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Statistics
(ABSTRACT)

In the regression framework of the generalized linear model (Nelder and Wedderburn (1972)), iter-
ative maximum likelihood parameter estimation is employed via the method of scoring. This iter-
ative procedure involves a key matrix, the information matrix. Ill-conditioning of the information
matrix can be responsible for making many desirable properties of the parameter estimates unat-
tainable. Some asymptotically biased alternatives to maximum likelihood estimation are put forth
which alleviate the detrimental effects of near singular information. Notions of ridge estimation
(Hoerl and Kennard (1970a) and Schaefer (1979)), principal component estimation (Webster et al.
(1974) and Schaefer (1986)), and Stein estimation (Stein (1960)) are extended into a regression set-

ting utilizing any one of an entire class of response distributions.
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Chapter 1
INTRODUCTION

1.1 SCOPE OF THE DISSERTATION

Nelder and Wedderburn (1972) have broadened the domain of the usual linear model. Their
development of the generalized linear model (GLM) can accommodate a great variety of response
variables, capturing distributional forms ranging from discrete to continuous, from symmetric to
asymmetric. The model can be a design, regression, or a mixture. The GLM is extremely versatile
and has a wealth of applications including standard multiple regression, analysis of variance, log-
linear models, logistic and Poisson regression, among many others. A detailed overview of the
gencralized linear model is forthcoming in Chapter 2. Of course with a framework so well suited
for a variety of applications, this dissertation must focus only on specific problems. These primarily
include problems in the regression setting with all continuous explanatory variables. The GLM’s
regression parameters are typically estimated via an iterative maximum likelihood process. Conse-
quently, a distributional form must be specified; one which is a member of the exponential family.
Problems can exist with the maximum likelihood process particularly when a key matrix, entangled

in the iterative procedure, is near-singular. The key matrix will be shown to be the information
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matrix for the parameter estimates. Near-singular information matrices can often make desirable
properties of accurate parameter estimation, precise prediction and testing with high power unat-
tainable. Normal response data and the identity link simplify to least squares multiple regression
and near singularity of the information matrix is equivalent to problems resulting from
multicollinearity among the explanatory variables. However, this is not the case in general. Na-
turally, the next step is to develop alternate estimation procedures which alleviate problems asso-
ciated with maximum likelihood in the presence of ill-conditioned information matrices and ideally
restore desirable properties of the regression. Ultilizing the fact that maximum likelihood estimates
are asymptotically unbiased, various asymptotically biased estimation solutions will be developed
and proposed as reasonable alternatives to maximum likelihood in the GLM. This dissertation
concentrates on principal component, ridge and Stein estimation in the regression setting of the
framework of the generalized linear model.

Schaefer (1979 and 1986) has had success in developing alternates to maximum likelihood for
logistic regression. Recall that logistic regression assumes Bernoulli responses and is, in fact, a
special case of the generalized linear model. In his 1979 dissertation, Schaefer has contributed a
ridge estimate for the logistic model having all continuous explanatory variables. Somewhat later
(1986), Schaefer further presented a principal component and a Stein estimation procedure, again
for the logistic model with continuous regressors. Chapter 3 will show that these procedures tend
to be particularly useful for accuracy in parameter estimation and can improve prediction abilities
of the model for data combinations outside the mainstream of the original data. Nonetheless,
maximum likelihood predicts well for internal data combinations. Also in Chapter 3, a review of
literature and a comprehensive overview of logistic regression will be presented. Maximum likeli-
hood, ridge and principal component estimators will be derived from likelihood theory and from
Schaefer’s techniques. In addition, the author has independently developed an iterative principal
component technique which will be presented as an alternate to Schaefer’s one step adjustment to

maximum likelihood.
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Chapter 4 stresses differences between multicollinearity among the explanatory variables and
an ill-conditioned information matrix. Schaefer (1979) claims that the above are equivalent in lo-
gistic regression (as they are in standard multiple regression) in the limiting case of an exact defi-
ciency among the regressors. It will be repeatedly noted that care must be taken in understanding
the true relationship of collinearity to an ill-conditioned information matrix. Moreover, Chapter 4
presents some diagnostic tools for determining the severity of the ill-conditioning in the GLM.
Among the diagnostics are generalizations to variance inflation factors, variance proportion de-
compositions, and condition indices. Some details regarding centering and scaling the data are also
advised.

Chapter S extends the alternate parameter estimation techniques, given in Chapter 3 for lo-
gistic regression, to the framework of the generalized linear model. In particular, Chapter 5 dis-
cusses both of the mentioned principal component techniques (i.e. the one step adjustment to
maximum likelihood and the iterative process) for the GLM. Also variable deletion is discussed
as a viable option. Developments for hypothesis testing and rules for deletion of principal com-
ponents are presented. Lastly, applications for principal component estimation are given for a va-

riety of Bernoulli models, including logistic, probit, linear and extreme value.

Chapter 6 presents the development of a ridge estimator for the GLM. Various methods for
choosing a shrinkage parameter, including a C, based criterion, are generalized. Further, a general

Stein estimation procedure is suggested.

Chapter 7 attempts to unify all the biased estimation techniques of the generalized linear
model into one general class. The class is termed the Generalized Fractional Principal Component
Estimators (GFPC). Some comparisons will be made among these estimators in a very broad

manner.

Chapter 8 will present a simulation study to investigate the relative improvements using one

estimation technique when compared to another. Parameter estimation techniques will be judged
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on variance, bias, and mean square error. Other factors, such as sample size, number of explanatory
variables, and severity of ill-conditioning of the information matrix will be examined for their re-
spective impacts. An assortment of experimental settings are investigated, incorporating

distributional forms of the response variable.

The concluding chapter of this dissertation will present some additional problems in the GLM
which have not been addressed. Some suggestions will also be made as to present the GLM as a

reasonable option to least squares regression.

1.2 NOTATIONS OF THE DISSERTATION

For the most part the author has tried to maintain a notation consistent with that of standard
text books and major journals in the field of statistics. However due to a lack of consistency among

statisticians, it is necessary to to mention some conventions used in the upcoming chapters.

The symbol N is reserved for the total number of observations, whereas the number of ex-
planatory variables (regressors) is given by p (not including the constant term). The matrix of
centered and scaled regressors is given by X and has dimension N x (p+ 1). In general, capital
letters, such as 4, denote a matrix with entries {a;}. The transpose of a matrix is given by 4’. The
inverse of a nonsingular square matrix, B , i3 given by B-!, the generalized inverse is denoted as
B ~, the trace is symbolized by tr(B). Lower case underscored letters, such as x; or g, are vectors.

Typically observation regression vectors of the data X matrix are given by x’, for ISi<N.

Standard mathematical symbols are used throughout the dissertation. Among the most
common are limit (lim), summation (I), integration (), differentiation (d/dp or 3/ ). The
derivative with respect to 6 of a function, ¢(8), can be denoted by ¢’(8) ( ¢(6) for the second de-

rivative, etc.).
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Standard statistical notations include expected values of a random variable, £(Y ), variance
of a random variable, Var(Y). Usually hatted vectors, e.g. é, refer to the maximum likelihood es-
timate of the unknown parameter vector, § . Equality is denoted with ‘=", whereas approximate
equality is denoted with ‘~’. The symbol ‘~’ signifies ‘is distributed as’. The symbol * ~ ‘ denotes
‘is asymptotically distributed as’.

INTRODUCTION -5




Chapter 11
THE GENERALIZED LINEAR MODEL (GLM)

2.1 INTRODUCTION

Many regression problems can link the mean of the response variable’s distribution to a linear

combination of explanatory variables x;, x;, ..., x,. If 8, are regression parameters and

&"= [l, X1y X219 eoe s xlp]

E' = [ﬂO’ Bl! oo ﬁp]v

then x',8 is a lincar combination of the X explanatory variables.

When continuous responses, Y, are modelled as a linear combination of explanatory variables,

there may be cases when the data exhibits extreme nonnormal tendencies. For the model,

EY)=p=XpB

Whem X~N(XE1 021)' (2-1.1)

THE GENERALIZED LINEAR MODEL (GLM) 6



the assumption of normality in the response distribution may be inappropriate. Pregibon (1979)
points out that, more often than not, least squares estimation is performed without regard to
normality of the data. The distributional form of the response variable is not typically identified,
unless large amounts of data are collected. Nonetheless, least squares can be an adequate estimation

procedure if the data is reasonably symmetric, continuous and not heavy tailed.

However, there do exist various experimental settings when the standard linear model, defined
in equation (2.1.1), is not appropriate for model building. For example, consider survival models
utilizes the reciprocal mean lifetime expressed as a linear combination of explanatory variables,
p~t=XB. Log-linear models employ the log of cell means modelled as a linear function of pa-
rameters. Situations could arise when discrete responses are collected which are binomial in nature;

in this case logistic regression,
logit( z) = XB, (2.1.2)

would be appropriate for model building.

Responses having obvious asymmetry or a discrete nature require a method of estimation
alternative to least squares. A more global approach to model building is given by the generalized
linear model (Nelder and Wedderbum (1972) and McCullagh and Nelder (1983)). Equations
(2.1.1) and (2.1.2) can be rewritten as

2(w) = XB, (2.1.3)

where yu, = E(Y,). Notice that the function g links the systematic component, x’8, to the mean,

By

As equation (2.1.3) suggests, the generalized linear model is formulated by

i) the distributional form of the response variable (in order to implement maxi-

mum likelihood estimation techniques);
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ii) the choice of the linking function, which in most cases will be chosen to be
the natural link (developed later);

iii) the choice of explanatory variables responsible for best linking the systematic

component to the mean of the response variable.

A generalized linear model is constructed with the combination of the response’s distributional form
and the link function. If the response’s distribution is nonnormal, then the mean response will be
expressed nonlinear in §.

22 EXPONENTIAL FAMILY OF DISTRIBUTIONS

A class of distributions capable of including many deal of discrete random variables
(success-failure, counts, etc.), as well as a number of continuous distributions (normal, asymmetric,

restricted on the domain, etc.) is the exponential class of distributions.

Consider a random variable, Y, having a distribution depending on a parameter 8 of the form
S »:8) = exp{[a( »)5(0) + c(6)1/ 4( &) + d(1, $)}, (2.2.1)

where g, b, ¢, d, q are known functions. If 5(0) = 0, then call § the natural parameter. If a(p) =y,
then equation (2.2.1) is in a simplified form developed later. The natural parameterization is pre-

sented in upcoming results. Let the nuisance parameter ¢ be a constant for all Y,

The exponential family is a rich class of distributions containing the normal, gamma, Poisson,
binomial as well as many other distributions. Table 1 and Table 2 contain some distributions be-
longing to the exponential family. ¢ and w, will be defined in equation (2.3.1). The Poisson model
is commonly applied to log-linear models for contingency tables. The normal model is the basis

THE GENERALIZED LINEAR MODEL (GLM) 8



for analysis of variance, as well as testing in standard multiple regression. The binomial is often
used in dose-response problems. Other particularly common exponential distributions are the
gamma, used in life testing, and the inverse Gaussian, used in nonsymmetric regression.

The members of the exponential family have a general log-likelihood function of the form
I=[a(»)X0) + c(0)]1/ q(¢) + d(», $). 222

The score, as defined in Bickel and Doksum (1976) with certain regulatory conditions, is

al
U='a—
EWU)=0 (2.2.3)
2 d
Var(U)=E(U)=—E[—a‘7].

Notice

e[ 2L]=[ainarimr e

E[i;-:;z’-]=f(a’1nf/ao’)fdy
= [t -eirr
=[5 &-[wrine
--[w*ine

and -E[—goi]2=-f(alnf/ao)2fdy

=~ intsa
--[wrine,

where f denotes f( y; 8). For the exponential family, as given in equation (2.2.1),

THE GENERALIZED LINEAR MODEL (GLM) 9



Table 1. VARIOUS EXPONENTIAL FAMILY DISTRIBUTIONS

Distribution Bounds

Poisson (1) ye N+, 1>0

Neg. Binomial (7, p) ye N, 0<p< 1, re Nt(known)
Binomial (n, #) 0<y<ne N+, O0<zn<l

Normal (u, o%) —o0<y<oo, —coSusoo, 2>0
Gamma (7, 1) y=20, >0, r>0

Unit Inverse

Gaussian (u, 1) 720, —coSu<oo, *=1

THE GENERALIZED LINEAR MODEL (GLM)
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Table 2. PARAMETERS IN THE GLM

Natural Parameter

Distribution 0 = b(9) ()] d(y, ¢) ¢ w
Poisson(4) In(2) e? —1In(y") 1 1
Neg. Binomial(r,p) In(l — p) rin(l — ef) m( r+r= ‘) 11
Binomial(n,x) I %) —nln(l +¢) 1a(7) 11
Normal (u,6%) g ~62)2 — [ +InRrah]2 o 1
—~ Dia(y) +rin _

Gamma (7, 4) ~Ar (-0 11:1((}1’)0)) @y
Unit In

Gaussian (n, 1)  —pu-3/2 J=28 2=l (2 1 1

THE GENERALIZED LINEAR MODEL (GLM)
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-gé— = U=[a(y)6'(8) + ¢©)] | 4(¢)

21 (2.2.4)
Ll =[O+ <O ().
Thus
i = Ea(Y)] = —¢(6) | ¥(0) 229
from equation (2.2.3). If a(y) = y and b(8) = 8, then E(Y) = p = — ¢'(8).
It follows,
E(=U)=[ ~b°(6) ELa(»)] - < "©)]] 4(#)
and Var(U) = EUY) = [¥6) | 4 $)F VarLa( )] (229
Combining equations (2.2.5) and (2.2.6)
Var[a(¥ )] = g$)[b ‘@) ) - ¢ (OF )] [ O)T 227

Notice when ¢( ¢) = 1, a() = y and 5@) = 8, then Var(¥') = —c'(8) =%E(Y). Thus Var(Y) can
be thought of as the rate of change of the E(Y) with respect to 8. For normally distributed re-

sponses, -568— E(Y) is constant, giving homogeneous fixed variance.

Naturally, if Y;, Y, ..., Yy are independent random variables with the same exponential dis-

tribution, then the joint density is given by

N N .
S2:0) = exp{[H0) Y a(y) + Ne(®)] | ) + ) d(3 $)}, (228)
ina]

{=]

N
with 3 a( y,) the complete and sufficient statistic for &8) (Cox and Hinkley (1974)).
=] .

THE GENERALIZED LINEAR MODEL (GLM) 12



2.3 FORMULATION OF GENERALIZED LINEAR MODELS (GLM)

The framework of the GLM allows the response variable to have any distribution from the
exponential family when a( ) =y. Thus Y can be from one of many discrete or continuous dis-
tributions. Furthermore, the relationship between the response, Y, and the explanatory variables
does not have to be linear, as in the usual regression setting.

Consider Y, Y, ..., Yy as independent random variables each from the exponential family
with the following conditions (Nelder and Wedderbum (1972)):

i) the scale parameter ¢(¢) = ¢ | w,, where w, are known weights;

ii) the distribution of each Y, is such that a(y) = y and depends on a single pa-
rameter 8,, that is the Y, are not identically distributed and

S(1:8) =exp{[ yb(0) + c{0)Iw; | ¢ + d yp $)}: (2.3.1)

ili) the form of the distribution of all the Y5 are the same so that the subscripts
on b, ¢, d are not needed.

Wirite the joint probability density function of Y, 15, ..., ¥y as

N
f( @ =exp| Y {b0) + )| ¢ + (3, )} |
=1 (2.32)

N
18; y)= D ([b(8) + c(O)Iwy | & + d( 3, $)}-
fum]

Equation (2.3.2) is overspecified. That is there are as many parameters to estimate as there are

observations. Thus, for the generalized linear model, consider a smaller set of parameters, as given

THE GENERALIZED LINEAR MODEL (GLM) 13



in equation (2.1.3), B, By, ... » B, (P < N) . Given the set of p explanatory variables, the generalized
linear model utilizes the relationship,

satisfying:

) =x"B, (2.3.3)

i) = EY)

i) g is a monotone, twice differentiable function with an inverse (ie. g-'=h

exists) called the link function;

iii) x’,isa (p+ 1) x 1 row vector of regressor variables (later developments will

require continuous covariates and a constant);

iv) B is the unknown parameter vector;

v) the estimation of g does not depend on having an estimate of ¢.

Notice that in the special case when the systematic component

g) =&\ =b0)=6=~c (),

then equation (2.3.2) can be expressed in terms of the natural parameter . Hence the natural link.

In terms of the (p+ 1) dimensional g vector using the natural link, the log-likelihood be-

comes

N
KXB: ) = ) ALyix' B+ o ®Iw ] & +d(3,, $)}- (234)
{m]

Using the natural link function 5(6) = @ = x’g and setting the derivative of equation (2.3.4) to zero,

“normal-like” equations can be given as

THE GENERALIZED LINEAR MODEL (GLM) 14



N
0=-2-1X8: ) =D xi(n+ @B ¢

74
=~ (2.3.5)
= xi(n= Bl 6,
=T
forj=0,1,2,..,pand A=g-l. Equivalently,
0=X'(p — h(XB)). (2.3.6)

2.4 ESTIMATION OF PARAMETERS IN THE GLM

Recall that the exponential family log-likelihood function for independent Y, is

N N
18 p)= Y (Dd0) + cO)Iwi | 8} + ) (3 §)
fam] il
185 ) = (b8 + <Oy | 4} + d 3y, $),

where E(Y) = u, = —c’(6) | ¥’(6). Further, g is a monotone and twice differentiable function such

that

gu)=x"1g=n. (2.4.1)

One advantage of employing maximum likelihood procedures for estimation of f is that the
exponential family ensures an unique solution to the set of equations ?aEI— = 0 (Cox and Hinkley

(1974)). Notice by the chain rule that
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N
al =z o 06, du Omy
1 60, a,u, am GE

X (- w)
= ’ 1
-;&h( " 7ty (24.2)
N
=Y,
il
where A= g-!. Equation (2.4.2) follows from

ol
2o, = @)+ ¢
= b0l - uilw | ¢
a0 du, -1
Era [ag'] =['6)T | [6(@)c'6) ~b'(6)c"(6)]  from eq. (22.5)
4 i

= ¢ | [wb'(6)Var(Y)] from eq. (2.2.7)

In equating equation (2.4.2) to zero, “normal-like” equations are formed for any general link
function. The Newton-Raphson approach uses the following Taylor series expamsion of
ol | 3B about B, ,

al
B =8 ag A agag lgag€—E0)=

where

’ ’ Hi a"l
azaé Z_:,x:(yz w2 aé, (K (np) | Vax(¥p] — ;mh(»,,)/vﬂ(r)]a Z=H

from equation (2.4.2). H is often termed the Hessian matrix. This implies the iterative scheme
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Ao A o -1 ol ,
E"E’"'[ 3Bop’ ]e-é,.l o8 la=bo (243

Equation (2.4.3) can be simplified computationally by replacing

. &1 a _al - )
208 E[a_@z"] = ’E[@ a—é.]=—;m’:[h’(m)] lVar(Yz)=—<b,b

where @ is the information matrix, which is called the method of scoring. It follows that the
method of scoring has the iterative scheme

Br=Biy + [0, T 'a% | Bmpis’ (2.4.9)

where ¢ denotes the iteration step. The method of scoring corresponds to the ordinary least squares
solutions when the identity link is used with normal data.

N
Notice that the contribution of Y, to ®,,, denoted by @i, where @, = > ¥/, is given by
i=]

[,
Oy =E| = —~
J | 9B 0By ]

=k

(24.5)

(51— XXk [ iy ]2
| Va(p? L o
Var(Y)

N
O = ) xikilxy, (2.4.6)
im]

where k! = [#'(n)} | Vax(Y). Therefore,
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®=XK'X, where K = diag {k3').

Notice when the natural link function is used the K -! = diag{Var(Y))} is particularly simple. This
follows since # = @ = — ¢’~'(u) and du | dn = Var(Y').

Now the iterative scheme in equation (2.4.4) can be re-expressed, using equation (2.4.2), as

N
A A A . A on
Be=Biy + (XK LX) I[Z-&kul (7= ) a_“i }
3 t—1

N
A . A, A A, O (24.7)
=(XKL1X) ‘[z ki % [K'lét—x + (- —a:i ]]
b

t—1

=XKL X)YXRY p
—1 —1 Ze—1»

where y,* = n, + (3, — u,)( 9n, | 0p) evaluated at é,_,. Note that in the most general setting, the es-
timate of K ! and y,* must be updated at each iteration step until convergence of the parameter es-

timate since they are a function of the iterated 5, ,. Observe that
Var(y*)=K and §~ N@, (XK X)) (2.4.8)

Asymptotic distributional properties will be developed in section 2.5. The iterative scheme, given
in equation (2.4.7), is consistent with the Gauss-Newton procedure outlined in section 3.5 for the
logit model. Also notice the similarity of equation (2.4.7) to that of reweighted least squares.
Nelder and Wedderburmn (1972) have shown that the solutions to the “normal-like” equations given
in equation (2.3.5) are equivalent to an iterative weighted least squares solution working with the
variable * . Previous to Nelder and Wedderburn’s 1972 work, Fisher (1935) had used this iterat.ive
weighted least squares scheme in the special case of binomial data using the probit link. Somewhat
later, Finney (1947) used a similar approach to that of Fisher’s with binomial data but with a logit

link function for fitting dose response curves.
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As an example, consider the common case of the generalized linear model, that is the normal
model,

y=XB+sz, (24.9)

where the & ~ N(0, 0%) and independent. It follows that ¥,~ N(x'8, 0% and u,=x'f. When
¢ = 0% is known and w, = 1 for all i, the normal distribution is a member of the one-parameter ex-
ponential family. In this example, g(u,) = u, = 0,; thus g is the identity link.

Consider, as another example, Y, ~ Poisson(4,). Using the natural parameter as the linking
function, equation (2.4.10) holds.

;= g(u) =In(4) = x",B. (2.4.10)

Hence u =4, = h(x’ ) = exp(x’,f).
As a third example, the binomial-logit model with the natural link function gives

8(pp = logit(7) = x';. (2.4.11)

It follows then that  u, = A(n,) = n(1 + exp( — n)))*.

The negative binomial is also a member of the exponential family when the parameter 7 is

treated as known.

f(») =exp[yzln(l —p)+rin(p) +1n<'+i— 1)]

8;=gu)=In[p({l —p) /I pl=X'B=n.
w=(1—=p)|p=hin)=e"|(1—e".
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Notice that when 7= 1 the negative binomial is reduced to the geometric distribution.

The use of the Gamma (r, 1), as an illustrative example, is instructive but not as straight for-

ward as the previous examples. Recall that for y > 0,4 > 0,and r> 0,

_ qr =1 _=~yA
f(y)— A y e 4 /F(r) (204012)
= exp{ —=yi + (r — Din(y) + rIn(2) = lnI"(r)}.

Observe that E(Y)=r|A=—c'(8) and Var(Y)=r|i3=—¢g($)c(8). See equation (2.2.7).
From the form of the exponential family,

S(y)=exp{[y6 + c(0)]/ 4( ) + (3, $)},

the above equations yield 8 [ ¢(¢)=—A. Thus —8c"(@)=c'(6)=—r/A. This implies that
c(@)ocf-l. Hence 0 =~—A4|r, g(P)=r-'=—pu"l, ¢(0)=—In(—0) giving

S(p) =exp{[y0 —c(0)]/ q(¢) + (r = 1) lny + rlor — 1aI'(7)}.

A common link function is u = #~!. Note that Var(Y) = ¢(¢)u? (McGilchrist (1987)). See Table
3.

2.5 INFERENCES CONCERNING THE GENERALIZED LINEAR MODEL

For the generalized linear model, define the score with respect to g, to be

-/ A
U= o8 0,1,....p. (2.5.1)

In obtaining the maximum likelihood parameter estimates, I/ = (U, Uj, ..., U,)’ is set to zero, where

EWU)=0 and EQUU)=0. (2.5.2)
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Table 3. NATURAL LINK FUNCTIONS
Natural Link
Distribution gu)=0=n h(n) kit
Poisson (1) In(4) exp(n) exp(n) >0
Neg. Binomial (7,p) In(l-p) —(l—exp(—=n)? ef(l—e)P>0
Binomial (n, x) In( %) (1 + exp(=m)?  O<ey(l+eP<.25
Normal (4, o) nla? n? 0?>0
Unit Gamma (1,4) -A -yt n2>0
Unit Inverse
Gaussian —u2/2 (—2n)? 64n2>0
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By an extension of the Central Limit Theorem (Feller (1966)), the asymptotic distribution
of U is multivariate N(Q, @) ; hence

Vo'~ o (2.5.3)

The multivariate central limit theorem can be found in Rao (1967). The application to the
vector of scores follows. Consider equation (2.4.2). Let z,, ..., 7y be a sequence of independent
(p + 1) dimensional random vectors such that E£(z) = 0 and the dispersion matrix D(z) = ®. De-
fine

5= 5 K)oy

for 1Si<N. Now E(z)=0 since z, is a vector of scores (see equation (2.2.3)). Further
D(z) = @ # 0 (see equation (2.4.6)). The z, are independent since the Y, are independent. More-
over, ® = XK -1X is finite, nonnull by assumptions given in section 3.6. Standard Lindeberg con-
ditions outlined by Rao are met. Hence, the above result, given in equation (2.5.3),

N
U=) 7~ NQ,O).
b

Asymptotic normality of scores give asymptotic normality of maximum likelihood estimates of the

parameters, as shown in equation (2.5.7).

When convergence is obtained using the iterative equation (2.4.7), consider the unique max-
imum likelihood estimate, é Define § to be the true parameter vector. The Taylor series expan-

sion of U(g) about § (Dobson (1983)) is
A A A
UB) = UB)+ HB)E - B), (2.5.9)
where H is the Hessian matrix evaluated at the maximum likelihood estimates, é Thus,
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U@ = U® -0 @ - B, 25.9)

since ® = E(—H). This implies that
E-p=oL (2.5.6)
since U(é) = () by definition. By taking expectations of both sides of equation (2.5.6),
E@ =f asymptotically,
since E(U) = 0 from equation (2.2.3). Similarly
HE-pE-p1=0" EULIOT =07,

since @ = E(U U') and symmetric (provided that ® is nonsingular). Thus for large samples

B~ v, o

st @57
E-B'PE-H~ xp+1,00

where the mean is of order N and the variance of order N-2 (Bartlett (1953)). Note that for normal
response data, the distributions are exact rather than asymptotic (Dobson (1983)).

2.6 HYPOTHESIS TESTING FOR THE GENERALIZED LINEAR MODEL

Define the overspecified or maximal model as having as many parameters as observations.

Thus the maximal model can be thought of as having the parameter vector

Brax =[B1: B2 -, BN T
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To determine whether another model with (p + 1 < N) parameters § = [f,, B,, ... , B, ] is adequate
relative to the maximal model, it is reasonable to compare their likelihood functions. If
L(B; y) 2 L(Bmxe: ¥), then the model describes the data well. However, if L(§; y) < < L(Bmui 2) then
the model is poor relative to the maximal model. This suggests the likelihood ratio test using the

statistic

2= LBmasi ) | LB: 9) 26
or ln).=1(3ma;2)—l(ﬁ;z)
If 2 is large, then claim § is a poor model.

The sampling distribution of In 4 can be approximated by the following Taylor series ex-
pansion of XB; y) about the maximum likelihood estimator é

KB )= K p)+ @ - B U + 1@ - By HB G- D). 2.62)

where H(é) is the Hessian matrix evaluated at the maximum likelihood estimate. Recall that
U@ = ( by definition and ® = — E(H ) for large samples. In giving a distributional result, equation

(2.6.2) can be rewritten as
20E; ) - B PI=B =B ®@ - B~ rr0 (2.6.3)
from equation (2.5.7).

Utilizing the asymptotic result in equation (2.6.3), a goodness-of-fit measure can be con-
structed. Nelder and Wedderburn (1972) define the scaled deviance as

§=21n 2 =2 mai ) — 18 D1, (2.6.4)

where é is maximum likelihood based on p explanatory variables and a constant. Notice that the

scaled deviance can be written as
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N
§ =2 A& fimaci ) — 1 i 0]

=}

N
=2) &
[

As an example, the scaled deviance for Poisson responses, as defined by Bishop et al. (1975), is the

G? -statistic (since ¢ =w, = 1),

N
02 = SPSN = 22 {}’[ ln[C'(&'zﬁ) /yl] —C,(K'IE) "'yl}'
=1

N A
The expression Y [ —¢’(¥',8) — ».] sums to zero if the natural link is used. The scaled deviance can
=]

be broken down into the following components

8= 2 {UB s ) = KBmax: )1 — UEs ) = B )1 + [WBamaxi ) — 483 ]

. 2
~ AN=-p~1,0"

(2.6.5)

when X ) & 4B;p) (ie. the data represents the maximal model well); otherwise, equation
(2.6.5) has an asymptotic noncentral x? distribution.

In testing a current model against a full model, an useful hypothesis test is of the form

HyB=Bc (g+1)

Hy:B=Br (p+1), (2.6.6)

where ¢ <p< N and H, is nested in H,. The subscript F denotes the full model whereas the C
denotes the current model of interest. H, is tested against the alternative by using the difference in

the log-likelihood statistics, producing a scaled deviance
» A A
S =Sc—Sp=2[lgr ) - KB V] (26.7)
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If both H, and H, describe the data adequately relative to the maximal model, then

)
Sc™ AN-¢-1,0"

.2
R S (2.6.8)

* 2
and S ~ xp_q.o,

provided S* and Sy are independent. Notice that if ¢+ 1 = p, then S* ~ x},. The degrees of free-
dom, p — ¢, can be thought of as the number of restrictions imposed on the null hypothesis.

Perhaps a more common test in practice would be the one of the form

H;:CB=0, (2.6.9)

where Cis a ¢ x (p + 1) matrix of constants. In particular, the test for the deletion of a single pa-
rameter would yield the choice of C= (0, ...,0, 1, 0, ...,0).

It follows under H,,
2 1ol ol o 2
BCCOC)Y CB~ xg (2.6.12)
Hence, the test for a single parameter simplifies to
A - .
B 105" ~ b (2.6.13)

The above statistic is compared to the appropriate percentage point of the asymptotic chi-square
distribution.

2.7 DEVIANCE VERSUS SCALED DEVIANCE

Notice that the scaled deviance in equation (2.6.7) can be rewritten as
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S* =20l -I]
N ~ A - A
= 218)), w6 — 8) + e@) — (8] 27.1)
i=1
~ x?V-k ]
where § = X,é, and é:- Xcéc. A difficulty in using S" as a practical measure of goodness-of-fit is

that it is a function of ¢, which is unknown for two-parameter families. Hence an estimate of ¢

is desired. Define

N
D=¢S"=2) Wiy~ 0) + @) - c6)]. 2.7.2)
f=]

D is termed the deviance of the current model relative to the full model. D is a known quantity
when given the data and the maximum likelihood estimates, 8. The deviance will be shown to be
a common measure of goodness-of-fit. To estimate ¢, D is computed using an overspecified full
model of rank N and a current model of rank k. The dimension & is determined by choosing the

largest reasonable current model. Since S° is distributed x3._, , an estimate of ¢ is given by

A

¢=Dyr|(N—K) . (2.7.3)

2.8 GOODNESS OF FIT IN THE GENERALIZED LINEAR MODEL

In the usual linear model with the identity link, certainly one of the most common measures
of goodness-of-fit is the deviance which simplifies to the sum of squared error, SSE . SSE is a

measure of how well the data is represented by the model. The quantity SSE is given by
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N N
SSE=) (n=2 =) (5= " 8.0

im] =1

SSE will be zero and without degrees of freedom when the data is perfectly fit by an overspecified
model which assigns one parameter for each observation. On the other hand, SSE reaches its other
extreme when only a constant term is fit. That is in the absence of explanatory variables, the model
fits the mean response and SSE is the total variance of Y with N — 1 degrees of freedom. An
intermediate number of parameters, p , is typically fit to the data, where 1 < p< N. Of course, other
statistics and diagnostics based on prediction and parameter estimation will have to be taken into

consideration when choosing an appropriate model for the researcher’s use.

Pregibon (1979) points out a natural extension of the SSE, in the generalized linear model,
is the relative sum of squared deviations, given by

N 2
2 Z (}’l—ﬁl)
X = P

im] o

& ke dy
) c’(x,ﬁ)

(2.8.2)

The natural link function is required for the last expression to hold. Apart from o2, equation (2.8.2)
simplifies to SSE for normal data. Moreover, the versatility of x? is seen for binomial and Poisson
responses. For these data, 3 is the standard goodness-of-fit test statistic used in log-linear models,

multinomial data, and contingency tables. That is

N
= Z (- /e (2.8.3)
im=]

where o, and ¢, denote the observed and expected cell frequencies respectively.
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Certain distributional properties do hold for the 3 statistic. For normal responses with the
identity link, x? has an exact x}._,, distribution. For some nonnormal exponential-family response
data, x? varies in how well an approximate 2 distribution is followed. Despite the fact that the x3
statistic can be poorly approximated by a x2 distribution, Pregibon (1979) gives examples where
this is of little consequence. Asymptotic arguments suggest that if the primary use of x? is to
compare competing models rather than an assessment of fit for a particular model, then
Ay? = x} — x% is approximated well by a x2_, distribution, where p — ¢ is the number of restrictions
imposed on the full model.

2.9 SCREENING REGRESSORS IN THE GENERALIZED LINEAR MODEL

In least squares regression with normal responses, various diagnostics have been developed
to effectively screen explanatory variables in the pursuit of the best possible subset model. Among
these diagnostics is the all possible regressions computer routine which can effectively and quite
quickly entertain up to k = 10 regressors. All of the 2* —1 possible regressions are computed while
giving several criteria for the researcher to base his or her choice on. The criteria given in the
SAS pressall macro, developed at the Department of Statistics, Virginia Polytechnic Institute and
State University (Myers, S. (1984)), are MSE, C,, R, and PRESS. Combining the pressall routine
with collinearity and outlier diagnostics (with a k < 10), more often than not the model selected is
superior to that selected by a forward selection or backward elimination stepwise procedure which

ignores problems associated with multicollinearity.

Lawless and Singhal (1978) have developed an all possible regressions routine to efficiently
screen explanatory variables in nonnormal regression models. Since the algorithm is quite general,
it certainly includes the class of generalized linear models. Scaled deviance is used as a criterion for
the best subset model. Two approximations to scaled deviance are presented to speed up the

computation. The paper includes examples from exponential, Poisson and logistic regression and
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with k= 8. The examples show the accuracy of the two approximations to scaled deviance in de-

termining the best subset model.

Alternatively to the all possible regressions routine, C, has been mentioned as a method to
assess the quality of a subset model (see Mallows (1973)). The C, statistic is oriented toward the
predictive capabilities of the model by giving the mean squared error for a p-regressor candidate
model. Define

i Mss(zf»m»
tnl 4

_ i Var( ) + [Bias )T

=l 4 (29.1)

(s* = AN —-p—1)
=(p+1+ 3

-4
SSE,
g ——=N+2Ap+1),

g

C=

where SSE, is the sum of squares error for the p regressor subset model and o2 is the mean squared
error for the full & regressor model, and p + 1 corresponds to the tr(# ) = tr(X(X" X )-'X").

C, attempts to strike the proper balance between the impact of overfitting (i.e. inflation of
Var(})) and the impact of underfitting (i.c. inflation of Bias($)). In fact, C, is a compromise be-
tween the complexity of the model ( p) and goodness-of-fit (SSE,). Plots of C, vs. p will summarize
the candidate models. The value C, = p suggests that bias is absent. However, candidate models
having a C, less than p usually suggests that s? is less than o . Since C, has an approximate ex-
pectation of p + 1, models with C, > p usually suggest that the data is not represented well by the
model.

Pregibon (1979) presents a very interesting and natural generalization to Mallow’s C, statistic
for the generalized linear model. Define
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C) =Dyl $)—N+2p+1), (2.9.2)

where $=D" | (N — k) presented in equation (2.6.14) and k is the full number of regressors.
Notice that C; = C, for normal responses with the identity link.

The value Dy, | $ given in equation (2.9.2) can be replaced by the »2 statistic given previously
in equation (2.8.2). See equations (2.7.1) and (2.7.2). In Pregibon’s (1979) development of C;, he
chooses to use Dy, l$ over x? for nonnormal models to make a connection between C; and

Akaike’s (1974) Information Criterion (AIC). Akaike developed

AIC,= —21F; )+ Ap+ 1)
= Dyp— 2B ) +Ap+ 1) (293)
= C) = 2 (B maxi ) +N,

when $ = |, The statistic 4/C, will punish models with large numbers of explanatory variables in
the same way C; does.

2.10 CENTERING AND SCALING THE EXPLANATORY VARIABLES

Quite often it is convenient to look at standardized columns of the X matrix so that the
variables are unitless (Myers (1986)). Centering and scaling often help the analysis in, for example,
principal components regression to make sense. Generalized ridge regression also has an appeal to
centering and scaling. Further, inversion problems can exist for X’ X when the explanatory variables
have extremely different magnitudes. For sake of consistency, throughout this dissertation the ex-
planatory variables will be presented or assumed as centered and scaled. The columns of the X

matrix can be represented as
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X=(01 % % - %)
where X, represents an independent variable. Redefine

X=(x* * .. X%, (2.10.1)
where

x* =SS g - X))

N
Xi=N 1Z‘,"ij
=
N
SSp= Z(xij - X
J=1

X* is ( p x p) matrix and R = X* X* is in the usual correlation form.
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Chapter 111
LOGISTIC REGRESSION

3.1 INTRODUCTION

Up to this point, this dissertation has been quite general. That is, within the framework of
the generalized linear model, the response variable can be from any distributional form in the ex-
ponential family. To broaden an already general scenario, the researcher is not required to use the
natural link even though it is the function most often used to connect the mean response to the
systematic linear component. Upon data collection, both the distributional form of the response
and the link function must be determined in order to implement an iterative maximum likelihood

estimation technique.

As a specific case of the GLM, Schaefer (1979 and 1986) considers alternatives to iterative
reweighted maximum likelihood parameter estimation when the response is Bernoulli. Schaefer
has developed both ridge and principal component techniques for logistic regression. Maximum
likelihood is particularly to be avoided in the presence of an ill-conditioned information matrix.
Schaefer’s work is much of the motivation behind this dissertation. The author will expand on
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Schaefer’s principal component logistic regression (PCLR) parameter estimates. Specifically, an
iterative PCLR technique will be developed as an alternative to Schaefer’s one step adjustment to
maximum likelihood. Both one step and iterative principal component estimators, as well as ridge
estimators, will be extended to the GLM in upcoming chapters.

3.2 DEVELOPMENT OF LOGISTIC REGRESSION

It is not uncommon in research to obtain dichotomous data on a number of individuals. For
example, each individual may be given or denied a car loan, may favor or oppose a political issue,
may or may not acquire a disease. Usually this binary datum is recorded along with a set of the
individual’s characteristics; perhaps levels of blood glucose, antibodies, and urine protein are on a
medical record. Since the outcome frequently depends on the individual’s set of characteristics,
logistic regression equations can be developed to model and predict the probability for a future in-
dividual’s outcome when given his set of characteristics. The work here will specifically deal with
continuous explanatory variables. Two important and desirable properties of the logistic regression
model are good prediction of the probability and good estimates of regression coefficients. These

properties may be unattainable while using maximum likelihood estimation.

The objective is to develop a method that will reduce or eliminate damage that a near singular
information matrix poses to binary regressions, while maintaining accurate probability predictions.
In addition, if theoretical equations are specified, then more trustworthy estimates can be given for
regression coeflicients, that is for the rate and direction of change in this probability when one of
the characteristics is increased or decreased. This research is especially important in medical issues
since inaccurate prediction may be catastrophic. In some instances, applying alternate estimation
techniques in the logistic setting allows, for example, the construction of a reliable probability
equation to predict whether a person actually has a disease when given a set of explanatory variables

results in an ill-conditioned information matrix.
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Consider a binomial random variable Y with parameters n and = . f() is a member of the
exponential family and has the natural parameter 8 such that

Sy (3:6) =exp{y + c(6) + AN} (0,1 2,.n)(P) (3.2

where 8 = logit(z ) = ln[ T ] o(6)=—nln(l+e"), d(y)=1n[}], and ne Z*. Note that

q(¢) = 1. Thus y is a complete sufficient statistic with

E(Y)=~=c'(8) =nrx

Var(Y) = —c*(8) = nn(l — =). (322

Given a sample of N independently distributed binomial random variables Y, with parameters », and
=, respectively, the log-likelihood function becomes

N
8 p) = 46,,5)
- (3:2.3)

N
= (98 + cB) + dp}.
[

Just as in the framework of the GLM, notice that there are as many parameters to estimate as there
are observations; 8, y) is overspecified. However, given a set of p covariates {X), X;, ..., X} for

each Y, one could model the parameter vector g by

@=logit(x) =X, (p+1)<<N, (3.2.4)

where X is a N x (p + 1) matrix of covariates including the constant term and logit links the sys-
tematic linear component x’'g to the mean response nr. Now the log-likelihood function can be

written as
N
KXB;y) =D {yi' 8 + &' B) + di), (3.2.5)
=]

where X', is an observation vector. Consider the maximum likelihood estimates of g
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N
0= 'a% (XB:p) =) X+ @)  j=01,.,p (3.2.6)
{m]

where —c’(x’,é) =n#,=j and 7, = [exp(x’,é)] 01+ exp(x’,é)] . This leads to a set of “normal-

like” equations which are nonlinear in é
X(p—-p)=0. (3.2.7)

This set of equations does not have a closed form solution and iterative methods are usually em-
ployed to solve for the maximum likelihood estimates (MLE) . Albert and Anderson (1984) dis-
cuss nonuniqueness and nonexistence of the logit MLE's for the coefficient vector. Although
maximum likelihood estimation is available, if the data are grouped so that there are multiple ob-
servations at various levels of the covariates, then empirical weighted least squares can be used as

a one step estimation procedure as K need not be obtained via iteration.

3.3 GROUPED DATA

One method of empirically solving for é when n,> 1 is by means of modeling z*, as a linear
function of the parameters and employing weighted least squares where

logit( 1!‘[) = Z‘l = Bo + ﬂlx” + -+ ﬂpxpl +e. (3.3.1)

The observed z‘,=ln[ n,?-l 7 ], with E(e) =0, and Var(e) & (nw{l — =))* =T, . Define the

diagonal matrix

I = E(ze’) = diag{l";}

A 1 (3.3.2)
I = diag{n [y, — )1 '}

Thus a one step weighted least squares estimate for the parameter vector is
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A A 1 -1 A 1
B*=XT"X)y XT 'z* (3.3.3)
Inferences on g are based on approximate normality of the error term.

Cox (1970) suggested an improvement to the estimation of parameters given in equation

(3.3.3). To help the small sample properties of estimation without affecting the asymptotic results,

use
N+ %
In —T (3.349
=y + 5
with estimated variances
~ (m+ D(m+2)

u= o+ D —p+ 1.

In the ungrouped case, 7, = 1 for all i, notice that

1
h+5 mLx-1 y=0

In —2—1 ={m 3 % (3.3.5)
n,—y,+? Il »y=1L

In terms of inferences on f, this is not a satisfactory method in the ungrouped (n, = 1) case since
normality of z* is not a reasonable assumption due to the discrete nature of the logit function in
equation (3.3.5). In this setting, another method of estimation is needed since there does not exist

an initial estimate of I".
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3.4 UNGROUPED DATA

In the case where n, = 1 for all i, this is a regression setting with continuous covariates without

replication. Walker and Duncan (1967) modeled this Bernoulli Y using
N=nX'pf)+¢ y=0,1 independent, (3.4.1)

where Y, is the binary datum, =(x’,8) is interpreted as the Bernoulli parameter P(Y,= 1|’ ) and
&~ (0, =(l — ). Notice that =, = n(x’g) = [exp(x’,£)] / [1 + exp(x’$)] is nonlinear in the pa-
rameters and in the ungrouped setting the additive error term is assumed. g is an unknown
(p+ 1) x 1 coefficient vector and =, is constrained to the unit interval. Since e* 2> 0 for all z¢ R,
0<=<1. Also = =Fx'p) where F{() is the cumulative distribution of the logistic family.
n,= F{z) = X' $) . The rate and direction of change in the probability per unit change in x; can

be estimated by using § with
ony  aF 0z .
—L_9F ) j=0,1,2 ..,p (34.2)
oxy 0z ox; ]

where £(z) is the logistic density function evaluated at the scalar index z = x’8 € R. The standard
logistic density closely resembles the (-distribution with seven degrees of freedom (Pindyck and
Rubinfeld (1981)). It is convenient to think of the monotone increasing function = mapping the
index z e R into the unit interval.

3.5 ITERATIVE GAUSS-NEWTON SOLUTIONS

In Chapter 2, the method of scoring was developed as a means of maximum likelihood pa-

rameter estimation. It is also instructive to view logistic regression from a nonlinear model of
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Walker and Duncan (1967). An alternate method of iteration is the Gauss-Newton procedure using
the Taylor series expansion up to the linear term. Iteration is continued until some specified degree

of convergence is obtained. Denote ¢ as the iteration step.

Consider the Taylor series expansion of a general function A(x) about a constant b, then
h »,
h(x)=h(b)+h’(x)| mp(x — ) + —2(;32- (X — b)z + - (3.5.1)

In the case where A is a function of several covariates, then

P
h(xy, X3, ) Xp) AKX, Eo)-i-z %(ﬁ]-ﬁm). (3.5.2)
j=0 “tI

Hence a linear model can be formulated (Capps (1985))

p
n-FX plg_g, =,§ ’a% |gm g 81— B0+t (3.5.3)

where this additive error term is more tenable. Equation (3.5.3) may be rewritten as

?
Ji= ’?1,:-1 = ZWin/ +e, 3.54)
J=0
where
an(x' i) i=1,2 ., N
W= lga (3.5.5)
(K ap; B=fe1 =0, 1, ) p,

¢ is the iteration step and W= (w;) has dimension of N x (p+ 1) , and ﬁ:=z_(Xé)=2. Denote

vy =By = Bje-1)
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A A1 -1 Al A
and thus y,=(WV,_ W) WV, _(y = V1)

Define the variance-covariance matrix of Y to be V' =diag{rx(1 —=)},i=1, 2, ..

development of V follows (Myers (1986)).

Var(e) = E(e) since E(e) =0
= Ely - ~(@p)T

=P(y;= )1 = P(y= 1)I* + P(y= O)L —P(y,= T

=l =)’ + (1 - n)(— m)?
=n{l—n)
=v .
E(g &) = diag{v}
=V=r"1

. The

Call ¥ = diag{#{1 — #)}. Utilizing that y, = §, — B, ., the weighted iterative maximum likelihood

scheme leads to
A A A 1 A A
Bi=B1 + (W VW) Wi Via(2 — 2em)r

Note W= VX since

an(x’' ) ={e4“£(1+e*"fé)‘2 j=0
] ch,e‘r'é(l+e‘r"‘z)°2 j=12 .,p
_{1!‘(1—1:,) j=0
= Ll = m)xy j=12 . p

and i=1, 2, .., N. Thus equation (3.5.6) can be re-expressed as

a,ét = 2:—1 + X II>—1X)4X'(2 = 21

(3.5.6)

(3.5.7)

It is interesting to note in the case for logistic regression that the Gauss-Newton approach devel-

oped in equation (3.5.7) is completely consistent with the method of scoring in equation (2.4.7)

when Bernoulli data is used in the GLM. Thus equation (3.5.7) is an iterative maximum likelihood

LOGISTIC REGRESSION

40



solution to the re-expressed model given in equation (3.4.1) which can be used for grouped data
as well. Maximum likelihood estimation has the large sample properties of consistency and

asymptotic normality of é allowing conventional tests of significance.

3.6 PROPERTIES OF LOGISTIC REGRESSION

Schaefer (1979) points out that most of the theoretical work on the asymptotic properties of
maximum likelihood estimators for independent, nonidentically distributed responses has already
been done (Bradley and Gart (1962)). Bradley and Gart’s work essentially require that the follow-

ing two assumptions hold:
i) Ix;| is bounded for all i and j
ii) ‘&EN"(X' VX) = Q, for Q positive definite with finite determinant.

The first assumption is perfectly reasonable for regression data sets. In unconventional circum-
stances when an element of the X matrix takes an arbitrarily large value, then set x; =K for
|x| 2 K, where K" is a large constant. The second assumption given above is equivalent to re-
quiring the distribution of the x’s to have a finite second moment. Moreover, the second assump-
tion implies that the elements of X’ VX are of order O(N ) which follows directly from the definition
and (ii) above.

Once these two assumptions are satisfied, the groundwork is set for the following to hold:

i) é, the maximum likelihood estimated parameter vector, is consistent for § ,

the true parameter vector.
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ii) (é — B) converges in distribution to a (p + 1) multivariate normal distribution

with mean 0 and variance-covariance matrix @-!. Q is defined above.

Based on the above results from Schaefer (1979) and the development given in section 2.5,
for large N, é is asymptotically unbiased for § with variance-covariance matrix (X’VX)~! . In
practice V is usually unknown and is also estimated via maximum likelihood. In fact, XVXisa
consistent estimate for X’ VX. Hence the following asymptotic results are commonly used in prac-

tice:
iy EB-p=0
i) Var@) = (XVX)
A A L. L A
iii) MSE(B) = tr(X'VX )~ + Biasi(§) = ) 1,
)
where the 3., are the eigenvalues of X’ VX

Following from the above asymptotic results of consistency, efficiency and normality, the
usual ¢-tests and confidence intervals can be applied. To test the significance of all or a subset of
the regression coefficients, a y3-test is used rather than a F -test. See section 2.6. For example,

suppose that the significance of the logit model is tested,

HO: po#O, ﬁl = .. =pp=0
H;: not H,. @60
Equation (3.6.1) suggests using
3= LBmas ) | LB p)
~g
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In fact, the above test can be used in developing a measure of goodness-of-fit which is analogous
to a R? measure. McFadden’s R? (Likelihood Ratio Index) is given by

Rig=1-171, (3.6.2)

(see Pindyck and Rubinfeld (1981)). Notice that the statistic given in equation (3.6.2) is identically
equal to zero when there is no increase in the likelihood function, given p additional regressors.
However, R}, increases toward one as the regressors explain the true model and hence deviates

away from the constant model. Other measures of goodness-of-fit include Efron’s R?,

N N
Rip=1 —[Z =221 <y,—y7’] (3.63)
im] {1

(which is analogous to 1 — (SSE/ SSTOT)) and the square of the Pearson Product Moment Cor-

relation coefficient,

. N N N
PPMC = [Z W —y‘)%,]’ / [(Z D=0 @y - a’)]. (3.6.4)
i} im] fm=1

It should be noted that values between .1 and .3 for R}, or PPMC are not at all uncommon for a
reasonably good fit (Capps (1985)). Perhaps the most widely used method of goodness-of-fit for
the logit model is one of Proportion Correct Classification. That is if the estimated probability is
greater than (less than) 1/2 and the first (second) alternative is selected, then the decision is correctly
classified. Thus

Proportion Correct = No. of Correctly Classified / N. (3.6.5)

The x*-statistic is quite common among computer packages as a goodness-of-fit measure in

logistic regression. Define
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N
=Y (=) (-T2, (3.6.6)
{1

where y, refers to the observed 0,1 responses.
Deviance is also customary as a model fitting statistic. Define

D = 2(I; y) — KXB; )}, (3.6.7)

where I(é; ) refers to the maximum likelihood of the log-likelihood function when fitting each data
observation exactly. In this case, 5, = logit(#,) and is undefined for 0,1 responses. However, D is
defined for all values of y, even though 5, may not be. Using 1'Hospital’s rule

D=) d, (3.6.8)

where

d,2== —~2n(1 —#) fory=10
d,z = —2n(z) fory=1.

Both x? and D are excellent goodness-of-fit measures, and asymptotic arguments suggest that they
both have a limiting x}.,_, distribution. There are still other possibilities for measuring goodness-
of-fit, such as unweighted sum of squared residuals and Akaike’s Information Criterion (AIC).

3.7 WEIGHTED COLLINEARITY

Collinearity among the w, in equation (3.5.4) can give estimates of the coefficients of the x,

which are unstable and sensitive to small perturbations to the data. Not only does collinearity give
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imprecise estimates of y,’s, but may give estimates which have the wrong sign. Consequently, the
problem of identifying the effects of the explanatory variables is now compounded by the possibility

of a damaged rate of convergence in this iterative procedure.

Notice equation (3.5.4) can be rewritten

r=Wy+e, 3.7.1)
where E(g) = 0 and E(g g') = V. Consider the transformation to (3.7.1) of the form (Burdick (1987))

yei2, V"/2WZ+ v,

o re Wyt g (3.7.2)

and where now E(3*) = 0 and E(8*3*') = [. Hence the homogeneous error covariance matrix is the

identity. Thus a “correlation” form of the w, can be expressed by
WYWe=WVIW=XVX. (3.7.4)
Let M be an orthogonal matrix such that MM’ = M'M = [ = MM and

M XTI XM =MXVX)M=A. (3.7.49)

M is a set of eigenvectors of X’VX and A is a diagonal matrix of associated eigenvalues,
4, fori=0, 1, 2, .., p. In up coming chapters, M will represent an orthogonal matrix which
gives a spectral decomposition of the information matrix. Thus if the positive definite matrix
X'VX is near singular then |X'VX| =‘f;°1,go and 4,20 for some i . Details regarding ill-
conditioning of X* VX are developed for the GLM in Chapter 4. Notice that in either estimation
technique (empirical weighted least squares or maximum likelihood), the collinearity among the X

variables may or may not be relevant, rather, the collinearity of the weighted X variables is the issue.
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3.8 DAMAGING CONSEQUENCES OF ILL-CONDITIONED INFORMATION

Ill-conditioning of X’V X leads to the demise of many desirable aspects of the logistic re-
gression. Perhaps the most obvious damage done by small eigenvalues of X"V X is the inflation of
the trace of (X’ VX)L

P
Y Var(B) = e VX!
=0

=t[MM' (X' VX)']
=tr[A]

&1
->L.

Thus a near zero A, severely increases the sum of the variances of the estimated coefficients. Fur-
ther, it can be shown that 1., — 0 implies Va:(ﬁ,) — oo for some j. Near singularity of X’ VX does
indeed inflate at least one variance of the estimated parameters. Consequently, interpretations of

the meaning of the magnitude and sign of a coefficient must be made with extreme caution.

Secondly, another variance which may be inflated due to near singularity of X’ VX is that of
Var((x,)). Given a new observation vector, x’,, the variance of the predicted probability of a
success will be inflated if the vector X’;, is outside the mainstream of collinearity among the V12X

data. The variance can be expressed as

P 2
 Var (9(x)) = [ryo(1 ~ mo ) Z —z% ' (3.8.1)
{=0

where the z are the coordinates of the transformed orthogonal principal axes, Z = XM. Figure 1
presents orthogonal principal component axes for data which are collinear in a weighted sense.

An argument for equation (3.8.1) follows.
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Var(f) & (X'VX)'  (asymptotically)
Var(x'of) = x'o(X'VX) X
=X MM'(XVX)' MM 5,
=ZA"%

Varlhh)] = Var)L #71*1,,

p 2

= [;0 z;_;,} [mpo(1 - "t,o)]2~
)4 2

Var[A(7)] = [Z f;:l } ol = i) 1%
e S

Thus if 2}, is relatively large when the corresponding value of 4, is small, then the Var[ A()] is in-
flated. The data point represented as ** in Figure 1 demonstrates a region in the weighted X space

where prediction can be poor due to the variance argument given in equation (3.8.1). Notice
2 212 0
0 < Var(p 0625) ——.
< Vel < 06230,
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Figure 1. POOR PREDICTION WITH WEIGHTED COLLINEARITY
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A third damaging consequence of an ill-conditioned X” VX matrix is that the power of certain
tests may be damaged due to a deflation of the test statistic. Consider the argument below.

Hy: g =8¢

Hy: f=Br , (3.8.2)

where C and F denote current and full models respectively. Haberman (1978) and Jennings (1986)
give conditions for the test. A summary of the conditions necessary for the test is that as N — co
then bgn; NYX wXy) exists and is positive definite, where X, is the matrix under H,. Define
1) = IXB; p) = g [y, In( =) + (1 — p)ln(l — =) . The test statistic of the above test can be shown

to be (see section 2.6)
1t = Br— B X VX - o X
= (&F — ac) AGF — dc) ™ A

. (3.8.3)
= Z @r = 3,0" 4
=0

Notice as 4, — 0 for some i then x? decreases thus damaging the power of the test. The i* dimension

does not contribute to the test statistic.

Moreover, collinearity among the w’;s could be the direct cause of parameter estimates failing

to converge during the iterative process. Schaefer (1984) notes
A A A R A
E@g’B) = B’ B + tr[Var(§)] + Squared Bias(g)
p
288+, ()"
J=0

and hence if the columns of V32X are collinear, the maximum likelihood estimate vector will be too

long on the average. Also note that

V = diag{n(1 — =)}
V = diag(P(1 - H)},
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where j(x,) = [exp(zc’.,é)] J[1+ exp(x',,é)] . However |,zc'né| is likely to be quite large in magni-
tude; with the presence of collinearity resuiting in either exp(.zc'oé) - 0, 0rco and hence giving
1},, = 0 or perhaps diagonal elements blowing up at the first step if limits are not imposed during
exponentiation. Next some alternate estimation techniques will be suggested which will shrink
28 .

3.9 INTRODUCTION TO PRINCIPAL COMPONENT REGRESSION

Certainly in standard muitiple least squares regression, multicollinearity among the explana-
tory variables poses difficulty in parameter estimation even though Gauss-Markov properties of
minimum variance among unbiased estimates hold. Various options have been proposed to over-
come these problems. Variable deletion or subset regression is one option discussed in Chapter 5.
Biased estimation techniques are also procedures to reduce the ill effects of collinearity. One such
biased metho& is a ridge procedure developed by Hoerl and Kennard (1970a). Ridge estimation
will be discussed for standard multiple regression, as well as for the GLM. The beauty of PC re-
gression is that the X matrix of explanatory variables is transformed to a set of uncorrelated prin-
cipal components. Hence collinearities are in some sense eliminated. In fact, if all the PC’s are used
in the regression problem, then the model is equivalent to the one obtained using least squares.
However, the problems associated with multicollinearity have not faded into thin air. PC regression
simply redistributes the large variances associated with the estimated coefficients. In situations
when some of the principal components are deleted, the resuit is that the computed parameter es-
timates are biased yet at the same time have associated variance which can be greatly reduced. PC

regression can effectively remove the ill effects of collinearity.

Jolliffe (1986) provides excellent coverage of principal component analysis, including principal

component regression. Consider the standard multiple regression model,
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1=XB +s, (3.9.1)

where y is a N x 1 vector of independent responses, X is a N x p matrix of explanatory variables
which will be augmented by a constant vector of ones later for logistic regression, g is a p x 1 un-
known parameter vector, and g is vector of independent random errors with mean Q and common
variance o2. For convenience, as well as consistency with the literature, let X’X be in correlation
form and X without a constant entry. Let M* be the matrix such that its columns are the

eigenvectors of X’X. The principal components are defined as

Z = XM*, (3.9.2)

where Z, is the value of the j* PC on the i* observation.

Jolliffe uses the fact that M* is orthogonal and hence
y=Xg+s
= XM*M*'B (3.9.3)

=Zg,

which replaces the explanatory variables by the PC’s. If r of the PC’s are deleted leaving s=p—r

components in the model, then the following notation is used
y=2Zga;+ s

In fact, if all the components are kept in the model, then finding a least squares estimate for a is
equivalent to finding an estimate for §. That is

B =M% (3.9.4)

PC regression can give insight to the contribution of each explanatory variable even when
collinearity is not present. However, the advantages of PC regression are most apparent with

multicollinerity in the data. More stable estimates can be found for g in many cases when PC’s
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associated with small eigenvalues are deleted. An illustration of this follows from letting u2 be the

eigenvalues of X’X. Define 4, < p; < ... < p,. Notice that

B=My22)"' 2"y

= M*D7M* Xy (395

4
=) Wlmtm Xy,
=1

where D? = diag{yd}.

To give an understanding of how multicollinearities produce large variances in the estimates

of IA?,, consider the variance-covariance matrix of é (again disregarding the constant),

AXX) " = *M*DTIMY

p
_ (3.9.6)
= 622 “‘ 2m‘ml".
=]

Hence any explanatory variable which has a large coefficient in any of the PCs associated with small

eigenvalues has a large variance in that coefficient.

Naturally, a way to reduce the ill effects of multicollinearities would be to use the following

PC estimator,

= wlmm Xy, (3.9.7)
t=r4-1

where the deleted y, are the very small ones. Further discussion of the number to delete will be

presented later. Notice also that the
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P
VariZy =0 ), ulmitm
imr41

= M*D;'M*
= Var@ - M,"'D,.-IM,",

(3.9.8)

which can be significantly reduced when components associated with small eigenvalues are deleted.
Also consider the variance of a predicted response, say Var(j(x,)) -

Var(P(x,)) | 62 = &' (X' X) "%,

for the standard multiple regression model. Equivalently,

Var(P(x,)) | 6% = & (X' X) "%,
=2Z,D7%,

A (3.9.9)

2 =2

= Z Zo" B
im]

Notice that a large coordinate value of a principal component which is associated with a small
ecigenvalue can yield an inflated variance in equation (3.9.9). However for a subset of principal

components, prediction variance can greatly be reduced. That is

P

VarP(5( ) [ o = D 22y ui™. (3.9.10)
r+1

Principal component estimation is a viable option for reducing prediction variance for new obser-

vations outside the mainstream of the original data points.

The bias associated with the principal component estimator can be quantified as follows
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E(B") = E(M;*3;)
= E(M,"‘Ms"&) (3.9.11)
= E - Mz,

Note that [ = M,*M,* + M, *M,* and if g, = () , then the bias is minimal. In fact the decrease in
variance of the estimated coefficients can certainly outweigh the induced bias. Some suggestions
as to the number and choice of pripcipal components to delete are given in section 3.15 and will
be developed further in section 5.5 for PCA in the GLM.

3.10 PRINCIPAL COMPONENT LOGISTIC REGRESSION (PCLR)

When using maximum likelihood techniques, principal component logistic regression
(PCLR) introduces an additional bias in estimating the already biased coefficient vector. However,
if PCLR is used successfully then some of the damaging consequences of an ill conditioned X* VX
matrix can be eliminated with only minimal additional bias. As mentioned, the variance of pre-
dicted probabilities for data outside the mainstream of collinearity can be reduced along with vari-

ance reductions in the estimated coefficients and greater power in certain tests.

Consider a data matrix X which has been centered and scaled or by design has variables of
the same units. Details for such centering and scaling were given in section 2.10. Further, augment
X to a vector of ones associated with the constant term. M is the orthogonal matrix such that it
yields the spectral decomposition of X’I'X=X"VX . PCLR does not utilize the spectral decom-
position the correlation matrix of the correlation matrix. The concern of PCLR is that the X matrix
is composed of a set of p independent variables having the same scale to give some interpretation
to linear combinations of variables. If, by design, the columns of the X matrix are originally the
same units, then centering and scaling X may not be necessary to allow a more natural interpreta-

tion of the results.
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3.11 SCHAEFER’'S PCLR FOR UNGROUPED DATA

Using an approach much like that of Webster, Gunst and Mason (1974), Schaefer (1986) has
developed a principal component logistic procedure. Define

14
XX=) hmm
=0 (3.11.1)
A
and XV X=) gy,
i=0

where A,and 3 denote the ordered eigenvalues and eigenvectors respectively of X’l'},X and
A; and 1’ the ordered eigenvalues and eigenvectors respectively of X’X. Again ¢ denotes the iter-

ation step and f}, is a maximum likelihood estimate.

Starting with the least squares estimator, éo, Schaefer defines the logistic estimator as

L
B=po+ Z @V, X)X (-8, (3.11.2)
=0

where L is the iteration of convergence. This leads to the principal component estimator (assuming

a single collinearity)

| 2 L
Bre= 0 [0 miz Xy + ), () mt o X0 (2 ~ 201 (3.11.3)
im] t=(

»
Notice that the 3 denotes the sum over (p + 1) — 1 components. #, is the probability of a “suc-
i=]

cess” given the starting values, f§,.
To simplify notation, Schaefer defines
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p
XV X) =) Xlnyat)e
J=1

> (.11.4)
and (XX)* =) ) 'mmy -
J=1

Therefore, Schaefer’s PC estimator can be written

Bpe=(XX) Xy + ) (VX X -12). 3.1LS)
t

Schaefer notes that (X' V.X) & (X' Ve X ) and (X' V.X)* = (X' V., X)* since Vi is a function of
predicted data points which are not severely affected by ill-conditioning. Thus, Schaefer gives the

one step estimate

ﬁ;c= X VX)X VX )@m- (3.11.6)

The justification for é,‘ follows from Schaefer (1986). f’m is a maximum likelihood estimate.
A A + A A
Boc=(XVX) (XVX)BrL
A+ A -1 L Ao+ A B or—1 A
=(X'VX) (XVX)XX) Xy+ Z (XVX) (XVXXVX) X(y—z5)
1=0
A L A
=2 (PX) Xy + ) (XVX) X -1)
tm0

L
=2(XX) Xp+ ) (XVX) X @-3).
=0

Let C be a constant. Note that Schaefer approximates X’ VX with CX'X and .
X 2.4 y* with (C)-}(X’X)*. If such approximations are reasonable, then the one step principal
component logistic estimator has nice properties that would not require drastic changes to existing

softwares.
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3.12 AN ITERATIVE PCLR FOR UNGROUPED DATA

Recall the maximum likelihood iterative method in section 3.5, equation (3.5.7)
A A A ‘ -1 A
Bi=Biy + XV X)X (= pp)

Since V is a function of the unknown parameter vector g, 17,_, is used, where

P,y = diag(n(@’f,_)(1 - =& B}
= diag[7{1 — 7)), (3.12.1)
= diag[$(1 — $)l—;-

Again t denotes the iteration step.

Even if collinearity is severe among the w), as mentioned, prediction is fairly good for the lo-
cations of the original data points. Despite the good estimation of ¥ using maximum likelihood,
perhaps I'},,L can be fined tuned via principal component estimation. Using the fact that
M'X'VXM = A, rewrite

logit(r) =x'f =2
and m=e (1 + 5 (3.12.2)
=e7A(1 + 77,

where 7, =X M and g = M’$ . The 3 are the iterative reweighted least squares estimates with di-
agonal variance-covariance matrix A-!. Hence the transformed variables, z/, = x’M , or principal
components (PC’s) are orthogonal and uncorrelated. The total variance of the coefficients have
been redistributed in such a way that a small eigenvalue of X* VX will flag a large variance for some
&, Thus an elimination of at least one principal component Z; associated with 4., could reduce

the variability considerably in the model and perhaps repair some of the damage to various prop-

LOGISTIC REGRESSION 57



erties of the regression due to an ill-conditioned X* VX. Thus the principal component iterative

equation now becomes

A -
i=8_,+@2V,2) lz'(.Z /)

N A X (3.12.3)
=8 H A M XY — Y1),

where ¢ denotes the iteration step. Thus a natural iterative principal component scheme becomes
o - (4
Be= &l o+ AL M X (g =Py, (3.12.4)

where A and M must be re-iterated at each step since Vis changing and s denotes the number of
principal components kept, s =p+ 1 —r. The updating of the diagonal matrix of weights is for
principal component logistic regression since 0 < k;! < .25. However, empirical results suggest us-
ing the spectral decomposition of the fixed maximum likelihood estimate of the information in the

general case since 0 < k7! < oo.

Typically, principal component analysis is used as a device to effectively reduce the dimen-
sionality of the logistic regression. Since the principal components are artificial variables and often
are difficult to interpret, the model will ultimately be converted back to one using the original var-
iables. Suppose by choice, the principal component model is reduced by r dimensions. Thus the
reduction in dimensionality is equivalent to the elimination of r eigenvectors of X" VX or setting 7

of the a’s equal to zero using some rule. The transformation back to the original variables follows
B = MaFe. (3.12.5)

Notice that this PCLR procedure differs from Schaefer’s by convergence required in the g rather
than the é From empirical results, there do exist experimental situations when maximum likeli-
hood estimates do not converge (thus Schaefer’s PC approach does not converge), whereas the it-

erative PC approach does converge due to the reduction in dimensionality.

LOGISTIC REGRESSION 58



3.13 EMPIRICAL PCLR FOR GROUPED DATA

Recall the model in equation (3.3.1)

Z=Xg+s
=XMM'8 +¢ (3.13.1)

=2Za +¢.

& can be estimated by
a=ztz 'z
= (M X T XMy M xtg (.13.2)
= A—IM'X'II-\_IZ..
Recall that T is estimated by

B diagd T
r_dmg{ yxnz-y:)}

and M are the eigenvectors of XTX. The § are weighted least squares estimates with variance-

covariance matrix A-l.

Letp+l=s+r= dim(X'f‘"X ). Note the deletion of 7 principal components does not im-

ply the deletion of any original regression variables and this is shown by
b6 =Mz, (3.13.3)
where M, is (p+ 1) x s and &, is s x 1. Thus

PP(x0) = (1 + exp( — 2ob”N . (3.13.9)
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3.14 PAYOFFS OF PCLR WITH ILL-CONDITIONED INFORMATION

The asymptotic variance-covariance matrix of the maximum likelihood estimates of  can be

shown to be (Cox (1970))

Var(B) = (X'VX)™!
and Var(f)= (X Vx)™.

To quantify the magnitude of the decrease in Var(4*<), consider

Var(§) & MA™'M’

-1 -1 (3.14.1)
=MA; M's+MA M,

Var(t’) = MAT M. (3.14.2)

Recall that the r eliminated principal components were the ones most likely to be associated with
small eigenvalues of X’VX. Therefore, equation (3.14.2) illustrates that a considerable amount of
coefficient variance can be eliminated using PCLR. The induced bias is quantified by a similar

expression to that of equation (3.9.11).

3.15 ELIMINATING PRINCIPAL COMPONENTS

Certainly a difficulty with PCLR is determining how many principal components need to be
eliminated, if any at all. Consider Figure 2. Notice that V22X, and V"/3X; are highly correlated and
A, is likely to be quite small. However a, is likely to be quite significant since the slope is carried
in the Z, direction. Hence one would expect
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A
tl‘=32 12 > 2,

where a, is essentially the discriminate function in this case. Hence, PCLR would not be appro-

priate.

As another example, consider V12X, and V12X, in Figure 3. In this setting, PCLR may be
more appropriate since &, and j, are both relatively small, thus making

t;=22 32 <2,

Hence it is now more reasonable to delete the principal component Z, which contains little infor-
mation in this regression. When several variables are in the analysis then obviously the problem

becomes more complex.

As another suggestion to determine the number of principal components to delete, a graph
of 3 Var(b*) or I Var(j*) vs. number of PC’s deleted. The order of deletion of the principal
con;ponents (PC‘s‘) can be done by the researchers choice. Some common rules are deleting “small”
eigenvalues of X’V.X or by a stepwise procedure using a ¢ -statistic, & = &,\/3.— . Developments of
hypothesis testing and deletion of principal components for the GLM are given in section 5.5.

3.16 INTRODUCTION TO RIDGE REGRESSION

In standard multiple regression, as mentioned, other biased estimation techniques exist as an
alternative to principal component regression in the quest to accurately estimate the true parameter
vector, f. Quite often ridge regression is used as a plausible alternative to variable deletion or
principal component regression. It has been repeatedly noted that the variance of the coefficients

swell when collinear explanatory variables are used in their estimation. Moreover,
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Figure 2. PRINCIPAL COMPONENT PLOT: SIGNIFICANT Z2 SLOPE
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Figure 3. PRINCIPAL COMPONENT PLOT: INSIGNIFICANT Z2 SLOPE

LOGISTIC REGRESSION

63



14
EE® =) 4 +48.
{0

(3.16.1)
[ . - 3 . 3 - ' A
which is unbounded. When using ridge estimation, the purpose is to bound ¥ 3. Thus

S Bris
, =0 =0
subject to the constraint that it must be equal to 6. The ridge solution for the estimated parameter
vector minimizes the following Lagrange /\
Q =~ X%y~ X% + d(g¥ 8" — o).

(3.16.2)
In setting ( 3Q / 9p®) = 0, the following normal equations are found

\
(XX +dl)gR = xp.

For sake of simplicity consider X as centered and scaled without a th term. Hence the ridge
solution is |

|
Roxx+d)y'x
£ = ) 1 L A \ (3.16.3)
=(XX+dl)"' X X8,
ford=0.

In his book, Myers (1986) illustrates by example that the ridge solutions are sensible ones.
Nonorthogonal explanatory variables typically create large VIF’s.

Hochr, the VIF’s can be
greatly reduced by artificially creating a near orthogonal system simply by attacking the diagonal
of X’X. The eigenvalues of a matrix can be increased by adding a small increipent to the diagonal
and hence the condition index will usually be deflated with collinear data. |

\
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Just as in principal component regression, the goal with *—idge estimation is to reduce the ill

3.17 PROPERTIES OF THE RIDGE ESTIMATORS

effects of collinearity. The researcher would like to reduce the E‘Variance of the coefficients, hence
lowering the VIF's, as well as decrease the variance of predicted values among other improvements
in the regression. For simplicity, neglect the column of ones iated with the constant. First
note that the matrix M*, composed of eigenvectors of X'X, yields the following diagonalization

Aty= MY (XX + d)M*

— diag(1*, +d) (3.17.1)

Hence the variance-covariance matrix for for g2 is

o2 Var(B®) = (XX +dI Y X XXX + dI )’\'

T (3.17.2)
=M*ASTA*A T MY, \

Equivalently, ‘

P R, P . =
> VarlBi) _ 1% | (3.17.3)

= = ay+d? \\

Observe that equation (3.17.3) goes to zero as d — co.

|
Along with a decrease in the ﬁ‘, Var(BF), the length of g* itself can be cbnsiderably decreased
i=l |

when compared to that of é Recall in standard multiple regression that the lé?st squares estimates

4

i \

i

p
|
B=Xy ' Xy =MYAT MOXy = mo ¥ T X, \ (3.17.4)
iml \
\
Thus é-—» oo as any 4* — 0. A similar decomposition of g* demonstrates \)
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p
BR =) mrfati+d) meixy.
i1
Hence gR is shrunk toward zero for given d> 0.

Similar gains are present for expressions of variance inflation factors (VIF’s). In standard
multiple regression, recall

| 4
VIF = o~ Var(B) = (1 - R~ = ) 44 'm*3, (3.17.5)
j=i

which are clearly inflated for small eigenvalues. In the ridge setting
p
VIF, = o 2 Var(f) = ) m*3ar (%) + d) 7, (3.17.6)
J=1

using the fact that the variance-covariance matrix of g® is (X’X + dI )"' X’ X(X’X +dI )~ apart from
o®. The VIF in equation (3.17.6) does not have a standard of unity and can have values less than

one.

However, with a decrease in variance in parameter estimates comes an increase in bias. In
fact, variance is a strictly decreasing function in d, whereas Bias*(8¥) is a strictly increasing function
of d. Hoerl and Kennard (1970a) plot variance, bias and mean squared error (MSE') as a function
of d. There exists a window, say [0, w], where the decrease in variance outweighs the Bias*(g¥).
Thus, in using the mean squared error criterion, the ridge approach appears to be perfectly rea-
sonable so long as 0 < d<w. To quantify the bias portion consider the following argument.
Premultiplying the normal equations by (X”X)-}, the following holds:

@XX) XX +dl)pR = (X'X)"‘X’z =.
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The following expectation results.
E@H=xx+dly XX
=[(XX+dl) (XX +dl)—dXX+dl)1g (3.17.7)

=[I-dXX+dl)"Ig.

Thus consider the following expression for bias
p
o) Bias’(Bf) = o~2d? p(X'X + dI ) 2B
=

Hence MSE can be expressed as

p p p
o2Y, MSE]) = o™2). Var(gf) + o7%)" Bias'(8])
il ] ims]
p
=D AN (A +d) 2+ a2 (X + dI) B (3.17.8)
im]
4 p
=Y @ +d) P+ 072 alan +d)
=] ]

where g, = M’B. The values of d for which mean squared error will be improved over the least

squares estimator is 0 < d < (03 [ a,,)-

Also comparisons in prediction abilities of the standard multiple model can be made. It has
been noted that

Varp P
Nary (%) _ 2%, (3.17.9)

2
a im}

where z are the coordinates corresponding to the principal components. The counterpart to the

above prediction variance using ridge estimates is
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Vary®(x,) &
2 = Z zlz.o

o =]

A4 (A% +d)L (3.17.10)

Notice how d dominates the small eigenvalues and that the prediction variance can be greatly re-
duced for even a small value of d.

3.18 METHODS FOR CHOOSING THE SHRINKAGE PARAMETER

Section 3.20 and Chapter 6 will discuss various options for choosing d in the GLM frame-
work. The results given are simplified if the identity link function is used with normal data. Since
the goal of this dissertation is not to develop standard ridge regression, the theoretical development
for selection of d will not be given. Perhaps the most elementary method is one termed ridge trace
(Hoerl and Kennard (1970b)). Quite simply, this procedure plots the estimated coefficients as a
function of d. Choose d at a point where they have stabilized. Other more prediction oriented
methods have incorporated a PRESS or C?! statistic. The C} statistic is developed and generalized
in section 6.4. Further, one step and iterative harmonic mean methods have been established as a
conservative technique. In section 6.5, a DF-trace procedure is generalized from Tripp’s (1983)
dissertation. There exist literally hundreds of variations in methods of selecting d based on sundry

criteria from prediction to estimation.

3.19 GENERALIZATIONS IN RIDGE REGRESSION
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By no means is the above introduction to ridge regression a comprehensive one. It is not
within the scope of this dissertation to address ridge regression in its entirety. A natural extension
to the work given in section 3.17 is generalized ridge regression. The generalized ridge regression

solutions have the form
FR=x+8xy, 3.19.1)

where A = diag{d,}. Hence each eigenvalue, A*,, is artificially increased by its own respective d, in
an attempt to create an orthogonal system. Typically 0 < d, < (¢?/ «f) = minimum value of
MSE(ﬁ,). It should also be mentioned that generalized ridge is usually performed to the set of ex-
planatory variables which has been orthogonally transformed via the spectral decomposition of the

correlation matrix.

Heavily relying on Hoerl and Kennard’s (1970a) development of ridge regression, Schaefer
(1979) extends ridge estimators into logistic regression. The construction of the ridge logistic esti-
mator will be presented in the next section. Some suggestions for choosing a shrinkage parameter,
d, will also be given. In Chapter 6, the logistic logistic estimator will be shown to be a member
of the broader GLM class. The GLM ridge estimators will then eventually be shown to be a
member of an even broader class of shrinkage estimators, termed generalized fractional principal

component estimators, given in Chapter 7.

3.20 RIDGE LOGISTIC ESTIMATORS

With Bernoulli response data, a competitor to PCLR is the ridge logistic estimator developed
by Schaefer (1979). Schaefer proposes that a reasonable alternative estimate would be one with a
smaller norm than that of maximum likelihood. Recall that the ML estimates can be too long on

the average in the presence of an ill-conditioned information matrix. Of course the null vector has

LOGISTIC REGRESSION 69



the shortest norm, but is not of any information. Hence a good start in developing a ridge estimator
would be to take a parallel approach to that of Hoerl and Kennard (1970a) used in standard mul-
tiple regression. Hoerl and Kennard utilize the definition of least squares solutions, é, which min-
imize the sum of squared error, SSE, in standard multiple regression. Using the result that
Br=(XX+dI)'X X é, it follows by substitution that

R By 1 (R _ R % _pR
SSE(B™)=SSEB)+ (B— 7)Y XX —£") (3.20.1)
Note then that
SSE(B®) = SSE(f) + 6, (3.202)
for 6 > 0. Thus a constraint can be written as
A R ’ A R
d=B—-87YXXEB-B") (3.20.3)
The appropriate counterpart constraint in Jogistic regression is
2 Ry, 2 R
6=Bur—BYXVXBrr—8") (3.20.9)

since logistic regression is developed in a weighted sense. In fact, logistic ridge regression inflates
the weighted SSE (WSSE) by an increment 6 > 0. That is

WSSE(B®) = WSSE ) + 6. (3.20.5)

The development of the ridge estimator is explained in detail in Schaefer’s (1979) dissertation. The
notion of ridge estimation in a general weighted sense will be developed in Chapter 6 for the gen-
eralized linear model. Schaefer requires g2 to be a consistent estimator of § and cleverly re-
expresses equation (3.20.5) using a first order Taylor series expansion in deriving equation (3.20.4).

Hence the ridge estimator developed by Schaefer (1979) is given by
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BRd) = (VX +dl) X VX, (3.20.6)

where V is the estimate of V using the maximum likelihood estimates, é . The shrinkage parameter
d is the Lagrange multiplier. Schaefer’s methods for choosing d in practice relied on the similarities
between multiple and logistic regression. Three analogs were investigated

d=1/@P
dy=[max 13177 (3.20.7)

dy=(p+1) [ E'B).

Some of the more sophisticated methods of choosing 4 are based on predictive abilities, as well as
accurately estimate parameters. These methods will be presented with the development of ridge
estimation in the generalized linear model.

To evaluate the accuracy of parameter estimation for the logistic ridge estimator, Schaefer et
al. (1984) presented some examples. The measure of closeness to the true parameter vector was

determined by
SQE@) =@ - £YE - 6.

é is the maximum likelihood estimate using a subset of observations and g° is the maximum like-
lihood estimate using all the observations. Schaefer’s justification to this approach is that since the
bias of the maximum likelihood estimates is o(N-3), then §° is a reasonable estimate of f. Certainly
an argument can be given that §° is nearly unbiased; however Schaefer et al. do not address the
variance of §° which is likely to be quite large especially in the presence of collinearity which is
purposely induced. Unbiasedness of §° does not guarantee ||f* — f|3= 0. From a MSE point of
view, this given measure of closeness is not a reasonable one. Simulations for logistic and Poisson

regressions will be presented in chapter 8.
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Chapter IV
ILL-CONDITIONED INFORMATION
MATRICES

4.1 COLLINEARITY VS. AN ILL-CONDITIONED INFORMATION MATRIX

In standard multiple regression, a near-deficiency in the X matrix of explanatory variables can
result in problems for estimation of the least squares parameter vector, §. When an explanatory
variable does not provide any more information that is already inherent in the other regressors, it
becomes difficult to separate the influence due to each individual variable on the response (Belsley,
Kuh, Welsch (1980)). Muiticollinearity, in the above sense, can lead to inversion problems of the
information matrix and can further result in large variances associated with the estimated coeffi-
cients, as well as wrong signs and magnitude of estimated coefficients, insignificant ¢-statistics for
important regressors, extreme sensitivity to small perturbations to the data, and poor prediction

outside the main stream of collinearity (Myers (1986)). .
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Although collinearity diagnostics and corrective actions have been thoroughly developed for
standard multiple regression, little work has been done for such problems in the generalized linear
model other than the special case given previously for logistic regression. Schaefer (1979) contends
that problems in maximum likelihood parameter estimation can also exist in logistic regression.
The contention is that X’X, in standard multiple regression, and X’ VX, in logistic regression, both
suffer from collinearity among the explanatory variables, X. Schaefer has an argument, given below,
that the elements of (X’ VX )-! are large in absolute value when the degree of multicollinearity, in
the matrix X, is severe. An outlined proof to Schaefer’s conjecture will be presented. Comments
will also be forthcoming in an attempt to clear up some implications of the argument. Further
some diagnostic techniques will be developed for guidance in variable deletion.

Schaefer’s conjecture, mentioned above, can be found in his 1979 Ph.D. dissertation. A
sketch of the proof follows. Let K-! = V = diag{n(1 — =,)}. Partition the information matrix as

follows,

4.1.1)

X_, is the matrix of explanatory variables without the i* column. The inversion of the partitioned

matrix X'VX is

. o
vxyl=s¢t| M ‘2], 4.1.2
XvX) t [sz Ty 4.1.2)

where
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= [ VE - VXX VX)) X Ve
Ty =1
Ty =Ti=—xVX_(X_VX)™ (4.1.3)
Ty =X _VX_)~'
+ X VX)) X_ Ve e vx_x_vx_ )\

With severe collinearity, the regression
=X f+& (4.1.4)

has SSE=§'{ - 0 as x, nears an exact linear combination of the columns of X_, (see Schaefer

(1979) or Myers (1986)). Schaefer substitutes equation (4.1.4) into equation (4.1.3). Thus

t=x Ve — X VX_(X_ VX)X _Vx
=8 V-VXX_ VX)X _ V1 (4.1.5)
=§104

In showing that the diagonal elements of Q are bounded, Schaefer claims that as §’{, — 0 then
t — 0 and thus ¢! = co with severe collinearity among the X’s . Note that the diagonal elements
of Q are bounded since the ¥, are trivially bounded by (0, .25) and X_(X"_ VX )'X'_, is a
projection matrix which always has finite elements. Further, by assumptions, X_, is finite and

N lim (XyVXy) =0, for O positive definite with finite determinant.

Next Schaefer demonstrates that T),, T},, Tx, are also bounded and with ¢! — oo the result
is complete. T}, = 1 is trivially bounded. Recall

Tia=—=f1+&VX_(X_ VX )™

@.16)
ITy=TI

As§'§ =0, then Ty = — f*,. f*,is nonnull since X_, is full column rank. Also T, = ff*, which
is bounded away from null for similar reasons.
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Schaefer concludes that the matrix (X" VX' )~! has large elements in absolute value when the
degree of collinearity is severe in X; hence the same problems that occurred with collinearity among
the explanatory variables in standard multiple regression, also exist in logistic regression. §'§,— 0
ultimately yields poor precision of the estimated coefficients. In summary, Schaefer states that as
collinearity of the independent variables (the columns of the X matnx not the V12X matrix) be-

comes more severe then the following are equivalent:

(i) R}, the coefficient of determination from the regression of the j* independent

variable on the remaining independent variables, tends to one for some j.
is equivalent to

(@) ({’4), the SSE from (i), tends to zero for some j.
is equivalent to

(iii) Apa, the smallest eigenvalue of X* VX, tends to zero.

When the X data exhibits collinearity, Schaefer’s argument for the existence of similar prob-
lems with X’ VX in logistic regression as with X’X in standard multiple regression is convincing.
However, care must be taken in understanding the true role of X in the ill-conditioning of X’V X.
Consider the following example (Burdick (1987)),

100 .98
19608  1.9596
X=|-02 02 | X'X=[ ] @.1.7)

[_.98 _1'00] 19506  1.9608

Clearly X has near column deficiency and XX is nearly singular with condition index (of the cen-
tered and scaled data) 4, [ Ame = 1.99939 / .0006119 = 3267.511. Condition indices are defined
formally in section 4.3. Let
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.00005 0 0
V=] 0 245 0 | (4.1.8)
0 0 .00005

XVX= [ .00019602  2.033E - 20].

2033E-20  .00019602 4.1.9)

The condition index of X’ VX (centered and scaled V2X data) i8S Ay [ Amia = 1.19321 / .806793 =
1.4789. Thus X"V X need not be near singular when X’ X is near singular. In terms of the condition
index, X" X is ill-conditioned, whereas X’ VX is not. Schaefer is correct in stating that the diagonal
clements of (X’VX)~! or the variances of the estimated coefficients, along with the off-diagonals,
will be large in absolute value. Examples can be contrived with the same phenomena but the off-
diagonals are zero. Hence ¥ 2X may have orthogonal columns and be well conditioned with ex-
tremely collinear X’s . Schaefer’s result only shows that as the collinearity becomes more and more
severe with a fixed ¥ will the off diagonals of (X’ V.X)-! become large.

In general, given a matrix X that is near deficient in column rank, X’X is near singular. Thus
R? — 1 for some j ; the coefficient of determination from the regression of the j* independent vari-
able on the remaining independent variables tends to one for some j. There exists a,, @, ..., @, such
that g, % 0 for all i and é a,x,%0. Recall the information X’'K'X = X' K-12K-13X = §'S. Let
K-\ = diag(y}. f X’K'X is also near singular, then ¢, ¢, ... , ¢, may be found such that ¢, #0
for all i and é 6,5 =0 . Without loss of generality, consider the example of X having dimensions
Ix2.
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-

i 0 0] jxy xy
U= 0 Y2 0 xlz X22

[0 0 3] [X13 X3

(71"11 Y1%21

=]r2%12 Y2X22

| ¥3X13  ¥3X23 |
Assume there exists ¢, defined above. Then

71 141
ol y2 |#x + ol v [#x2 =0,

Y3 Y3

where # indicates elementwise multiplication. Notice if the y, are nearly all equal then cy#x, can
be redefined as 4, x,. However, in general, the y, are not all equal; in fact the y, vary considerably
in the generalized linear model. Hence by contradiction, if X"X is near singular then XK' X does
not necessarily need to be near singular, unless K is nearly proportional to the identity matrix.
Interestingly enough, it can be shown in logistic regression that 4, > 44;, where 4; and 4, are the i*
ordered eigenvalue of X’X and X’K'X respectively. This does imply that if 4, is “small”, then
Avin i8 necessarily “small”, This follows from the fact that 0 <y, < .5.

Expanding on the fact that Schaefer strictly speaks of the effect of a limiting exact deficiency
in X on the elements of (X’VX)-! and not the rate at which damaging inflations occur, for illus-

tration, let a matrix X be of the form

X= [g " f_“z)c], 4.1.10)

where ¢ e (—o0, c0) and k some arbitrary constant. When ¢ =0, X is deficient; X’X and X’'VX
are singular. As |e| deviates from zero, X becomes less and less deficient. For some fixed
a,c ¢k, X may appear to be of no real threat in terms of deficiency and XX is not considered
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near singular. For the same fixed g, ¢, ¢, kK, X’VX can have severe inversion problems. Typically
this will happen when several of the data points are predicted quite well, say with # = 0 or 1, and
thus ¥ has several diagonal elements near zero. This is not uncommon. In strictly relying on a
well behaved X"X matrix to determine if (X"VX)-! is well behaved, then there is a risk of being
misled; i.e. the diagonal elements of (X’V.X')~! can be inflated. On the other hand, the example
given previously in equation (4.1.7) suggests that the information matrix in standard multiple re-
gression can be deemed ill-conditioned, whereas the information matrix in logistic regression may
not be. Anything can happen. For a given X matrix of explanatory variables with some fixed se-
verity of collinearity, one cannot make general statements on whether (X’V.X)! will be deemed

ill-conditioned or not.

Schaefer’s conjecture (iii) above can be alternatively viewed as an argument for the continuity
of 1., at the point zero. Since X’ VX is positive definite, 4,,, > 0. In the case of an exact deficiency
in X, then both X’X and X’VX are singular and 4, =0. However, in departing from the exact
collinearity in X, then one can think of 4., as a continuous function. Let X be of the form in
equation (4.1.10). For fixed a, cand &k and V = diag{v}, then the eigenvalues of X" VX are given by

the following solutions to the quadratic equation,

X VX —all =0.
The
Roots = % + % (6% - 4vyvyalcled)' 2, (4.1.11)
where
b=v,a*(k? + 1) + vocX((k + &)* + 1).
Thus
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Amin = f(€) = % - ';— (6% — dvyaicth)! 2, (4.1.12)

Amin 18 continuous at zero by the following argument. Noticef R—+ R+and 0 € R. fiscon-
tinuous at zero if and only if for each ¢* > 0 , there exists an ¢** > 0 such that if

le] <e*, (4.1.13)

0<f(e) <s**.

Continuity at zero holds for 4,,, in equation (4.1.12). All nontrivial examples yield 4, bounded
away from zero. Schaefer’s claim of ¢’ — 0 is also equivalent to the condition index going to
infinity. In terms of the example given in equation (4.1.10), Schaefer essentially points out that
regardless of ¥V, an & can be found. arbitrarily close to zero such that X’ VX is ill-conditioned leading
to inflated elements in (X’ VX)-!.

In a more global setting such as in the generalized linear model (Nelder and Wedderburn
(1972)), recall the general weight matrix is X -! where

K~ = diag{ky '}, (4.1.14)

where 0 < k7! = [A'(n)P |/ V?a.r(Y) < oo. It is interesting to note that the smallest eigenvalue of the
information X’K -1X also goes to zefo as the collinearity among the columns of X becomes more
severe. Hence Schaefer’s conjecture holds for the generalized linear model even though the diagonal
elements of X -! are not bounded, but fixed. For the generalized linear model, the diagonal ele-
ments of K -! may vary considerably, living anywhere on the positive real line; for example, in the
Poisson response in the discrete case and the Gamma response in the continuous case (see Table

3). In fact, boundedness of the ;! is not a key factor to Schaefer’s proof, as presented. Diagnostic
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tools should be developed to determine if an alternate estimation procedure is needed based strictly
on the condition of X’K !X rather than that of X' X.

4.2 COLUMN SCALING FOR DIAGNOSTICS

In terms of model building, the choice of scale for the X explanatory variables is usually the
units of the researcher’s convenience. Essentially equivalent model structures can be built whether
the researcher chooses, for example, units of ounces, milliliters or cubic inches. However, as in
standard multiple regression, scale changes do in fact change the diagnostic’s numerical properties
when we try to assess the conditioning for the information matrix of the generalized linear model.

In particular, a change in scale can result in very different singular value decompositions.

In order to make a comparison of condition indexes meaningful, it is necessary to standardize
the information matrix in an effort to obtain a stable diagnostic. Again the standardization cannot
be simply done on the explanatory variables, but rather on the weighted S = K-12X variables. A
natural scaling method, giving the columns of S unit length, is given in equation (4.2.1). The au-
thor also chooses to center § Note, for diagnostic purposes mentioned above, that the S data only
needs to be scaled and not centered. Essentially, the matrix § = {s,} is centered and scaled by letting

N L[\
si==D| D) = - @.2.1)
J=1

The given approach to scaling is a natural one because under ideal conditions, that is, when the
columns of $ are mutually orthogonal, then the condition index is unity. Any other choice of scale
fails to meet this desirable property (see Belsley, Kuh and Welsch (1980)). Consequently, any

condition index or variance proportion decomposition mentioned in a diagnostic sense or presented

ILL-CONDITIONED INFORMATION MATRICES 80



in an example will be introduced in a standard form by first estimating K via maximum likelihood

and scaling § = K-12X to have unit column length.

4.3 DIAGNOSTIC TOOLS FOR THE INFORMATION MATRIX -

In standard multiple regression, examination of the spectral decomposition of the correlation
matrix of explanatory variables probably has been one of the most fruitful techniques of detecting
and combating collinearity. See Kendall (1957) and Myers (1986). In the past (Silvey (1969)),
collinearity was often diagnosed when a “small” eigenvalue in the correlation matrix was observed.
Of course, the smallest eigenvalue can be made arbitrarily small or large depending on which scale
the researcher wishes to use in data collection. In effect, this is equivalent to claiming that a square
matrix B is ill-conditioned when the determinant is small. This is simply not true since any well
conditioned matrix C = 10*B is likely to have a small determinant when k = —20. Belsley, Kuh,
and Welsch (1980) point out that if a “small” eigenvalue is used as a collinearity diagnostic, then
there is a natural tendency to compare small to the wrong standard, namely zero. Perhaps a
collinearity can be easier to identify if a “small” eigenvalue is small in relation to the other
eigenvalues. The ratio of the largest eigenvalue to the smallest eigenvalues is one such indicator of

an ill-conditioned matrix.

As early as 1952, Hartree pointed out the importance of a condition index as a means of de-
termining the ill-conditioning of a general matrix, B. Currently there are several numerical indica-
tors available to determine a measure of ill-conditioning of a square matrix, B (if B is rectangle, then

form B’B). Some of the many variations of the condition index ( ) include:
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A
¢1=7"'-;“3‘- (> 1000)
min

Ya=J¥  (>30)
F F
- min < L min 4.3.1)
Vs w(CK~'X) Tk
Va= Amin .
=/

A, is an eigenvalue and 1} is a singular value of X’K -1X. Recall from section 2.10 that the matrix
X has already been centered and scaled. For the condition index diagnostic measure, the columns
of the matrix S = K -¥2X will further be centered and scaled as presented in section 4.2; this gives
a standard of unity for ,. In forming a “correlation” matrix .§'.§‘, the eigenvalue decomposition
spectrum will determine the conditioning of the estimated information matrix, X' -1X . Notice
¥, and ¥, appeal to the proportion of variability in a principal component context. The gl,
quantifies the total variation of matrix X’ -1X. That is the overall spatial variation of a cloud of
points, depicted by X’K -'X, is quantified by their total inertia. Greenacre (1984) connects the
formulation of inertia in the physical sense to that of one in a statistical sense. The moment of
inertia is often thought as the integral of mass times squared distance to the centroid. With

categorical data, Greenacre views inertia as Pearson’s mean squared contingency coefficient.

A justification for using a condition index as a diagnostic measure is outlined below. The
notion of an ill-conditioned square matrix is often of one which is near singular, and for which an
inflation of its inverse occurs. The motivation for the development of the condition index as a
measure of ill-conditioning is presented by Belsly, Kuh, and Welsch (1980). Consider the singular

value decomposition of any matrix, T,

T=UDV", 4.3.2)
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where U'U=1,= V'V and D is a diagonal matrix with the nonnegative singular values of T,
W <m<..<p,. Uand V are the eigenvectors of TT" and T°T respectively (see Good (1969)).
The general Euclidean norm of any p x p matrix B is defined by the specified norm, denoted by
|\Bll, where

131 =| lz}l:gllIBbﬂ- 4.3.3)

The spectral norm is relevant to the nonsingular solution to the linear system Bb=¢ given by
b= B-'¢c. Belsley, Kuh, and Welsch (1980) consider how much the solution b will change due to
small perturbations in the elements of B or ¢. Consider 6B and d¢c. Let B be fixed and ¢ change

to 6c. Thus
6b=B"5¢
. (4.3.4)
loal < 1B~ || llodl.
Further
c=Bb
4.3.5)
licll < 131 ll&H-
From equations above,
lisay —1, l6dl
i <88~ i (4.3.6)

The quantity ||B]| |B-!| provides a bound for the impact of relative changes in ¢ on the solution .
It can be shown that ||B|| = up. of B and [|B-!|| = g, of B. Thus

1B I8 ™1 = tena | bimin = (hemae | A" - (43.7)
A similar argument can be developed for perturbations in the matrix B .
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This result is not only useful in the context of least squares solutions, as given by Belsley,
Kuh, and Welsch, but also lends itself to maximum likelihood solutions of the generalized linear

model. Recall at each iteration, the solution is of the form

N
bim o+ R Sl - o
Be=pBi1 + (XK, X) [Z;&ku (r—u) ony ]:—1 (4.3.8)

=[(0R ™ X) XK e,

where p* = n,+ (3, — u)( on/0u,) evaluated at §,,. Letting B=X'"K-'X,b=§, and ¢ = XK -Iy*,
the above argument suggests that if the ratio of 1,4 / A for X’K -1X is large, then small changes
in the vector ¢ can adversely affect the maximum likelihood solution, at each step. Maximum
likelihood solutions are sensitive to small perturbations to the data. Equations (4.3.6) and (4.3.7)
suggest that the condition index for the information matrix can be a good indicator of ill-

conditioning.

A more geometric measure of ill-conditioning of X’K -'X (Burdick (1987)) is measured by an
index (), where

|®]

?
1o,
10

Vs = where ®=XK"'X. (4.3.9)

Define |®| as the determinant of ®. The index y; is necessarily in the unit interval. The inter-
pretation of ¥ can be visualized as the ratio of two volumes. The numerator is the volume of a
parallelopiped composed of the vectors K-3x, i=0, 1, 2, ..., p starting at the origin. The de-
" pominator is the volume of a p + 1 dimensional general rectangle in an orthogonal setting to yield
maximum volume. Thus if there is a near singularity in X’X -.X then the numerator parallel piped

is quite flat in at least one dimension, thus reducing the index ;.

ILL-CONDITIONED INFORMATION MATRICES 84



4.4 GENERAL VARIANCE INFLATION FACTORS

In addition to condition indices for X’K-1X, , where
A 1 . /\_l /\_1 A 2 A
K =diag{ky '} and k" =[#'(n)]" | Var(Y), 44.1)

other diagnostic tools can be developed. In ox;dinary least squares with normal data, for example,
variance inflation factors (VIF’s) are available for the correlation matrix (Belsley, Kuh, and Welsch
(1980)). Recall that if the regressors are centered and scaled in multiple regression, then X" X is the
information matrix, as well as the correlation matrix of the explanatory variables (ignoring the
column of ones for the constant term). Under orthogonality of the explanatory variables, the cor-
relation matrix will then be the identity. This is the ideal. The Var(ﬁ,) = 1.0 apart from o2, for
all i, Hence, in taking the inverse of the centered and scaled data matrix, the diagonal elements of
the inverse denote a measure of the inflation of the variances of the coefficients, Var(ﬁ,), apart from

o%. For least squares standard multiple regression, VIF’s can also be expressed as

VIF, = (4.4.2)

1-R?’
where R? is the coefficient of multiple determination of the regression produced by regressing x; on

X,

The development of a VIF for the generalized linear model is not as cut and dried. It is not
proper to look at the inverse of the matnx of correlations as a diagnostic tool. For one, the infor-
mation matrix is not a scalar multiple of X’X; hence the condition of the correlation matrix of ex-
planatory variables may not always coincide with the condition of the information matrix. Recall
that the condition of X’K -'X is of interest. Perhaps the most obvious solution for the construction
of general VIF’s or GVIF is to think of S = K-12X as a new data matrix. Thus, by centering and
scaling S , 5*S will be in the correlation form and will be the identity under ideal conditions (inter-
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cept included). Typically, K- will have to be estimated via maximum likelihood and assumed to
be well estimated for the original data points, even in the presence of collinearity among the
K-nX. The Var(l&;‘) will be developed in section 5.4 to give some justification to this approach.
Nevertheless, the GVIF’s seem like a reasonable means to get a measure of asymptotic variance

inflation due to the nonorthogonality among the K-nx,
GVIF, = diagonal elements of {(§'S)™"}. 4.4.3)

The general VIF’s, in equation (4.4.3), reduce to equation (4.4.2) for maximum likelihood esti-
mation with normal response data and an identity link function.

4.5 GENERAL VARIANCE PROPORTION DECOMPOSITION

Recall the orthogonal matrix, M such that M'M = MM’ = [ and

MXK™'XM=A. (4.5.1)

M are a set of eigenvectors for the information matrix and A is a diagonal matrix of the (p + 1)
corresponding eigenvalues. Let S = K -12X be centered and scaled. (X’K-'X)~!' = MA~'M’ . De-

fine, asymptotically,
A P ‘
g =VarB) =3 m? | 4, 4.5.2)
um0

Myers (1986) points out that it is easy to illustrate that a small eigenvalue deposits its influence, to
some degree, on all variances. The proportion of variance associated to the j* estimated coefficient,

attributed to the i* eigenvalue of the sum in equation (4.5.2), can be expressed as
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2
mi | A
Py= o 4.5.3)

A matrix of proportions can be formatted as in Table 4. Hence a small eigenvalue i (relative to the
maximum eigenvalue) responsible for at least two large proportions of variance P,; and P,, suggests

precision of estimation may be damaged.

4.6 EXAMPLE USING GENERAL DIAGNOSTICS

The data supplied in Appendix A concerns the prediction of a cancer remission when
given six continuous explanatory variables. Hence the response is Bernoulli in nature which
lends itself to a logistic model. The explanatory variables are first centered and scaled by the
procedure outlined in section 2.10 and then the data matrix is augmented by a column of ones
associated with the constant term. Maximum likelihood estimation is employed yielding the

following estimates (standard errors):

Maximum Likelihood
(11 Iterations)

Intercept <2311 ( 1.800)
X1 : 23.012 (45.975)
X2 : 20.050 (61.358)
X3 T -22.382 (71.784)
X4 : 9.511 ( 4.536)
X5 i -6.527 ( 4.909)

First notice the large standard errors associated with the parameter estimates for X1, X2, and
X3. A first suspicion would be small eigenvalues of the information matrix. Recall that the

estimated information matrix for logistic regression is of the form, X'VX, where
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Table 4. WEIGHTED VARIANCE PROPORTION DECOMPOSITION
Proportion of
Ordered
Eigenvalue Var (8,) Var (8,) Var (8,)
4 Pw Pa Doy
4 Po Pu by
'1, P Pn Py
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V= diag{z(1 — #)}. =, is the maximum likelihood estimate for the probability of a cancer re-

mission given in the i* row of explanatory variables, x’,.

In constructing § = VX and centering and scaling the columns of .§', the information

eigenvalues are as follows:

ly = 241382
A4 = 151930
l; = 106446
I = 86062
I = 15073
s = 00106

From a rough benchmark of .01 for a small eigenvalue, X’ VX can be deemed ill-conditioned

and deficient in at least one dimension. The condition index is

A
¥y = = 2277.19,

Amin

which is considerably above the recommended cutoff of 1000 mentioned in section 4.3.

The general variance inflation factors (GVIF’s) developed for weighted data in section
4.4 are:

Intercept : 4.60
X1 : 63.68
X2 : 407.97
X3 : 471.14
X4 : 2.59
X5 : 242

Observe that there exists a GVIF associated with the intercept. The explanation for its presence
is due to the fact that the columns of V12X are centered and scaled in the construction of a
correlation matrix. It is evident that problems exists with GVIF’s for parameter estimates again
associated with X1, X2 and X3.
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By investigating the general variance proportion decompositions outlined in section 4.5,
problems can be immediately identified. See Table 5. Via routine analyses of variance pro-
portion decompositions, it is quite obvious that severe collinearity problems exists between
X, Vi3X, and V12X,. Large proportions of variance associated with a small eigenvalue are
corresponding to large GVIF’s. Certainly, subset regression is a viable option, and will be
discussed in section 5.2, to alleviate problems associated with weighted collinearity. However,
since asymptotically biased estimation is the topic, a comparison will be made using alternate
estimation procedures outlined in Chapter 3.

Table 6 consists of a variety of estimation techniques for the cancer remission example.
One purpose of this table is to demonstrate how much estimation techniques can vary in the
logistic setting. A point of interest is the reduction in the standard errors of the coefficients for
any biased technique when compared to maximum likelihood. As the eigenvalue structure and
deviance measure suggest, it is quite obvious that PC estimation minus two dimensions is not
necessary. The shrinkage parameters dj, d,, and d, are discussed in equation (3.20.7). The
shrinkage methods d., and d,, will be developed in sections 6.4 and 6.5 respectively.
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Table 5. VARIANCE PROPORTION DECOMPOSITIONS CANCER EXAMPLE

Eigenvalue Bo B8, B: B, Ba Bs
2.41382 0.01656  0.00078 0.00030 0.00032 0.00391 0.00204
1.51930 0.00443 0.00053 0.00000 0.00000 0.11226 0.12887
1.06446 0.04659 0.00529 0.00062 0.00017 0.01821 0.00325

.85063 0.06631 0.00497  0.00001 0.00006  0.09245 0.11728
15073 0.42456 0.01399  0.00001 0.00035 0.71374 0.73266
00106 0.44153 097443 0.99906 0.99910 0.05943 0.01611
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Table 6. VARIOUS ESTIMATION TECHNIQUES FOR CANCER EXAMPLE
Estimate (standard error)

DEV By B, B, 8, B, Bs

ML 21.755 2311 23.012 20.050 -22.382 9.512 -6.527

(1.800) (44.975) (61.359) (71.784) (4.536) (4.909)
Schaefer 21.894 -1.798 7.154 -1.774 3.156 9.117 -6.314
PC(-1) (1.080) (6.209) (2.683) (2.802) (4.399) (4.872)
Schaefer 31.388 -.343 -2.019 817 -.489 3.693 =315
PC(-2) (0.594) (2.499) (2.150) (1.658) (2.838) (3.151)
Iterative 21.892 -1.847 7.337 -1.794 3.257 9282 -6.454
PC(-1) (1.080) (6.209) (2.683) (2.802) (4.399) (4.872)
Iterative 42,998 -968 -8.144 3.880 -1.514 9713 -6.037
PC(-2) (0.594) (2.499) (2.150) (1.658) (2.838) (3.151)
Ridge 21.868 -1.803 8.807 1.071 -0.205 8920 -6.081
d, = .00064 (1.065) (8.208) (8.164) (9.444) (4.283) (4.737)
Ridge 21.874 -1.788 8.546 787 123 8.882 -6.043
d, = .00072 (1.057) (7.785) (7.379) (8.513) (4.267) (4.721)
Ridge 22.048 -1.510 5.815 -.799 1.853 7.877 -5.009
d, = .00382 (0.931) (5.207) (2.829) (2.950) (3.811) (4.199)
Ridge 22.384 -1.286 4427 -0.744 1.666 6.937 -4.049
dep = .0080 (0.831) (4.336) (2.358) (2.307) (3.388) (3.707)
Ridge 21.836 -1.890 10.703 3.386 -2.897 9.091 -6.239
dpr = .0003 (1.117) (12.091) (14.610) (17.035) (4.350) (4.810)
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Chapter V
AN ILL-CONDITIONED INFORMATION
MATRIX IN THE GLM

5.1 INTRODUCTION

The damaging effects of multicollinearity are well documented for the generalized linear
model when the identity link function is used with normal response data. See Hoerl and
- Kennard (1970), Webster, Guast and Mason (1974), and Myers (1986). Schaefer (1986) has
further suggested ridge, principal component, as well as Stein estimation procedures for logistic
regression when the logit explanatory variables form an ill-conditioned X matrix. Recall in
section 4.1, Schaefer (1979) developed an argument that the variance-covariance matrix
(XK X)! for é of the logit model has large elements in absolute value when the degree of
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multicollinearity becomes more and more severe in the X data. As noted in Chapter 4,
Schaefer’s argument of X’ X being near singular does not imply in general that X’X-'X is near

singular.

The iterative equation for parameter estimates of the GLM suggests that if the informa-
tion matrix is near singular, then perhaps some alternate estimation technique can be employed

with the generalized linear model to improve properties, for example:

) SVarB)=tr(@)=3(A) —ooas 40;
=0 =0

. o, T2 . :

i) Var[yx)]= [ =L ] Y 2}, At = oo for predictions of new observations
° =0

outside the mainstream of weighted collinearity when combined with a

small 4, ;

iif) For the test

Hy:p=p¢
Hy:p=pF,

the test statistic, y3= 3 (3,c— &4 — O as 4, — 0, is deflated and
=0

hence reduces power (Kendall and Stuart (1973)), where C and F denote

the current and full model respectively.

Notice how these damages of a near singular information matrix generalize from the logistic

regression setting in section 3.8.

Since the iterative solution for the coefficients relies heavily on the information matrix,
XK -\X; condition indices are excellent indicators for a deficiency in this matrix. Action should
the be taken accordingly. If X'X -1X is deemed ill-conditioned, then several approaches for al-
ternate estimation will be suggested. The first two alternate parameter estimation procedures

developed for the generalized linear model are a ridge and principal component approach sim-
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ilar to the work of Schaefer (1979) and (1984), respectively. Forthcoming will be a general class
of biased estimators termed generalized fractional principal component estimators. This class
of estimators will be shown to be particularly useful when the generalized linear model is in the

canonical form.

5.2 VARIABLE DELETION

A common resort to the reduction of multicollinearity in standard least squares multiple
regression models is variable deletion (Myers (1986)). The idea is to simply remove the ex-
planatory variables that are inherently collinear with the remaining explanatory variables in the
data matrix. The choice of deletion can be done quickly by looking at the correlation matrix
of the data or, perhaps more appropriately, by examining the variance inflation factors (VIF’s)
along with the variance decomposition proportions. The researcher hopes to find a reduction
in VIF’s along with reductions in variances of regression coefficients with a stable subset
model. The subset model should reduce collinearities with minimal loss of pertinent informa-
tion. The predictive capabilities of the subset model can be compared to that of the original

model by examining

i) PRESS=3e =% 71—%’_’ where , are the diagonal elements of the
=l im] =
hat matrix, H = XXX )X
Var(j
i) H= a,u) :

If theoretical models are not specified, then variable deletion is thought of as a convenient
meané for collinearity reduction in standard least squares multiple regression. However, in the
generalized linear model, there exists regressions where deletions based on the collinearities of

the columns of X may or may not have an impact on the collinearities of the columns of
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K-13X, Due to the fact that variables which are collinear in the weighted sense damage the
information matrix, deletion of variables should be based on weighted collinearities. Chapter

4 has suggested various diagnostics for variable deletion in the GLM.

Schaefer (1979) points out that even though the concept of variable deletion is the most
straightforward and easiest to implement, it may be better to use some other technique to re-
move multicollinearity among the explanatory variables. The variable deletion process removes
variables solely on the interdependence of the X data without taking into account the depende;nt
variable. Generalized principal component and ridge estimators will be discussed in this con-

text.

5.3 GENERALIZED PRINCIPAL COMPONENT ANALYSIS (GPCA)

Principal components regression has been introduced in Chapter 3 for both standard
multiple and logistic regression. Natural extensions are put forth to the generalized linear
model. Examples and simulations will show that GPCA can be applied successfully in a variety
of experimental settings. Moreover, the upcoming development has a certain elegance.

Consider the generalized linear model given in equation (2.4.1).
n=gkw)=x'f=2a, (53.1)

where x’M =7, M'f =g and M is the orthogonal matrix yielding the spectral decomposition
of the information matrix. The point of view for logistic regression, given in section 3.10, is the
same for generalized principal component regression (GPCA). The concern is not so much the
exact form of the matrix X in the construction of the information matrix but rather that X is
composed of a set of p independent variables having the same scale. The researcher may ac-
complish this by standardizing, as mentioned in equation (2.10.1). However, if, by design, the
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columns of the X matrix are originally the same units, then further standardization may be
avoided to allow a more natural interpretation of the results. The work given in this disserta-
tion consistently views X as both centered and scaled. The fact that X’K -'X will not be in a
correlation form is not a real issue. Despite the rather natural method of removing scale de-
pendence in ordinary least squares principal components analysis, by means of a matrix in the
correlation form, GPCA can accomplish scale removal in a different fashion.

The generalized principal component procedure involves the deletion of some of the
components in equation (5.3.1) and finding the maximum likelihood estimates of the remaining

components. Consider rewriting the model in equation (5.3.1) in the canonical form
-5
1=2a=(Z Zs)[,,:]- (532

Note that the columns of Z, represent the deleted principal components. Thus, the restricted

canonical model follows

" =Zga,

A natural approach, from the point of view of GPCA, would be to maximize the likeli-
hood function of g given the orthogonally transformed data or the principal components, Z.
Thus, it follows from equation (2.4.2) that 9/ g has an unique maximum found by equating

the following expressions to zero.

0=ﬂ_=i O 6, ouy Omy
Oa £ 06, oy Om Oa 533

N
o\ (= wp)

Thus, by a similar argument developed in equation (2.4.7), an iterative scheme for g can
be constructed using the method of scoring.
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N
A A on
=8+ AL, [Z aky (3= B a—; ]
il N S
N

A A on (5.3.4)

= A:l-l [Z & kul [z’: ﬁ:—l + (- i) “"‘a“i ]]

t=1

A1Z Ry
=L 231

=1

where p* =0, + (3, — 1) -g%:- evaluated at &,_,. Note u, must be updated at each iteration step.
M may be updated at each step, however empirical results suggest using a fixed spectral de-
composition of the maximum likelihood estimate of the information. If all the principal com-
ponents are kept, then M g is identical to the maximum likelihood estimate of é However, if

by choice 7 == p 4+ 1 — 5 principal components are deleted, then the iterative scheme becomes
A A‘l " o) -1 »
& =[A"Z'K ") (5.3.5)

A conversion can be made from the principal component parameter estimates to one
using the original centered and scaled explanatory variables while improving regression prop-
erties with virtually no loss in information. The transformation back to the original variables

follows as in equation (3.12.5),

B =M, & (5.3.6)

Note that, as outlined from equation (3.14.2), the
Var(5P%) = M, A;'M',. (537
The bias can be quantified as

E@y=8~M,q, (5.3.8)
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Discussions of variance and bias carry over from section 3.9. The asymptotic distribution of
br¢ will be derived in equation (5.5.9).

As an example, consider the common identity link when ¢, ~ N(0, ¢?).

n=xp+e
=%l +e (5.3.9)
"= X ﬁ =7 .
Thus from equation (5.3.5), the iterative principal component scheme becomes
A 2 -1 -2
=0(2'Zy ' Z'c
Eﬁ ( L (5.3.10)

=@2)'zy,

since y,* = u, + (3 — u)0u, | du,=y. Notice that this is the usual one step principal compo-

nent least squares estimator in regression analysis with common variance.

As a second example, consider Y, ~ binomial(n, #,), and thus

L

81y - In [ ] =x'. (5.3.11)

1_1!‘

Thus the iterative principal component scheme becomes, from equation (5.3.4),

N
A - A_ A
&e=0,+AL, Z @k (v — Adky
i=1 ~-1 (5.3.12)

A- (4
=8 +ALZ( - D)

since 8y, | du, = k,. The result of equation (5.3.10) is precisely the result derived for principal

component estimation of the the logit model in equation (3.12.4).

For a third example, consider the unit gamma Y, ~ I'(1, 4)) where ;=1 is a known nui-

sance parameter. Thus
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) =0=—p' =—y=xB=Z@=n
and py=E(Y)=—n;" =hn).

Hence A'(n) = n;? and k;' = n;? giving y* =n,+ [, + (7] 0} = 2n, + y, n} evaluated at &,

The iterative equation is then given by

A /\_‘ '/\- Y
ﬁt=[A ZK 2 ]f—l'

Lastly consider a Poisson response. That is ¥, ~ Poisson(4). p,=4,=e%x=k' =H(n).

yi=(y/e)—1+n. Thus

A A_tr s
&=[A"'ZK 7'y 1.

54 AN ALTERNATE PRINCIPAL COMPONENT ESTIMATOR IN THE GLM

Extending Schaefer’s (1986) one step logistic principal component estimator to the gen-
eralized linear model, consider the maximum likelihood estimator in equation (2.4.7).

Be=[@R Xy R
where ® = X'K1X, K+ = diag{k;}}, and k;} = [/'(n)P | Var(Y)). K'and y* are re-estimated at

each step. Thus, if the initial estimate is at the origin (), then g, can be expressed as

L N
A A A A on
Bur=2, WELXV XKL Y akil'o-B) 5|
1=l =1 N P

where L is the iteration of convergence. Define
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14
&KX =) lmyatyy
J=r

P
where (XK, X)'=)" Glmym),.
J=0
r is the number of components deleted.

In circumstances, such as the logistic model, when X is estimated well by the maximum

likelihood estimate X, , then é,, can be estimated by the one step solution
Aw A + A A
Bpe= XKyt X) " (X Kpgp X)Brr (54.1)

when (X'R 7X) = (XK 31,X) and (XK 71X )* & (XK 3,.X)*. The development of §;, follows
naturally from equation (3.11.6). Note the following first order Taylor series approximation
of a diagonal element of X -, k-1, about the true corresponding n . Let V;a.r()’) = q(n).

ny THF | 24,0 o) = (H m)d o)

) (4om)? 1=

Therefore,

[24,As(mH o) = (o) o) i

Var(k))
(@m* j=0

%' =K () i 75 (542
J=0

from equation (3.8.1). The subscript i is suppressed in equation (5.4.2). KX is a constant. The

variance, given in equation (5.4.2), will not be as affected for observations in the original data

set as for the observations outside the mainstream of collinearity since these points, in general,

do not deviate much in the z direction corresponding to “small” 4, . This suggests X, will

estimate KX relatively well for the original data.
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The asymptotic variance and bias of g;, is equivalent to that for the iterative method given

in equations (5.3.7) and (5.3.8). That is asymptotically,

Var(g,) = (XK' X) " XK'k~ X)*

. (54.3)
=MA; M.
The asymptotic distribution of §,, is identical to equation (5.5.9).
5.5 INFERENCES CONCERNING THE PRINCIPAL COMPONENTS
The log-likelihood function follows directly from equation (2.2.2),
l=[yb(0) + c(0)]/ q(¢) + d(y, ¢). (5.5.1)

The inferences regarding the principal components for GLM follows directly from section 2.5.

For the principal component generalized linear model, define the score with respect to «; to be

. _ ol

Uy = 2%, j=0,1,..,p. (5.5.2)

In obtaining the principal component maximum likelihood parameter estimates,

U=, U, ..., Uy is set to zero, where

EUNY=0 and EU U )=0=A. (5.5.3)

By an extension of the Central Limit Theorem (Feller (1966)), the asymptotic distrib-

ution of [ is multivariate N(Q, ® = A) ; hence

Uo'y =UTA < xﬁ L0 (5.5.4)
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When convergence is obtained using the iterative equation (5.3.4), consider the unique
maximum likelihood estimate, ¢. Define g to be the true parameter vector. The Taylor series

expansion of U"(g) about g (Dobson (1983)) is
U@ U@ +H @@ -2, (5.5.5
where H" is the Hessian matrix evaluated at the maximum likelihood estimates, 3. Thus,
U@=U'Q)-A@-2) (5.5.6)
since ® = A = E( —H"). This implies that
G-a)xA'U, (5.5.7)
since U(g) = 0 by definition. By taking expectations of both sides of equation (5.5.7),
E@) =g asymptotically,
since E(U") = 0. Similarly
H@-a@E-a)]=A"EUuNA™ =A7

for A nonsingular. Thus for large samples

&~ N, A
A“ , (ﬁ,\ ). 2 (5.5.8)
@—2)A@-2)~ xp,0
It follows that
B~ N(Mag MAT'M'). (5.5.9)
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5.6 HYPOTHESIS TESTING AND DELETION OF COMPONENTS

There is an assortment of rules for choosing the proper principal components to delete.
A selection is given in Lee’s dissertation (1986). Perhaps the most common rule is the one
which deletes the principal components associated with the smallest eigenvalues. This method
can be criticized since it does not take into account any of the Y data information. The step-
wise method mentioned in section 3.15 using a ¢-like statistic takes into account the slope of
the data in the direction of the principal component in question. Moreover, for the generalized
linear model, a x3? statistic will also be suggested to determine the goodness-of-fit based on a

subset of components.

The theory from section 2.6 naturally extends to the principal components. Consider the
principal components, Z = XM, where M is the orthogonal matrix that diagonalizes the infor-
mation matrix. Recall the overspecified or maximal model which has as many parameters as
the N observations. Thus the maximal model has the parameter vector

!m‘x = [al, az, .oy GN]'.

To determine whether another model with (p + 1 < N) parameters g = [ay, a;, ..., @, ]’ is ade-
quate relative to the maximal model, compare their likelihood functions (in keeping p+ 1 as
small as possible). If L(x; p) = L(Gma »)» then the model describes the data well. However, if
L{g; y) < < L{@mae p), then the model is poor relative to the maximal model. This suggests the

likelihood ratio test using the statistic

A= L@ma ) | LE: )

N N (5.6.1)
or 1nd=limui)) - &Y

If A is large, then claim g is a poor model.
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The sampling distribution of In 4 can be approximated by the following Taylor series

expansion of {g; y) about the maximum likelihood estimator &.
Ka: p) & 1@ y) + @ =3 U@+ (1/2)a— 2 H@ @ —B), (5.6.2)

where H(g) is the Hessian matrix evaluated at the maximum likelihood estimate. Recall that
U*(g) = Q by definition and A = ® = — E(H ) for large samples. Thus equation (5.6.2) can be

rewritten as
2018 p) - Hs 1= @— A —D~ L5410 (5.6.3)
from (5.5.8).

The counterpart of the scaled deviance is
S=2Ina=2Xan. ») - L& p] (5.6.4)
The scaled deviance can be broken down into the following components

S = 2 {[(@maxs ) — Kamax ; )1 = [(&; ) — Kas )]+ [amaxs ) — La: YT}

L L2
~ XN-p-1,0

(5.6.5)

when H@na; ¥) = Ag; ) ; otherwise, equation (5.6.5) has an asymptotic noncentral x? distrib-

ution.

In deciding which principal components should be deleted, perhaps the most useful hy-

pothesis test is of the form

Hyg=g9 (g+1)

5.6.6
Hiy:g=g (p+1), ( )

where g<p< N and H, is nested in H,. H, is tested against the alternative by using the dif-

ference in the log-likelihood statistics,
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§" = 89— §1 = 2 (@1 ») — @03 P (5.6.7)
If both H, and H, describe the data adequately relative to the maximal model, then
.2
S0~ XN-g~1,0
and §) < xy_p1,0- (5.6.8)
Thus S~ x2 -

Notice that if g+ 1 = p, then §* ~ %} ,.

Consider the example when Y, ~ binomial(n, =) . To test the hypothesis in equation
(5.6.6), use

N N A .
§' = z{z YAZ & — Z nio) + "Z [in(1 + e:"“') -In(l + e"«ﬁo)]} ,
=l o
which has an asymptotic x2_, distribution under H, .

For normally distributed data with unknown variance, the likelihood ratio test can be put

into the form of a F test.
[SSE, — SSE;1| [(p— 9831 ~ Fyg Nopo»
where the full and reduced models use the least squares estimates.
Perhaps a more common test in practice would be the one of the form
H, Cg=0, (5.6.9)

where C is a ¢ x (p + 1) matrix of constants. In particular, the test for the deletion of a single

principal components would yield the choice of C = (0,...,0, 1, 0, ...,0). In the case where all the
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principal components are kept in the canonical form model, a’s are indeed maximum likelihood

estimates. Relying heavily on this fact, g has an asymptotic limiting normal distribution
&~ N@gA™Y). (5.6.10)
It follows under H,,
ol (¢ N o R oF TN (5.6.12)
Hence, the test for a single component simplifies to
aty~ 4. (5.6.13)

The above statistic is compared to the appropriate percentage point of the asymptotic chi-
square distribution. Of course 4, is usually unknown; therefore the test

4 =8, (5.6.14)

is a common test for a single component using N — p — 1 degrees of freedom for the ¢-distrib-

ution.

Jolliffe (1986) develops several strategies for the selection of components in principal
component standard multiple regression. One such strategy is to simply delete all the compo-
nents associated with small eigenvalues below a specified cutoff. A useful upper limit in prac-
tice is between .01 and .1. This procedure is certainly useful in the GLM.

A different approach from deleting small eigenvalues is one which incorporates the ¢-test
given in equation (5.6.14). Hence a procedure could be used which deletes components based
on its contribution to the regression via a t-test. However, Jolliffe warns, for standard PC re-
gression, that usually more components will be retained than are really necessary if components

are deleted in succession until a significant ¢ -statistic is reached.
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A natural extension considers the VIF’s developed in section 4.4. Delete components
successively until all the VIF’s are below a specified value. Recall that VIF, = (1 — R?)!, where
R? is the coefficient of determination for the regression of the standardized
K-ng, on K-#X.,  Values of R?>.90 yield VIF,>10 whereas values of
R}>.75yield VIF,>4. In standard multiple regression, Jolliffe points out that although this
procedure appears to be more sophisticated, it is almost as arbitrary as the eigenvalue cutoff

value given above.

Hill et al. (1977) considers a more sophisticated approach to deletion of components.
The weak criterion is one where the objective is to get p* close to . That is b is preferred
over é if

t{MSE(®P)] < [MSE(§)], (5.6.15)
where MSE(b) = E[(&2° — p)(b2° — B)’]. Notice that equation (5.6.15) is equivalent to

12 - B < I - BI.

A stronger criterion is more oriented toward prediction of g( y) rather than estimation of the

coefficients. The requirement is now
MSE(C) < MSE(CB),

for all nonnull ¢ of proper dimension. Notice for ¢’ in the X space of interest, this is a predic-

tion oriented criterion.
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5.7 A VARIETY OF APPLICATIONS OF PCA TO BINARY RESPONSES

Consider the class of generalized linear models where the outcome is binary in nature.
Suppose that at each of N various combinations of the covariates, there are », binary responses.
Define

Yo {l if the outcome j at covariate combination i is a success
U0 otherwise

and =, is the probability of success at covariate combination i. Thus Y, ~ binomial(n, =) and

is a member of the exponential family as given in equation (3.2.1).

The proportion of success is then given by p,= Y, [/ n, for i=1,2, ..., N. For nx, suffi-
ciently large

A~ N(mpnfl—=)[m) - (5.1.0)

To model =, as a function of the continuous covariates, as in logistic regression, recall the

generalized linear model
gn)=x8,

as in equation (2.1.3). g is the link function between the mean, nx, and the systematic com-

ponent, X', . Perhaps the most obvious link is the linear probability model of the form

Despite the attractiveness of equation (5.7.2) which allows the assumption of the additive error
term with normality, the linear probability model has some serious drawbacks such as predicted
probabilities falling outside the unit interval.

Another model proposed to link 7 to x’f is the angular model. Let
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= = sin’(x’B).

To ensure the predicted probability is contained in the unit interval, a cumulative prob-
ability distribution is often modelled (Dobson (1983)). Consider

n=g'wp=tn=[ rora, (5.1.3

where f(v) is a probability density function and 0 < = < 1. ¢ is related to o, = x'f = Z'a , with
all the (p+ 1) principal components. Notice = is a nondecreasing function of ¢. Table 7
contains various cumulative probability distributions used to model #. Note that the Probit
model has particular use for the median lethal dose (LD50) when p = ¢ (see Finney (1971)).

Recall the principal component maximum likelihood iterative scheme as given in section
5.3.

R =h @),

where pre = M,a# are the maximum likelihood estimates using s principal components.

Notice that the log-likelihood equation given in equation (2.2.2) can also be written as

%rn
ta.p=i]] ( 7, )”'Y"“ A
=1 )

" (5.74)
n:
=> [YLln(n,)+(n,— Y,) In(l —u,)+1n( YL)]'
fun]

Since, the maximal model as defined in section 5.6 has as many parameters as observations,
equation (5.7.4) above can be maximized with respect to =, as well as to «, for i= 1,2,..,N.
Thus
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Table 7.

VARIOUS MODELS FOR BINARY RESPONSES

Model Density
. . e(v—p)/k

togstie SO =S+ ey

. exp{( —24°)'(v — u)’}

Probit S . \/;

Linear fW)=@0b-a b>a

Extreme S(v) = B-'exp[p-}(v — a) — exp(B~'(v — @))]

Model Probability = f"__“ f(v)av Link to n

Logstc  s=[l+em(—(-p)k"  l(Ec)=n="3"
Probit t=¢( t:“ ) ¢'I(R)="= t—al‘
Linear tﬂﬁ, astsbh z=q=2::
Extreme x = | —exp[ — exp(B-\(t — a))] In(-In(l=n))=9n

== o)
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-7,
0=2l b _ M7 0 - (5.7.9)

and %, =Y, [ n,. It follows then that
p = h(x' BE%) , (5.7.6)

where p is the number of continuous covariates to model = in the nonmaximal model.

The scaled deviance can be thought of as

S= 2 Eimax X1) — Aabs X 1))

n—r
=2 Y; Y;) In
z[‘ mmbﬁ”"‘ J —wx,b:‘)]
(51.7)
Zozln(o./eo
fm]
‘;'X%/_p..p

where o, are the observed frequencies and ¢, are the expected frequencies of the 2V cells given
in Table 8.
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Table 8. N INDEPENDENT BINOMIAL RANDOM VARIABLES

Binomial Trials
1 2 - - - N
NO. sws Y 1e Yz. - - - YN
No. Failures n-Y. n—-Y. - - - ny= Yy
No. Trials m n ny
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Chapter VI
RIDGE ESTIMATORS IN THE GLM

6.1 INTRODUCTION

Schaefer (1979) has developed a ridge estimator for logistic regression when an alternate
estimation technique is desired. See section 3.20. The idea of a ridge estimator can be extended
to the GLM. Recall section 5.1 which discusses several effects of an ill-conditioned information
matrix to the GLM. From equation (2.4.7), é is an iterative reweighted least squares (IWLS)
estimate of 8. Walker and Duncan (1967) demonstrate for the logit model in equation (3.4.1)
that é minimizes the weighted sum of squares error (WSSE) and thus is the best estimator

based on WSSE criterion. However, ||é|| may be too long on the average. Recall

Var (§) = E(@ — E@)) (8 - E@Y) (6.1.1)
(XK =0

It follows then that
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14 P
Y, Var(By = ek )1 = Y 27 (6.1.2)
=0 1=

Equation (6.1.2) requires switching expected value with trace. If the information matrix ® for
é is near singular, based on a condition index (equation (4.3.1)), then the norm of the estimated

parameter vector maybe too long.

6.2 RIDGE ESTIMATORS IN THE GLM

Clearly, an alternate estimator, =, for g shbuld have a norm smaller than that of the
maximum likelihood estimator, § . On the other hand, the trivial estimator % = { is not ac-
ceptable for obvious reasons. Thus g2 should be reasonably close to é Define closeness in
terms similar to Hoerl and Kennard (1970) and Schaefer (1979) as

WSSE(B®) = WSSE@) + 6 , 6.2.1)

for 6 > 0. Solving for é in equation (6.2.1),

&= WSSE(B®) — WSSE)
= = AR T, (p — AR ) = (p — DY T, ¢ = (@) (6:2.2)
= (h(R) — KR T, (W) — hR() + 2A(E) = AR T, (2 — AB),
where T;! = diag{(k;! | [¥'(1)]),} = diag{1 / Var(Y)}.

In requiring that the ridge estimator, g~ is consistent for g ( é is already consistent), ap-

proximate A(1) and h*(y) as follows using the first order Taylor series expansion about p.
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h(5) = ho() + DX(B — B)

6.2.3
and A®(p) = A,(p) + DX(E% - B) €23

for large N, where D, = diag{#’,(n)} evaluated at 8. Equation (6.2.2) can now be re-expressed

5= (8 — Ry XD, T, DX - B%) + 28 - B2y X'D,T;' (» — h(})

A A (6.2.4)
=@-gYyo@-85.,

since X’D,T,;'(p — h(n)) = Q are the analog of the ML “normal” equations given in equation
(2.4.2) for the generalized linear model. X’K X = @ is the information matrix.

Thus the GLM ridge estimator, §7(d), is the estimator that has a minimum norm for 6
fixed. Notice the similarity to Schaefer’s (1979) work outlined in section 3.20. Consider the
Lagrange minimization of

0=(@%ygR+(d (G- OE-gH-61, (6:2.5)
where d! is the Lagrange multiplier. The solution of equation (6.2.5) follows as

_:E% =0 implies gR(6)=(@+dl)" ®F. (6.2.6)

Letting ®, = X’K-1X + dI, the connection between d and 6 is

s=@-go@-Y
= f(l - 007 © (I - ©7'®)f 6.2.7)
=§(@+dl) O @+dl)'B,

since d(® + dI )1 = [ — (® +dI ) ®. Thus §R is a function of d and can be expressed as
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BRd)=@+dl) ®f (6.2.8)
The asymptotic variance of g%(d) is
Var(g®(d)) = 07! © o7 (6.2.9)

The corresponding bias can be quantified as

Bias(8%(d)) = — d®7" 8. (6.2.10)

The asymptotic distribution of g*(d) is
gd)~ No7' @8, 07 D7 (6.2.11)

The logit link with Bernoulli data yield results given in section 3.20. The examples below il-
lustrate the generalization of Schaefer’s (1979) result.

Consider the example when y, ~ N(u, 6?). ® =0-2X"X and

R -2 ol =2 R
B¥d)= ("X X+d ) e X XBors
=(0"2X'X+ o 2dl) a7 2 X"y
=XX+dl)' Xy,

which is precisely the ridge estimator given by Hoerl and Kennard (1970) when d” = do~2.

As another example, consider Y,~ Poisson(i,). ®,=XK-X where K-! = diag{ev} .

Thus gd) = (®, + dI ' &,fse
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6.3 METHODS OF CHOOSING THE SHRINKAGE PARAMETER d

At present, there exist scores of methods to choose d for standard ridge multiple re-
gression, assuming normal response and the identity link. In Schaefer’s 1979 dissertation, the
results for ridge multiple regression are relied on heavily in developing methods for choosing d
for a Bernoulli response and a logit link function. Schaefer (1979) presents three methods of

choosing d.

d,= (E'MLEML)—I
dy = {maxl, 1}~ (6.3.1)
dy;=(p+ 1)d,.

Notice that d, <d;<d,. The value d appears to represent the harmonic mean method of
choosing the shrinkage parameter. Further, there is a similarity between d, and the maximum
value of d for which the mean squared error (MSE) of the estimated coefficients in standard
multiple regression (Tripp (1983)) is less than or equal to that of least squares. Schaefer admits
that d, is considered as a possible candidate is mainly because of its ease in computation. In
standard multiple ridge regression, the harmonic mean method is considered to be very con-
servative. Observe that d, and d, are even more conservative than d;. It then is no surprise
that, in his summary, Schacfer recommends d as the best method of choosing a shrinkage pa-

rameter in the presence of an extremely ill-conditioned information matrix.

Schaefer’s developments for a shrinkage parameter in logistic regression can quite na-
turally be extended into the ridge setting of generalized linear models. Various other techniques
to choose d are available. Suggestions for choosing d based on trying to optimize the predictive
capabilities of the generalized linear model are given. This dissertation considers the C, criterion

and the DF-trace criterion.
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6.4 PREDICTION CRITERION FOR SHRINKAGE

In section 2.9, a C; statistic was developed to assist in identifying a p parameter subset
model, where 1 < p < k = maximal number of explanatory variables of interest. The candidate
model chosen, using C;, represented the model with a minimal blend of variance and bias of
the predicted values, j. This diagnostic has great implication for the GLM. Not only is it
important to find an interval of d where there is improvement in the estimation of the param-
eters, but quite often the researcher wants good predictive capabilities. The notion of C, can
be developed into a prediction oriented method of choosing the shrinkage parameter, d, when
using ridge regression in the GLM. An argument for a C; as a method of choosing d will be

outlined in this section.

Myers (1986) shows the development of the C, statistic used as a prediction criterion for

choice of d in usual ridge multiple regression. The statistic, C} in this setting is given as

SSE
cF= Az‘ — N+ 2[1 +te(H,)] (6.4.1)
g

where SSE, is the sum of squares error using the ridge parameter estimates. The matrix,
H,= X(X'X + dI )-'X", is the corresponding projection matrix or hat matrix in the ridge setting.
The CR given above uses the centered and scaled explanatory variables as the X matrix, ignoring

the constant column of ones. The 1 + tr(H,) accounts for the constant term.

Recall that C? denotes the C, statistic for ridge regression. Consider the following de-
velopment for a similar statistic in the GLM,

N A . 2,A
Var(y;)) + Bias“(y,
fous =§ L ) (6.4.2)
1

Var(Y)
First construct the variance portion.
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& Var(5)
; VaxT) Z Vary Valhni]
~ Z; _V_l(—fj' Var[A(ny) + K () — n)]

=ﬁ’: [¥ ()

Var(ry V" artn ") (6.4.3)

l-l

-1 —1 -5

=Z kg 'Var(x' ®7' X'K ' XB)
=]

=tr(K X7 00”0071 X)
= tr(0D; ' 007Y),

§¥ Var()
where ® = X’K-X and ®,= X’K'X + dI. Notice when d =0 that 3 _ar(!l

3 Varr) =P+ Which

is completely consistent with ordinary least squares.
The bias portion of equation (6.4.2) is somewhat more difficult to develop. Define

s Bias'(3)
B = I
2. Var(Y) (6.4.4)

= () — ETA( D' T ™' (i) — TR D,
where T = diag{1 / Var(Y;)}. Consider the ridge counterpart of the quadratic form, x?, given

in equation (2.8.2).

N R\2
2 (yi—w)
Xk § of (6.4.5)
= (g = AT (@ = ha®)-

Recall the following theorem from Graybill (1976). " Let I/ be a N x 1 random vector and let
EW)=p, Cov(¥)=3. Then

EQW AW) = tr(4E) + u'Ap,
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for A symmetric. Set

W=Y —-hig"
L= Var[ ¥ — h(z")]
A=T"
1= hy) = ETh(2")].

The expected value of x3 follows.

E() =t(T™" Var(¥ — hy")) + B

6.4.6
=te(T"! [T+ Var[h(y™] - 2Cov(¥, A(y™)] + B, (649

where

Var[h(y®)] = Var(®' ()
= diag{[# ()]} Var(z") (64.7)
= diag([¥' (n) T} X0 ' 007 X',

from the Taylor Series expansion above in equation (6.4.3). The covariance term is computed
below.

COV(_Z , h(.’lk)) ~ COV(_Z, h(!) + h;(y)(nﬂ - !l»
= COV(_X , hr(n)nk)
=Cov(X, K()XO7'XK"Xf)
N
~Con(t, K@XOF XK X(Eios + (K. 0= md 5ot )
=]
(6.4.8)

N
- - o -1 On
= Cov(X, K@XO7' XK XQCK'X)'Y, xky ly,—at)
=]

N
_ -1 On
=Cov(X, K@X97'), xki'v—-)
& iy
1 y 1 Oy
~ K07y, ki G T,
b=l 1

since Cov(4Y, BY)= ABVar(Y). This implies
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tr(2T " Cov( X, h(n™))) = 2x(@07"),
from equation (6.4.8). Thus in combining equations (6.4.7) and (6.4.8) into equation (6.4.6),
E(3) = N + (007 ' 007") — 2tr(@0;") + B2 (6.4.9)
Notice however that
dmy, M)
im] %

6.4.10
Dy pa (6.4.10)

R

Spama

from equation (2.9.2). Dy, [$ in GLM is a reasonable alternative for SSE, | 6% in ordinary
least squares (see Pregibon (1979)). Dy, also lends itself to Aikaike’s Information Criterion.
Note that Dy,,, is the deviance comparing a p parameter model using the shrinkage parameter
d to the maximal model. ¢, 4.0 =Dy, | (N — p) is an estimate of the scale parameter, where D
is the deviance of the p parameter model with shrinkage parameter of zero relative to the
maximal model. Recall that x> and Dy, / $ have the same limiting distribution. See equations
(2.7.1) and (2.7.2).

BiasX(3) .

N
Hence an estimate for B2 =)’ is given by

= Var(l)

B* = x4 — N —tr(@07' @ 07") + 2tr(007 ")

Dy pa IR _ 6.4.11
oMol _ Ny @0 © 071 + 21007 1). (64.11)

$p.dm0

Referring to the original motivation of C} in equation (6.4.2)
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cr_ 3 Yarid) + Bias ()
PL Var(Y)

Do (64.12)
22 N o))

$pam0
Notice that when normal response data is used with common variance, equation (6.4.12) sim-
plifies to the ridge C} in equation (6.4.1). Also outside of the ridge setting, the shrinkage pa-
rameter with d=0, C! in equation (64.12) is precisely Pregibon’s
C =Dy,| $ —N+2(p+1) given in equation (2.9.2). Furthermore, again for normal re-

sponse with the identity link function and common variance (without the ridge setting),

R *
C =C,=0C, (6.4.13)
when d=0. C, is the least squares Mallow’s C,.

Perhaps the most straight forward techniques to implement CR as a diagnostic tool would
be to plot C? as a function of d. Choose d to minimize CR. Such a choice will usually yield
good quality of prediction in the generalized linear model. An example is given in section 6.6.

6.5 THE DF-TRACE METHOD FOR SHRINKAGE

The methods of choosing the shrinkage parameter d mentioned thus far have all been
stochastic methods. That is d;, d;, dy and CR are methods of choosing d which rely on the
random response variable Y. Perhaps in the same vein as Tripp (1983), a nonstochastic
method of choosing d should be investigated. Tripp developed a shrinkage parameter estimate
which solely relies on the ill-conditioning of the explanatory variables of standard multiple ridge

regression with common variance. Tripp coins his method DF-trace, which for the most part
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evaluates the trace of the ridge hat matrix. The counterpart to DF-trace in the GLM will be
shown to rely on the information matrix. Immediately notice that X! is usually unknown and
is estimated stochastically. Hence it can be argued that there does not truly exist a

nonstochastic method of choosing d in the GLM.

Other complications arise in trying to parallel the construction of Tripp’s shrinkage pa-
rameter estimate. Tripp considers the quasi-projector, P, or the ridge hat matrix. That is, in
standard multiple ridge regression,

A

Y =XBg
-_-Hdz

=XXX+dl)7 Xy
= UDYD* +dI)y~' Uy
= UFU'y

= Pry,

from the singular value decomposition in equation (4.3.2). U represents the nonzero
cigenvectors of XX'. D?=diag{u,?} is a diagonal matrix of the eigenvalues of X'X ,
F=D¥D?+dI)" and Pr= UFU'. The p are defined the singular values. The matrix X is
considered as centered and scaled and does not contain the column of ones corresponding to
the intercept term. Hence define

DF-trace = tl’(PF)
= (6.5.1)
14
=D ul i +d).
fm]

The difficulty in directly extending the above procedure to the GLM is that there does not exist

a counterpart projection matrix to that of standard multiple regression.
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The notion of a hat or projection matrix does not neatly extend beyond the usual linear
model to the class of generalized linear models. However, there is some hope to finding a
reasonable candidate within the GLM which does in some way connect to the structure of
H,, particularly in trace as in equation (6.5.1). In the general development of C,, one can match
up piceces of C} in usual multiple ridge regression to that of the one of ridge regression in the
GLM. The tr(®®3!) in the GLM corresponds to the tr(Py) = tr(H,) in standard multiple re-
gression. See and compare equations (6.4.1) and (6.4.12), where ®,= X"K-'X +dI. Notice
also that

p
@07 = )" 4/ (4+d), (6.52)
f=0

where the 4, are the p + 1 eigenvalues of ® = X’K'X. Equation (6.5.2) neatly matches the
motivation of equation (6.5.1). In fact, equation (6.5.2) will collapse to equation (6.5.1) when
the identity link is used for normal responses having common variance. The matrix K is es-
timated via maximum likelihood. See equation (5.4.2) for an evaluation of the variance of the
diagonal elements. The sum in equation (6.5.1) has p terms corresponding to the p explanatory
variables, whereas the sum in equation (6.5.2) has p + 1 terms since the constant term is in-

corporated into the weighting structure of the information matrix.

Thus a reasonable construction of a DF-trace statistic in the GLM would be

4 )4
DF =) 4/ (4+d)=) £ (6.5.3)
=0 =0

Notice that in the least squares setting with common variance

DF = DF +1

Further when d=0,
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DF =p+1
DF =p.

The idea of a DF-trace procedure stems from (other than Tripp (1983)) Marquardt (1970) and
Vinod (1976). The objective is to find the effective rank of X’X, X’K'X in the GLM frame-
work. Suppose that the rank(X)=p’. The value p’ is employed to determine the shrinkage
parameter d. Not only is the notion of DF essentially to give the effective rank of X’X , but
| also to give a glimpse at the nontrivial degrees of freedom for regression. One can see imme-
diately the connection to principal component regression, which is ultimately a procedure to
reduce the dimensionality of X’X to p — r; where r is the number of trivial dimensions deter-
mined by some rule. Notice, however, that DF is not restricted to integer values. In situations

when p’ is not an integer, often the collinearity is termed a diffuse collinearity.

The mathematics of DF’-trace follows directly from Tripp. Thatis ff=4,/(4, +d)isa
convex decreasing function in d. The slope of f; is

oA
od (4 +d)
. ? (6.5.4)
E __y A
od = (4 +d)

which is always less than zero and thus decreasing. Notice that for d=0 the slope

dDF’ | dd = é A7, For orthogonal columns of K-'2X and d=0, theslopeis — (p+ 1). The
=0

second derivative of f with respect to d is

o _ 24
od*  (+d)?

(6.5.5)

which is always positive; thus f is convex in d. For d >0, then 0 <f/< 1 forall i Notice that
lim f=0. Further f;=1for d=0. Notice that by setting d =1, an intermediate value of
f;=.5is found.
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Using the effective rank of ® as a criterion to estimate g certainly is somewhat subjective.
Similar problems arise in the ridge trace procedures. Graphs do help in determining a reason-
able window for the shrinkage parameter. Usually d is chosen large enough so that DF* -trace
has stabilized. Thus DF’-trace can be thought of as an estimate of p’, lending itself to diffuse
collinearities. The plot of DF" vs. d will be instructive in determining the value of DF* for
which the slope is near to that of an orthogonal system. Tripp (1983) is careful not to over-
damp the dominant components. Bounds can be imposed on d to protect against overdamp-
ing. For example if the researcher recognizes that the smallest important f; should not be
shrunk more than a specified fraction p (0 < p < 1), then set

fi=p=4l (4 +d).
This implies
dnax=A(1-p)/ p. (6.5.6)

In practice, d is chosen to be much less than d,,.

Tripp also points out that controversy in choosing d, which is commonplace in ridge
trace procedures, can be avoided by also graphing a line representing the orthogonal situation.
Recall that

p
DF =) 4/ (4+d)=(1+p) /(1 +d),
=0
when the columns of K-3X are orthogonal giving 4,=1 for all i. Since DF" vs. d can be

compared directly to the orthogonal system, there is less of an impact in a varied scale of d.

An example follows in section 6.6.
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6.6 EXAMPLE USING VARIOUS DEGREES OF SHRINKAGE

Previously in section 4.6, an example was given comparing various biased estimation
techniques to maximum likelihood. Table 6 in section 4.6 gives a summary. The logit link
function was used on Bernoulli cancer remission data displayed in Appendix A.

In an attempt to choose a ridge shrinkage parameter that yields good predictions, the C}
method can be implemented. In Figures 4 and 5, a plot of CR vs. dis displayed. The two plots
differ by a varied scale of the d axis. The plots suggest choosing a shrinkage parameter of ap-

proximately, dcp, = .0080 . Such a choice minimizes C} . See equation (6.4.2).

The DF’-trace procedure was also used as a diagnostic tool to choose d. In this case, the
orthogonal system is overlayed (i.e. all 4, = 1). Figures 6 and 7 display DF’-trace as a function
of d. Notice that there is less impact of a varied scale, as Tripp (1983) suggested when also
graphing the orthogonal situation. The DF°- trace procedure is a subjective one. However, the
graphs suggest choosing dp, = .0003; hence implying that the effective rank of @ is in the order
of 5.0. Recall the notion of diffuse collinearities explained in section 6.5. Table 6 in section
4.6 includes the C} and DF" -trace parameter estimates along with the asymptotic standard er-

1018,

6.7 A STEIN ESTIMATOR IN THE GENERALIZED LINEAR MODEL

An estimation technique, which was originally suggested by Stein (1960) for least squares

estimation, is defined as

>

(6.7.1)

c‘w>
i
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Figure 4. SHRINKAGE USING CP CRITERION FOR CANCER EXAMPLE
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Figure S. SHRINKAGE USING CP CRITERION FOR CANCER EXAMPLE
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Figure 6. SHRINKAGE USING DF-TRACE FOR CANCER EXAMPLE
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where 0 < ¢ < 1. Stein suggested the following choice for ¢

A

c=fB @B +tuxx)). (6.7.2)

The motivation for such an estimator is that in the presence of collinear explanatory variables

(in least squares)

yiy: A -1 c -1 ;-1
E@B) 2 tr(Var(@) = (X X) " = > 47 2 45k,
im0
which demonstrates that the e;ztimate é may be too long on the average.
Schaefer (1986) considers the natural extension for Stein estimation in a logistic regression

setting. He simply presents a scalar shrinking of the maximum likelihood estimates by using

A A A

c= BB | B8 +u(xPX)Y, (6.7.3)

where V= diag{z(1 — #,)} from maximum likelihood. Schaefer points out the ease of imple-

mentation of such an estimator in the existing logistic regression programs.

A wider application of Stein estimation can be addressed with the presence of of an ill-
conditioned information matrix, ®. For the generalized linear model, the corresponding choice

of cis

A A

o =pB8 @8 +um@™"), (6.7.4)

which is a generalization of Schaefer’s logistic Stein estimator.

The choice of ¢,, given above, based on Schaefer’s idea is one which minimizes the

E(L}) criterion. See equation (7.2.5). Asymptotically the following holds true;
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E(LY) = Be,p - p'ciE - B)
p
= 07 + ) (¢ ~1)p?
{=0

p p
=) e 1) B
=0 =

(6.7.5)

Notice that

E(LY)

ac,

p p
=0=2c) i+ 2e, -1 B
im0 =0

Substituting ﬁ, for B, yields the the minimum ¢, for the E(L}) criterion in equation (6.7.4).
Notice also that

azE(l“) (ZA +iﬁ?)zo
i=Q

Hence ¢, is in fact a minimum.

Perhaps a more appropriate choice for the scaling constant ¢ in the logistic model, and
for that matter all generalized linear models, is one based on the E(LJ) criterion. See equation
(7.2.6). The E(L}) criterion lends itself to the GLM since incorporates the asympotic

variance-covariance matrix for the estirnated parameter vector.

E(L2) = (3 — B D(crf — ). - (6.7.6)

In taking the derivative of E(L) with respect to ¢, and replacing «, with &,, the minimizing value

of ¢ is
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p
Z 34
6= =0 , 6.1.7)
Z G+ (p+ 1)

=0

where again M is the orthogonal matrix to diagonalize ®, M'®M = diag {1} , and &=M’é.
Quite clearly for any 0 < c< 1, not only are the parameter estimates shrunken in magnitude,

but also the variances of these estimators is reduced.
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Chapter VII
GENERALIZED FRACTIONAL PRINCIPAL
COMPONENT ANALYSIS

7.1 INTRODUCTION

The generalized principal component (GPC) estimator given in section 5.3 and the gen-
eralization of the ridge estimator given in section 6.2 can be shown to be members of a broader
class of shrinkage estimators for the generalized linear model in the canonical form defined in
equation (5.3.1). This broad class of shrinkage estimators will be referred to as generalized
fractional principal component (GFPC) estimators. While, in the GLM principal component
and ridge estimators shrink the estimated parameter vector toward length zero, GFPC esti-
mation also accomplishes shrinking the parameter estimates by taking a general weighting of

the canonical variable components (see Lee (1986)).
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7.2 DEVELOPMENT OF GFPC

Consider the GLM in the canonical form.
gw=2Zg, (7.2.1)
where Z = XM and g = M’f. The model given in equation (7.2.1) can be rewritten as

g (w=2F " Fg

-y, (1.2.2)

where W=ZF ~, y = Fg and F =diag{f} is a diagonal matrix of weights. The weights in
F are contained in the unit interval [0,1). F ~ is a generalized inverse of F since some of the
diagonal elements may be zero. g'(u) = g(u) if and only if the f, # 0 for all 7 ; in this case use

F-'=F . The information matrix, corresponding to equation (7.2.2), is of the form
WK™'\W=F ~“M'®MF ~=F ~—AF —.

Thus the maximum likelihood equations, given below, are similar to those in equation (5.3.4).

-1

A A -4 - - Y, M A\ O
PemBuy + (F T ALF 7)) T whkiln =R
=1 H

A - - ul M A A\ O
=(F TALF7) LZ] wiky [N'lh—l +(yi— ) P ]]t—l (123
=[(F ~ A F 7) “ WK™,
=[FA™'ZR %",
=F at-l’

where y; =n,+ (), — 1) —g—:% and K-! are updated at each iteration step. If the maximum

likelihood estimate for y converges, then further estimation is not needed for K-!. A Variance
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argument supports the use of maximum likelihood estimates for the diagonal matrix K -! when

X data combinaiions are in the main stream (see equation (5.4.2)).

A reasonable approach to generalized fractional principal component parameter esti-
mation, using canonical form models, is to first estimate the the full p + 1 vector of maximum
likelihood estimates, g. Hence K -! is also estimated via maximum likelihood. It follows that
the class of GFPC estimators are

P=Fg. (7.24)

In the case when F=[,,,, then the GFPC estimators reduce to maximum likelihood es-
timators. Further, extending equation (6.2.8) to the canonical form, a generalization for ridge

estimators becomes

aRd)y=A+dI)y'AL
=FR&)

where Fp=diag{,/ (4, + d)}. Thus the generalizations to ridge estimators also fit equation
(7.2.4) nicely. As another example, the generalized principal component (GPC) estimator
simply chooses f; = 1 for the components chosen to stay in the model and f; = 0 otherwise.

Table 9 lists choices of F for various generalized fractional principal component estimators.

As in section 6.7, measures of closeness between y and g were developed by Stein (1960).
To determine how the choice of F effects the asymptotic mean squared error (weighted or un-
weighted) for §, consider the following criteria. Asymptotically, equations (7.2.5) and (7.2.6)

hold true.

ELD)=EG-arG—a)
=tr(l FA'F) + g'(F- )&

) , (7.2.5)
=) LM+ ) -1
i=0 i=()
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Table 9. GENERALIZED FRACTIONAL PC WEIGHTS

ESTIMATION TECHNIQUE MATRIX F

Maximum Likelihood F=1,

Principal Component fi=m=fi=1, fu==£,=0
Ridge fi=4] @A+ k)

Generalized Ridge fi=4]A,+k)

Stein: L} fi=a'x | @&+ Z3;) for all i
Stein: L fi=EAat | Ehat+(p+ ) all i
Fraction ( p) ’éﬂ f fa =f'.f.l f;ﬂl; 00 <h=me<l
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E(L})=EQ — aYAQ — a)
=t(AFA'F) + o' (F- 1)’ Ag

) » (7.2.6)
N AR DI L
=0 =0

7.3 COMPARISONS AMONG FRACTIONAL ESTIMATORS

Comparisons can be made between the various generalized fractional principal compo-
nent estimators using the E(L?) criterion. For example, consider comparing maximum likeli-
hood (ML) to principal component (GPC) via the asymptotic weighted mean squared error,
E(L). Recall that r = p + 1 — s is the number of components deleted in a principal component
setting. For simplicity in notation, let 2’: and ¥ = Ei be the respective sums over the deleted

i
components and the entire set of components.

Epclld =D fi®+ ), abiffy=1)?
i i

(7.3.1)

=@+ —r+ ) dh,

For maximum likelihood
Eyil)=p+1, (13.2)

since each term of the sum on the right is identically equal to zero. The use of principal com-

ponent estimators over maximum likelihood is only justified by the E(Lj) criterion if

Y halsr. (1.3.3)
r

GENERALIZED FRACTIONAL PRINCIPAL COMPONENT ANALYSIS 140




Perhaps further developments in the area of GFPC will involve equation (7.3.3) as the null

hypothesis in a testing scenario.

The fraction (p) technique yields

EfLD) =p+p—r+ Y.}l + (1= p)'eti, 139
r

Comparisons can be made to the principal component estimator via
Epc(L3) = E{L}) = (1 - p) = (1 = p)atA,. (7.3.5)

Notice when p = 1 that E,(L]) = E{L3) as expected. Further E,(L}) < ELL) if and only if,
for fixed p, a2, 21 .

To match the fractional (p) estimator against maximum likelihood notice that

Ey(Ld) - E{L) =1=p+ r= ) o} =(1— p)atd,. (7.3.6)

Hence the fractional (p) estimator is better in regard to E(LJ) if

(=Pl = (=) ]+ r 2 ) aldy (1.3.7)

Notice in the case when p = 1, the result from equation (7.3.3) holds.

It follows from equation (7.2.6) that the E(L}) for the Stein estimator is
ESL]) = (p+ 1] + (-1, afh, (7.38)
P+l
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where ¢, =Y a?4,/ (X a?2,+ p+ 1). In comparing the Stein estimator to the maximum likeli-
i i

hood estimator, consider

ES(LD) — By (L) = o+ D =) + (= 12D e}
p+!

, (1.3.9)
= (@ =D(p+ e+ +( =1 of4]
P+l

The Stein estimator will make
Es(L}) - Erni(L3) <0,

if and only if

Za?l:—(pﬂ)

l>q>
Z 24+ (p+ 1)

and ¥ a?1,>(p+1). Otherwise the maximum likelihood is a better than Stein in terms of
+l
E(LD).

In comparing generalized ridge to ridge, certainly there exists a set of &, such that

12 12
Forllh) - Exth = ), [ s +lk,)2 e " ? ]

k2
<0
+Z I:(l:+ko (z,+k>’:|

In theory, generalized ridge is trivially guaranteed to be at least as good as the ridge method

(1.3.10)

which may or may not be the case in practice.
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Chapter VIII

SIMULATION STUDY

8.1 INTRODUCTION

The relative merits of various asymptotically biased estimation techniques are investigated
as reasonable altematives to method of scoring maximum likelihood via a simulation study.
The parameter estimation techniques are evaluated by variance, bias, and mean square error
(MSE). Other factors of interest are the sample size, number of explanatory variables, severity
of ill-conditioning of the information, and the distributional form of the response variable.

8.2 PROCEDURE FOR SIMULATION

Appendix B comprises the hub of the simulation study; a program which is written in
SAS Proc Matrix. The program uses either p=23 or p=5 centered and scaled explanatory
variables (augmented to a constant term) from a fixed data set of N=17 or N=45. The
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smaller data set is a random subset of the larger data set. Furthermore, the ill-conditioning of
the information matrix is deemed as moderate or severe. Hence, consider the resulting

2 x 2 x 2 = 8 possible combinations of factors.

In using these combinations of factors, the main interest is the distributional form of the
response variable and how well various techniques estimate the unknown parameter vector.
Normal data with the identity link reduces maximum likelihood estimation to the one step least
squéres multiple regression parameter estimation and biased estimation for multiple regression
is well documented. Consequently, normal data will not be incorporated into this simulation
study. Response distributions of interest will include the Poisson and Bernoulli. The program
is capable of changing the link function as well as the diagonal matrix of weights, X! . The

method of scoring is used for maximum likelihood.

In this study, the parameter vector § is assumed to be known and is fixed within the
program (labelled as TRUEB). When further given the fixed, nonstochastic, known explana-
tory variables X , then the linear combination n = X is trivially known. In using the natural
link function of the exponential family, the following relationship is utilized

gW=1
E=h(n)l

where 4 is a nonlinear function in the parameters. Once given the vector u = E(Y) of means
and the other parameters of the distribution which are functions of the known #, naturally the
next step of action is to generate a vector of random response variates from a specified
distributional form using functions given in SAS Basics Manual (1982). As a result, the
N x 1 vector of responses, Y, are generated via known n and the natural link function.

Having generated Y and X in hand, estimation of the parameter vector is in order. In fact,
six estimation techniques are implemented: (1) Method of scoring maximum likelihood, (2)
Ridge estimation using the harmonic mean method for shrinkage, (3) Schaefer’s principal
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component technique deleting one dimension, (4) Schaefer’s principal component technique
deleting two dimensions, (5) Iterative principal component technique minus one dimension, (6)

Iterative principal component technique minus two dimensions. Refer to these by number.

From the preset parameter vector § and the explanatory variables X of dimension
Nx4or Nx6, for N=17 or N =45, the response vector Y is generated 1000 times (repe-
titions). Consequently, the six estimation procedures outlined above are also computed 1000
times, corresponding to each response vector. Using the 1000 repetitions, the SAS program
has the ability to compute a sample mean vector of parameter estimators for each of the six
estimation techniques. The program also computes the sample variance of each component
of each vector of each estimation technique. Moreover, since the true f is known, bias can be
computed for each technique (7) via @" —p)forr=1,2,..,6. Combining variance and bias

above leads to a mean square error criterion.

Anomalies and other nuisances occur during the course of 1000 repetitions. In the event
that convergence is not met during an iterative procedure or some estimation technique yields
8]l which is inflated over an upper bound (10%) or shrunk below a lower bound (10-9), then the
estimate is set to zero and does not contribute to the summary statistics. Hence the results
presented are conditional on convergence and parair_xeter estimates within subjective bounds.
For example, if a repetition of response vector does not provide convergence in maximum
likelihood estimates, then the estimates (1), (2), (3), and (4) are all set to zero since they rely
on maximum likelihood.

8.3 RESULTS OF SIMULATION

Tables 10, 11, 12, and 13 present results for Poisson responses using the larger sample size

of N =45. There is a world of information to summarize.
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First notice the effects of severe ill-conditioning in Tables 10 and 12 when compared to
moderate ill-conditioning in Tables 11 and 13. The detrimental effects of severe ill-conditioning
are apparent in observing the large values of MSE for the maximum likelihood estimates. Any
choice of biased estimation greatly reduces the MSE. MSE is not nearly as greatly inflated for
moderate ill-conditioning.

Secondly, it appears, from these simulation results, that the number of explanatory vari-
ables has an impact on the number of repetitions dropped from the summary statistics. The
number of anomalies increase for estimation with increased number of regressors. For example,
in the case of p+ 1 =4 in Table 10 and Table 11, 11 / 1000 and 18 / 1000 repetitions are
dropped respectively from the analysis. However for p+ 1 =6, then the Tables 12 and 13
display 101 / 1000 and 52 / 1000 repetitions are dropped respectively. Perhaps one explanation
would be that in the presence of ill-conditioned information, the value Iléll is large on the av-
erage. With p+ 1 = 6, there is a greater likelihood for IIEII to inflate beyond the upper bound.

As a few other general observations, notice in Tables 10 and 12 that the ridge estimate is
not doing as well as in Tables 11 and 13. A reasonable explanation is that, in Tables 10 and
12, the presence of severely ill-conditioned information yields maximum kikelihood estimates
large in magnitude. Hence, in choosing a shrinkage parameter via the harmonic mean, it fol-
lows that (p+ 1) / fB is quite small. Further notice how similar Schaefer’s principal compo-
nent estimators are to the iterative principal component estimators on the average even though

they differ at each repetition.

Tables 14, 15, 16, and 17 display the results for Bemnoulli responses again using the larger
sample size of N =45. The summary for the logit link using Bemoulli data is very similar of
that described above for the Poisson data. The similarities in the results between the charac-
teristics of the logistic and Poisson regressions are very reassuring. It is interesting to note that
in all cases of moderate ill-conditioning (Tables 11, 13, 15 and 17) the principal component

estimators minus two dimension (methods (4) and (6)), as expected, are not doing well. The
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overdamping of these principal component estimators gives estimators near zero, with the

wrong sign or high MSE. The last item to address is the issue of decreased sample size.

Tables 18 through 25 comprise the results decreased sample size. The small sample re-
sults (Tables 18-25) are in the same order of presentation as the large sample results (Tables
10-17), of course with the exception that N = 17 instead of N =45. From the simulation re-
sults given, it is difficult to assess general statements about the effects of decreased sample size
on mean square error. The major consequence is the increased number of repetitions deleted
from the analysis. Perhaps this is the expected consequence since there is less data to support
the regression. In the worst case investigated, Poisson regression with p + 1 = 6 having severe
ill-conditioning (Table 20) rejected over 800 of the 1000 repetitions mainly due to violations
of maximum likelihood estimation beyond the set upper bound. But even by reducing
p+ 1 =4 having moderate ill-conditioning (Table 19), maximum likelihood was still rejected
over 300 of the 1000 times. This suggests some alternate method to that of the method of
scoring should be used for small sample sizes having ill-conditioned information. Again very
similar results held for the small sample logistic regression simulation, except not as extreme.
Logistic regression is typically very nice to work with due to the boundedness property of the
diagonal matrix K-! , unlike most other members of the generalized linear model.
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Table 10. POISSON SIMULATION RESULTS

Response = Poisson N=45 p+1=4 Severe Ill-conditioning

Conditional Analysis on 989 / 1000 repetitions

lo = 2467
I, = L1512
i = 012
I = 006

TRUEB =(-.5,-2, 1, 1)

Average Fn El Fz Fs
Scoring (ML) -.575 -2.084 2.372 -.183
idge (HM) -.521 -1.741 1.297 522
Schaefer PC(-1) -.535 -2.089 1.020 1.021
Schaefer PC(-2) -.389 271 364 367
Iterative PC(-1) -.555 -2.092 1.057 1.057
Iterative PC(-2) -475 .286 383 385
Variance 5*(Bo) s(By) s(By) $(B5)
Scoring (ML) 0.046 2.137 75.780 74.497
Ridge (HM) 0.040 1.761 12.362 11.839
Schaefer PC(-1) 0.043 2.126 0.523 0.527
Schaefer PC(-2) 0.036 0.117 0.282 0.286
Iterative PC(-1) 0.044 2.112 0.531 0.536
Iterative PC(-2) 0.035 0.109 0.256 0.259
MSE

Scoring (ML) 155.757

Ridge (HM) 26.388

Schaefer PC(-1) 3.229

Schaefer PC(-2) 6.698

Iterative PC(-1) 3.340

Iterative PC(-2) 6.648
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Table 11. POISSON SIMULATION RESULTS

Response = Poisson N=45 pt+1l=4 Moderate Ill-conditioning
Conditional Analysis on 982 / 1000 repetitions

Eigenvalue Structure

b = 2216
A = 1254
L, = .52
i = .006

TRUEB =(-.5,-2,1,1)

Average Eo ‘El B, B;
Scoring (ML) -.576 -1.943 1.277 982
Ridge (HM) -.483 -1.254 . . .764 .529
Schaefer PC(-1) -.525 -2.322 " \459 514
Schaefer PC(-2) -.393 -.326 396 -407
Iterative PC(-1) -.548 -2.315 .47% 477
Iterative PC(-2) -482 -.374 .50 -.531

Variance s3(B,) s3(B,) () s¥(Bs)
Scoring (ML) 0.048 2.324 2.183 | 1.906
Ridge (HM) 0.037 1.149 0.921 0.878
Schaefer PC(-1) 0.038 1.559 0.555 0.693
Schaefer PC(-2) 0.039 0.243 0.485 0,477
Iterative PC(-1) 0.039 1.592 0.554 0.694
Iterative PC(-2) 0.037 0.246 0.490 0.503

MSE
Scoring (ML) 6.547
Ridge (HM) 4.219
Schaefer PC(-1) 3478 \
Schaefer PC(-2) 6.404 \
Iterative PC(-1) 3.536
Iterative PC(-2) 6.509
\\‘
\
\
\
\\
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Table 12. POISSON SIMULATION RESULTS

Response = Poisson N=45 p+1=6 Severe Ill-conditioning

Conditional Analysis on 899 / 1000 repetitions

Eigenvalue Structure

= 2662
L, = 1943
i = 865
i o= 517
e = 010
i = .003

TRUEB =(-.5,-2,1,1,-1,1)

Average Bs B, 2 Bs A Bs
Scoring (ML) -.629 -2.215 1.373 .832 -.881 646
Ridge (HM) -.549 -1.783 1.009 719 -.829 .553
Schaefer PC(-1) -.586 -2.206 933 1.183 -.895 .823
Schaefer PC(-2) -.499 -1.367 .559 .701 -1.115 245
Iterative PC(-1) -.605 -2.202 951 1.189 -.870 .699
Iterative PC(-2) -.561 -1.389 .603 .747 -1.166 .196
Variance 5%(Bo) $(B,) s%(B) $(B5) 5%(B4) 5%(Bs)

Scoring (ML) 0.056 2316 119.793  108.679 3414 4912
Ridge (HM) 0.046 1.630 13.581 11.147 1.815 1.814
Schaefer PC(-1) 0.049 2.217 0.538 0.745 2416 2.118
Schaefer PC(-2) 0.043 1.567 0.379 0.561 1.180 1.585
Iterative PC(-1) 0.051 2.237 0.548 0.764 2.454 2.241
Iterative PC(-2) 0.046 1.529 0.385 0.573 1.293 1.707
MSE

Scoring (ML) 239.039

Ridge (HM) 29.791

Schaefer PC(-1) 8.514

Schaefer PC(-2) 6.285

Iterative PC(-1) 8.693

Iterative PC(-2) 6.705
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Table 13. POISSON SIMULATION RESULTS

Response = Poisson N=45 p+1=6 Moderate Ill-conditioning

Conditional Analysis on 948 / 1000 repetitions

Eigenvalue Structure
A = 2881
A = 1373
A = .998
A, = .839
Ae = 306
As = .003

TRUEB =(-.5,-2,1,1,-1,1)

Average Bo B, 8. By Bs Bs
Scoring (ML) -.621 -1.993 1.212 996 -974 822
Ridge (HM) -.592 -1.196 g12 396 -.586 367
Schaefer PC(-1) -.569 -2.075 993 810 -.795 .828
Schaefer PC(-2) -.561 ..791 589 -.569 -.526 -.391
Iterative PC(-1) -.59%4 -2.209 1.005 811 -797 .842
Iterative PC(-2) -.539 -.840 546 -.599 -.517 -.539
Variance s3(Bo) sXBy) (B2 s3(B5) $3(B4) s3(Bs)

Scoring (ML) 0.051 3.179 2.527 2.732 2433 2.826
Ridge (HM) 0.036 1.091 0.889 0.999 0.804 0.863

Schaefer PC(-1) 0.045 1.335 1.515 1.700 1.101 1.719
Schaefer PC(-2) 0.043 0.683 0.913 0.597 0.624 0.993
Iterative PC(-1) 0.046 1.365 1.549 1.713 1.124 1.755
Iterative PC(-2) 0.041 0.716 0.974 0.663 0.665 1.115

MSE
Scoring (ML) 14.139
Ridge (HM) 6.350
Schaefer PC(-1) 7.533
Schaefer PC(-2) 10.001
Iterative PC(-1) 7.571
Iterative PC(-2) 10.390
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Table 14. LOGISTIC SIMULATION RESULTS

Response = Bernoulli N=45 p+l=4 Severe Ill-conditioning

Conditional Analysis on 995 / 1000 repetitions

l, = 2805
4, = 1595
l, = .088
i = 013

TRUEB =(-.5,-2,1, 1)

Average Fn El ?z Fa
Scoring (ML) -.559 -2.548 1.507 905
Ridge (HM) -.520 -1.996 901 1.055
Schaefer PC(-1) -.527 -2.394 1.132 1.103
Schaefer PC(-2) -.555 335 381 387
Iterative PC(-1) -.543 -2.871 1.178 1.151
Iterative PC(-2) -.597 352 377 383

Variance 53(Bo) 5%(B,) $3(B.) $3(B)
Scoring (ML) 0.122 8.520 292730  295.356
Ridge (HM) 0.105 5.717 45.255 47.085
Schaefer PC(-1) 0.109 7.123 1.633 1.639
Schaefer PC(-2) 0.084 0.279 0.619 0.630
Iterative PC(-1) 0.118 7.647 1.709 1.729
Iterative PC(-2) 0.096 0.335 0.725 0.739

MSE
Scoring (ML) 597.198
Ridge (HM) 98.176
Schaefer PC(-1) 10.688
Schaefer PC(-2) 7.827
Iterative PC(-1) 11.581
Iterative PC(-2) 8.196
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Table 1S. LOGISTIC SIMULATION RESULTS

Response = Bemoulli N=45 p+l=4 Moderate Ili-conditioning
Conditional Analysis on 994 / 1000 repetitions

Eigenvalue Structure

l = 2184
L = 1222
5, = .52
i = 073

TRUEB =(-.5,-2,1, 1)

Average -ﬂ_o El Ez ?3
Scoring (ML) -.560 -2.259 1.207 1.001
Ridge (HM) -.593 -1.338 669 589
Schaefer PC(-1) -.516 -2.201 .669 567
Schaefer PC(-2) -.570 -.551 606 - 575
Iterative PC(-1) -.535 -2.240 .669 548
Iterative PC(-2) -.509 -.589 682 -.654

Variance 5%(By) s3(B,) 54(B,) S(Bs)
Scoring (ML) 0.134 8.521 8.842 7.371
Ridge (HM) 0.100 2.891 2.592 2.357
Schaefer PC(-1) 0.103 4.137 1.359 3.111
Schaefer PC(-2) 0.089 0.618 0.871 0.755
Iterative PC(-1) 0.113 3.769 1.598 3.541
Iterative PC(-2) 0.105 0.707 1.035 0.931

MSE
Scoring (ML) 24.583
Ridge (HM) 8.749
Schaefer PC(-1) 8.547
Schaefer PC(-2) 7.369
Iterative PC(-1) 9.294
Iterative PC(-2) 7.899
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Table 16. LOGISTIC SIMULATION RESULTS

Response = Bemnoulli N=45 p+1=6 Severe Ill-conditioning
Conditional Analysis on 972 / 1000 repetitions

Eigenvalue Structure

l = 2.564
4 = 172
L, = 1068
i o= 582
A = 057
i = 008

TRUEB =(-.5,-2,1,1,-1,1)

Average .ﬁ-o El Fz Bs Bs Bs
Scoring (ML) -.622 -2.798 .507 2.239 -.876 959
Ridge (HM) -.558 -2.133 954 1.097 -.830 836
Schaefer PC(-1) -.582 -2.421 1.143 1.342 -918 1.188
Schaefer PC(-2) -.580 -.896 352 383 -.956 -223
Iterative PC(-1) -.601 -2,704 1.182 1.378 -915 1.064
Iterative PC(-2) -.536 -973 S15 542 -.997 -.299
Variance ) SB) S SB) S8 B

Scoring (ML) 0.165 10.632 519.081 491.729 10.843 16.981
Ridge (HM) 0.127 6.383 47.865 45.102 5.880 7.159
Schaefer PC(-1) 0.138 9.211 2.077 2.584 8.528 9.329
Schaefer PC(-2) 0.103 2.486 0.958 0.988 2.856 1.818
Iterative PC(-1) 0.148 9.905 2.223 2.763 8.852 10.574
Iterative PC(-2) 0.123 3.578 1.121 1.147 3.253 2.106
MSE

Scoring (ML) 1051.990

Ridge (HM) 112.404

Schaefer PC(-1) 32.338

Schaefer PC(-2) 13.523

Iterative PC(-1) 35.158

Iterative PC(-2) 14.126
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Table 17. LOGISTIC SIMULATION RESULTS

Response = Bernoulli N=45 p+1=6 Moderate Ill-conditioning
Conditional Analysis on 979 / 1000 repetitions

Eigenvalue Structure

o, = 2252
4 = L1516
i, = 1078
A = .900
A = 310
s = .04

TRUEB =(-.5,-2,1,1,-1,1)

Average -B-o -ﬂ_l Ez B; Bs Bs
Scoring (ML) -.602 -2.852 1.248 1.123 -1.089 1.071
Ridge (HM) -.505 -1.351 668 .535 -.611 562
Schaefer PC(-1) -.536 -2.059 980 .806 -.872 873
Schaefer PC(-2) -.586 -.784 520 =510 -.529 -.529
Iterative PC(-1) -.560 -2.170 1.039 821 -919 926
Iterative PC(-2) -.538 -.875 .599 -.579 -.541 -.519
Variance s¥(Bo) s3(By) s(B,) s3(Bs) s3(B.) s(Bs)

Scoring (ML) 0.157 11.910 11.065 10.509 9.914 10.779
Ridge (HM) 0.101 3.589 2.704 2.747 2.537 2.800

Schaefer PC(-1) 0.109 4.126 4.158 4.953 4.149 5.048
Schaefer PC(-2) 0.093 1.523 1.808 1.767 2.298 1.666
Iterative PC(-1) 0.121 4915 3.757 5.258 4.060 5.619
Iterative PC(-2) 0.111 1.925 2.164 2.233 2.459 2.229

MSE
Scoring (ML) 54.540
Ridge (HM) 15.271
Schaefer PC(-1) 21.619
Schaefer PC(-2) 15.203
Iterative PC(-1) 23.709
Iterative PC(-2) 17.855

SIMULATION STUDY 155



Table 18. POISSON SIMULATION RESULTS

Response = Poisson N=17 p+l=4 Severe lll-conditioning
Conditional Analysis on 503 / 1000 repetitions

Eigenvalue Structure

L, = 2331
L = 1632
i = .03l
i = .006

TRUEB =(-.5,-2,1,1)

Average Fo -El -ﬁz -p-a
Scoring (ML) -.809 -1.617 2.384 -.559
Ridge (HM) -.632 -1.195 1.079 257
Schaefer PC(-1) -.707 -1.669 809 963
Schaefer PC(-2) -374 .095 .063 076
Iterative PC(-1) -719 -1.568 .789 952
Iterative PC(-2) <571 217 124 126

Variance s3(Bo) s3(B,) s3(B,) s3(Bs)
Scoring (ML) 0.215 2.879 35.745 37.345
Ridge (HM) 0.125 1.204 4,749 5.277
Schaefer PC(-1) 0.156 1.747 0.801 0.675
Schaefer PC(-2) 0.078 0.125 0.185 0.154
Iterative PC(-1) 0.142 1.667 0.695 0.641
Iterative PC(-2) 0.092 0.161 0.207 0.171

MSE
Scoring (ML) 80.376
Ridge (HM) 12.579
Schaefer PC(-1) 3.569
Schaefer PC(-2) 6.676
Iterative PC(-1) 3.522
Iterative PC(-2) 7.082
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Table 19. POISSON SIMULATION RESULTS

Response = Poisson N=17 p+l=4 Moderate Ill-conditioning

Conditional Analysis on 689 / 1000 repetitions

Eigenvalue Structure

A = 2039
4 = 1219
i = 676
A = 005

TRUEB =(-.5,-2,1,1)

Average -ﬁo -ﬂ-n Fz 7;3
Scoring (ML) -.830 -2.097 1.109 531
Ridge (HM) -.533 -1.088 .561 239
Schaefer PC(-1) -.596 -1.119 .209 -.140
Schaefer PC(-2) -.299 -.102 174 -.198
Iterative PC(-1) -.636 -1.265 235 -.217
Iterative PC(-2) -.518 -.081 296 -394

Variance 5%(Bo) 5¥(B,) $3(B2) $(B)
Scoring (ML) 0.296 3.191 4.162 2.468
Ridge (HM) 0.114 1.163 0.979 0.739
Schaefer PC(-1) 0.117 1.562 0.740 0.797
Schaefer PC(-2) 0.076 0.167 0.209 0.323
Iterative PC(-1) 0.125 1.763 0918 0.994
Iterative PC(-2) 0.079 0.208 0.203 0.289

MSE
Scoring (ML) 10.668
Ridge (HM) 4.999
Schaefer PC(-1) 5.816
Schaefer PC(-2) 6.536
Iterative PC(-1) 6.525
Iterative PC(-2) 6.899
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Table 20. POISSON SIMULATION RESULTS

Response = Poisson N=17 p+1=6 Severe Ill-conditioning

Conditional Analysis on 142 / 1000 repetitions

I, = 3224
L = 1966
L, = .533
Ii = 243
i = 032
i = .003

TRUEB =(-.5,-2,1,1,=1,1)

Average Bo Fl Ez Ea Ba Bs
Scoring (ML) -1.073 -1.939 2.449 -.796 -1.567 -.229
Ridge (HM) -.691 -1.161 1.219 -.021 -1.078 .076
Schaefer PC(-1) -.761 -1.359 .580 719 -1.250 .009
Schaefer PC(-2) -.501 -.762 512 .651 -.796 541
Iterative PC(-1) -.797 -1.297 .664 .807 -1.219 -.009
Iterative PC(-2) -.669 -.776 .583 57 -971 .388
Variance 52(B,) $%(B,) s(B,) 5%(B) 5%(Ba) 52(Bs)

Scoring (ML) 0.711 7.272 86.207 92.529 4.503 9.300
Ridge (HM) 0.181 1.971 5.205 6.629 1.522 1.630
Schaefer PC(-1) 0.188 3.523 0.804 0.988 2.336 2.865
Schaefer PC(-2) 0.076 .595 0.376 0.505 962 .562
Iterative PC(-1) 0.173 3.519 0.714 1.018 2.279 2.285
Iterative PC(-2) 0.075 592 0.505 0.536 1.003 709
SE

Scoring (ML) 208.727

Ridge (HM) 20.129

Schaefer PC(-1) 11.582

Schaefer PC(-2) 5.348

Iterative PC(-1) 11.187

Iterative PC(-2) 5.246
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Table 21. POISSON SIMULATION RESULTS

Response = Poisson N=117 p+l=6 Moderate Ill-conditioning

Conditional Analysis on 418 / 1000 repetitions

Eigenvalue Structure

lo = 2849
4 = 1539
i, = 1102
i = .706
A = 297
A = .008

TRUEB =(-.5,-2,1,1,-1,1)

Average Fo FI B, B, Bs Bs
Scoring (ML) -1.170 -2.396 1.518 562 -1.165 1.189
Ridge (HM) -.574 -1.200 589 139 - 512 533
Schaefer PC(-1) -.688 -1.784 559 .066 -.124 692
Schaefer PC(-2) -.520 -1.094 d1S -.023 -.341 372
Iterative PC(-1) -.809 -1.955 373 -.020 -.236 692
Iterative PC(-2) -.664 -1.201 21 -.220 -.559 .569
Variance s%(Bo) s3(B,) s(B,) s3(Bs) s(Ba) s%(Bs)

Scoring (ML) 1.511 5.011 15.218 7.347 8.311 5.614
Ridge (HM) 0.108 1.005 1.199 0.897 0.980 0.881

Schaefer PC(-1) 0.174 1.627 1.329 1.155 1.658 1.776
Schaefer PC(-2) 0.099 0.876 0.502 0.620 0.531 0.780
Iterative PC(-1) 0.168 1.533 1.513 1.149 1.566 1.844
Iterative PC(-2) 0.104 1.171 0.673 0.759 0.596 0.940

SE
Scoring (ML) 44.542
Ridge (HM) 7.281
Schaefer PC(-1) 9.828
Schaefer PC(-2) 6.895
Iterative PC(-1) 9.882
Iterative PC(-2) 71.744
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Table 22. LOGISTIC SIMULATION RESULTS

Response = Bernoulli N=17 p+l=4 Severe Ill-conditioning
Conditional Analysis on 791 / 1000 repetitions

Eigenvalue Structure

ly, = 2543
L, = 1317
i, = .l
i, = .02

TRUEB =(-.5,-2,1,1)

Average .Eo 3: Ez Ez
Scoring (ML) -.695 <3.532 - Ll112 1.848
Ridge (HM) -.549 -1.989 1.205 .794
Schaefer PC(-1) -.579 -2.343 1.022 1.253
Schaefer PC(-2) -.524 225 284 279
Iterative PC(-1) -.596 -2.561 1.118 1.366
Iterative PC(-2) -.588 .268 292 .285

Variance $2(Bo) s*(By) s(B,) $3(Bs3)
Scoring (ML) 0.792 21.885 393.988  352.108
Ridge (HM) 0.339 7.573 38.239 33921
Schaefer PC(-1) 0.516 9.563 2.532 3.581
Schaefer PC(-2) 0.204 0.315 0.539 0.549
Iterative PC(-1) 0.579 12.129 3.509 3433
Iterative PC(-2) 0.275 0.335 0.744 0.770

MSE
Scoring (ML) 770.607
Ridge (HM) 80.159
Schaefer PC(-1) 15.680
Schaefer PC(-2) 7.597
Iterative PC(-1) 19.322
Iterative PC(-2) 8.281
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Table 23. LOGISTIC SIMULATION RESULTS

Response = Bemoulli N=17 p+1l=4 Moderate Ill-conditioning
Conditional Analysis on 962 / 1000 repetitions

Eigenvalue Structure

I, = 2307
4 =  .868
L = .43
L = .08

TRUEB =(-.5,-2,1,1)

Average Eo Fl Ez -53
Scoring (ML) -.783 -3.456 1.617 1.252
Ridge (HM) -.569 -1.396 687 508
Schaefer PC(-1) -.388 -.673 253 -.130
Schaefer PC(-2) -352 -.244 .261 -.333
Iterative PC(-1) -577 -.790 372 -.265
Iterative PC(-2) -.561 -301 .385 -.538

Variance 53(Bo) sX(B,) 53(B2) s(Bs)
Scoring (ML) 1.225 30.639 21.749 19.292
Ridge (HM) 0.258 3.929 3.488 3.549
Schaefer PC(-1) 0.197 1.677 1.337 1.512
Schaefer PC(-2) 0.160 0.506 0.509 0.617
Iterative PC(-1) 0.287 2.049 1.282 1.525
Iterative PC(-2) 0.248 0.531 0.630 0.723

MSE
Scoring (ML) 75.268
Ridge (HM) 11.230
Schaefer PC(-1) 8.331
Schaefer PC(-2) 7.121
Iterative PC(-1) 8.601
Iterative PC(-2) 7.766
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Table 24.

Response = Bemoulli

N

17

LOGISTIC SIMULATION RESULTS

p+1=6

Conditional Analysis on 450 / 1000 repetitions

Severe Ill-conditioning

Eigenvalue Structure
Ay = 3511
A = 1.530
A = .785
A, = .399
Ay = .265
Ag = .009

TRUEB =(-5,-2,1,1,—-1,1)

Average Fn ?n Fz Fs E Bs
Scoring (ML) -.761 -3.520 -2.325 5.392 -1.184 1.364
Ridge (HM) -.506 -1.809 588 1.345 -.874 905
Schaefer PC(-1) -.608 -2.564 1.166 1.369 -1.040 1.169
Schaefer PC(-2) -.504 -1.256 643 763 -.819 767
Iterative PC(-1) -.619 -3.541 1.228 1.549 -1.053 1.151
Iterative PC(-2) -.568 -1.556 124 864 -1.225 864
Variance 5%(Bo) s(B,) s3(B) $3(Bs) s3(Ba) 53(Bs)

Scoring (ML) 1.039 38.731 490.073  469.371 37.203 40.695
Ridge (HM) 0.298 8.065 20.308 19.798 7.354 7.126
Schaefer PC(-1) 0.529 21.311 4.074 6.799 20.837 19.570
Schaefer PC(-2) 0.232 3.594 1.506 1.517 2.816 3.582
Iterative PC(-1) 0.571 18.256 3.946 6.226 18.517 23.997
Iterative PC(-2) 0.337 4911 1.922 2.000 3.579 4.019
MSE

Scoring (ML) 1109.710

Ridge (HM) 63.292

Schaefer PC(-1) 73.776

Schaefer PC(-2) 13.579

Iterative PC(-1) 72.491

Iterative PC(-2) 16.932
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Table 25. LOGISTIC SIMULATION RESULTS

Response = Bemnoulli N=17 p+l=6 Moderate Ill-conditioning
Conditional Analysis on 789 / 1000 repetitions

Eigenvalue Structure

o = 2857
4 = 1570
i, = 846
i = .51
I, = 547
i = .130

TRUEB =(-.5,-2,1,1,-1,1)

Average Bo- B, B, Bs B. Bs
Scoring (ML) -.897 -3.719 1.582 1.860 -1.512 1.670
Ridge (HM) -.515 -1.282 554 516 -.655 538
Schaefer PC(-1) -.383 -1.376 082 -.012 -.519 293
Schaefer PC(-2) -.307 =717 .067 -.297 -.582 219
Iterative PC(-1) -.569 -1.824 -.068 -.138 -..704 294
Iterative PC(-2) -.577 -.953 .138 <517 -.602 270
Variance s3(Ba) s*(B) s3(B.) s3(Bs) s3(Ba) s3(Bs)

Scoring (ML) 1.699 47.120 46.141 51.585 31.299 49.014

Ridge (HM) 0.211 3.545 2.892 3.490 2.843 3.273

Schaefer PC(-1) 0.245 3.494 2.852 2.874 3.586 3.519
Schaefer PC(-2) 0.163 1.239 1.150 1.119 1.582 1.251
Iterative PC(-1) 0.317 3.790 3.197 2.894 4.147 3.994
Iterative PC(-2) 0.230 1.567 1.389 1.358 1.686 1.519

MSE
Scoring (ML) 231.763
Ridge (HM) 17.048
Schaefer PC(-1) 19.272
Schaefer PC(-2) 11.519
Iterative PC(-1) 21.898
Iterative PC(-2) 12.088
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Chapter IX
CONCLUSIONS, COMMENTS AND AREAS
OF FUTURE RESEARCH

It is common practice among statisticians to impose various transformations to imple-
ment least squares. Least squares has become a classical and extremely popular method for
solving statistical problems. In certain circumstances, perhaps least squares estimation has
reached a point of overuse, particularly with noncontinuous or heavy tailed or nonsymmetric
response distributions. Pregibon (1979) points out that because of the ease with which least
squares can process data, statisticians will often transform data to a somewhat continuous,
short tailed and symmetric distribution with stable variance. And certainly re-expressions can
be a very effective method for analyses. For example, the square root transformation for count
data and the arcsin transformation for proportion data are well documented. However, by in-
corporating a rich variety of distributional forms for the response variable, the structure of the
generalized linear model can often provide a practical and elegant alternative to that of least

squares. .
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As demonstrated in the preceding chapters, maximum likelihood estimation of the re-
gression parameters maintains asymptotic properties of unbiasedness, efficiency, consistency
and normality. On the other hand, maximum likelihood cannot withstand large variances and
low noncentrality parameters of estimated coefficients, among many other undesirable proper-
ties, in the presence of an ill-conditioned information matrix. This dissertation has suggested
several alternate estimation techniques in the framework of the generalized linear model.
Chapters 5 and 6 put forth extensions to generalize Schaefer’s logistic ridge estimator and one
step adjustment principal component estimator. In addition, the author has developed an it-
erative principal component technique which can be used, if for nothing else, as a resort if in

fact maximum likelihood does not converge.

In as much as the alternate parameter estimators, mentioned above, are adjustments to
maximum likelihood, asymptotic unbiasedness no longer holds. However, variance of these
estimators can be substantially reduced. As indicated by the simulation results in chapter 8,
asymptotically biased estimators are clear winners in reference to mean square error when
compared to the asymptotically unbiased maximum likelihood competitor, even with moder-

ately ill-conditioned information.

As for prediction in the response, maximum likelihood is adequate for predicting at
internal mainstream data combinations of the X space even with severely ill-conditioned infor-
mation. When a researcher is interested in predicting outside the mainstream of internal data,
then prediction can be atrocious. In the case that the researcher is not constrained to some
theoretical model and prediction is of primary concern, then perhaps wary variable deletion via
the diagnostics given in Chapter 4 is the best tactic. On the other hand, if given a theoretical
model with ill-conditioned information, any of the asymptotically biased estimation approaches

are a clear choice over maximum likelihood in terms of prediction variance.

Ground has been broken in terms of developments in choosing a shrinkage parameter for
generalized ridge estimation. An extension to Schaefer’s (1979) harmonic mean method has
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been suggested. In addition, a C, based method for shrinkage has been developed for
prediction-oriented choices of d. Also, Tripp’s (1983) DF-trace has been generalized. Future
study will include further developments of shrinkage parameter choice.

The class of generalized fractional principal component (GFPC) estimators, outlined in
Chapter 7, attempts to place a very broad class of estimators under one common umbrella.
GFPC incorporates a general link function, an entire class of response distributions, and an
array of estimation techniques. In fact if the identity link is used with normal response data,
the GFPC collapses into the framework of fractional principal component (FPC) estimators
given in Lee’s (1986) dissertation. Further research will be devoted to this area of GFPC in
much the same vein as Hocking, Speed, and Lynn (1976).

The author will continue research in the area of asymptotically biased estimators of the
generalized linear model. One possible extension is observing the biased estimators from an
iterative geometric point of view. The author also plans to continue developing new biased
estimators. The first developments will be in the direction of a latent root estimator which in-
corporates the eigenvalues of 4’4, where A4 is the matrix K-12X augmented with the response
vector g(u). Further simulations need to be done. Extensions to existing software, such as
GLIM, should be pursued.
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Determinants of Cancer Remission

The following data was taken from SAS, SUGI Supplementary Guide (1986). From the ex-
ample below, data on cancer patients are analyzed to determine if the patient characteristics
associate with cancer remission. Information was collected on the following variables.

Y = 1 if cancer remission
0 if no cancer remission
Xl = Cell index
X2 = Smear index
X3 = Infil index
X4 = LI index
X5 = Temperature
DATA
OBS Y X1 X2 X3 X4 X3
1 1 .800 .830 660 1.900 .996
2 1 .900 360 320 1.400 992
k} 0 .800 .880 .700 .800 982
4 0 1.000 .870 870  .700 .986
5 1 .900 750 680 1.300 .980
6 0 1.000 .650 650 .600 .982
7 1 950 970 920 1.000 .992
8 0 950 .870 .830 1.900 1.020
9 0 1.000 450 450 .800 .999
10 0 950 .360 340 .500 1.038
11 0 .850 390 330 .700 .988
12 0 .700 .760 530 1.200 .982
13 0 .800 460 370 400 1.006
14 0 .200 390 .080 .800 990
15 0 1.000 .900 900 1.100 .990
16 1 1.000 .840 .840 1.900 1.020
17 0 650 420 270 .500 1.014
18 0 1.000 750 750 1.000 1.004
19 0 .500 440 220 600 .990
20 1 1.000 630 630 1.100 986
21 0 1.000 .330 330 400 1.010
22 0 .900 930 .840 .600 1.020
23 1 1.000 .580 .580 1.000 1.002
24 0 950 320 .300 1.600 .988
25 1 1.000 .600 600 1.700 .990
26 1 1.000 .690 .690 900 986
27 0 1.000 730 730 700 .986
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Simulation Program in SAS Proc Matrix

PROC MATRIX;
FIX PARAMETERS REGARDING VARIOUS CRITERIA;

ITERAT 1000}SEED 959145; CONVERGE=.00001;

ITER 55;CONV=ITER-1;UPPER=10000; LOWER=,00001;MAX=15;MIN=~15;

TRUEB IS THE TRUE PARMETER VECTOR;

x;

TRUEB=~-.5/-2 /1/1;

FETCH XY DATA=ONE;
NSNROH(XY);ONES=J(N;1 1);

!NOTE: PULL OUT VARIABLES OF INTEREST FROM THE XY MATRIX;

X1=XY( 1);
X2=XY(,2);
X3=XY(.3)3
X4=XY(,4);
X5=zXY(,5);
X6=XY(,6);
X7=2XY(,7);
X8=(X1+X4)+X3;
X9=X1*X3+X7:

CONSTRUCT X OF INTEREST;

‘Xl 11X911x8 3
CENTER AND SCALE THE X MATRIX;
s, dusmen

SS=SORT((XCX)(+;)); PRINT SS;
XCS=X#/(J(N,1)%SS);

k 3
AUGMENT THE CONSTANT TERM;

*'
§éonssllxcs; PRINT X;
XNOTE: DEFINE THE DIMENSIONS;

P;NCOL(X);P1=P-1:P2=P-2;P3=P-3;IDEN=I(P);
ONE'J(P 1,1); ONEl1=J(P1,1,1); ONE2=J(P2,1,1);

STARTING VALUES FOR VARIOUS COUNTERS;

BSUM J€6, P 0)3BSQ=BSUH5NOCONV1=03NOCONVZ'O:NOCONV&SOB
OLIERU1= OLIERLI- 0;

OLIERUZ=0;0LIERL2=0;

0LIERUS=0;0LIERL3=0;

COUNTI=0;CDUNT2=0;COUNTS=0:

ETA IS THE LINEAR COMBINATION OF X AND PARAMETER VECTOR;
ETA=X!TRUEB PRINT ETA;

MAX AND MIN CONSTRAIN THE ARGUMENT FOR EXPONENTIATING;

DO LP1=1 TO N;
IF ETACLP1,1)<MIN THEN ETACLP1,1)=MIN;
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Eﬁ; ETACLP1,1)>MAX THEN ETA(LP1,1)=MAX;
H

%
POISSON REGRESSION
CONSTRUCT THE MEAN VIA THE NATURAL LINK FUNCTION OF THE GLM;

LAHBDA’EXP(ETA)!

¥‘IS THE DIAGONAL MATRIX OF WEIGHTS;
V DIAG(LAMBDA);

XVX IS THE INFORMATION MATRIX;

XVXSX'!V!XB

IXVX2INV(XVX); PRINT IXVX;

EIGEN L M XVX; PRINT L

L=L(1:2,%);:M=M(, 1:2):VPC MXCINVIDIAG(L)))*M*;
PRINT VPC;

CENTER AND SCALE SQRT(V)X MATRIX FOR DIAGNOSTICS:;

x;

T=SQRT(V); T=TxX;
QUTPUT T OUT=NEN;
SUM=T(+, ) ; MEAN=SUM#/N;
T=T-J(N,1)%MEAN;
SS=SQRT((T#T)(+,));
T=T8/(J(N,1)%55);
T=T*%T; PRINT T3

%

SPECTRAL DECOMPOSITION OF C-S INFORMATION FOR CONDITION INDEX;
Eieeu LW MW T;PRINT LW;

START OF MAJOR DO LOOP FOR GENERATION OF DATA;

DO LUPE=1 TO ITERAT:
Y=RANPOI(SEED,LAMBDA);

!o
XNOTE: SET STARTING VALUES;

*o
BETAML =0%ONE;
V=.581(N);

*a
¥MAXIMUM LIKELIHOOD ESTIMATION VIA METHOD OF SCORING;
:NOTE: SET NUMBER OF ITERATIONS FOR ML;

’»
DO tP2=1 TO ITER;
INFORM=X"V3%X ; IINFORM=INVC(INFORM) ;
ETAML=XXBETAML ;
DO LP3=1 TO N;
IF ETAML(LP3,1) > MAX THEN ETAML(LP3,1)=MAX;
IF ETAML(LP3,1) < MIN THEN ETAML(LP3,1)=MIN;

END;
MUsEXP(ETAML);
V=DIAG(MU);
PBETAML=BETAML;
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:ETAML*PBETAML+ TINFORMXX*%(Y-MU);
3
%XNOTE: SET DESIRED CONVERGENCE CRITERIA;

x;

IF ABSC(BETAML-PBETAML)#/BETAML) < CONVERGEXONE
THEN GO TO LABEL;

END;

LABEL:

¥
END OF MAXIMUM LIKELIHOOD, CHECK ML BERAVIOR;

%;

IF LP2 > CONV THEN BETAML=0XBETAML;
CUE1=BETAML '%BETAML;

IF CUEl > UPPER THEN BETAML=0XBETAML;
IF CUEl < LOWER THEN BETAML=0%BETAML;
IF CUEl > UPPER THEN COUNT1=COUNT1+1;
IF CUEl < LOWER THEN COUNT1=COUNT1+1;
IF LP2 > CONV THEN COUNT1=COUNT1+1;

IF (CUEl > UPPER AND LP2 >CONV) THEN COUNT1=COUNT1-1;
IF (CUEl < LOWER AND LP2 >CONV ) THEN COUNT1=COUNT1-1;

;NFO=INFORM:
3
%¥RIDGE ESTIMATION USING HARMONIC MEAN SHRINKAGE;

x;
SHRINK=P#/(BETAML *XBETAML) ;
RIDGE=INV(INFORM+( SHRINKSIDEN))XINFORMXBETAML;

!.
XSCHAEFER'S PC MINUS 1 DIMENSION;

%3

EIGEN L M INFORM;

L=LC1:P1,); L_=L; M=M(,1:P1); L=DIAGCL);L=INV(L);
TINFORM_=MX¥LXM® ;

BETASCHI= IINFORM_XINFORMXBETAML;

x.

%SCHAEFER'S PC MINUS 2 DIMENSION;

*o

L=L (1:P2,); M=M(,1:P2); L=DIAG(L);L=INV(L);
IINFORM_=MxLXM' ;

BETASCHZ= IINFORM_XINFORMXBETAML;

*o
%ITERATIVE PC APPROACH MINUS 1 DIMENSION;

*;
INFORM=INFO;
EIGEN L M INFORM;
L=LC¢1:P1,);M=M(,1:P1);
Z=X%M;
EGVL=DIAGCL); IEGVL=INV(EGVL);
ALPHA=0XM'"%XBETAML ;
DO LPG=1 TO 1ITER;
ETAPC=ZX%ALPHA;
DO LP5=1 TO N;
IF ETAPC(LP5,1) > MAX THEN ETAPC(LP5,1)=MAX;
IF ETAPC(LPS5,1) < MIN THEN ETAPC(LP5,1)=MIN;

END; :
MUPC=EXP(ETAPC);

ALPHAP=ALPHA;
ALPHA=ALPHA+(IEGVLXZ*X(Y=-MUPC));
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238 IF ABSC(ALPHA-ALPHAP)#/ALPHA) < CONVERGEXONE1

239 THEN GO TO LABELL;
240 END; LABEL1:
g:é 2ETAPC1=MXALPHA5
222 CHECK ITERATIVE PC BEHAVIOR;
%*;
245 IF LP4 > CONV THEN BETAPC1=0%BETAML;
_ 246 CUE2=BETAPC1*%BETAPC1;
247 IF CUE2 > UPPER THEN BETAPCl=0%BETAML;
248 IF CUE2 < LOWER THEN BETAPC1=0XBETAML;
269 IF CUE2 > UPPER THEN COUNT2=COUNT2+1;
250 IF CUE2 < LOWER THEN COUNT2=COUNT2+1;
251 IF LP% > CONV THEN COUNT2=COUNT2+1;
252 IF (CUE2 > UPPER AND LP4 >CONV) THEN COUNT22COUNTZ2-1;
%gi iF (CUE2 < LOWER AND LPG >CONV ) THEN COUNT2=COUNT2-1;
3
%gg :ITERATIVE PC APPROACH.HINUS 2 DIMENSIONS;
»
257 L=L(1:P2,);M=M(,1:P2);
258 Z=X*%M;
259 ALPHA=0%M*XBETAML ;
260 EGVAL=DIAG(L); IEGVAL=INV(EGVAL);
261 DO LP6=1 TO ITER;
262 ETAPC=ZXALPHA;
263 DO LP7=1 TO N;
2646 IF ETAPC(LP7,1) > MAX THEN ETAPC(LP7,1)=MAX;
%22 Eﬁ; ETAPC(LP7,1) < MIN THEN ETAPCC(LP7,1)=MIN;
3
267 MUPC=EXP(ETAPC);
268 ALPHAP=ALPHA;
269 ALPHA=ALPHA+(IEGVALXZ'%(Y-MUPC));
270 IF ABSC((ALPHA-ALPHAP)#/ALPHA) < CONVERGEXONE2
271 THEN GO TO LABEL2;
272 END; LABEL2:
%;2 2ETAPCZ=MXALPHAB
5;2 gHECK ITERAPIVE PC BEHAVIOR;
’
277 IF LP6 > CONV THEN BETAPC2=0XBETAML;
278 CUE3=BETAPC2'%BETAPC2;
279 IF CUE3 > UPPER THEN BETAPC2=0XBETAML;
280 IF CUE3 < LOWER THEN BETAPC2=0X%BETAML;
281 IF CUE3 > UPPER THEN COUNT3=COUNT3+1;
282 IF CUE3 < LOWER THEN COUNT3=COUNT3+1;
=283 IF LP6 > CONV THEN COUNT3=COUNT3+1;
284 IF C(CUE3 > UPPER AND LP6 >CONV) THEN COUNT3=COUNT3-1;
%gg IF (CUE3 < LOWER AND LP6 >CONV) THEN COUNT3=COUNT3-1;
*
gg; gOUNTS MADE FOR CONDITIONAL ANALYSIS;
»
289 IF CUEl > UPPER THEN OLIERU1=0LIERU1+1;
290 IF CUE1 < LOWER THEN OLIERL1=OLIERL1+1;
=2l IF CUE2 > UPPER THEN OLIERU2=0LIERUZ2+1;
=292 IF CUE2 < LOWER THEN OLIERL2=0LIERL2+]1;
293 IF CUE3 > UPPER THEN DLIERU3=0LIERU3+]1;
294 IF CUE3 < LOWER THEN OLIERL3=0LIERL3+]l;
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IF LP2 > CONV THEN NOCONV1=NOCONV1+1;
IF LPG > CONV THEN NOCONV2=NOCONV2+];
IF LPé6 > CONV THEN NOCONV3=NOCONV3+1;

CONSTRUCTION OF MEAN, VARIANCE, BIAS OF VARIOUS TECHNIQUES;

BSUMP BSUM; BSQP=BSQ;
BSUM(1,%)=BETAML';
lSUH(Z.*)'RIDGE':
BSUM(3,%)=BETASCH1';
BSUM(4, %)=BETASCH2"';
BSUM(5,%)=BETAPC1';
BSUM(6,%)=BETAPC2"*;
BSQ=BSUMSBSUM;
g:g"=BSUM+BSUHP:BSQ=BSQ+BSQP3

3
PRINT NOCONV1 NOCONV2 NOCONV3 OLIERU1 OLIERL1 OLIERU2 OLIERL2
OLIERU3 OLIERL3 COUNT1 COUNT2 COUNT3;
BETABAR=J(6,P,0);
BETAVAR=J(6.P;0)3
BETABAR(1,%)=BSUM(1,%)#/(ITERAT-COUNT1);
BETABAR(2,%)=BSUM(2,%)$#/(ITERAT-COUNT1);
BETABAR(3,%)=BSUM(3,%)8/(ITERAT-COUNT1);
BETABAR(G,%)=BSUM(4G,%)8/(ITERAT-COUNT1);
BETABAR(5,%)=BSUM(5,%)8/(ITERAT-COUNT2);
BETABAR(6,%)=BSUM(6,%)8/(ITERAT-COUNT3);
BETAVAR(1,%)=(18/(ITERAT-COUNT1-1))%
(BSQ(1,%)-((ITERAT-COUNTL1)SBETABAR(1,%)$BETABAR(]1,%)));

- BETAVAR(2,%)=(18/C(ITERAT-COUNT1-1))%

(BSQ(2,%)-((ITERAT-COUNT1)SBETABAR(2,%)#BETABAR(2,%)));
BETAVAR(3,%)=(18/(ITERAT-COUNT1-1))$
(BSQC3,%)-((ITERAT-COUNT1)SBETABAR(3,%)$BETABAR(3,%}));
BETAVAR(G,%)=(18/(ITERAT-COUNT1-1))#
(BSQ(4,%)-C(ITERAT-COUNT1) #BETABAR(4G, %) $8BETABAR(G,%)));
BETAVAR(5,%)=(18/(ITERAT-COUNT2-1))$
(BSQ(5,%)-((ITERAT-COUNT2)8BETABAR(S5, %) #BETABAR(5,%)));
BETAVAR(6,%)=(18/(ITERAT-COUNT3-1))#
(BSQ(6,%)-CC(ITERAT-COUNT3)$BETABAR(6, %) S8BETABAR(6,%)));
BIAS=BETABAR-(J(6,1,1)%TRUEB");

PRINT TRUEB;

PRINT BETABAR BIAS;

PRINT BETAVAR;
BIAS2=BIASXBIAS';BIAS2=DIAG(BIAS2);BIAS2=BIAS2%(J(6,1,1));
SUMMSE=(BETAVARX(J(P,1,1)))+BIAS2;

PRINT SUMMSE;

%
VARIOUS PLOTS OF WEIGHTED VARIABLES;
%;

PROC PLOT DATA=NENW;
PLOT COL2%COL3;
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