Why conducting In-Depth Naturalistic Riding Study... Examples from Rider Trainees and Novices in France

S. Espié, S. Aupetit, F. Delgehier, S. Bouaziz

27.08.2014
1. Why iNRS?

- General aim of studies: to design counter measures towards road safety improvement

- Efficient measures: if and only if accepted by road users

- Accepted measures: acceptable by users (cf. real practices / corresponding to real needs...)

- Practices / real needs:

 Only the driver/rider can explain the motives that underlie his/her decision making process, and the elements of the context they manipulate

 observation # understanding
 NDS/NRS # iNDS/iNRS

Espié, S., Aupetit, S.
1. The SIM2CO project (2011/13)

- Supported by the French National Research Agency
- Partners: IFSTTAR, Universities, Private societies, Riders associations

- **Main goal**
 - Improving French motorcycle pre-test training

- **How?**
 - Identifying the typical hazardous situations of novices after licensing
 - Not only accidents (police actions required)
 - Assure that training integrate these problems

Espié, S., Aupetit, S.
2. Procedure

<table>
<thead>
<tr>
<th>Novices</th>
<th>H/F</th>
<th>Age</th>
<th>Context</th>
<th>Monitoring</th>
<th>Distance travelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novice 1</td>
<td>H</td>
<td>33</td>
<td>Paris Region</td>
<td>11 weeks</td>
<td>3 680 km</td>
</tr>
<tr>
<td>Novice 2</td>
<td>H</td>
<td>26</td>
<td>Paris Region</td>
<td>11 weeks</td>
<td>4 100 km</td>
</tr>
<tr>
<td>Novice 3</td>
<td>H</td>
<td>24</td>
<td>Paris Region</td>
<td>11 weeks</td>
<td>2 450 km</td>
</tr>
<tr>
<td>Novice 4</td>
<td>H</td>
<td>29</td>
<td>Paris Region</td>
<td>8 weeks</td>
<td>300 km</td>
</tr>
<tr>
<td>Novice 5</td>
<td>F</td>
<td>26</td>
<td>Provinces</td>
<td>12 weeks</td>
<td>2 300 km</td>
</tr>
<tr>
<td>Novice 6</td>
<td>H</td>
<td>30</td>
<td>Provinces</td>
<td>11 weeks</td>
<td>1 600 km</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>64 weeks</td>
<td>14 430 km</td>
</tr>
</tbody>
</table>

Longitudinal study 14 430 km / 64 weeks

Espié, S., Aupetit, S.
3. Data collection

- Logbooks

 • Identification of the risky situations for the rider
 • Need to explain the type of situations to be included

SITUATION 5

Date: 08/12/2011
Time: 18:00
Journey: Crayed to my work. The first traffic light after leaving my job.

Description of the situation: I am in the center of the two lanes at the red light. At the green light, the car which is at my right corner dangerously to me in the curve. I look at the driver but I am not sure he saw me. I had to swerve. I was very scared.
3. Data collection

• Camera instrumentation

- Rider face camera
- Forward camera
- Instrumented motorbike
- Data logger set in the top case
- Right camera
- Left camera

Espié, S., Aupetit, S.
3. Data collection

- Instrumentation in sensors/GPS

- Steering angle
- Front wheel turns
- Turn signal
- Data logger / GPS
- 3 axes accelerations and rotations
- Brake contact

240 hours of recordings

Espié, S., Aupetit, S.
3. Data collection

• Interviews
 1) Description of the situations reported in the logbook
 2) Self-confrontation interview based on the video

- Remote control. Used by the researcher and the rider to stop or wind back the video
- Footage of past riding activity
- Face and gesture of the rider during the interview

Espié, S., Aupetit, S.
4. Data processing

• Represent the riders’ activity in hazardous situations in activity graph thanks to logbooks, videos and interviews

Espié, S., Aupetit, S.
4. Data processing

- Objective data browsing tools: (a) sensor and GPS data, (b) interface for video recordings viewing
- These 2 applications are synchronised

Espié, S., Aupetit, S.
5. Results

1. Number of risky situations

<table>
<thead>
<tr>
<th>Participant</th>
<th>M/F</th>
<th>Age</th>
<th>Context</th>
<th>Monitoring</th>
<th>Distance travelled</th>
<th>Number of risky situations</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>M</td>
<td>33</td>
<td>Paris region</td>
<td>11 weeks</td>
<td>3 680 km</td>
<td>35</td>
</tr>
<tr>
<td>N2</td>
<td>M</td>
<td>26</td>
<td>Paris region</td>
<td>11 weeks</td>
<td>4 100 km</td>
<td>48</td>
</tr>
<tr>
<td>N3</td>
<td>M</td>
<td>24</td>
<td>Paris region</td>
<td>11 weeks</td>
<td>2 450 km</td>
<td>50</td>
</tr>
<tr>
<td>N4</td>
<td>M</td>
<td>29</td>
<td>Paris region</td>
<td>8 weeks</td>
<td>300 km</td>
<td>24</td>
</tr>
<tr>
<td>N5</td>
<td>F</td>
<td>26</td>
<td>Provinces</td>
<td>12 weeks</td>
<td>2 300 km</td>
<td>47</td>
</tr>
<tr>
<td>N6</td>
<td>M</td>
<td>30</td>
<td>Provinces</td>
<td>11 weeks</td>
<td>1 600 km</td>
<td>44</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>64 weeks</td>
<td>14 430 km</td>
<td>248</td>
</tr>
</tbody>
</table>

- 4 risky situations per week in average
- 40 risky situations per novice in average

Espié, S., Aupetit, S.
5. Results

2. Dynamics of occurrence of the risky situations

Figure. Mean number of risky situations reported during the experiment
Espié, S., Aupetit, S.
3. Context of the risky situations

5. Results
5. Results

4. Typical incident scenarios

<table>
<thead>
<tr>
<th>n°</th>
<th>Title of the scenario</th>
<th>#</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Near-miss during lane changing in dense traffic</td>
<td>38</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>Near-miss when another user does not give way at an intersection</td>
<td>32</td>
<td>13%</td>
</tr>
<tr>
<td>3</td>
<td>Loss of control on a sharp bend</td>
<td>27</td>
<td>11%</td>
</tr>
<tr>
<td>4</td>
<td>Loss of control on a slippery road</td>
<td>25</td>
<td>10%</td>
</tr>
<tr>
<td>5</td>
<td>Near-miss after a lane change by a user in front of the rider</td>
<td>23</td>
<td>9%</td>
</tr>
<tr>
<td>6</td>
<td>Near-miss after an unanticipated slowing of the traffic</td>
<td>20</td>
<td>8%</td>
</tr>
<tr>
<td>7</td>
<td>Near-miss during an overtaking manoeuvre performed by the rider</td>
<td>18</td>
<td>8%</td>
</tr>
<tr>
<td>8</td>
<td>Near-miss when the rider does not give way at an intersection</td>
<td>17</td>
<td>7%</td>
</tr>
<tr>
<td>9</td>
<td>Near-miss during filtering when a user desires to turn left</td>
<td>17</td>
<td>7%</td>
</tr>
<tr>
<td>10</td>
<td>Near-miss while looking for a route in dense traffic</td>
<td>12</td>
<td>5%</td>
</tr>
<tr>
<td>11</td>
<td>Loss of control when turning after starting</td>
<td>7</td>
<td>3%</td>
</tr>
<tr>
<td>12</td>
<td>Near-miss when another user overtakes the rider on the wrong side</td>
<td>6</td>
<td>2%</td>
</tr>
<tr>
<td>13</td>
<td>Loss of control due to wind</td>
<td>6</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>248</td>
<td>100%</td>
</tr>
</tbody>
</table>
5. Identification of drivers’ near misses or falls

Audiovisual recordings data

Instrumented motorbike data

Selfconfrontation interview data

The trainer: “Go faster!”

Slalom

Half-turn

Slalom

Avoidance

Fall

“Here I am looking at my speedometer, I could not stop within the limits so I took too early the brake!”

“I was already afraid in the last attempt!”

“I felt that I arrived too fast, I cannot succeed!”

“I was glad to fall! I wanted to fall before licensing to know it!”

Espié, S., Aupetit, S.
To go further…

Contacts

• Stéphane Espié
 IFSTTAR
 Email: stephane.espie@ifsttar.fr

• Samuel Aupetit
 DEDALE (former researcher at IFSTTAR)
 Email: saupetit@dedale.net
 www.dedale.net