrices and ideally

restore desirable properties of the regression. Utilizing the fact that maximum likelihood estimates

are asymptotically unbiased, various asymptotically biased estimation solutions will be developed

and proposed as reasonable alternatives to maximum likelihood in the GLM. This dissertation

concentrates on principal component, ridge and Stein estimation in the regression setting of the

framework of the generalized linear model.

Schaefer (1979 and 1986) has had success in developing alternates to maximum likelihood for

logistic regression. Recall that logistic regression assumes Bemoulli responses and is, in fact, a

special case of the generalized linear model. In his 1979 dissertation, Schaefer has contributed a

ridge estimate for the logistic model having all continuous explanatory variables. Somewhat later

(1986), Schaefer further presented a principal component and a Stein estimation procedure, again

for the logistic model with continuous regressors. Chapter 3 will show that these procedures tend

to be particularly useful for accuracy in parameter estimation and can improve prediction abilities

of the model for data combinations outside the mainstream of the original data. Nonetheless,

maximum likelihood predicts well for internal data combinations. Also in Chapter 3, a review of

literature and a comprehensive overview of logistic regression will be presented. Maximum likeli-

hood, ridge and principal component estimators will be derived from likelihood theory and from

Schaefer’s techniques. In addition, the author has independently developed an iterative principal

component technique which will be presented as an alternate to Schaefer’s one step adjustment to

maximum likelihood.

mrnonucnou 2



Chapter 4 stresses differences between multicollinearity among the explanatory variables and

an ill-conditioned information matrix. Schaefer (1979) claims that the above are equivalent in lo-

gistic regression (as they are in standard multiple regression) in the limiting case of an exact defi-

ciency among the regressors. lt will be repeatedly noted that care must be taken in understanding

the true relationship of collinearity to an i1l·conditioned information matrix. Moreover, Chapter 4

presents some diagnostic tools for determining the severity of the ill·conditioning in the GLM.

Among the diagnostics are generalizations to variance inilation factors, variance proportion de-

compositions, and condition indices. Some details regarding centering and scaling the data are also

advised.

Chapter 5 extends the alternate parameter estimation techniques, given in Chapter 3 for lo-

gistic regression, to the framework of the generalized linear model. In particular, Chapter 5 dis-

cusses both of the mentioned principal component techniques (i.e. the one step adjustment to

maximum likelihood and the iterative process) for the GLM. Also variable deletion is discussed

as a viable option. Developments for hypothesis testing and rules for deletion of principal com-

ponents are presented. Lastly, applications for principal component estimation are given for a va-

riety of Bernoulli models, including logistic, probit, linear and extreme value.
l

Chapter 6 presents the development of a ridge estimator for the GLM. Various methods for

choosing a shrinkage parameter, including a C; based criterion, are generalized. Further, a general

Stein estimation procedure is suggested.

Chapter 7 attempts to unify all the biased estimation techniques of the generalized linear

model into one general class. The class is termed the Generalized Fractional Principal Component

Estimators (GFPC). Some comparisons will be made among these estimators in a very broad

manner.

Chapter 8 will present a simulation study to investigate the relative improvements using one

estimation technique when compared to another. Parameter estimation techniques will be judgedrmrnonucriow 3



on variance, bias, and mean square error. Other factors, such as sample size, number ofexplanatory

variables, and severity of ill-conditioning of the information matrix will be examined for their re-

spective impacts. An assortment of experimental settings are investigated, incorporating

distributional forms of the response variable.

j
The concluding chapter ofthis dissertation will present some additional problems in the GLM

which have not been addressed. Some suggestions will also be made as to present the GLM as a

reasonable option to least squares regression.

1.2 NOTATIONS OF THE DISSERTATION

For the most part the author has tried to maintain a notation consistent with that of standard

text books and major joumals in the Held of statistics. However due to a lack of consistency among

statisticians, it is necessary to to mention some conventions used in the upcoming chapters.

The symbol N is reserved for the total number of observations, whereas the number of ex-

planatory variables (regressors) is given by p (not including the constant term). The matrix of

centered and scaled regressors is given by X and has dimension N x (p+ 1). In general, capital

letters, such as A, denote a matrix with entries {a,,}. The transpose of a matrix is given by A'. The

inverse of a nonsingular square matrix, B , is given by B", the generalized inverse is denoted as

B
“,

the trace is symbolized by tr(B). Lower case underscored letters, such as 5, or g,, are vectors.

Typically observation regression vectors of the data Xmatrix are given by
5’,

for 1 s is N.

Standard mathematical symbols are used throughout the dissertation. Among the most

common are limit (lim), summation (Z), integration (f), differentiation (d / dß or ö / öß). The

derivative with respect to 0 of a function, c(0), can be denoted by c'(8) ( c"(0) for the second de-

rivative, etc.).

mrnonucnou _ ‘*



Standard statistical notations include expected values of a random variable, E(Y), variance

of a random variable, Var(Y ). Usually hatted vectors, e.g. Ä, refer to the maximum likelihood es-

timate of the unknown parameter vector, E . Equality is denoted with
’= ’,

whereas approximate

equality is denoted with
’§'.

'The symbol
’~’

signiües
’is

distributed as'. The symbol
’

·<·
’

denotes
’is

asymptotically distributed as'.

mrnonucrtou
‘ 5



Chapter II

THE GENERALIZED LINEAR MODEL (GLM)

2.l INTRODUCTION

Many regression problems can link the mean of the response variable’s distribution to a linear

combination ofexplanatory variables x,, x,, . . ., x,. If ß, are regression parameters and

[1, Xu, Xu, „•

[ß0• ßlv ßplr

then ,;’,Q is a linear combination of the X explanatory variables.

When continuous responses, X, are modellcd as a linear combination ofexplanatory variables,

there may be cases when the data exhibits extreme nonnormal tendencies. For the model,

”"’“““"“ 2ll
Where _X~N(XE,

62]),THEGENERALIZED LINEAR MODEL (GLM) 6
·



the assumption of normality in the response distribution may be inappropriate. Pregibon (1979)

points out that, more often than not, least squares estimation is performed without regard to

normality of the data. The distributional form of the response variable is not typically identilied,

unless large amounts ofdata are collected. Nonetheless, least squares can be an adequate estimation

procedure if the data is reasonably symmetxic, continuous and not heavy tailed.

However, there do exist various experimental settings when the standard linear model, defined

in equation (2.1.1), is not appropriate for model building. For example, consider survival models

utilizes the reciprocal mean lifetirne expressed as a linear combination of explanatory variables,

gl = XE. Log-linear models employ the log of cell means modelled as a linear function of pa-

rameters. Situations could arise when discrete responses are collected which are binomial in nature;

in this case logistic regression,

1ogit( 1;) = XE, (2.1.2)

would be appropriate for model building.

Responses having obvious asymmetry or a discrete nature require a method of estimation

altemative to least squares. A more global approach to model building is given by the generalized

linear model (Nelder and Wedderburn (1972) and McCullagh and Nelder (1983)). Equations

(2.1.1) and (2.1.2) can be rewritten as

g(E) = XE, (2.1.3)

where il, = E(Y,). Notice that the function g links the systematic component, ,;',E, to the mean,

l*1~

As equation (2.1.3) suggests, the generalized linear model is formulated by

i) the distributional form of the response variable (in order to implement maxi-

mum likelihood estimation techniques);

THE GENERALIZED LINEAR MODEL (GLM) 7



ii) the choice of the linking function, which in most cases will be chosen to be

the natural link (developed later);

iii) the choice of explanatory variables responsible for best linking the systematic

component to the mean of the response variable.

A generalized linear model is constructed with the combination ofthe response’s distributional form

and the link function. If the response’s distribution is nonnormal, then the mean response will be

expressed nonlinear in Q. V

2.2 EXPONENTIAL FAMILY OF DISTRIBUTIONS

A class of distributions mpable of including many deal of discrete random variables

(success-failure, oounts, etc.), as well as a number ofcontinuous distributions (normal, asymmetric,

restricted on the domain, etc.) is the exponential class of distributions.

Consider a random variable, Y, having a distribution depending on a parameter 0 of the form

fyw: 9) = ¤xr>{[dw)b(9) + ¤(9)] / 4( ¢) + dw. ¢)}. (2-2.1)

where a, b, c, d, q are known functions. If b(9) = 6, then call 0 the natural parameter. If a(y) =y,

then equation (2.2.1) is in a simplitied form developed later. The natural parameterization is pre-

sented in upcoming results. Let the nuisance parameter ¢> be a constant for all lj.

The exponential family is a rich class ofdistributions containing the normal, gamma, Poisson,

binomial as well as many other distributions. Table l and Table 2 contain some distributions be-

longing to the exponential family. ¢ and w, will be defined in equation (2.3.1). The Poisson model

is commonly applied to log-linear models for contingency tables. The normal model is the basis

THE GENERALIZED LINEAR MODEL (GLM) 8



for analysis of variance, as well as testing in standard multiple regression. The binomial is often

used in dose·response problems. Other particularly common exponential distributions are the

gamma, used in life testing, and the inverse Gaussian, used in nonsymmetric regression.

The members of the exponential family have a general log-likelihood function of the form

I == [¤(y)b(9) + ¤(9)l I <1(¢>) + d(y„ <I>)- (2-2-2)

The score, as defined in Bickel and Doksum (1976) with certain regulatory conditions, is

-lU‘ 60
E (U ) = 0 (2.2.3)

Var(U)=E(U2)=-E[%g·].

Notice

E[%]=j‘(1/f)(öf/ö9)fdy .
- 1. -- .„ fd dy - 9

=_l[{ff°— (f')2} lfzlf dy
=ff' dy—j·{(f')°/f} dy

= - fmz m dy
öl 2 2and -E[—ö-F]=—f(ö1nf/ö0)fdy

° = — [ </· mv dy
= ·f{(f')2/f}dy•

wherefdenotesf(y; 8). For the exponential family, as given in equation (2.2.1),

mm czmzmmzmn umzsn Monm. (crm) 9



Table I. VARIOUS EXPONENTIAL FAMILY DISTRIBUTIONS

Poisson (J.) y 6 N+, 1. > 0

Neg. Binomial (r, p) y 6 N, 0 <p< 1, r 6 N+(known)

· Binomial(n,«) 0sySn6 N+, 0<1:<I

NOIII!81(}L,0z) —ooSySoo, —o<>Su$oo,
c“>0

Gamma(r,l) y20, .1>0,r>0

Unit Inveme
Gaussian (p,l) y20, —oo$uSoo, a“=l

THE GENERALIZED LINEAR MODEL (GLM) 1 W



Table 2. PARAMETERS IN THE GLM

Natural Parameter
Distribution 8 = b(8) c(8) d(y, qS) 1/> w,

Poisson(l) 1n(,l) 6** -· 1n(y!) 1 1

Neg. Binomia1(r, p) ln(l —p) r1n(1-· e') 1n< r 41};- 1) 1 1

‘1aaaem1a1(1,1) 1n( -11 1n(l + e·) 1 1
Normal (14, 6*) 14 — 8*/ 2 — [y*/6* + l¤(21l·6*)]/2 6* I

Gamma (1, 1) - 1 1 1 - 1111 - 6)
(’

1 —¤ 1
U °t In

I) — 1.1.**/ 2 ./-28 —y" / 2 — I11(21zy*) / 2 1 1

THE GENERAI.IzI;u IJNEAR MODEL (GLM) ll



U = [¤(y)b'(9) + ¢'(9)] I <1(¢)
2

• .
ag

(2 2 4)
= U' = [¤(y)b '(9) + c '(9)] I <1(¢)-

Thus

n = E[<¢(Y)] = —¢'(9) I b’(9) (2-2-5)

from equation (2.2.3). If a(y) =y and b(H) = 0, then E(Y) = p. = — c’(9).

It follows,

E( —U') = [ -9 '(9) E[¤(.v)] — ¢ '(9)] I 4( ¢) (2 2 6)
Md V¤r(U) = E(U2) = [b’(9) I <1( ¢)]2 V¤r[¤(1*)]- ° i

Combining equations (2.2.5) and (2.2.o)

V¤[d(Y)] = 4(<I•)[b '(9)¤’(9) — ¢ '(9)b'(9)] I IIb'(9)]3- (2-2-7)

Notice when q( ¢~) =¤ 1, a(y) =y and b(0) = 0, then Var(Y) = —c'(0) = %·E(Y). Thus Var(Y) can

be thought of as the rate of change of the E(Y) with respect to 6. For normally distributed re-

sponses, -;*5 E(Y) is constant, giving homogeneous fixed variance.

Naturally, if Y,, Y,, ..., Y„ are independent random variables with the same exponential dis-

tribution, then the joint density is given by

Iv N .
Mg: 9) = ¤xr>{[b(9)Z¤(.vr) + N¢(9)] I q(¢) + 2d(yI. ¢>)). (2-2-8)

1-1 1-1

with §§a(y,) the complete and sufiicient statistic for b(H) (Cox and Hinkley (1974)).
l¤I .

THE GENERALIZED LINEAR MODEL (GLM) I2
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2.3 FORMULATION OF GENERALIZED LINEAR MODELS (GLM)

The framework of the GLM allows the response variable to have any distribution nom the

exponential family when a(y) == y. Thus Y can be fr·om one of many discrete or continuous dis-

tributions. Furthermore, the relationship between the response, Y, and the explanatory variables

does not have to be linear, as in the usual regression setting.

Consider Y1, Y1, ..., Y1., as independent random variables each from the exponential family

with the following conditions (Nelder and Wedderburn (1972)):

i) the scale parameter q(¢) = ¢ /w,, where w, are known weights;

ii) the distribution of each 11 is such that a(y) =y and depends on a single pa-

rameter 0,, that is the E are not identically distributed and

f(yr z dm. 4>)}: (2-34)

iii) the form of the distribution of all the Y1.: are the same so that the subscripts

on b, c, d are not needed.

Write the joint probability density function of Y1, Y1, ..., Y1, as

N
fQi Q) == =¤¤r> Z{|Zvrb(Qz) + <=(Q1)]W4/ ¢> + d(y1. ¢)} .

1-1 . .2N (23 )
!(Q; 3) = 2{D'zb(9z) + ¤(Q1)]wr/ ¢> + d(y«„ ¢>)}-

1-1

Equation (2.3.2) is overspecified. That is there are as many parameters to estimate as there are

observations. Thus, for the generalized linear model, consider a smaller set ofparameters, as given

THE GENERALIZED LINEAR MODEL (GLM) 13



in equation (2.1.3), ß„, ß,, , ß, (p< N) . Given the set ofp explanatory variables, the generalized

linear model utilizes the relationship,

g(ul) = ,x’,Q, (2.3.3)

i) in = BUG);

ii) g is a monotone, twice differentiable function with an inverse ( i.e.
g•‘

= h

exists) called the link function;

iii) ;',is a (p + 1) x 1 row vector of regressor variables (later developments will

require continuous covariates and a constant);

iv) Q is the unknown parameter vector;

v) the estimation of Q does not depend on having an estimate of ¢.

Notice that in the special case when the systematic component

800 =·&';£= b(6) =

6thenequation (2.3.2) can be expressed in terms of the natural parameter 0. Hence the natural link.

In terms of the (p+ l) dimensional Q vector using the natural link, the log-likelihood be-

comes

N
!(XE;,z) == {EMQE + ¢(&’;£)]Wz/ ¢> +d(y4» 4•)}· (2-34)

hl

Using the natural link function b(6) = 0 = g'Q and setting the derivative ofequation (2.3.4) to zero,

'normal-like' equations can be given as

THE GENERALIZED LINEAR MODEL (GLM) 14



N
Ö IQ KXESZ) xij(yl + ¢ (2€'1E))1*’1 / ¢

lll
N (2.3.5)

1-1 _

forj ¤ 0, 1, 2, ...,p and h = g *1. Equivalently,

Q = X'(Z — (2.3.6)

2.4 ESTIINIATION OF IN THE GLM

Recall that the exponential family log·1ikelihood function for independent 11 is

N N ·

IGZ: 2) ¢} + Zd(y4» ¢)
hl iul

109;; yz) = {Lv«b(91) + ¢(9t)lwz/ ¢} + dw:. 4•).

where E(Y,) = p, = —c'(6,) / b'(9,). Further, g is a monotone and twice dilferentiable function such

that

gg,) = ;',£ =-. py,. (2.4.1)

One advantage of employing maximum likelihood procedures for estimation of Q is that the

exponential family ensures an unique solution to the set of equations = 0 (Cox and Hinkley

(1974)). Notice by the chain rule that
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Ä =jÄ Ä Ä Ä
aß M aa4 aw am aß

4v , (y —

l¤l
. N

E
2 Il M
hl

where h ¤
g—‘.

Equation (2.4.2) follows from

64 I[1*49 (94) + ¢'(9r)]W4/ ¢
=· b’(94)D'4 —

#4]***4/ ¢
@= @-1

6*0 2 6'060 6*0 *0 fr 22MMI MBI =[(r)]/[ (4)(4)-(4)¢(4)] ¤¤¤=q-(-·5)

= ¢ / [w,b’(04)Var(Y4)] from eq. (2.2.7)
6 6*044)
Ä= M6g °

In equating equation (2.4.2) to zero, 'normal-like' equations are formed for any general link

hmction. The Newton·Raphson approach uses the following Taylor series expansion of

61/ äß about E, ,

Ä..Ä _ -ag = ag IE·é¤+ 6g6g* |£·E¤(9
9°)“°'

where

4) @#1l lll ÖEI ,1
I-1

yl
Ö"! aß; •

from equation (2.4.2). H is often termed the Hessian matrix. This implies the iterative scheme
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^ - ^ Ä.
°‘

Ä .Et
—

E!'l [
]E·ét—l

’Equation(2.4.3) can bc simplified computationally by replacing

· 6*1 6*1 öl öl N
°thE h' 2 V Y=—¢D,

where <b is the information matrix, which is called the method of scoring. It follows that the

method of scoring has the iterative scheme

^ ^ -¤ Ä .Q, = Q,_, + [d>,_,] aß I E_
EM

, (2.4.4)

where 1 denotes the iteration step. The method of scoring corresponds to the ordinary least squares

solutions when the identity link is used with normal data.

Notice that the contribution of K to <!>,,,, denoted by <!>},,, where <l>,,, = §§<l>},,, is given by
I-!

öl öl(D! = E —l· —1·—/* [ aß, aß,. I
2— .. Ö 2

= E (Y1 I4:) xxäxlk
I:[Var<Y1>J I

=
xijxlk [h’(m)]2

V¤(Y1) °

Thus

1v
-1 ·(pl]! = xüku

Xu:Ial

whara /6} = [/¤’(m)]* I V¤(Y1)- Th¤r¤f¤r=„
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<1> = X'K°‘X, where K" = diag {k,}‘}.

Notice when the natural link function is used the K" = diag{Var( l’,)} is particularly simple. This

follows since rp = 0 = — c""(p) and öp. / Ö1) = Va:(Y).

Now the iterative scheme in equation (2.4.4) can be re·expressed, using equation (2.4.2), as

^ ^ ^.1 .1 N ^.1 A öm
E:’Ä:-1 +(X'K1-1X) E-E/<u (.1*1*141) Thl u' :-1

1v_ _ _ 5 (2.4.7)== wr? 1L1X>
‘[Z

/21*:1 [:13..1 + 111- 1@1> E? ]
1-1 ' :-1

=- wr?;l1X>"¤¤? 211 1;.1.

where y,* = 11, + (y, - p,)( ö•y,/ öp,) evaluated at EM. Note that in the most general setting, the es-

timate ofK *1 and y,* must be updated at each iteration step until convergence of the parameter es-

timate since they are a function of the iterated EM. Observe that

Var(2*) z K and E4 N(E , (X'K "X)"). (2.4.8)

Asymptotic distributional properties will be developed in section 2.5. The iterative scheme, given

in equation (2.4.7), is consistent with the Gauss·Newton procedure outlined in section 3.5 for the

logit model. Also notice the similarity of equation (2.4.7) to that of reweighted least squares.

Nelder and Wedderburn (1972) have shown that the solutions to the 'normal·1ike' equations given

in equation (2.3.5) are equivalent to an iterative weighted least squares solution working with the

variable Z' . Previous to Nelder and Wedderbur·n’s 1972 work, Fisher (1935) had used this iterative

weighted least squares scheme in the special case of binomial data using the probit link. Somewhat

later, Finney (1947) used a similar approach to that of Fisher’s with binomial data but with a logit

link function for ütting dose response curves.
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As an example, consider the common case of the generalized linear model, that is the normal

model,

g = XQ + e „ (2.4.9)

where the 1:, ~ N(0, 6*) and independent. It follows that IQ ~ N(;’,,Q, 6*) and I1, = g’,Q. When

de = 6* is known and w, = 1 for all i, the normal distribution is a member of the one-parameter ex-

ponential family. In this example, g(p,) = ;1,= 9,; thus g is the identity link.

Consider, as another example, IQ ~ Poisson(A,). Using the natural parameter as the linking

function, equation (2.4.10) holds.

HI = = 1u(ÄI) = {IQ. (2.4.10)

H¤¤¤= u, = 11=· h(x’1£) = ¤xp(x’1£)·

As a third example, the binomial-logit model with the natural link function gives

g(p,) = logit( 1:,) = {IQ. (2.4.11)

It follows then that 1:, == h(1I,) == n(l + exp( - 1;,))*.

The negative binomial is also a member of the exponential family when the parameter r is

treated as known.

+ — lf(y) = ¤xp[y11¤<1—p)+ r1¤(p) + 1¤<rii,·

#1=(1—.¤1)/p1=h(n1)=¢”‘/(1—¢”'>-
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Notice that when r= 1 the negative binomial is reduced to the geometric distribution.

The use of the Gamma (r, 1), as an illustrative example, is instructive but not as straight for-

ward as the previous examples. Recall that for y > 0, 1 > 0, and r> 0,

f<”=^'y""¢°’^”<*> (2..).)
= exp{ —y.l + (r- l)ln(y) + rln(1) — lnI'(r)}. ‘

Observe that E(Y) = r / J. = —c'(8) and Var(Y) = r / .1* = — q( ¢)c'(0). See equation (2.2.7).

From the form of the exponential family,

f(y) = ¢XP{D'0 + ¢(0)] / 4( 4•) + ¢(y„ 4>)}•

the above equations yield 9 [ q(¢>) = — 1. Thus — 9c"(0) = c’(H) = - rl 1. This implies that

c'(Ü) oc H"‘. Henee 6 =¤ -1 / r, q(
r"‘

= — p.", c(H) = —ln( — H) giving

f(y) = ¤xx>{[y6 -¤(9)] / <1( ¢) + (r- 1) 1¤y + r1¤r·- 1¤1'(r)}-

A common link fimction is p = 4**. Note that Var(l’) = q(¢>)p* (McGilchrist (1987)). See Table

3.

2.5 INFERENCES CONCERNING THE GENERALIZED LINEAR MODEL

For the generalized linear model, define the score with respect to ßj to be

lÖ=—ä%; j=0,1,...,p. (2.5.1)

In obtaining the maximum likelihood parameter estimates, ll = (U„, U,, ..., U,)' is set to zero, where

mg) = 9 md mg gz') = <x> . (2-5-2)
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Table 3. NATURAL LINK FUNCTIONS

Natural Link
Distribution g(;u) = 0 = 1; h(1;) /6;*

Poisson (1) ln(1) exp(1;) exp(1;) > 0

Neg. Binomial (r,p) ln(1 — p) — (1 — exp( - 1;))** ct/(1 — e‘•)*
> 0

Binomial (rn, 1:) 1n( (1 + exp(— 1;))** 0 < 6*/(1 + e")* < .25

N0rma1(;r,a*) p/6* 1;o·* cr*>0

Unit Gamma (1,1) — 1 — 1;** 1;** > 0

Unit Inverse
Gaussian — ;,e'* / 2 (-21;)* 64 1;* > O
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By an extension of the Central Limit Theorem (Feller (1966)). the asymptotic distribution

ofQ is multivariate N(Q, Q) ; hence

l1'<!>°‘.U~ x§+,_„. (2.5.3)

The multivariate central limit thcorern can be found in Rao (1967). The application to the

vector of scores follows. Consider equation (2.4.2). Let 1,, ...,1,, bc a sequence of independent

(p + 1) dimensional random vectors such that E(1,) = 0 and the dispersion matrix D(1,) = Q. De-

fine

yl ‘ #1hl
****1** ’I1 aa (m) Var, ,,0

for 1 S iS N. Now E(1,) = 0 since 1, is a vector of scores (see equation (2.2.3)). Further

D(1,) = Q aß 0 (sec equation (2.4.6)). The 1, are independent since the lQ are independent. More-

over, Q == X'K"X is finitc, nonnull by assumptions given in section 3.6. Standard Lindeberg con-

ditions outlined by Rao are met. Hence, the above result, jven in equation (2.5.3),

1v
u= Z1. ~ Nu. <r>>-

hl

Asymptotic normality of scores jvc asymptotic normality of maximum likelihood estimates of the

parameters, as shown in equation (2.5.7).

When convergence is obtained using the iterative equation (2.4.7), consider the unique max-

imum likelihood estimate, Detinc E to be the true parameter vector. The Taylor series expan-

sion of U(Q) about Ä (Dobson (1983)) is

A A A
U(@_) 2 U(Q) + H(Ä)(Ä ‘ E)- (2.5.4)

where H is the Hessian matrix evaluated at the maximum likelihood estimates, Thus,
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v<g>Q v<ä>—¤><g-E). (2-56)

since <l> = E( —H ). This implies that

(Ä — Ä) Q <1> "u. (2.5.6)

since U(Ä) == 0 by definition. By taking expectation: of both sides of equation (2.5.6),

E(Ä) = E asymptotically,

since E(U ) =¤ 0 from equation (2.2.3). Sirnilarly

^ ^ r ••l r 'l -·l=¢ „

since <D é E(_Q_Q’) and symmetric (provided that <b is nonsingular). Thu: for large samples

Äa 1v(Ä <1>")
A I A

· 2
(2.5.7)

where the mean is oforder
N·‘

and the variance of order N" (Bartlett (1953)). Note that for normal

response data, the distribution: are exact rather than asymptotic (Dobson (1983)).

2.6 HYPOTHESIS TESTING FOR THE GENERALIZED LINEAR MODEL

Deline the overspecilied or maximal model as having as many parameters as observations.

Thu: the maximal model can be thought of as having the parameter vector

Emu = |Iß1·
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To determine whether another model with (p + 1 < N) parameters Ä = [ß,,, ß,, , ,6,
]’

is adequate

relative to the maximal model, it is reasonable to compare their likelihood functions. If

LQ;2) g LQ„,„,;2), then the model describes the data well. However, ifLQ;2) < < LQ,„„„; 2), then

the model is poor relative to the maximal model. This Suggcsts the likelihood ratio test using the

statistic

1 L(ä„„„· > 1 L12 >A
'£ A

’2
(2.6.1)

<>r 1¤ 1 = /(£„¤=2) — /(£=2)

If1isla.rge,thenc1aimÄisapoormodel.

The sampling distribution of ln 1 can be approximated by the following Taylor series ex-

pansion of IQ; _2) about the maximum likelihood estimator ^

A A I A A I A A'(£=.z)¤1(.€=1)+(£—£) 1/(£)+(1/2)(£-E) H(£)(£-£)- (2-6-2)

where HQ) is the Hessian matrix evaluated at the maximum likelihood estimate. Recall that

UQ) = Q by definition and Q == - E(H ) for large samples. In giving a distributional result, equation

(2.6.2) can be rewritten as

A A I A _
22 [KE; 1) — KE; _,!)] = (E ··· E) 6* (E ·· E) ~ Xp+1, o• (2-6-3)

from equation (2.5.7).

Utilizing the asymptotic result in equation (2.6.3), a goodness-of-fit measure can be con-

structed. Nelder and Wedderbum (1972) define the scalcd deviance as

S = 2 In J. = 2 [I(Ä„,„,; _2) - IQ;2)], (2.6.4)

where Ä is maximum likelihood based on p explanatory variables and a constant. Notice that the

scaled deviance can be written as
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N

I ^ I ^S = 22 [Ka rémtx: y0 — Ka: @1*0]
l=¤l
N

= 22 24*.
hl

As an example, the scaled deviance for Poisson responses, as defined by Bishop et al. (1975), is the

G2 ·statisti¢ (since ¢ ==w,== l ),

2
N

A A
G = Srsn= 22 (}’zl¤[¢'(&'1E) /}*1] *¢'(K'1E) "‘J’z}·

hl

The expression §§[—c'(;',ß_)—y,] sumstozeroifthenaturallinkisused. The scaleddeviancecan
hl

be broken down into the following components

S= 2 KE: z>J} (2 6 5)
"' XIV-p—l ,0 ·

I

when IQ,„„; Z) Q IQ;2) (i.e. the data represents the maximal model well); otherwise, equation

(2.6.5) has an asymptotic noncentral x* distribution.

In testing a current model against a full model, an useful hypothesis test is of the form

H : = + loß Äc (4 ) (2.66)
H1:E=£I·' (p+1)„

where q<p< N and H0 is nested in H,. The subscript F denotes the firll model whereas the C

denotes the current model of interest. H0 is tested against the alternative by using the difference in

the log·like1ihood statistics, producing a scaled deviance

. s' = sc - s,. = 2 [1(ß,,; Ü - Ü]. (2.6.7)
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If both H, and H, describe the data adequately relative to the maximal model, then

Sc ';’
X2/—q-1, 0 ¤

$r"* xi:-,-1,o· (2-6·8)

md s' A- X}_„_ ,, ,

provided S' and S, are independent. Notice that if q + 1 =p, then S' A- ;g}_,,. The degrees of free- '

dom, p - q, can be thought of as the number of restrictions imposed on the null hypothesis.

Perhaps a more common test in practice would be the one of the form

H0: CQ = Q, (2.6.9)

where C is a q x (p + 1) matrix of constants. In particular, the test for the deletion of a single pa-

rameter would yield the choice of C= (0, ...,0, 1, 0, ...,0).

It follows under H,,

^- -1 -1 ^ • 2
Q C'(C<l> C') CQ~ X,. (2.6.12)

Hence, the test for a single parameter simplities to

^ - .ß} 1
<r>„‘

~ X}. (2.6.13)

The above statistic is compared to the appropriate percentage point of the asymptotic chi-square

distribution.

2.7 DEVIANCE VERSUS SCALED DEVIANCE

Notice that the scaled deviance in equation (2.6.7) can be rewritten as
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s' = 2 [1, -1c]
N

~ A
~

A

= (2 / 402 W1D¤;(94 — 9)) + ¢(9z) — ¢(9«)] (2·7-1)
L-1

I;
x?V-k 1

where Ä: X,„é, and Ä: Xcéc. A diiliculty in using S' as a practical measure of goodness·of-lit is

that it is a function of ¢•, which is unknown for two·parameter families. Hence an estimate of ¢

is desired. Deüne

N
3 ~ A ~ A

D = ¢S = 22 w,[y,(0, — 0,) + c(0,) — c(0,)]. (2.7.2)
lnl

D is termed the deviance of the current model relative to the full model. D is a known quantity

when given the data and the maximum likelihood estimates, The deviance will be shown to be

a common measure of goodness-of-lit. To estimate ¢>, D is computed using an overspeciüed full

model of rank N and a current model of rank k. The dimension k is determined by choosing the

largest reasonable current model. Since S' is distributed ;;},_, , an estimate of ¢ is given by

eil;
= DN), / (N - k) . (2.7.3)

2.8 GOODNESS OF FIT IN THE GENERALIZED LINEAR MODEL

In the usual linear m¤«1.-:1 with the identity link, certainly one of the most common measures

of goodness-of-tit is the deviance which simpliiies to the sum of squared error, SSE . SSE is a

measure of how well the data is represented by the model. The quantity SSE is given by
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N N
SSE=Z<y„—ré>’=Z<y,-ßo’- (2-8-1)

lll l¤l

SSE will be zero and without degrees of freedom when the data is perfectly fit by an overspecilied

model which assigns one parameter for each observation. On the other hand, SSE reaches its other

extreme when only a constant term is lit. That is in the absence ofexplanatory variables, the model

tits the mean response and SSE is the total variance of X with N- l degrees of freedom. An

intermediate number ofparameters, p , is typically fit to the data, where 1 < p< N. Of course, other

statistics and diagnostics based on prediction and parameter estimation will have to be taken into

consideration when choosing an appropriate model for the researcher's use. „

Pregibon (1979) points out a natural extension of the SSE, in the generalized linear model,

is the relative sum of squared deviations, given by

N A 2
2 (J'! ‘ I1!)

x 1
^2

hl W
NA=_ E 0*1+ ¢’(&'zE))

~

1-1 ¢"(2c’[ß)

The natural link function is required for the last expression to hold. Apart from 01, equation (2.8.2)

simplifies to SSE for normal data. Moreover, the versatility of X1 is seen for binomial and Poisson

responses. For these data, x1 is the standard goodness·of-fit test statistic used in log-linear models,

multinomial data, and contingency tables. That is

· N
X1 =Z (0, -2:,)* [ 2,, (2.8.3)

hl

where 0, and e, denote the observed and expected cell frequencies respectively.
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Certain distributional properties do hold for the X2 statistic. For normal responses with the

identity link, X2 has an exact X§,_,_, distribution. For some nonnormal exponential—family response

data, X2 varies in how well an approximate X2 distribution is followed. Despite the fact that the X2

statistic can be poorly approximated by a X2 distribution, Pregibon (1979) gives examples where

this is of little consequence. Asymptotic arguments suggest that if the primary use of X2 is to

compare competing models rather than an assessment of lit for a particular model, then

AX! == X} — X} is approximated well by a X§_, distribution, where p — q is the number ofrestrictions

imposed on the full model.

2.9 SCREENING REGRESSORS IN TI-IE GENERALIZED LINEAR MODEL

In least squares regression with normal responses, various diagnostics have been developed

to elfectively screen explanatory variables in the pursuit of the best possible subset model. Among

these diagnostics is the all possible regressions computer routine which can eüectively and quite

quickly entertain up to k = 10 regressors. All of the 2* -1 possible regressions are computed while

giving several criteria for the researcher to base his or her choice on. The criteria given in the

SAS pressall macro, developed at the Department of Statistics, Virginia Polytechnic Institute and

State University (Myers, S. (1984)), are MSE, C}, R2, and PRESS. Combining the pressall routine

with collinearity and outlier diagnostics (with a k S 10), more onen than not the model selected is

superior to that selected by a forward selection or backward elimination stepwise procedure which

ignores problems associated with multicollinearity. _

Lawless and Singhal (1978) have developed an all possible regressions routine to eüciently

screen explanatory variables in nonnormal regression models. Since the algorithm is quite general,

it certainly includes the class of generalized linear models. Scaled deviance is used as a criterion for

the best subset model. Two approximations to scaled deviance are presented to speed up the

computation. The paper includes examples from exponential, Poisson and logistic regression and
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with k = 8. The examples show the accuracy of the two approximations to scaled deviance in de-

termining the best subset model.

Altematively to the all possible regressions routine, Q has been mentioned as a method to

assess the quality of a subset model (see Mallows (1973)). The Q statistic is oriented toward the

predictive capabilities of the model by giving the mean squared error for a p-regressor candidate

model. Deiine

Cfä MsE<§·<x„>>
hl °

Sä wr$<x,» + gBi¤S(i*(x«))]2
bl ° (2.9.1)

S SPS S) S
<«’ — «’><^;-p- 1)

SSE,
g —N +2(p + 1),

where SSE, is the sum of squares error for thep regressor subset model and 6* is the mean squared

error for the full k regressor model, and p + 1 corresponds to the tr(H ) = tr(X(X'X)·‘X').

Q attempts to strike the proper balance between the impact of overütting (i.e. intlation of

VarQ)) and the impact of underiitting (i.e. intlation of Bias(j)). In fact, Q is a compromise be-

tween the complexity of the model (p) and goodness·of-iit (SSE,). Plots of Q vs.p will summarize

the candidate models. The value Q ==p suggests that bias is absent. However, candidate models

having a Q less than p usually suggests that sf is less than 6* . Since Q has an approximate ex-

pectation 0fp+ 1, models with Q >p usually suggest that the data is not represented well by the

model.

Pregibon (1979) presents a very interesting and natural generalization to Mallow’s Q statistic

for the generalized linear model. Define
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C; == (DN, /
elf;) — N+ 2(p + 1), (2.9.2)

where Ä==D„_„ [ (N —k) presented in equation (2.6.14) and k is the full number of regressors.

Notice that Q == C, for normal responses with the identity link.

The value D„, [ de given in equation (2.9.2) can be replaced by the x3 statistic given previously

in equation (2.8.2). See equaticns (2.7.1) and (2.7.2). In Pregibon’s (1979) development of Q, he

chcoses tc use D„_, [ Ä over x* for ncnnormal models tc make a connection between Q and

Akaike’s (1974) Information Criterion (AIC). Akaike developed

AlC,,= —2I(Ä;g)+2(p+ 1)

= DN, — 2 !(Ä„„: z) +2(.¤ + 1) (2-9-3)
g A

= C, — 2I(ß_m¤; g) +N,

when Ä = 1. The statistic AIQ will punish models with large numbers of explanatory variables in

the same way Q does.

2.10 CENTERING AND SCALING THE EXPLANATORY VARIABLES

Quite chen it is convenient to look at standardized columns of the X matrix so that the

variables are unitless (Myers (1986)). Centering and scaling chen help the analysis in, for example,

principal components regression to make sense. Generalized ridge regression also has an appeal to

centering and scaling. Further, inversion problems can exist for X'Xwhen the explanatory variables

have extremely different magnitudes. For sake of consistency, throughout this dissertation the ex-

planatory variables will be presented or assumed as centered and scaled. The columns cf the X

matrix can be represented as
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X= (.1 K} X; Xp),

where ,3;, represents an independent variable. Redeüne

X= (2.10.1)

where
1 1

.1:,* = SSr"’1„¤, — Zu
.1v— 1M = N 2*11
J-1

1v
SS, = Zu., -Ef-

J-!

X* is (p xp) matrix and R = X*'X* is in the usual correlation form.
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Chapter III

3.1 INTRODUCTION

Up to this point, this dissertation has been quite general. That is, within the framework of

the generalized linear model, the response variable can be from any distributional form in the ex-

ponential family. To broaden an already general scenario, the researcher is not required to use the

natural link even though it is the function most ohen used to connect the mean response to the

systematic linear component. Upon data collection, both the distributional form of the response

and the link function must be determined in order to implement an iterative maximum likelihood

estimation technique. ·

As a speciüc case of the GLM, Schaefer (1979 and 1986) considers alternatives to iterative

reweighted maximum likelihood parameter estimation when the response is Bernoulli. Schaefer

has developed both ridge and principal component techniques for logistic regression. Maximum

likelihood is particularly to be avoided in the presence of an ill-conditioned information matrix.

Schaefcr's work is much of the motivation behind this dissertation. The author will expand on
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Scha.efer’s principal component logistic regression (PCLR) parameter estimates. Specilically, an

iterative PCLR technique will be developed as an alternative to Schaefer’s one step adjustment to

maximum Both one step and iterative principal component estimators, as well as ridge

estimators, will be extended to the GLM in upcoming chapters.

3.2 DEVELOPMENT OF LOGISTICREGRESSIONIt

is not uncommon in research to obtain dichotomous data on a number of individuals. For

example, each individual may be given or denied a car loan, may favor or oppose a political issue,

may or may not acquire a disease. Usually this binary datum is recorded along with a set of the

individual’s characteristics; perhaps levels of blood glucose, antibodies, and urine protein are on a

medical record. Since the outcome frequently depends on the individual’s set of characteristics,

logistic regression equations can be developed to model and predict the probability for a future in-

dividual’s outcome when given his set of characteristics. The work here will specilically deal with

continuous explanatory variables. Two important and desirable properties of the logistic regression

model are good prediction of the probability and good estimates of regression coeäicients. These

properties may be unattainable while using maximum likelihood estimation.

The objective is to develop a method that will reduce or eliminate damage that a. near singular

information matrix poses to binary regressions, while maintaining accurate probability predictions.

In addition, if theoretical equations are specified, then more trustworthy estimates can be given for

regression coeüicients, that is for the rate and direction of change in this probability when one of

the characteristics is increased or decreased. This research is especially important in medical issues

since inaccurate prediction may be catastrophic. In some instances, applying alternate estimation

techniques in the logistic setting allows, for example, the construction of a reliable probability

equation to predict whether a person actually has a disease when given a set ofexplanatoryvariables

results in an ill·conditioned information matrix.
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Consider a binomial random variable Y with parameters fl and 1: . f(y) is a member of the

exponential family and has the natural parameter 0 such that

fy(.v; 9) = ¤¤r>(y9 + ¢(9) + d(y)}1(o,r,2,..„„)(y)- (3-2-1)

where 0==logit(1:)= lnliä} c(6)=·-n ln(l +e'), d(y) =lnUi], and ne Z*. Note that

q(¢>) == l. Thus y is a complete suilicient statistic with

E(Y) = -c'(6) = m:
Var(Y) = —c'(0) = n1:(1 - 1:). (322)

Given a sample ofN independently distributed binomial random variables IQ with parameters n, and

1:, respectively, the log-likelihood function becomes

”
N

[(2;,Z) = 21(9;„yr)

T (3.2.3)
= Ziiylgl + ¢(9«) + d(Yz)}··

z-1

Just as in the framework of the GLM, notice that there are as many parameters to estimate as there

are observations; I(Q,2) is overspecified. However, given a set ofp covariates {AQ, L, , AQ} for

each lQ one could model the parameter vector Q by

Q=1ogit(1;) =Xg, (p+ l)<<N, (3.2.4)

where X is a N >< (p + l) matrix of covariates including the constant term and logit links the sys·

tematic linear component ;'g to the mean response m:. Now the'log·like1ihood function can be

written as

1v
I(Xß3 Z) = Z{}'rK'1E + ¢(&'1E) + d0'r)}» (3-2-5)

z-1

where gg', is an observation vector. Consider the maximum likelihood estimates of g
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N
ö .0 =gg KXES 1) = E x1,(.v( +

¢’
(at'1E)) J = 01 L lp (3-Z6)

l¤l

where —c'(;',Ä) = n,1i·,=j}, and 1i,= [exp(;',ä)] / [1 + exp(,v;’,Ä)] . This leads to a set of 'noxmal-

like' equations which are nonlinear in Ä
‘

x·(Q -Q) = 0. (3.2.7)

This set of equations does not have a closed form solution and iterative methods are usually em-

ployed to solve for the maximum likelihood estirnates (MLE) Albert and Anderson (1984) dis-

cuss nonuniqueness and nonexistenoe of the logit MLE’s for the coeüicient vector. Although

maximum likelihood estimation is available, if the data are grouped so that there are multiple ob-

servations at various levels of the covariates, then empirical weighted least squares can be used as

a one step estimation procedure as I2 need not be obtained via iteration.

3.3 GROUPED DATA

One method of empirically solving for Ä when n, > l is by means of modeling 2*, as a linear

function of the parameters and employing weighted least squares where

logit(1¢*,) = 2*] = ßo + ß1Xl]+ "° + ßpxpl + 8]

•Theobserved 2*, = ln $1, with E(e,) = 0, and Var(z,) g (n,n,(l — 1I',»'l = l",, . Deüne the

diagonal matrix

l' = Em') = di¤8{Vu}
A _ _, (3.3.2)
F = d=¤s{¤«[y1(~1 -y1)l }-

Thus a one step weighted least squares estimate for the parameter vector is
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A A I
_l A I@* = (X'? X) X'? z*. (3.3.3)

Inferences on E are based on approximate normality of the error term.

Cox (1970) suggested an improvent to the estirnation of parameters given in equation ·

(3.3.3). To help the small sample properties ofestimation without aifecting the asymptotic results,

use

J': +äln —··—··———T (3.3.4)

**:
‘ J': + '{

with estimated variances

1: S (¤: + 1)(~: + 2)
u **:0:+ l)(**:"J':+ 1)-

In the ungrouped case, n, = l for all i, notice that

ln —-—T = {E 3 (3.3.5)
n,—y,+? 3§1 y,=1.

In terms of inferences on E, this is not a satisfactory method in the ungrouped (rz, = l) case since

normality of 2*, is not a reasonable assumption due to the discrete nature of the logit fimction in

equation (3.3.5). In this setting, another method of estimation is needed since there does not exist

an estimate of I'.
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3.4 UNGROUPED DATA

In the case where rt, = 1 for all i, this is a regression setting with continuous covariates without

replication. Walker and Duncan (1967) modeled this Bernoulli Y using

y, = 1r(;',Q) + e, y, = 0, 1 independent, (3.4.1)

where IQ is the binary datum, 1:(;',Q) is interpreted as the Bernoulli parameter P(1Q =
1I;’,Q)

and

1, ~ (0, 1:,(1— 1,)). Noam um 1.,
-

11(mzg) = [o1¤p(;·,g)] 1 [1 + exp(,;',Q)] is oommw aa am pa-

rameters and in the ungrouped setting the additive error term is assumed. Q is an unknown

(p+ 1) x 1 coeflicient vector and 1:, is constrained to the unit interval. Since @2 0 for all ZG R,

051:,51 . Also 1:,¤=F(;',Q) where F(·) is the cumulative distribution of the logistic family.

1:,=F(z,)¤F(;’,Q) . Therateanddirection ofchange inthe probabilityperunit change inx,,can

be estimated by using Q with

@#1 öF @=1 _ ._
öxü = az! öxü -f(z,) ßj J - 0, 1, 2, , p, (3.4.2)

wheref(z,) is the logistic density function evaluated at the scalar index z, =
g’,Q

6 R. The standard

logistic density closely resembles the t·distribution with seven degrees of freedom (Pindyck and

Rubinfeld (1981)). It is convenient to think of the monotone increasing function 1: mapping the

indexz,6 Rintotheunitinterval.

3.5 ITERATIVE GAUSS-NEWTON SOLUTIONS

In Chapter 2, the method of scoring was developed as a means of maximum likelihood pa-

rameter estimation. It is also instructive to view logistic regression from a nonlinear model of
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Walker and Duncan (1967). An alternate method ofiteration is the Gauss-Newton procedure using

the Taylor series expansion up to the linear term. Iteration is continued until some specified degree

of convergence is obtained. Denote z as the iteration step.

Consider the Taylor series expansion of a general function h(x) about a constant b, then

h I

h (x) =¤ h (b) + h ’(x) I x_b(x
— b) + I x_,,(x — b)2

+ (3.5.1)

In the case where h is a ftmction of several covariates, then

P öh
h (X}, X2, •„ , Xp) (X,1-¤

J

Hence a linear model can be forrnulated (Capps (1985))

P ar

where this additive error term is more tenable. Equation (3.5.3) may be rewritten as

p
A

J-0

where

5,,(;·,E) i= 1, 2, , N
= ——— I

_ (3.5.5)
j l 0] 1,

"'
, pl

z is the iteration step and W= (wu) has dimension ofNx(p+1) , and ii=g_(Xä) =j. Denote

7} = (ßj " ßj,z—1)
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A ^ -1 -1 ^ -1 Aand thus Z, = (W'V,_, W) W'V,_,(__g —Z,_,).

Detine the variance-covariance matrix of Y to be V= diag{1:,(l — 7l•’,)} , i= 1, 2, , N . The

development of V follows (Myers (1986)).

since E(s,) = 0

=6t;y,—«(:,g>J’ _
= P(y1= DU — P(y1= 111* + P(y1= 0)[—P(y1=1)]2
= 1:,(l — 1:,)2 + (l — 1:,)( — 1:,)2
= 1:,(l - 1:,)
= V, .

E(¤ rz') = di¤8{**1}
= V =. 1* *‘.

Call V=¤ diag{1'E,(1 - 1'é,)}. Utilizing that y, = ß, — ß,_,_,, the weighted iterative maximum likelihood

scheme leads to

A A A _] _l A _l
^E: = E:-1 + (W':—1V:—1W:—1) W't—l V:-1(Z "X:—1)· (3-5-6)

Note W== VX since

;=0
+ j= lt 27 "° 7 P

1:,(l — 1:,) j = 0
—{1:,(l—1:,).x;,, j=l,2, ...,p

and i= 1, 2, , N. Thus equation (3.5.6) can be re-expressed as

A A ^
_]

^g, = g,_, + (X' V,_,X) X'(g —g,_,). (3.5.7)

It is interesting to note in the case for logistic xegression that the Gauss-Newton approach devel-

oped in equation (3.5.7) is completely consistent with the method of scoring in equation (2.4.7)

when Bemoulli data is used in the GLM. Thus equation (3.5.7) is an iterative maximum likelihood
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solution to the re-expressed model given in equation (3.4.1) which can be used for grouped data

as well. Maximum likelihood estimation has the large sample properties of consistency and

asymptotic normality of Ä allowing conventional tests of significance.

3.6 PROPERTIES OF LOGISTIC REGRESSION

Schaefer (1979) points out that most of the theoretical work on the asymptotic properties of

maximum likelihood estimators for independent, nonidentically distributed responses has already

been done (Bradley and Gart (1962)). Bradley and Gart’s work essentially require that the follow-

ing two assumptions hold: ‘ l

i) Ix,,I isboundedforalliandj; _

ii) l§_rr_1_N·‘(X’VX) = Q, for Q positive detinite with linite determinant.

The first assumption is perfectly reasonable for regression data sets. In unconventional circum-

stances when an elent of the X matrix takes an arbitrarily large value, then set xü
=K‘

for

Ixgl z K' , where K' is a large constant. The second assumption given above is equivalent to re-

quiring the distribution of the
;g’s

to have a tinite second moment. Moreover, the second assump-

tion implies that the elements ofX'VX are oforder O(N ) which follows directly üom the deünition

and (ii) above.

Once these two assumptions are satisüed, the groundwork is set for the following to hold:

i) Ä, the maximum likelihood estimated parameter vector, is consistent for Ä ,

the true parameter vector.
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ii) (E - E) converges in distribution to a (p + 1) multivariate normal distribution

with mean Q and variance-covariance matrix Q". Q is defined above.

Based on the above results from Schaefer (1979) and the development given in section 2.5,

for large N, Ä is asymptotically unbiased for E with varia.nce·covariance matrix (X'VX
)·‘

. In

practice Vis usually unknown and is also estimated via maximum likelihood. In fact, x·9x is a

consistent estimate for X'VX. Henee the following asymptotic results are commonly used in prac-

tiee: _

1) EQ -g) 2 0;

ü) V¤(Ä) 2 (X'VX)":

A A A

’

A

iii) MSE(Q) 2 tr(X'VX)" + Bias2(£) 2 2.1,,
l¤0

where the 3., are the eigenvalues ofX'VX.

Following from the above asymptotic results of consistency, eiiiciency and normality, the

usual t-tests and coniidence intervals can be applied. To test the signiticance of all or a subset of

the regression coeiiicients, a x*~test is used rather than a F -test. See section 2.6. For example,

suppose that the signiiicance of the logit model is tested,

H : ab O, = = = 00 ßo ßr ßp (3.6.1)
H,: not H„ .

Equation (3.6.1) suggests using

AÄ = L(E„1¤¢x)Il-(ßosg)
FV X;.
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In fact, the above test can be used in developing a measure of goodness-of-fit which is analogous

to a R' measure. McFadden’s R' (Likelihood Ratio Index) is given by

R,'_,, = 1 - 1**, (3.6.2)

(see Pindyck and Rubinfeld (1981)). Notice that the statistic given in equation (3.6.2) is identically ‘

equal to zero when there is no increase in the likelihood ftmction, given p additional regressors.

However, RL, increases toward one as the regressors explain the true model and hence deviates

away from the constant model. Other measures of goodness-of-lit include Efron’s R',

A2
N

2
N

2 (3-6-3)
1-1 1-1

(which is analogous to 1- (SSE/ SSTOT)) and the square of the Pearson Product Moment Cor-

relation coellicient,

· N 1v 2 1v 2PPMC=‘ 2/1-1
1-1 lnl

It should be noted that values between .1 and .3 for R}, or PPMC are not at all uncommon for a

reasonably good fit (Capps (1985)). Perhaps the most widely used method of goodness-of-lit for

the logit model is one of Proportion Correct Classification. That is if the estimated probability is

greater than (less than) 1/2 and the first (second) alternative is selected, then the decision is correctly

classified. Thus

Proportion Correct == No. of Correctly Classified / N. (3.6.5)

The x'-statistic is quite common among computer packages as a goodness-of-lit measure in

logistic regression. Deline
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1vx2 = Z (.v1— ¢·„>’1¢=, (1 — #.>1""“.
(3-6-6)

lnl

where y, refers to the observed 0,l responses.

Deviancc is also customary as a model fitting statistic. Define

A A
D = 2{!(Q;,z) - !(X£:1)}- (3-6-7)

where I(é; 2) refers to the maximum likelihood of the log·like1ihood function when fitting each data

observation exactly. In this case, Ö,==1ojt(1’%,) and is undefined for 0,1 responses. However, D is

defined for all values ofy, even though Ö, may not bc. Using l’Hospital’s rule

1v
p = Z aß, (3.6.8)

:-1

where

Ä== —2ln(l—1'i·,) fory=0

Ä = —2ln(1'i,) fory = 1. ‘

Both x* and D arc excellent goodness-of·fit measures, and asymptotic arguments suggest that they

both have a limiting )(},_,_, distribution. There are still other possibilities for measuring goodness-

of-fit, such as unweightcd sum of squared rcsiduals and Akaikc’s Information Criterion (AIC).

3.7 WEIGHTED CO

Collinearity among the in equation (3.5.4) can jvc estimates of the coeflicients of the 5,

which are unstable and sensitive to small perturbations to the data. Not only does collinearity giveLOGISTIC REGRESSION 44



imprecise estimates of yjs, but may give estimates which have the wrong sign. Consequently, the

problem of identifying the effects of the explanatory variables is now compounded by the possibility

of a damaged rate of convergence in this iterative procedure.

Notice equation (3.5.4) can be rewritten

E= W2 + e, (3.7.1)

where E(;;) =· Q and E(g g') == V. Consider the transformation to (3.7.1) ofthe form (Burdick (1987))

V—1/2
= V-1/2W V-1/2E Z + “

(3.7.2)
or r* = W"! + 51*

and where now E(_é*) == Q and E(é*é*’) = I. Hence the homogeneous error covariance matrix is the

identity. Thus a 'correlation' form of the E, can be expressed by

W*'W* = W' V 4 W= X'VX. (3.7.4)

Let M be an orthogonal matrix such that MM' = M'M= I=
MM·‘

and

M'(X'l“ 'IX)M = M'(X'VX)M = A. (3.7.4)

M is a set of eigenvectors of X' VX and A is a diagonal matrix of associated eigenvalues,

.1, for i= 0, 1, 2, , p. In up coming chapters, M will represcnt an orthogonal matrix which

gives a spectral decomposition of the information matrix. Thus if the positive deünite matrix

X'VX is near singular then Ix·VxI=fI°1,;0 and .1,20 for some i. Details regarding ill-

‘ conditioning of X"' VX are developed for the GLM in Chapter 4. Notice that in either estimation

technique (empirical weighted least squares or maximum likelihood), the collinearity among the X

variables may or may not be relevant, rather, the collinearity ofthe weighted Xvariables is the issue.
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3.8 DAMAGING CONSEQUENCES OF ILL·CONDI'I'IONED INFORMATION

I11·conditioning of X'VX leads to the demise of many desirable aspects of the logistic re~

gression. Perhaps the most obvious damage done by small eigenvalues of X' VX is the intlation of

the trace of (X'VX)·'. ·

P
A

Z:Var(ß)) Q tr(X' VX)"l
1-0

= ¤EMM·(x·vx)"]

= {IEA-!]

, jr. _

Thus a near zero J., severely increases the sum of the variances of the estirrrated coeüicients. Fur-

ther, it can be shown that 1.,,,,, -·» 0 implies Var([Iij) -» ee for somej. Near singularity ofX' VXdoes

indeed inilate at least one variance of the estimated parameters. Consequently, interpretations of

the meaning of the mapitude and sip of a coeücient must be made with extreme caution.

Secondly, another variance which may be intlated due to near singularity of X'VX is that of

Var(j‘»(;,)). Given a new observation vector, ;'„, the variance of the predicted probability of a

success will be inflated if the vector g'„, is outside the mainstream of collinearity among the
V‘/*X

data. The variance can be expressed as

A 3
P Zäe

_ Var 0·(&>>)¤|Ä¤«,o<1—«n,o)] Z, Tw
I

where the L are the coordinates of the transformed orthogonal principal axes, Z = XM. Figure 1

presents orthogonal principal component axes for data which are collinear in a weighted sense.

An argument for equation (3.8.1) follows.
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Var(ä) Q (X'VX)" (asymptotically)

VX>"x0
= &’oMM'(X'VX)"MM’gq,

= z„A"¤„

,j1-0 4*

Let

A$1 = &'oE
$1

h($1) = -1 + e"

Then

vuchtml ev¤<¢1>Eh'<¢1>l’!,, °
p Z2

'* "1,o)]2·
I-0 I

Thus

p 2
Q!

. 1-0 *

Thus if z}_„ is relatively large when the corresponding value of 1., is small, then the Var[h($p)] is in-

ilated. The data point represented as
’*’

in Figure 1 demenstrates a regen in the weighted X space

where prediction can be poor due to the variance argument gven in equatien (3.8.1). Notice

A
P

ZEO
0 5 Va.r(y(;o)) 5 .06252 .

I-0 I

LOGISTIC REGRESSION 47



V2
22**2 21*,*1

I1

1 :0 1
0 1

0 * 1 .
0 1I

1 V 1

Figure I. POQR PREDICTION WITH WIJIGHTIZD COLLINEARITY
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A third damajng consequence of an ill-conditioned X'VX matrix is that the power ofcertain

tests may be damaged due to a dellation of the test statistic. Consider the argument below.

H Z =°_ E EC (3.8.2)H1- E = Ü •

where C and Fdenotc current and full models respectively. Haberman (1978) and Jennings (1986)

jvc conditions for the test. A summary of the conditions necessary for the test is that as N —> eo

then N·‘(X’„X„) exists and is positive deünite, where X„ is the matrix under H,. Deiine

I(·) = I(XQ;y) = ä [y, ln( 1:,) + (1 -y,)ln(l — 1r,)] . The test statistic ofthe above test can be shown
hl

to be (see section 2.6)

2 A A
'

A Ax =(E;—Ec)X'VX(Er··£c) ,3
=·<&F—&c>'A<&F—&c> \. ~. 333

P 3

K (
°

°r-0

Notice as .1,-• 0 for some ithen xa decreases thus damajng the power of the test. The
i”‘

dimension

does not contribute to the test statistic.

Moreover, collinearity among the 1g'fr could bc the direct cause of parameter estirnates failing

to converge during the iterative process. Schaefer (1984) notes

A A A _ A
E(g'g) = g' Q + tr[Var(Q)] + Squared Bias(g)

p
2 6*6 + Z (1,)*

./-0

and hence if the columns of V1/'X are collinear, the maximum likclihood estimate vector will be too

long on the average. Also note that

V= di3g{1I„’!(l — 1:,)}
^ . A A~ V= d¤¤s£v;(1—y0}„
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where ß(&,) = [exp(5’„é)] / [1 + exp(;',,Ä)] . However I,;;'„ÄI is likely to be quite large in magni·

tude; with the presence of collinearity resulting in either exp(,;’„Ä) -» 0, oroe and hence giving

I3], a' (D or perhaps diagonal elements blowing up at the first step if limits are not imposed during

exponentiation. Next some alternate estimation techniques will be suggested which will shrink

|z:’.ÄI . .

3.9 INTRODUCTION TO PRINCIPAL COMPONENT REGRESSION

Certainly in standard multiple least squares regression, multicollinearity among the explana-

tory variables poses diiiiculty in parameter estimation even though Gauss-Markov properties of

minimum variance among unbiased estimates hold. Various options have been proposed to over-

come these problems. Variable deletion or subset regression is one option discussed in Chapter 5.

Biased estimation techniques are also procedures to reduce the ill effects of collinearity. One such

biased method is a ridge procedure developed by Hoerl and Kennard (1970a). Ridge estimation

will be discussed for standard multiple regression, as well as for the GLM. The beauty of PC re-

gression is that the X matrix of explanatory variables is transformed to a set of uncorrelated prin- .

cipal components. Hence collinearities are in some sense eliminated. In fact, ifall the PC’s are used

in the regression problem, then the model is equivalent to the one obtained using least squares.

However, the problems associated with multicollinearity have not faded into thin air. PC regression

simply redistributes the large variances associated with the estimated coeliicients. In situations

when some of the principal components are deleted, the result is that the computed parameter es-
I

timates are biased yet at the same time have associated variance which can be greatly reduced. PC

regression can effectively remove the ill eüects of collinearity.

Jolliüe (1986) provides excellent coverage ofprincipal component analysis, including principal

component regression. Consider the standard multiple regression model,
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Z = XE + 5, (3.9.l)

where Z is a N x l vector of independent responses, X is a N x p matrix of explanatory variables

which will be augmented by a constant vector of ones later for logistic regression, E is a p x l un-

known parameter vector, and 5 is vector of independent random errors with mean Q and common

variance 6*. For convenience, as well as consistency with the literature, let X'X be in corrclation

form and X without a constant entry. Let M* be the matrix such that its columns are the

eigcnvectors of X'X. The principal components are defined as

Z = XM*, (3.9.2)

where Z„ is the value of thej* PC on the
i‘*

observation.

Jolliäe uses the fact that M* is orthogonal and hence

2 = XE + £
= XM*M*'E (3.9.3)
= Za.

which replaces the explanatory variables by the PC’s. If r of the PC’s arc deleted leaving r =p — r

components in the model, then the following notation is used

Z = Z_,g_, + 5,.

In fact, if all the components are kept in the model, then Ending a least squares estimate for a is

equivalent to Ending an estimate for ß. That is

^ A
E = M*g. (3.9.4)

l
PC regression can jvc insight to the contribution of each explanatory variable even when

collinearity is not present. However, the advantages of PC regxession are most apparcnt with

multicollinerity in the data. More stable estimates can be found for E in many cases when PC’s
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associated with small eigenvalues are deleted. An illustration of this follows from letting ;r* be the

eigenvalues of X'X. Deiine lu, S :1, S S pp. Notice that

^ 4 1 *1 1
E = M (Z Z) ZX

= M•1>‘*M•·x·2
P (3.9.5)

:-1 _

where D* = diag{pi}.

To jvc an understanding of how multicollinearities produce large variances in the cstimates

of Ä,, consider the variance·covariancc matrix ofÄ (again disregarding the constant),

«’(x·x)" = «’M•z>‘“M•·
p _ (3.9.6)

= 622
2m*m*'·

I*I

Hence any explanatory variable which has a large coetlicient in any of the PCs associated with small

eigenvalues has a large variance in that coeilicient.

Naturally, a way to reduce the ill effects of multicollinearities would be to use the following

PC estimator,

p
(3.9.7)

:-1-+1

where the deleted p, are the very small ones. Further discussion of the number to delete will be

presented later. Notice also that the
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p

‘:"°f_, _, (3.9.8)
= M_,. Ds MS

= Va.r(ä) -M,•0;‘M,•·,

which can be significantly reduced when components associated with small eigenvalues are deleted.

Also consider the variance of a predicted response, say Var()$(;,)) .

V¤rÖ·‘(x„)) 1
«’

= :.<w<>*‘x.„

for the standard multiple regression model. Equivalently,

v¤<ß<2.>> 1
«’

= :.1rX1**2.
= Z· *2POD Za

(3.9.9)

1-1

Notice that a large coordinate value of a principal component which is associated with a small

eigenvalue can yield an inflated variance in equation (3.9.9). However for a subset of principal

components, prediction variance can greatly be reduced. That is

p
varP°( j>(,;„)) 1 Z2 ZZ) 1.;2. (3.9.10)

r+1

Principal component estimation is a viable option for reducing prediction variance for new obser-

vations outside the mainstream of the original data points.

The bias associated with the principal component estimator can be quantiiied as follows

· LoG1s'ric Rmctmsstou $3



E<b§‘> = E<M.·&.>
2 (3.9.11)

= E
— Mfg,.

Note that I =¤ M,*M,*' + M,*M,*' and if gg, 2 Q , then the bias is In fact the decrease in

variance of the estimated coeflicients can certainly outweigh the induced bias. Some suggestions

as to the number and choice of principal components to delete are given in section 3.15 and will

be developed further in section 5.5 for PCA in the GLM.

3.10 PRINCIPAL COMPONENT LOGISTIC REGRESSION (PCLR)

When using maximum likelihood techniques, principal component logistic regression

(PCLR) introduces an additional bias in estimating the already biased coefiicient vector. However,

if PCLR is used successfully then some of the damaging consequences of an ill conditioned X'VX

matrix can be eliminated with only minimal additional bias. As mentioned, the variance of pre-

dicted probabilities for data outside the mainstream of collinearity can be reduced along with vari-

ance reductions in the estimated coeäicients and greater power in certain tests. .

Consider a data matrix X which has been centered and scaled or by design has variables of

the same units. Details for such centering and scaling were given in section 2.10. Further, augment

X to a vector of ones associated with the constant term. M is the orthogonal matrix such that it

yields the spectral decomposition of X'I“·*X= X'VX . PCLR does not utilize the spectral decom-

position the correlation matrix of the correlation matrix. The concem of PCLR is that the Xmatrix

is composed of a set ofp independent variables having the same scale to give some interpretation

to linear oombinations of variables. lf, by design, the columns of the X matrix are originally the

same units, then centering and scaling X may not be necessary to allow a more natural interpreta-

tion of the results.
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3.11 SCHAEFER’S PCLR FOR UNGROUPED DATA

Using an approach much like that of Webster, Gunst and Mason (1974), Schaefer (1986) has

developed a principal component logistic procedure. Detine

. pX'«1’=
E Ätfüu 111

';° (3.11.1)
A

l=0

where 1, andm denote the ordered eigenvalues and eigenvectors respectively of X'üx and

1; and mf the ordered eigenvalues and eigenvectors respectively of X'X. Again t denotes the iter-

ation step and I:] is a maximum likelihood estimate.

Starting with the least squares estimator, ém Schaefer deiines the logistic estimator as

A A
L A _l

^g=g0+2(X'V,X) X'(_g—;;,), (3.11.2)
1-0

where L is the iteration ofconvergence. This leads to the principal component estimator (assuming

a single collinearity)
V

A p . t 1 ·
U L

M1 äh
X’x (-111) m11m'«X'(2 — 1%)] - (3-11-3)

1:1 xs-0

Notice that the é denotes the sum over (p + 1) — l components. i„ is the probability of a 'suc-
hl

cess' given the starting values, ß„.

To simplify notation, Schaefer defines
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p
(X' 1/.111* = X, 1;2m„1w,„"p‘

(3.11.4)
U

_
Ü l'

and (X'X)+ =2(„1]) ‘m]mj .
1-1

Therefore, Schaefer’s PC estirnator can be written

§_,,-(x·x)*x·Z+E:(21·1’},.¥)*x·(X-12,). (3.11.5)
1

Schaefer notes that (X'I;',X) ;(x·x7„,_x)a¤a(x·1?,.11)+ g (x· :7,,,21)+ since 17,,, 11 a function cr
predicted data points which are not severely aüected by i11·conditioning. Thus, Schaefer gives the

one step estimate

A; A
+

A A
gp, =· (X'VMLX) (X'VMLX)£ML„ (3.11.6)

The justification for gp, follows from Schaefer (1986). 1;,,, is a maximum likelihood estimate.

A A +
A A

gp,= (X'VX) (X'VX)gMl_
1.

12,)
l¤O

^ +
L

^ + A2(X'VX) X'g+2(X'VX) X'(g—1:,)
1-o

1.
g (X'X)+X'g + E (X'!/}X)+X'(g -12,).

1-o

Let C" be a constant. Note that Schaefer approximates X'üx with C'X'X and
l

(X'1?x)+ with (C')·‘(X'X)*. If such approximations are reasonable, then the one step principal

component logistic estimator has nice properties that would not require drastic changes to existing

softwares.
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3.12 AN ITERATIVE PCLR FOR UNGROUPED DATA

Recall the maximum likelihood itcrative method in section 3.5, equation (3.5.7)

A A A
i _l ^'

EF E:-1 + (XV:-1X) XT.! *2:-1)-

Since V is a function of the unknown parameter vector Q, V,_, is used, where

A _ A A

= diag[$:,(l - .’},)],_, (3.12.1)

= daagrßrl —ß.>1„..-

Again t denotes the iteration step.

Even if collinearity is severe among the M, as mentioned, prediction is fairly good for the lo-

cations of the original data points. Despite the good estimation of V using maximum likelihood,

perhaps Vu can be üned tuned via principal component estimation. Using the fact that

M'X'VXM == A, rewrire

1¤sit(•=D == ang =zu
ma Rg =

¢*’
@(1 +

e*’~‘Z)"‘
(3.12.2)

where z', = g',M and 4 = M'Q . The 4 are the iterative reweighted least squares estirnates with di-

agonal variance·covariance matrix A·*. Hence the transformed variables, z', = ,;;’,M , or principal

components (PC’s) are orthogonal and uncorrelated. The total variance of the coeßicients have

been redistributed in such a way that a small eigenvalue ofX'9xwill flag a large variance for some

8:,. Thus an elimination of at least one principal component g associated with 1,,,,,, could reduce

the variability considerably in the model and perhaps repair some of the damage to various prop-
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erties of the regression due to an ill-conditioned X'ÜX. Thus the principal component iterative

equation now becomes

Q = Q:-1 (3 12 3)
= Q:-1 + AIJIM X'(.Z -21-1)*

where tdenotes the iteration step. Thus a natural iterative principal component scheme becomes

^ '° I

where Ä and M must be re-iterated at each step since Ü is changing and s denotes the number of'

principal components kept, s =p + 1 — r. The updating of the diagonal matrix of weights is for

principal component logistic regression since 0 S
k5‘

S .25. However, empirical results suggest us-

ing the spectral decornpcsition of the fixed maximum likelihood estimatc of the information in the

generalcasesince0Sk,7‘S¤o.

Typically, principal component analysis is used as a device to effectively reduce the dimen-

sionality cf the logistic regression. Since the principal components are artificial variables and chen

are diäcult to interpret, the model will ultimately be converted back to one using the original var-

iables. Suppose by choice, the principal component model is reduced by r dimensions. Thus the

reduction in dimensionality is equivalent to the elimination cf r eigenvectors of X'Vx or setting r

of the a's equal to zero using some rule. The transformation back to the original variables follows

gr = M,&P°. (3.12.5)

Notice that this PCLR procedure differs from Schaefer’s by convergence required in the ,2 rather

than the From empirical results, there do exist experimental situations when maximum likeli-

hood estimates do not converge (thus Schaefer’s PC approach does not converge), whereas the it- ·

erative PC approach does converge due to the reduction in dimensionality.
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3.13 EMPIRICAL PCLR FOR GROUPED DATA

Recall the model in equation (3.3.1)

z' = xg + z
= XMM'Q + 5 (3.13.1)

= Z4 + 5.

4 can be estimated by

3=
(M'X'I/}"1X1\·{)”1M’X'I/Liz, ($13-2)
/\_l ^ l g

=A M'X'l"' Z .

Recall that F is estimated by

^ . nz
F = dta l-81 wm ·-y1) 1

and M are the eigenvectors of X'l=*‘X. The 4 are weighted least squares estimates with va1·iance-

covariance matrix A·*.

Let p + 1 = s + r =¤ dim(X’lL·*X). Note the deletion of r principal components does not im-

ply the deletion of any original regression variables and this is shown by

W = M,&_,, (3.13.3)

whereM,is (p+ l)xsand&,is.1·>< 1. Thus

}1pc(«!o) = (1 + ¢KP( — &'olZpC))—l· ($13-4)
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3.14 PAYOFFS OF PCLR WITH ILL-CONDITIONED INFORMATION

The asymptotic variance·covariance matrix of the maximum likelihood estimates of Q can be

shown to be (Cox (1970))

vmß) 2(x··
A A A _l

and Var(@)2(X'VX) .

To quantify the magnitude of the decrease in Var(b"), consider

v¤(§) ~ MA"M·°° _l _] (3.14.1)
=M,A_, M’,+M,A, M',.

Thus

Var(h?°) 2 M,A§‘M',. (3.14.2)

Recall that the r eliminated principal components were the ones most likely to be associated with

small eigenvalues of X'VX. Therefore, equation (3.14.2) illustrates that a considerable amount of

coeflicient varianee can be eliminated using PCLR. The induced bias is quantiiied by a similar

expression to that of equation (3.9.11).

3.15 ELIMINATING PRINCIPAL COMPONENTS

. Certainly a dißiculty with PCLR is determining how many principal components need to be

eliminated, ifany at all. Consider Figure 2. Notice that V'/*X, and
V‘/MQ

are highly correlated and

A, is likely to be quite small. However ä, is likely to be quite signiücant since the slope is carried

in the Z, direction. Hence one would expect

Locrsrrc REGRESSION 60



>2,

where ä, is essentially the discriminate ftmction in this case. Hence, PCLR would not be appro-

priate.

As another example, consider VWXQ and
V‘/MQ

in Figure 3. In this setting, PCLR may be

more appropriate since ä, and Ä, are both relatively small, thus making

Ü; = azq I 32 < 2.

Hence it is now more reasonable to delete the principal component Z, which contains little infor-

mation in this regression. When several variables are in the analysis then obviously the problem

· becomes more complex.

As another suggestion to determine the number of principal components to delete, a graph

of ZVar(bP*) or ZVar(_i#*) vs. number of PC's deleted. The order of deletion of the principal
I l

components (PC’s) can be done by the researchers choice. Some common rules are deleting "small'

eigenvalues of X'VX or by a stepwise procedure using a t -statistic, tf = &,„/-j.-. Developments of

hypothesis testing and deletion of principal components for the GLM are given in section 5.5.

3.16 INTRODUCTION TO RIDGE REGRESSION

In standard multiple regression, as mentioned, other biased estimation techniques exist as an

alternative to principal component regression in the quest to accurately estimate the true parameter

vector, Q. Quite often ridge regression is used as a plausible alternative to variable deletion or

principal component regression. It has been repeatedly noted that the variance of the coefficients

swell when collinear explanatory variables are used in their estimation. Moreover,
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A,/\ P _]

'E(Qg)=ZA, +gg, (3.16.1)
1-0

which is unbounded. When using ridge estirnation, the purpose is to bound é [ij. Thus ij Ä} is
1-0 l•0

subject to the constraint that it must be equal to 6.
1
The ridge solution for the estimated parameter

vector the followingLagrange'

Q- (Z - xg“)·(Z - xgk) + a(g“'g“ -“(6). (3.16.2)

In setting (öQ / ÖER) = 0, the following normal equations are found
1

(X’X+ dl )QR = X'g. (

For sake of simplicity consider X as eentered and scaled without a coiistant term. Hence the ridge

solution is 1(

1
R -1 1= (X'X+ dl ) X' 1E

(
X ,( 1 (3.16.3)

= (X'X+ dl )" X'Xg, (

for d2 0. .

In his book, Myers (1986) illustrates by example that the ridge solutions are sensible ones.

Nonorthogonal explanatory variables typically create large VIF’s. Howe%r, the VIF’s can be

greatly reduced by artiiicially creating a near orthogonal system simply by ttacking the diagonal

of X'X. The eigenvalues of a matrix can be increased by adding a small incremerrt to the diagonal

and hence the condition index will usually be detlated with collinear

data.LOGISTICREGRESSION \( 64
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\
3.17 PROPERTIES OF THE RIDGE ESTIMATORS

Just as in principal component regression, the goal with kidge estimation is to reduce the ill

effects of collinearity. The researcher would like to reduce the ivariance of the coeüicients, hence

lowering the VIF’s, as well as decrease the variance ofpredicted ues among other improvements

in the regression. For simplicity, neglect the column of ones ' ted with the constant. First

note that the matrix M*, composed of eigenvectors ofX'X, yields following diagonalization

A*„, = M*'(X'X+ dl )M* (7 17 1)
= diag{1*, +d} . 2

‘ ‘

\
Hence the va.riance·eovariance matrix for for QRis4**

Var(QR) - (xx+41)”lX'X(X'X+ dl )‘\}
(7 17 7)

-
M•A•;‘A•A•;‘M··. 2

\
Equivalently,

‘\

P V R P
(3.17.3)

hl ¢ l¤1 (P1 + d) 27

Observe that equation (3.17.3) goes to zero as d —»eo.Along

with a decrease in the Z Var(ß§‘), the length of QR itself can be cansiderably decreased
hl

‘

when compared to that of Recall in standard multiple regression that the least squares estimates

are e\

^ -1 -1
P -1

el

Q = (X'X) X'! = M•'A* M*X'! = Zm*,m*',1*, X'!. 27 (3.17.4)
1-1 ,

\

Thus Q—• oo as any 1*, —• 0. A similar decomposition of QRdemonstrates-
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p
d

)"m*',X’g.

lul

Hence gis shrunktowardzero for given d>0.

Similar gains are present for expressions of variance inllation factors (VIP’s). In standard

multiple regression, recall .

2 ^ 2 1
P

1 2VIP, = 6' Var(ß,) = (1 — R, )' = Pf m*,, , (3.17.5)
J-!

which are clearly inllated for small eigenvalues. In the ridge setting

p
vu=, = 4** 4)**, (3.17.6)

j•l

using the fact that the varianee·eovariance matrix ofg is (X'X+ dl )*‘X'X(X’X+dl
)*‘

apart from

6*. The VIF in equation (3.17.6) does not have a standard of unity and can have values less than

one.

However, with a decrease in variance in parameter estimates comes an increase in bias. In

fact, variance is a strictly decreasing function in d, whereas Bias*(g) is a strictly increasing function

of d. Hoerl and Kennard (1970a) plot variance, bias and mean squared error (MSE) as a fimction

of d. There exists a window, say [0, w], where the decrease in variance outweighs the Bias*(£*).

Thus, in using the mean squared error cxiterion, the ridge approach appears to be perfectly rea-

. sonable so long as 0 s ds aa. To quantify the bias portion consider the following argument.

Premultiplying the normal equations by (X'X
)*‘,

the following holds:

(X'X)”‘(X'X+41
)g”

= (X'X)°lX'y = ß.
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The following expectation results.

E(gR) = (X'X + dl )"X'Xg

= [(X'X+ dl )'l(X'X+dl ) - d(X'X + dl)"]g (3.17.7)

= [I - d(X'X+ dl )"]g.

Thus consider the following expression for bias

11
$*2 Bias2(ßf) = $*4* Q’(X'X+ dl )**g.

bl

Hence MSE can be expressed as

l p 11 p
$*2 MSE(ßf) -

$*2 Var(ßf) + $*2 BiaS2(ßf)
1-1 hl 1-1

_ p
= 2 lv, (lv, +4)** + $*4*g·(x·x+ 41)**g (3.17.8)

1-1
p p

=2 lv, (lv, +4)** + $*4*2 #(1*,+ 4)**,
1-1 1-1

where q,= M'Q. The values of d for which mean squared error will be improved over the least

squares estimatoris 0< d< (6*/111},,,,,).

Also comparisons in prediction abilities of the standard multiple model can be made. lt has

been noted that .

^ P
(3.17.9)

¤ 1-1

where z, are the coordinates corresponding to the principal components. The counterpart to the

above prediction varianee using ridge estimates is
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V R P
(3.17.10)

6 I¤l

Notice how d dominates the small eigenvalues and that the prediction variance can be greatly re-

duced for even a small value of d.

3.l8 METHODS FOR CHOOSING TIE SHRINKAGE PARAMETER

Section 3.20 and Chapter 6 will discuss various options for choosing d in the GLM kame-

work. The results given are simpliiied if the identity link function is used with normal data. Since

the goal of this dissertation is not to develop standard ridge regression, the theoretical development

for selection of d will not be given. Perhaps the most elementary method is one termed ridge trace

(Hoerl and Kennard (l970b)). Quite simply, this procedure plots the estimated coetlicients as a

function of d. Choose d at a point where they have stabilized. Other more prediction oriented

methods have incorporated a PRESS or C} statistic. The C} statistic is developed and generalized

in section 6.4. Further, one step and iterative harmonic mean methods have been established as a

conservative technique. In section 6.5, a DF·trace procedure is generalized from Tripp’s (1983)

dissertation. There exist literally hundreds of variations in methods of selecting d based on sundry

criteria from prediction to estimation.

3.19 GENERALIZATIONS IN RIDGE REGRESSION
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By no means is the above introduction to ridge regression a comprehensive one. lt is not

within the scope of this dissertation to address ridge regression in its entirety. A natural extension

to the work given in section 3.17 is generalized ridge regression. The generalized ridge regression

solutions have the form

g"“
= (x·x+ A)'lX'g,

‘
(3.19.1)

where A = diag{d„}. Hence each eigenvalue, 1*, , is artificially increased by its own respective d„ in

an attempt to create an orthogonal system. Typically 0 S ei, S (6*/ af) = minimum value of

MSE(/9,). It should also be mentioned that generalized ridge is usually performed to the set of ex-

planatory variables which has been orthogonally transformed via the spectral decomposition of the

correlation matrix.
‘

Heavily relying on Hoerl and Kennard’s (1970a) development of ridge regression, Schaefer

(1979) extends ridge estimators into logistic regression. The construction of the ridge logistic esti-

mator will be presented in the next section. Some suggestions for choosing a shrinkage parameter,

d, will also be given. In Chapter 6, the logistic logistic estimator will be shown to be a member

of the broader GLM class. The GLM ridge estimators will then eventually be shown to be a

member of an even broader class of shrinkage estimators, termed generalized fractional principal

component estimators, given in Chapter 7.

3.20 RIDGE LOGISTIC ESTIMATORS

With Bernoulli response data, a competitor to PCLR is the ridge logistic estimator developed

by Schaefer (1979). Schaefer proposes that a reasonable alternative estimate would be one with a

smaller norm than that of maximum likelihood. Recall that the ML estimates can be too long on

the average in the presence of an ill·conditioned information matrix. Of course the null vector has
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the shortest norm, but is not ofany information. Hence a good start in developing a ridge estimator

would bc to take a parallel approach to that of Hoerl and Kennard (1970a) used in standard mul-

tiple regression. Hoerl and Kennard utilize the definition of least squares solutions, Q, which min-

imize the sum of squared error, SSE, in standard multiple regression. Using the result that

QR ¤ (X'X+ dl )"X'XQ, it follows by substitution that

R ^ ^ R ^ RSSE(Q ) = SSE(Q) + (Q — Q )'X'X(Q — Q ). (3.20.1)

Note then that

SSE(QR) = SSE(Q) + 6, (3.20.2)

for6>0. Thusaconstraintcanbewrittenas

6 = (Q - QR)'X’X(Q - QR). (3.20.3)

The appropriate counterpart constraint in logistic regression is

6 — ^ R ·x· Vx ^ R 3 20 4—(Em.*E) (ÄMz.*E)„ (· ·)

since logistic regression is developed in a weighted sense. ln fact, logistic ridge regression inflates

the weighted SSE (WSSE ) by an increment 6 > 0. That is

WSSE(QR) = WSSE(QML_) + 6. (3.20.5)

The development of the ridge estimator is explained in detail in Schaefer’s (1979) dissertation. The

notion of ridge estimation in a general weighted sense will be developed in Chapter 6 for the gen-

eralized linear model. Schaefer requires QR to be a consistent estimator of Q and cleverly re-

expresses equation (3.20.5) using a first order Taylor series expansion in deriving equation (3.20.4).

Hence the ridge estimator developed by Schaefer (1979) is given by
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R A _l A A
Q (d) = (X'VX+ dl) X' VXQ, (3.20.6)

where Vis the estimate of Vusing the maximum likelihood estimates, Q . The shrinkage parameter

d is the Lagrange multiplier. Schaefer’s methods for choosing d in practice relied on the similarities

between multiple and logistic regression. Three analogs were investigated

AIAdn = 1 / (E P)
dz == [myx |9)|II°° (3.20.7)

A A
de = (P +1) / (EE)-

Some of the more sophisticated methods of choosing d are based on predictive abilities, as well as

accurately estimate parameters. These methods will be presented with the development of ridge

estimation in the generalized linear model.

To evaluate the accuracy of parameter estimation for the logistic ridge estimator, Schaefer et

al. (1984) presented some examples. The measure of closeness to the true parameter vector was

determined by

A A g
I

A
*$QE(E)=(£—E ) (E··E )·

Q is the maximum likelihood estimate using a subset of observations and Q' is the maximum like-

lihood estimate using all the observations. Schaefer’s justilication to this approach is that since the

bias of the maximum likelihood estimates is o(N‘*), then Q' is a reasonable estimate ofQ. Certainly

an argument can be given that Q' is nearly unbiased; however Schaefer et al. do not address the

variance of which is likely to be quite large especially in the presence of collineaxity which is

purposely induced. Unbiasedness of does not guarantee ||Q‘ -Q||‘/‘ ; 0. From a MSE point of

view, this given measure of closeness is not a reasonable one. Simulations for logistic and Poisson

regressions will be presented in chapter 8.
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Chapter IV

4.1 CO VS. AN ILL-CONDITIONED INFORMATION MATRIX

In standard multiple regression, a near—deficiency in the Xmatrix ofexplanatory variables can

result in problems for estimation of the least squares parameter vector, When an explanatory

variable does not provide any more information that is already inherent in the other regressors, it

becomes difficult to separate the influence due to each individual variable on the response (Belsley,

Kuh, Welsch (1980)). Multicollinearity, in the above sense, can lead to inversion problems of the

information matrix and can further result in large variances associated with the estimated coef1i·

cients, as well as wrong sims and magnitude of estimated coeücients, insimificant t·statistics for

important regressors, extreme sensitivity to small perturbations to the data, and poor prediction

outside the main stream of collinearity (Myers (1986)). _
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Although collinearity diagnostics and corrective actions have been thoroughly developed for

standard multiple regression, little work has been done for such problems in the generalized linear

model other than the special case given previously for logistic regression. Schaefer (1979) contends

that problems in maximum likelihood parameter estimation can also exist in logistic regression.

The contention is that X'X, in standard multiple regression, and X'VX, in logistic regression, both

suffer from collinearity among the explanatory variables, X. Schaefer has an argument, given below,

that the elements of (X'VX)" are large in absolute value when the degree of multicollinearity, in

the matrix X, is severe. An outlined proof to Schaefer’s conjecture will be presented. Comments

will also be fortheoming in an attempt to clear up some implications of the argument. Further

some diagnostic techniques will be developed for guidanee in variable deletion.

1
Schaefer’s conjecture, mentioned above, can be found in his 1979 Ph.D. dissertation. A

sketcl:1 of the proof follows. Let K
*‘

= V= diag{n,(1 — 1:,)}. Partition the information matrix as

follows, °

KÜVZQ (4.1.1)

X_, is the matrix of explanatory variables without the 1* column. The inversion of the partitioned

matrix X'VX is

n
.. - T Y-°12x·Vx *51

‘
" 4.1.2)< > [1.. <

where
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1**
-

[xgV1, - ;gVx_,(x·_,Vx_,)"x_,V11,3"
T11 = 1

T'21 = T12 = - a’1VX.1<X'-1VX-1>" (4.1.3)
T22 = rw.1VX.1>"

+ (X'_,VX_,)"X'_,V;, ;')VX_)(X’_,VX_))'l.

With severe collinearity, the regression

,1;; = X_,[+ Q, (4.1.4)

has SSE = fg —> 0 as 1;, nears an exact linear combination of the columns of X_, (see Schaefer

(1979) or Myers (1986)). Schaefer substitutes equation (4.1.4) into equation (4.1.3). Thus

z = ;',V,;, — ;',VX_,(X'_,VX_,)"X’_,V,;,

-
gg [V- Vx_,(x·_,Vx_,)"x·_,V] gg (4-1-5)

= fzQ {1-

In showing that the diagonal elements of Q are bounded, Schaefer claims that as ;',_{,—• 0 then

t —» 0 and thus :" —• oo with severe collinearity among the X's . Note that the diagonal elements

of 0 are bounded since the V„ are trivially bounded by (0, .25) and X_,(X'_,VX_,)·‘X'_, is a
l

projection matrix which always has tinite elements. Further, by assumptions, X_, is tinite and
N·‘

(X’„VX„) = Q, for Q positive definite with ünite determinant.

Next Schaefer demonstrates that Tu, Tu, T, are also bounded and with t" —» oo the result

is complete. TH = 1 is trivially bounded. Recall

T12 = ‘*['1T
21 = T12-

As
{’,Q—>

0, then 1',,—•
·—f’,.

[Q is nonnull since X_, is full column rank. Also Tg, —•L'[',which

is bounded away from null for reasons.
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Schaefer concludcs that the matrix (X'VX
)·‘

has large elements in absolute value when the

degree ofcollinearity is severe in X; hence the same problems that occurred with collinearity among

the explanatory variables in standard multiple regression, also exist in logistic regression. §_’,_{, -» 0

ultimately yields poor precision of the estimated coeüicients. ln summary, Schaefer states that as

collinearity of the independent variables (the columns of the Xmatrix not the V1/*X matrix) be-

comes more severe then the following are equivalentz

(i) R}, the coeüicient of determination from the regression of the j"' independent

variable on the remaining independent variables, tends to one for somej.

is equivalent to .

(ii) ({',j_,), the SSE üorn (i), tends to zero for some j.

is equivalent to

(iii) .1,,,,,, the smallest eigenvalue ofX'VX, tends to zero.

When the X data exhibits collinearity, Schaefer’s argument for the existence of similar prob-

lems with X'VX in logistic regression as with X'X in standard multiple regression is convincing.

However, care must be taken in understanding the true role of X in the il1·conditioning of X'VX.

Consider the following example (Burdick (1987)),

1.00 .98 1.9608 1.9596
X= -.02 .02 , X'X=[ (4.1.7)

[Egg _1.00] 1.9596 1.9608

Clearly Xhas near column deficiency and X'X is nearly singular with condition index (of the cen-

tered and scaled data) .1,,,,,, / 1,,,,,, = 1.99939 / .0006119 = 3267.511. Condition indices are defined

formally in section 4.3. Let
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.00005 0 0
V= 0 .245 0 . (4.1.8)

0 0 .00005

Thus

.00019602 2.033E — 20X,VX”
[20366- 20 .00019602 (""‘°)

The condition index ofX'VX (centered and scaled Vl/*X data) is 1,,,,,,/ .1,,,,,, = 1.19321 / .806793 =

1.4789. Thus X'VXneed not be near singular when X'X is near singular. In terms ofthe condition

index, X'X is il1·conditioned, whereas X'VX is not. Schaefer is correct in stating that the diagonal

elements of (X'VX)" or the vaxiances of the estimated coefiicients, along with the ollldiagonals,

will be large in absolute value. Examples can be contrived with the same phenomena but the oli'-

diagonals are zero. Hence Vl/*X may have orthogonal columns and be well conditioned with ex-

tremely collinear X"s . Schaefers result only shows that as the collinearity becomes more and more

severe with a fixed V will the off diagonals of (X'VX)** become large.

Ingeneral, givenamatrixXthatisneardeficientincolumnrank,X’Xisnearsingular. Thus

R} -» l for somej ; the coeflicient of determination from the regression of the j'* independent vari-

able on the remaining independent variables tends to one for somej. There exists a,, a,, , a, such

that a, aß 0 for all i and é 4,;,; 0. Recall the information X'K*‘X= X'K**"K"/*X= S’S. Let
hl

K"'* = diag{y,}. If X'K"X is also near singular, then 6,, q, , 6, may be found such that 6, aß 0

for all i and é 6,;, g 0 . Without loss of generality, consider the example of X having dimensions
hl

3 x 2 .

ILL-CONDITIONED INFORMATION MATRICES 76



71 0 0 *11 *21
U = 0 72 0 XI2 X22

0 0 73 *12 *22
71*11 71*21

= 72*12 72*22
’

72*12 72*22

Assume there exists c, defined above. 'Then

71 71

¢1 72 #*1 + °2 V2 #*2 ä' 0·

73 73

where # indicates elementwise multiplication. Notice if the 7, are nearly all equal then c,Z#,;, can

be redeiined as a,5,. However, in general, the 7, are not all equal; in fact the 7, vary considerably

in the generalized linear model. Hence by contradiction, if X'X is near singular then X'K·‘X does

not necessarily need to be near singular, unless
K·‘

is nearly proportional to the identity matrix.

Interestingly enough, it can be shown in logistic I'C$l'€SSl01‘1 that 1, 2 41}, where 1; and 1, are the
i"•

ordered eigenvalue of X'X and X'K"X respectively. This does imply that if 1,,,,, is 'small', then

1;,,, is necessarily 'small'. This follows from the fact that 0 S 7, S .5.

Expanding on the fact that Schaefer strictly speaks of the effect of a lirniting exact deiiciency

in X on the elements of (X'VX
)*‘

and not the rate at which damaging intlations occur, for illus-

tration, let a matrix X be of the form

4 kdX=[c (4.1.10)

where e 6 (—oe, ee) and k some arbitrary constant. When s = 0, X is delicient; X'X and X' VX

are singular. As Isl deviates fr·om zero, X becomes less and less deficient. For some üxed

a, c, e, k, X may appear to be of no real threat in terms of deticiency and X'X is not considered
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near singula:. For the same iixed a, c, 0, k, X'VX can have severe inversion problems. Typically

this will happen when several of the data points are predicted quite well, say with 7I•’ g 0 or 1, and

thus V has several diagonal elements near zero. This is not uncommon. In strictly relying on a

well behaved X'X matrix to determine if (X'VX
)·‘

is well behaved, then there is a risk of being

misled; i.e. the diagonal elements of (X'VX)" can be intlated. On the other hand, the example

given previously in equation (4.1.7) suggests that the information matrix in standard multiple re-

gression can be deemed ill·conditioned, whereas the information matrix in logistic regression may

not be. Anything can happen. For a given X matrix of explanatory variables with some fixed se-

verity of collinearity, one cannot make general statements on whether (X'VX)" will be deemed

ill-conditioned or not.

Schaefer’s conjecture (iii) above can be altematively viewed as an argument for the continuity

of 1,,,,,, at the point zero. Since X'VX is positive definite, 1,,,,,, > 0. In the case ofan exact deliciency

in X, then both X'X and X'VX are singular and 1,,,,,, = 0. However, in departing from the exact

collinearity in X, then one can think of 1,,,,,, as a continuous function. Let X be of the form in

equation (4.1.10). For fixed a, c and k and V= diag{v1}, then the eigenvalues ofX'VX are given by

the following solutions to the quadratic equation,

Ix·Vx- ul = 0.

The

Roots = %iä (bz — 4v,v2a2c2.·:2)‘/2, (4.1.11)

where

b = v,a2(k2 + 1) + v2c2((k + 1)* + 1).

Thus
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2,,,,,, =f(6) = Q-Q
(62 - 4»,v,«26262)‘/2. (4.1.12)

.1,,,,,, is continuous at zero by the following argument. Notice fi R —» R+ and 0 6 R. fis con·

tinu0usatzer·oif“andon1yifforeach6*>0 ,thereexistsan6**>0suchthatif

lal < e*, (4.1.13)

then

0 Sf(6) < 6**.

_ Continuity at zero holds for 1,,,,,, in equation (4.1.12). All nontrivial examples yield 1,,,,, bounded

away from zero. Schaefer’s claim of _{',§J —» 0 is also equivalent to the condition index going to

inünity. In terms of the example given in equation (4.1.10), Schaefer essentially points out that

regardless of V, an 6 can be found arbitrarily close to zero such that X'VX is ill-conditioned leading

to inflated elements in (X' VX
)·‘.

In a more global setting such as in the generalized linear model (Nelder and Wedderburn

(1972)), recall the general weight matrix is K *2 where

1<" = d16g(k,7‘}, (4.1.14)

where 0 <
k,7‘

= [h’(»y,)]2 / V1a.r(Y) < ce. It is interesting to note that the smallest eigenvalue of the

information X'K*'X also goes to zero as the collinearity among the columns of X becomes more

severe. Hence Schaefer’s conjecture holds for the generalized linear model even though the diagonal

elements of K·' are not bounded, but fixed. For the generalized linear model, the diagonal ele-

ments of K
"

may vary considerably, living anywhere on the positive real line; for example, in the

Poisson response in the discrete case and the Gamma response in the continuous case (see Table

3). In fact, boundedness of the k;;* is not a key factor to Schaefer’s proof, as presented. Diagnostic

ILL-CONDITIONED INFORMATION MATRICES 79



tools should be developed to determine if an alternate estimation procedure is needed based strictly

on the condition of X'K ·*X rather than that of X'X.

4.2 COLUMN SCALING FOR DIAGNOSTICS

In terms of model building, the choice of scale for the X explanatory variables is usually the

units of the researcher’s convenience. Essentially equivalent model structures can be built whether

the researcher chooses, for example, units of ounces, milliliters or cubic inches. However, as in

standard multiple regression, scale changes do in fact change the diagnostic’s nurnerical properties

when we try to assess the conditioning for the information matrix of the generalized linear model.

In particular, a change in scale can result in very different singular value decompositions.

In order to make a comparison ofcondition indexes meaningful, it is necessary to standardize

the information matrix in an elfort to obtain a stable diagnostic. Again the standardization cannot

be simply done on the explanatory variables, but rather on the weighted Ü = 12**/*X variables. A

natural scaling method, giving the columns of .9 unit length, is given in equation (4.2.1). The au-

thor also chooses to center Note, for diagnostic purposes mentioned above, that the si data only

needs to be scaled and not centered. Essentially, the matrix Ö= {su} is centered and scaled by letting

N -112
Sü = (Sü • (Sü —.1-1

The given approach to scaling is a natural one because under ideal conditions, that is, when the
i

columns of .8 are mutually orthogonal, then the condition index is unity. Any other choice of scale

fails to meet this desirable property (see Belsley, Kuh and Welsch (1980)). Consequently, any

condition index or variance proportion decomposition mentioned in a diagnostic sense or presented

ILL-CONDITIONED INFORMATION MATRICES 80



in an example will be introduced in a standard form by iirst estimating I2 via maximum likelihood

and scaling § = 12-mx to have unit column length.

4.3 DIAGNOS’I'IC TOOLS FOR THE INFORMATION MATRIX ·

In standard multiple regression, examination of the spectral decomposition of the correlation

matrix of explanatory variables probably has been one of the most fruitful techniques of detecting

and combating collinearity. See Kendall (1957) and Myers (1986). In the past (Silvey (1969)),

collineanty was often diagnosed when a 'small' eigenvalue in the correlation matrix was observed.

Of course, the smallest eigenvalue can be made arbitrarily small or large depending on which scale
l

the researcher wishes to use in data collection. In elfect, this is equivalent to clairning that a square

matrix B is ill·conditioned when the determinant is small. This is simply not true since any well

conditioned matrix C= 10*B is likely to have a small determinant when k = -20. Belsley, Kuh,

and Welsch (1980) point out that if a 'small' eigenvalue is used as a collinearity diagnostic, then

there is a natural tendency to compare small to the wrong standard, namely zero. Perhaps a

collinearity can be easier to identify if a 'small' eigenvalue is small in relation to the other

eigenvalues. The ratio of the largest eigenvalue to the smallest eigenvalues is one such indicator of

an ill-conditioned matrix.

As early as 1952, Hartree pointed out the importance of a condition index as a means of de-

termining the ill-conditioning of a general matrix, B. Currently there are several numerical indica-

tors available to determine a measure of ill-conditioning ofa square matrix, B (ifB is rectangle, then

form B'B). Some of the many variations of the condition index ( rp) include:
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1}, = 1000)

1. = Ni <> 301
,,3 = = (4.3.1)

tr(X’K X) 1

JZE*1*1,

is an eigenvalue and 1}/* is a singular value ofX'K
*‘X.

Recall from section 2.10 that the matrix

X has already been centered and scaled. For the condition index diagnostic measure, the colurrms

of the matrix .8 = 1i "/*X will further be centered and scaled as presented in section 4.2; this gives

a standard of unity for ¢«,. In forming a "correlation' matrix
§'Ä‘,

the eigenvalue decomposition

spectrum will determine the conditioning of the estimated information matrix, X'Ii’
•‘X

. Notice

nl:} and uh, appeal to the prcporticn of variability in a principal component context. The $,1,

quantifies the total variation of matrix X'K"X. That is the overall spatial variation of a cloud of

points, depicted by X'K
·‘X,

is quantiüed by their total inertia. Greenacre (1984) connects the

formulation of inertia in the physical sense to that of one in a statistical sense. The moment of

inertia is chen thought as the integral of mass times squared distance to the oentroid. With

categorical data, Greenacre views inertia as Pearson’s mean squared contingency coehicient.

A justiiication for using a condition index as a diagnostic measure is outlined below. The

notion of an ill·conditioned square matrix is chen of one which is near singular, and for which an

inilation of its inverse occurs. 'I'he motivation fcr the development of the condition index as a

measure of il1·conditioning is presented by Belsly, Kuh, and Welsch (1980). Consider the singular

value decomposition of any matrix, Tw

T= UDV', (4.3.2)
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where
U’U

= I,= V'V and D is a diagonal matrix with the nonnegative singular values of T,

U and V are the eigenvectors of TT' and T'T respectively (see Good (1969)).

The general Euclidean norm of any p x p matrix B is deüned by the specified norm, denoted by

IIBH. where

IIBII = wp llßbll- (4-33)
IIIZH-1

The spectral norm is relevant to the nonsingular solution to the linear system Bb=g given by

b = B"_c. Belsley, Kuh, and Welsch (1980) consider how much the solution b will change due to

small perturbations in the elements of B or g. Consider 6B and 6;;. Let B be fixed and g change

to ög. Thus

6b =
B°‘6g

__] (4.3.4)
HÖÖH S HB H Hö£H·

Further

12 = Bb
(4.3.5)

Hdl S HBH HbH·

From equations above,

Höbll -1 Hödl—S i- . 4.3.6um IIBH HB II ud} ( )

The quantity ||B|| ||B*‘|| provides a bound for the impact of relative changes in g on the solution lz.

It can be shown that ||B|| = ;r„,„ ofB and ||B·‘|| = p„,,,, of B. Thus

IIBH (43-7)

A similar argument can be developed for perturbations in the matrix B .
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This result is not only useful in the context of least squares solutions, as given by Belsley,

Kuh, and Welsch, but also lends itself to maximum likelihood solutions of the generalized linear

model. Recall at each iteration, the solution is of the form

A A A _1 _] N A_1
A Om

EWE:-1 + (X'K:-1X) E-E/<u (.V1—u1)T
1-1

“¢
:-1 (4.3.8)

^ -1 -1 ^ -1== [(X'K X) X'K 3*],,,,,

where y", = 1;, + (y, — p,)( öq,/öp,) evaluated at EH. Letting B = X'K
*‘X,

b == Ä, and g = X'K**2*,

the above argument suggests that if the ratio of .1,,,,,,/ 1,,,,,, for X'K
·‘X

is large, then small changes

in the vector g can adversely aifect the maximum likelihood solution, at each step. Maximum

likelihood solutions are sensitive to small perturbations to the data. Equations (4.3.6) and (4.3.7)

suggest that the condition index for the information matrix can be a good indicator of ill-

conditioning.

A more geometric measure of ill-conditioning of X'K
*‘X

(Burdick (1987)) is measured by an

index ($5), where

VN -1$5 =—F·— where Ö = XK X. (4.3.9)

H $:11-0

Detine I¢I as the determinant of <l>. The index $5 is necessarily in the unit interval. The inter-

pretation of $5 can be visualized as the ratio of two volumes. The numerator is the volume of a

parallelopiped eomposed of the vectors K"/'gg, i= 0, l, 2, , p starting at the origin. The de-
‘

nominator is the volume of a p + 1 dimensional general rectangle in an orthogonal setting to yield

maximum volume. Thus if there is a near singularity in X'K"Xthen the numerator parallel piped

is quite flat in at least one dimension, thus reducing the index $5.
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4.4 GENERAL VARIANCE INFLATION FACTORS

In addition to condition indices for X’I2"X, where

I
. ^. ../?‘* == =/mit/<,, *1 md /2, * =r/··<¢,,11*11?¤¤</1,1. 14.411

other diagnostic tools can be developed. In ordinary least squares with normal data, for example,

variance inflation factors (VIF’s) are available for the correlation matrix (Belsley, Kuh, and Welsch

(1980)). Recall that if the regressors are centered and scaled in multiple regression, then X'X is the

information matrix, as well as the correlation matrix of the explanatory variables (ignoring the

column of ones for the constant term). Under orthogonality of the explanatory variables, the cor-

relation matrix will then be the identity. This is the ideal. The Var(Ä,) = 1.0 apart from 6* , for

all i. Hence, in taking the inverse of the centered and scaled data matrix, the diagonal elements of

the inverse denote a measure of thejnflation of the variances ofthe coeilicients, Var(Ä,), apart from

6*. For least squares standard multiple regression, VlF’s can also be expressed as

v11= =4-, 4.4.2l 1

_whereR} is the coeücient of multiple determination of the regression produced by regressing 5, on

X-( •

The development of a VIF for the generalized linear model is not as cut and dried. lt is not

proper to look at the inverse of the of correlations as a diagnostic tool. For one, the infor-

mation matrix is not a scalar multiple ofX'X; hence the condition of the correlation matrix of ex-

planatory variables may not always coincide with the condition of the information matrix. Recall

that the condition ofX'K‘*X is of interest. Perhaps the most obvious solution for the construction

of general VIF's or GVIF is to think of si = 12***/*X as a new data matrix. Thus, by centering and

scaling St, ,§'$' will be in the correlation form and will be the identity under ideal conditions (inter-
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cept included). Typically, 12**/* will have to be estimated via maximum likelihood and assumed to

be well estimated for the original data points, even in the presence of collinearity among the

12**/*X. The Var(l2,7‘) will be developed in section 5.4 to give some justification to this approach.

Nevertheless, the GVIF’s seem like a reasonable means to get a measure of asymptotic variance

inflation due to the nonorthogonality among the 12**/*X.

GVIF, = diagonal elements of {(§"S)'l}. (4.4.3)

The general VIF's, in equation (4.4.3), reduce to equation (4.4.2) for maximum likelihood esti-

mation with normal response data and an identity link function.

4.5 GENERAL VARIANCE PROPORTION DECOMPOSITION

Recall the orthogonal matrix, M such that M'M = MM' = I and

M'X'K -1XM = A. (4.5.1)

M are a set of eigenvectors for the information matrix and A is a diagonal matrix ofthe (p+ 1)

corresponding eigenvalues. Let S
=K*‘/*X

be centered and scaled. (X'K"X)" =MA*‘M' . De-

fine, asymptotically,

A P
I

q; = V=¤(ß)) = Zmj, 1 .1,,. (4.5.2)
u~0 _

Myers (1986) points out that it is easy to illustrate that a small eigenvalue deposits its influence, to

some degree, on all variances. The proportion of variance associated to thej'* estimated coefiicient,

attributed to the i"' eigenvalue of the sum in equation (4.5.2), can be expressed as
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2
"üz l 41

Pü = . (4.5.3)

A matrix of proportions can be formatted as in Table 4. Hence a small eigenvalue i (relative to the

maximum eigenvalue) responsible for at least two large proportions ofvariance Pu and P,‘, suggests

precision ofestimation may be damaged.

4.6 EXAMPLE USING GENERAL DIAGNOSTICS

The data supplied in Appendix A concerns the prediction of a cancer remission when

given six continuous explanatory variables. Hence the response is Bemoulli in nature which

lends itself to a logistic model. The explanatory variables are first centered and scaled by the

procedure outlined in section 2.10 and then the data matrix is augmented by a column ofones

associated with the constant term. Maximum likelihood estimation is employed yielding the

following estimates (standard errors):

Maximum Likelihood
(11 Iterations)

Intercept : -2.311 ( 1.800)
X1 : 23.012 (45.975)
X2 : 20.050 (61.358)
X3 : -22.382 (71.784)
X4 : 9.511 ( 4.536)
X5 : -6.527 ( 4.909)

First notice the large standard errors associated with the parameter estimates for X1, X2, and

X3. A first suspicion would be small eigenvalues of the information matrix. Recall that the

estimated information matrix for logistic regression is of the form, X'ÜX, where

ILL·CONDITIONED INFORMA'I'ION MATRICES ' 87



Table 4. WEIGHTED VARIANCE PROPORTION DECOMPOSITION

Proportiou of
Ordcrcd
Eigcuvaluc Var (ß„) Var (ß,) Var (ß )

lo pwpmÄ:
P10 P11 P1;

Ä': pn prl pv
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I>= diag{1'i,(1 - 11-,)}. 11, is the maximum likelihood estimate for the probability of a canoer re-

mission given in the i'* row of explanatory variables, gg',.

In eonstructing 67 = Ül/*X and centering and scaling the columns of Ä', the information

eigenvalues are as follows:

.1,, = 2.41382

.1, = 1.51930
11, = 1.06446
J., = .86062
J., = .15073
2., = .00106

From a rough benchmark of .01 for a small eigenvalue, X'Vx can be deemed ill·conditioned

and deiicient in at least one dimension. The condition index is _

Ami!¢q = = 2277.19,
mil!

which is considerably above the recommended cutoü of 1000 mentioned in section 4.3.

The general variance inflation factors (GVIF’s) developed for weighted data in section

4.4 are:

Intercept : 4.60
i

X1 : 63.68
X2 : 407.97
X3 : 471.14
X4 : 2.59
X5 : 2.42

Observe that there exists a GVIF associated with the intercept. The explanation for its prcsence

is due to the fact that the columns of
V1/“X

are centered and scaled in the construction of a

correlation matrix. It is evident that problems exists with GVIF’s for parameter estimates again

associated with X1, X2 and X3.
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By investigating the general variance proportion decompositions outlined in section 4.5,

problems can be immediately identiiied. See Table 5. Via routine analyses of variance pro-

portion decompositions, it is quite obvious that severe collinearity problems exists between

VWL, VWL and VWL. Large proportions ofvariance associated with a small eigenvalue are

corresponding to large GVIF’s. Certainly, subset regression is a viable option, and will be

diseussed in section 5.2, to alleviate problems associated with weighted collinearity. However,

since asymptotically biased estimation is the topic, a comparison will be made using altemate

estimation procedures outlined in Chapter 3.

Table 6 consists of a variety of estimation techniques for the cancer remission example.

One purpose of this table is to demonstrate how much estimation techniques can vary in the

logistic setting. A point of interest is the reduetion in the standard errors of the coeßicients for

any biased technique when compared to maximum likelihood. As the eigenvalue structure and

deviance measure suggest, it is quite obvious that PC estimation minus two dimensions is not

necessary. The shrinkage parameters d,, d,, and d, are discussed in equation (3.20.7). The

shrinkage methods dc, and dm, will be developed in sections 6.4 and 6.5 respectively.
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Table 5. VARIANCE PROPORTION DECOMPOSITIONS CANCER EXAMPLE

Ei8°¤Va·1u° ßu ßn öl Bs Be ßs

2.41382 0.01656 0.00078 0.00030 0.00032 0.00391 0.00204
1.51930 0.00443 0.00053 0.00000 0.00000 0.1 1226 0.12887
1.06446 0.04659 0.00529 0.00062 0.00017 0.01821 0.00325 '
.85063 0.06631 0.00497 0.00001 0.00006 0.09245 0.1 1728
.15073 0.42456 0.01399 0.00001 0.00035 0.71374 0.73266
.00106 0.44153 0.97443 0.99906 0.99910 0.05943 0.01611 .
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Table 6. VARIOUS ESTIMATION TECHNIQUES FOR CANCER EXAMPLE

Estimate (standard error)

mw ß. 3. ß. E. é. ß.
ML 21.755 -2.311 23.012 20.050 -22.382 9.512 -6.527

(1.800) (44.975) (61.359) (71.784) (4.536) (4.909)
Schaefer 21.894 -1.798 7.154 -1.774 3.156 9.117 -6.314
PC(-1) (1.080) (6.209) (2.683) (2.802) (4.399) (4.872)
Schaefer 31.388 - .343 -2.019 .817 -.489 3.693 -.315
PC(-2) (0.594) (2.499) (2. 150) (1.658) (2.838) (3.151)
Iterative 21.892 -1.847 7.337 -1.794 3.257 9.282 -6.454
PC(·1) (1.080) (6.209) (2.683) (2.802) (4.399) (4.872)
Iterative 42.998 -.968 -8.144 3.889 -1.514 9.713 -6.037
PC(-2) (0.594) (2.499) (2.150) (1.658) (2.838) (3.151)
Ridge 21.868 -1.803 8.807 1.071 -0.205 8.920 -6.081
d, = .00064 (1.065) (8.208) (8.164) (9.444) (4.283) (4.737)
Ridge 21.874 -1.788 8.546 .787 .123 8.882 -6.043
d, = .00072 (1.057) (7.785) (7.379) (8.513) (4.267) (4.721)
Ridge 22.048 -1.510 5.815 - .799 1.853 7.877 -5.009
d, = .00382 (0.931) (5.207) (2.829) (2.950) (3.811) (4.199)

Ridge -1.286 4.427 -0.744 1.666 6.937 -4.049
dc, = .0080 (0.831) (4.336) (2.358) (2.307) (3.388) (3.707)

Ridge 21.836 -1.890 10.703 3.386 -2.897 9.091 -6.239
dm, = .0003 (1.117) (12.091) (14.610) (17.035) (4.350) (4.810)
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Chapter V

AN ILL-CONDITIONED INFORMATION

MATRIX IN THE GLM

5.1 INTRODUCTION

The damaging effects of multicollinearity are well documented for the generalized linear

model when the identity link function is used with normal response data. See Hoerl and

· Kennard (1970), Webster, Gunst and Mason (1974), and Myers (1986). Schaefer (1986) has

further suggested ridge, principal component, as well as Stein estimation procedures for logistic

regression when the logit explanatory variables form an il1·conditioned X matrix Recall in

section 4.1, Schaefer (1979) developed an argument that the variance-covariance matrix

(X'K"X)" for Ä of the logit mcdel has large elements in absolute value when the degree of
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multicollinearity becomes more and more severe in the X data. As noted in Chapter 4,

Schaefer’s argument of X'X being near singular does not imply in general that X'K"X is near

singular.

The iterative equation for parameter estimates of the GLM suggests that if the informa-

tion matrix is near singular, then perhaps some alternate estimation technique can be employed

with the generalized linear model to improve properties, for example:
P A P

i) 2V¤(ß«) =¤‘(¢") = E (·i«)" —·¤<> aß l«—• 0;
I-u t-o

ii) Var ij 2},, .1;* -• ec for predictions ofnew observations
• I¤0

outside the mainstream of weighted collinearity when combined with a

small ,1, ;

iii) For the test

Ho: E = Ec
H1: E = EF •

the test statistic, x==é(&,_,,—&,_,)=A, —• 0 as 1, -• 0, is detlated and
i-o

hence reduces power (Kendall and Stuart (1973)), where C and F denote

the current and full model respectively.

Notice how these damages of a near singular information matrix generalize from the logistic

regression setting in section 3.8.

Since the iterative solution for the coeüicients relies heavily on the information matrix,

X'K
"‘X;

condition indices are excellent indicators for a deficiency in this matrix. Action should

the be taken accordingly. If X'K"X is deemed ill-conditioned, then several approaches for al-

ternate estimation will be suggested. The first two alternate parameter estimation procedures

developed for the generalized linear model are a ridge and principal component approach sim-
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ilar to the work of Schaefer (1979) and (1984), respectively. Forthcoming will be a general class

of biased estimators termed generalized fractional principal component estimators. This class

of estimators will be shown to be particularly useful when the generalized linear model is in the

canonical form.

5.2 VARIABLE DELETION

A common resort to the reduction of multicollinearity in standard least squares multiple

regression models is variable deletion (Myers (1986)). The idea is to simply remove the ex-

planatory variables that are inherently collinear with the remaining explanatory variables in the

data matrix. The choice of deletion can be done quickly by looking at the correlation matrix

of the data or, perhaps more appropriately, by examining the variance irxtlation factors (VlF’s)

along with the variance decomposition proportions. The researcher hopes to find a reduction

in VIF’s along with reductions in variances of regression coeüicients with a stable subset

model. The subset model should reduce collinearities with minimal loss of pertinent informa-

tion. The predictive capabilities of the subset model can be compared to that of the original

model by examining

_ N rv gg _
r) PRESS == Z e}'_, = Z -2-F-W-, where h„ are the diagonal elements of the

lll ill
—

i

hat matrix, H = X(X'X)·‘X'

V
A

aa)

HIftheoretical models are not specified, then variable deletion is thought ofas a convenient

means for collinearity reduction in standard least squares multiple regression. However, in the

generalized linear model, there exists regressions where deletions based on the collinearities of

the columns of X may or may not have an impact on the collinearities of the columns of
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K"/*X. Due to the fact that variables which are collinear in the weighted sense damage the

information matrix, deletion of variables should be based on weighted collinearities. Chapter

4 has suggested various diagnostics for variable deletion in the GLM.

Schaefer (1979) points out that even though the concept of variable deletion is the most

straightforward and easiest to implement, it may be better to use some other technique to re-

move multicollinearity among the explanatory variables. The variable deletion process removes

variables solely on the interdependence ofthe X data without taking into account the dependent

variable. Generalized principal component and ridge estimators will be discussed in this con-

text.

5.3 GENERALIZED PRINCIPAL COMPONENT ANALYSIS (GPCA)

Principal components regression has been introduced in Chapter 3 for both standard

multiple and logistic regression. Natural extensions are put forth to the generalized linear

model. Examples and simulations will show that GPCA can be applied successfully in a variety

of experimental settings. Moreover, the upcoming development has a certain elegance.

Consider the generalized linear model given in equation (2.4.1).

m=8(ßr)=x’;Q=z’;¤t, (5.3.1)

where ;',M = z’,,
M’Q

= g and M is the orthogonal matrix yielding the spectral decomposition

of the information matrix. The point of view for logistic regression, given in section 3.10, is the

same for generalized principal component regression (GPCA). The concem is not so much the

exact form of the matrix X in the construction of the information matrix but rather that X is

composed of a set of p independent variables having the S3.H1C scale. The researcher may ac- _

complish this by standardizing, as mentioned in equation (2.10.1). However, if, by design, the
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columns of the X matrix are originally the same units, then further standardization may be

avoided to allow a more natural interpretation of the results. The work given in this disserta-

tion consistently views X as both centered and scaled. The fact that X'K"Xwill not bc in a

correlation form is not a real issue. Despite the rather natural method of removing scale de-

pendence in ordinary least squares principal components analysis, by means of a matrix in the

correlation form, GPCA can accomplish scale removal in a different fashion.

The generalized principal component procedure involves the deletion of some of the

components in equation (5.3.1) and finding the maximum likelihood estimates ofthe remaining

components. Consider rewriting the model in equation (5.3.1) in the canonical form

1 = za = (z,@[2]. (5.3.2)

Note that the columns of Z, represent the deleted principal components. Thus, the restricted

canonical model follows ·
gpc = Zsgs.

A natural approach, from the point of view of GPCA, would be to maximize the likeli-

hood function of g given the orthogonally transformed data or the principal components, Z.

Thus, it follows from equation (2.4.2) that 61/ ög has an unique maximum found by equating

the following expressions to zero.

”
öl 66 6 6 ·

0 :4 :2 4 4 A 4
öß

I-I
Öül öjll ain öß

N (5.3.3)

= 2-Z! mm) (Y1- #1)

Thus, by a similar argument developed in equation (2.4.7), an iterative scheme for g can

be constructed using the method of scoring.

AN ILLCONDITIONED INFORMATION MATRIX IN Tl-IE GLM 97



N. ^. ö
·&!=&t—1 + Ätl-1 Z:k::‘ (J':

‘:-1
'

:-1 _
„_, ” ^_, A A 6,,, (5.3.4)

Zzku Zllßt-l +0*:-:4:)lll
I g.]

^-1 , ^ -1 ,
= [A Z K 2 ],_, ,

ö
where y,* = q, + (y, — 14,) evaluated at :2,,,. Note 14, must be updated at each iteration step.

M may be updated at each step, however empirical results suggest using a fixed spectral de-

composition of the maximum likelihood estimate of the information. If all the principal com-

ponents are kept, then M gi is identical to the maximum likelihood estimate of However, if

by choice r =¤p + l — s principal components are deleted, then the iterative scheme becomes

^
^•I p ^

•I

*g;§.°§= [A Z K 2 ],_,_,. (5.3.5)

A conversion can be made from the principal component parameter estimates to one

using the original centered and scaled explanatory variables while improving regression prop·

erties with virtually no loss in information. The transformation back to the original variables

follows as in equation (3.12.5),

6;**
-

M, &§° (5.3.6)

Note that, as outlined from equation (3.14.2), the

Var(Q§") = M, AQIM',. (5.3.7)

The bias can be quantified as

Ew) = E — Mrür ($-3-8)
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Discussions of variance and bias carry over from section 3.9. The asymptotic distribution of

M will be derived in equation (5.5.9).

_ As an example, consider the common identity link when e, ~ N(0, 6*).

y =x' +‘ Ä °‘
(6.3.9)

#1 = Igß = X11-

Thus from equation (5.3.5), the iterative principal component scheme becomes

A 2 -1 -2
= (Z'Z) Z' X ,5.,.10,
= (Z Z) ZZ ,

since y,* =¤ rr, + (y, - r:,)ö;:,l 6;:, =y,. Notice that this is the usual one step principal compo-

nent least squares estirnator in regression analysis with common variance.

As a second example, consider 11 ~ binomial(n,, 1:,), and thus

g(p,)=lII[·f]=;’,E. (5.3.11)

Thus the iterative principal component scheme becomes, ü·om equation (5.3.4),

^ ^
/\_l N ^_l

^
A

1: = 1:-1 + ^:-1 Z Zrku (Y: * ßüku
lsl :-1 (5.3.12)

^' I= -al-—l + ^:i1Z (Z '£:-1)·

since 81;,/ öp., = k,,. The result of equation (5.3.10) is precisely the result derived for principal

component estimation of the the logit model in equation (3.12.4).

For a third example, consider the unit gamma }Q~ l"(l, 1,) where n = 1 is a known nui-

sance parameter. Thus ·
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8(#z)=9:=··#i‘ = —·i:=&'zE=¤’z¤=m
and 11., = E( Y,) = -— rp?] = h(r;,).

H=n¤¤ k'(m) - nr' and kr = nr' giving y.* = m + [1-1+ (>1r‘)]•1?= 2m +y„ ni cvninnind ni 12..1-

The iterative equation is then given by

^_ , e
&:= [A IZ']? IZ ]t—l'

Lastly consider a Poisson response. That is E ~ Poisson(.1,). p, = .1, = ew = kgi = h'(q,).

Y; = (Y1/U') "I +*11- Thun

5.4 AN ALTERNATE PRINCIPAL COMPONENT ESTIMATOR IN TI·IE GLM

Extending Schaefer’s (1986) one step logistic principal component estimator to the gen-

eralized linear model, consider the maximum likelihood estimator in equation (2.4.7).

Q, = [(X’I/ti']X)°lX'I€'ly·],__, ,

where <b = X'K·‘X,
K·‘

= diag{kg}, and kg = [h'(v;,)]* / Var(1Q).
K·‘

andy are re~estimated at

each step. Thus, if the estimate is at the origin (Q), then gu can be expressed as

L NA A _ A A_ Ö1,
am-Z <wcl.X>

‘w=:l„[Z sk,. ‘<y„—
im gg] .

hl 1-1
‘

:-1

where L is the iteration of convergence. Deüne
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p

J-=r

I p
where (X'K, "x)‘ = Z 1}}m„my,.

J-eo

r is the number of components deleted.

In circurnstances, such as the logistic model, when K, is estimated well by the maximum

likelihood estimate Ku, then Ä', can be estimated by the one step solution

Ag A _]
+ A _] A

Epe = (X'KM1.X) (X'KM1,X)Em. ($-4-1)

when (X'K ;‘X) g (X'K ;),_X) and (X']? ;'X)* ä (X']? ;},_X)*. The development of follows

naturally from equation (3.11.6). Note the following first order Taylor series approximation

ofa diagonal element ofK•‘, /2** , about the true corresponding q . Let Var(Y) = q({}).

IQ-1
_, U¤'0(•1)]2 2qo('1)ho('1)h'o('l) — (h’0(•1))24’0(n) A

qv
"

(4001))

Therefore,

. r2«<>' >h·<>-<h'<>>’¢<>1“ " _ . ' .
VNU? 1)

K(4001))J-o 1-o

from equation (3.8.1). The subscript iis suppressed in equation (5.4.2). K' is a constant. The

variance, given in equation (5.4.2), will not be as aüected for observations in the original data

set as for the observations outside the mainstream of collinearity since these points, in general,

· do not deviate much in the q direction corresponding to "small' J.] . This suggests K„,_ will

estimate K relatively well for the original data.
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The asymptotic variance and bias ofQ}, is equivalent to that for the iterative method given

in equations (5.3.7) and (5.3.8). That is asymptotically,

_! (5.4.3)
= M:As

M’:·

The asymptotic distribution of Q}, is identical to equation (5.5.9).

5.5 INFERENCES CONCERNING THE PRINCIPAL COMPONENTS

The 1og·likelihood function follows directly from equation (2.2.2),

!= [yb(9) + ¢(9)] / ¢1(¢) + dv, ¢>)- (5-5-1)

The inferences regarding the principal components for GLM follows directly from section 2.5.

For the principal component generalized linear model, define the score with respect to aj to be

• öl .U =; = 0,1, , . 5.5.2

In obtaining the principal component maximum likelihood parameter estimates,

_U' = (U}, U}, ..., U;)' is set to zero, where

E(_Q·) = Q md
E(y‘y*')

= e = A . (5.5.3)

By an extension of the Central Limit Theorem (Feller (1966)), the asymptotic distrib-

ution of _U' is multivariate N(_Q, ¢I> = A) ; hence
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When convergence is obtained using the iterative equation (5.3.4), consider the unique

maximum likelihood estimate, fi. Defme g to be the true parameter vector. The Taylor series

expansion of U'(g) about $1 (Dobson (1983)) is

where H' is the Hessian matrix evaluated at the maximum likelihood estimates, ä. Thus, _

u'(,;) e u'(&) -A (g - Q), (5.5.6)

since <I> = A = E( —H'). This implies that

($1 — a) A "u°, (5.5.7)

since U(&) = 0 by definition. By- taking expectations of both sides of equation (5.5.7),

EG) = z ¤=vmp¢¤ü¤a11y„
i

since E(_Q') = 0. Similarly

EEG-ma — «>·1 = A"E<u'u">A" = A" .

for A nonsingular. Thus for large samples

A
ai; N(“A A-1) _ 2 .(s.s.s)

(i"G)'^(1'§)"‘ Xp-1-1,0*

It follows that

lz,€” *· N( M,a1„ M,A§"M',). (5.5.9)
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5.6 HYPOTHESIS TESTING AND DELETION OF COMPONENTS

There is an assortment of rules for choosing the proper principal components to delete.

A selection is given in Lee’s dissertation (1986). Perhaps the most common rule is the one

which deletes the principal components associated with the smallest eigenvalues. This method

can be criticized since it does not take into account any of the Y data information. The step-

wise method mentioned in section 3.15 using a t·like statistic takes into account the slope of

the data in the direction of the principal component in question. Moreover, for the generalized

linear model, a x' statistic will also be suggested to determine the goodness·of·iit based on a

subset of components.

The theory from section 2.6 naturally extends to the principal components. Consider the

principal components, Z = XM, where M is the orthogonal matrix that diagonalizes the infor-

mation matrix. Recall the overspecilied or maximal model which has as many parameters as

the N observations. Thus the maximal model has the parameter vector

gmu == [al, az, , aN]'.

To determine whether another model with (p+ l<N) parameters g= [4:,, 4:,, ,
a,]’

is ade-

quate relative to the maximal model, compare their likelihood ümctions (in keeping p + 1 as

small as possible). IfL(g;2) ä L(g,„„„;2), then the model describes the data well. However, if

L(gr;2) < < L(g„,,,;2), then the model is poor relative to the maximal model. This suggcsts the

likelihood ratio test using the statistic

l=L(r’i„„„:z)/L(s’i:z) (561)
or In Ä = Kamari!)

"If.1islarge,thenclaimg;isapoormode1.
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The sampling distribution of ln J. can be approximated by the following Taylor series

expansion of I(g,; 1) about the maximum likelihood estimator E;.

lm: 1) e I2; 1)+ <¤- 2)' v"<&) + <112)<« — 2) Hat) (I — ä) . (5.6.2)

where HG,) is the Hessian matrix evaluated at the maximum likelihood estimate. Recall that

U'(£) == Q by definition and A = <D = — E(H ) for large samples. Thus equation (5.6.2) can be

rewritten as

2 UG; 1) - !(M: 1)] = (M · s'i)'A(M — E) (5-6-3)

from (5.5.8).

The counterpart of the scaled deviance is

S = 2 ln J = 2 [I(£m„,; 1) — I(§;1)]. (5.6.4)

The scaled deviance can be broken down into the following components

S ==· 2 {IHM;1) — KMM ,1)] — [Kü: 1) — KM:1)] + U(M,„„; 1) — KM; 1)]}
(5 6 5)

A XfV—p-I ,0 •

when I(g,,„„; 1) g I(g;1) ; otherwise, equation (5.6.5) has an asymptotic noncentral x* distrib-

ution.

In deciding which principal components should be deleted, perhaps the most useful hy-

pothesis test is of the form

Ho= M = Mo (4 + 1)
5.6.6

H¤=M=M1 (.¤+1)„
( )

where q<p< N and H, is nested in H,. H, is tested against the alternative by using the dif-

ference in the log-likelihood statistics,
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St
= So — $1 = 2U(81:x) · I($oS£)]· ($·6-7)

If both H, and H, describe the data adequately relative to the maximal model, then

so "' XI1l·q—l,0
and S1

"
xIV·p—l,0 · ($-6-8)

Tuus s

6Noticethat ifq+ 1 =p, then S' ·¢· xi,.

Consider the example when Y,~binomial(n, 1:,) . To test the hypothesis in equation

(5.6.6), use

_ N N A AS = 2{Z ··Z um +
«*'··“·> — 1¤<1+

¢‘~“~>1}.
bl hl

which has an asymptotic x§_, distribution under H, .

For normally distributed data with unknown variance, the likelihood ratio test can be put

into the form of a F test.

IÄSSEO — SSE;] /

[(Pwherethe full and reduced models use the least squares estimates.

Perhaps a more common test in practice would be the one of the form

Ho: Cg = Q, (5.6.9)

where C is a q x (p + l) matrix of constants. In particular, the test for the deletion of a single

principal components would yield the choice of C = (0,...,0, 1, 0, ...,0). In the case where all the
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principal components are kept in the canonical form model,
§,’s

are indeed maximum likelihood

estimates. Relying heavily on this fact, 4 has an asymptotic limiting normal distribution

A „ •\
4 ~ N(4, A (5.6.10)

lt follows under H,,

&·c·(cA"c·)"c& 6 X}. (5.6.12)

Hence, the test for a single component simpliiies to

,1}.1, 6 X}. (5.6.13)

The above statistic is compared to the appropriate percentage point of the asymptotic chi-

square distribution. Of course 1, is usually unknown; therefore the test

*
_ A ^l/2

tl — G:llis

a common test for a single component using N — p — 1 degrees of freedom for the t-distrib-

uticn.

Jolliü'e (1986) develops several strategies for the selection of components in principal

component standard multiple regression. One such strategy is to simply delete all the compo-

nents associated with small eigenvalues below a specified cutoff. A useful upper limit in prac-

ticeisbetween .01 and.l. Thisprocedureiscertainlyusefr1lintheGLM.

A diüerent approach from deleting small eigenvalues is one which incorporates the t·test

given in equation (5.6.14). Hence a procedure could be used which deletes components based

on its contribution to the regression via a t·test. However, Jolliüe wams, for standard PC re-

‘ gression, that usually more components will be retained than are really necessary ifcomponents

are deleted in succession until a signilicant z -statistic is reached.
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A natural extension considers the VlF’s developed in section 4.4. Delete components

successively until all the VIF’s are below a specified value. Recall that VIF, = (1 — R})·‘, where

R} is the coefficient of determination for the regression of the standardized

12**/*;, on 12**/*X_,. Values of Ri > .90 yield VIF, > 10 whereas values of

R? > .75 yield VIF, > 4. In standard multiple regression, Jolliffe points out that although this

procedure appears to be more sophisticated, it is almost as arbitrary as the eigenvalue cutoff

value given above.
”

Hill et al. (1977) considers a more sophisticated approach to deletion of components.

The weak criterion is one where the objective is to get M close to That is M is preferred

over Ä if

A
tr[MSE(Q,€’°)] 5 tr[MSE(Q], (5.6.15)

where MSE(M) = E[(Q• — Q(M* — Q']. Notice that equation (5.6.15) is equivalent to

ann? — än S nnä — än.

A stronger criterion is more oriented towarnd prediction of g(y) rather than estimation of the

coefiicients. The requirement is now

AM·$”E(£'K°) S M$E(r:’ß),

for all nonnull g ofproper dimension. Notice for g' in the X space of interest, this is a predic-

tion oriented criterion.
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5.7 A VARIETY OF APPLICATIONS OF PCA TO BINARY RESPONSES

Consider the class of generalized linear models where the outcome is binary in nature.

Suppose that at each of N various combinations of the covariates, there are n, binary responses.

Deline

K. = {1 if the outcome j at covariate combination i is a success
i

“
0 otherwise

and 1:, is the probability of success at covariate combination i. Thus 1,
~ binomial(n,, 1:,) and

is a member of the exponential family as given in equation (3.2.1).

The proportion of success is then given by ß, = Y, / ru, for i = 1, 2, ..., N. For :1,1:, sulli·

ciently large

ß,·€·
N(1!,,1!,(I*1!,)lh,) ' (5.7.1)

To model 1:, as a function of the continuous covariates, as in logistic regression, recall the

generalized linear model

ZI "I) =' XIIE •

as in equation (2.1.3). g is the link function between the mean, fl,1l',, and the systematic com-

ponent, g,g . Perhaps the most obvious link is the linear probability model of the form

1:, = ;',g = ;',,; . (5.7.2)

Despite the attractiveness of equation (5.7.2) which allows the assumption of the additive error

term with normality, the linear probability model has some serious drawbacks such as predicted

probabilities falling outside the unit interval.

Another model proposed to link 7l to gg is the angular model. Let
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11 = 1119(gg).

To ensure the predicted probability is contained in the unit interval, a cumulative prob-

ability distribution is often modelled (Dobson (1983)). Consider

-1
‘

¤=s (&'E)=h(•1)==l f(v)dv 1 ($-7-3)
'°X

wheref(v) is a probability density function and 0< fl <1. t is related to 11,
=,1;’,Q =z’,g

, with

all the (p+ 1) principal components. Notice 1: is a nondecreasing function of t. Table 7

contains various cumulative probability distributions used to model n. Note that the Probit

model has particular use for the median lethal dose (LD50) when 14 = t (see Finney (1971)).

Recall the principal component maximum likelihood iterative scheme as given in section

5.3.

N'? = hr •

where 2* == M,§g* are the maximum likelihood estimates using s principal components.

Notice that the 1og·like1ihood equation given in equation (2.2.2) can also be written as

N "¥ Y il - Y!(11z)=l¤l-[ E ¤1'·(1—·=1) ‘ '·
""

' (5.7.4)N ¤1==Z [Yrl¤(¤1)+(¤1— lG.)1¤(1 —·=1)+l¤<
yhl"

Since, the maximal model as defined in section 5.6 has as many parameters as observations,

equation (5.7.4) above can be maximized with respect to 1:, as well as to a, for i = 1, 2, ,N .

Thus
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Table 7. VARIOUS MODELS FOR BINARY RESPONSES

Model Density
.

_ _
e(r-p)/k

M'} h
Linear f(v)=(b—a)", b>a

E¤¤r¤=¤¤ f(v) = ß"¤¤¤p[ß"(v — M — •=¤¤p(ß"(v — M)]

Model Probability = f;__ f(v)dv Link to Q1

Probit 1r==¢(:;‘i> ¢°l(1!)=)]='£*}li

Linear 1:¤é-3%, astsb 1:=1;==·é·‘·%
Extreme 1: ¤ 1 — exp[ - exp(ß"(t — a))] ln( — ln(l — 1:)) = 1;

= ß“'(¢ — ¤)
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- 2L- I1.11.0-
ÖH!

—
xl

_

1*1Il ·
(5.7.5)

and 1’:,_„, = Y,_ [ n, . It follows then that

Ü; = h.«(-K'1lzf°) » ($-7-6)

where p is the number of continuous eovariates to model 1l in the nonmaximal model.

The scaled devianee can be thought of as

S = 2 Elüimuä X1.) X1.)]

gäliy ,,, _L.+,,, ,1) ,,, LL.]
,..,

‘
¤„«.<:1b£‘>

‘ ~„—¤.h.1:11:‘>
2N (5.7.7)

= 2E v1 1¤ (¤1/ eb
hl

T Xäl-p-I-

where 0, are the observed frequencies and 6, are the expected frequencies of the 2N eells given

in Table 8.
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Table 8. N INDEPENDENT BINOMIAL RANDOM VARIABLES

Binomial Trials

1 2 - - - N

No. Suooessu Yl, Ya, · - ·
Y„

No. Failures n, -Y,, rn, — Y,, - · ·
n„— Y„,

No. Trials rz, rz, n„
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Chapter VI

6.1 INTRODUCTION

Schaefer (1979) has developed a ridge estimator for logistic regression when an alternate

estimation technique is desired. Sec section 3.20. The idea ofa ridge estimator can bc extended

to the GLM. Recall section 5.1 which discusses several eH“ects ofan ill·conditioned information

matrix to the GLM. From equation (2.4.7), Ä is an iterative reweighted least squares (IWLS)

estimate of ß. Walker and Duncan (1967) demonstrate for the logit model in equation (3.4.1)

that Ä the weighted sum of squares error (WSSE) and thus is the best estimator

based on WSSE criterion. However, lläll may be too long on the average. Recall

A A A A A IV¤(é) =E{(E—E(E)) (E-/$<£))} (6,1)
;(X'K']X)'1= <1>·‘.

lt follows then that
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p p

Z v¤(ß,) g ¤(x·1<‘*x)
‘*

= Z 1;*. (6.1.2)
1-0 :-0

Equation (6.1.2) requires switching expected value with trace. If the information matrix <l> for

Q is near singular, based on a condition index (equation (4.3.1)). then the norm of the estimated

parameter vector maybe too long. l

6.2 RIDGE ESTIMATORS IN THE GLM

Clearly, an alternate estimator, QR, for Q should have a norm smaller than that of the

maximum likelihood estimator, Q . On the other hand, the trivial estimator QR ¤ Q is not ac-

ceptable for obvious reasons. Thus QR should be reasonably close to Detine closeness in

terms similar to Hoerl and Kennard (1970) and Schaefer (1979) as

WSSE(QR) = WSSE(Q) + 6 , (6.2.1)

for 6 > 0. Solving for 6 in equation (6.2.1),

6 = WSSE(QR) — W.S'SE(Q)

= (2 — hR(z1))'TJ‘(z — hR(z1)) — (2 · '·<z'i))'TJ‘<2 — *19)) (@21
= (MS) — hR(g1))’7'J‘(/¤(§) — hR(31)) + 2(h(§) — hR(y))’T„"(x - h(§))-

wh=¤= T:‘
== di¤s{(k„;‘ I U¤'(m)]*).} = di¤s{1 I V¤r( 11)}-

In requiring that the ridge estimator, QR, is consistent for Q ( Q is already consistent), ap·

proximate h(fl) and hR(!) as follows using the first order Taylor series expansion about Q.
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6 h(Ei)=h„(r1)+D4X(Q··Q) (6 2 3)
md ^R(r1) = Mrz) + DoX(QR · Q)

for large N, where D, == diag{h',(•))} evaluated at E. Equation (6.2.2) can now be re~exp1·essed

as

6,g^1 ^_ R ^ h/\=(Q Q) 44 4X<Q Q)+Z<Q—Q) 44(2—(r1)) (624)
=<r-zr“>'<¤<r—r'*>-

since X'D,T;‘(g — h(§_)) ¤= Q are the analog of the ML 'norma1' cquations given in equation

(2.4.2) for the generalized linear model. X'K·'X= <I> is the information matrix.

Thus the GLM ridge estimator, @(6), is the estimator that has a minimum norm for 6

fixed. Notice the similarity to Schaefer’s (1979) work outlined in section 3.20. Consider the

Lagrange minimization of °

Q = (QRYQR + {dJ Hä ·· QR)' Q (Q — QR) — 6 ]} » (6-2-5)

where d
"

is the Lagrange multiplier. The solution of equation (6.2.5) follows as

Oimli R6-¢ dI°‘d>^ 626öE„= 1>¤=Q()—(+) Q- <--)

Letting <D,==X'K·‘X+ dl, the connection between d and 6 is

A A

ö=(é—ER)'°(E·ER)
= @(1 — <I><I'>§l) <b (1 — <I>§l¢I>)Q (6.2.7)

= 4“ß·(<r> + dl) " o (<r> + dl) "ß,

since d(<l)+dl)"=¤l—(<D+dl)•‘<1>.Thusß"isafunctionofdandcanbe expressedas
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QR(d) = (<1> + dl) " cß (6.2.8)

_ The asymptotic variance of Q*'(d ) is

Var(QR(d)) = <1>;‘ <1><1>;‘· (6.2.9)

The corresponding bias can be quantiüed as

Bias(QR(d )) = - 4<1>;‘ g. (6.2.10)

The asymptotic distribution of
Q“(d

) is

QR(d) é N( Q;} Q Q, Q? Q Q?) (6.2.11)

The logit link with Bernoulli data yield results given in section 3.20. The examples below il-

lustrate the generalization of Schaefer’s (1979) result.

Consider the example when y, ~ N(p,, Q = 6·*X'X and

QR(d) = (c”2X'X+ d·I) "4‘“x·x@„,_,
= (4‘“x·x+ a'2dl)

·‘4‘*x·2

= (x·x+ dl) **21*2.

which is precisely the ridge estimator given by Hoerl and Kennard (1970) when d' = d6·*.

As another example, consider 1Q ~ Poisson(.l,). Q, = X'K·‘X where K·* = diag{e•(} .

*1*11116 Q“(d) = (6), + dl )·¤ <i>,@„,.
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6.3 METHODS OF CHOOSING THE SHRINKAGE PARAMETER d

At present, there exist scores of methods to choose d for standard ridge multiple re-

gression, assuming normal response and the identity link. In Schaefer’s 1979 dissertation, the

results for ridge multiple regression are relied on heavily in developing methods for choosing d

for a Bernoulli response and a logit link function. Schaefer (1979) presents three methods of

choosing d.

dr
(6.3.1)

ds = (P + Ddr-

Notice that dt < 4< 4. The value 4 appears to represent the harmonic mean method of

choosing the shrinkage parameter. Further, there is a similarity between 4 and the maximum

value of d for which the mean squared error (MSE) of the estimated coefficients in standard

multiple regression (Tripp (1983)) is less than or equal to that of least squares. Schaefer admits

that dl is considered as a possible candidate is mainly because of its ease in computation. In

standard multiple ridge regression, the harmonic mean method is considered to be very con-

servative. Observe that dl and 4 are even more conservative than dl. lt then is no surprise

that, in his summary, Schaefer recommends 4 as the best method of choosing a shrinkage pa-

rameter in the presence of an extremely ill-conditioned information matrix.

Schaefer’s developments for a shrinkage parameter in logistic regression can quite na-

turally be extended into the ridge setting ofgeneralized linear models. Various other techniques

to choose d are available. Suggestions for choosing dbased on trying to optimize the predictive

capabilities ofthe generalized linear model are given. This dissertation considers the C, criterion

and the DF-trace criterion.
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6.4 PREDICTION CRITERION FOR SHRINKAGE

In section 2.9, a C; statistic was developed to assist in identifying a p parameter subset

model, where 1 Sp S k = maximal number ofexplanatory variables of interest. The candidate

model chosen, using C;, represented the model with a minimal blend of variance and bias of

the predicted values, This diagnostic has great implication for the GLM. Not only is it

important to ünd an interval cf d where there is improvement in the estimation of the param-

eters, but quite chen the researcher wants good predictive capabilities. The notion of C; can

be developed into a prediction oriented method of choosing the shrinkage parameter, d, when

using ridge regression in the GLM. An argument for a C'; as a method of choosing d will be

outlined in this section.

Myers (1986) shows the development of the CQ statistic used as a prediction criterion for

choice of d in usual ridge multiple regression. The statistic, Cf in this setting is given as

SSE
cf == — N + 2 [1 + tr(H,)], (6.4.1)

0

where SSE, is the sum of squares error using the ridge parameter estimates. The matrix,

H,= X(X'X+ dl)"X', is the corresponding projecticn matrix or hat matrix in the ridge setting.

The C.? given above uses the centered and scaled explanatory variables as the Xmatrix, ignoring

the constant column of ones. The 1 + tr(H,) accounts for the constant term.

Recall that Cf denotes the CQ, statistic for ridge regression. Consider the following de-

velopment for a similar statistic in the GLM,

r C,. =ä v=¤<9,> + Bi¤¤°(ß,) 44 4 4)

First construct the variance portion.
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” vw,) ”
1-1- = —···—·· V h R

Ä Var(Y,) Ä Var(Y,)
ar': (in )]

1v
1 IS h (w1)(>1l° — m)]

l=¤l
1v 2 -[h'( ]

=
E

V81'(11f) (6.4.3)
l

N
-1 -1 1 ^=2 ku Va1·(;',<bd X’K' Xg) .

hl

- tr(K °lX<D§l<b<b°‘<D<D§‘X')
= ¤<<¤<¤>;‘<¤<¤ä‘>.

where <l>=¤X'K·‘Xand d>,=X'K·‘X+ dl. Notice when d= 0 that ij 1 which
l•l l

is completely consistent with ordinary least squares.

The bias portion of equation (6.4.2) is somewhat more difficult to develop. Deüne

B,gi Bi¤’<)1>
,_, V¤r(Y1) (6.4.4)

=

04,1)whereT·‘
== diag{1 /Var(}Q)}. Consider the ridge counterpart of the quadratic form, xi, given

in equation (2.8.2).

XBgi (11- uff
,,, af (6.4.5)

= cg - h<1"»'T"(g — h<,“)>-

Recall the following theorem kom Graybill (1976). ' Let LZ be a N >< 1 random vector and let

E(lZ)=g. C¤v(2Z)=2- Th¤¤

E(!K'AkZ) = ¢r(/12) + g'Ag„
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for A symmetric. Set

zz= 1: — h<1'*>
T =

V--T
T — /-6**11

A=TJ
E = hw - Ev·<1"11-

The expected value of xi, follows. _

Eu?->=¤<T" v-¤<x —h<¤"»1+B’
[7+ v¤[1.(,,“)] - 2Cov()f,h(gR))]) +12*, ° °

where

= di¤s{U='(m)]2}V¤T(1R) (64-7)

= di¤s{U¤’(n0]2}X¢E‘¢°Z‘X'.

Rom the Taylor Series expansion above in equation (6.4.3). The covaiianoe term is computed

below.

-
Cov(_Z, h'(g_)Xd>§lX'K'lX&)

N„ c¤v(x, h·(„)x¢;‘x·1<·‘x(g,_, + (X'K'lX)"§ .x,k§l(y1— ,.,1 ))
N (6.4.8)

hl

-1
N

-1 am
= c¤v(x, h·(„)x<1>„, Z ;,k„ 1-,%)

hl
‘

N
1 •l

·-Ih<11X<¤..4; sk., am T.

since Cov(AX , BX) = AB Va1·(X). This implies
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¤<2T" com: . hg“>>> Q 21499;*).

from equation (6.4.8). Thus in combining equations (6.4.7) and (6.4.8) into equation (6.4.6),

Egg,) Q 1v + tr(<D¢§l<l><I>§l) - 2u(<1><1>;‘) + B'. (6.4.9)

Notice however that

1v R 22 (y1· Mz )
xn
=§6.4.10,_, DN.p;d ( )
2

^
g‘*’p.d·0

from equation (2.9.2). D„_, [Ä ir1 GLM is a reasonable alternative for SSE, [ 6* in ordinary

least squares (see Pregibon (1979)). D„_, also lends itself to Aikaike’s Information Criterion.

Note that D„,.,, is the devianee comparing a p parameter model using the shrinkage parameter

dtothemaximalmodel. «[>,_,,,„=D„_,[(N-p) isanestimate ofthe scale parameter, where D

is the deviance of the p parameter model with shrinkage parameter of zero relative to the

maximal model. Recall that 1* and D„, [ Ä: have the same distribution. See equations

(2.7.1) and (2.7.2).

. N Bi=¤'( 3*:) - -B' = ———i bHeneeanestrmatefor E vadm isgiven y

B' g )g, - N—tr(<b<I>§‘ <1><1>§l) + 2tr(<D<l>§*)
D .g7_-’@‘i'--

N—tr(<I><D§* a><1>;‘) + 2tr(<D¢§l). (6*4*11*
¢p,d¤0

Referring to the original motivation of 6,* in equation (6.4.2)
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CR _ä V¤($1) + Bia¤2<3‘>1>
R

_

hx Var(Y,)

D (6.4.12)

~
Npzd -1_ =7\*—N+2tr(¢D¢d4%.4-0

Notice that when normal response data is used with common variance, equation (6.4.12) sim-

pliües to the ridge Cf in equation (6.4.1). Also outside of the ridge setting, the shrinkage pa-

rameter with d == 0, C} in equation (6.4.12) is precisely Pregibon’s

C; = DN, / Ä
— N + 2(p + 1) given in equation (2.9.2). Furthermore, again for normal re-

sponse with the identity link function and common variance (without the ridge setting),

C: = cg = CP, (6.4.13)

when d¤ 0. Q is the least squares Mallow’s Q.

Perhaps the most straight forward techniques to implement CZR as a diagnostic tool would

be to plot C} as a function of d. Choose d to minimize QR. Such a choice will usually yield

good quality of prediction in the generalized linear model. An example is given in section 6.6.

6.5 THE DF—TRACE METHOD FOR SHRINKAGE

The methods of choosing the shrinkage parameter d mentioned thus far- have all been

stochastic methods. That is dl, dl, dl and C? are methods of choosing d which rely on the

random response variable X. Perhaps in the same vein as Tripp (1983), a nonstochastic

method of choosing d should be investigated. Tripp developed a shrinkage parameter estimate

which solely relies on the ill-conditioning ofthe explanatory variables of standard multiple ridge

regression with common variance; Tripp coins his method DF-trace, which for the most part
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evaluates the trace of the ridge hat matrix. The counterpart to DF·trace in the GLM will be

shown to rely on the information matrix. lmmediately notice that K‘* is usually unknown and

is estirnated stochastically. Hence it can be argued that there does not truly exist a

nonstochastic method of choosing d in the GLM.

Other complications arise in trying to parallel the construction of Tripp’s shrinkage pa-

rameter estimate. Tripp considers the quasi-projector, P, or the ridge hat matrix. That is, in

standard multiple ridge regression,

A2 = X11
= 1-[dx

= X(X'X+ dl
)"X’Z

= UD2(D2 + 41)** ug
=¤ UFU'!
= PFX,

from the singular value decomposition in equation (4.3.2). U represents the nonzero

eigenvectors of XX'. D1 = diag{p, 1} is a diagonal matrix of the eigenvalues of X'X ,

F= D1(D1+ dI)** and P,== UFU'. The p are defined the singular values. The matrix Xis

considered as centered and sealed and does not contain the column of ones corresponding to

the intercept term. Hence define

DF•tIaG¢ = F)

P

,,,1 (6.5.1)
P

2 2= Z] 111 1 011 + d).
hl

The difiiculty in directly extending the above procedure to the GLM is that there does not exist

a counterpart projection matrix to that of standard multiple regression.
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The notion of a hat or projection matrix does not neatly extend beyond the usual linear

model to the class of generalized linear models. However, there is some hope to finding a

reasonable candidate within the GLM which does in some way connect to the structure of

H,, particularly in trace as in equation (6.5.1). In the general development of CQ, one can match

up pieces of C} in usual multiple ridge regression to that of the one of ridge regression in the

GLM. The tr(¢I>¢l>;‘) in the GLM corresponds to the tr(PF) == tr(H„) in standard multiple re-

gression. See and compare equations (6.4.1) and (6.4.12), where <1>,=X'K"X+dI. Notice

also that

P
tr(<l><l>§‘) = .1, / (11,+d), (6.5.2)

:-0

where the J., are the p+ 1 eigenvalues of <D = X’K·'X. Equation (6.5.2) neatly matches the

motivation of equation (6.5.1). In fact, equation (6.5.2) will collapse to equation (6.5.1) when

the identity link is used for normal responses having common variance. The matrix K
·‘

is es-

timated via maximum likelihood. See equation (5.4.2) for an evaluation of the variance of the

diagonal elements. The sum in equation (6.5.1) has p terms corresponding to the p explanatory

variables, whereas the sum in equation (6.5.2) has p + l terms since the constant term is in-

corporated into the weighting structure of the information matrix.

Thus a reasonable construction of a DF-trace statistic in the GLM would be

_ P P
DF = ,1,/(11,+d) = Z];. (6.5.3)

zw zw

Notice that in the least squares setting with common variance

DF.
- ¤1= +1

Further when d= 0,
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DF* =p + 1
DF = p.

The idea of a DF·trace procedure stems from (other than Tripp (1983)) Marquardt (1970) and

Vinod (1976). The objective is to find the effective rank of X'X, X'K"X in the GLM frame-

work. Suppose that the rank(X)=p'. The value p' is employed to determine the shrinkage

parameter d. Not only is the notion of DF essentially to jvc the effective rank of X'X , but

also to give a glimpse at the nontrivial degrees of freedom for regression. One can see imme-

diately the connection to principal component regression, which is ultimately a procedure to

reduce the dimensionality of X'X to p — r; where r is the number of trivial dimensions deter-

mined by some rule. Notice, however, that DF is not restricted to integer values. In situations

when p' is not an integer, often the collinearity is termed a diffuse collirlearity.

The mathematics of DF'·trace follows directly from Tripp. That isß= .1,/ (.1,+ d) is a

convex decreasing frmction in d. The slope of], is

ö .3.= — —····L·T and
(11+ d)_

,, (6.5.4)
6¤1= = _

E
11

ad ..6 (1. +d>*

which is always less than zero and thus decreasing. Notice that for d= 0 the slope

öDF' / öd = {Z, 1;**. For orthogonal columns ofK·"*X and d= 0,the slope is - (p + 1). The
[:0

second derivative offf with respect to d is

öl 2.12.%,.-;-5-, (6.5.5)
öd (.1, +d)

which is always positive; thus j} is convex in d. For d2 0, then 0 sß S l for all i. Notice that

1i_rP,ß= 0. Further j§= 1 for d= 0. Notice that by setting d= ).,, an intermcdiate value of

j, = .5 is found.
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Using the effective rank of <l> as a criterion to estimate Q certainly is somewhat subjective.

Similar problems arise in the ridge trace procedures. Graphs do help in determining a reason-

able window for the shrinkage parameter. Usually d is chosen large enough so that DF' -trace

has Thus DF'·trace can be thought of as an estimate ofp', lending itself to diffuse Q

collinearities. The plot of DF' vs. d will be instructive in determining the value of DF' for

which the slope is near to that of an orthogonal system. Tripp (1983) is careful not to over-

damp the dominant components. Bounds can be imposed on d to protect against overdamp·

ing. For example if the researcher recognizes that the smallest important j] should not be

shrunkmorethanaspeciiiedfxactionp (0spS 1),then set

ß=P =·*1/(1:+ d)-

This implies

dmu = 1«(* — P) / P- (6-5-6)

In practice, dis chosen to be much less than dm,.

Tripp also points out that controversy in choosing d, which is commonplaee in ridge

trace procedures, can be avoided by also graphing a line representing the orthogonal situation.

Recall that

. , P
DF =Z 14/(·*4+d)=(*+P)/(1+d).

1-0

when the oolumns of K·*/2X are orthogonal giving ).,= l for all i. Since DF' vs. d can be

compared directly to the orthogonal system, there is less of an impact in a. varied scale of d.

An example follows in section 6.6.
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6.6 EXAMPLE USING VARIOUS DEGREES OF SHRINKAGE

Previously in section 4.6, an example was given compaxing various biased estimation

techniques to maximum likelihood. Table 6 in section 4.6 gives a summary. The logit link

function was used on Bernoulli cancer remission data displayed in Appendix A.
i

In an attempt to choose a ridge shrinkage parameter that yields good predictions, the Cf

method can be implemented. In Figures 4 and 5, a plot of Cf vs. d is displayed. The two plots

differ by a varied scale of the d axis. The plots suggest choosing a shrinkage parameter of ap-

proximately, dc, = .0080 . Such a choice minimizes C]? . See equation (6.4.2).

The DF'·trace procedure was also used as a diaguostic tool to choose d. In this case, the

orthogonal -••- is overlayed (i.e. all .1, = 1). Figures 6 and 7 display DF'-trace as a function

of d. Notice that there is less impact of a varied scale, as Tripp (1983) suggested when also

graphing the orthogonal situation. The DF'· trace procedure is a subjective one. However, the

graphs suggest choosing dn,.= .0003; hence implying that the effective rank of O is in the order

of 5.0. Recall the notion of diffuse collinearities explained in section 6.5. Table 6 in section

4.6 includes the C} and DF' -trace parameter estimates along with the asymptotic standard er-

rors.

6.7 A STEIN ES'I'IMATOR IN THE GENERALIZED LINEAR MODEL

An estimation technique, which was originally suggested by Stein (1960) for least squares

estimation, is defined as

A A
Q, = cg , (6.7.1) .
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where 0 < c < 1. Stein suggested the following choice for c

A,/\ A,/\ _l

c=QQ/(QQ+tr(X'X) ). (6.7.2)

The motivation for such an estimator is that in the presence of collinear explanatory variables

(in least squares)

P
^,^ ^ -1 -1 -1E(££)2¤‘(V¤r(£))=1r(X’X) =211 Zlmirrv

:-0

which demorxstrates that the estimate Ä may be too long on the average.

Schaefer (1986) considers the natural extension for Stein estimation in a logistic regression

setting. He simply presents a scalar shrinking of the maximum likelihood estimates by using

•
^’^ ^'l\ ^

_l
c:ßQ/(Qß+tr(X'VX) ), (6.7.3)

where Ü: diag{1%,(l — 1%,)} from maximum likelihood. Schaefer points out the ease of imple-

mentation of such an estimator in the existing logistic regression programs.

A wider application of Stein estimation can be addressed with the presence of of an ill-

conditioned information matrix, <l>. For the generalized linear model, the corresponding choice

of c is

I
AIA A,/\ _l

¢;=ß£/(££+11‘(¢ ))„ (677-4)

which is a generalization of Schaefer's logistic Stein estimator.

The choice of c,, given above, based on Schaefer’s idea is one which the

E(Lf) criterion. See equation (7.2.5). Asymptotically the following holds true;
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2 A I A
E(L1) = E(¢1E * E) (¢1Ä ' E)

p
2 -1 2 2=¢1 **(I‘D )+ (¢1‘l) ßl

Ä (6.7.5)
14 p ·

= ¤?X 47* + <¤. -0*2 ß? -1-0 1-0

Notice that

öE * " "7%)-
- 0 - 26,2 .17* + 2(c1 -1)2 ßi.‘

z-o 1-0

Substituting Ä, for ß, yields the the minimum c, for the E(L,*) criterion in equation (6.7.4).

Notice also that

6*6 * " " 20.
Ö¢1 1-0 1-0

Hence qisinfactaminimum.

Perhaps a. more appropriate choice for the scaling constant c in the logistic model, and

for that matter all generalized linear models, is one based on the E(L,*) criterion. See equation

(7.2.6). The E(L§) criterion lends itself to the GLM since incorporates the asympotic

variance·covariance matrix for the estimated parameter vector.

2 ^ , ^ .E(l,2) = (czg — E) ¢(clß — (6.7.6)

In taking the derivative ofE(L§) with respect to c, and replacing a, with $1,, the minimizing value

of ca is
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p
äh

6, =
%'+‘—

, (6.7.7)

E äh + (p + 1)
z-o

where again M is the orthogonal matrix to diagonalize <I>, M'<I>M = diag{1,} ,andQuite

clearly for any 0 < c< l, not only are the parameter estimates shrunken in magnitude,

but also the variances of these estimators is reduoed.
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Chapter VII

GENERALIZED FRACTIONAL PRINCIPAL

COMPONENT ANALYSIS

7.1 INTRODUCTION

' The generalized principal component (GPC) estimator given in section 5.3 and the gen-

eralization ofthe ridge estimator given in section 6.2 can be shown to be -••· ofa broader

class of shrinkage estimators for the generalized linear model in the canonical form defined in

equation (5.3.1). This broad class of shrinkage estimators will be referred to as generalized

fractional principal component (GFPC) estimators. While, in the GLM principal component

and ridge estimators shrink the estimated parameter vector toward length zero, GFPC esti-

mation also aecomplishes shrinking the parameter estimates by taking a general weighting of

the canonical variable components (see Lee (1986)).
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7.2 DEVELOPMENT OF GFPC

Consider the GLM in the canonical form.

g(&) = Z4, (7.2.1)

where Z = XM and 4 = M'Q. The model given in equation (7.2.1) can be rewritten as

' - ZF * F8 (E) “
(7.2.2)

{ Wb

where W== ZF " , 2 = F4 and F= diag{f},} is a diagonal matrix of weights. The weights in

Fare contained in the unit interval [0,1]. F " is a generalized inverse ofFsinee some of the

diagonal elements may be zero. g°(p)=g(14) ifand only ifthej}}¢0 for all I ; inthis case use

F*1 =¤ F ". The information matrix, corresponding to equation (7.2.2), is of the form

WK-lW=F _M'¢MF °=F °-AF
_

.

Thus the maximum likelihood equations, given below, are similar to those in equation (5.3.4).

1v
- ^ - - ^. @:1

2:* it-1+(F A:-1F 1!:k::l(Y: '* I2:)gf]
:-1

‘
:-1

(F "Ä F ')+0*:*:-1 -1 "
‘

hl am :-1 (7-2-3)

= cw *Ä..„F *1 * WI? *‘1'1..1
A_l A -1 g

= [FA ZK 2
],_,

=F ag.]:

where yf = :1,+ (y,- 1:,) and K
*‘

are updated at each iteration step. If the maximum
l

likelihood estimate for 2 converges, then further estimation is not needed for K*'. A Variance
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argument supports the use of maximum likelihood estimates for the diagonal matrix K*1 when

X data combinaiions are in the main stream (see equation (5.4.2)).

A reasonable approach to generalized fractional principal component parameter esti-

mation, using canonical form models, is to first estimate the the full p + 1 vector of maximum

likelihood estimates, Q. Hence K *1 is also estimated via maximum likelihood. It follows that

the class of GFPC estimators are

Q = FQ . (7.2.4)

In the case when F= 1,,,,,, then the GFPC estimators reduce to maximum likelihood es-

timators. Further, extending equation (6.2.8) to the canonical form, a generalization for ridge

estimators becomes

„”(a) = (Ä + dl )"Äa
= FR .2. •

where F,, = diag{J., l (J, + Ö}. Thus the generalizations to ridge estirnators also fit equation

(7.2.4) nicely. As another example, the generalized principal component (GPC) estimator

simply chooses fj, = 1 for the components chosen to stay in the model and j}, = 0 otherwise.

Table 9 lists choices of Ffor various generalized fractional principal component estimators.

As in section 6.7, measures of closeness between Q and Q were developed by Stein (1960).

To determine how the choice ofF effects the asymptotic mean squared error (weighted or un-

weighted) for Q, consider the following criteria. Asymptotically, equations (7.2.5) and (7.2.6)
l

hold true.

E(Li) = EQ — 1)'Q — 1)

= IFA"F + · F-1 Z1;( )
I1

( )11-0

1-0
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Table 9. GENERALIZED FRACTIONAL PC WEIGHTS

ESTIMATION TECHNIQUE MATRIX F

Maximum Likelihood F= 1,+,

Principal Component j} = =fQ = 1 , f+, = =f,+, = 0

Rid8¢ fI=·I,/(1.+*)

Generalizedkidge f]=„l,/(J.,+k,)

Stein: L} ff= Hä / (Hä + FJ.?) for all i

Stei¤:L§ f,=§Ä.,a}/(‘€Ä.,af+(p+l))al1i

. ' !i=/S=···f„-¤=I• 0<L=p<I
Fracuou (P)

f;+1 =f;+2 = °°°f;+I = 0

GENERALIZED FRACFIONAL PRINCIPAL COMPONENT ANALYSIS I3?



E1E§> = EQ — ¤>·AQ -Q
= u(AFA°‘F) + ¤'(F— 1 )2A Q

P P (7.2.6)

1-o 1-o

7.3 COMPARISONS AMONG FRACTIONAL ESTIMATORS

Comparisons can be made between the various generalized fractional principal compo-

nent estimators using the E(L*) criterion. For example, consider comparing maximum likeli-

hood (ML) to principal component (GPC) via the asymptotic weighted mean squared error,

E(L§). Recall that r =¤ p + l - s is the number of components deleted in a principal component

setting. For simplicity in notation, let E and Z = 2 be the respective sums over the deleted
I

[componentsand the entire set of components.

E1»c(bi)= Zn.
“

+ Z «?».m1
—¤>“

1 1 (7.3.1)
=(p+l)-r+2a?.1,.

I

For maximum likelihood

EM1.(l«i) =P + lt (7·3·2)

since each term of the sum on the right is identically equal to zero. The use ofprincipal com-

ponent estimators over maximum likelihood is only justiiied by the E(L§) criterion if

1, 11} S r. (7.3.6)
-
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Perhaps further developments in the area of GFPC will involve equation (7.3.3) as the null

hypothesis in a testing scenario.

The fraction (p) technique yields

Ep(lÄ) =p + p -r+ E .41,+ (1 - p)2a?J.,. 1 (7.3.4)
I' .

Comparisons can be made to the principal component estimator via

Notice when p = l that E,c(L§) = E,(L§) as expected. Further E,c(L}) 5 E,(l„,’) if and only if,

forüxedp, 1:}.1,21.

To match the fractional (p) estimator against maximum likelihood notice that

1-11+f

Hence the f1·actiona1 (p) estimator is better in regard to E(L§) if

(1 — p)[1 - (1 — p)aZ).,] + r 2 afl,. (7.3.7)
I'

Notice in the case when p = l, the result from equation (7.3.3) holds.

It follows from equation (7.2.6) that the E(L}) for the Stein estimator is

Es<l»i> =<1¤ + Dc} + (O1 -022 ah,. (7.3.8)
p+l
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where 0, = Z afl, / (Z af)., +p + 1). In comparing the Stein estimator to the maximum likeli-
I I

hood estimator, consider

E.«:(lÄ) — Emnnä) = 0) + 1)<¤§ -1) + (on - 1)*2 «?1n"+‘
2 (7.3.9)

= (9; —1)[(n¤ + 1)(<>i +1) + (16 -1)Z ¤n»1n]-
p+l

The Stein estimator will make

Esilä) — EM1.(l«i)< 0»

if and only if

Z «?1n - 0+ 1)
1 > Q > —‘i*l—————

2 11%.1, + (p + 1)
p+l

and Z afl., > (p + 1). Otherwise the maximum likelihood is a better than Stein in terms of
p+l

E(L§).

In comparing generalized ridge to ridge, certainly there exists a set of k, such that

1} nflf
.1 + k (.1 + k”*‘ (' ‘)2 ‘ )2

(7.3.10)
k S O.

,,+1 (kn + kn) (kn + k)

In theory, generalized ridge is trivially guaranteed to be at least as good as the ridge method

which may or may not be the case in practice. .
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Chapter VIII E

8.1 INTRODUCTION

The relative merits of various asymptotically biased estimation techniques are investigated

as reasonable alternatives to method of seoring maximum likelihood via a simulation study.

The parameter estimation techniques are evaluated by varianee, bias, and mean square error

(MSE). Other factors of interest are the sample size, number of explanatory variables, severity

of ill-conditioning of the information, and the distributional form of the response variable.

8.2 PROCEDURE FOR SIMULATION

Appendix B comprises the hub of the simulation study; a program which is written in

SAS Proc Matrix. The program uses either p= 3 or p= 5 centered and scaled explanatory

variables (augmented to a constant term) from a fixed data set of N = 17 or N= 45. The
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smaller data set is a random subset of the larger data set. Furthermore, the ill-conditioning of

the information matrix is deemed as moderate or severe. Hence, consider the resulting

2 x 2 x 2 = 8 possible combinations of factors.

In using these combinations of factors, the main interest is the distributional form of the

response variable and how well various techniques estimate the unknown parameter vector.

Normal data with the identity link reduces maximum likelihood estimation to the one step least

squares multiple regression parameter estimation and biased estimation for multiple regression

is well documented. Consequently, normal data will not be incorporated into this simulation

study. Response distributions of interest will include the Poisson and Bernoulli. The program

is capable of changing the link function as well as the diagonal matrix of weights,
K·‘

. The

method of scoring is used for maximum likelihood.

Inthisstudytheparametervectorßisassumedto beknown andisfixedwithinthe

program (labelled as TRUEB). When further given the fixed, nonstochastic, known explana—

tory variables X , then the linear combination gl = XQ is trivially known. In using the natural

link function of the exponential family, the following relationship is utilized

ste) = 1
g = h(g1)„

where h is a nonlinear function in the parameters. Once given the vector E = E(X) of means

and the other parameters of the distribution which are functions of the known gl, naturally the

next step of action is to generate a vector of random response variates from a specified

distributional form using functions given in SAS Basics Manual (1982). As a result, the

N x 1 vector of responses, X, are generated via known gl and the natural link function.

Having generated X and Xin hand, estimation of the parameter vector is in order. In fact,

six estimation techniques are implemented: (l) Method of scoring maximum likelihood, (2)

Ridge estimation using the harmonic mean method for shrinkage, (3) Schaefer’s principal
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component technique deleting one dimension, (4) Schaefer’s principal component technique

deleting two dimensions, (5) Iterative principal component technique minus one dimension, (6)

Iterative principal component technique minus two dimensions. Refer to these by number.

From the preset parameter vector Q and the explanatory variables X of dimension

Nx4orNx6, for N=¤ l7orN==45, the response vector jf is generated 1000 times (repe-

titions). Consequently, the six estimation procedures outlined above are also computed 1000

times, eorresponding to each response vector. Using the 1000 repetitions, the SAS program

has the ability to compute a sample mean vector of parameter estimators for each of the six

estimation techniques. The program also computes the sample variance of each component

of each vector of each estimation technique. Moreover, since the true Q is known, bias can be

computed for each technique (r) via (QV) - Q) for r= 1, 2, , 6 . Combining variance and bias

above leads to a mean square error criterion.

. Anomalies and other nuisances occur during the course of 1000 repetitions. In the event

that convergence is not met during an iterative procedure or some estimation technique yields

||Q|| which is inilated over an upper bound (10*) or shrunk below a lower bound (10**), then the

estimate is set to zero and does not contribute to the summary statistics. Hence the results

presented are oonditional on convergence and parameter estimates within subjective bounds.

For example, if a repetition of response vector does not provide convergence in maximum

likelihood estimates, then the estimates (1), (2), (3), and (4) are all set to zero since they rely

onmaximum8.3

RESULTS OF SIMULA’I'ION

Tables 10, ll, 12, and 13 present results for Poisson responses using the larger sample size

of N= 45. There is a world of information to summarize.
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First notice the eüects of severe ill-conditioning in Tables 10 and 12 when compared to

moderate ill-conditioning in Tables 11 and 13. The detrimental effects of severe ill-conditioning

are apparent in observing the large values ofMSE for the maximum likelihood estimates. Any

choice of biased estimation greatly reduces the MSE. MSE is not nearly as greatly inflated for

moderate ill-conditioning.

Secondly, it appears, from these simulation results, that the number of explanatory vari-

ables has an impact on the number of repetitions dropped from the summary statistics. The

number ofanomalies increase for estimation with increased number of regressors. For example,

in the case ofp+1=4 in Table 10 and Table 11, 11/ 1000 and 18/ 1000 repetitions are

dropped respectively from the analysis. However for p+ l = 6, then the Tables 12 and 13

display 101 / 1000 and 52 / 1000 repetitions are dropped respectively. Perhaps one explanation

would be that in the presencc of ill-conditioned information, the value lläll is large on the av-

erage. Withp + 1 = 6, there is a greater likelihood for lläll to inflate beyond the upper bound.

As a few other general observations, notice in Tables 10 and 12 that the ridge estimate is

not doing as well as in Tables ll and 13. A reasonable explanation is that, in Tables 10 and

12, the presence of severely ill-conditioned information yields maximum likelihood estimates

large in magnitude. Hence, in choosing a shrinkage parameter via the harmonic mean, it fol-

lows that (p + 1) / Ef is quite small. Further notice how similar Sehaefer’s principal compo-

nent estimators are to the iterative principal component estimators on the average even though

they dilfer at each repetition.

Tables 14, 15, 16, and 17 display the results for Bernoulli responses again using the larger

sample size of N == 45. The summary for the logit link using Bemoulli data is very similar of

that described above for the Poisson data. The similarities in the results between the charac-

teristics of the logistic and Poisson regressions are very reassuring. It is interesting to note that

in all cases of moderate i1l·conditioning (Tables 11, 13, 15 and 17) the principal component

estimators minus two dimension (methods (4) and (6)), as expected, are not doing well. The
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overdamping of these principal component estimators gives estimators near zero, with the

wrong sign or high MSE. The last item to address is the issue of decreased sample size.

Tables 18 through 25 comprise the results decreased sample size. The small sample re-

sults (Tables 18-25) are in the same order of presentation as the large sample results (Tables

10-17), of course with the exception that N = 17 instead of N = 45. From the simulation re-

sults given, it is diücult to assess general statements about the effects of decreased sample size
U

on mean square error. The major consequence is the increased number of repetitions deleted

from the analysis. Perhaps this is the expected consequence since there is less data to support

the regression. In the worst case investigated, Poisson regression with p + 1 = 6 having severe

i1l·conditioning (Table 20) rejected over 800 of the 1000 repetitions mainly due to violations

of maximum likelihood estimation beyond the set upper bound. But even by reducing

p + 1 = 4 having moderate ill-conditioning (Table 19), maximum likelihood was still rejected

over 300 of the 1000 times. This suggests some alternate method to that of the method of

scoring should be used for small sample sizes having ill-conditioned information. Again very

similar results held for the small sample logistic regression simulation, except not as extreme.

Logistic regression is typically very nice to work with due to the boundedness property of the

diagonal matrix
K*‘

, unlike most other members of the generalized linear model.
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Table 10. POISSON SIMULATION RESULTS

Response = Poisson N = 45 p + l = 4 Severe I1l·conditioning

Conditional Analysis on 989 / 1000 repetitions .

Eigggvalue Structure

.1,, = 2.467

.1, = 1.512

.1, = .012
Ä;

=TRUEB= ( -.5, -2, 1, 1)

AV¢m8¢ in E1 E2 Es

Scoring (ML) -.575 -2.084 2.372 -.183
Ridge (HM) -.521 -1.741 1.297 .522
Schaefer PC(·1) -.535 -2.089 1.020 1.021
Schaefer PC(-2) -.389 .271 .364 .367
Iterative PC(·1) -.555 -2.092 1.057 1.057
Itexative PC(-2) -.475 .286 .383 .385

V¤i¤¤¤¤ ¤'(ß¤)
¤‘(ß1)

—¢“(ßz) —=’(ß;)

Sooring (ML) 0.046 2.137 75.780 74.497
Ridge (HM) 0.040 1.761 12.362 11.839
Schaefer PC(-1) 0.043 2.126 0.523 0.527
Schaefer PC(-2) 0.036 0.117 0.282 0.286
Itcrative PC(-1) 0.044 2.112 0.531 0.536
lterative PC(-2) 0.035 0.109 0.256 0.259

MSE

Scoring (ML) 155.757
Ridge (HM) 26.388
Schaefer PC(-1) 3.229
Schaefer PC(-2) 6.698
Iterative PC(·1) 3.340
lterative PC(-2) 6.648
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Table ll. POISSON SIMULATION RESULTS

Response = Poisson N = 45 p + 1 = 4 Moderate I11-conditioning

Conditional Analysis on 982 / 1000 repetitions

Eigeévalue Structure

.1,, = 2.216
1, = 1.254
.1, = .524

TRUEB = ( -.5, -2, 1, 1)

Avcmße Fo Fl F2 Fa

Scoring (ML) -.576 -1.943 1.277 .982
Ridge (HM) -.483 -1.254 . .764 .529
Schaefer PC(- 1) -.525 -2.322 1 459 .514
Schaefer PC(-2) -.393 -.326 }$96 -.407
Iterative PC(·1) -.548 -2.315 A7; .477
Iterative PC(-2) -.482 -.374 .50 -.531

V¤ri¤¤<=¤
=‘(ß¤) @“(ß

1)Sooring(ML) 0.048 2.324 2.183 Ä 1.906
Ridge (HM) 0.037 1.149 0.921 0.878
Schaefer PC(- 1) 0.038 1.559 0.555 0.693
Schaefer PC(-2) 0.039 0.243 0.485 0.477
Iterative PC(·1) 0.039 1.592 0.554 OÄ694
Iterative PC(-2) 0.037 0.246 0.490 0.503

MSE
Ä

Scoring (ML)6.547Ridge
(HM) 4.219 Ä

„ Schaefer PC(·1) 3.478 1
Schaefer PC(-2) 6.404

‘1

Iterative PC(·1) 3.536
Iterative PC(-2) 6.509

1\‘
1
\1

1
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Table 12. POISSON SIMULATION RESULTS

Response = Poisson N = 45 p + 1 = 6 Severe 111-conditioning

Conditional Analysis on 899 / 1000 repetitions

Eigggvalue Structure

· J., = 2.662
J., = 1.943
J., = .865
J, = .517
.1, = .010
J., = .003

TRUEB =(-.5,-2,1,1, -1,1)

AV¢m8¢ Eu F1 F2 Fa Es

Scoring (ML) -.629 -2.215 1.373 .832 -.881 .646
Ridge (HM) -.549 -1.783 1.009 .719 -.829 .553
Schaefer PC(-1) -.586 -2.206 .933 1.183 -.895 .823
Schaefer PC(-2) -.499 -1.367 .559 .701 -1.115 .245
Iterative PC(-1) -.605 -2.202 .951 1.189 -.870 .699
Iterative PC(-2) -.561 -1.389 .603 .747 -1.166 .196

Scoring (ML) 0.056 2.316 119.793 108.679 3.414 4.912
Ridge (HM) 0.046 1.630 13.581 11.147 1.815 1.814
Schaefer PC(-1) 0.049 2.217 0.538 0.745 2.416 2.118
Schaefer PC(-2) 0.043 1.567 0.379 0.561 1.180 1.585
Iterative PC(-1) 0.051 2.237 0.548 0.764 2.454 2.241
Iterative PC(-2) 0.046 1.529 0.385 0.573 1.293 1.707

MSE

Scoring (ML) 239.039
Ridge (HM) 29.791
Schaefer PC(-1) 8.514
Schaefer PC(-2) 6.285
Iterative PC(-1) 8.693
Iterative PC(-2) 6.705
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Table 13. POISSON SIMULATION RESULTS

Response = Poisson N = 45 p + 1 = 6 Modcrate 111-conditioning

Conditional Analysis on 948 / 1000 repetitions

Eiggnvalue Structure
i

J., = 2.881
.1, = 1.373
J., = .998
J., = .839
J, = .306

_ J., = .003

TRUEB = ( -.5, -2, 1, 1, -1,1)

AV¢m8¢ Fu zu F2 F: Fe Es

Scoring (ML) -.621 -1.993 1.212 .996 -.974 .822
Ridge (HM) -.592 -1.196 .712 .396 -.586 .367

. Schaefer PC(-1) -.569 -2.075 .993 .810 -.795 .828
Schaefer PC(·2) -.561 -.791 .589 -.569 -.526 -.391
Iterative PC(-1) -.594 -2.209 1.005 .811 -.797 .842
Iterative PC(·2) -.539 -.840 .546 -.599 -.517 -.539

Scoring (ML) 0.051 3.179 2.527 2.732 2.433 2.826
Ridge (HM) 0.036 1.091 0.889 0.999 0.804 0.863
Schaefer PC(-1) 0.045 1.335 1.515 1.700 1.101 1.719
Schaefer PC(·2) 0.043 0.683 0.913 0.597 0.624 0.993
Iterative PC(·1) 0.046 1.365 1.549 1.713 1.124 1.755
Iterative PC(·2) 0.041 0.716 0.974 0.663 0.665 1.115

. MSE

Scoring (ML) 14.139
Ridge (HM) 6.350
Schaefer PC(-1) 7.533
Schaefer PC(·2) 10.001
Iterative PC(·1) 7.571
lterative PC(·2) 10.390
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Table 14. LOGISTIC SIMULATION RESULTS

Response = Bemoulli N = 45 p + 1 = 4 Severe 111-conditioning

Conditional Analysis on 995 / 1000 repetitions

”
Eigegvalue Structure

.1,, = 2.805
1, = 1.595
A, == .088
.1, = .013

TRUEB = ( -.5, -2, 1, 1)

Av¤r¤s¤ E E F. F.
Scoring (ML) -.559 -2.548 1.507 .905
Ridge (HM) -.520 -1.996 .901 1.055
Schaefer PC(-1) -.527 -2.394 1.132 1.103
Schaefer PC(-2) -.555 .335 .381 .387
Iterative PC(-1) -.543 -2.871 1.178 1.151
Iterative PC(-2) -.597 .352 .377 .383

V¤ü¤¤¤¤ -v’(ß«) —¢’(ß1) ~l°(ßz) —¢’(ß¤)

Scoring (ML) 0.122 8.520 292.730 295.356
Ridge (HM) 0.105 5.717 45.255 47.085
Schaefer PC(-1) 0.109 7.123 1.633 1.639
Schaefer PC(-2) 0.084 0.279 0.619 0.630
Iterative PC(-1) 0.118 7.647 1.709 1.729
Iterative PC(-2) 0.096 0.335 0.725 0.739

MSE

Scoring (ML) 597.198
Ridge (HM) 98.176
Schaefer PC(- 1) 10.688
Schaefer PC(-2) 7.827
Iterative PC(-1) 11.581 .
Iterative PC(-2) 8.196
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Table 15. LOGISTIC SIMULATION RESULTS

Response = Bemoulli N = 45 p + 1 = 4 Moderate I11-conditioning

Conditional Analysis on 994 / 1000 repetitions

Eigeiivalue Structure

.1, = 2.184
E

.1, = 1.222

.1, = .521

.1, = .073

TRUEB = ( -.5, -2, 1, 1)

AV¢*°a·S° Fo in F2 F;

Scoring (ML) -.560 -2.259 1.207 1.001
Ridge (HM) -.593 -1.338 .669 .589
Schaefer PC(·1) -.516 -2.201 .669 .567
Schaefer PC(·2) -.570 -.551 .606 -.575
Iterative PC(·1) -.535 -2.240 .669 .548
Iterative PC(·2) -.509 -.589 .682 -.654

Vari¤¤¤¢ ¤'(ß¤) ~1‘(ß•) -v'(ßi) —¢'(ß;)

Scoring (ML) 0.134 8.521 8.842 7.371
Ridge (HM) 0.100 2.891 2.592 2.357
Schaefer PC(·1) 0.103 4.137 1.359 3.111
Schaefer PC(·2) 0.089 0.618 0.871 0.755
Iterative PC(-1) 0.113 3.769 1.598 3.541
Iterative PC(·2) 0.105 0.707 1.035 0.931

MSE

Scoxing (ML) 24.583
Ridge (HM) 8.749
Schaefer PC(·1) 8.547
Schaefer PC(·2) 7.369
Iterative PC(·1) 9.294
Iterative PC(·2) 7.899
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Table 16. LOGISTIC SIMULATION RESULTS

Response = Bemoulli N = 45 p + 1 = 6 Severe 111-conditioning

Conditional Analysis on 972 / 1000 repetitions

Eigvalue Structure

J, = 2.564
J, = 1.722
J, = 1.068
J, = .582
J, = .057
J, = .008

TRUEB = ( -.5, -2,1,1,-1,1)

AV¢m8¢ in in B2 F: Es

Scoxing (ML) -.622 -2.798 .507 2.239 -.876 .959
Ridge (HM) -.558 -2.133 .954 1.097 -.830 .836
Schaefer PC(-1) -.582 -2.421 1.143 1.342 -.918 1.188
Schaefer PC(-2) -.580 -.896 .352 .383 -.956 -.223
Iterative PC(-1) -.601 -2.704 1.182 1.378 -.915 1.064
Iterative PC(-2) -.536 -.973 .515 .542 -.997 -.299

V¤i¤¤¤¤
-»‘(ß¤) -"(ß«)

=‘(ß«) ¤°(ß;) —¢'(ß«) —='(ß5)

Scoring (ML) 0.165 10.632 519.081 491.729 10.843 16.981
Ridge (HM) 0.127 6.383 47.865 45.102 5.880 7.159
Schaefer PC(-1) 0.138 9.211 2.077 2.584 8.528 9.329
Schaefer PC(-2) 0.103 2.486 0.958 0.988 2.856 1.818
Iterative PC(-1) 0.148 9.905 2.223 2.763 8.852 10.574
Iterative PC(-2) 0.123 3.578 1.121 1.147 3.253 2.106

MSE

Scoring (ML) 1051.990
Ridge (HM) 112.404
Schaefer PC(-1) 32.338
Schaefer PC(-2) 13.523
Iterative PC(-1) 35.158 _
lterative PC(-2) 14.126
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Table 17. LOGISTIC SIMULATION RESULTS

Response == Bernoulli N = 45 p + 1 = 6 Moderate 111·conditioning

Conditional Analysis on 979 / 1000 repetitions

Eiggnvalue Structure
1,, = 2.252
1, = 1.516
1, = 1.078
1, = .900
1, = .310
1, = .044

TRUEB =(—.5,-2,1,1,-1,1)

AV¢Ta8¢ Fo F1 F2 31 Fa Es

Sooring (ML) -.602 -2.852 1.248 1.123 -1.089 1.071
Ridge (HM) -.505 -1.351 .668 .535 -.611 .562
Schaefer PC(—1) -.536 -2.059 .980 .806 -.872 .873
Schaefer PC(-2) -.586 -.784 .520 -.510 -.529 -.529
Iterative PC(-1) -.560 -2.170 1.039 .821 -.919 .926
Iterative PC(-2) -.538 -.875 .599 -.579 -.541 -.519

Variance ¤‘(ß„) —¢'(ß1) ¤°(ß;) —~"(ßg) —¢’(ß•) —¢’(ßs)

Sooring (ML) 0.157 11.910 11.065 10.509 9.914 10.779
Ridge (HM) 0.101 3.589 2.704 2.747 2.537 2.800
Schaefer PC(-1) 0.109 4.126 4.158 4.953 4.149 5.048
Schaefer PC(-2) 0.093 1.523 1.808 1.767 2.298 1.666
Iterative PC(-1) 0.121 4.915 3.757 5.258 4.060 5.619
Iterative PC(-2) 0.111 1.925 2.164 2.233 2.459 2.229

MSE
Scoring (ML) 54.540
Ridge (HM) 15.271
Schaefer PC(-1) 21.619
Schaefer PC(-2) 15.203
Iterative PC(-1) 23.709
Iterative PC(-2) 17.855
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Table 18. POISSON SIMULATION RESULTS

Response = Poisson N = 17 p + 1 = 4 Severe 111-conditioning

Conditional Analysis on 503 / 1000 repetitions

Eiggvalue Structure

- .1,, = 2.331
.1, = 1.632
J., = .031
J., = .006

TRUEB = ( -.5, -2, 1, 1)

AV¢m8¢ Fo Fl
B.:

F:

Sooring (ML) -.809 -1.617 2.384 -.559
Ridge (HM) -.632 -1.195 1.079 .257
Schaefer PC(·1) -.707 -1.669 .809 .963
Schaefer PC(-2) -.374 .095 .063 .076
Iterative PC(·1) -.719 -1.568 .789 .952
Iterative PC(-2) -.571 .217 .124 .126

va·1°ia¤°¢ ·‘z(ßo) $2 $1 -12

1
Scoring (ML) 0.215 2.879 35.745 37.345
Ridge (HM) 0.125 1.204 4.749 5.277
Schaefer PC(·1) 0.156 1.747 0.801 0.675
Schaefer PC(-2) 0.078 0.125 0.185 0.154
Iterative PC(-1) 0.142 1.667 0.695 0.641
Iterative PC(-2) 0.092 0.161 0.207 0.171

MSE

Scoring (ML) 80.376
Ridge (HM) 12.579
Schaefer PC(- 1) 3.569
Schaefer PC(-2) 6.676
Iterative PC(-1) 3.522
Iterative PC(-2) 7.082
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Table 19. POISSON SIMULATION RESULTS

Response = Poisson N = 17 p + 1 = 4 Moderate I11-conditioning

Conditional Analysis on 689 / 1000 repetitions

Eigvalue Structure

J., = 2.039
J, = 1.279
J, = .676
J., = .005

TRUEB = ( -.5, -2, 1, 1)

Av<=r¤s= F. F. F. F;

Scoring (ML) -.830 -2.097 1.109 .531
Ridge (HM) -.533 -1.088 .561 .239
Schaefer PC(-1) -.596 -1.119 .209 -.140
Schaefer PC(-2) -.299 -.102 .174 -.198
Iterative PC(-1) -.636 -1.265 .235 -.217
Iterative PC(-2) -.518 -.081 .296 -.394

Vadmx szfßo) (ßs)

Scoring (ML) 0.296 3.191 4.162 2.468
Ridge (HM) 0.114 1.163 0.979 0.739
Schaefer PC(-1) 0.117 1.562 0.740 0.797
Schaefer PC(-2) 0.076 0.167 0.209 0.323
Iterative PC(-1) 0.125 1.763 0.918 0.994
Iterative PC(-2) 0.079 0.208 0.203 0.289

MSE

Scoring (ML) 10.668
Ridge (HM) 4.999
Schaefer PC(-1) 5.816
Schaefer PC(-2) 6.536
Iterative PC(-1) 6.525
Iterative PC(-2) 6.899
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Table 20. POISSON SIMULATION RESULTS

Response = Poisson N = 17 p + 1 = 6 Severe I11-conditioning

Conditional Analysis on 142 / 1000 repetitions

Eiggnvalue Structnire

,1,, = 3.224
J., = 1.966
J, = .533
J., = .243
J., = .032
J, = .003

TRUEB =(-.5, -2, 1, 1, -1, 1) '

AV°Ya8¢ Fo F1 F2 Fa E4 Es

Sooring (ML) -1.073 -1.939 2.449 -.796 -1.567 -.229
Ridge (HM) -.691 -1.161 1.219 -.021 -1.078 .076
Schaefer PC(-1) -.761 -1.359 .580 .719 -1.250 .009
Schaefer PC(-2) -.501 -.762 .512 .651 -.796 .541
Iterative PC(-1) -.797 -1.297 .664 .807 -1.219 -.009
Iterative PC(-2) -.669 -.776 .583 .757 -.971 .388

V¤ri¤¤¤¢ ¤"(ß¤) ¤'(ß1) ¤°(ß«) ='(ß;) ¤°(ß•) :*0%)

Scoxing (ML) 0.711 7.272 86.207 92.529 4.503 9.300
Ridge (HM) 0.181 1.971 5.205 6.629 1.522 1.630
Schaefer PC(-1) 0.188 3.523 0.804 0.988 2.336 2.865
Schaefer PC(-2) 0.076 .595 0.376 0.505 .962 .562
Iterative PC(-1) 0.173 3.519 0.714 1.018 2.279 2.285
Iterative PC(-2) 0.075 .592 0.505 0.536 1.003 .709

MSE

Scoring (ML) 208.727
Ridge (HM) 20.129
Schaefer PC(-1) 11.582
Schaefer PC(-2) 5.348
Iterative PC(-1) 11.187
Iterative PC(-2) 5.246
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Table 21. POISSON SIMULATION RESULTS

Response = Poisson N = 17 p + 1 = 6 Moderate I11—conditioning

Conditional Analysis on 418 / 1000 repetitions

Eigeévalue Structure

J, = 2.849 -
J, = 1.539
J, = 1.102
J, = .706
J, = .297
J, = .008

TRUEB =(-.5,-2, 1,1, -1,1)

AV¢ra8° Fo F1 F2 F1 in Es

Scoring (ML) -1.170 -2.396 1.518 .562 -1.165 1.189
Ridge (HM) -.574 -1.200 .589 .139 -.512 .533
Schaefer PC(·1) -.688 -1.784 .559 .066 -.124 .692
Schaefer PC(-2) -.520 -1.094 .115 -.023 -.341 .372
Iterative PC(-1) -.809 -1.955 .373 -.020 -.236 .692
Iterative PC(-2) -.664 -1.201 .121 -.220 -.559 .569

V¤ri¤¤¢= -1°(ß«) ¤“(ß1) —1"(ß¤)—
—¢‘(ß¤) —1’(ß«) 1°(ßs)

Scoring (ML) 1.511 5.011 15.218 7.347 8.311 5.614
Ridge (HM) 0.108 1.005 1.199 0.897 0.980 0.881
Schaefer PC(-1) 0.174 1.627 1.329 1.155 1.658 1.776
Schaefer PC(-2) 0.099 0.876 0.502 0.620 0.531 0.780
Iterative PC(-1) 0.168 1.533 1.513 1.149 1.566 1.844
Iterative PC(-2) 0.104 1.171 0.673 0.759 0.596 0.940

MSE

Scoring (ML) 44.542
Ridge (HM) 7.281
Schaefer PC(-1) 9.828
Schaefer PC(-2) 6.895
Iterative PC(-1) 9.882
Iterative PC(-2) 7.744
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Table 22. LOGISTIC SIMULATION RESULTS

Response = Bemoulli N= 17 p + 1= 4 Scvcre I11-conditioning

Conditional Analysis on 791 / 1000 repetitions

Eigenvalue Structure

.1, = 2.543
11, = 1.317
J., == .1 18 _
J., = .023

TRUEB ==(·.5, -2, 1, 1)

AV¢*'a·8° Fo in F1 Ea

Sooxing (ML) -.695 -3.532 ‘ 1.112 1.848
Ridge (HM) -.549 -1.989 1.205 .794
Schaefer PC(·1) -.579 -2.343 1.022 1.253
Schaefer PC(-2) -.524 .225 .284 .279
Iterative PC(-1) -.596 -2.561 1.118 1.366 .
Iterative PC(-2) -.588 .268 .292 .285

V¤¤i¤¤¢=¤ ¤°(ß¤)
¤“(ß

1) ¤“(ßz) —¢’(ßi)

Scoring (ML) 0.792 21.885 393.988 352.108
Ridge (HM) 0.339 7.573 38.239 33.921
Schaefer PC(-1) 0.516 9.563 2.532 3.581
Schaefer PC(-2) 0.204 0.315 0.539 0.549
Iterative PC(-1) 0.579 12.129 3.509 3.433
Iterative PC(-2) 0.275 0.335 0.744 0.770

MSE

Scoring (ML) 770.607 ·
Ridge (HM) 80.159
Schaefer PC(·l) 15.680
Schaefer PC(-2) 7.597
lterative PC(~1) 19.322
Iterative PC(-2) 8.281
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Table 23. LOGISTIC SIMULATION RESULTS

Response = Bemoulli N= 17 p + 1 = 4 Modcrate I1l·conditioning

Conditional Analysis on 962 / 1000 repetitions

Eigggvalue Structure

.1,, = 2.307
J., = .868
J., = .743
J., = .082

TRUEB =(-.5, -2, 1, 1)

Av¤r¤s¤ Fo E-1 F: Fa

Scoring (ML) -.783 -3.456 1.617 1.252
Ridge (HM) -.569 -1.396 .687 .508
Schaefer PC(- 1) -.388 - .673 .253 -.130
Schaefer PC(·2) -.352 -.244 .261 -.333
Iterative PC(-1) -.577 - .790 .372 -.265
Iterative PC(·2) -.561 -.301 .385 -.538

Scoring (ML) 1.225 30.639 21.749 19.292
Ridge (HM) 0.258 3.929 3.488 3.549
Schaefer PC(-1) 0.197 1.677 1.337 1.512
Schaefer PC(·2) 0.160 0.506 0.509 0.617
Iterative PC(-1) 0.287 2.049 1.282 1.525
lterative PC(·2) 0.248 0.531 0.630 0.723

MSE

Scoring (ML) 75.268
Ridge (HM) 11.230
Schaefer PC(-1) 8.331
Schaefer PC(·2) 7.121
Iterative PC(-1) 8.601
Iterative PC(·2) 7.766
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Table 24. LOGISTIC SIMULATION RESULTS

Response = Bernoulli N = 17 p + 1 = 6 Severe 111-conditioning

Conditional Analysis on 450 / 1000 repetitions ,

Eigeévalue Structure

.1,, = 3.51 1

.1, = 1.530
1, = .785
.1, = .399
J., = .265
Ä;

=TRUEB=(-.5,-2,1,1, -1,1)

AV¢!”a8¢ Fu Fl F2 F: F4 Es

Scoring (ML) -.761 -3.520 -2.325 5.392 -1.184 1.364
Ridge (HM) -.506 -1.809 .588 1.345 -.874 .905
Schaefer PC(·1) -.608 -2.564 1.166 1.369 -1.040 1.169
Schaefer PC(·2) -.504 -1.256 .643 .763 -.819 .767
Iterative PC(·1) -.619 -3.541 1.228 1.549 -1.053 1.151
Iterative PC(·2) -.568 -1.556 .724 .864 -1.225 .864

V¤d¤¤¤= —v’(ß¤) =’(ß.)
¤“(ßz) —¢’(ß¤) -1°(ß•) ~¢'(ßs)

Scoring (ML) 1.039 38.731 490.073 469.371 37.203 40.695
Ridge (HM) 0.298 8.065 20.308 19.798 7.354 7.126
Schaefer PC(-1) 0.529 21.311 4.074 6.799 20.837 19.570
Schaefer PC(·2) 0.232 3.594 1.506 1.517 2.816 3.582
Iterative PC(·1) 0.571 18.256 3.946 6.226 18.517 23.997
Iterative PC(·2) 0.337 4.911 1.922 2.000 3.579 4.019

MSE

Scoring (ML) 1109.710
Ridge (HM) 63.292

. Schaefer PC(-1) 73.776
Schaefer PC(·2) 13.579
Iterative PC(-1) 72.491
Iterative PC(·2) 16.932
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Table 25. LOGISTIC SIMULATION RESULTS

Response = Bernoulli N = 17 p + 1 = 6 Moderate H1-conditioning

Conditional Analysis on 789 / 1000 repetitions

Eigvalue Structure
1

1,, = 2.857
11, = 1.570
.1, = .846
.1, = .577
.1, = .547
J., = .130

TRUEB = ( -.5, -2,1,1, -1,1)

AV¢1°a8¢ zur -B-1 -Ä-2 F: F4 Es

Scoring (ML) -.897 -3.719 1.582 1.860 -1.512 1.670
Ridge (HM) -.515 -1.282 .554 .516 -.655 .538
Schaefer PC(-1) -.383 -1.376 .082 -.012 -.519 .293
Schaefer PC(·2) -.307 -.717 .067 -.297 -.582 .219
Iterative PC(~1) -.569 -1.824 -.068 -.138 -.704 .294
Iterative PC(·2) -.577 -.953 .138 -.517 -.602 .270

vadmw (ßs)

Scoring (ML) 1.699 47.120 46.141 51.585 31.299 49.014
Ridge (HM) 0.211 3.545 2.892 3.490 2.843 3.273
Schaefer PC(-1) 0.245 3.494 2.852 2.874 3.586 3.519
Schaefer PC(·2) 0.163 1.239 1.150 1.119 1.582 1.251
Iterative PC(-1) 0.317 3.790 3.197 2.894 4.147 3.994
Iterative PC(·2) 0.230 1.567 1.389 1.358 1.686 1.519

MSE

Scoring (ML) 231.763
Ridge (HM) 17.048
Schaefer PC(-1) 19.272
Schaefer PC(·2) 11.519
Iterative PC(- 1) 21.898
Iterative PC(·2) 12.088
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Chapter IX

CONCLUSIONS, COMMENTS AND AREAS

OF FUTURE RESEARCH

It is common practice among to impose various transformations to imple-

ment least squares. Least squares has become a classical and extremely popular method for

solving statistical problems. In certain circumstances, perhaps least squares estimation has

reached a point of overuse, particularly with noncontinuous or heavy tailed or nonsyrnmetric

response distributions. Pregibon (1979) points out that because of the ease with which least

squares can process data, will often transform data to a somewhat continuous,

short tailed and symmetric distribution with stable variance. And certainly re-expressions can

be a very eüective method for analyses. For example, the square root transformation for count

data and the arcsin transformation for proportion data are well documented. However, by in-

corporating a rich variety of distributional forms for the response variable, the structure of the

generalized linear model can often provide a practical and elegant altemative to that of least
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As demonstrated in the preceding chapters, maximum likelihood estimation of the re-

gression parameters maintains asymptotic properties of unbiasedness, etliciency, consistency

and normality. On the other hand, maximum likelihood cannot withstand large variances and

low noncentrality parameters of estimated coefücicnts, among many other undesirable proper-

ties, in the presence of an ill-conditioned information matrix. This dissertation has suggested

several alternate estimation techniques in the framework of the generalized linear model.

Chapters 5 and 6 put forth extensions to generalize Schaefer’s logistic ridge estimator and one _

step adjustment principal component estimator. In addition, the author has developed an it-

erative principal component technique which can be used, if for nothing else, as a resort if in

fact maximum likelihood does not converge.

In as much as the alternate parameter estimators, mentioned above, are adjustments to
‘

maximum likelihood, asymptotic unbiasedness no longer holds. However, variance of these

estimators can be substantially reduced. As indicated by the simulation results in chapter 8,

asymptotically biased estimators are clear winners in reference to mean square error when

compared to the asymptotically unbiased maximum likelihood competitor, even with moder-

ately ill-conditioned information.

As for prediction in the response, maximum likelihood is adequate for predicting at

internal mainstream data combinations of the X space even with severely ill-conditioned infor-

mation. When a researcher is interested in predicting outside the mainstream of internal data,

then prediction can be atrocious. In the case that the researcher is not constrained to some

theoretical model and prediction is of primary concem, then perhaps wary variable deletion via

the diagnostics given in Chapter 4 is the best tactic. On the other hand, if given a theoretical

model with ill-conditioned information, any ofthe asymptotically biased estimation approaches

are a clear choice over maximum likelihood in terms ofprediction variance.

Ground has been broken in terms of developments in choosing a shrinkage parameter for

generalized ridge estimation. An extension to Schaefer’s (1979) harmonic mean method has
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been suggested. In addition, a C, based method for shrinkage has been developed for

prediction·oriented choices of d. Also, Tripp’s (1983) DF·trace has been generalized. Future

study will include further developments of shrinkage parameter choice.

The class of generalized fractional principal component (GFPC) estimators, outlined in

Chapter 7, attempts to place a very broad class of estimators under one common umbrella.

GFPC incorporates a general link function, an entire class of response distributions, and an

array of estimation techniques. In fact if the identity link is used with normal response data,

the GFPC collapses into the framework of fractional principal component (FPC) estimators

given in Lee’s (1986) dissertation. Further research will be devoted to this area of GFPC in

much the same vein as Hocking, Speed, and Lynn (1976).

The author will continue research in the area of asymptotically biased estimators of the

generalized linear model. One possible extensionis observing the biased estimators from an

iterative geometric point of view. The author also plans to continue developing new biased .

estimators. The first developments will be in the direction of a latent root estimator which in-

corporates the eigenvalues of A'A, where A is the matrix
K·‘/*X

augmented with the response

vector g(E). Further simulations need to be done. Extensions to existing software, such as

GLIM, should be pursued.
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Appendix A

Data Set Used in Example
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Determinants of Cancer Rernission

The following data was taken from SAS, SUGI Supplementary Guide (1986). From the ex-
ample below, data on cancer patients are analyzed to determine if the patient characteristics
associate with cancer remission. Information was collected on the following variables.

Y = 1 if cancer remission
0 if no cancer remission

X1 = Cell index
X2 = Smear index
X3 = Iniil index
X4 = LI index
X5 = ~••• p¢I‘3.fl1X'¢

DATA

.....0BS X E E 29 E ä
1 1 .800 .830 .660 1.900 .996
2 1 .900 .360 .320 1.400 .992
3 0 .800 .880 .700 .800 .982
4 0 1.000 .870 .870 _ .700 .986
5 1 .900 .750 .680 1.300 .980
6 0 1.000 .650 .650 .600 .982
7 1 .950 .970 .920 1.000 .992
8 0 .950 .870 .830 1.900 1.020
9 0 1.000 .450 .450 .800 .999

10 0 .950 .360 .340 .500 1.038
1 1 0 .850 .390 .330 .700 .988
12 0 .700 .760 .530 1.200 .982
13 0 .800 .460 .370 .400 1.006
14 0 .200 .390 .080 .800 .990
15 0 1.000 .900 .900 1.100 .990
16 1 1.000 .840 .840 1.900 1.020
17 0 .650 .420 .270 .500 1.014
18 0 1.000 .750 .750 1.000 1.004
19 0 .500 .440 .220 .600 .990
20 1 1.000 .630 .630 1.100 .986
21 0 1.000 .330 .330 .400 1.010
22 0 .900 .930 .840 .600 1.020
23 1 1.000 .580 .580 1.000 1.002
24 0 .950 .320 .300 1.600 .988
25 1 1.000 .600 .600 1.700 .990
26 1 1.000 .690 .690 .900 .986
27 0 1.000 .730 .730 .700 .986
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n

-63
_

PROC MATRIX}
A A

•66 X

22 SIX PARAMETERS REGARDING VARIOUS CRITERIA} _
67 ITERAT=1000;SEED=959145; CONvERGE=.00001s
gg §TER=55;CONV=ITER·1:UPPER=10000;LONER=.00001;MAX=15;MIN=·15;
gg TRUE! IS THE TRUE PARMETER VECTOR}

}
72 TRUEB=·.5/-2 /1/1}
73 FETCH XY DATA=0NEs.;g £*NRON(XY)}ONES=J(N}1}1)}

}
gg :NOTE• PULL OUT VARIADLES OF INTEREST FROM THE XY MATRIX}}
78 X1=XY(„1):
79 X2=XY(,2):
80 X3=XY(„3): ·
81 X4=XY(•4)}
82 X5*XY(}5)}
83 X6=XY(•6)}
84 X7=XY(,7)s
85 X8=(X1+X4)+X3;
gg §9=X1+X3+X7}
gg &ON$TRUCT X OF INTEREST}
gg §;X1IIX9IIX8 } _
gg

V
£ENTER AND SCALE THE X MATRIX} '

. }
- 94 SUM=X(+„);HEAN=SUM8/N}

95 X=X—J(N,1JxMEANs _96 SS=SORT((X!X)(+}))} PRINT SS}
'gg XCS=XI/(J(N,1)¥$S)}

.X

ggü AUGMENT THE CONSTANT TERM}•

18% X;ONESlIXCS} PRINT X}
X

ägä :NOTE• DEFINE THE DIMENSIONS} .
105 P;NCOL(X)sP1=P·1;P2=P—2;P3=P-3;IDEN=I(P)s
I3; 2NE=J(P,1}1)} ONE1=J(P1}1•1)} ONE2=J(P2•1,1)}A i
ggg STARTING VALUES FOR VARIOUS COUNTERS;•

110 BSUM=J(6•P}O)}DSO=BSUM}NOCONV1*0}NOCONV2=0}NOCONV3=O}
111 OLIERUl=0}OLIERL1=0}

-.112 OLIERU2=O}OLIERL2=0}
113 OLIERU3=0}OLIERL3=0}
I1; gOUNT1=0}COUNT2=0}COUNT3=0}
1%; ETA IS THE LINEAR CDMBINATION OF X AND PARAMETER VECTOR}
113 £TA=X!TRUEB}PRINT ETA}

-.1äg MAX AND MIN CONSTRAIN THE ARGUMENT FOR EXPONENTIATING}
. X

122
,DO

LP1=1 TO N}
123 IF ETA(LP1}1)<MIN THEN ETA(LP1}1)=MIN}

N
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126 IF ETA(LP1;1)>MAX THEN ETA(LP1;1)=MAX;
125 END;
126 ¤
127 POISSON REGRESSION
ääg §ONSTRUCT THE MEAN VIA THE NATURAL LINK FUNCTION OF THE GLM;

;
{gg §AM8DA*EXP(ETA);
Ii? ¥ IS THE DIAGONAL MATRIX OF HEIGHTS;

i

1;; ¥=DIAG(LAMDDA);
1;; §VX IS THE INFORMATION MATRIX;
158 xÖx=x•¤vxxz
139 IXVX=INV(XVX); PRINT IXVX;
160 EIGEN L M XVX; PRINT L 5
161 L=L(1:2»*);M=M(•1s2);VPC=M§(INV(DIAG(L)))§M'§

I2? ;RINT VPC;
12; §ENTER AND SCALE SORT(V)X MATRIX FOR DIAGNOSTICS;
166 T;SORT(V);T=T¤X;
167 OUTPUT T OUT=NEN;
148 SUM=T(+»);MEAN=SUMI/N;
169 T=T•J(N;1)!MEAN$
150 SS=SORT((TiT)(+;));
151 T=T8/(J(N;1)§SS);
ägg I=T'¤T;PRINT T;
{gg ;PECTRAL DECOMPOSITION OF C-S INFORMATION FOR CONDITION INDEX;

126 EIGEN LN MM T;PRINT LH; V
ägg START OF MAJOR DO LOOP FOR GENERATION OF DATA;

¤;
160 DO LUPE=1 TO ITERAT;

ägä Y=RANPOI(SEED,LAMDDA);
¤;

122 §NOTE= SET STARTING VALUES;
I;

165 BETAML=0¤0NE;

126 :=.5¢I(N);
168 XMAXIMUM LIKELIHOOD ESTIMATION VIA METHOD OF SCORING;

-1g: ;NOTE¤ SET NUMBER OF ITERATIONS FOR ML;
171 DÖ LPZ=1 T0 ITER;
172 INFORM=X'XV!X;IINFORM=INV(INFORM)ß
175 ETAML=X¥DETAML;
174 D0 LP3=1 T0 N;
175 IF ETAML(LP5;1) > MAX THEN ETAML(LP5;1)=MAX;
176 IF ETAML(LP5•1) < MIN THEN ETAML(LP5»1)=MIN; .

_177 END!
•178 MU=EXP(ETAML); „
179 V=DIAG(MU); _
180 PDETAML=BETAMLß
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‘1:;

=ETAML*PBETAML+ IINFORM§X'!(Y·MU);
;

{gz :NOTE¤ SET DESIRED CONVERGENCE CRITERIA;
185 IF ABS((BETAML•PBETAML)I/BETAML) < CONVERGEXDNE
186 THEN G0 T0 LABEL;

“

187 END:.ä§g hABEL•

132 END 0F MAXIMUM LIKELIHOOD; CHECK ML BEHAVIOR;
;

192 IF LP2 > CDNV THEN BETAML=0!BETAML;
193 CUE1=BETAML'¥BETAML;
194 IF CUE1 > UPPER THEN BETAML=0§BETAML;
195 IF CUE1 < LONER THEN BETAML=0§BETAML;
196 IF CUE1 > UPPER THEN COUNT1=COUNT1+1;
197 IF CUE1 < LDNER THEN COUNT1=COUNT1+1;
198 IF LP2 > CDNV THEN COUNT1=COUNT1+1;
199 IF (CUE1 > UPPER AND LP2 >CONV) THEN COUNT1=COUNT1·1;
200 IF (CUE1 < LONER AND LP2 >CONV ) THEN COUNT1=COUNT1·1;

gg; ;NFO=INFORM;
ggg XÄIDGE ESTIMATION USING HARMONIC MEAN SHRINKAGE;

¤;
205 $HRINK=P8/(BETAML'IBETAML)F
ggg §IDGE=INV(INFORM+( SHRINKSIDEN))!INFORM¥BETAML;

ggg :SCHAEFER'S PC MINUS 1 DIMENSIONB
210 EIGEN L M INFDRM;
211 L=L(1•P1„>; L =L; M=M(„1«P1); L=DIAG<L);L=INv(L)s
212 IINFORM =MxLxF';

äää BETASCHI= IINFORM_!INFORM!BETAML;
•

äää §SCHAEFER'S PC MINUS 2 DIMENSION;
•

217 LQL (1:P2•); M=M(;1:P2); L=DIAG(L);L=INV(L);
‘

218 IINFORM =M¤L¤M's
ggg BETASCH2= IINFORM_¤INFORM!BETAML;

•

gg; XITERATIVE PC APPRDACH MINUS 1 DIMENSION;
•

223 INFORM=INFO;
224 EIGEN L M INFDRM;
225 L=L(1:P1»);M=M(;1:P1);

.-226 Z=X¥M; °
227 EGVL=DIAG(L);IEGVL=INV(EGVL);
228 ALPHA=0¥M'§BETAML;
229 D0 LP4=1 T0 1TERs .
230 ETAPC=Z§ALPHA;
231 00 LP5=1 T0 N;
232 IF ETAPC(LP5•1) > MAX THEN ETAPC(LP5•1)=MAX;

ggg Ea; ETAPC(LP5,1) < MIN THEN ETAPC(LP5,1)=MIN;
1235 MUPC=EXP( ETAPC);

_

236 ALPHAP=ALPHA; _
237 ALPHA=ALPHA+(IEGVL§Z'!(Y·MUPC));
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238 IF ABS((ALPHA·ALPHAP)8/ALPHA) < CDNVERGEXONEI
239 THEN G0 T0 LABEL1ß
260 END; LABEL1¤
gz; :ETAPC1=M*ALPNA;

$22 CHECK ITERATIVE PC DENAVIDR;
X; '

265 IF LP6 > CDNV THEN BETAPC1=0XDETAML3_ 266 CUE2=DETAPC1'XBETAPC13
267 IF CUE2 > UPPER THEN BETAPC1=0XBETAML3
268 IF CUE2 < LOHER THEN BETAPC1=0XDETAML3
269 IF CUE2 > UPPER THEN COUNT2=COUNT2+13
250 IF CUE2 < LOHER THEN COUNT2=COUNT2+1§
251 IF LP6 > CONV THEN COUNT2=COUNT2+1§
252 IF (CUE2 > UPPER AND LP6 >CONV) THEN COUNT2=COUNT2·13
ggg IF (CUE2 < LOHER AND LP6 >CONV ) THEN COUNT2=COUNT2·1;

3
ggg :ITERATIVE PC APPROACH_MINUS 2 DIMENSIONS;

P

257 L=L(1:P2•);M=M(;1¤P2);
258 Z=XxM;
259 ALPNA=0XM'§BETAML;
260 EGVAL=DIAG(L); IEGVAL=INV(EGVAL)3
261 D0 LP6=1 T0 ITER3
262 ETAPC=ZXALPHA3
263 D0 LP7=1 T0 Ni
266 IF ETAPC(LP731) > MAX THEN ETÄPc(LP7r1)=”ÄXl
ggg Eäg ETAPC(LP7,1) < MIN THEN ETAPC(LP7,1)=MIN;

3
267 MUPC=EXP(ETAPC)3
268 ALPHAP=ALPHAs
269 ALPHA=ALPHA+(IEGVALXZ'¥(Y-MUPC))B
270 IF AB$((ALPHA·ALPHAP)I/ALPHA) < CONVERGEXDNEZ
271 THEN G0 T0 LABEL2;
272 END; LABEL2:
ggg :ETAPC2=M¤ALPHA;
ggg SNECK ITERAPIVE PC BEHAVIDR; -

3
277 IF LP6 > CONV THEN BETAPC2=0XIETAML;
278 cUE3=BETÄPc2'¥BETÄPc2]
279 IF CUE3 > UPPER THEN BETÄPc2=Ü*BETÄ”L$
280 IF CUE3 < LONER THEN BETAPC2=0¤BETAML;
281 IF CUE3 > UPPER THEN COUNT3=COUNT3+1;
282 IF CUE3 < LONER THEN COUNT3=COUNT3+1;

-283 IF LP6 > CONV THEN COUNT3=COUNT3+1;
286 IF (CUE3 > UPPER AND LP6 >CONV) THEN COUNT3=COUNT3·1;

ggg IF (CUE3 < LOHER AND LP6 >CONV) THEN COUNT3=COUNT3·13
X

gg; COUNTS MADE FOR CONDITIONAL ANALYSIS;
*3

289 IF CUEI > UPPER THEN 0LIERU1=0LIERU1+1;
290 IF CUEI < LONER THEN 0LIERL1=0LIERL1+1;

-291 IF CUE2 > UPPER THEN 0LIERU2=0LIERU2+13
-292 IF CUE2 < LONER THEN 0LIERL2=0LIERL2+1;
293 IF CUE3 > UPPER THEN 0LIERU3=0LIERU3+13
296 IF CUE3 < LOHER THEN 0LIERL3=0LIERL3+1;

Simulation Program in SAS Proc Matrix ' |76



n

295 · IF LP2 > CONV THEN NOCONV1=NOCONV1+1; °
296 IF LP4 > CONV THEN NOCONV2=NOCONV2+1ß
gg; IF LP6 > CONV THEN NOCONV3=NOCONV3+1;
ägg SONSTRUCTION OF MEAN, VARIANCE, BIAS OF VARIOUS TECHNIOUES;

3
301 B$UMP=BSUM; I$QP=BSQs
302 ISUM(1,§)=IETAML':
303 ISUM(2•¥)*RIDGE'1 _
304 BSUM(3•¥)=BETA$CN1'$ ‘
305 !SUM(4,¥)=BETASCN2'I
306 BSUM(5,§)=BETAPC1'£
307 BSUN(6,¤)¤BETAPC2'J
308 B$Q=BSUM#BSUMs
ggg gägM=BSUM+lSUMP;BSO=I$O+ISOP;

3
311 PRINT NOCONV1 NOCONV2 NOCONV3 OLIERU1 OLIERL1 OLIERU2 OLIERL2
312 OLIERU3 OLIERL3 COUNT1 COUNT2 COUNT3s '

_313 BETAIAR=J(6•P•0)s
314 0ETAVAR=J(6„P„0)s
315 BETÄBÄR(1•l)=B$U”(1p¥)’/(ITERRT*CUUNT1)3
316 IETABAR(2•!)=BSUM(2„¤)8/(ITERAT-COUNT1)3 ‘
317 BETABAR(3•!)=BSUM(3»*)#/(ITERAT—COUNT1)ß
318 BETABAR(4,!)=BSUN(4,§)|/(ITERAT·COUNT1)ß
319 lETABAR(5•!)=BSUM(5,!)8/(ITERAT-COUNT2)I
320 BETABAR(6•*)=B$UM(6•*)9/(ITERAT·COUNT3)3
321 IETAVAR(1,§)=(1#/(ITERAT—COUNT1-1))¢
322 (I$O(1•!)·((ITERAT·COUNT1)IlETABAR(1,§)#8ETAIAR(1•!)))5
323 -BETAVAR(2•!)=(10/(ITERAT·COUNT1·1))8
324 (BSO(2,¤)—((ITERAT-COUNT1)#BETABAR(2•!)|BETABAR(2»ä)))i
325 BETAVAR(3,§)=(18/(ITERAT-COUNT1-1))¢
326 (ISO(3,¤)·((ITERAT·COUNT1)8BETABAR(3,¤)IBETAIAR(3,¤)))B
327 IETAVAR(4•!)=(1¢/(ITERAT•COUNT1·1))#
328 (ISO(4,¥)·((ITERAT·COUNT1)#BETABAR(4,¤)IBETABAR(4,¥)))$
329 BETAVAR(5•¤)=(18/(ITERAT·COUNT2·1))#
330 (BSO(5,!)·((ITERAT·COUNT2)¢BETABAR(5•!)8BETABAR(5•¤)));
331 BETAVAR(6,*)=(1¢/(ITERAT—COUNT3—1))¢ *
332 (B$0(6•¥)·((ITERAT·COUNT3)|BETABAR(6»!)|lETABAR(6;¥)))ß
333 BIAS=BETABAR·(J(6;1•1)§TRUEl')§
334 PRINT TRUEB;
335 PRINT BETABAR BIASß
336 PRINT BETAVARS
337 BIA$2=BIAS¤BIA$'sBIAS2=OIAG(BIAS2);BIAS2=lIAS2¤(J(6,1•1))ß
338 SUMNSE=(BETAVAR¤(J(P•1,1)))+!IAS2B
ggg ;RINT SUMMSE;

-341 _ VARIOUS PLOTS OF HEIGHTED VARIABLES;
342 xs . . ..

343 PROC PLOT DATA=NENs
344 PLOT COL2¤COL3:
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