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(ABSTRACT) 4

A basic physical explanation, a model, and comments on NDE application of the acousto-

ultrasonic method for composite materials are presented. The basis of this work is a set of exper-

iments where a sending and a receiving piezoelectric transducer were both oriented normal to the

surface, at different points, on aluminum plates, various composite plates, and a tapered aluminum ·

plate.

Chapter one introduces the purpose and basic idea of the dissertation, while supporting its need.

Also, general cornrnents on the AU method are offered. The second chapter offers a literature re-

view of areas pertinent to the dissertation, such as composite materials, wave propagation, ultra-

sonics, and the AU method. Special emphasis is given to theory which is used later on and past

experimental results that are important to the physical understanding of the AU method. The third

chapter describes the experimental set-up, procedure, and the ensuing analysis. In the fourth

chapter, the experimental results are presented in both a quantitative and qualitative manner.

Chapter five fumishes a physical understanding of experimental results based on elasticity solutions,

Lamb wave theory, and through·the-thickness-transverse·resonance (TTTR). Computer results

are presented for salre of comparison. The sixth chapter discusses modeling and applications of the

AU method for composite materials and the seventh chapter states general conclusions.



The unique offering of this work is the physical model of the AU method for composite materials,

something which has been much needed and sorely lacking. This physical understanding is possible

due to the extensive set of experimental measurements, also reported in this dissertation.
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Introduction .

The advancement of technology demands increased implementation and further development of

advanced material systems such as composite materials. However, a sound engineering approach

requires utilizing models of material behavior which can be used to predict ensuing behavior and

to avert disatrous failures due to various sources of damage like fatigue. Utilizing models to predict

future behavior for a material usually requires ascertaining information on the state of the material.

For example, fracture mechanics utilizes known material properties and measurement of crack

length and orientation to predict the behavior of a cracked isotropic material such as alurninum.

This may entail using a nondestructive testing (NDT) method, for instance radiography, to deter-

mine information on the crack. For an isotropic material, such as aluminum, this olfers a plausible

method for safe use in critical structures.

However, composite materials fail by much more complicated processes which can not be ade-

quately modeled by the conventional theory of fracture mechanics. Future implementation of

composite materials for the advancement of technology requires the synergistic development of

NDT methods and models of material failure. Furthermore, it requires the unification of NDT

with models of material failure to develop the ability to predict future material life and behavior

based on NDT results, which is known as nondestructive evaluation (NDE).
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Researchers are currently working to develop models that predict the strength of a material and its

degradation due to fatigue. The following chapter will say more concerning fatigue models. In

general, fatigue models require an input parameter or parameters which describe the present state

of the material.

A number of NDT methods have been developed to help determine the material state, each with

various advantages and disadvantages. Reviews and comments on most NDT methods may be

found in references 21 and 26. Some NDT methods are more easily related to the mechanical state

of the material, while some offer the advantage of being simpler and quicker to implement for

practical application.

The fimdamental aspects of the AU method entail introducing a mechanical excitation at one point

on a material surface and sensing the resulting disturbance at another spot on the material surface.

A general diagram (fig. 1) displays the basic idea of the method and the versatility of its irnp1e·

mentation.

Much work has been directed at determining the best methods for creating the mechanical dis-

turbance and how best to sense it (refs. 34, 87, 152, 155. 159, 160, and 161). Also, work has been

directed at how to best analyze the signal produced by the sensing instrument (refs. 7, 49 ,8, 10, 99,

147, and 63) and some work to understand the physics of the wave propagation (refs. 54 and 97).

However, no theory to date fully explains the nature of wave propagation in composite plates as-

sociated with the AU method.

The original implementation of the AU method involved using a piezoelectric transducer to simu-

late acoustic emissions and another ultrasonic piezoelectric transducer to monitor the resulting

disturbance at another location. Initial analysis of the received electrical signal involved counting

voltage excursions above a threshold voltage to gain an indication of the energy in the signal. The

number of counts above the threshold voltage was multiplied by pulse rate and the sample interval

to yield a value termed the Stress Wave Factor (SWF). lf the electronics and the orientation of

transducers are the same for two different sections of material, it was postulated that the region of
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material with the highest SWF value would be the strongest. The primary assurnption is that a

material that most efliciently transfers energy via stress wave propagation will better transfer service

loading and hcnce be less prone to fracture. This was used by Vary and coworkers (ref. 36) to

predict strength of small composite bend specirnens. Also, this method was used to monitor pro-

gressive fatigue damage in composite specimens. Hence, early work on the AU method showed

that the AU measurement (SWF) correlated to the material condition of the specimen and ensuing

behavior, thus fulfilling one basic demand of an NDT method.

Additionally, the method shows other practical advantages. First, the direction of wave propa-

gation is in the plane of the plate, which is often the plane of primary loading. Thus, the AU

method offers the advantage of characterizing the material in the direction of loading. Secondly,

the AU method offers the practical advantage that access to only one side is necessary.

A number of problems exist with application of the AU method and these are in fact defining the
A

path of research on the AU method. First, the present experimental technique is tedious and rather

difficult to reproduce. Methods of overcoming these problems involve using advanoes, such as laser

technology, for creating disturbances and measuring disturbances. Secondly, the method has, prior

to this work, had no sound theoretical basis for composite materials, so that connections could be

made to other physical models of material behavior. _

The purpose of this dissertation is to develop an understanding of the mechanics of the acousto-

ultrasonic (AU) method and hcnce to pave the way for relating AU parameters to input parameters

for fatigue models. In otherwords, mechanics is the common ground by which both NDT methods

and fatigue models may be understood and eventually related to develop an NDE. method. Using

this philosophy, it is the goal of this dissertation to both forward an understanding of the mechanics

of the AU method and to begin merging it with fatigue models.

The second chapter covers the unifying concepts of mechanics of composite materials, ultrasonic

wave propagation theory, and experimental ultrasonics to help provide a basis for building an AU
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model for use with predictive models. Lamb wave theory and througl1-tl1ickness-transverse-

resonance (TITR), both used in later chapters, are covered in this chapter. Also, a more corn-

prehensive review of AU research is covered in this chapter, with emphasis on theory and results

utilized in this dissertation. This chapter also serves to motivate the direction taken in subsequent

chapters.

The third chapter details the experimental set-up and procedure. This is very important in order

to understand the limitations of this work and to best implernent these results. Moreover, this

chapter includes general statements concemed with practical application of the AU method. An

understanding of the experimental set-up combined with the physical interpretation of results may

also lead to improved experimental set-ups.

The fourth chapter provides results obtained using the experimental procedure described in the

prior chapter, including both qualitative and quantitative descriptions of the signals used to under-

stand the wave propagation. These results along with results from the literature search provide a

basis for a physical understanding of the AU method. Additionally, results are given which are not

totally understood at present, but will hopefully guide the way to further research and improved

modeling.

The fifth chapter details a physical understanding of the AU method that has been obtained by

comparing experimental results presented in the fourth chapter to the theory discussed in the second

chapter. This involves using elasticity solutions, Lamb wave theory, and through thickness trans-

verse resonance. Qualitative trends are noted and quantitative comparisons are made between ex-

perimental results and computer results from programming TITR and Lamb wave equations.

Specifically, results seen in the AU signal are identilied as higher order Lamb waves. Discussion

is also directed toward explaining the mechanism by which the transducer excites the Lamb waves

seen in AU experiments.
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The sixth chapter uses the physical understanding of the AU method, forwarded lll the fifth chapter,

to construct a model of the AU method. This model includes the use of computer codes which

compute through the thickness transverse resonance frequencies and dispersion information on ·

guided waves in composite materials. A large body of discussion is directed at how to model the

mechanics between the input and the resulting Lamb waves. Additional comments are made on

how the model may be improved and built upon for future use. This chapter also discusses how
A

the AU model could be combined with fatigue models to yield NDE information.

The seventh and final chapter forwards an overview of the dissertation topic. Discussion here in-

corporates ideas for future research and practical considerations of applying the AU method.

In general, this dissertation develops a physical understanding of the AU method from experimental

results, wave propagation theory, and understanding of composite materials. Additionally, an ap·

proach for modeling AU results is developed based on the physical understanding of the AU

method. The major contribution of this work is the physical interpretation of experimental results

l and the application of this toward developing an NDE method.
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Literature Review

'The literature review starts with a basic coverage of composite materials and composite material

damage models. This review is by no means comprehensive, but introduces notation and ideas for

understanding following comments. Next, basic concepts of wave propagation are presented, in-

cluding the behavior of plane waves in various media and the concept and analysis of a waveguide.

Specifically, the use of Rayleigh/Lamb wave analysis to predict plate wave behavior and the phe-

nomenon of through-thickness-transverse-resonance (I I IR) are the focal points of the discussion

on waveguide theory. Basic wave propagation and wave guide theory can be used to develop

models of the last two subjects to be covered in the literature review, these being analytical ultra-

sonics and the AU method. The literature review of the AU technique will show the need for AU

models in composite materials and hence promote the usefulnesss of the dissertation topic.

Composite Materials

A great deal of work and research has been devoted to understanding composite material behavior.

References 43-48,1 19,123,1 14,109 give a good general overview of some of the basic results of this
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work. One major division in understanding the mechanics of composite materials is that of

micromechanics and macromechanics. Micromechanics is concemed with understanding the be-

havior and interaction of the constituent materials in the composite. Obviously, this is of great .

importance in truly understanding the mechanics associated with composite material behavior.

Generally, macromechanics models global mechanical behavior by treating each larnina as an

anisotropic homogeneous material. A couple of pertinent comments will be made on both
L

macromechanics and micromechanics. The discussion below starts by introducing the notation and

coordinate system which is used throughout the paper. Next, a brief discussion is given on

macromechanics and then micromechanics. Then, several points are made concerning the üeld of

damage mechanics, which involves understanding both micromechanics and macromechanics.

Lastly, a brief coverage of the critical element model is given, along with some comments on fatigue

modeling of composites in general.

Basic Notation and Coordinate System

Figure 2 shows the basic coordinate system which will be used in the rest of the dissertation. Notice

that b is half the plate thickness. Also, notice that the origin is located on the horizontal _middle

plane of the plate.

Figure 3 shows the definition of azimuthal angle which will be used throughout the remainder of

the paper. Also, the relative direction of the übers in a given lamina with respect to a chosen zero

degree über direction will follow the same convention (i.e., positive for counter clockwise rotation).

Hence, a laminate is described by writing ply über orientations with respect to the zero degree di-

rection between brackets and separated by slashes, in the order they occur starting with the top ply

and ending with the bottom ply. Also, a subscript .r following a bracketed conüguration means the

laminate is composed of a top half of laminae described by what is in the brackets and a bottom

half which is the mirror image. For example, [0, 90], is pictured in ügure 4.
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The standard notation will be used for the general 3-d linear elastic stress-strain relations.

This involves using both the compliance matrix and the stiffness matrix deüned below:

G]=Z}

=The reduced tensor notation utilizes the following reductions:

ll-·-l, 22---2, 33---3, 23---4, 13---5, l2---6

where a„ and eu are the stress and strain tensors, respectively. The rotation of stress and strain

tensors to new coordinate systems is performed using concepts of tensor analysis. However, at-

tention should be given to which definition of shear strain is used and correcting factors should be

included. These concepts can be used to derive the equation for the rotation of the stiffness matrix,

given in unreduced tensor notation:

Et/kl = almajnakoalpCmnop

The a„„ type terms are the direction cosines between the coordinate axes. Hence, (3,,, shows how

reorienting an anisotropic material, such as a über reinforced lamina, modiües the rnoduli relative

to a given direction. Note that in the unreduced notation the subscripts only take values up to 3

and that certain mixed terms are half the value of the same term in the reduced notation (ref. 105).

Thus, the value for the moduli of a über reinforced ply with übers oriented in any direction can be

easily obtained by transforming the stiühess matrix values for a coordinate system with one coor-

dinate axis in the über direction and another perpendicular to the plane. The coordinate system

aligned with the über and transverse über direction contains less terms in the stiühess matrix due

to inherent symmetries. This transformation will prove important for the equations describing how

wave propagation varies relative to über direction for composite materials. These transformed

values for various layers can be averaged together in a laminate analysis scheme. A good coverage

of the relationships between engineering properties and terms in the stiffness and compliance ma-

Literature Review l0
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trices can be found in Jones’ book (ref. 123). Also, the matrix Q,] is used to represent the reduced

plane stress matrix (ref. 123). Finally, the following notation is utilized for engineering properties:

Poisson’s ratio ·

VU = " 8.//El

— for

Gl = G

and coeäicients of mutual influence

*11,4; = @1/vg

for
l

TU = T

U
and

y Vlg; = Y;}/$1

for

The other engineering constants are fairly selflexplanatory and standard (see ref. 123).

A, B and D matrices are calculated by the following equations
l

Ay = 2(Q;)1¢(Zk ‘ zk—1)
k¤l
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- Il

ß„ = -5Z@,>„<zZ — z,§-.>
lzul _

il

Du = 1/3Z(Qy)1¢(Z1i " 21::-1)
kul

where rz is the number ofplies and Q, are the values of the reduced stiühess matrix. These matrices

can then be used to calculate displacements and curvatures due to in-plane loads and moments.

This is an example of averaging layers to get larninate response. For unsymmetric laminates the

B matrix is nonzero and in-plane loading can result in curvature.

Macromechanics

A good basic coverage of macromechanics can be found in references 123 and 124. Macrome-

chanics uses ply level properties, assuming homogeneity, to determine laminate behavior. This in-

cludes analytically predicting how the larninate will deforrn under loading and predieting ply level

failure. Laminate analysis can be used to predict deformations and ply level stresses by calculating

the A, B, and D matrices. This type of analysis, encompasses assumming plane stress or that the

material is sufficiently thin to ignore out of plane effects. A good coverage of larninate analysis can

be found in reference 124. Failure theories can use the information on stresses and strains in various

lamina to predict ply-level failures. Theories include the Maximum stress and Tensor Polynomial

criteria. These theories and others can be found in Jones’ book (ref. 123).

A variety of interesting phenomena occur due to the variation of material properties with azimuthal

angle, caused by the übers. First, even for a single ply this causes a coupling between shear and

tension for directions other than in the über direction or transverse to the über. This type of be-
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havior is quantified by the coefficient ofmutual ir1fluence defined above. For instance, nw indicates

_ the amount of shear deformation which will result due to a tensile or compressive force. These type

of basic mechanical properties should be kept in mind when trying to understand wave propagation

phenomena in composite materials.

Differenoes in the mechanical behavior of various plies leads to interlarninar stresses at edge

boundaries and can lead to delamination between plies. Herakovich has reported on the relations

between engineering properties of neighboring plies and the propensity for delamination (ref. 119).

In general, Macromechanics considers the effects of fiber and matrix interaction to be smeared to-

' gether, so that a ply may be treated as a homogeneous anisotropic material. Laminate analysis and

plate theory can then be used to predict how the laminate will deform under load. This information

can then be used in failure theories to predict when various plies will fail. Also, laminate analysis

can be used to gain information on when a laminate may delaminate. Lastly, approximations for

ply level effects of damage can be used with laminate analysis to show the effects of damage on the

mechanical behavior of a composite material, as predicted by a macromechanical approach. For

instance, laminates with cracked plies can be analyzed with the value of the modulus for the cracked

plies lowered or reduced to zero. Determining exactly how damage, such as cracks, changes the

moduli of composite materials is the domain of micromechanics.

Micromechanics
l

The area ofmicromechanics concerns trying to determine how stress and strain interaction will take

place between the fiber and matrix materials. Also, micromechanics is concemed with the effects

of damage on the distribution of stress and strain in specific areas such as in the liber and matrix.

This can then be used to predict failure or changes in stifihess. Furthermore, this type of approach

is essential for understanding damage mechanics and the progression of damage leading to failure
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in composite materials. Analysis of this type is used in failure models such as the Critical Element

(ref. 43). Although present research on the AU method is not overly concemed with a microme-

chanics type of approach, various observed phenomena may ultimately be explained by using a
_

micromechanics approach. This may especially be true when trying to explain the effects of damage

on stiüiiess and damping. For instance, Nuismer’s approach (ref. lll) may be used to predict

stiffness reduction in a cracked ply. This effect may then be used with larninate analysis to predict

reduction in stiühess. This may then be used with wave theory to predict changes in AU. Basically,

micromechanical analysis involves defning a representative volume and setting up a boundary value

problem based on this volume. This may include considering internal boundaries between über and

matrix within the representative volume. Then mechanical properties of separate materials are used

with goveming equations to determine overall volume behavior.

Damage Mechanics

References 109, lll, and 114 survey the area of damage mechanics and document a variety of ob-

servations. In general, these observations concem damage due to fatigue, but references 70, 100,

116 and 117 concern damage incurred due to impact.

The ürst mode of damage encountered during unidirectional cyclic tensile loading is matrix cracking

in plies with übers oriented away from the loading direction. These cracks usually run between ü-

bers in a direction parrallel to the übers. Cracks usually appear ürst in plies with übers oriented

furtherest from the loading direction (i.e., in many cases 90 degrees). Also, the spacing of cracks

can be predicted based on a shear lag model (ref. 109). The cracks reduce the stiffness of the larn-

inate. Various models exist for predicting this reduced stiffhess, some involving continuum based

solutions.
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Next, high stress regions associated with cracks near the ply interface cause übers to break in

neighboring plies. It has been reported that two-thirds of the total number of über breaks occur

in the first one-third of the fatigue life (ref. 109).

Also, microcracks begin to form at primary crack tips located at ply interfaces. A large number of

these cracks usually exist and they do not extend far from the primary cracks. Plunkett (ref. 125)

has reported that these small microcracks cause an increase in the damping of the material. Hence,

the microcracks may cause energy to be dissipated in these regions, leading to increased localization

of damage in these areas. The damping effects of these microcracks may explain the fact that AU

values decreased more at this stage than stiffness values. Many other factors, such as load rate (ref.

148), stress concentrators, and tension versus compression affect fatigue behavior and modes of

failure. Understanding these effects is still a goal of research. Hopefully, an increased under-

standing of the mechanics controlling these effects can be combined with an increased understand-

ing of the AU method. For instance, maybe damping of AU waves may be extrapolated

analytically to predict what is going on mechanically at various loading rates and then related to

damage modes.

Finally, areas of localized damage may grow, leading to delamination and local failure. The growth

of delaminations has been treated analytically by O’Brien (ref. 114). Also, the mechanical effects

of the delamination and matrix cracks may be calculated using micromechanics and put into

macromechanics models to predict laminate properties for darnaged materials (ref. 111). As men-

tioned, damage, such as matrix cracking, causes changes the example in material properties, for in-

stance material stifihess. Hence, the material will behave differently on a global sense and also tend

to distribute stress differently as a result of damage. The fmal effect of the damaged region may be

to concentrate stress in plies with übers in the direction of loading. This concentrated stress,

whether caused by fatigue or applied stress, may, if large enough, eventually lead to laminate failure.

Predicting the growth of this region and eventual composite failure is the goal of modeling efforts

such as the critical element model. NDT methods attempt to assess the state of the damage process.

A full NDE method for composite materials involves using damage models with the NDT methods
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to predict the service life and future behavior of a composite material. This involves understanding

the process by which material any regard properties change due to damage and how these changes

proliferate and cause more damage. Hence, an increased understanding of damage mechanics ·

provides information for constructing fatigue models, understanding NDT results, and hopefully for

relating fatigue models to NDT methods.

Models

A number of approaches have been used to model the fatigue of composite materials. Most of

these approaches are phenomenological. One early model consisted ofa linear equation for residual

strength as a function of fatigue cycles (ref. 44). More recent approaches are being developed which

are more mechanistic and can be applied to variable blocks of loading (ref. 43 and 108).

First, Poursartip and Beaumont (ref. 108) have developed a simple model which involves integrat-

ing a differential equation for damage to give fatigue life. For example stiifness can be used as a

damage parameter, since it decreases with damage. As pointed out in the reference, this parameter

may be replaced by any other representative indicator of damage. In example, the AU value ob-

tained in the direction of loading would perhaps serve as a good indicator of damage. In fact, the

study comparing the SWF value to fatigue cycles showed the AU measurement to change more

than stiffness (ref. 6). This may be due to the fact that the AU measurement is sensitive to both

stiffness reduction and various sources ofwave motion attenuation. This method only deals slightly

with the mechanics of the matter, but has the advantage of simplicity. However, as with any cur-

rent method some experimental data is necessary.

A more mechanistically based approach is the critical element model proposed by Reifsnider and

coworkers (ref. 43). The major aspect of this method is that a critical element which controls the

strength of the laminate is defined. In many applications this is the laminae with fibers in the di-

Literature Review l8



rection of load. Hence, the phenomenological characterization of the cyclic strength degradation

of the critical element is essential for application of this model. This method accounts for various

mechanical effects of damage which occur. This involves the redistribution of stress due to matrix

cracks. Additionally, this approach accounts for the 3—dimensionality of the stress state and strength

by introducing a failure theory type term (F'(n)) for the applied stress over ultimate strength term

in the residual strength equation. In any regard, this method uses information on the mechanics

of the damage process to allow the prediction of fatigue for a given laminate based on knowledge
‘

of a single ply.

The purpose of pursuing these models is to help relate the mechanics of these models to the me-

chanics of the AU model. Presently, these models trace fatigue state by changes in stiffness, which

most certainly affects AU results. Also, the directional dependence of the effect of damage shows V

up in the results of the AU method and is also of interest in applying the critical element. Addi-

tionally, the stress waves may interact with damage through scattering and damping mechanisms

and be sensitive to more subtle mechanical effects of damage which are not evident in stiffness

measurements. However, the relationship between these effects and fatigue behavior is probably

beyond the present mechanical understanding of fatigue. As stated, the purpose of an NDB method

is to help predict the mechanical behavior and life of a.n engineering component. The best way to

do this is to find pertinent parameters to use in damage models. Hence, this coverage of damage

models serves to show how the mechanics of the damage models and the proposed AU model are

related, in hopes of finding how AU parameters may be combined with damage models to deter-

mine the engineering response and remaining life of a structure.
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Wave Propagation

Wave propagation is concemed with how time and position dependent displacements change

throughout a material. The conventional theory of wave propagation can be broken into the two

basic categories of bounded and unbounded media. However, the theory of wave propagation in

bounded media involves using much of the theory from wave propagation in unbounded media.

In this section, a short review of the basics of unbounded wave propagtion is given and then a

somewhat more comprehensive coverage of the Rayleigh/Lamb wave problem and TITR is pre-

sented.

Unbounded Media

The equations for wave propagation in an unbounded continuous media are derived by applying

Newton’s second law to a rectangular parallelepiped (Ref. 24). This leads to the following

continuum equation for motion:

püz = °u,1

where aw is the gradient of the stress tensor, p is the density of the material, and ü is the particle

acceleration.
I

Linear Elastic Homogeneous Isostropic (LEHI) Materials .

For a LEHI material this equation shows two types of bulk plane waves, dilatational (P·wave) and

distortional (S-waves), which can be propagated through the material. The (P-wave) has displace-

ments in the direction of propagation and the (S-wave) has displacements perpendicular to the di-

Literature Review 20



rection of wave propagation. In general, this leads to 3 modes of wave propagation in a given

direction, if the full 3·d eigenvalue problem is solved: one (P-wave) with displacements in the di-

rection of propagation and two (S·waves) with displacements that are mutually perpendicular to the
‘

direction of wave propagation. The following phase velocities are easily derived for each of the

modes of wave propagation:

(P — wave) v, = (E/p)'5

(S - wave) vs = (G/p)‘5

where E and G are the tensile and shear modulus, respectively. These velocities are derived by as-

suming a harmonic plane wave is propagating through the material.

A description of the reflection and refraction of these waves at an interface is relatively straightfor-

ward and is covered in references 3 and 24. A simple case of this situation is that of a plane wave

striking the surface of an inlinite half space. The basic solution to these problems can be visualized

by using 'slowness surfaces' to view the reflection problem. This approach can be derived by using

Snell's law (which says that the ratio of the sine of the angle of incidence over the velocity of the

wave must be equal to the ratio of the sine of the angle of rellection over the velocity of the reflected

wave) and by considering stress free boundary conditions.

The solution of the infinite half space problem shows that a rellected P-wave and a reflected S·wave

are caused by an incident P-wave, where the S-wave is at a lesser angle to the vertical. An incident

S·wave (where the shear motion is in the plane of motion) causes a rellected P-wave and S—wave,

if the angle of incidence is less than the critical angle. The critical angle may be calculated by Snell's

law. When the angle of incidence is greater than the critical angle, _a Rayleigh surface wave and an

S-wave are created. A Rayleigh wave travels parallel to a surface, causing an oval motion of par-

ticles. The disturbance decays in amplitude with distance from the top surface and no energy is

transmitted from the surface into the half space of material below. Reference 142 considers the

problem at the critical angle. Equilibrium conditions can then be used to determine relative values

Literature Review zi



of reflected waves. Figure 5 shows the dependence of reflected wave amplitude over incident wave

amplitude (A0) on angle of incidence, for the retlected shear wave (Az) and the reflected P·wave (

A,). This type of behavior is related to mode coupling, which will be discussed later in regard to

its effect on AU results.

Dispersion

For various reasons, the wave number k may depend on the frequency m in a nonlinear manner.

Hence, the phase velocity v = m/k depends on frequency. This leads to a number of interesting

phenomena. Plots of wave number versus frequency (dispersion curves) present this information

in graphical form. If a curve is nondispersive, the curve is a straight line, where the slope of the line

is the phase velocity. If the curve is nonlinear (dispersive), the phase velocity is the slope of a line

from the origin to the point on the curve.

First, the separate harmonic components tend to separate in the wave train. Hence, various har-

monic components tend to separate out, especially in cases where the component frequencies pos-

sess different phase velocities and group velocities.

The concepts of beat frequency and group velocity also help to explain dispersive wave motion.

These concepts relate to each other and help to explain phenomena seen in the AU technique.

The concept of beat frequency is often utilized in vibration and wave motion analysis to determine

the effect of two frequencies separated by a small frequency difference. Basically, the two harmonic

wave components with wave number k, and kz and frequency m, and mz, respectively, may be

superimposed and trignometrically manipulated to produce the following equation:

k + k + k — k —
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The first term represents the average of the motion characteristics of the two separate components

and is close to the original motion, if the two values are comparable. The second term propagates

more slowly and is a modulation or beat term. A

Group velocity is used to describe the energy speed - the speed at which the modulating pulse

travels. This describes the speed at which the pulse travels and can also be shown to be the speed

· of energy propagation. For the case of two frequencies this value is simply given by

vgr. = (m2 ' wi)/(k2 ' kl)

However, if a number of frequencies are present the group velocity or pulse velocity is given by the

equation

dw
vgr. = p

Graphically, the group velocity for a certain wave motion is the instantaneous slope of the

dispersion curve.

These concepts have been united into a concept for analyzing a wave packet by utilizing a Gaussian

exponentia.1 function (ref. 139). This theory gives the same values for phase and group velocities

and predicts the extent of pulse spread. Adaptation of this type of theory may help to improve

rnodelling of the AU method.

Dispersion is caused by a number of sources in materials. Authors have cited a number of these

for composites:

Layering (ref. 32, 51, 69, and 106)

Different phases-fiber/matrix (ref. 51, 69, and 107)

Wave guide effects (ref. 12 and 13)

Literature Review 24



lnclusions and damage (ref. 66, 69, and 81)

Hence, a good deal of both experimental and theoretical work has been conducted to understand

wave dispersion in composite materials. -

Corrrrnents will be made later on how the dispersion caused by a wave guide may produce some

of the above mentioned phenomena. This may help to shed light on signatures occurring with the

AU technique.

D#·action and Interferencc Eßects

The fact that any real wave is generated from a source of frnite size, that does not generate a plane

wave with perfect phase, spawned the need for less idealized treatments ofwave propagation. Much '

of the theory associated with these ideas is borrowed from optical theory, where observation of

these effects are most obvious (e.g., Young’s slit experiment). Basically, this theory is concemed

with the manner in which waves of different phase interact with each other, in either a constructive

or destructive manner. In the case of a finite source problem, this can be broken-up into two re-

girnes- Fraunhafer and Fresnel.

Fraunhafer- region far away from the source, where plane waves considered to start at each

separate point on the source have recombined to form a diffraction arc of constant phase (i.e.,

a plane type wave)

Fresnel· region close to' the source requires a Huygens wavelet approach

Reference 139 presents a good overview of this theory as applied to slits with plane light incident.

An area of interesting work may be to develop this type of work as it applies to the AU method.

However, the situation is very complicated, because the effects of the reflected waves off the top
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and bottom plate boundaries leads to a complicated system of different path lengths and hence

phase difierences.

Linear Elastic Homogeneous Anisotropic (LEHA) Materials

For anisotropic materials, the eigenvalue problem becomes somewhat more complicated and in

general 3 separate modes of wave propagation exist. Also, the properties of these modes are de-

pendent on the direction in which the waves are traveling.

Starting with the basic constitutive law for an anisotropic material and assuming inlinitesimal strain,

the equation of motion can be expressed as

Cijmuzrk = PQ

where 6],,,, is the stiffness matrix, u,'„, is the gradient of the strain tensor, is the acceleration and

p is the material density. An assumed plane wave solution can be expressed as

uk = Akc!(·,„¤.„ —w¢)

where t is time, uk is the displacement vector, v,„ is the wave vector, x,„ is the position vector, and

w is the angular frequency. The phase velocity can be defined as

v=wHv|

where

2 2 2 .sIM=M+w+w)

Hence, these equations can be combined to anive at the basic eigenvalue problem for a wave

propagating in an infinite anisotropic linear material

Literature Review 26



2
Akillk ‘ PV özk) = 0

where ·

'llk = Cüklvjvl

Ak = Alk

and

akak = I

The determinant of the three by three matrix in the parentheses can be solved to obtain three values

of phase velocity for an assigned direction E,] | E |. For each phase velocity the displacement am-

plitudes can be determined to within an arbitrary constant. A program has been written to solve

this equation for any direction in a composite plate and is listed in appendix G. These results help

to understand the nature of wave propagation in composite materials and to derive dispersion

curves for plate waves in composite materials. Also, a form of this equation is used later to deter-

mine phase velocities in the thickness direction, and in turn to predict the I I IR frequencies.

For anisotropic materials, such as composites, the variation of mechanical properties with

azirnuthal angle causes coupling between shear stresses and normal displacements and between

normal stresses and shear displacements (ie. coeflicients of mutual influence). For example, a wave

launched in a general direction, with predominately normal displacement, will excite shear forces,

thus force and displacement vectors are not aligned, leading to the energy flux deviation. Specif-

ically, the energy flux deviation is the redirection of the energy in a stress wave from the direction

it is launched. In the example the energy vector is obtained through the matrix multiplication of

the stress matrix and velocity vector. For cases where there is coupling between shear and normal

motions, the shear stress, caused by the imposed predominately normal (motion found by solving

the Christoffel equation) motion, matrix multiplies the velocity vector (oriented in the direction of
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propagation) and the shear stress acts to redirect the energy flux. For certain directions in

anisotropic materials and for all directions in isotropic materials, there is no coupling between shear

and normal motions/stresses (e.g. coefficients of mutual influence are zero). In these cases, the

energy Hux is in the direction of the motion, because no stresses arise that are not oriented with

displacements. Hence, the unit vector normal to the plane of constant phase is not always aligned

with the How of energy. In particular, the energy Hux vector can be expressed mathematically as:

E1 = f

°Mwherethe dot over the tg denotes a time derivative.

The problem of a wave impinging on a stress free interface is greatly complicated by a number of

effects associated with energy Hux and the fact that 3 separate pseudo·waves (motions are not purely

normal or shear) make up the wave motion. A number of authors have pursued this problem (refs. -

22).

The first complication is that the critical angle (angle above which an incident shear wave can not

excite a reHected normal wave) is dependent on the energy Hux vector and not on the slowness

surface (ref. 40).

The next complication is the existence of 3 non-circular slowness surfaces. This can lead to a va-

riety of complications. For instance, for a stress free boundary this means any incident wave will

cause 3 reHected waves with displacement vectors oriented with various components in and out of

the plane associated with the wave vector. Additionally, as pointed out by Henneke (ref. 22), a

wave impinging on the interface between two separate anisotropic materials may result in more than

3 waves being refracted, depending on the angular variation of material properties.

These types of problems create great difficulties in applying various wave tracing techniques and

other similar approaches to understanding the AU method.
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Other Constitutive Relations

Although the model which is forwarded in this work does not include the effects of other more '

complex constitutive relations, these effects are mentioned for the purposes of explaining effects

seen experimentally and to promote further work.

First, any real material has mechanisms for dissipating energy or attenuating wave propagation.

These include scattering, absorption, reflections, viscoelastic effects, and various other dissipative

effects. As mentioned in Kolsky (ref. 24), understanding mechanisms for dissipating stress wave

energy may lead to increased understanding of damage mechanisms occurring in materials. Devel-

opments in understanding this type of behavior also leads to more sophisticated ultrasonic methods.

Christensen (ref. 126) gives a good treatment of stress wave propagation in a viscoelastic medium,

with some notes on how tl1is may be used to determine viscoelastic constitutive values. Kolsky (ref.

24) gives a good overview of sources of intemal friction, their models and associated experimental

work. Also, a number of authors have modelled scattering due to inhomogeneities that occur in

composites and result due to imperfections (refs. 93, 94, 115, 81, and 66). Combining models that

account for material inhomogeneities with AU models will allow for more detailed information to

be obtained from the AU method.

Plastic and shock waves can occur in instances where high amplitude excitations (such as explosive

type charges occur). Plastic waves occur much more often than shock waves in solid materials.

However, reference 104 gives the theoretical forrnulation of shock wave propagation in composite

materials.

Plastic waves occur when the amplitude of a stress excitation is above the proportional limit. The

mathematical formulation for plastic waves can be found in reference 24. The wave speed of a

plastic wave is less than that of an elastic wave, but the amplitude would‘be greater. Hencc high

impact excitations would produce a small amplitude elastic wave which would preceed a high am-
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plitude plastic wave. One area of research might involve relating elastic wave propagation to plastic

wave propagation, so that elastic wave propagation might be used to predict plastic wave propa-

gation and damage.

The propagation of stress waves ir1 inhomogeneous matter is of both practical and theoretical in-

terest. In general, the propagation of stress waves in inhomogeneous material can lead to scatter

(ref. 69), dispersion (ref. 51), and various waveguide effects such as Love and Stonely waves. Many

of these phenomena depend on the relative dimensions of the inhomogeneity compared to the

wavelength of the stress wave. This is an active area of both experimental-and theoretical research.

Plate Wave Equations

Two basic approaches can be used to derive the equations for plate waves. The first is the more
l

conventional Rayleigh/Lamb wave analysis. The other more recent approach is the method of

partial waves or transverse resonance (ref. l27).

The Rayleigh/Lamb wave approach involves expressing the displacement vector u, as a scalar and

vector potential and then solving for the potentials in the equations of motion by the separation

of variables method. Next, the potentials are combined in a proper manner to satisfy the boundary

conditions (stress free) at the top and bottom surfaces of the plate.

In the partial wave method, exponential-type waves are reflected back and forth between the top

and bottom surfaces of the plate. This leads to traveling waves in the direction ofwave propagation

and standing waves in the thickness direction of the plate. These waves are found by establishing

the condition for transverse resonance through the thickness of the plate. For anisotropic materials,

the method of partial waves leads to a solution much easier than the more classical approach. Also,

as pointed out by Solie and Auld (ref. 127), this method highlights certain physical features of the

nature of plate wave propagation.
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Isotropic Plate Waves

As is the case with many areas in science, the origin of the plate problem was experimental obser-

vation. Specilically, the nodal pattems for a vibrating plate were noted in 1787. In 1815, Germain

derived the equations for an isotropic plate vibrating with a bending motion. Additional contrib-

utions were made to this problem by a number of famous scholars, including: Lagrange, Legendre,

Fourier, Poisson, Cauchy, and Euler (ref. ll). Lagrange’s work expanded on that of Germain,

leading to the Germain-Lagrange equation. This equation assumes a thin plate vibrating in a

flexural motion to a.r1ive at the equation

Ö2

ovfvfu, + 2,,6J? = 0
ät

where,

2 2
V} EL; + .1%

öx} öxg

and

D = 4pb3/3(l — v)

and b, ,4, v and p are half the plate thickness, Lame’s shear modulus, Poisson’s ratio and the mass

density, respectively. In 1850, Kircholf published a paper in which he employed a variational

method to derive the plate bending vibration equations, including a derivation of the proper

boundary conditions and a comparison to original experimental results. It is this basic approach

that Mindlin later utilized to obtain his higher order approximation method.

Although enjoying much less attention, it was at about this same time that Poisson derived the

equations governing the motion for extensional waves in a thin plate. These equations are known

simply as the Poisson extensional equations
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where ,1 is Lame’s constant. The Germain-Lagrange equation and Poissons’ extensional equations

are only valid if the wavelength of the vibration is greater than the plate thickness and the waves

are low frequency. Moreover, the solutions assume that there is no variation of displacement in the

x, direction or what is the thickness coordinate.

In 1888, Rayleigh utilized the theory of linear elasticity to derive the equations for the general plate

problem in an isotropic material, using the equation of motion stated above.

The equation of motion can be decoupled, revealing two independent modes of wave propagation

by using the Poisson-Lame decomposition formula. Thus, a purely extensional wave (P-wave)

with velocity given as

2 _ Ä + 2}.Lvp ‘7

is found to propagate with irrotational motion. Additionally, shear waves (S-waves) are found to

propagate with velocity
l

2 -L
°= ' P .

as equivoluminal waves. ,1 and p are Lame’s constants.
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Hence, combining these basic equations dexived from elasticity with the imposition of traction free

boundaries at the top and bottom surfaces

*6: = 0

at
‘

X3 = Qt b

Rayleigh set the stage for solving the problem for plates ofarbitrary thickness. The solution to this

problem, much of which was perfonned by Lamb (ref. 58), lead to a number of interesting results,

including the prediction of an infinite number of higher order modes. Moreover, he showed that

the fundamental mode solution converged to the elementary theory as the plate thickness was re-

duced to zero thickness and to Rayleigh surface waves in a half space as the wavelength converges

to zero. Note, the boundary conditions are automatically satisfied in the elementary theory.

By introducing two horizontally polarized shear waves (SH-waves) along the x, which are retlected

off the top and bottom surfaces, a plate wave is set-up to have displacement only in the x, direction.

Specifically, this involves introducing the waves defined by

LQ = El exp i(€xl + ßx3 — wr) + E2 exp i(.{x, — ßxa — wr)
A

where

w = M6: + ß2).5

where u, and u, are equal to zero. Moreover, the angles of incidence and reflection are given by the

equation

- -1 E.63 — tan
ß
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Notice, the angle of the input wave defmes the ratio of the wave numbers. Now, the basic form

of the solution can be found to be a harmonic wave traveling in the xl direction, with xl displace-

ment which varies sinusoidally through the thickness, where the frequency of the wave is given by

«»’ = @[6* + <€€·>’l

_ Hence, the solution is dispersive (nonlinear relationship between frequency and wave number in the

propagation direction) for all orders higher than the zero mode. The wavelength of each of these

solutions is given by Z1!/{ and the phase velocity by v = w/f. The lowest frequency is given by

eo = vl1r/2b, which is considerably lower than the corresponding lowest frequency for tlexural vi-

brations. Basically, the input horizontally polarized shear waves (SH-waves) can be shown to dic-

tate the plate waves. It should also be noticed that an earlier elementary solution did not exist for

the SH waves.

Next, Lamb continued using Rayleigh’s basic solution to derive the basic Rayleigh·Lamb waves,

which are produced by the introduction ofa pressure wave (P·wave) and a vertically polarized shear
l

wave (SV-wave) to the plate. These can be expressed by the scalar potential for the pressure wave

and the one vector potential for the SV-wave. Specifically, if consideration is given only to the

propagation in the xl direction, then

¢> = <Po °XP i(€x1
i ax: ' w!)

w = vl*(«* + 6*)

H2 = Ho CXP i(€xl ij GX} - (D!)

‘°where tp is the scalar potential for the P-wave and H, is the vector potential for the SV-wave. The

wave normal for the P-wave can be found to make an angle Ol = j; tan*‘(f/a) with the vertical axis

and the SV-wave can be found to make an angle 8, = itan·‘(é/ß) with the vertical axis. By
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combining four of the SV-waves with four of the P-waves, each with proper arnplitude and phase,

the motion can be shown to be harmonic in the x, direction; the amplitudes vary sinusoidally

through the thiclmess, the phase velocity is v' = w/E and the wavelength is Z1!/E. For a plate free

of traction forces on the top and bottom surfaces, this can be described as motions which are

symmetric and antisymmetric about the mid-plane of the plate. Hence combining the symmetry

arguments with the traction free boundaries, equations for both the symmetric and antisymrnetric

motions can be found. This includes the displacements u, and u,, the corresponding stresses which

must exist, and the transcendental equations which describe the dispersion relations between the

wave numbers. For the symmetric mode,

ul = i(B„·E cos ax; + Cß cos ßxa) exp wr)

ug = ( -Ba sin ax; + Cf sin ßxg) exp i(•fx, — wr)

Fl =(&2—ß2)2 cos ab sin ßb+4«xßrf2 sin abcos

ßb=0wherethe stress components can easily calculated using the constitutive relations (ref. ll). For

the antisymmetric mode,

ul = i(Af sin ax; — Dß sin ßxg) exp i(£x, — wr)

ug = (Aa cos ax; + D5 cos ßx3) exp i(fx, — wr) ~

F2 = (52
-

ß2)2 sin abcos ßb + 4aß62 cos ab sin ßb = 0

where the stress components can easily be calculated using the constitutive relations (ref. ll). The

variables A, B, C and D are defined by

cp = (A sin ax; + B cos ax;) exp i(fxi — wr)

and

H2 = i(C sin ßxa + D cos ßxg) exp i(éx, — wr)
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Also, the slowness surface analysis produces the results

az + :2 =é"p

and

V:

So, the slowness surface analysis for both the SV·wave and P-wave can be added to the E equations

(stress free boundary conditions) to obtain 3 equations which can be used to relate the variables

a, ß, { and m. Thus, if one knows the mode of a Rayleigh-Lamb wave and either one of the wave

numbers or the resonant frequency, then they can find the remaining variables, as well as the dis-

placements and the stresses (up to a constant) as a function of time and space. Altemately, if any

combination of two of the wave numbers and resonant frequency are known the the mode of

propagation and the displacements can be determined up to a constant. For instance, the re-

lationships between physical variables has been utilized in NDE to derive a basic equation relating

the angle of incidence for the input wave in water to the ratio of the velocity of the input wave in

the water to the phase velocity of the Lamb wave (ref. 2l). This basic information can be presented

in graphical form as a standard dispersion curve (see figure 6). A quick view of the dispersion curve

provides basic information on the characteristics of the wave propagation. First, the higher the

wave number the higher the angle is between the vertical (x,) axis of the plate and the direction of

the input wave vector. Hence, a general indication of the frequenies present for a general range of

input angles for a given mode may be ascertained. The instantaneous slope of the curves gives the

group velocity and the slope of an imagined line from the origin to the point for a particular mode

of wave propagation gives the phase velocity.

It is interesting to note that the form of this solution for real values of { can be grouped into three

sets depending on the relation between w/{ with the velocities of the vertically polarized shear wave

(SV-wave) and P·wave. Ifw/{ is less than v, then a and ß are both imaginary. Ifw/{ is greater than
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v,, but less than v, , then a is imaginary and ß is real. Finally, if w/6 is greater than v, then both the

wavenumbers become real. These three situations can be seen in the dispersion curve, below line

OE where both a and ß are irnaginary, between line OE and OL where a is imaginary and ß is real,

and above line OL where both wave numbers are real (ref. ll). The values of the wave numbers

dictate both the_ spatial variation of wave motion and the relative magnitude of various displace-

ments.

lf one looks at the limits of the dispersion curve a variety of interesting points can be made. In the

region where Q/E is less than l both a and ß are imaginary, and E goes to zero the solution for the

antisymmetric modes converges to

¤ = E’·=<uß<¤ — 1//«’>>·’

where

.. LLQ - wi

nv,
I

“’= =E

vp
k =T

~ 2b:ä =T

and b is half the plate thickness. The symmetric mode does not have any solution for this limit in

this section of the dispersion curve. This resonant mode corresponds to that of the zero order thin

plate mode for ilexural vibrations as predicted by elementary theory.

In region two, where a is irnaginary and ß is real, the symmetric mode is given as
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n = E2(l — 1 116*)*

when E becomes vanishing small. The phase speed of this mode shows up to be between that of ‘

the SV-wave and the P-wave. This is the same solution derived by the elementary theory for high

wavelength extensional waves. Now, as E increases the solution approaches the line OR. The

- symmetric branch crosses the line OE at ß = 0 with the solution going to

Q = E
=1r(l — 1/k )

taub ab
=4(1 — 1/k )

This is related to the Goodier-Bishop wave, the waves produced at critical angles or grazing angles,

namely either when the SV-wave is exactly at the angle where it can no longer produce reilected P

waves or if a P-wave is incident at exactly zero degrees (ref. 142). Basically, these equations were

derived by taking the retlection equations and writing the tangent term as a power series of expo-

nential terms and dropping all higher terms.

As E gets large, the fundamental symmetric and antisymmetric dispersion curves both approach the

line OR. This is in the region where both a and ß are irnaginary. The basic dispersion relation

reduces to

4¤ß€2 — (6* + ß*>* = 0

the phase speed of this wave is less than v,. Since, both wavenumbers are imaginary, both dis-

placement components vary hyperbolically across the thickness with maximum amplitude at the

top and bottom surfaces. Actually, the solution reduces to that ofa Rayleigh wave in a half space.
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Hence, the symmetric mode goes through a transition from an extensional wave to a Goodier-

Bishop wave to a Rayleigh wave. This shows that the nature of the wavenumber for the input wave

governs the nature of the plate wave.

The Lame modes are found to exist if E = ß. This causes the symmetric wave equation to become

cos ßb = 0

and the antisymmetric wave equation becomes

Sin ßb = Ü

This causes 1-,, and 1-,, to disappear at the top and bottom surfaces. This in fact corresponds to

an equivoluminal wave, which is caused by the interference of pure SV-waves which are reflected

and incident at 6, = 45° .

Simple thickness modes occur when displacement components are only a function of the x, coor-

dinate and time. In this special case, the three types of plane waves each can propagate between

the top and bottom surface, independent of the other waves, setting up separate plate waves which

can be derived from the standard plate wave equations by setting { equal to zero. Also, simple

thickness modes are known as through the thickness transverse resonances (I l IR). These modes

correspond to where the higher order modes cross the ordinate (w-axis) on the dispersion curve (see

figure 6). Since the phase velocity is defined as v = w/6, the phase velocity for the thickness modes

is infinite.

The manner in which the phase velocities drop from infinity for the higher order modes, when {

becomes nonzero, can be seen in figure 8. Also, note the slope of the dispersion curve for the higher

order modes, near the thickness modes, are relatively low (figure 7), indicating that the group ve-

Iocity or rate of energy flow is relatively low. Thus, these modes are characterized by rather high

phase velocities and rather slow modulating (group) velocities. Moreover, the first order symmetric

curve has a negative group velocity, indicating that energy should be flowing toward the source.
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However as a general trend, these curves start with a very high phase velocity and a rather low

group velocities and move to higher group velocities (ie. the curves tum upwards at larger slopes)

with lower associated phase velocities. Additionally, the higher the mode the tlatter the curves tend

to become (in general) and hence the less the group velocity. Generally, the higher the mode, the

higher the phase velocity and the slower the group velocity. Phase velocities and group velocities

vary along each of these curves and vary from curve to curve; hence, a great deal of dispersion is

associated with these higher order modes. It is again very important to note that for higher order

modes the frequency of the resulting wave changes very little with C. Thus, many ray angles of

input (0,) result in similar frequencies. Hence, a lot of energy may be created around these fre-

quencies.

Another interesting facet of the analysis of the Rayleigh-Lamb wave problem is the consideration

of imaginary and complex wavenumbers for C. Although, the existence of imaginary wave numbers

was recognized earlier, it was not until the l950's that they were actually included in the analysis

. and given physical significance. A great deal of this work was done by Mindlin, generating an in-

teresting body of literature. The amplitude of the wave for imaginary values of C lead to the wave

being attenuated as the wave travels in the x, direction. Physically, for a linite plate, the energy

from this mode is channeled to edge waves on the side of the plate. Work by Mindlin shows that

in some cases these edge modes can still show significant displacements up to 30 times the plate

thickness from the edge (ref. 112). This type of phenomenon should be kept in mind for situations

when ultrasonic work is done on linite specimens, such as small laboratory samples.

Another interesting discovery was the existence of a second edge mode which is very constrained

to the edge, if the frequency of the propagating wave is greater than the first symmetric thickness

shear mode. Also, Mindlin and Fox solved the problem of the real part of the solution for the

antisymmetric mode of a plate bounded on a single side. However, in general a total solution has

not been found for a fully bounded plate, which includes all edges and complex wave numbers.
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The plate problem for an isotropic plate has a rich history, starting with experi.mental investigations,

followed by elementary solutions from many of the great scientific minds of the time. Eventually,

the general solution was obtained by Rayleigh and Lamb, showing that the elementary solutions _

are approached in the limit of low frequency. Furthermore, they showed the dependence which the

output has on the input wave forms and how these relate to the actual plate modes. For example,

simple thickness modes occur for an input of a zero wave number in the xl direction, a totally
”

vertical input wave. Also, a Goodier·Bishop wave results if ß is zero. Finally, it is interesting to

note that the most general problem for all sides bounded is not as of yet solved, in general, however

particular aspects of it have been solved, showing the physical relevance ofcomplex wavenumbers.

Anisotropic Plate Waves

Several investigators have looked at the problem of plate waves in anisotropic materials. As might

be expected, the anisotropic constitutive relation greatly complicates the analysis of the plate wave

problem. A variety of extra plate wave modes are created due to the extra modes of plane waves

which are possible. Also, the properties of the Lamb waves (ie. dispersion curves) depend on

azimuthal angle. Further complications arise due to the fact that all modes are coupled into the

same equations, hence vastly complicating numerical procedures. In fact, the full analysis of the

anisotropic problem would be prohibitive without the use of the computer. However, Ekstein did

formulate the full analytical solution to the problem for the case of orthotropic symmetry in 1945

(ref. ll3). Detailed analysis of the dispersion relations of anisotropic materials were not developed

until Mindlin and co-workers used a variational approach (ref. 52). More recently the method of

transverse resonance or partial waves has been forwarded as a solution technique (ref. 127). Since,

this method is the basis of the approach used here to solve the plate wave problem for composite

plates, a short synopsis of this method will be provided for future reference.

In the method of partial waves, plate wave solutions are constructed fromexponential waves that

are reflecting back and forth between the bottom and top surfaces. This approach considers plate
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waves to consist of traveling waves in the direction of propagation and standing waves through the

thickness.

The exponential trial solution is expressed as

ur = ¤i ¤x1>UU<m — w¢)]

This is then substituted into the Christoifel matrix to obtain

(klIcIJkJj " Pw26g)¢9 = 0

In this work, the subscript convention is as follows

i,j= l, 2,3 I,J= 11,22, 33, 23, 13, 12

The k„ matrix is defined as follows ·

kx 0 0 0 kz ky

ky 0 kz 0 kxjl

0 0 kz Icy kx 0

and k,] is the transpose matrix. The partial waves are coupled to each other by reflections at the

surfaces in accordance with Sne1l’s Law
A

kl =-° k = (Div

where v is the plate wave velocity. The particle displacement vector then becomes

19 = aj exp[ik(x, + I2x2)]

where

I2 = kz/ki
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for every partial wave solution.

The substitution of the equation for L9 into the Christoffel matrix results in a system of three ho-

mogeneous linear equations for the a, values, with coeäcients that are functions of density, fre-

quency, and the stiffness matrix terms. This results in a 6th order polynomial for L, with six

resulting roots

é"’

where

rt = l, ..., 6

Next, the displacement field may be taken as a linear combination of the six allowed partial waves.

Mathematically, this may be expressed as

6
19 exp[ik(x + /;,]).2)]

n=l

These expressions may be used with constitutive relations to yield stresses. These stresses may then

be used in the boundary conditions

"12="s2=¢22=0 9

at z = j; h/2. This leads to a system of six homogeneous linear equations where the coeüicients of

C} are now functions ofp , cu, v = w/k, and hk . Setting the determinant of the system ofequations

to zero results in the dispersion relations, which yields information on the dependence of velocity

on frequency. These can be used to derive the commonly used dispersion curves with the infmite

number of branches. Furthermore, the system can then be solved to find relative values for the

C„ values. Thus, an indication can be obtained on the relative displacements occurring in the plate.
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As mentioned, investigation of these relations results in a number interesting phenomena. These

include a number of additional modes not seen in isotropic materials (ref. 11). The general char-

acter of the dispersion curves for anisotropic materials is similar, however the curves have more .

jumps and the extra modes lead to extra curves. Also, the dispersion curve is dißerent for dißerent

azimuthal angles. Additionally, pseudosurface waves exist, which leak energy (ref. 127).

Applications

The theory of Lamb waves has been utilized for a number of applications. Mindlin and coworkers

utilized the theory of Lamb waves to prediet behavior of resonators for radio communications.

Also, the theory of Lamb waves has been used to explain acoustic emission results (ref. 129) and

for use in nondestructive testing (refs. 21).

Through Thickness Resonance

The through thickness resonance mode (simple thickness mode) corresponds to the constructive

interference of either a P-wave or an S-wave rellecting back and forth perpendicularly between the

top and bottom surface. This mode of plate wave eorresponds to the intersection of the higher

modes with the frequency axis. As mentioned, these modes have a theoretically inlinite phase ve-

locity. The frequencies and displacements of these modes are simple to calculate and are given, for

an orthotropic material, by the following equations:

Symmetrie Modes

„ - xa
(a) ug =B S1H(m7!%) ul =0 m=

1,3,LiteratureReview 47



(b) ul = C'cos(mré%) ua = 0 n=

2,4,AntisymmetricModes

. X3
(a) ul§D’s1¤(mrEg) ug =0 n=1,3,X:

(b) ug
=A’

COS(m1!'E) ul = 0 m = 2, 4,

Frequencies

mv? msß ·—z„ ß — ET

Cas .6 Cu .6 C66 .6

For Isotropic Materials

(1 ”)
(1+ v)(1— zw)

- -
.l_C‘“’ C55 ' 2(1 +w)

where t is the plate thickness, N = 1,2,3,... and C}! are stiffness matrix values expressed in reduced

tensor notation (reference 13). Hence, if Cu does not equal C„, extra resonances may occur

through the thickness. Also, for materials in which the x,·axis is not in a plane of orthotropic

symmetry, the shear wave velocities are affected by coupling terms in the stiffness matrix.
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Also, the shear wave resonances are polarized, for anisotropic materials, due to the polarization of

the S·waves in the x, direction. This is suspected of contributing to experimental results presented

in chapter 4.

The simple thickness vibrations described by these equations are for very idealized conditions, with

inlinite plane waves propagating absolutely normal to the top and bottom surfaces. However,

— understanding these results may be of some use in understanding AU results. First, although much .

of the AU wave disturbance is not due to plane waves resonating absolutely perpendicular to the

top and bottom surface, the AU waves are thought to be a result of reinforcing ofplane waves with

very small angles from the normal. Hence, simple thickness modes may have many of the same

properties of AU waves, and thus physical understanding of the AU waves may be gained by

understanding simple thickness modes. Additionally, understanding how plane waves combine to

meet boundary conditions and cause resonance may help to understand how the very early low

frequency, low amplitude part of the AU signal is created. This problem may be better understood

by relating Green’s function results to Lamb wave equations. Although the early part of the signal

is of very low amplitude, it may provide a great deal of information conceming the state of the

material. Hence, understanding the simple thickness mode may be very useful in understanding

the AU method.

Analytical Ultrasonics

Analytical ultrasonics entails measuring material microstructure and other variables which control

the mechanical behavior of materials (refs. 20, 21 and 25). The ultimate goal of this approach is

to be able to assess a material’s strength, moduli, toughness, and other properties which can be used

to predict future material behavior. The realization of this goal will depend on developing more

advance models of wave/material interaction, better understanding ofbasic material behavior, better
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understanding of excitation mechanics, better experimental equipment (transducers etc.), proce-

dures, and more advanced signal processing techniques. Hence, advancement of analytical ultra- _

sonics requires improvement in wave propagation models and better experimental tools. A few

comments, concerning this area, is provided in this section to provide information which may be

pcrtinent to the AU method.

Green (ref. 27) gives a good overview of the general state of technology in analytical ultrasonics.

He discusses pertinent issues such as material behavior models, wave excitation sources, and

measurement methods. Since the AU method and analytical ultrasonics are undeniably coupled,

issues important to analytical ultrasonics are important to AU and vice~versa. In general, analytical

ultrasonics uses wave propagation theory and experimental work to predict the future behavior of

materials.

First, the attenuation of a wave can be used to obtain information on a material. The attenuation ~

of a wave in a material may be caused by material dissipation mechanisms, scattering, reflection of

the wave or more likely a combination of all of these. The measurement of stress wave attenuation

is the method used to produce the often used ultrasonic C-scan. In many applications, the atten-

uation of a stress wave as a function of frequency is measured (ref. 36 and 74). This is especially

useful for obtaining detailed information on microstructure. Models of this are discussed later.

Another source of information derived from stress wave propagation is the wavespeed. A simple

application of this is the use of wavespeed to measure the moduli of a material. In fact, Kriz and

Stinchcomb (ref. 128) used this approach to obtain the full stiffness matrix for a Gr/Ep composite.

More recently, Kline and co·workers (ref. 17) have developed a method where obliquely incident

waves are transmitted into a specimen and received at another point. This is perforrned during an

ultrasonic C-scan at several orientations and then a numerical procedure is applied to the wavespeed

measurements to determine stiflhess matrix quanities. Other researchers have utilized the meas-

urement of the phase velocity of Lamb waves as an NDE method (refs. 12, 13, and 89). Also,

wavespeed measurement is used to determine residual stress. This is due to the inherent nonline-
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arity of material moduli and changes in density de to changes in bulk volumes. Acousto·elasticity

(ref. 38) is a specific subarea of elasticity devoted to the study of this phenomenon.

Dispersion is another phenomenon associated with wave propagation that can yield information

on micro- (ref. 51,105, and 107) and macre-structure. Dispersion is when waves ef different fre-

quency travel at different speeds. This can result in sine waves ofvarying frequencies separating in

the time domain (see experimental results). Dispersion can be caused by small particles er phases

in a material that effect the acoustic velocity of waves for certain frequencies of wave propagation

and by waveguide dispersion (e. g. note the nenlinearity ef Lamb wave curves).

Also, of concem in analytical ultrasenicslare developments in mathematical theories for analyzing

waves. Equally important is the development ef computational methods for making calculations

based on the mathematical theory. One example of this type of work is that of Pao and ce-workers

with the generalized ray theory (ref. 122) for calculating transient plate responses. Also, the Green’s

function has been utilized to calculate transient plate responses (ref. 121). Also, Vasudevan and

Mal (ref. 129) have used a transform integral technique to determine the transient response of an

elastic plate to a buried source. This involves summing residues of the dispersion relations frem

the boundary conditions and transforming from the frequency domain te the time domain. The

residues occur at the through·thickness-transverse-resonance frequencies and at the minima ef the

first order symmetric and third order antisymmetric mode. The procedure excludes the effects of

the negative group velocity regons. Also, a small complex perturbation term was introduced into

the FFT to account fer attenuation. Their approach and results seem te show some correlation

with the work in this dissertation.

Another area where wave modeling can be applied te ultrasonics is trying te understand the near

field (Fresnel field) and the far field (Fraunhafer regen). The Fresnel field is characterized by re-

gens of alternating pressures. The Fraunhafer regen has lebes ef fairly constant pressure (de-

scribed by r- 0 plets (ref. 21).
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Also, Claes (ref. 140) has outlined an interesting solution to the plate wave solution in an isotropic

plate due to an axisymmetric source. The solution yields Bessel functions which account for the

decrease in amplitude due to waves diffusing from the source. The solution degenerates to a basic _

plane wave solution at a large distance from the source.

Mathematical models of frequency dependent attenuation have been developed and have been used

to explain ultrasonic data (ref. 74). A partial list of attenuation mechanisms and their mathematical

effects are listed below:

Rayleigh scattering-a, = c,a{f‘

Stochastic scattering-a, = c„af*

Diffusion scattering-ad = c„a"

Hysteresis losses-a,, = c,f

Thermoelastic losses-a, = cf

Viscous losses-show second order frequency dependence .

Absorption losses (dislocation vibration, internal friction, and relaxation effects)-show second

power down to first power effects on frequency

In the above expressionsfis frequency and a is the grain size or discontirruity size. Various authors

have attempted to relate these models to form single equations describing the frequency dependent

attenuation of various materials (ref. 74).

An important facet of analytical ultrasonics is understanding the transducers. A number of papers

have been published on various ultrasonic sources which may be utilized (ref. 68). These sources

include:
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Piezoelectric
1

Gas jet 4

EMAT

Laser

Spark gas discharge

High resistance metal sheets

Capacitance

The physics associated with each of these sources is a separate area of research.

The piezoelectric transducer itself is continually being refined and improved, resulting in a great

number of different transducer properties. For instance, new products, such as KYNAR film (ref.

165) and dry couplant transducers (ref. 166), are adding to the possible choice of piezoelectric

sources. Characterizing the properties of various transducers and understanding their effects is a

heavily researched area of ultrasonics (refs. 133 and 110). The following are just a few of the con-

cems with charactexizing piezoelectric transducers:

Relationship between voltage-current and force-displacement (Linear system response matrix)

(ref. 133)

Transducer diameter (ref. 21)- see fig. 9

Phase cancellation effects (ref. 152)

Uniformity of displacement on transducer face
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Frequency response of transducer (fig. 24, chapter 3)

Crystal type (longitudinal or shear)

Proper orientation of transducer in casing

_ Coupling mechanism and effects

These effects strongly influence all analytic ultrasonics methods and most assuredly results seen in

the AU method.

Finally, advances in signal analysis are of great interest to researchers in analytical ultrasonics. For

instance, a number of early papers on the AU technique (refs. 7 and 63) were concerned with signal

analysis. These involve areas such as pattern recognition (ref. 143), Fourier analysis, analytic signal

(ref. 16), and various fields of digital signal processing (ref. 2). Many of these concepts will be

covered in the following section.

Acousto-ultrasonics

The acousto-ultrasonic technique involves exciting ultrasonic stress waves at one position on a

material surface and sensing the wave at another position on the same material surface. In general,

various excitations, sensors and analysis software can be used to perform the method as is shown

in figure l (chap. 1). Most implementations of the method to date have involved using ultrasonic

piezoelectric transducers for both sending and sensing the stress waves. However, the use ofpulsed

laser excitation of stress waves is currently under investigation by several investigators (ref. 161).

Two major advantages of the AU method over other commonly used methods are that:
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Access to only one material surface is required

Can propagate stress waves in direction of loading

Hence, although a number of methods exist for nondestructively testing a material, the AU method

has the advantages of only requiring access to one surface and yielding information on in plane

material properties.

The general contention of the AU method is that a section of material which adequately transmits

stress waves will also properly transfer stress under loading and hence be less prone to fracture.

Thus, one facet of the AU method is to simply make comparisons of the energy content of an ul-

trasonic signal that is propagated between two positions on a piece of a material. The idea is that

if a high energy content signal is produced between two points, then the area of material between

those points will be able to resist fracture more than a similar area of material between two points

where a weak signal is obtained. For instance, a damaged area (delaminations, matrix splits, de-

bonds etc.) will, in general, reflect and absorb energy in a stress wave and will also, in most cases,

(except in certain instances where stress concentrations are lowered) result in areas where fracture

may initiate.

Understanding the mechanics of how darnaged areas interact with stress wave propagation encom-

passes areas of the theory of stress wave propagation and analytical ultrasonics. However, the first

step in understanding any ultrasonic method is to develop a model for the idealized case where

simple material constitutive relations govem the problem and the material is in perfect condition

(defects and damage do not alter the material’s response). Then, more complex material behavior

may be accounted for by adding to the simple model or by using the simple model as a basis for

developing more complex models.
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Early Research
l

The name acousto-ultrasonic is derived from ultrasonic evaluation and acoustic emission monitor-

ing; in fact Vary attributes the basic idea to acoustic emission work done by Egle and Brown (ref.

137). Egle a.r1d coworkers utilized what became the AU configuration to simulate acoustic emis-

sions in order to better understand acoustic emission results (ref. 134).

It should also be noted that prior to the actual adoption of the AU method for composite materials,

similar types of experimental conügurations were being utilized for conventional materials (ref.74).

The pioneering work on the AU method was conducted by Vary and co-workers at NASA Lewis

(Ref. 5). This work entailed introducing the term Stress Wave Factor (SWF) to quantify the energy

in the AU signal. The SWF involves measuring discrete voltages in the signal at a selected sampling

rate and counting the number of voltage peaks above a preselected threshold voltage. SWF meas-

urements were made in the cross über direction on a number of unidirectional Graphite/Polyamide

composite coupons which had been subjected to varying cure pressures. Next, the coupons where

subjected to a three point bend test to determine interlaminar shear strengths. Results showed that

the lower cure pressures resulted in lower SWF and lower material strength. It was also noted that

the lower cure pressure resulted in a greater void content. ln general, this early work showed that

AU can be used to give a relative indication of interlaminar shear strength for unidirectional com-

posites. Figure 10 shows the results obtained by Vary and coworkers.

The initial work by Vary and co-workers stimulated additional investigations by other researchers,

that resulted in a number of observations and methods of signal quantiücation.

First, Govada et. al. supported Vary and coworker’s results that SWF measurements taken at dis-

crete locations along the length of a thin composite specimen could be used to predict failure lo-

cation for uniaxial loading (ref. 88). The basic premise of this work was that the area of low SWF
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would be the area of failure during unidirectional loading. However, the work revealed that an

averaging technique had to be used which accounted for the proximity of the sending transducer

to the area being measured.

Further work at Virginia Polytechnic Institute (VPI) revealed that the SWF factor decreased with

fatigue loading (ref. 6), hence, showing that the AU technique is a good quantifier of fatigue dam-

age. In fact, figure ll shows how the SWF factor (energy measurement) compares to stifihess

measurement as a function of fatigue life. As mentioned, this indicates that the AU measurement

might be a more sensitive measurement for use in fatigue models than stiffness degradation.

Early work by Williams and coworkers at Massachusetts Institute of Technology involved evalu-

ating impact damage (ref. 56). Also, work was done using frequencies generated in the AU tech-

nique to determine the dispersion of composite materials at those frequencies (up to 5 MHz) (ref. ,

30). It was found that no material dispersion occurred at these frequencies. Further work by

Karaguelle involved using ray tracing techniques to model the AU technique in an aluminum plate

(ref. 49). This model assumed the transducer imported a uniform normal stress where the

transducer contacted the specirnen and treated the elasticity problem as a half space problem to

calculate resulting wave propagation. The successive reflections of these waves are traced to deter-

mine the resulting behavior of an aluminum plate. However, the solution technique and certain

assumptions cause numerical instabilities if h/A < 1.6, where h is the plate thickness and Al is the

wavelength of a P-wave. This causes problems in trying to apply this theory to experimental re-

sults found using the original AU set-up.

Williams and coworkers a.lso discussed the possibility of exciting structural resonances in certain

configurations (ref. 112), however, the frequencies of these resonances must be in the range of the

input transducer and other experimental equipment. Generally, structural resonances are not ex-

cited with the conventional AU set-up in laboratory conditions, but depending on the equipment

and structure, structural resonances may very well be set-up during field application of the AU
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method. The matching of experimental equipment to the material and structural application should

be considered separately for each application of the AU technique.

Subsequent advances involved the introduction of more advanced signal processing techniques.

This helped to develop a more refrned method and helped to start explaining the physics of the AU

method.

Karaguelle and Williams applied 'homomorphic signal processing' to the detection of flaws in an

aluminum plate (ref. 63). This work involved picking out the signal from one particular rellection

pattern, by deconvolving a short portion of the signal which may contain multiple retlections.

Talreja and Henneke introduced the use of theory from random noise involving moment calcu-

lations from the frequency domain to quantify information in the AU signal (ref. 7). Moment

calculations were obtained by integrating the product of the AU signal’s spectral density function

(obtained by taking the FFT of the AU signal and squaring arnplitude values) and the frequency

over the frequency domain. Parameters can then be calculated, from these moments, that describe

certain characteristics of the signal (e.g. energy content and centroid frequency). This approach

marked the beginning of the evolutionary process which led to this dissertation. Hence, a more

detailed description of the work done using this approach is provided. This includes a description

of software, basic equations, and ensuing experimental results. The program described below is an

earlier version of the program used to obtain results in chapter four; however, this program was

used to generate results for this chapter. These results will be discussed in the chapter on physical

understanding.

AU Analysis Software

ln particular, a description is presented of a computer software package used to analyze the AU

signal (ref. 10) and generate results. The intitial step in the computer analysis is to retrieve the
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digital signal from the storage disk, where it has been stored during the AU data acquisition phase.

This involves reading information on gating parameters and then the bit representation of each

voltage. These bit representations are used to calculate actual voltages and time values. Next, .

voltage/time graphs can be generated for observation of general signal charactexistics. Additional

subroutines allow for the signal to be gated and for any DC bias to be removed from the signal.

_ Estimates of wave arrival velocities are made by dividing the transducer separation distance by the

time of wave train arrival (ie. first non-zero voltage reading) as measured from the instant of trig·

gering. In addition, phase velocity estimates were made for certain cases by increasing the

transducer separation distance and noting the translation in the time domain for a particular point

in the wave pattem display, wave train. A peak in the time signal could be followed on the com-

puter screen as the receiving transducer was moved away from the sending transducer. For certain

signal content, the general shape of the signal changed very little as the receiving transducer was

translated on the specimen. Hence, this procedure was applied to parts of the wave train which

contained predominately a single frequency content in order to determine a wave speed to be as-

sociated with a particular frequency of wave motion.

A fast Fourier transform (FFT) algorithm was used to yield frequency domain information on the

gated digital voltage/time data. The voltage/time data was gated from the first non-zero ·voltage

reading to the end of the wave train. Using the FFT, amplitude/frequency and phase/frequency

data were generated, the amplitude/frequency data were plotted and AU parameters were calculated.

The equation describing the amplitude values calculated via the FFT is:

ri-1
Xk = % EvrC-1(2«r1«r/ri)

»=0

where v, are voltages andfi = k/(nAt) is the frequency corresponding to X,.'
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The determination of AU parameters involves calculating various moments of the spectral density

(the square of the amplitude values S, = XZ) about the vertical axis, S,, axis (see figure 12). For

instance if S(f) is the continuous spectral density function, the n-th moment is defined as:

fl!M,. = f S</1/"dß
0

where ff,, is the Nyquist frequency. ln the case of digital data, the integration is replaced by a

summation to yield:

(M-!)
(S S )+M, = Af(ff, + Af]2)”,

k=0

where S,, are the spectral density values, ff are the corresponding frequency values and Af is the '

frequency difference between ff and ffm. For instance, the zeroeth moment (M„) is defined as:

fm

or for the digital data obtained experimentally

(mq)
S S )+Mo = E Af

k=0

M,, is simply the area under the spectral density curve. This can be analytically related to the mean

square of the voltage signal. For application to AU signal evaluation, M„ is renamed Al. There-

fore, Al is an indication of the amount of energy in a received signal. A2 is defined as M,/Mo and

is the central frequency of the signal. A signal with a higher A2 is transfening proportionally more

energy at higher frequencies than lower frequencies when compared to a signal with a lower A2.
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In addition, A4 is defined as (M.,/M,)—’ and A3 is defined as A4 is the frequency of

maxima and A3 is the frequency of zero voltage crossings (reference 5, page 92). The quantity

A4/A3 is known as the distortion factor and is an indication of the amount ofhigh frequency signal

in a predominantly lower frequency signal. Figure 12 indicates how the moments are related to the

spectral density function. Again, it should be kept in mind that the spectral density function is the

square of the amplitude function for a given frequency value.

In order to obtain more specific information on the acousto-ultrasonic signal, filtering capabilities

were included in the the digital signal software analysis (refs. 9 and 10). Basically, this involves

calculating Mo for a particular frequency range. Thus, the area under a specific portion of the

spectral density curve can be obtained. Mathematically, this may be expressed as:

br
Mo =f S(/)djÄ

ß ,

where S(f) is the spectral density function, jj is the low frequency end point and fi is the high fre-

quency end point. In the summation equation, this involves only sumrning for the values of k

which correspond to the S, values of interest (ie. corresponding to a peak). In particular, this fea-

ture is used to find the area under one frequency peak in the amplitude/frequency plot, yielding a

parameter which is indicative of the amount of energy transferred at a particular vibrational fre-

quency range. Initially, observationi of amplitude/frequency plots revealed the occurrence of certain

amplitude pealcs at the same frequency for a given plate thickness, regardless of plate lay~up or

azimuthal angle. The amplitude/frequency plots for different azimuthal angles were then exarnined

to determine values forj] and fj,. Next, the determined f} and ß, values were used to calculate filtered

moment values from the AU signals obtained at different azimuthal angles. Figure 12 displays how

filtered Al values are calculated and the nomenclature used for a particular calculation.
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Results

The observation of time domain results and amplitude/frequency plots revealed basic information

to be used in understanding the AU method as well as providing information to be used for both

calculating and interpretating AU parameters. Figures 13 and 14 show some sample voltage/time

(V/T) and amplitude/frequency (A/F) plots. Figure 13 shows the dominance of the 1 MI·lz and

the 3.4 MHZ frequency peaks in the spectrum for the signal obtained in the 0 degree direction of

the 4·ply zero degree plate with no gate applied to the signal. Also, it should be noted that the 3.4

MHZ peak is about 75 percent the amplitude of the 1 MHz peak. In contrast, the voltage/time plot

in the 90 degree direction for the 4·ply zero degree plate (figure I4) revealcd a signal with only the

1 MHZ signal content and shows a steady amplitude throughout the signal, without the high signal

content early in the signal. Observation of the corresponding amplitude/frequency plot reveals that

the 3.4 MHZ frequency content is still present, but comparatively less than the dominant 1 MHZ

content.

To gain insight into the influence of plate thickness on the observed AU behavior an 8-ply 0 degree

larninate was examined and directly compared to results obtained on a 4·ply Odegree laminate. A

summary of observations made from voltage/time and amplitude/frequency plots in the 0 and_90

degree direction follows: _

For 4·ply laminates amplitude peaks in the amplitude/frequency plots consistently occurred

at l MHZ and 3.4 MHZ

For 8-ply laminates amplitude peaks in the amplitude/frequency plots consistently occurred

at 500 kHz and 1.7 MHZ

The experimental results for the variation of AU parameters with azimuthal angle for the [0,0,0,0]

larninate can be seen in figures 15-18. Figures 15-16 show the variation ofAl and A2, respectively.
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The plot of Al versus azimuthal angle for a 4-ply zero degree laminate (figure 15) shows the de-

crease in Al with azimuthal angle up to 45 degrees and then the relatively constant value obtained

between 45 and 90 degrees. The plot of A2 versus azimuthal angle (figure 16) shows a peak A2

value at 15 degrees. In general, unidirectional panels showed a peak A2 value betweeen 10 ar1d 20

degrees to the fiber direction (this same type of variation also occurred for the A4/A3 parameter).

The variation of E, with azimuthal angle is compared with the variation of Al in figure 15. The

behavior of Al and A2 with azimuthal angle seen in this data has also been seen by another re-

searcher (ref. 99). Figure 16 also shows the variation of the coefficient of influence with azimuthal

angle and how it compares to A2. Hence, AU seems to mimic the variations in material properties.

One purpose of AU modelling is to determine the exact relationship, so that AU may be used to

make more exact evaluations on how material properties vary with azimuthal angle. Figures 17 and

18 show the variation in energy content for the resonant peaks at 1.0 MI—Iz and 3.4 MHz, by dis-

playing how Al(.8,l.2) and A1(3.2,3.6) are affected by change in azimuthal angle. The variation

of Al(.8,l.2) with azimuthal angle is similar to that of A1. Also, notice that the behavior of

Al(.8,l.2) seems to show the same behavior as E, (figure 17), once again showing the relationship

between AU response and mechanical properties. However, notice that the Al(.8,l.2) descends

more rapidly and reaches a fairly constant value at approximately 30 degrees. The plot of

A1(3.2,3.6) versus azimuthal angle reveals a much slower descent of A1(3.2,3.6) at angles under 20

degrees and then a quick descent to a fairly constant value between 20 degrees and 45 degrees,

showing behavior more similar to the reduced stiffness matrix value Q, (figure 18). The plot of

Al versus azimuthal angle (figure 19) for the [90,0,0,90] plate exhibits a quick descent from a rela-

tively high value at an azimuthal angle of 0 degrees and a slower descent from a maximum value

at 90 degrees, reaching a minimum value between 40 and 50 degrees. Also, the characteristic peaks

at 15 degrees to liber directions for the [90,0,0,90] laminate can be seen in figure 20.

Figure 21 displays a plot showing the rather extreme decrease in A1(3.2,3.6), especially in the fiber

direction, for AU on a specimen with a delamination. Also, the value of A2 for the case of de-
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lamination is shown to lose the characteristic peak at 15 degrees. Also, notice the plots compare

AU parameters to the variation of material properties. This is also discussed in reference 9.

Current and Future State ofAU Method

Currently, a number of investigators are working on various applications of the AU technique.

For instance, Duke and Kieman have looked at the use of the AU technique to predict the direction

of damage development in impacted Gr/Ep panels (refs. 100). This includes understanding the ef-

fect fatigue damage has on AU results compared to the effect it has on impact damage. Hence,

efforts are already urnderway to use the AU method to determine the effect damage has on future

material response. Finally, this research has looked at how the variation of AU with azimuthal

angle is altered by damage resulting from impact. In some instances, this has caused change in the

location of high AU values. It may be that this gives some indication of how stress is redistributed

for loading of impact damaged specimens (note the high AU measurement is not necessarily for
i

right over the damage, but for close to the damage). Hence, this could be utilized to determine a

stress concentration factor and suggest the direction in which damage may gow. This research has

V also shown which AU parameters are most sensitive to early fatigue damage. Other applications

include the use of the AU technique to detect the density of trans-ply cracking in composites (ref.

102) and the application of the AU technique for predicting hygrothermal degadation (ref. 103).

Other authors have utilized the statistical nature ofAU measurements to quantify damage (ref. 146).

The AU method has also found application to such diverse areas as adhesive joints, bones, and

wood (ref. 144, 145 and 167).

Future work with the AU method may involve using the analytic signal to quantify the AU signal.

This approach would allow measurements of energy rate and group velocities. Also, this may be

combined with other advanced forms of digital filtering to gleen even more detailed information

from the AU signal.
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Although numerous applications of the AU technique have been found, there is still a general lack

of understanding conceming the physics of the method for the application to composite plates.

Several authors have noted that Lamb waves seem to be present in signals (ref. 9 and 95). However,

there seems to be no specific mention of ·the modes which are present and how they are excited.

Kautz (ref. 97) has suggested using the ray tracing technique as a model, but has yet to fully apply

the approach to composite materials. This approach involves modelling the high frequency portion

of the signal as a guided wave in the fiber. Other authors have suggested using diffuse wave theory

(ref. 148) to describe the AU technique. However, a working model has yet to result from this

work. In general, although the AU method has been applied to a variety of applications for com-

posite materials, no real model exists for the method. Moreover, the basic physical understanding

of the wave motion occurring in the AU method is still not well understood. In order to gain full

advantage of the method and obtain quantitative information on the state of a material, a basic

model must be developed which relates the mechanical state of the material to AU results. Thus,

it is the goal of this proposal to understand the basic physics of the AU method for composite
I

materials and to propose an elementary model of material response associated with the AU method.
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Experimental Procedure

A very important facet of modeling and understanding any NDE method starts with a thorough

consideration of experimental equipment, procedure, a.nd analysis. As mentioned earlier, develop-

ing transducers, computer software, and AU systems is a subject of current research. Although

results have been obtained using a number of transducers and experimental arrangements, this

section describes very specific experimental arrangement and computer analysis which were used to

obtain the bulk of the results utilized for this work. However, comments are oüered on some re-

sults obtained with other experimental arrangements and the effect of changing various aspects of

the set·up on results. Also, comments are offered on how various aspects of the experimental

set-up and procedure relate to the physics of the problem.

The experimental equipment consists of a pulsing/receiving unit, a preamplifier, 2 piezoelectric

transducers, and an IBM-XT equipped with a data acquisition system. Each of these items can

be seen in the system set-up diagram, figure 22. lt is very important to note, that for the exper-

iments discussed in this work, the transducers are positioned normal to the face of the plate which

is under examination. However, some additional experiments were performed with the transducers

at a ten degree incline. Material thickness, mechanical properties, and geometry are other very

important factors for interpreting and modeling AU results.
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The major concem with an experimental set-up, beyond instrumentation and proper electrical

connections, is the proper positioning of the transducers. This involves where on the plate each

of the transducers is placed, the uniform application of couplant, and placing proper pressure on ‘

each transducer. The AU method characterizes the material between the sending and the receiving

transducer, where the sending transducer is pulsed to generate the excitation and the receiving

transducer senses the disturbance at another position on the material surface. Hence, this method

is concemed with characterizing a general region. First, the general size of this region is defined by

the distance between the two transducers and the size of the active elements of the transducers.

The distance between the transducers is defmed by the variable d . Varying the value of d may be

utilized to gain information on the characteristics of wave propagation. Secondly, the directional

orientation of the transducers on the plate is an important parameter, especially when working with

anisotropic materials. This is characterized by the azimuthal angle (6), defmed in chapter 2 (figure

3). Finally, the exact coordinates for the position or general area being characterized should be

detcrmined. For instance, the coordinates of the point directly between the transducers could be

utilized. Hence, a coordinate can be defmed to designate a general region and then the variables d

and 8 may be varied to obtain AU signals to characterize the given region. Most of the results

presented in this work are meant to show representative results for an undamaged composite plate.

Thus, the experiments were performed at the center of the plates, in order to minirnize the effect

of edges. Therefore, the results given in this work will not state coordinates for the position on the

plate where the AU method was performed. However, in this work major emphasis is given to how

varying d and 9 affects AU results, leading to physical interpretation of the character of the wave

propagation generated and measured with the AU method. Also, results are included that indicate

how the transducer diameter a affects the AU signal. Additionally, consideration is given to how

the resonant frequency of the transducers affects AU results.
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Experimental Set-up

The experimental procedure begins with the data acquisition board on the computer sending a

trigger pulse to the pulsing unit. Upon receiving the trigger pulse, the pulser produces a high fre-

_ quency electronic pulse, that passes to the sending transducer. The sending transducer converts the

electronic energy of the pulse to a mechanical excitation on the face of the plate. This excitation

induces wave propagation motion in the plate, that travels in the plane of the plate. The motion

induced by this wave propagation is sensed by the receiving transducer, which converts the motion

from the wave propagation to an electrical signal. This electrical signal is the source of signal

analysis for the acoustic-ultrasonic method. First, the signal from the receiving transducer is am-

pliiied by a preamplilier. Then, the signal from the preampliiier is sent to the pulsing/receiver unit.

The pulsing/receiving unit allows for high pass frltering of the signal, gating of the signal, attenuating

of the signal, and further amplifying of the signal. The conditioned signal is then connected to an

analog to digital (A to D) converter board in the PC by means of a BNC connector. The A to D

board is triggered to start taking data by the same trigger pulse which is sent to the pulsing unit

initiating the excitation pulse. Hence, the time of a disturbance in the signal relates to the time after

excitation. The digital signal is displayed on the CRT screen in nearly real time, much as with an

oscilloscope. This can be used to make immediate observations on time domain information.

System software allows the signal to be frozen on screen and for spectral information to be obtained

through an FFT on up to 512 points. A screen displayed gate, whose length and position in the

time domain is keyboard controlled, is used for selecting the points to be used in the FFT. Finally,

the signal can be stored for further analysis using keyboard control. Further analysis is perforrned

using moment calculation software, such as was described in the second chapter.
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Description of System Components

Pulser/Receiving Unit

A Panametrics model 5052 pulsing/receiving unit was used to provide the excitation pulse. The

energy and damping settings allow some control of the pulse width and voltage. The exact re-

lationship between these settings can be found in the reference manual (ref. 158). Four energy

settings exist which allow the input arnplitude to be varied between 100 and 300 volts (TYP), de-

pending on the damping setting. The damping can be varied from 25 to 500 ohms. The pulse

width vaiies between 10 to 600 nanoseconds, depending on the energy setting and damping. In-

creasing the energy setting or the damping causes the pulse width to increase. A high setting for

both causes a drastic increase in pulse width which may decrease the signal input ofhigh frequency
A

energy and hence decrease the relative amount of high frequency content in the output signal. The

receiving part of the unit offers the capability of amplifying the signal either 20 or 40 dB and at-

tenuating the signal from 0 to 68 dB (with 2 dB increments). Also, the signal may be high pass

filtered above 1 kHz, 30 kHz, 100 kHz, 300 kHz and l MHZ. The upper cutoff frequencies are

well out of the range of the other electronic components.

Preamplifier

A Panametrics ultrasonic preamplifier with 40 or 60 dB gain settings was used. The bandwidth for

the preamplifier is .02 to 10 MHZ. The purpose of the preamplifier is to arnplify the signal from

the receiving transducer, so that it is of proper amplitude for the receiving unit electronics. For the

work reported in this dissertation, the preamplifier seemed to have little effect on results, besides

amplifying the signal. However, if a battery operated preamplifier is used, care should be taken not
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to let the batteries run low. In early experiments with battery operated prearnplifiers, it was noted

that arnplitudes of AU signals decreased due to batteries losing power. The major concem with

preamps powered from electrical outlets is making sure the power lir1e is clean or isolated from noise

in the working frequency range. The other major concem is that the signal is well inside the

bandwidth of the preamp, again this had little effect on the results reported in this dissertation.

Transducers

Transducers are probably the most difficult part of the system to characterize and model. Research

in this area is discussed in the literature search. In addition to the inherent difliculty of character-

izing the response of the transducer, is the problem of understanding how the couplant transmits

the pulse of the transducer to the material surface. This includes concems with keeping the

transducer properly oriented. For the tests performed, SONOTRACE 30* ultrasonic couplant was

used. The couplant proved to be fairly viscous, so care had to be taken in applying the couplant
‘ evenly. Finally, the viscous nature of the couplant made it somewhat slow in üowing into the ridges

left by the scrimcloth. Hence, care was taken to allow ample time, or atleast consistent time, for

couplant How before performing AU measurements.

Although a number of transducers were utilized in the experimental work conducted, the exper-

imental results presented in this dissertation were obtained using two pairs of Panametrics

piezoelectric transducers. Both pairs are 2.25 MHz center frequency broadband, heavily damped,

transducers. Figure 24 shows the frequency response of the half inch transducer, obtained by a

pulse echo test on a large aluminum block. Even though the transducer is broadband, there is a

very definite frequency dependent response associated with the transducer. Etforts to try to account

for the frequency dependent response of transducers are covered in reference 10. Figure 23 com-

pares the AU frequency responses obtained on the same specimen using a 5 MHz and a 2.25 Ml—Iz

* Trade Mark of Echo Ultrasound, Inc.
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resonant transducer, respectively. Notice, that the 5 MHz transducer actually caused more energy

to be present in the second specimen resonance (3.4 MHz) than the first (1.7 MHz). In compar-

ison, the 2.25 MHz transducer had most of its high frequency energy in the first specimen resonance .

(1.7 MHz). Thus, AU results are extremely sensitive to the transducer’s frequency response.

The major transducer used to produce the subsequent experimental results was a 2.25 MHz (V105)

broadband transducer with a half inch diameter active element. However, a couple of measure-

ments were made with similar (V166) transducers, containing a quarter inch diameter active ele-

ment. The half inch diameter transducers were used to measure energy and attenuation, and the

quarter inch transducers were used to measure certain phase velocities and to determine the effect

of source size.

Couplant was applied both to the specimen and the transducer before placing them in contact.

Then the transducer and specimen were pressed together with uniforrnily distributed pressure and

then weights were applied. Two pound weights were used to apply pressure to the transducers.

For some experiments, such as phase velocity measurements, the transducers were not weighted and

the transducers were simply pressed by hand and moved slowly over the material surface. A

Proctor transducer (ref. 155) was used simply to gain an increased understanding on the effect of

source size.

Data Acquisition

Signal observation and storage was performed using PC-DAS, a data acquisition system marketed

by General Research Corporation to be used with the IBM-PC. PC-DAS utilizes a PCTR-160

A/D board and control software to provide flexible, easy, and high data rate signal capture. The

PCTR-160 allows sampling rates from 156 KHz up to 20 MHz in transient mode and sarnpling

rates of 40, 80, and 160 MHz in the time equivalent sampling mode which can easily be utilized
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with the AU arrangement. However for the frequency ranges generated with the AU system and

specimens, the 20 MHz sampling rate proved to be adequate.

The signal can be displayed so that the whole signal (4096 points) appears on screen or in expanded

form so that a detailed view of 1/ 12th of the signal is displayed. The signal can then be frozen and

a gate which is movable in the display can be used to make exact time measurements, since the

numerical value corresponding to the position of the gate in the time domain is displayed on screen

to the resolution of the digital data. This feature of the data analysis software was used to measure

phase velocities by tracing the exact placement in the time domain of a phase point when the

transducers are moved (ie. d is changed). The value At was deterrnined by tracing a phase point

on the CRT and Ad by measuring the displacement of the transducer on the specimen, then the

phase velocity was calculated

Vpn = (M)/(A!) A

As mentioned, this gate can also be used to select up to 512 points for spectral analysis which is

displayed on screen, thus giving irnmediate information on the frequency content in a specific por-

tion of a signal. Again a keyboard controlled marker may be used on screen with screen displayed

nurnerical values to gain exact information on frequency content. Thus, as experiments are per-

formed quantitative information on both the time domain and frequency domain may be ascer-

tained. Software then allows the digital data and sampling parameters to be stored in a data file for

further analysis.

Soßware Analysis ofA U Signal

In order to obtain more physically signiiicant signal description parameters, signal analysis software

has been developed. The program used to generate results for this work is a third generation Lahey
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Fortran version (ref. 131) of the program described in chapter 2. This program utilizes the same

theory and equations stated in that discussion. This version of the program allows for the calcu-

lation of the same parameters, utilizing the Hartley transform for faster calculation of amplitudes

of frequency components.

Figure 25 shows a block diagram of data transfer to get various results and the use of batch files to

create data files in order to show how AU values vary with another parameter (eg. azimuthal angle).

I
First, data files must be converted to ASCII format, so that data can be read to plotting and mo-

ment analysis software. For purposes of example, let (file) stand for any group of data files created

using PCDAS and (###) stand for the incremented number representing one data file in the set.

If a number of files with the same data name (ie. file###.dat), but incremented numbers, need to

be converted, then a batch file can be created to convert files. This batch file can be created using

the Basic software program (conbat.bat). This automatically gives the file name of the batch file

the same name as the prefix for the data files and the file type (con). Thus, when the program

(convert.exe) asks for the batch file: type-(file.con). Next, batch files can be created for Fortran files

by using the Basic program (forbat.bas). This yields a batch file named (file.fat). Then another

Fortran program (mitt.exe) can be used to obtain voltage/time data and amplitude/frequency data,

and another Fortran program (mike2.exe) to obtain AU parameters for all data files and then store

them in a single file, which can be named by the user. The data files for the voltage/time and

amplitude/frequency data is ready for use with standard plottirig packages. The output file from

(mike2.exe) can be manipulated by another Fortran program to generate data sets for graphic

packages. For instance, the program (aupa.bas) reads each value for Al, A2, and two filtered A1

parameters, pairs them withthe corresponding values of 9 and d to produce a number ofdata sets.

However, this program can only be used if data is taken in the proper order for the proper angles

(9) and distances (d). The following data sets are produced:

Al versus azimuthal angle (at d = l and d = 2 inches)
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Attenuation of A1 versus azimuthal angle between l and 2 inches

A2 versus azimuthal angle (at d = 1 and d = 2 inches)

Al(f1,f2) versus azimuthal angle (at d = l and d = 2 inches)

Attenuation ofAl(fl,f2) versus azimuthal angle between l and 2 inches

Al(f3,f4) versus azimuthal angle (at d = l and d = 2 inches)

Attenuation of Al(f3,f4) versus azimuthal angle between l and 2 inches

The fl and f2 are simply the low and high frequencies for the first filter, while f3 and f4 are the low

and high frequencies, respectively, for the second filter. These data sets may then be graphed using

plotting routines.

Graphs of these results for a number of plates are included in chapter 4. These results along with

the phase velocity measurements offer a great deal of physical insight on the nature of wave prop-

agation taking place during the AU method. Additionally, advances in analytical ultrasonics

(instrumentation and calculation schemes) may allow angular variations of pertinent AU parame-

ters, such as these, to be obtained quickly, in order to determine increased information on the

condition of composite materials being used in service conditions.

Experiments

Although a myriad of experiments have been performed in pursuit of a better understanding of the

AU method, discussion will be limited to a simple set of experiments performed to understand and

elucidate the basic mechanics associated with the AU method. The experiments involve using
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alurninum plates and a number of Gr/Ep plates. This experimental work endeavored to systemat-

ically examine the general character of wave propagation occurring when the AU method is per-

formed. These experiments were performed using the experimental arrangement described _

previously. The following specimens were utilized:

.0625 inch thick aluminum plate (6061-T6)

.125 inch thick aluminum plate (6061-T6)

An aluminum plate tapered from .0625 section to .125 section (see figure 26) (6061-T6)

24-ply unidirectional Gr/Ep plate (AS-4 Gr/Pr 288)

12-ply unidirectional Gr/Ep plate (AS-4 Gr/Pr 288)

Experiments were performed to produce both qualitative and quantitative information on the AU

method. Some experiments involved performing very mechanized steps to obtain specific meas-

urements, while others involved less rigorous steps. In general, a different set of experiments were

performed for each specirnen, however a number of experiments were performed on more than one

specimen. Thus, a description of general experimental procedures is given first and then each

specimen is considered separately, with more detailed descriptions of experiments performed only

on that specimen.

General Procedures

The basic quantities measured in this set of experiments are A1, Al(filtered), A2, attenuation, and

estimated phase and group velocities.
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The measurement of AU parameters and attenuation is quite simple and is the basis of the AU

method. The standard AU configuration described above was utilized, with transducers oriented

normal to the plate. In order to obtain the attenuation measurements, the AU method was per-

formed at both d = 1 and d = 2 inches. It should be kept in mind that the attenuation measurement

was done only for material intervals between l and 2 inches from the sending transducer in this set

of experiments and is likely to be quite different for another choice of d's, even though their dif-

ference may still be 1 inch. For the composite plates, these measurements were made at azimuthal

angles of 0, 15, 30, 45, 60, 75, and 90 degrees. Phase velocity is measured for a single frequency

content to determine the phase velocity for that particular mode. This procedure involved simply

tracing the displacement of a phase point (usually a peak in harmonic function of single frequency),

for a given displacement of transducers on the plate. The measurement of phase velocities was

more difficult than measuring AU parameters and required a more artful experimental technique

(trial and error, inorder to fully separate different harmonic modes). In certain cases, the signal _

content did not facilitate the measurement of a phase velocity for a particular mode. Specifically,

in the composite plates , certain frequencies were of such a small amplitude for certain azimuthal

angles that phase velocity measurements were impossible. The measurement of phase velocities

were again made for different frequency contents at various azimuthal angles, however, in certain

cases, the phase velocities varied from measurement to measurement. Even more difficult was the

measurement of group velocity for a particular mode or frequency content. Often, these values

tumed out to be impossible to measure exactly, however, estirnates were made to provide qualita-

tive results about AU wave propagation. Estimates of the group velocity entailed defrning a mod-

ulating hump for a certain frequency content and noting how far it translated in the time domain l
for a change in d. Thus, the measurement of group velocity, simply involves the motion of the

wave modulating term.

The AU parameters and the attenuation measurements were made with the conventional AU

configuration. For all plates, besides the tapered aluminum plate, the sending transducer was placed

at the center of the plate. AU measurements for any direction were made for d = l and d = 2
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inches. For the aluminum plates, the AU measurement were only performed in one direction. For

the composite plates, fudiciary lines were drawn for azimuthal angles of 0, 15, 30, 45, 60, 75, and

90. These were drawn from the center of the plate, where the sending transducer was positioned.

The receiving transducer was initially placed at 0 = 0 degrees and d = 1 inches. Then, the receiving

transducer was moved to d = 2 inches. Next, the receiving transducer was moved to 0 = 15 degrees

and d = l inch. The sending transducer was kept at the same spot (center of the plate), however

it was rotated 15 degrees, as was the receiving transducer. This was done to eliminate any effect

of unsymmetric or misaligned transducer elements. Next, the receiving transducer was moved to

d= 2 inches. The same procedure was continued, ending with 6 = 90- and d= 2 inches. A11

measurements were made with the weights on the transducers.

Specific Experiments

This section will simply catalogue the particular experiments performed on each specimen. The

experimental procedures described above will only be referenced and will not be described in detail

again.

Aluminum Plate (.0625 inches thick)

Aluminum plates were utilized to obtain basic information on the nature of wave propagation oc-

curring in plates when the AU method is performed. As a first step, the aluminum plates offered

a more simple situation than the composite material because of the readily available material

properties and their nornially isotropic behavior.

First, a basic AU measurement at one inch was performed to determine the components present

in the signal. Then the procedure to obtain the AU parameters and the attenuation factors was

performed. Phase velocity and group velocity measurements were made for each frequency
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conponent in the signal that was of sufficient arnplitude. A simple pulse echo test was also per-

formed using the .25 inch diameter sending transducer.

Several additional experiments were performed to determine the effect of changing certain variables.

First, the AU method was performed with the two .25 inch diameter transducers to determine the

effect of transducer size, and, one test was performed with a 5 MHz set of transducers to determine

the effect of transducer resonance frequency. Also, a simple test was performed using the Proctor

transducer. Finally, a test was performed to determine the effect of tilting the sending transducer

slightly. Basically, this was done by applying an extra thick portion of couplant under the sending

transducer and then tilting the transducer to approximately 10 degrees to determine the effect on

the frequency content of the signal. The tilt was oriented away from the receiving transducer (see

figure 26).

Aluminum Plate (.125 inc/zes thick)

Experiments similar to those performed on the .0625 inch thick plate were performed on a thicker

(.125 inch thick) plate. These experiments were done in order to determine the effect of specimen

thiclcness on AU results.

Composite Plate (24-ply unidirectional Gr/Ep)

A number of measurement were made on a 24·ply unidirectional Gr/Ep plate. The composite plate

allowed for the investigation of the effect material variation with azimuthal angle has on AU results.

First, basic AU measurements were made to determine what frequencies were present in the signal.

Next, the procedure for determining AU parameters and attenuation factors was carried out for each

azimuthal angle. Then, the phase velocities of various frequency components were measured for
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each azimuthal angle possible; also, group velocities were measured when possible. A basic pulse

echo experiment was also performed. Finally, basic tests were perforrned to determine the effects

of using .5 inch diameter transducers and 5 MHz transducers. ~

Composite Plate (12-ply unidirectional Gr/Ep)

ln order to determine the effect of plate thickness with composite plates, a 12-ply unidirectional

plate of the same material used to make the 24-ply plate was investigated. The same tests were

performed on both the 12-ply plate and the 24-ply plate.

Tapered Aluminum Plate »

A tapered aluminum plate (fig.27) was investigated to gain more insight into the physics of how

waves detected with AU measurernents are created. This type of experimental work may also be

useful in developing a basic understanding of the AU method applied to complex structures.

First, AU signals were generated in each of the flat portions of the plate, well away from the tapered

region. This was done to determine what frequencies were being generated in each region. Next,

the sending transducer was placed in the .0625 inch thick section, an inch from the taper, and the

receiving transducer was placed in the .125 inch thick section, 6 inches from the sending transducer.

An AU signal was then captured in this configuration. Next, the same procedure was performed

with the sending transducer in the .125 thick section and the receiving transducer in the .0625 inch

thick section.
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Experimental Results

The experimental procedure described in the previous chapter revealed definite trends and a number

of results useful for understanding the AU method. This chapter will present these results.

General Comments

AU signals generated in this set of experiments showed wavetrains with components at very definite

frequencies for a given plate. Observing the amplitude/frequency curves generated by these exper-

iments illustrates this with sharp peaks at definite frequencies (e.g. see figure 38). Furthermore,

these components are separable in the wavetrain by separating the transducers further apart, as a

result of dispersion. This results in harmonic components which show very definite peaks and

troughs (harmonic behavior) and which translate across the time domain if the receiving transducer

is translated relative the sending transducer. However, in some instances the amplitude of a given

phase point will change quickly due to a small change in distance, this is thought to be an effect

of a slow group velocity modulation. Figure 28 shows an AU signal obtained with the transducers

on a composite plate and d= 1.0 inches.. Notice that there seems to be a periodic modulation of
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the signal. Figure 29 shows a signal obtained from the same plate with d = 2.0 inches. This shows

how the modulation and phase points shift. This can make the measurement of phase velocity

more tricky. Additionally, notice that the shape of the modulation changes. _

Basically, results indicate that frequency components are present in the signal, that they separate in

the time domain when the transducers are separated, and that phase points can in some instances

be picked out to make phase velocity measurements. It is observed that some phase velocity
l

(motion in the time domain for motion in the spatial domain) is associated with these motions and

that, as mentioned, for certain modes, a group velocity is modulating the harmonic components.

For the composite plates, it is evident that the same frequencies are present at all azimuthal angles,

but that the proportions of each frequency content changes drastically with azimuthal angle. ln

fact, for some azimuthal angles, certain frequency components were of such small magnitude that

velocity measurements were not possible. Furthermore, it is quite obvious that the energy content

in the signal is heavily inlluenced by changes in azimuthal angle, as is the position of certain com-

ponents of the wave train in the time domain. In order to quantify the change of wave motion

with azimuthal angle on composite plates, the behavior of AU parameters and wave velocities of

a certain harmonic component of the signal were monitored as a function of azimuthal angle.

Aluminum Plate (.0625 inches thick) ·

The signals and corresponding spectrums generated by performing the AU method on the .0625

inch thick alurninum plate at d = 1 and d = 2 inches are shown in iigs. 30 and 31. Figure 32 shows

an expanded view of the early portion of the signal obtained by performing the AU with d= l inch.

From this plot it is evident that certain phase points may be identiiied for a given harmonic com-

ponent in the signal.

Notice that the major components in the signal were at .7, 1.0, and 2.0 MHz. The very early part

of the signal consisted of a small amplitude .7 MHz signal content. This part of the signal was of
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very short duration (5 psecs.), which is on the order of the pulse duration. Additionally, the .7

MHz portion of the signal was of relatively low amplitude. The following parts of the signal con-

sists of the 1 and 2 MHz components. These portions of the signal were of considerably higher

amplitude and persisted much longer in the wave train. In figures 30 and 31, the large contribution

of the 1 and 2 MHz components is evidenced by the large amplitude peaks. Thus, the frequency

spectrum shows larger peaks at 1 and 2 MHz and the resulting energy content or filtered AU pa-

rameters are larger. In comparing the .7 MHz component to the 1 and 2 MHz components, see

(fig. 30 and fig. 31 (chp. 4)), it should be noted that the 2 MHz showed a large sharp modulation

hump that travelled at a much slower velocity than phase points, compared to the 1 MHz which

did not show as defmite of a modulation hump and the .7 MHz which showed no dispersive effects.

Another point to be noted is that the 2 MHz signal content dominated the end portion of the wave

train, indicating a slow group velocity. Note, also that the l MHz peak in the amplitude/frequency

is of a wider frequency band and is skewed to the right. A modest indication in the spectrum also

appears at 2.3 MHz. Figure 33 shows the relative energy content in each of the frequency ranges

for the signal at d = 1 and d = 2 i11ches. This figure also shows the attenuation of each mode be-

tween 1 and 2 inches. The 2 and the l MHz components of the signal were of fairly comparable

amplitude at 1 inch, but the 2 MHz component was significantly more attenuated than the 1 MHz

content. One problem with these measurements is that the long wavetrain associated with the sig-

nal was longer than the data recording capabilities of the system and the end part of the wavetrain

interacted with edge reflections. The .7 MHz portion of the signal separated from the rest of the

wave train (due to higher group velocity) and appeared less attenuated. ·

Finally, figure 37 displays a chart of the phase velocity for each frequency component of wave

motion. Phase velocity measurements were not possible for the 2.3 MHz signal content because

these components never really separated from the other frequency components which were of

higher amplitude. Notice that the 2 and 1 M1—Iz components had substantially higher phase ve-

locities than the .7 MHz component. It should be noted that the phase velocity for the 1 MHz

component was found to be slightly greater at the end of the signal than at the beginning. In gen-
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33. AU parameters for .0625 inch thick aluminum plate
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eral, phase velocities showed variation as a function of position in the wavetrain. Measurements

were made on the earliest part of the wavetrain, where the mode on which the phase velocity was

being made, was separated from other modes enough, so that definite phase points for that mode ·

could be traced.

Group velocity measurements were difficult to make for the aluminum plate. However, it was

noted that the .7 MHz signal content moved at a group velocity similar to its phase velocity. In

contrast, it was estimated that the 1 MHz signal content had a group velocity of roughly 60,000

inches per sec. and that the 2 MHz signal content was roughly 65,000 inches per sec., however the

end portion of the signal was dominated by a 2 MHz signal content of a slow group velocity. It

should be noted that these measurements were made for components of the signal early in the

wavetrain. Moreover, another point of interest is the rather large value of the measured phase ve·

locity compared to the rather small value of estimated group velocity for the 1 and 2 MHz com-

ponents. In general, the 2 MHz signal content showed a greater phase velocity than the 1 MHz,

but contained a slow group velocity portion at the end of the wavetrain.

Tilting the sending transducer, so that its face was not parallel to the face of the plate, resulted in

an increase in the value of the frequencies for the peaks in the spectrum. Additionally, changing

the transducer size from .5 to .25 inches in diameter had little effect on the 1, 2, and 2.3 MHz

components, but caused the .7 MHz (early arriving part of the wavetrain) to change to .5 MHz.

Lastly, the Proctor transducer also caused peaks in the spectrum from the signal to occur at 1,2,

and 2.3 MHz. Thus these frequencies are excited by a number of different transducers.

Aluminum (.125 inches thick)

Figure 35 shows the voltage/time and amplitude/frequency plots for the .125 inch thick plate. The

signal content consisted of .35, .5, 1.0 and 1.15 MHz components.
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PHASE VELOCITY MEASUREMENTS
.0625 Inch thick alumlnum plate

FREQUENCY PHASE
VELOCITY

.7 MHz 210,000

620,000

1,000,000 +
Phase velocity measurements are in (lnches per second)

Figure 34. Phase velocity measurements for .0625 inch thick aluminum plate
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In general, the signal consisted of a spectrum with major peaks at frequency values half that of the

.0625 inch thick plate. In fact, the signal was very similar to that of the signal obtained on the .0625

inch thick plate, except that the frequency of each mode identified in the signature was half. The

comparison of the AU values for these components can be seen in figure 36. Notice that the l

Ml—lz component is the highest energy content part of the signal for d = 1 inch and is the most

heavily attenuated part of the signal. In fact, the 1 MHz signal content is roughly twice as atten-

uated as the .5 MHz signal content.

Figure 37 displays the values of the phase velocities for the .125 inch thick plate. The phase velocity

for the 1 MHz mode on .125 inch thick plate is the same as the 2 MHz mode on the .0625 inch

thick plate, and so forth for the other modes. Thus, it appears that phase velocities were similar

on the .125 inch plate and the .0625 inch plate.

Group velocity measurements were much less than the phase velocity measurements for the .5 and
l

1.0 Ml—lz components, a result that is similar to that obtained for the .0625 inch thick plate.

24 Pbv Gr/Ep Plate (Unidirectional)

Although a number of frequency components existed in the 24-ply plate, the dominant frequency

components present at each azimuthal angle where at .23, .66, and 1.1 MHz. Each of these com-

ponents varied in a unique manner with azimuthal angle. Figure 38 shows a representative signal

and amplitude/frequency plot obtained with d = 1 inches and an azimuthal angle of 0 degrees.

This signal is very representative of the signal in the zero degree direction for Gr/Ep plates. The

signal shows a definite high amplitude part of the signal at an early arrival time (predominately .66

MHz), followed by a small portion of predominately 1.1 MHz signal content, and a late part of the

signal dominated by .23 MHz signa.1 content. Each of these frequency peaks is labeled in the

amplitude/frequency plot (also in figure 38). The amplitude/frequency plot shows that higher fre-
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p AU PARAMETERS
‘ .125 inch thick aluminum plate
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Figure 36. AU parameters for .l25 inch thick aluminum plate
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quency peaks were in the signal for the 0 degree direction and d = l inch, but most other meas-

urements do not show these frequency peaks.

The signal obtained at d = 2 inches showed the same signal content, but the early portion of the
A

signal was greatly distorted. At 15 degrees the 1.1 MHz signal content was of higher relative mag-

nitude compared to the other components than at other azimuthal angles. This type of behavior
Q

has been seen ir1 previous results (refs. 9 and 99). Moving the transducer to d = 2 inches at 15 de-

grees resulted in a great deal of attenuation in the AU signal. As the azimuthal angle was increased,

the .23 MHz signal content began to dorninate the signal. In fact, at higher angles the other com- _

ponents became very hard and in some cases impossible to pick out of the signal. The effect of d

and azimuthal angle on AU results can be seen in figures 39-45.

The plots ofAl and the attenuation ofA1 versus azimuthal angle (figure 39) shows how the energy

content and attenuation were affected by changes in azimuthal angle. Notice the AU signal was

ofhigh energy for 0 degrees and dropped off to a fairly constant value. This behavior is very similar

to that shown for the Gr/Ep unidirectional shown in chapter 2 (fig. 13). Additionally, the highest

attenuation of the AU signal was at 15 and 90 degrees.

The plot of A2 versus azimuthal angle (figure 40) shows that the high frequency content of the

signal drops off at roughly 45 degrees to a value almost half that seen at early angles. This is due

to the .23 MHz signal content becoming more dominant than the higher frequency content for

higher angles.

For the .23 MHz signal content, Al(.l5,.32) and Al(.l5,.32)-ATTEN. were plotted versus

azimuthal angle (figure 41). For d= 1 inches the Al(.l5,.32) is slightly high in the 0 degree direc-

tion and very high for 90 degrees. ln fact, the AU signal in the 90 degree direction showed an al-

most perfect sine wave pattem at .23 MHz throughout the wave train, with very little modulation

(see figure 42). Heavy attenuation of the .23 MHz signal content occurred at 90 degrees and as a
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Figure 39. a)Al and b)AI-ATTEN. versus azimuthal angle for Gr/Ep plate
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Figure 40. A2 versus azimuthal angle for Gr/Ep plate
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result the Al(.l5,.32) for d = 2 inches is rather flat and does not curve back up as does the curve

for d = 1 inches.

Figure 43 shows how Al(.55,.75) for d= 1 and d= 2 inches and Al(.55,.75)-ATTEN. vary with

azimuthal angle. At low angles Al(.55,.75) varies much like Al, since the .66 MHz content dom-

inated the signal. However, at high angles the .66 MHz signal content was not very strong and

hence Al(.55,.75) fell to practically zero. The attenuation for Al(.55,.75) was relatively low for 0

degrees, peaked at 15 degrees, and reached an intermediate value at higher angles.

Al(.9,l.3) for d= 1 and d= 2 inches, along with the calculated attenuation parameter versus

azimuthal angle are shown in figure 44. The Al(.9,l.3) for d= 1 inch shows a high value at 0 de-

grees and drops off less slowly at 15 degrees compared to Al(.55,.75), but then falls off at 30 degrees.

The 1.1 MHz signal content or Al(.9,l.3) was attenuated very little in the 0 degree direction, but

showed high attenuation between 15 and 30 degrees.

Plots demonstrating how phase velocities varied with azimuthal angle are displayed in figure 45.

The first plot (a) shows the variation of phase velocity for the .23 MHz sigr1a1 content with

azimuthal angle. The .23 MHz signal content had a phase velocity which varied fairly smoothly

from a value of 277,000 inches per second at 0 degrees to 156,000 inches per second at 90 degrees.

The .66 MHz signal content showed a value of 450,000 inches per second for the phase velocity at

0 degrees and dropped to 113,000 at 90 degrees, showing a quick drop off between 15 and 30 de-

grees. The 1.1 MHz signal content had a phase velocity of 800,000 inches per second at 0 degrees

and a phase velocity of 700,000 inches per second at 15 degrees, but was of such low amplitude at

higher angles that phase velocity measurements were not possible. Notice that the phase velocities

for the 1.1 MHz signal content is roughly twice that of the phase velocity for the .66 MHz (half the

frequency value) signal content. This same type ofbehavior was observed for the alurninum plates.

In general, the 24-ply composite plate produced signals with frequency content at .27, .66, and 1.1

MHz. However, the AU signal did possess signal content in other frequency ranges. In fact, the
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AU signals from the composite plate resulted in more peaks and wider band widths for those peaks,

compared to the aluminum plate. The AU signals from the composite plate, except for the 0 degree

direction, did not show the strong modulated pulse shape that was observed for the AU signals

obtained from the aluminum plates.

I2 Ply Gr/Ep Plate (Unidirectional)

The -12-ply unidirectional specimen produced AU results with the predominant frequency content

at .46, 1.2, and 2.2 MI·Iz. Note these values are twice that seen on the 24-ply specimen. Hence,

the composite plates showed the same inverse dependence of frequency on thickness as the alurni-

num plate, as would be expected with plate modes of wave propagation. Each of the frequency

components for the 12-ply plate showed similar behavior to the corresponding frequency compo-

nent on the 24-ply plate, with some slight exceptions. In order to glean more exact information

on how the AU signal varied with azimuthal angle, figures 46-51 show how AU parameters varied

with azimuthal angle on the 12-ply plate.

The plot of Al versus azimuthal angle for the 12-ply laminate is shown in figure 46. Again the

AU signal showed the greatest energy content in the 0 degree direction with the signal dropping off

quicker for d = 2 inches than for d = l inch. Also, the Al value jumped to a rather a high value

for d = l inch at 90 degrees. This jump in Al at 90 degrees was even more rapid than what was

seen in the 24-ply plate. There are probably a number of factors contributing to the jump in the

energy of this mode at 90 degrees. It should also be noted that the attenuation was greatest at be-

tween 15 and 30 degrees and at 90 degrees.

Figure 47 displays the plots of A2 versus azimuthal angle. For d = l inch, the plot showed a peak

at 15 degrees. This type of behavior is similar to that seen in the thin plates discussed in chapter

2 (figure 16).
l
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The plots of Al(.25,.7) and Al(.25,.7)-Atten. (figure 48) show how the energy of the .46 MHz

signal content varied with azimuthal angle for d = 1 inch and d = 2 inches. For d = l inch, the

Al(.25,.7) parameter showed a definite high value at 90 degrees. Fairly high values of Al(.25,.7)

also existed at 0 degrees for both d = 1 inch and d = 2 inches. The attenuation of the .46 Ml—lz

signal content was very low for low azimuthal angles.

The variation of the 1.2 MHz signal content with azimuthal angle and distance can be seen in ügure

49. This signal content showed a high energy content at low azimuthal angles and reached a very

low value after 45 degrees. The maximum attenuation was between 15 and 30 degrees. This shows

that most of the energy for the 1.2 MHz signal content is sent in the über direction and very little

is sent in the cross über direction.

Figure 50 displays plots which show how the 2.1 MHz signal content is affected by changes in

azimuthal angle and d. The major point is that the 2.1 MHz signal content is heavily directed into

the low angle directions and seems to attenuate rather quickly even in the low angle directions.

Figure 51 displays the variation of phase velocity for the two dominant modes in the AU signal.

The plot of phase velocity versus azimuthal angle for the .47 MHz signal content descended

smoothly from a value of 385,000 inches per second to a value of 156,000 inches per second. The

plot for the 1.3 MHz signal content dropped from a very high value of 2,000,0000 inches per second

to a value of 120,000 inches per second inside of 45 degrees. Phase velocity measurements for the

1.3 MHz signal content were hard to make past 45 degrees because the signal was of such low

amplitude at these angles. The 2.1 MHz signal content showed an extremely high phase velocity

in the 0 degree direction and measurements were not possible at higher angles.
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Tapered Aluminum Plate

AU measurements perfonned on the tapered aluminum plate revealed some interesting results.

Figures 52-55 display amplitude/frequency plots obtained from the various measurements on the

tapered plate. Again these measurements where made with a large transducer separation distance

(d = 6 inches) and hence show results somewhat different than seen in earlier results (d = l and

d = 2 inches).

Performing the AU technique on the thick (.125 inch thick) section with d = 6 inches revealed the

amplitude/frequency plot shown in figure 52. Note that the primary peak is at .5 MHz with another

major peak at 1.0 MHz. These are the same major frequency components seen in the .125 inch

thick aluminum plate discussed previously. However, this spectrum does not possess as sharp or

as well defined peaks and additionally contains other small peaks at other frequencies. These effects

are attributed to the extra distance between the sending and receiving transducers.

Figure 53 pictures the amplitude/frequency plot obtained by placing the sending transducer on the

.125 inch section and the receiving transducer 6 inches away on the .0625 inch thick section. The

major result here is that the .5 MHz signal content is replaced by the 1.0 MHz signal content as the

dominant frequency content and the appearance of the 2 Ml·1z signal content at a magnitude higher

than what existed when the AU measurement was performed in just the .125 inch thick section.

Performing the AU method in the .0625 inch section revealed the amplitude/frequency plot in figure

54. This measurement resulted in a sharp peak at 1 MHz and very little other signal content in

other frequency ranges.

Finally, the AU measurement made with the sending transducer in the .0625 inch thick section and

the receiving transducer 6 inches away in the .125 inch thick section produced the

amplitude/frequency plot shown in figure 55. This plot reveals a strong 1 MHz peak and higher

proportional values for .3, .5, and 2 MHz peaks, especially, the .3 MHz peak, which was also of a
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relatively high value for the case where the sender and receiver are in reverse locations (figure 26).

A major point is the .5 MHz signal content not present in the AU measurement for the thin section.

Overview ofExperimental Data

The preceding results exemplify many of the basic features associated with the physics of the AU

technique. In particular, information has been presented on disturbance frequency content and on

wave velocities and energy content for various frequency components. Moreover, the issue ofhow

these variables are affected by changes in azimuthal angle has been displayed. Additionally, the

attenuation of the various frequency components for various measurements have been calculated

to help understand the basic mechanics of AU wave propagation.

In the next chapter, the results from this chapter are compared to basic theoretical ideas that form

an elementary model of the AU method. This will include comparing frequency peaks seen in the

amplitude/frequency plots to frequencies for through·thickness-transverse resonance modes. Ad-

ditionally, this includes looking at plate wave dispersion curves and predicted plate wave phase ve-

locities. Plots of how variables change with azimuthal angle will also be compared with theoretical

predictions of how certain measurements should change with azirnuthal angle. Comparisons are

both quantitative (based on numerical results) and qualitative (based on examining equations and

general trends).
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Physical Understanding

In this chapter a physical understanding of the AU method, based on compaxing experimental data

with theory, is presented. Most of the experimental data utilized is contained in the previous

chapter, however some comments relate to the literature review.

Theory ofelasticity, Lamb wave theory, and TTTR provide the basis for the physical understanding

of the AU technique. Additionally, the contribution of energy ilux deviation to AU results is noted.

Lamb wave theory and TITR were both reviewed in chapter two, therefore comments in these

subject areas concentrate on utilization of the theory for computer applications, as well as com·

parisons to AU experiments. Speciiically, dispersion curves and 'l'I'I'R calculations are used to

suggest which modes may be present at frequencies seen in the AU results, while phase velocity

calculations are used to identify which of the possible modes is actually showing up in AU results.

The elasticity solution is used simply to give an indication of what disturbances the piezoelectric

source might create. Thus, coverage of the elasticity solution consists of general equations, com-

puter results, and ramitications of how the elasticity solution may relate to AU results.

First, a very basic description of the physical problem is presented. This reiterates how a number

of concepts forwarded in chapter 2 are related to the AU method. The discussion emphasizes how

elasticity, Lamb wave theory, and TITR may be used to provide a basic understanding of AU re-
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sults. Next, each of the three basic concepts (elasticity, I I IR, and Lamb wave theory) used to

understand the AU method are covered separately. For each subject, this entails the following four

steps: ·

Statement of the basic physical concepts and equations

Discussion of computer codes or solution technique

Presentation of the numerical results for material systems utilized in experimental results

Comparison of numerical results with experimental results

Finally, a general overview of the physical understanding of the AU method is forwarded. This

will include statements on other experimental results a.nd qualitative comments on theory.

Physical Problem

A number of mechanical and electrical components affect the final AU signal used to characterize

a section of material. Understanding each of these components creates separate engineering prob-

lems, which may be solved using analysis of varying degrees of complexity. These problems arise

from such concems as:

Characteristics of the pulse sent from the pulser

Transducer response to pulse (mechanical and electrical coupling)

Variation of response over transducer face
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Interaction of transducer disturbance with couplant and material surface

Basic mechanical excitation seen by material (Boundary Value Problem)

Local wave disturbances resulting from mechanical excitation

_ How plate wave motion develops and propagates to other transducer (how to model material)

How motion caused by plate wave propagation interacts with other transducer

How interaction of plate wave motion with the receiving transducer causes the received signal

How signal from receiving transducer is electrically altered by receiving instrumentation

Although these questions are all, in their own right, complicated and to some degree worthy of

separate research, some primary understanding of these issues helps provide insight to basic results
‘

and helps determine possible assumptions for modelling purposes. More importantly, these con-

cerns determine where future research should be directed to develop yet more refined AU tech-

niques. Specifically, understanding the full complexity of the situation, facilitates future

irnprovements of present simplified models and shows where difficulties exist in understanding ex-

perimental equipment, so that new equipment may be designed. For these reasons, some of the

issues above, although not totally accounted for, will be discussed briefly. Obviously, many as-

sumptions must be used to get a working model for this complex line of problems.

The first issue is how the pulse produced by the pulsing unit produces stress waves in the material.

The pulse sent to the sending transducer is not a perfect pulse, but a finite width pulse of sinusoidal

shape. However if the proper settings are utilized, the pulse can be reduced to a fairly sharp pulse

width. In any case, an imperfect pulse is sent to the sending transducer, so that the input from the

onset has a nonuniform spectral density, even before pulsing the sendingtransducer. Obviously,

this affects the spectral density of the output. The character of this pulse may be ascertained by
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consulting the user’s manual of the pulsing ur1it or experimentally analyzing the pulse using data

acquisition equipment. It is necessary to ascertain the general frequency content of the input pulse

to make sure it is in the range of the transducer’s resonance frequency and in the range of fre-

quencies for AU results of interest. A further complication involves the manner in which the

electrical charactexistics of this pulse affect the piezoelectric element and the circuitry of the sending

transducers (ref. 133). A crucial concem is the frequency content and the duration of the resulting

transducer vibration. This issue was partially addressed in chapter 3 by considering the pulse echo

spectrum of a large aluminum block (fig. 24). Note that although the sending transducer is a

heavily damped, wide band transducer, the spectral density of the excitation is very nonunifoxm for

the range of frequencies seen in AU results. In other words, certain frequencies seen in AU results

have higher energies of input than others by sizeable margins. An additional complication involves

how the actual transducer vibration as a result of the signal may not be uniform as a function of

position. For instance, the crystal may not be perfectly aligned or uniform. Ultimately, a very
P

careful and exact characterization of a transducer should give the displacement field of the

transducer face as a function space and time for electrical input pulses. This most likely will involve

experimental characterization by methods such as optical interferometry. Certainly, the signal

generated by the receiving transducer is not a result of a perfcctly uniform field, but an integrated

effect of a displacement field varying in time and space (ref. l_52). To make matters even worse, the

displacement and stress of the piezoelectric element is transferred by couplant to the material sur-

face. This is a source of great problem for modeling purposes and presents practical problems in

regard to reproducibility of results.

Eventually, the material surface experiences a force varying with time and position. Furthermore,

this force disturbance most likely involves both shearing and normal forces, even in cases where the

sending transducer is a longitudinal mode transducer. However, most models for normal mode

transducers involve treating the transducer disturbance as a time varying distributed normal load

(ref. 99).
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Hence, although realizing the situation is definitely more complex, elasticity results for the stresses

caused by a point force on a half space are utilized to determine what type of disturbances might

be caused in a plate due to a transducer placed on the top surface. This approach neglects a number

of effects, but does allow some indication of how the energy for input stress waves may vary as a

function of angle oH' the normal and as a function of azimuthal angle. A few of the effects which

this neglects are:

Effect of bottom surface

Effect of pulse shape or frequency content of input

Effect of load being distributed nonuniformly over a fmite area

Effect of shearing forces which may be generated

However, using a point normal force load, still allows a comparison of what effects the variation

of material properties with azirnuthal angle might have on how certain wave motions vary with

azimuthal angle. Moreover, the normal mode of input is the dominant mode of input for this ex-

perimental arrangement. This provides a good qualitative picture of the situation and provides a

crude tool for quantitative modeling efforts. Also, for the case of an isotropic plate the problem

of distributed loading is considered, in a qualitative marmer, to yield an indication of how

transducer size may affect results.

Next, consideration is shiffed to how local disturbances created by the transducer may travel and

interact. More specifically, the focus is on characteristics of waves traveling normal to the plate

surface and to which wave motions would satisfy boundary conditions on the top and bottom

surfaces by through the thickness transverse resonance. The following are reasons for considering

the I I IR case:
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The greatest input is through the thickness or just off at small angles (0’s), so characteristics

of these waves are indicative of waves causing AU results

For higher order modes (that are I II R modes for 9 = 0), even for a range of low angles of

0, the frequency is still near that of I I IR - this is central to understanding AU results

Results indicate that frequencies measured in AU results correlate to frequencies for TTTR

The main output for I I IR analysis are:
n

Displacements associated with wave travel for bulk waves through the thickness of the plate

(speciiically the variation of displacement for a shear wave motion with azimuthal angle for a

composite plate)

Frequencies for I I IR modes

Waves propagating slightly off the normal will have many characteristics that are just slightly dif-

ferent than the I I IR modes. The reasons for this are elucidated when consideration is moved to

the Lamb wave equations. Hence, one purpose of looking at I I IR is to get an indication of what

characteristics might be present for modes that are included in Lamb wave analysis and to under-

stand these modes better.

The boundary value problem for waves traveling in a plate are described by Lamb wave equations.

The derivation and basic approach to solving these equations were discussed in chapter 2. Obvi·

ously, since the AU method has been performed on a plate, equations describing wave motion for

a plate are relevant to the physical problem of AU propagation in aluminum and composite plates.

Moreover, many experimentalists have noted that characteristics of disturbances seen in AU results

resemble that of Lamb waves (ref. 9, 13, and 95).
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Since the Lamb wave equations are physically representative of the AU problem, their solutions

have been prograrnmed. Appendices C, D, and E contain 3 programs which calculate Lamb wave

results for the three separate cases of an isotropic plate, a unidirectional composite plate (0 and 90

degree directions), and a unidirectional composite plate (any general direction). Two additional

appendices provide information on how the programs may be improved to yield a more general

code. Appendix G lists a program which solves the Chxistoffel equation for a general direction; this

is essential to using the method of uncoupled solutions. Next, a description is given of how the

method of uncoupled solutions may be combined with present codes to arrive at a more general,

easy to use solution code for Lamb wave analysis.

The strategy of the computer program involved solving the dispersion equation and using other

equations relating the physical parameters of the plate wave problem to each other. An endless

combination of plots showing the relationship between various variables are possible. However,

computer plots are given only for the following results:

Dispersion curves

Velocities versus frequency

Displacements versus frequency

The purpose of these results is to identify what modes of wave propagation are present in AU re-

sults. Also, plots are provided to compare Lamb wave behavior at different azimuthal angles.

Signal Rcception

Another important issue is the manner in which the receiving transducer integrates the disturbance

over its face to produce an output signal. To obtain an understanding of this situation consider-

ation must be given to what type of transducer is utilized. For instance, if a longitudinal mode
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transducer is utilized, concem should be given to u,. Since longitudinal transducers were used in

AU experiments, the calculation of u, is of interest in deriving theoretical comparisons.

Finally, the signal from the receiving transducer is operated on by the transfer function associated

with the amplifier, attenuator, and filter. The effects of this are important in developing a stand-

ardized method where the amplitude has an absolute value independent of instrumentation. Un-

fortunately, the modeling of other components is such that this is not yet attainable. In any case,

it is important to make sure that the transfer function for this section of electronics does not filter

out frequencies of interest or does not preferentially amplify certain frequency components.

Elasticity Solutions

This section chronicles solutions to the the elasticity problem for normal loads placed on an infinite

half space to approximate what stresses a similar load would cause on a plate of thickness 2b. This

shows how stresses vary relative to the angle of inclination from the source, hence paving the way

for determining how the input disturbance may cause more energy to be channeled into certain

Lamb wave modes relative to others, and moreover how drastically material anisotropy may affect

these results.

These solutions are for a single sagittal plane and the loading is assumed to be uniform as a function

of the direction perpendicular to the sagittal plane. For the anisotropic case, this leads to a difficulty

in interpreting results, because the load is distributed infinitely in the perpendicular direction,

causing the calculated stress in the direction perpendicular to the free surface to be different de-

pending on which azimuthal direction is considered. Hence, in these results the magnitudes of the

stresses are normalized to the value for the through thickness direction. The purpose of these re-

sults is to provide some indication of how the energy for Lamb waves varies due to the angle 9
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associated with the P-wave input. Thus, the point here is to use this solution to approximate the

magnitude of the stress waves impinging on the bottom surface of the plate, for various angles H

and relating the angle 8 and the magnitude ot the stress to the angle 9, for the P-wave, and hence

to the magnitude for the Lamb wave related to that 9,.

Point Load on an Isotropic Plate

The basic notation and geometry for the problem of a point load on a semi~infxnite half space is

shown in figure 56. The dotted line corresponds to the surface where stresses are calculated to ap-

proximate the magnitude of stress waves impinging on the bottom surface of a plate. Once this

relative value is found the solution technique is be shifted to Lamb wave equations. This portion

of the solution serves to provide an exact value for the undetermined coefficient which multiplies

the displacement values found using the classical Lamb wave solution.

A simple solution exists for the stress field caused by this point load. In polar coordinates, this

solution is given by the following fonnulaz

p cos(6)
·=r = 2 TT

Now, if we consider what stress this causes at positions corresponding to a plate thickness b, this

leads to the following forrnula:

p cos2(0)sr = 2?—éT

Figure 57 shows how 6, varies with 9. The angle 0 relates to the input angle 0,, the input angle for

a P-wave. This may then be related to the frequency for a given mode by using the basic dispersion

relations:

w=ÄÖ
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Figure 56. Delinition of coordinate system and geometry for point load
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and the following equations:

- C@3 = um ‘<
;>

Hence, relations can be made between the input and the resulting character of Lamb waves which
l

may be excited. This connection will be discussed later in the next chapter with regard to modeling.

Isotropic Plate- Distributed Load

Figure 58 displays the geometry and notation utilized in the solution of a isotropic half space with V

a distributed load placed on the top surface (reference 154). This causes a uniform compressive

load:

p = -2Aa

where I

1A =T<2¤> "
Obviously, this causes the stress to be less for a greater distance correlating to the distance for plate

thickness 2b. Also, this value is lower for greater angles of inclination to the area covered by the

distributed loading.
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Point Loading on an Anisotropic Plate

The equations describing the stresses resulting from a point load on an anisotropic half space are

much more complex than those describing stresses caused by a point load on an isotropic half

space. Results of these equations indicate a large variance in how stresses vary for different orien-

tations on the top surface plane (or different azimuthal angles for for the plate constructed from

collapsing the half space to a plate). Thus, a normal input results in vastly different amounts of

stress and hence energy being transferred in different directions, due to variation of material prop-

erties. Specifically, this section will forward Lekhnitskii’s solution for point loading on an

anisotropic half space. The strong dependence azimuthal angle has on how stress varies with angle

from the normal to top plane should be noted. In general, stresses tend to be much greater at angles

off the normal for azimuthal angles relating to high material moduli. This would contribute to the

higher energy content for waves travelling in these directions.

A large system of equations must be solved to arrive at an answer to the stresses caused by point

loading on an anisotropic half space. Hence, this section will present the solution to this problem

utilizing Lekhnitskii’s notation (ref. 151) and state only the most relelevant equations. A more

detailed review of the theory used to arrive at these equations may be found in the above reference

by Lekhnitskii. ‘

The first relevant equation involved in the solution to this problem is the general 6th degree alge-

braic characteristic equation for solving anisotropic elasticity problems:

Mu)/2(u) — [fw) = 0

where

I4 = S11!}
‘

2S16#3 + (2812 + S66)#2 ' 2526/·‘ + S22

I1 = S1su3 — ($14 + $s6)#2 + ($2s/4 + S46)# — S24
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(2g= $ss#3 ‘ 24s# + $66

Using this the additional parametcrs may be defined: .

(2(#1)

(2(#2) .

(1(#a)

In polar coordinates, the solution to this problem is:

6, = —
7% Re(i/A(AD,(6) + BD2(9) + „l3CD3(9)))

12BB2(B) + CE1(B)))

where

A = #2 ‘ #1 + 1211(#1 * #1)+ 111-1(#3.#2)
U

A = (#11211 ‘ #2)

B = (#1 ‘ #11111)

C= 11(#211 ‘ #112)

D1<9) = ( <=¤S<9> + #1 Si¤(9)>°/( ¤i¤(6) — #1 ¤¤s(9>)

D2(9> = (<=¤s(9) + #2 si¤(9>)2/( ¤i¤(9) — #2 ¤¤S(9))
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D3(9) = ( ¤<>¤(9) + #3 Si¤(9))2/( Si¤<9> — #3 ¢¤S<9))

E1(9> = ( ¤<>S(9) + #1 Si¤(9))/( ¤i¤(9) — #1 ¤¤S(9))

@(0) = ( cos(0) + 142 sin(0))/( sin(0) — p2 cos(0))

E3(9) = < ¤<>S(9> + #3 Si¤<9))/( Si¤<9> — #3 ¤¤s(9))

If the case of orthotropy is considered the equations are greatly simplified and can be expressed

as:

P .
Gr (U1

S

COSwhere

L(0) = S11 sin40 + (2512 + 566) sin20 cos20 + S22 cos40

and u1 and u2 are the roots of the equation

$11**4 " (2$12 + $66)**2 + S22 = 0

Note that in this notation SU are the compliance values and the 1-direction corresponds to the di-

rection along the length of the plate. Thus, the values used in the expression depend on azimuthal

angle and hence the stress state varies as a function of azimuthal angle.

Two programs were written to calculate how the stresses vary as a function of 0 for different ma-

terial directions. The first, (ORIN.FOR), calculates how 6, varies as a function of 0 in both the

liber direction and the cross fiber direction (see figure 60 for results). The second, (GEIN.FOR),

will provide the same results from above for any direction. In these results, the values for the

stresses have all been normalized to the value in the through-the-thickness direction (0 = 0). The
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code for ORlN.FOR is in appendix A and the code for GElN.FOR is in appendix B. The calcu-

lations for these programs follow straight from the equations stated above.

In example, the dependence of 6, on 0, for the cases where the über direction and perpendicular to

the über direction deüne the planes to be considered, are shown in ügure 60. The major difference

in the two curves is the rather quick drop in 6, when the wave is sent in the cross über direction

compared to the much slower descent of 6, with angle in the über direction. Basically for directions

with high stiffness, the value of 6, stays relatively high for increased angle off the normal 9. This

amounts to the basic effect of a stiff material seeing a greater stress for a given displacement set up

locally and hence relaying more of the energy than less stiff material directions. The diüerence in

magnitude becomes apparent at angles greater than 45 degrees. Hence, the über direction seems to

draw a higher magnitude disturbance at high angles, corresponding to the über direction.

In regard to the AU method, the variation of the radial disturbance with angle relates to what angles

stress waves may be directed. In relation to Lamb wave propagation, a higher angle 9 relates to a

higher wave number in the direction of propagation. Depending on the mode of Lamb wave

propagation this would have different effects on the nature of the Lamb waves. For many of the

higher order modes, the higher input angle would cause higher group velocities, causing the

wavetrain to arrive earlier in the time domain. Also in context to wave tracing approaches, a wave

Iaunched at a higher angle travels through less material, hence aniving earlier and experiencing less

material attenuation. This may relate to the high magriitude of energy early in the AU signal for

the über direction, since the higher angle would travel less distance to get to the receiver it should

show up earlier in the signal. Another way of looking at this involves noting the higher group ve-

locity for the higher order Lamb waves associtated with higher angles (this will be discussed later

in the section on Lamb waves).

The major point here is that for a vertical type loading to a free surface the variation of the radia.I

disturbance with angle can be calculated. Moreover, in general these calculations show the greatest

radial disturbance to be in the normal direction. In the case of anisotropic materials, these results
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show that the disturbance may result in more energy being relayed in the stiffest directions and for

directions where the material is stiffest, the radial disturbar1ce stays large at higher angles 0. Hence,

for the composite plate we would expect a greater disturbance in the über direction and for more -
of the disturbance to take place at higher angles (resulting in a greater disturbance earlier in the

signal). In terms of the AU method, this would correspond to greater energy content for the AU

·
signal in the über direction. Additionally, this would cause the wave characteristics for the über

direction to be associated with waves that have higher wave numbers in the über direction. This

is in agreement with the high energy content at the beginning of the signal for the AU in tl1e über

direction. For higher order modes, this is because of the higher group velocities for the higher wave

numbers associated with the higher input angles 9,.

It should be kept in mind that Fraunhofer and Fresnel fields may also contribute to input effects,

hence, peaks in the loading function may occur at directions other than through-the-thickness,

which may result in a mode having more than one peak, where the peaks are closely spaced.

Furthermore, certain cases of anisotropy may cause peaks to occur at other directions than 0 de-

grees, naturally.

Through the Thickrzess Transverse Resommce

The basic idea behind the 'l"I'l'R concept is understanding how waves propagate perpendicular to

the plane of the plate and how they must be of proper frequency and phase to meet boundary

conditions. This section will concentrate on obtaining characteristics of TTTR modes for the plates

examined in the experiments in chapter 4, for the purpose of comparison. Basically, this will in-

volve ünding the displacement vector for the direction of propagation of 'l'l'I'R modes and then

the frequencies for TTTR modes.
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Aluminum Plates

For the aluminum plates, the equations describing wave propagation are simple and wave motion

is independent of the direction of propagation. For bulk plane waves, the motion of possible dis-

turbances is one of three waves:

P-wave

SV-wave

SH-wave

For propagation in the thiclcness direction, this leads to an infinite number of possible directions

for perpendicular SV·wave and SH-wave motion, with both these motions perpendicular to the

P-wave (thickness direction) motion. Thus, the plane associated with any azimuthal angle would

possess the same properties for wave propagation characteristics. '1'herefore, it would be expected

that a symmetric input disturbance would result in an even amount of energy existing for a given

Lamb wave for all azirnuthal angles (ie. symmetry prevails). Hence, this may provide a means for

checking the symmetry of a transducer.

Calculating the resonance (I I IR) frequencies resulting from this is rather simple and was covered

in chapter 2. The frequencies for various I I IR modes are displayed in figure 61 for the .0625 inch

thick plate and figure 62 for the .125 inch thick plate.

First, notice that the major frequencies seen experimentally for each plate correspond to frequencies

associated with I I IR modes, except the .7 MHz and .35 MHz low energy components seen at the

beginning of the signal and the very low energy 2.3 MHz component. Also, note that I I IR pre-

dicts frequencies for the .0625 plate to be double those seen in the .125 plate as was noted exper-

imentally. Finally, the particular material parameters associated with aluminum cause certain
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modes to possess nearly the same frequencies. For instance, for the .0625 thick plate both the first

order symmetric and the second order symmetric TTTR mode are at nearly 2 MHz. However, in

this instance the first order symmetric mode possesses a negative group velocity for this frequency

range and may be contributing less to the signal.

Composite Plates

The problem associated with TTTR for composite plates is much mone complicated than for the

aluminum plates. First, for the plane associated with any given azimuthal angle the motion of a

wave propagating in the thickness direction is not the same. Specifically, a wave propagating

through the thickness of a composite plate has only one solution (3 waves), compared with infinite

solutions (for infinite planes) for a wave traveling through the thickness ofan aluminum plate. This

means the motion of the SV-wave and SH-wave (for the case of x, propagation) are constrained to

~ take place in certain directions. Therefore, the first problem involves solving the bulk wave prop-

agationiproblem for the thickness direction and noting the displacement vectors associated with

each mode. Next, the frequencies for TTTR modes are calculated using equations stated earlier.

Bulk Wave Propagation Problem for Composite Plates

Solving the bulk wave problem for wave propagation in the thickness direction of a composite

material involves solving Christoff"el’s equation for the x, direction. Hence, the Christoffel equation

indicates a P·wave with only u, displacement. The one shear wave shows displacement in only the

fiber direction and the other only in the cross fiber direction. However, the displacements for a

given wave will have components in each of the coordinate directions when the wave is sent in a

more general direction. However, for small angles the values vary smoothly from the 'ITTR, so

that values are still predominately in the directions found for the TTTR case with smaller values

Physical Understanding l6l



for the other directions, hence these waves become pseudo waves. A more exact analysis of this

problem may be carried out by using the program (CHR1S.FOR · listing in Appendix G).

The complication of trying to propagate waves at angles slightly 05 of the x, direction may be ex-

tremely pertinent to understanding AU results. In the Christoffel equation both v, and or v, are

not zero and the resulting version of the Christoffel equation is much more complicated. The sol-
l

ution to these equations results in shear waves with 6:,, 6:,, and 6:, terms. However, the general na-

ture of the wave should smoothly vary from that for the x, direction solution. Hence, one might

still expect the resonance due to the each type of shear wave to perhaps be greatest in that respective

direction. This is suspected to be the cause for the high values in the following data:

Al(.23,.35) for the 12-ply specimen in the 90 degree direction (this corresponds to the lst order

antisymmetric wave in figure 64)

Al(.S3,.75) for the 24-ply specimen in the 90 degree direction (this coiresponds to the lst order

antisymxnetric wave in figure 63)

Also, the resonance for the fiber direction oriented SV~wave may contribute to the relatively high

values of these variables in the 0 degree direction, since the I I IR frequency for this resonance is

so close to that for the SV-wave in the cross fiber direction. This points out a general problem of

trying to identify closely spaced and overlapping peaks. Thus, this I I IR frequency is thought to

be associated with the resonance of a shear wave with motion in the cross fiber direction, causing

greatest motion in the direction where the SV motion is greatest for the plane bulk wave.

Hence, the physical understanding of the AU method and modeling should account for the general

nature of bulk wave propagation in the thickness direction and at angles slightly 05 of the thickness

direction. Specifically, it should be understood that the amplitude of the pseudo SV-wave is of

much greater value for the fiber and cross fiber direction for the particular SV-wave associated with

each direction.
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TTTR Frequencies for Composite Plates A

Calculating the frequencies for the I I IR modes of an anisotropic material involves using formulas

stated in chapter 2. Notice that extra modes exist due to separate resonances for each shear wave

polarization. Figure 63 shows a table with values for the first few I I IR modes of the 24-ply

Gr/Ep plate, where material properties were estimated using bulk wave velocity measurements.

Figure 64 shows similar results for the 12-ply specimen. The extra antisymmetric mode makes

picking out particular modes somewhat more complicated for the composite material. However,

again notice that frequency peaks seen in the AU experiments correspond to I'I IR frequency

values predicted by theory, using measured bulk wave velocity values. The frequency for I I IR

modes are inversely dependent on plate thickness and agrees with experiment. In general, I I IR

seems to adequately predict frequencies found to be present in the AU data.

Lamb Waves

Solving the Lamb wave equations is by no means a trivial exercise and involves a great deal of care

and computer time. The equations are transcendental for even the simple case of an isotropic

material. In elfort, to gain understanding and to decrease computation time, three computer pro-

grams where written for cases of increasing difiiculty. Specilically, the following three programs

were utilized:

DISA- Determines the dispersion relations, phase velocities, and displacements for a Lamb

wave in an isotropic material
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Figure 64. TTTR frequencies (MH:) for I2-ply Gr/Ep plate
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ORTH- Determines the dispersion relations, finds phase velocities, and displacements for a

Lamb wave in an orthotropic material where the the wave is sent in a principal direction (for

a composite material this means in either the fiber or cross über direction)

GENE- Determines the dispersion relations and finds phase velocities for a Lamb wave in an

orthotropic material where the the wave is sent in any direction (for a composite material this

means the wave may be sent in a.ny direction relative to the über direction)

Basically, each of these programs involves solving the motion equation and meeting the stress free

boundary conditions using an assumed linear type of motion. Each case involves careful attention

to where the solution takes place on the dispersion curve (ie. whether the wave numbers are real

or imaginary). For the isotropic case, this has been forrnalized and the equations are fairly straight

forward. The major concem here is noting when the wave numbers are real or imaginary to un-

derstand how the solution may have local maxima and minima which may or may not be confused

as solutions. For the anisotropic solutions (ORTH and GENE), whether the wave numbers are

real or imaginary effects how the eigenvectors (wave number ratios I) are determined from the

motion equation. This situation is especially confusing for the general case (GENE), where the

solution is the superposition of many quasi~waves, waves with both normal and shear components.

In fact, frnding solutions for the anisotropic cases involved using knowledge gained from the

isotropic case and utilizing the method of uncoupled solutions (ref. 127) to guide where solutions

are sought for the Lamb wave case. The method of uncoupled solutions is covered ir1 reference 127

and in appendix H, it involves setting boundary conditions that decouple shear and longitudinal

waves at plate surfaces. These can then be used as bounds for the Lamb wave solution. The

programs were written to allow this information to be utilized. However, this requires that the user

modify the program code. In the future, these programs should be made more modular and robust,

so that computing can become more automated. Undoubtedly, this will entail some ingenious

programming. Appendix H discusses how the method of uncoupled solutions may be combined

with the existing codes to yield an irnproved program.
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The following sections and subsections discuss the programs utilized (program listings are in ap-

pendices C, D and E), basic results and the relationship they have to AU results. Major emphasis

is given to identifying the modes of Lamb wave propagation which are present in the AU signal. V

This involves examining at the dispersion curve and compating the values ofphase velocities stated

in chapter 4 to the values calculated by the programs for the Lamb waves.

Aluminum Plates

The solution to the Lamb wave problem for aluminum plates involves rather straight forward ap-

plication of the equations stated in chapter 2 for an isotropic plate. For the aluminum plate, there

is no effect due to azimuthal angle, so the Lamb wave problem only needs to be solved for one

plane. The solution can be obtained for symmetric and antisymmetric modes for any order mode

(fundamental, lst, 2nd...). The same program calculates all these modes, however the user must

input whether the solution is for a symmetric or antisymmetric mode. Data sets from this program

were used for the plots in figures 65-69.

Computer Solution Technique .

The equations utilized for obtaining the solution to the Lamb wave propagation in isotropic ma-

terials were covered in chapter 2, the same notation is utilized in the discussion below. The solution

involves picking values of the wave number in the plate direction 6, starting with low values and

increasing to higher values, making sure they are in the range of interest. The equations stated for

F(a, ,8, 6) = 0 are utilized, along with the other two equations relating the wave numbers to the

wave frequency and bulk wave velocities, to find the value of w that along with 6 satisfy the con-

ditions for the desired mode of Lamb wave motion. Basically, this involves looking for where the

function F either gets very close to zero or crosses from a positive value to a negative value. The
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computer program is named DISA.FOR and is listed in appendix C. The program variables

include:

Velocity of longitudinal wave
l

Mode of Lamb wave

Velocity of shear wave

Plate thickness

From this, the program calculates and stores in an output file:

Wave number in the plate direction, C, and circular frequency, w (in pairs)

Values for relative amplitudes A, B, C, and D for each pair

U'I'l'I".FOR (Appendix F), reads the output file and then calculates, and sends to separate files

each of the following data sets:

Dispersion curve (w versus C)

Phase velocity versus frequency

Displacement, 11,, versus frequency (other pararneters could be calculated from given informa-

tion, such as stress)

The plots shown and discussed below were produced from these data sets.
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Computer Results for .0625" Thick Aluminum Plate

The results of the computer program are comparable for the two aluminum plates with the fre-

quency values of the .125" thick plate are only half those of the .0625' thick plate. Only the results

for the .0625" thick plate are given.

The plots of the dispersion curve and of the phase velocity versus frequency for the fundamental

symmetric mode of the .0625" thick aluminum plate are displayed in figure 65. Notice the

dispersion curve for the fundamental symmetric mode is linear for low frequency/low wave number

values. This means that the phase velocity and group velocity should be roughly the same value.

Then notice the decrease in slope over a short period and then the constant lower slope afterwards.

In the plot of phase velocity versus frequency, the phase velocity is shown to start at a value of

roughly 210,000 inches per second and asymptotically approaches a phase velocity of roughly

110,000 inches per second. lt should be noticed that the main change in the phase velocity occurs

at roughly 1 MHz, which is the frequency corresponding to the first Tl'l“R mode.

Figure 66 shows comparable plots for the fundamental antisymmetric mode. Unlike the symmetric

mode, the antisymmetric mode starts out very nonlinear at a very low slope and approaches a fairly

constant slope for higher wave number values. The plot of phase velocity versus frequency shows

that for low frequencies that the phase velocity for the antisymmetric fundamental mode is very low

and increases to approximately 110,000 inches per second, the same value the symmetric mode

approaches. In fact, this is due to the fact that both modes degenerate to Rayleigh type waves for

high wave numbers (f) and hence have the same phase velocity as a Rayleigh wave.

Similar plots for the first order antisymmetric mode are displayed in figure 67. Notice that the

dispersion curve does not start at the origin as does the two fundamental modes, but starts at the

first TTTR frequency (1 MHz). This leads to nearly infinite phase velocities, shown in the phase

velocity versus frequency plots. Also, the small slope for small values of E corresponds to a low
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group velocity and also means that for a range of values of {, relating to a number of input angles

0, the frequency is practically the same value. For low angles of input or small values of {, this

mode would have high values of phase velocity and would have very low group velocities. An

important point here is that a relatively large amount of the energy for this mode may show up at

a frequency range close to the TTTR frequency, displaying a variety of phase velocities (of fairly

high value) and a variety of group velocities. Analysis shows that even for an input angle of almost

90 degrees, the frequency for the first order antisymrnetric mode is still at roughly 1.3 MHz (see

figure 67). The variety of group velocities could relate to the fact that the AU signal (for a given

frequency) is spread out in the time domain. Also, note that the values of the phase velocity vary

quickly with very small changes in frequency and over a fairly small frequency range, while the

phase velocity approaches the Rayleigh wave phase velocity.

The first order symmetric wave shows an even stranger type of behavior. The dispersion curve

starts out with a negative curvature. This means that the group velocity is negative. The meaning

of this is not really clear. It may be that at low wave numbers this mode actually propagates energy

backwards for modes with positive phase velocities. Also, this means that for certain specific fre-

quency values, this rnode of Lamb wave propagation may have two different phase velocities, group

velocities, and wave numbers. Additionally, this means there is a value of { where the slope of the

dispersion curve is zero, and hence the group velocity is zero. As with the frst order antisymmetric

mode, this mode shows high phase velocities for low value wave numbers. Finally, notice that this

mode starts at just below 2.0 MHz and dips to 1.7 MHz and then climbs back up.

The second order syrnmetric mode shows behavior much like the first order antisymmetric mode,

but of course for { = 0 shows a frequency value of 2.0 MHz.

The higher order modes show similar behavior, but of course show higher frequency values for the

TITR situation { = 0. The only other mode to show a negative slope is the second order anti-

syrnmetric mode. Also, the higher order modes show dispersion curves with increasingly flat be-

havior for low values of {.
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Comparison ofComputer Results to Experimental Results

For the aluminum plates, the ”I'l'I"R frequencies seem to be inversely related to the plate thickness

for both the experimental and numerical results. Specifically, the frequency for the higher order

modes shows a linear inverse relation to plate thickness. Since the experiments and theory agree

in this matter and the experimental data shows little other major differences, the rest of the dis-

cussion is specified to the .0625' thick plate.

For the .0625" thick aluminum plate, only 3 modes are possible for the 1 MI·Iz signal content- the

fundamental symmetric, fundamental antisymmetric, and the first order antisymmetric modes.

However, the large value for the experimentally measured phase velocity (chapter 2, fig. 34), im-

mediately disqualifies the two fundamental modes as the possible means of wave propagation.

Hence, further investigation should bei centered on the first order antisymmetric mode as a possible

mode of wave propagation for the 1 MHz signal content seen in the AU signal. Further evidence

for this conclusion will be presented in the section on modeling. It should be noted that the 1 MHz

area of the first order antisymmetric mode is in the low wave number { area, relating to a low input

angle, agreeing with the predominately normal input associated with the AU method. Additionally,

the group velocity for the 1 MHz component of the signal was measured to be much lower than

the phase velocity, the exact situation that would be expected for the higher order Lamb wave

modes at low wave numbers. In figure 30 and 31, the peak at 1 MHz ir1 the spectrum seems to trail

off slowly, indicating that a number of wave numbers are contributing to the energy content in this

frequency range. ln otherwords, the the wider band width indicates that disturbances sent out at

a number of angles may be contributing to the signal in this frequency range (see fig. 74). In gen-

eral, the 1 MHz signal content possessed characteristics that agree with the first order antisymmetric

Lamb wave for low wave numbers.

The 2 MHz signal content showed behavior that indicates that it is either the second or first order

symmetric Lamb wave. Although the frequency (2 MHz) of the first order symmetric mode agrees
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with the data, the negative group velocity associated with this mode does not agree with exper-

imental measurements. Hence, the 2 MHz signal content seems to be the second order symmetric

mode at low wave numbers. Notice in tigures 30 and 31 that the peak in the spectrum for this g
frequency content is much sharper, this may indicate that only the very lowest wave numbers are

contributing. This is also supported by the extremely high phase velocities measured for the 2 MHz

signal content. Thus, the 2 MHz shows a sharper peak and a higher phase velocity than the 1 MHz
A

signal content, indicating that the 2 MHz (possibly the second order symmetric Lamb wave) signal

content may be due to radial disturbances more closely aligned with the vertical than the disturb-

ances associated with the 1 MHz (first order symmetric Lamb wave). Additionally, certain features

of the 2 MHz peak (lack of skewness), indicate that the first order symmetric mode may also be

contributing to the energy in the signal at this frequency range.

The .7 MHz content at the beginning of the signal showed characteristics of a fundamental sym-

metric wave. This is supported by the measured phase velocity measurement and the fact that the

group velocity was the same as the phase velocity. This wave could be a bulk P-wave, however the
' wave velocity is lower and agrees more with that of the symmetric fundamental mode. However,

more work needs to be conducted to understand why the wave is centered at .7 MHz. This may

be a combined effect of transducer size and pulsing frequency. An understanding of this could most

likely be obtained by comparing Green’s function results (ref. 14) to Lamb wave theory.

Finally, it is noted that a small 2.3 MHz signal content was noted and that this frequency is that

of the Goodier-Bishop mode (ref. 142). It was not possible to measure the velocity of this mode

because of its low energy content.

Eßects of Lamb Waves on AU Signal

For the aluminum plate, the AU signal consists of an early portion of the signal (.7 MHz for the

.0625" thick plate) which separates from the rest of the wave train due to a much faster group ve-

Physical Understanding 175



locity. This early portion of the signal seems to be a fundamental symmetric Lamb wave and is

present in the wave train for a time on the order of the pulse width.

The bulk of the wavetrain consists of a higher amplitude, very fast phase velocity (yet varied), slow

group velocity, signal content which continues on in the wavetrain for a much longer time than the

early part of the signal. It is believed that this portion of the wave train is made up of the higher

order modes at low wave numbers, corresponding to low input angles 6,. The order of the modes

which are excited depends on the frequency of the transducers and the thickness of the plate. As

indicated, the long wave train associated with the AU method agrees with what would be expected

from higher order Lamb waves. As a result of the higher amplitude and the wavetrain length as-

sociated with these modes, it appears that the energy content of the signal is dominated by these

higher order modes. This situation may not necessarily be true for all experimental arrangements,

however most reported data, including the early work by Vary that related AU to strength, utilizes

this type of experimental arrangement. Basically, the standard AU configuration directs most of
‘

the energy in the through-the-thickness direction at a frequency range associated with 'ITTR values,

thus exciting higher order Lamb wave modes.

Expeiimentally, the effect of the wave velocities can be clearly seen by separating the sending and

receiving transducers and noting the effect on the wavetrain. For the .0625 plate, the .7 MHz

content separates into the early portion of the wave train, due to the fast group velocity and moves

rather undistorted, since the group velocity is comparable to the phase velocity. The other parts

of the wave train (1 and 2 MHz portions) show phase points that move slightly in the time scale,

in other words display very fast phase velocities, but whose amplitude values change rapidly due to

a modulating term which moves great distances in the wave train due to a very slow group velocity.

In general, utilizing a conventional AU arrangement on an aluminum plate resulted in a signal

which seemed to be dominated, in terms of energy content, by waves showing characteristics of

higher order Lamb waves. Specifically, this resulted in a long wave train dominated by frequencies

close to ”I'I'TR values.
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Composite Plates

The Lamb wave problem for composite plates is much more complicated than for isotropic mate-

rials, solving this problem involved using the method of partial waves. An additional problem is

that the solution to the Lamb wave problem is different for every azimuthal angle. Additionally,

the computation involved for every azimuthal angle is much more complicated. Also, the

anisotropy of the material allows for additional modes of Lamb wave propagation.

Another major difference is that the Lamb waves for anisotropic materials tend to have kinks in

their dispersion curves, due to the crossing of the uncoupled modes (ref. 127). In other words, the

curves are not nearly as smooth, but tend to follow one asyrnptote and then follow another, re-

sulting in a change in direction. This is caused by the different material properties associated with

the different directions (0,) associated with the different wavenumbers.

As with the elasticity solution, the Lamb wave problem for composite materials is easier to solve

in the über and cross über directions. One program (ORTH.FOR) was written to solve the Lamb

wave problem for the simpliüed cases, über and cross über directions, and another (GENE.FOR)

was written to solve the problem for the more general case, where waves can propagate in any di-

rection.

It is believed that increased understanding and modeling of the AU method is possible through

rigorous application and amplification of the ORTH.FOR and GENE.FOR codes. The purpose

of this dissertation is to set the foundation for this approach, utilizing these two codes. Since these

codes are central to both present and future efforts, this text includes a discussion on the two pro-

grams, as well as the listings in the appendices (appendices D and E). Moreover, comments con-

cerning how these codes may be utilized and perhaps ampliüed are offered. In fact, discussion on

modeling in the next chapter involves utilizing these codes.
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Computer Solution Technique

As mentioned, the method of partial waves is utilized in both the ORTH.FOR and GENE.FOR
i

codes. The basic solution technique involves the following steps:

l. Define wave number value, k

2. Find a good initial guess for w .

3. Solve Christotfel matrix equation to obtain the values for wave number ratio L

4. Find eigenvectors or displacement vectors a, (choosing the right eigenvector is not a simple

matter and can drastically effect results if the wrong one is picked)

5. Calculate K, from stress free boundary conditions

6. Calculate F by taking the deterrninant ofK,

7. Determine if F is suüiciently close to zero (If Hs not zero, then go back to step 3 and try a

new value of w and if F is close enough to zero then continue)

8. If the correct values for a k and w pair have been found, then use boundary conditions to find

values for
C„’s

and also calculate the phase velocity

9. Store data

10. lf k is equal to the counter value stop, if k is lower than the counter then return to step one

Physical Understanding I78



Solving this problem provides the dispersion information (w and k pairs). In addition, velocity and

displacement information can be ascertained in a simple fashion. In addition, other variables such

as group velocity may be estimated by additional calculations.

In general, the solution strategy is fairly straight forward, however there are a couple of issues which

can cause diüiculties when generating results. These include both problems with interpreting results

from calculations and with choosing proper eigenvectors.

First, the function F may appear to be close to zero and yet not actually be going to zero. This is

due to the complex nature of the function and the many local maxima and minima associated with

the F function. Alleviating this ditiiculty is possible by judiciously selecting w values that are close

to the correct w for the given k. This can be done by utilizing general knowledge on how dispersion

curves of Lamb waves behave and by utilizing the uncoupled mode theory to provide values for

initial guesses.

The other problem which may be encountered in blindly appplying the partial wave equations is

that of not choosing the proper eigenvectors or displacement vector upon solving the Christroffel

equation for the partial waves. Attention must be given to choosing eigenvectors which represent

the proper motion for the partial waves to make Lamb waves (see ref. 127).

The input for each code involves the following parameters:

Stiflhess matrix

Material density

Plate thickness

Azimuthal angle
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Information on guesses, this deünes what mode the solution is ünding (eventually this should

be included in program logic- see appendix H)

OR TH.FOR

‘ As mentioned, the solution for the case where the wave is sent in the direction of the übers or the

cross über direction is much simpler due to the decoupling of P·wave and SV-wave modes from

SH-wave modes. This is observed when one looks at the eigenvalue problem derived from the

partial wave Christolfel equation:

(D11 + Izcss) 0 (((C13 + Css)) **1
0 (D66 + IZCM) 0 0

_ (((C13 + Css)) 0 (Dss + Izcsa) aa

2
where DU = CU —%, I is the wave number ratio, and a, are the displacement vector values.

Obviously, the middle term can be decoupled and solved for the SH·wave modes. However, the

solution to this problem for the general case of waves propagating in a general direction (ie. not the

über or cross über direction) leaves this matrix problem fully populated.

It should also be noted that the equation for the wave number ratio for the (P-wave and SV-wave

coupled) case yields four values of I that relate each of the four partial waves that make up the

symmetric and antisymmetric Lamb waves. This equation is derived upon setting the determinant

of the matrix to zero, factoring out the quadratic equation for the SI-I-mode and solving the 4·th

order polynomial. Since the equation only involves squared terms, the solution follows easily from

the quadratic equation. Then the values of the a,’s corresponding to each of the fs can be deter-

mined up to a constant through back substitution. It is important to properly choose the a values.

This involves choosing partial waves where the displacement vectors are properly oriented. These

functions are performed in sections 4 and 5 of the code.
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Next, the partial waves are superposed to obtain the displacement equation:

6

19 exp(ik(x + 1;,02))
RSI -

‘

These values were then differentiated to produce strains associated with the stress wave propagation.

The strains were then combined with the constitutive relations to yield stresses. It should be noted

that the values of C,, determine the nature of the displacement field for any mode of propagation.

The stress fr·ee boundary conditions determine these up to a constant, but it is the domain of

modeling eübrts to determine this constant, This is discussed in the next chapter.

Next, the stress equations were used with the boundary conditions

T3(x3 = i Ö) = 0

and

"s(x3 = i Ö) = 0

to yield the next eigenvalue problem. Note these boundary conditions are only for the P-wave and

SV·wave modes. In this problem, the values of C,, are the eigenvector values.

The matrix KU is obtained by taking the coefiicient of each C,, for each of the four boundary con-

ditions. Hence, the rows (i-value) of the IQ, matrix are deterrnined by which boundary condition

is used and the colunms (j~value) by which C,, is used. The terms of the matrix are defined in sec-

tion 6 of the program ORTH.FOR.

Finding the determinant of IQ, is used to determine if the dispersion condition is met. This involves

taking the magnitude of the determinant and checking if it is close enough to zero, mathematically

this is expressed by F(w, C, 1,, 6:,,) = 0. This determinant of the matrix and the value F is found in

section 7 of the program. The equation for F is utilized to see if the w ·k pair is appropriate (ie.
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if the determinant It}! = 0). Section 8 checks to see if the dispersion condition is met. If the de-

terminant is zero then the equations from the stress conditions can be used to solve for the values

of C,, up to the constant, which may be approximated by the elasticity solution. The values for

C„ and the phase velocity are determined in section 9. Section 10 writes the results to output files.

GENE.FOR

The procedure for solving the Lamb wave equations in the general case are the same except that

the preliminary step of defining an azimuthal angle is necessary and each basic step is much more

complicated.

Steps 1-3 set up the value used for k and w, in the same manner they were in ORTH.FOR. The

only extra complication is that choosing guess values for the general case is orders of magnitude

more difficult.

Solving the Christoffel equation for the partial waves involves solving a 6-th order polynomial since

the SH~mode is coupled with the other solutions. However, the equation can be treated as a cubic

equation of squared values. This was solved using a standard approach (ref. 37). Section 4 contains

the solution to the Christoffel equation for the partial waves.

The equation for tg is similar, except all six partial waves must be included in the sumrned equation.

Application of strain and constitutive equations are similar, except that the extra shear stresses in

the x, direction (1-2,) must be considered. Thus, the matrix IQ, is a 6 by 6 matrix, instead of a 4 by

4. This makes the calculation of the determinant, and hence the calculation of F much rnore dif-

ficult. Sections 6~7 make these calculations

In general, the rcst of the solution is similar and can be followed by comparing the listing for

GENE.FOR to ORTH.FOR. It should be noted that extra modes exist for the general case, hence
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extra special care must be taken to look for the solution of a particular mode in the right area. ln

fact some of the higher modes, start at the same value of frequency w for E = 0, but quickly turn

into different curves where different
w’s

exist for the same 5 (ref. 127). Determining these curves, _

for just one azimuthal angle is a very arduous and time consumming endeavor.

Computer Results

This section will show some sample results found using the above codes for the purpose of showing

the utility of the codes and for the purpose of identifying modes of wave propagation associated

with the AU method.

The plots for the fundamental antisymmetric modes for waves sent in the liber direction and cross

fiber direction are shown in figures 68 and 69, respectively. Notice the effect of the material prop-

erties on the shapes of the dispersion curves. ·

Figure 70 displays the dispersion curve and phase velocity versus frequency for the fundamental

symmetric Lamb wave sent in the 0 degree direction. Figure 71 displays a similar plot for the

fundamental Lamb wave sent in the 90 degree direction. Similar plots for the third order symmetric

Lamb wave are shown in figure 72 for the 0 degree direction and figure 73 for the 90 degree direc-

tion.

Comparison of Computer Results to Experimental Results

Information from these plots is useful for identifying the modes of propagation in the composite

plates and for helping to understand the general behavior seen in the experimental results. This

includes using both wave velocity calculations and dispersion curve results. Much of this discussion

is of a qualitative nature.
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Figure 68. a)Disp. curve and b)V(phase)/freq. plots, fun. ant. 0-deg. dir.
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Figure 69. a)Disp. curve and b)V(phase)/freq. plots, fun. ant. 90-deg. dir.
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Figure 71. a)Disp. curve and b)V(phase)/freq. plots, fun. symm. 90-deg.
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The main issue here in terms of comparison to experimental results is that the phase velocities for

the fundamental modes are below those measured with the AU method. However, the AU results

for the composite plate do not show nearly so drastic a difference in the phase velocities measured

in AU results compared to those predicted for fundamental Lamb waves.

Also, it is interesting to note the effect of the azimuthal angle (variation of material properties) on

- how the higher order mode, 3rd order symmetric mode, behaves for small values of C. This shows

how the dispersion curve for the über direction tums upward (higher slope - higher group velocity),

much earlier than the 90 degree direction (see figs. 72 and 73). Also, note the abrupt change from

the quick rise to a slow move across, this is due to the 5th order uncoupled shear wave crossing the

uncoupled P·wave (see appendix H). The early steep rise corroborates experimental results, which

show more energy for this mode to be present earlier in the wavetrain for the über direction.

A more intensive study of how higher order mode velocity versus frequency plots vary with

azimuthal angle may help to explain the measured phase velocities given in chapter 4. In general,

the very nonlinear behavior of the curves for the higher order modes has a drastic effect on results

and the variation ofmaterial properties with azimuthal angle has an effect on the nonlinear behavior

of the curves for higher order Lamb wave modes.

Lamb Wave Propagation and AUfor Composite Plates

Results indicate that, as with the aluminum plate, composite plates propagate the bulk of the energy

in the AU signal via higher order Lamb wave modes at relatively low wave numbers, corresponding

to small angles 6,. This is not quite as obvious for the composite plates (especially the 24-ply plate),

since the measured phase velocities are not nearly as large for the composite plates as they are for

the aluminum plates. This may be due to a variety of reasons. For example, the general anisotropy

of the plates may cause the energy to be less centered at low angles, corresponding to the higher

phase velocities. Also, the higher material attenuation may cause the low angle (low wave number)
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(high phase velocity) waves to be more attenuated due to the increased distance of plane wave

travel. This idea is supported by the fact that the 12-ply plate showed much faster phase velocities

than the 24-ply plate (thicker plate with more material for reflected waves to travel through). The

wider bandwidth for frequency peaks in the composite plates experimentally supports the notion

that increased spread of energy exists in the composite plate, compared to the aluminum.

In addition, due to the variation of material properties with azimuthal angles, a number of inter-

esting phenomena affect the dispersion and displacement behavior of these modes with azimuthal

a.ngle.

First, the displacement vector associated with shear waves sent in directions just off the normal di-

rection, x,, may have an effect on the disturbance caused by certain modes. This relates to the

discussion on the I'I IR mode where it was noted that the two possible shear waves which may

propagate in the thickness direction are: ‘

Shear wave where displacement is in the über direction

Shear wave where displacement is in the cross über direction

Thus, one would expect that for shear waves sent just off the_ normal, in for example the cross über

direction, the shear wave with displacement in the cross über direction would behave as a mostly

SV-wave and contribute to exciting out of plane displacement. The other shear wave would relate

to the SH-mode with just in-plane displacement for the cross über direction. Hence, one would

expect the high order mode that crosses the frequency curve at the value associated with the I I IR

for that shear wave to have a higher out of plane displacement in the cross über direction, where

the motion is predominately SV-wave type and hence contributes more to out of plane Lamb wave

motion, as opposed to SH~Lamb wave motion. This is an explanation for the high value of the

.234 MI-Iz signal content for the 24-ply plate in the 90 degree direction. A full utilization of mod-

eling efforts can be used to conürrn or reject this heuristic argument.
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For certain modes the displacement out ofplane is large, while for others the in-plane displacement

is large. For the higher order modes at low wave numbers, the resonances associated with the P-

wave resonance (lst order symmetric, 2nd order antisymmetric, 3rd order symmetric, 4th order

antisymmetric) would be expected to have greater out ofplane displacements. In fact, the 2nd order

antisymmetric seems to be one of the modes ofpropagation, while the 3rd order symmetric is most

deünitely a mode seen for the 12-ply and 24-ply panels. Additionally, the 24-ply panel showed a

peak for the 4th order antisymmetric mode at low azimuthal angles. Thus, the P·wave resonance

modes, which would cause a large disturbance at low wave number values, seem to contribute

largely to the AU results for the composite plate signal in the low azimuthal angle (high stiffness)

directions, this is confumed by the high values of Al(.9,l.l), 3rd order symmetric wave (P-wave

resonance), seen in the 24-ply panel and the similar results for Al(l.9,2.1) obtained on the 12-ply

laminate.

Another interesting phenomenon is the quicker drop in energy content of the 2nd order antisym-

metric mode at low azimuthal angles compared to the 3rd order symmetric. For the 24-ply panel

this can be seen in the azimuthal plots of Al(.62,.68)-2nd order antisymmetric and Al(.9,l.l)-3rd

order symmetric. The 12-ply panels showed the same type of variation, in fact the results for the

12-ply panel showed an even more drastic effect of a high energy content at 15 degrees for the 3rd

order symmetric mode. This behavior has also been noted in numerous other panels (ref. 9,99).

A search for an explanation leads to a couple of places:

Does the energy üux for the antisymmetric motion draw energy over to the über direction more

than for the symmetric (Modeling efforts should provide this comparison)

How does the displacement behavior of the 3rd order symmetric wave compare with Cu (plane

strain) variation with azimuthal angle, the displacement üeld associated with the 2nd order

antisymmetric wave, and E, (plane stress), variation with azimuthal angle
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It should be noted that the measurement of energy content of the 3rd order symmetric mode at 15

degrees is relatively low for the 2 inch measurement, compared to the l inch measurement. This

tends to indicate that the 1 inch results are simply due to a lesser energy llux deviation angle for ·

3rd order symmetric mode, compared to the 2nd order antisymmetric mode, in the 15 degree di-

rection. Hence, it may be simply a matter of energy flux and geometry. An understanding of this

effect may eventually become possible by utilizing rnodeling ideas forwarded in the next chapter.

Eventually, energy flux behavior may be more directly related to engineering properties discussed
A

in the literature search (coefficient of mutual influence etc.) and these results may provide a good

experimental means of determining how local values of these parameters which measure material

anisotropy change with damage.

Another aspect associated with the higher order modes is the fact that for low wave numbers the

frequency is practically the same for a sizeable range of wave numbers. This means that the energy

seen for a certain higher order mode at a certain azimuthal angle is actually the integrated effect of

the energy associated with a range of low wave numbers. Thus, this is where the issue of how

material properties affect the nature of these curves and where they curve up (show a higher group

velocity) becomes an issue. Figures 72 and 73 show how the stiffer material in the 0 degree direc-

tion affects the shape of the dispersion curve for the higher order mode, and hence signal energy

content, frequency content, and time placement.

In general, a number of effects control how the energy originally introduced to the top surface of

the composite plate is channeled through the plate in the various azimuthal directions. These in-

clude the following:

How surface input disturbance causes different radial disturbances (elasticity solution)

Dispersion curve behavior
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Displacement associated with each mode and how it is affected by direction (this effect is es-

pecially noted in the high energy for the lst order antisymmetric wave related to the SV-wave

for the cross fiber resonance condition)

Energy flux behavior

Variation of damping effects with azimuthal angle

Directional effects of damage on different modes Ü

The identification of the higher order modes which make up the AU signal will allow the under-

standing and computation of these effects to be accomplished.

General Physical Understanding ofA U Results

A series of carefully performed experiments on the AU technique have identified the major modes

of wave propagation present in the AU signal as higher order Lamb waves with low wave numbers

k that correlate to low input angles. A number of factors contribute to this conclusion:

Results indicate disturbances are the same on the top and bottom surface (ref. 8)

Phase velocity measurements

Group velocity measurements

Frequency content

These modes agree with modes that would have maximum displacement out of plane
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These modes would be expected based on theory and characterization of input

Furthermore, an understanding of why these waves dominate the AU signal can be ascertained by

looking at several factors:
l

Elasticity solution for point load on a half space (idealization of transducer input) shows that

n the major radial disturbance takes place at low angles, corresponding to low wave numbers,

agreeing with general observed behavior and other theory

The frequency response of the transducer used in this work (representative of transduoers used

in general AU configurations) causes disturbances that are of a frequency range (TITR fre-

quencies) for the higher order modes at low angles instead of the lower frequency range that

the fundamental Lamb waves would have for low angles of 8,

The higher order modes show disturbances at a range of low input a.ngles that are ofa relatively

constant value of frequency, hence the peak in the frequency domain corresponds to a number

of points where the dispersion curve is flat and of a fairly constant value

Some of the higher order modes seen have a large u, (however, other modes seen would not

be expected to have as large of a u,?)

In simple terms this means, that if you apply a predominately normal force sufiiciently fast to the

face of a plate, then radial disturbances will emanate outward at various angles, with by far the

greatest energy content in the thickness direction or at small angles off of the thickness direction.

Disturbances that contain frequencies relating to wavelengths that are half multiples of the plate

thickness and of proper phase will meet the stress free boundary conditions and hence propagate

through the material by reflecting back and forth between surfaces. Results indicate that by using

higher frequency transduoers, it is possible to excite higher order Lamb waves. The Lamb wave

equations describe the plate modes caused by the plane waves resonating between the top and

bottom surface of the plate. Hence, a physical understanding of this behavior may be obtained by
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attempting to trace this reflection problem or by simply using the Lamb wave equations. Obvi-

ously, wave motion impinges upon the stress free surfaces and results in sizeable surface displace-

ments, to bc measured by the receiving transducers.

Another interesting fact is that in all cases the phase velocity measured for the higher frequency

was higher than the lower frequency. This may be explained by noting that for a given k value, the

higher frequency value will obviously have a higher phase velocity (v,,„„ = %). Hence, for the

range of
k’s

associated with the AU method, higher frequencies should cause a higher phase ve-

locity, for higher order Lamb waves. In this regard, experimental results again agree with a physical

understanding based on higher order Lamb waves.

Also, the wavetrain for the .0625" thick aluminum plate showed the 2 MHZ signal to dominate the

end of the wavetrain, which agrees with the expected behavior of the 2nd order symmetric Lamb

wave, relating to the long smooth slope of the dispersion curve. The small bandwidth on the 2 —

MHZ peak also agrees with the slower rising behavior of the 2nd order symmetric mode.

The experiment on tilting the sending transducer showed that by causing more of the disturbance

to be sent at higher angles of inclination to the normal causes a slight increase in the values of the

frequency peaks. This shows that the higher angle 9,, causes a higher wave number k, causing a

higher frequency value. In terms of resonance this generally relates to a longer wavelength. An-

other major point here is that this tends to indicate that the mode of propagation related to the

negative group velocity portion of the lst order symmetric mode is not contributing to the signal,

validating claims in a couple of incidences where this mode was discounted as a mode of propa-

gation, in'place of another mode with a closely placed frequency value.

Experiments performed on the tapered plate provide further information on the general nature of

the wave propagation associated with the AU method. One major interest in performing these

tests was to see if the frequency content of the signal obtained across the taper was more indicative

of the frequency content of the side where the sender was placed or where the receiver was placed.
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Results showed that the signal across the taper showed frequency peaks associated with both the

sending side and the receiving side. One notable result is that a .5 MHZ peak was produced by

placing the sending transducer on the thin side (where the lowest TTTR frequency is 1.0 MHZ) and

the receiving transducer on the thicker side. The major point is that the disturbance is not produced

solely by way of the sending transducer creating resonances directly through the thickness, but is

the result of plate waves being produced by plane type waves sent off at various angles. Hence, this

set of experiments substantiated the physical understanding obtained from experiments on the flat

plates.
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AU Modeling

As stated in the introduction, engineering requires basic models for use in relating measurable pa-

rameters to parameters which predict ensuing material behavior. The purpose of modeling the AU

technique is to relate AU parameters to parameters which describe composite material behavior.

To start with, AU results can be related to the moduli of composite materials. This is possible

utilizing concepts from our physical understanding of the AU method. Thus, the first section of

this chapter will forward a basic approach for modeling the AU method using the physical under-

standing of the AU technique forwarded last chapter. This will include a partial example for an

aluminum plate. Comments are offered on the procedure for modeling the AU ofa composite plate

and the difficulty in computing all the results. Next, comments are offered on other factors which

contribute to AU results and how to possibly account for them. This section consists of a good

deal of conjecture and is presented to foster further developments in AU modeling.

The final section of this chapter contributes statements on relations between AU modeling and fa-

tigue modeling. This is the fusing step which should help transform the AU method from a non-

destructive testing technique to a nondestructive evaluation technique.
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Simple A U Model

Utilizing concepts trom the last chapter, a procedure for modeling the AU technique may be de-

veloped. Obviously, this will involve using the theory forwarded in the last chapter along with in-

formation obtained by comparing this theory with experimental results. Speciiically, certain

assumptions are made based on experimental results. The outline for this procedure follows these

basic steps:

l. Determine spectral density of input force from transducer

2. Determine dependence of the magnitude of the radial disturbance on angle (6) [elasticity, finite

element method etc]

3. Solve I I IR problem with particular attention to displacement vectors for transverse reso-

nance modes (this gives information on frequencies of interest and on displacement for trans-

verse modes)

4. Solve Lamb wave problem for higher order modes and obtain basic dispersion information

5. Solve for u, coefiicient values, at low wave numbers, by using stress free boundary conditions

· and setting the value of the coefiicient for partial wave (composite solution) or P-wave po-

tential (isotropic plate solution) equal to relative magnitude based on radial value of 6, from

elasticity solution or other method like frnite element method

6. If solving for a general direction on the composite material, solve for the value of 1-,, and set

the magnitude of the corresponding shear wave equal to the same value and then solve for u,

again

7. Add the values of u, together from both the P—wave and the SV-wave
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8. For composite plate de steps l-7 for different azimuthal angles

9. Cornpute energy fluxes for various azimuthal angles on plots

10. Compute the energy flux by some sort of integration scheme for a given region of area related

to regen ef arc associated with how many azimuthal angles are utilized (this is discussed later)

ll. For each mode of propagation over a range of frequencies calculate the magnitude of disturb-

ance for that mode (ie. 14,, magnitude of E, vector, etc.)

12. Compare variation of magnitude indicator with frequency to spectrum output and compare

values of relative peaks

This gives us basic information on the relative values to expect for various peaks in the frequency

spectrum for an undamaged specimen and an indication of what AU values should be relative te

each other. Moreover, for a composite material this provides a means for predicting how various

AU pararneters may vary with azimuthal angle. At the very least, it provides a means for predicting

what frequency content should be present for various applications, contributing a tool which may

be used for developing optimal AU systems to get the most informative AU signal. Also, with

improvements in the model and the method in general, this may provide a means for keeping track

of the materials energy dissipating mechanisms. An understanding of how the energy in the various

modes, with their various displacement and stress fields (gven by theory), is transmitted or dissi-

pated may provide important information on the mechanical effects of different damage states.

Conversely, this provides a means for identifying the damage state and perhaps the magnitude of

its mechanical effect. This type of understanding is possible now that a physical understanding of

the AU method for composite materials exists.

Information on stiffness may be determined by measurements made in the time domain which in-

dicate phase velocities and group velocities. If a phase velocity and a group velocity can be exper-

imentally measured for a gven frequency range over the length of the signal, it may be possible to
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obtain a fairly accurate dispersion curve. Using theory, the same dispersion curve may be con-

structed a number of times using various values for material properties. By comparing dispersion

curves, it may be possible to infer (eg.regression techniques) the variation in material properties

with angle for that direction. In fact, a system could be designed that has one sending transducer

and two or more transducers at various azmimuthal angles to determine material properties in a

number of directions. The system may also be improved by filtering the signal to certain frequency

ranges to keep out the effects of other modes and to hence make velocity measurements easier.

Modeling efforts may make it possible to make quick stiffhess measurements in all directions via

the AU technique. However, this will involve using more advanced signal processing techniques,

such as the analytic signal (refs. I6 and l47). Also, it will entail using an altered experimental set-up

with multiple transducers and various other experimental additions. Again, interpreting results from

this type of arrangement are possible now that a physical understanding of the AU method exists.

In general, the long wavetrain associated with the AU method is packed with information from the

numerous modes and ranges of wavenumbers on the dispersion curve, which contribute to the

signal. Now that these modes have been identified, experimental set-up and signal analysis can be

used to obtain as much information as possible on material state. Undoubtedly, this will take years

of further work, but now that a basic physical model is forrnulated, this work has a direction to

follow.

Aluminum Plate Application

ln order to understand the application of the modeling approach, a short example is provided to

exemplify how the frequency spectrum for a Lamb wave mode may be calculated for AU on a

.0625" thick aluminum plate using 2.25 MI·lz transducers. Also, this application of the model acts

to exemplify certain aspects of the physical understanding which were tacitly stated in the last

chapter. The effects of other facets of the problem, such as frequency dependent attenuation, are

AU Modeling 20l



not accounted for in these predictions. Because of this and the simplification of other facets of the

problem, the purpose here is not to reproduce the exact spectrum, but to show the general trend.

The AU method was performed on the .0625' thick aluminum plate, using 2.25 MHz transducers.

The characterization of the sender was shown in figure 24 in chapter 3. The effect of the transducer

frequency response and the effect of the way the radial response varies with the angle from the

normal are included in calculations. First, the functional dependence of the magnitude of the input

was shown to be cos*(9,). This value was just substituted into the value for the P·wave magnitude

in the displacement equations. Displacement values for a set frequency were then multiplied by the

magnitude of the transducer response for that frequency to account for the frequency dependence

of the input.

A plot of u, (displacement) magnitude is offered for the lst order antisymmetric mode on the .0625'

thick plate, along with a comparison spectrum for the same plate, in figure 74. This plot shows that

the frequency dependent behavior of the displacement values are similar to the behavior of the l

MHz peak in the AU spectrum. Note that both the model and the signal spectrum show a curve

which rises rapidly to a peak at 1 MHz and trail off to zero at about 1.3 MHz. Another point of

interest is the symmetrical nature of the 2.0 MHz peak and the minima value at around 2.0 MHz

in the signal spectrum. This may be due to the combined effects of the lst and 2nd order symmetric

Lamb waves, where the lst order is contributing to the rising part of the left part of the peak (e.g.

for lower frequency values after the minima of this function).

An additional, concem here is the idealization of the cos’(0,) as the input variation. In reality,

Fresnel and Fraunhofer diffraction effects are most likely taking place. Future models should at-

tempt to include these type of effects on the input and, hence AU results.

Ultimately, a less simplified model should sum the effects of every Lamb mode that is within the

frequency range of the system. This would provide a means for noticing abnormalities in results

and perhaps at some point modeling these eüects.
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A couple of the more pertinent issues conceming this approach include:

How the effect of the input disturbance is included in the Lamb wave equations

What to use to model the magnitude of the output for AU signal (eg. u, etc.)

Here the input stress (calculated from the elasticity solution) was simply used to control the mag-

nitude of the P-wave potential. However, there may be a more appropriate means of accounting

for the input.

For normal mode transducers, it would bc expected that the u, value at the top surface would cor-

relate most closely to the output signal, but for other measurement techniques, the values of other

displacement terms or stresses may be of use.

Discussion of Applying Model to Composites

The problem of modeling the AU method for composite materials is significantly more complicated

than for isotropic materials. Anisotropic properties not only cause the variation ofthe AU response

with azimuthal angles, but make the calculation of Lamb wave dispersion curves much more

complicated due to the variation of properties with the angle off the normal and the coupled be-

havior of the quasi P-wave, quasi SV-wave, and quasi SH-wave. Major problems, beyond concept,

exist with the computing problem and the huge effort that it takes to even obtain the basic

dispersion information in a general direction using the uncoupled mode method.

First, the elasticity problem provides stresses to indicate the magnitude of the disturbance at each

input angle 8, or 0,. This involves a good deal of computation, just to get the stresses. Then, the

shear and normal stress are each used in separate calculations with the Lamb waves. However,
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there may bc a more appropriate means for including both these stresses in one Lamb wave dis-

placement equation solution.

Next, the general solution for a Lamb wave is the summation of a six term displacement equation.

The 6 term displacement equation is then differentiated for strains and utilized in the constitutive

relations to get stresses. This then creates very long terms which descxibe the stress field. These
h

equations are then used in the stress free boundary conditions to create a 6 by 6 system ofequations

which need to be checked for the dispersion condition and then can be used with the elasticity re-

sults to calculate the coefficients of each of the 6 partial waves. Just to find a point on the curve

involves stepping through this procedure 100’s of times. Then to obtain the whole curve involves

going through the whole procedure including the search for the right solution hundreds of times.

This must be done for a number of modes and then a number of azimuthal angles.

Finally, considcration must be given to energy flux. Calculating the energy flux deviation for a

Lamb wave, where the displacement equation is represented by 6 terms, creates another huge

computational chore. Accounting for the effect of the energy flux deviation causes one of the major

conceptial difficulties associated with modeling AU of composites. The following is a simple ap-

proach for including the effect of energy flux in AU results:

Solve the Lamb wave problem for certain discrete azimuthal angles

Calculate energy flux direction for each Lamb wave mode

Solve the geometric problem in order to find, for a particular transducer size and transducer

separation distance, where on the arc subtended by the receiving transducer the effect of dis-

placement is present

Integrate displacement for each azimuthal angle to find a distribution of displacement along the

arc
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Then the value for each experimental reading can be compared to that of the integrated value

for the distance over the arc associated with the receiving transducer diameter

This may mean that attenuation, with d, is caused by the decreased range of azimuthal angles the

receiving transducer covers for increased separation distance between transducers. Additionally, this

may explain why the 3rd order symmetric mode declines slower at low azirnuthal angles than the

2nd order antisymmetric mode for d = l inch. Since the flux deviation for plane waves can be on

the order of40 degrees for a composite material (ref. 128), this effect can not be overlooked for AU,

especially for situations utilizing small transducers separated by larger distances.

Ideas for More Advanced A U Modeling Eßorts g

Obviously, the modeling mentioned above assumes the absolute ideal situation of a material with

a lincarly elastic constitutive relation and no damage or inhomogeneities. Work on including the

effects of nonideal situations is still being developed for plane wave propagation, as was mentioned

in the second chapter. Since we understand basic modes of propagation, future work could include

introducing these considerations to the present understanding of AU results. It may be especially

important to include more complex effects to help model how damage may alter AU results. Since

little information in general exists conceming Lamb waves in anisotropic materials, models includ-

ing more advanced material behavior would most Likely involve even further theoretical work.

Additionally, the already prohibitive calculations could very easily become totally irnpractical.

However, theoretical work could still be utilized to provide qualitative information and to develop

reasonable methods of approximation.
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Source Modeling

Also, possible improvements could be made by using finite element or frnite difference to determine

radial variation of input disturbances for the composite plate for different azimuthal angles. This

could allow for inclusion of the plate geometry, the transducer size, and the spatial variation of the

transducer disturbance.

Geometric Effects

Another issue to be considered is that of geometry associated with the source and receiver. In this

regard, a host of drastic idealizations are involved with the present modeling of the AU method.

First, the sending transducer does not produce a perfect plane wave. In fact, it would probably be

more appropriate to model the source using cylindrical coordinates, such as was done for an

isotropic plate (ref. 140). Note, this analysis yielded a Bessel function solution which degenerated

to a plate wave type solution at distances far from the source. Although this analysis is not suited

for anisotropic materials, it may be advisable to at least note the 1/r dependence of displacement

with distance from source.

Also, it should be noted that the receiving transducer is actually picking up disturbances associated

with a range of angles. This effect is especially large when the distance between transducers is small.

This practical difficulty along with angular variation of energy flux is consistent with the fact that

AU results show that the lst order symmetric mode decreases much slower at small angles than the

2nd order antisymmetric mode.
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Time Domain Information

The prediction of the voltage/time signal for an aluminum plate has been accomplished utilizing a
L

variety of theoretical approaches. However, no such results exist for a composite material. Solving

this problem would provide an extremely useful tool for understanding more of the physics asso-
L

ciated with the AU results and make time domain calulations of wave velocities and calculation of

material properties more feasible.

The approach utilized by Vusedeven and Mal (ref. 129) provided results for the response for a source

on the face of an aluminum plate that resembled AU results. Their approach utilized the analysis

of Lamb wave equations to develop a fairly efficient computational scheme. However, this ap-

proach has not been extended to anisotropic materials. Application of the exact approach is not

theoretically possible for an anisotropic material, however a variation of the approach may provide

an eventual means for developing a method to predict the voltage/time signal for a composite ma-

terial. Work of this type would most likely require a concentrated effort from researchers in a

number of areas working together. A more practical approach may be to use a multi-transducer

configuration with AU to measure phase velocities and group velocities and use this and spectral

information to reproduce dispersion curves for use in NDE (refs. 12 and 13). Hence, a single

measurement could be used to reproduce a whole section of a dispersion curve. However, this

approach would involve a great deal of instrumentation and other developments that would require

years of work.
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Relating A U to Damage Modeling (NDE)

A number of approaches could be used
to-

relate AU results, AU modeling and damage modeling.

These ideas run from making very simple empirical relations to making very idealized, yet complex

energy arguments. A good middle ground for starting is to try to utilize how changes in mechanical

properties arise in both models. The real strength of the AU technique may be its interaction with

various material components on a high frequency scale and the attendant mechanisms for energy

loss or redistribution due to damage, imperfections, inhomogeneities, or general nonideal material

behavior.

First, the AU measurement may be utilized directly with the simple modeling procedure forwarded

by Poursartip and Beaumont (ref. 108). Application of the AU method with this model simply W
involves making empirical relations between AU measurements as a fimction of fatigue cycles and

failure. The AU value has been shown to be more sensitive than the stiffness measurement as a

means of tracking damage (ref. 88). This is due to the large effects of damage on the high frequency

waves associated with the AU method. But, the mechanical understanding of the effects of damage

on the wave propagation are not nearly as developed as the understanding between damage and

stiffhess change. Therefore, at present the use of the AU value in the model would be totally ad

hoc. However, future developments with models such as the one being developed here may change

this. ln fact, the model presented posesses the possibility of obtaining stiffness information and

may be further developed to include the effects of damage on AU values through changes in

stiffness, damping, reflections, scattering, etc..

Stress redistribution a.nd concentration is one area where the AU method shows promise of relating

to the critical element model, especially with an understanding of the stress states associated with

Lamb waves. Eventually, the variation of AU with azimuthal angle may be utilized to give local

values for F'~(r1). Thus, it may be possible to obtain information on impending failure modes and
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stress concentrations by noting how the local stress state or displacement field for Lamb waves is

modified by damage ir1 a material. In other words, the AU method may possess the ability to map

the way a given type of displacement (eg. longitudinal and shear) are distributed in a local region

of material. The exact relations between how the redistribution of stress for a high frequency Lamb

wave and fatigue loading is not directly clear. However, starting with this model of wave propa-

gation for the AU method, work can be geared toward deriving the elasticity problem that would

produce the results given for stress state changes of the AU waves. At the very least, the AU results

may be utilized to understand how damage is controlling mechanical behavior at various azimuthal

angles.

In tl1is vein, research has already been conducted by Duke and Kieman (refs. 70 and 100) to utilize

the variation of AU with azimuthal angle to predict the direction of damage growth in composite

materials that are impacted with a steel ball. This work has shown that damage shows some

tendency to grow in directions of high AU.

4
Effects of damage on AU results for some directions has been noted (refs. 102 and 130). How

certain types of damage states interact with material motion may yield a means of identifying certain

damage modes and additionally assessing their mechanical effects. However, caution should be

used in relating the mechanical behavior of a high frequency stress wave to other forms of loading.

Also, it has been noted that localized impact damage has even caused AU measurements to increase

in some directions (perhaps due to redirection of reflected energy) this could perhaps help to cal-

culate stress concentration factors.

In general, the present physical understanding of how material properties affect AU results provides

understanding of certain AU results and paves the way for utilizing the AU technique to determine

material properties, thus providing information for use with damage models. Information may also

be obtained on other energy dissipating and redistribution mechanisms for use in damage models.
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It may involve a good deal of future work to reach this level of understanding, but the present

groundwork at least provides a starting point for research efforts.

Although the present modeling efforts are rudimentary, they provide a building block for utilizing

the physical understanding, obtained through experiment, to develop advanced models for NDE

applications. The first major problem in this effort is the computing difficulties associated with the

composite material AU modeling. Unfortunately, the inclusion of more advanced models would

only compound this problem. Perhaps improved computer technology will lessen this problem.

In any case, by relating AU models to material properties, it is hoped that further relations may

be made to prediction models of material failure, due to things such as fatigue.
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Conclusions and Overview

The AU method has proved to be a viable NDT technique in a wide variety of laboratory studies

(refs, 4,6, and 103). Presently, the need exists to usher the method into practical real world appli-

cations. For this to take place, research on the AU method has to extend beyond feasibility studies.

As mentioned, a primary need has been a more sound physical basis for AU results. ln fact, prior

to this dissertation, no general physical explanation for AU results in composite materials had been

offered. The theoretical methods most often used for understanding results in aluminum plates are

impractical and in most cases impossible to apply to composite plates. Hence, it is the purpose of

this dissertation to provide a basic paradigm by which to understand the mechanics of the AU

method for composite materials. This stands to contribute to the application of the AU method

in the following ways:

Acceptance is based on physical understanding

Physical models allow forethought to be given to applications, so that proper instrumentation

is utilized and results can most appropriately be interpreted

Physical models may make it possible to understand how certain forms of damage may effect

AU results
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Physical models can be used to interpret AU results in terms of the mechanical state of the

material, and hence lead to NDE applications - the ultimate goal of an NDT technique

Thus, this dissertation is viewed as a building block in the maturation of the AU method into an

NDE technique.

Experimental Work

A basic ingredient of this work is the use of experimental results to guide physical understanding

and to validate theoretical predictions. In fact, a large part of the contribution of this work is the

painstaking measurements made to obtain the experimental results presented in chapter 4. More-

over, it is hoped that the experimental results presented here will provide the basis for more ad-

vanced models and increased basic physical experimentation.

Physical Understanding ·

The basis of the physical understanding of the AU method was the identification of higher order

Lamb waves as the dominant mode of wave propagation. This involved comparing velocity

measurements and frequency content of AU measurements to Lamb wave theory predictions.

Additionally, the variation of the input disturbance was shown to atfect AU results. An elasticity

solution was utilized to account for the angular dependence of the radial disturbance for a point

force input. The radial variation of stress was then input to the Lamb wave solution. The fre-

quency content of the input was also shown to affect AU results and was accounted for by multi·

plying the output spectrum by a frequency dependent weighting function.
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Current physical understanding of the AU method provides a means for explaining experimentally

observed behavior of AU sigrnals for composite materials, including the way certain components

of the signal vary with azimuthal angle.

One major contribution here is the identification ofwhat type ofmotion each frequency component

belongs to and what waves or partial waves cause that motion. This helps understand phenomena

such as why the .234 MHz signal content is of a lnigln energy value in the 90 degee direction for the

24 ply panel. This explains the slight increase seen in the overall energy content of the AU signal

at 90 degrees from lower values at 80 degees (refs. 99 and 130).

Also, the high radial disturbance for high angles in the über direction explains the large signal con-

tent in the beginning of the signal for the zero degree direction, due to the higher group velocity.

Speciücally, the fact that the über direction causes more energy to be directed at higher angles, re-

sults in more energy being present at higher wavenumbers where the group velocity is of higher
‘

value. The shape of the dispersion curve and energy flux also contribute, along with the higher

input energy, to the large Al in the über direction. Also, this provides a means for relating how

the high modulus of the über pulls energy from the 15 degree direction, and hence causes such high

attenuation between the 1 and 2 inch distance for the 3rd order syrrnmetric mode.

Additionally, the fact that the phase velocity is given by circular frequency over wave number ex-

plains why the higher frequency waves have higher phase velocity values than the lower frequency

waves. Thus, if one assumes the wave numbers are comparable, then the phase velocities should

be roughly the sa.me ratio as the frequencies. This agees with tlne experimental data for all the wave

components that are identified as higher order Lamb waves.
O

This physical description also provides a means for understarndirng certain aspects of the problem

with reproducibility. Speciücally, the fact that the major mode of propagation seems to be waves

that are excited by stress waves sent off at just slightly off the norrxnal means that a slight cantor of

the transducer (just a matter of a couple of degrees) could drastically effect how much energy is sent
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in a given direction. This could explain the noted observation that the larger transducers cause

much more repeatable results than the smaller transducers- due to the more stable state of a large

diameter transducer. Moreover, this obviates the fact that repeatibility is most difficult in the fiber

direction- due to the fact that even more of the energy content is drawn in from the large angles.

Finally, the Lamb wave analysis provides a means of analyzing how damage and certain material

states may interact with wave motion. For instance, the stress state of a given Lamb wave mode

can be compared to known effects of damage on stress. Thus, a delamination could be treated as
i

a stress free boundary and then a wave could be excited that possessed a nonzero stress for that

position. Next, a Lamb wave could be excited that possessed the proper boundary condition or

most nearly (ie. the major stress field for that mode satisfy the boundary condition). Unfortunately,

existing data for the delamination signal contained two modes where the major stress met the stress

free boundary of the delamination. However, these waves were still severely attenuated. Finally,

it is interesting to note that the initial application of the AU method involved determining shear

strength by using measurements in the 90 degree direction of unidirctional panels (ref. 4). The re-

sults of this work, combined with the physical explanation would predict that the dominant mode

in this case would be the lst order antisyrmnetric mode. For the low wave number results seen in

experiments, this would show a wave that produced mainly shear stress in the direction the wave

was sent. Hence, the high resin areas that weaken the shear strength would also cause damping

of the shear stresses caused by the antisymmetric wave. Thus, the physical explanation forwarded

may be utilized in the future to identify the proper AU parameter to analyze, for a given type of

damage assessment and strength evaluation.

The importance of the damage position relative to the source must also be stressed. Ifthe damage

is so close to the source that the Lamb wave is not yet excited, then attention should be centered

on how the stress waves emanating directly from the source may interact with the damage and how

that may affect the resulting Lamb wave. This again relates to the "grey area' of the geometry

problem associated with the region needed for the input plane waves to reflect and interact sufii-
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ciently to cause Lamb waves. In general, the physical interpretation of the AU method must

acknowlege the importance of the source and the area close to source in AU results.

Implementation ofA U

The implementation of the AU technique requires that reproducible, quick, inexpensive, and in-

formative measurements can be made on materials that are in structures. In order to achieve these

objectives, a number of advancements need to be made in separate areas.

Practical Difficulties

A number of practical diüiculties need to be solved before the AU method can be fully utilized.

These involve simple type of concems that need to be accounted for in transfomiing the lab ex-

perirnents into a working field method. Hopefully, some of the problems which may arise in this

transformation may be alleviated by the physical understanding forwarded in this dissertation.

First, the digital calculations used in these experiments are too slow for many real applications.

However, an RMS voltmeter and a specified filter may be utilized to obtain the energy ofa specified

mode that would give the proper information. Obtaining the right experimental hook-up could be

expedited by using calculations from the physical understanding forwarded in this dissertation.

One practical difficulty of the AU method is the reproducibility of results. The major reason is that

a slight reorientation in the direction of the transducer face drastically changes the energy input for

the dominate angles seen in the AU signal. Another problem in this regard is the couplant. The

solution to this problem involves utilizing new experimental techniques and transducers, perhaps
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laser excitation. However, laser input is not very easy to characterize. In any case, a great deal of

attention needs to be given to viable sources and sensors. Also, complementary efforts should be _

directed toward characterizing these sources and their mechanical interaction with materials.

In order for the AU method to receive mass utilization, the results need to be standardized and

must lead to easy interpretation. Although, early application of the method on thin specimens in-

dicated that a low AU energy value correlated to a low strength, the application of this idea to more

complex geometries of higher dimension with different material properties in different directions

causes this type of interpretation to become difficult. For instance, the effect of impact damage

has caused the AU energy to be redirected in certain directions, so that the AU energy was even

higher in these directions after damage than before, however, it may not be correct to interpret the

material as being stronger. Generally, damage may either attenuate or reflect energy- physically

understanding wave motion helps to interpret results of these mechanisms for help in standardi-

zation of the AU method.

One solution to the standardization and interpretation problem is to continue trying to relate the

mechanics of the AU technique to the mechanics of damage models. For instance, arrayed

transducers may be able to note a very localized alteration in directional material properties by

measuring Lamb wave velocities. This may then be compared to predicted changes by damage

models or conversely the material properties could be fed into damage models. Also, more effort

can be directed at relating actual energy attenuation in the AU signal to damage and then this in-

formation to damage model. Ultimately, only with increased modeling and computations can the

AU method be united with damage models to yield usable NDE methods for general application.
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Instrumentation

A number of the problems which exist with the AU method may be solved by modifying instru-
A

mentation for speciüc applications. Hence, a good deal of research needs to be directed at devel-

oping new AU systems. The following serve as a list of instrumentation that needs to be

· developed:

Develop a system with RMS meter and capabilities for gating and ültering signal

Develop system for more repeatible characterized input that does not require a laborious op-

erator procedure

Develop a system that has a number of arrayed and multiplexed transducers that yields time

domain , frequency domain, and arnplitude results

Develop real time computer analysis capabilities

Obviously, this is only a partial list of possible ideas for developing the experimental means to use

the AU for real world applications. Hopefully, further ideas and work in this area will spawn from

the physical understanding of the AU method developed above.

Advanced Applications

Smart skins is one of many advance technologies that may beneüt from progress being made in the

AU üeld. The basic goal of smart skin technology is to be able to sirnulate, for aircraft wings, the

activities of the central nervous system in human beings. Work in this area is focusing on the use

of optical übers embedded in materials to sense the vibration of the material and to show damage
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when the über is broken. Also, a good deal of conccntration is centered on the great computational

effort associated with all the information.

AU may provide a way for checking the integxity of the material where there are not übers, since

it would be highly impractical to have the optical übers everywhere. In particular, a source, such

as KYNAR ülm, could be embedded at one location and the optical über at another location could

act as the receiver. Thus, the components could act to perform an in-situ AU test that could serve

the smart skin function of sensing pain from an abnormality in the material. Depending on the

sophistication of the software utilized, the severity of the damage, the location, and other variables

could be accounted for in order to make certain decisions and to jvc as much information as

possible. In general, the AU method may ünd a niche in the smart skin technolgy.

Future Work

The basic physical model based on the elasticity solution, I I IR, and Lamb wave analysis opens

many doors for directions to complement this work and to further develop the AU method. A

partial list of future areas for possible research work includes:

Study of interdcpendence of parameters used in physical model

Develop self contained and efücicnt codes of computer model

Develop more complex models including effects of damage on wave dispersion and energy

dissipation

Use FE or FD to model the disturbance input by the transducer

I
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Try to apply Vusedevan and Mal’s approach, used on isotropic Lamb wave equations, to

anisotropic materials

Try to make predictions on which modes and which directions might be more affected by

various types of damage and to perform experimental validation

Use the model to develop better experimental set-ups

Do the full calculation of how AU varies with azimuthal a.ngle including the effect of energy

llux (this will require using a lot of computer time on a super computer)

Alter model for use with other and more general experimental arrangements

Develop application of AU to smart skin technology

More work should be devoted to understanding the behavior of unidirectional panels at 15

degrees, this may help ürrd and evaluate über breaks

Expand analysis to more general laminates

Do fatigue test work and really try to correlate AU results and critical element model

All of these issues are topics that could be explored in great detail and would undoubtedly con-

tribute to the AU method and associated technology. In general, a great number of areas exist for

further research on the AU method, due to the newness of the method and its importance to new

technologies. Furtherrnore, now that the AU NDT method for composite materials has shown

experimental merits and a physical understanding of results exists, wise choices for further research

areas and proper approaches can be made.
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Closing Remarks
O

A wealth of information is present in the AU signal. This information may be especially helpful,

when consideration is given to the variation of the AU signal with azimuthal angle for composite

materials and the great variation in local composite material state. Past research efforts have relied

on hit or miss experiments and complex signal analysis schemes to obtain as much information as

possible from AU analysis of composite materials. The physical understanding and modeling ef-

forts of this disertation are meant to add order to the search to obtain as much information as

possible from AU results.

The physics and wave propagation associated with this work are interesting in their own right. lt

is interesting to note the great deal of information which can be ascertained from Lamb wave

analysis. Furthemrore, it is fascinating to experimentally observe behavior qualitativcly and

quantitatively predicted by analyzing dispersion curve information. This dissertation confirms the

usefulness of conventional theoretical tools for understanding experimentally observed wave mo-

tion. Also, this work points out the physics associated with the AU results in composite materials.

The physics shows the complex situations associated with trying to understand the basic mechanical

behavior of composite materials. Hopefully, this understanding may be of use in other areas of

research associated with composites.

This work highlights how source characteristics (frequency, orientation, etc.) and experimental ar-

rangement control waveguide effects, since all of these influence acoustic emission results, the same

complexities involved in AU analysis should be considered in understanding acoustic emission re-

sults. For instance, researchers in acoustic emission should be aware of the effects the orientation

of the AE source may have on what waves are set-up. Additionally, it points out the importance

of the receiver orientation (azimuthal angle) relative to the emission source on what results are de-
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tected by the receiver. Also, it suggests that damage in the material between the acoustic emission
and the receiver may aifect results.

In closing, the AU method shows promise as a means of assessing the quality of composite mate-

rials. With increased understanding of the physics associated with AU results, such as given here,

the application of the AU method for composite materials may further contribute to effoxts to

nondestructively evaluate these materials in real applications. Thus, the purpose of this dissertation

is to contribute, through experimental data and wave motion analysis, a physical

understanding/model of the AU method for the purpose of developing a reiined AU method for
use with advance composite material systems.
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*****Program to compute varlation of disturbance ********
*****with angle theta as a result of force on a composite*******
*****half space in fiber and cross fiber direction *******

CHARACTER*12 DIFF ·
COMPLEX A(2),B(2),C(2),D(2),U(2),V(2),SGP(2)
DIMENSION S(6,6),RL(2),SG(2),AMP(2) .
HRITE(*,*) " FILENAME FOR OUTPUT”
READ(*,*) DIFF
OPEN (UNIT·9,FILE-DIFF)
PI-3.1456
El-21.E6 4
E2-1;4E6
V12-.3

. GIZ-.85EGG23-.5E6 E
V23·.5*E2/G23-1
V21¤EZ/E1*V12
VI3•VlZ
E3•EZ _
$(1, 1 )-1/E1

_ S(1,Z)··V12/E1 „
$(1,3)--V13/E1
5 ( Z . 2 ) -1/E2 .
$(2,3)--V23/E2
$(3,3)-1/E3

‘

$(4,4)-1/G23
S(5,5)•l/G12
S(6,6)•1/G12
DO 30 IF-1,6
DO 25 1Jé1,6
HRITE(*,*) S(1F,IJ)

25 CONTINUE
30 CONTINUE

A(l)·CMPLX(S(1,1),0.)
B(1)•CMPLX(-(2.*S(1,3)+S(5,5)),0.)
C(1)·CMPLX(S(3,3),0.)
A(Z)·CMPLX(S(2,2),0.)
B(2)·CMPLX(-(2.*S(2,3)+S(4,4)),0.)
C(2)·CMPLX(S(3,3),0.) V
0(1)-CSQRT(B(1)*B(1)-CMPLX(4.,0.)*A(1)*C(l))
0(2)·CSQRT(B(2)*B(2)-CMPLX(4.,0.)*A(Z)*C(2))
U(1)-CSQRT((-B(1)+D(1))/(CMPLX(2.,0.)*A(1)))
U(2)·CSORT((·8(2)+D(Z))/(CMPLX(2.,O.)*A(2)))
V(1)·CSORT((-B(1)~D(1))/(CMPLX(2.,0.)*A(1)))
V(2)·CSORT((-B(2)-D(2))/(CMPLX(2.,0.)*A(Z)))

‘

D0 100 1-1,91
K-I-1
RK·FLOAT(K)
REK·RK*PI/180.
CS-COS(REK) ·
SN·SIN(REK) V

HRITE(*,*) CS,SN
RL(1)·S(1,1)*$N**4+(2.*S(1,3)+$(5,5))*SN**2*CS**2

++S(3,3)*CS**4
RL(2)-$(2,2)*SN**4+(Z.*S(2,3)+S(4,4))*SN**Z*CS**Z

++S(3,3)*CS**4
NRITE(*,*) RL(1),RL(Z)
SGP(1)-U(1)+V(1)
SGP(2)•U(2)+V(2)
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SG(1)-SGP(1)
SG(2)·SGP(2)
SG(1)-SG(1)*(S(1,1)*S(3,3))**.5*CS*CS/RL(1)
SG(2)-SG(2)*(S(2,2)*S(3,3))**.5*CS*CS/RL(2)
IF(I.EQ.1) AMP(1)·SG(1)
1F(I.E0.1) AMP(2)·SG(2) ~SG(1)·SG(1)/AMP(1) —
SG(2)·SG(2)/AMP(2)
HRITE(9,90) RK, SG(l), SG(2) —

90 FORMAT(3E18.5)
100 CONTINUE
990 STOP
995 END
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CHARACTER*l2 DIFF
COMPLEX A(2),B(2),C(2),D(2),U(2),V(2),SGP(2)
DIMENSION $(6,6),SS(6,6),GL(3),TL(4,3),EM(3),
NRITE(*,*)

”
FILENAME FOR OUTPUT”

READ(*,*) DIFF
OPEN (UNIT-9,FILE-DIFF)
PI-3.1456
El-Z].E6 ·
EZ-1.4E6
V12-.3 .
G12-.8SEG
G23•.5E6
V23·.5*E2/G23-1
VZ1-E2/E1*V1Z
V13·V12
E3•EZ
SS(1,l)¤1/E1
$S(1,2)--V12/E1
SS(1,3)•·V13/E1
SS(2,2)·1/EZ
SS(2,3)--V23/E2
SS(3,3)-1/E3
SS(4,4)-1/G23 ·
SS(5,5)-1/G12
SS(6,6)•1/G12
WRITE(*,*) ’INPUT AZIMUTHAL ANGLE’
READ(*,*) AZ
DO 200 ITH·1,90
TH·FLOAT(ITH)
DATA AR(6,6)/36*0./
SN-SIN(AZ)
CS¤COS(AZ)
AR(1,1)-CS**2
AR(1,2)·SN**2
AR(1,6)-CS*SN
AR(2,l)-SN**2
AR(2,2)-CS**2
AR(2,6)~·SN*CS
AR(3,3)-1. ‘
AR(4,4)-CS
AR(4,5)·-SN .
AR(5,4)·SN
AR(S,5)·CS
AR(6,1)·-2.*SN*CS
AR(6,2)·2.*SN*CS
AR(6,6)•CS**2-SN**2
DO 10 I-1,6
DO 10 J-1,6
DO 10 M-1,6
DO 10 N-1,6
S(I,J)·SS(M,N)*AR(I,M)*AR(J,N)

10 CONTINUE
SA-$(1,1)
SB--2.*S(1,6)
SC·2.*S(l,6)+S(6,6)
SD·~2.*$(2,6)
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SE¤S(2,Z)
SF•$(5,5) _
SG--Z.*S(4,5)
PII . P I A A \
VII U\ I, 'Il

SI•S(l,S)
SJ--(S(I,4)+S(5,6))
SK-S(2,5)+S(4,6)
SL·~S(2,4)
TA·SA*SF-SI*SI
TB·SB*SF+SA*SG-2.*SI*SJ
TC¤SC*SF+SB*SG+SA*SH·SJ*SJ·2.*SI*SK
T0•S0*SF+SC*SG+SB*SH-Z.*SK*SJ-2.*SL*SI
TE•SE*SF+SD*SG+SC*SH·2.*SJ*SL—SK*SK
TF-SE*SG+SD*SH-Z„*SK*SL
TG-SE*SH-SL*SL
A·TB/TA
B-TC/TA
C•TD/TA
0-TE/TA
E-TF/TA
F·TG/TA

SUBROUTINE OR INPUT USING SEPARATE SOUR
NRITE(*,*) A,B,C,D,E,F
DO Z0 I¤I,3
HRITE(*,*) ”PUT IN MU VALUES'
NRITE(*,*) I
REAO(*,*) EM(I)

20 CONTINUEDO
30 I-1,3

TL(2,I)•SF*EM(I)**2+SG*EM(I)+SH
TL(3,I)-SI*EM(I)**3+SJ*EM(I)**2+SK*EM(I)+SL
TL(4,I)-SA*EM(I)**4+SB*EM(I)**3+SC*EM(I)**2+SO*EM(I)+SE

30 CONTINUE
GL(1)··TL(3,I)/TL(2,1)
GL(2)··TL(3,2)/TL(Z,2)
GL(3)•-TL(3,3)/TL(4,3)
CA·EM(3)*GL(2)*GL(3)-EM(2)
CB-EM(I)—EM(3)*GL(l)*GL(3)
CC·EM(2)*GL(I)-EM(1)*GL(2)
AT-COS(TH)+EM(1)*SIN(TH)
AB·SIN(TH)·EM(1)*COS(TH)
BT-COS(TH)+EM(2)*SIN(TH) ·
BB-SIN(TH)-EM(2)*COS(TH)
CT-COS(TH)+EM(3)*SIN(TH)
CB-SIN(TH)-EM(3)*COS(TH)
SRA-CA*AT**2/AB+CB*BT**2/BB+GL(3)*CC*CT**2/CB
SRB•GL(1)*CA*AT/AB+GL(Z)*CB*BT/BB+CC*CT/CB
SR-·COS(TH)*REAL(CMPLX(0.,1.)*SRA)
TR--COS(TH)*REAL(CMPLX(0.,1.)*SRB)
HRITE(*,*) TH,SR,TR

200 CONTINUE
STOP
END
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c*****Program to compute dispersion curves, displacements ********c*****for an isotropic material
********C OIMENSION AM(300),BM(300),ZTM(300),CCM(300)C OIMENSION BBM(300),0MM(300),RVM(300)

CHARACTER *12 DISC, DISS, DIFF
NRITE(*,*) " FILENAME FOR OUTPUT”
READ(*,*) DIFF
OPEN (UNIT¤9,FILE-DIFF)
NRITE(*,*)

“
INPUT I-I FOR SYMM. I--1 FOR ANTI. °READ(*,*) K

REK-FLOAT(K)
IFF-I
VP-ZSOOOO.
D-.0625/Z. ,
VS-120000.
IF(K.EO.1) VR·.7*VS
IF(K.EO.—1) VR·.95*VS

CI||#LOOP TO VARY OMEGA (FREQUENCY VALUE) ##I###|#NOZ-1
NOT•IO0
OO ZOO NZT-NOZ,24O
ZT¤NZT/2.0
IOV·0
IF(K.EO.-1) NOT·IFIX(VR*ZT*.OOI)-3
IF(K.EQ.·I) GO TO 25
IF(IFF.EQ.1) NOT-IFIX(VS*ZT*.001)+1
IF(IFF.EQ.O) NOT·IFIX(VR*ZT*.0O1)-325 CONTINUE 'DO 80 NOMG-NOT,10000OO

C IV·0
C IOV¤O

·C OMG·NOMG/0.0001
IF(K.EO.-I) OMG-(NOT~(NOMG-NOT))/.001
IF(K.EQ.~I) GO TO 28
OMG·NOMG/.001

28 CONTINUE
C OMG-NOMG/.000001
C SSSS LOOP TO FIND VALUE FOR ZETA IN DISPERSION EONS. SSSSSSC ZT·NZT/10000.0
C ZT-NZT/100.0
C ZT•NZT

ZTT¤ZT**2 .DVP·(OMG/VP)**2
DVS-(OMG/V$)**2
RV·OMG/ZT
WRITE(*,*) RV
IF (DVP.GT.ZTT) GOT0 35
IF (DVS.LT.ZTT) GOTO 33 ‘C IFG-1 '
NRITE(*,*) "VP<RV>VS”
A-(ZTT~DVP)**.5
8·(DVS·ZTT)**.5
80-8*0 .AD=A*D ~
EAP·EXP(AD)
EAN-EXP(-AO)
EBP·EXP(BD)
EBN-EXP(-BD)
NRITE(*,*) EAP,EAN

“

IF (EAP.EO.EAN) GO TO 40
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F-(EXP(·A0)+EXP(AD))/(EXP(·A0)-EXP(AD))*TAN(BD)
++REK*((4.*A*8*ZTT)/(ZTT-8**2)**2)**K

GO TO 40
33 NRITE(*,*) "RV<VS'

C IFG-Z
A·(ZTT-0VP)**.5

, B-(ZTT-DVS)**.5
AO·A*D
80-8*0EAP•EXP(AD) _ _
EAN-EXP(-AD)
EBP-EXP(BD)
EBN·EXP(-BD)
F-((EAN+EAP)/(EAN~EAP))*((EBN·EBP)/(EBN+EBP))

+-((4.*A*B*ZTT)/(ZTT+B**2)**2)**K
GO TO 40

35 WRITE(*,*) 'RV>VP”
C

IFG-3A·(OVP-ZTT)**.5
B-(DVS·ZTT)**.5
AD·A*D
BD•B*D

‘

F-TAN(BD)/TAN(AD)
++((4.*A*B*ZTT)/(ZTT-B**2)**2)**K

C***SECTION TO OECIDE IF DISPERSION COND. IS MET
40 CONTINUE

NRITE(*,*) NOMG, NZT, F
C IF (IFG.E0.IOFG) GO TO 45
C IF (NOT.EQ.NOMG) GO TO 45
C IOV-O
C GO TO 75 g
C 45 CONTINUE .

IF (F.LT.0.00005.ANO.F.GT.-.00005) GO TO 85
IF (F.GT.0.0) IV-1
IF (F.LT.0.0) IV--1

50 IIV·IV+IOV
HRITE(*,*) IV, IOV, IIV
IF(IIV.E0.0) GO TO 85
IOV¤IV

C 75 IOFG-IFG
80 CONTINUE
B5 IF (NOMG-NOT.LT.3) IFF·0

IF (K.E0.-1) GO TO 100
C SSSSSSSSSS$$555SSSSS$$5SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

1F(OVS.LT.ZTT) GO TO 95
IF(DVP.LT.ZTT) GO TO 90
BB--Z.*ZT*B*COS(BO)
CC-(ZTT-8**2)*COS(AD)
GO TO 150

90 BB·-2.*ZT*B*COS(BD)
CC¤(ZTT-B**2)*(EXP(-AO)+EXP(AD))/2
GO TO 150

95 BB--ZT*B*(EXP(-8D)+EXP(BD))
CC•(ZTT+8**2)*(EXP(-AD)+EXP(AD))/2.
GO TO 150 -

C****AREA FOR ANTI. ******
100 CONTINUE

IF (DVS.LT.ZTT) GO TO 110
IF (OVP.LT.ZTT) GO TO 115
AA-2.*ZT*B*SIN(BD)
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A DD-(ZTT·B**2)*S1N(AD)
GO TO 150

110 AA·2.*ZT*B*S1N(BD)
DD·(ZTT-B**2)*(EXP(·AD)-EXP(AD))/2.
GO TO 150

115 AA-ZT*8*(EXP(·BD)-EXP(BO))
DD·(ZTT+B**2)*(EXP(·AD)-EXP(AD))/2.

C****AREA FOR ANTI. ******.150 CONTINUE
C AM(NOMG)·A
C BM(NOMG)¤B ,C CCM(NOMG)·CC
C BBM(NOMG)~BB
C ZTM(NOMG)·ZT
C OMM(NOMG)·0MG

”

C RVM(NOMG)·RV
C FREO·0MG/(2.*PI)

WRITE (9,160) ZT,0MG
WRITE (9,160) A,B _IF (K.EO.-1) GO TO 155
WRITE (9,160) BB,CC
GO TO 200

155 WRITE (9,160) AA,DD A160 FORMAT ( 2E18.6)
200 CONTINUE

SECTION WRITES OISPERSION INFORMATION INTO
C** AN OUTPUT FILE
ct

C WRITE(*,*) ' FILENAME FOR DISP OUTPUT? 'C READ(*,*) DISC
C 250 OPEN (UNIT·7,FILE-DISC)
C DO 290 1-1,300
C ZT-ZTM(I)
C OMG-OMM(I)
C WRITE(7,260) ZT, OMG
C 260 FORMAT( 2E15.7)
C 290 CONTINUE
C****THIS SECTION CALCULATES AND STORES DISPLACEMENTS _
C**** AS A FUNCTION OF ZETA OR THE WAVE NUMBER
C**** 1N THE DIRECTION OF PROPAGATION
C WRITE(*,*) " FILE NAME FOR U2 OUTPUT?

”
C READ(*,*) DISS
C WRITE(*,*)

”
WHERE DO YOU WANT U2 CALCULATED?

‘
C READ(*,*) XT
C 300 OPEN (UNIT·8,FILE-DISS)
C DO 380 J·l,300
C A-/-\M(J)
C B-BM(J)
C BB•BBM(J) ‘
C CC·CCM(J)
C BCM-(B8**2+CC**2)**.5
C ZT-ZTM(J)
C OMG-OMM(J)
C RV-RVM(J)
C AX-A*XT
C BX-B*XT
C IF (RV.LT.VS) GO TO 340
C IF (RV.LT.VP) GO TO 330
C UTT-(-BB*A*SIN(AX)+CC*ZT*SIN(BX))/BCM

,
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C GO TO 350 _
C 330 UTT·(-BB*A*(EXP(-AX)·EXP(AX))/2+CC*ZT*SIN(BX))
C +/BCM
C 4 GO TO 350
C 340 UTT·(·BB*A*(EXP(·AX)-EXP(AX))/2+CC*ZT
C +*(EXP(·BX)-EXP(8X))/2)/BCM
C 350 CONTINUE
C WRITE(8,360) OMG, UTT
C 360 FORMAT ( ZE18.7)
C 380 CONTINUE

990 STOP
995 END
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C******CALCULATES DISPLACEMENT VERSUS FREOUENCY
C******CALCULATES PHASE VELOCITY VERSUS FREOUENCY ·
C******FOR AN ISOTROPIC MATERIAL FROM (DISA.FOR) PROGRAM
C***WR1TES DATA TO OUTPUT FILES FOR USE IN PLOTTING
C
C‘
C DIMENSION AM(300), BM(300), CCM(300), ZTM(300)
C DIMENSION 0MM(300),MVM(300)

CHARACTER *12 DISC, DDSC, DPHV, DISS, DISP
WRITE(*,*) ”READ FILENAME?

”

READ(*,*) DISC
WRITE(*,*) ”FILENAME FOR DISPLACEMENTS?

”
READ(*,*) DDSC
WRITE(*,*) 'FILENAME FOR PHASE VELOCITIES? 'READ(*,*) DPHV
OPEN (UNIT~5,FILE¤DISC)
WRITE(*,*) 'FILENAME DISPERSION CURVE? "READ(*,*) DISP

· OPEN (UNIT¤7,FILE-DISP)
WRITE(*,*) 'IS THIS FOR l)SYM 2)ANTI.? 'READ(*,*) ISY
WRITE(*,*) " WHERE DO YOU.WANT U2 CALCULATED? 'E
READ(*,*) XT

C
C****SYMM. U2 CALC.
C
C

OPEN (UNIT-9,FILE-DPHV)
“

OPEN (UNIT¤8,F1LE•DDSC)
PI•3.l4S6
DO ZOO I-1,300
READ(5,30) ZT,OMG
FRE-.000001*0MG/(2.*PI) —
WRITE(7,60) ZT,FRE
READ(5,30) A,B
IF (1SY.EQ.2) GO TO 25

T READ(5,30) BB,CC
GO TO 27

25 READ(5,30) AA,DD
C READ(5,30) VS,VP

27 CONTINUE
VP·260000
VS-IIOOOO

30 FORMAT ( 2E18.6) ·
BCM·(BB**2+CC**2)**.5
PHV-OMG/ZT
AX·A*XT
BX=B*XT
ZTT-ZT**2
DVP·(OMG/VP)**2
OVS-(OMG/VS)**2
IF (ISY.E0.2) GO TO 100
IF (DVS.LT.ZTT) GO TO 40 gIF (DVP.LT.ZTT) GO TO 35 ‘
UTT-(-BB*A*SIN(AX)+CC*ZT*SIN(BX))/BCM
GO TO 50

35+/BCM

GO TO 50
40 UTT-(-BB*A*(EXP(-AX)·EXP(AX))/2+CC*ZT
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+*(EXP(-BX)-EXP(BX))/2)/BCM
· 50 CONTINUE
, UTT·(UTT**2)**.5

WRITE(8,60) FRE, UTT
60 FORMAT ( 2E18.6)

C***U2 VELOCITY CALCULATION
NRITE(9,65) FRE,PHV ·

65 FORMAT ( 2E18.6)
80 GO TO 200

C-&&&&ANTISYMM. G&&&&&&&&&&&&&&&&&&&&&&G&&
100 CONTINUE‘

EAP·EXP(A*XT)
EAN·EXP(·A*XT)
EBP·EXP(B*XT)
EBN¤EXP(-B*XT)
IF (DVP.GT.ZTT) GO TO 120
IF (DVS.LT.ZTT) GO TO 130
CVA•(EAN+EAP)/2.
CVB-COS(8*XT)
GO TO 140

120 CVA•COS(A*XT)
CVB·COS(B*XT)
GO TO 140

130 CVA-(EAN+EAP)/2.
CVB-(EBN+EBP)/2.

140 CONTINUE
UTT·AA*A*CVA+DO*ZT*CV8
UTT-(UTT**2)**.5
0MG·.00O001*OMG/(2.*PI)
HR1TE(8,60) OMG, UTT

C***U2 VELOCITY CALCULATION
NRITE(9,65) 0MG,PHV

200 CONTINUE
_ STOP »

END
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C*****THIS PROGRAM DETERMINES THE DISPERSION RELATIONS FOR
C***** AN ORTHOTROPIC MATERIAL WHERE THE WAVE IS SENT INC*****THE DIRECTION OF MATERIAL SYMMETRY

DIMENSION C(6,6), D(6,6)
CHARACTER *12 DISC,DIVE -COMPLEX L(6),ALO(6),FF,DV,KK(4,4),ALT(6)

E COMPLEX CI(6,6),DI(6,6),KA,KB,KC,KD,RKB,RNB
COMPLEX CMPLX,CEXP,CAC(3),DAD(3),CZ(4),CSORT
IV-O
8-.024Ä
KO-]
PI•3.145
RHO·.00O15l
C(1,1)·23.4E6
C(1,2)·.943E6
C(l„3)·C(l,Z)
C(2,Z)-2.1E6
C(2,3)·1.05E6
C(3,3)·2.1E6
C(4,4)·.527E6 _
C(5,5)·1.03E6
C(6,6)•1.03E6 „
WRITE(*,*) "WHAT IS THE NAME FOR OUT-FILE? 'READ(*,*) DISC .
OPEN (UNIT-7,FILE-DISC)
WRITE(*,*) "WHAT IS THE NAME FOR VEL.-OUT? 'READ(*,*) DIVE
OPEN (UNIT·8,FILE-DIVE)
DO 300 NOMG-1,300
IÜV-O
ROMG·FLOAT(NOMG) '

C OMG•ROMG/.00002
C OMG·ROMG/.00004

OMG·ROMG/.00005
DO 200 K·K0,3000OO0
RK-FLOAT(K)
WRITE(*,*) "OMG-,RK•'
WRITE(*,*) OMG,RK '

C RK-RK/100.
RK-RK/1000.
RL·RHO*OMG**2/RK**2 A
WRITE(*,*)

"RL•”

WRITE(*,*) RL ~D(1,1)·C(1,1)·RL
D(6,6)·C(6,6)·RL
D(5,5)·C(5,5)·RL

C!I|##! WAVE NUMBERS FOR SH-MODES
L(5)·CSORT(CMPLX(·D(6,6)/C(4,4),0.))
L(6)··L(5)

AA·C(5,5)*C(3,3)/l.E5
DOB·D(1,1)/l.E5
DFB¤D(5,5)/1.E5
COFS-(C(1,3)+C(5,5))**2/1.E5
BB--COFS+DOB*C(3,3)+DF8*C(5,5)
CC·D(l,1)*DFB
DV-CSORT(CMPLX(BB**2-4.*AA*CC,0.))

Cl#I##WAVE NUMBERS FOR SV,P-MODES
L(1)•CSORT((CMPLX(-88,0.)+DV)/CMPLX(2.*AA,0.))
L(3)•CSQRT((CMPLX(-BB,0.)·DV)/CMPLX(2.*AA,0.))

.
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L(Z)··|-(1)
L(4)¤-L(3)

#!############|### _DO 50 1-1,4
RRLV-REAL(L(I))
RILV-A1MAG(L(1))
WRITE(*,*) I,RRLV,R1LV

50 CONTINUE
00 120 IJ-1,6
DO 110 J1-1,6
C1(1J,J1)-CMPLX(C(1J,J1),0.)

~ D1(1J,J1)·CMPLX(D(1J,JI),0.)
110 CONTINUE
120 CONTINUE

DO 150 J-1,4
ALO(J)-L(J)*(C1(1,3)+CI(5,5))
ALT(J)-·(DI(1,1)+L(J)*L(J)*CI(5,5))
WRITE(*,*) ALO(J),ALT(J)
ALO(J)-ALO(J)/1.E13
ALT(J)·ALT(J)/1.E13 _

150 CONTINUE
RKB-CMPLX(0.,RK*8) „
RNB-CMPLX(0.,-RK*B)
DO 170 J-1,4 ‘

KK(1,J)-(CI(1,3)*ALO(J)+CI(3,3)*ALT(J)*L(J))
+*CEXP(RKB*L(J))
WRITE(*,*) KK(l,J) ·

170 CONTINUE
DO 180 J-1,4
KK(2,J)·(C1(1,3)*ALO(J)+CI(3,3)*ALT(J)*L(J))

+*CEXP(RNB*L(J))
HRITE(*,*) KK(2,J)

180 CONTINUE
UO 185 J-1,4
KK(3,J)·C1(5,5)/CMPLX(2.,0.)*(L(J)*ALO(J)+ALT(J))

+*CEXP(RKB*L(J))
KK(3,J)·C1(5,5)*(L(J)*ALO(J)+ALT(J))

+*CEXP(RKB*L(J))
HR1TE(*,*) KK(3,J)

185 CONTINUE '
DO 190 J-1,4
KK(4,J)-C1(5,5)/CMPLX(2.,0.)*(L(J)*ALO(J)+ALT(J))

+*CEXP(RNB*L(J))
KK(4,J)-CI(5,5)*(L(J)*ALO(J)+ALT(J))

+*CEXP(RNB*L(J))
HR1TE(*,*) KK(4,J)

190 CONTINUE
KA-KK(2,2)*(KK(3,3)*KK(4,4)-KK(3,4)*KK(4,3))

+-KK(2,3)*(KK(3,2)*KK(4,4)-KK(3,4)*KK(4,2))
++KK(2,4)*(KK(3,2)*KK(4,3)-KK(3,3)*KK(4,2))
WRITE(*,*) "KA-" _
WRITE(*,*) KA
KB-KK(2,1)*(KK(3,3)*KK(4,4)·KK(3,4)*KK(4,3))‘

+·KK(2,3)*(KK(3,1)*KK(4,4)-KK(3,4)*KK(4,1))
++KK(2,4)*(KK(3,1)*KK(4,3)—KK(3,3)*KK(4,1))
HRITE(*,*) "KB•"
wRITE(*,*) KB
KC·KK(2,1)*(KK(3,2)*KK(4,4)·KK(3,4)*KK(4,2))

+·KK(2,2)*(KK(3,1)*KK(4,4)-KK(3,4)*KK(4,1))
++KK(2,4)*(KK(3,1)*KK(4,2)~KK(3,2)*KK(4,1))
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HRITE(*,*) 'KC-"
HRITE(*,*) KC
KD-KK(2,1)*(KK(3,2)*KK(4,3)-KK(3,3)*KK(4,2))

+-KK(2,2)*(KK(3,1)*KK(4,3)-KK(3,3)*KK(4,1))
++KK(2,3)*(KK(3,1)*KK(4,2)-KK(3,2)*KK(4,1))
HRITE(*,*) "KO-'
WRITE(*,*) KO
FF·KK(1,l)*KA-KK(1,2)*KB+KK(1,3)*KC—KK(1,4)*KD ICKV·CABS(FF)
WRITE(*,*) "CKV·'
HRITE(*,*) CKV

‘

Z IF (CKV.LT.0.000I) G0 T0 220
IF (CKV.LT.0.0010) GO TO 220

2 IF (K.EQ.1) GO TO 195
E IF (CKV.GT.OKV) IV-1 ·
I IF (CKV.LT.OKV) IV--I
Z IIV·IV+IOV
Z IF (IIV.EQ.0) G0 T0 220
Z 195 IOV-IV
Ä OKV¤CKV _

200 CONTINUE
220 CONTINUE „

I|I|## CALCULATE CZ CONSTANTS ###f|#####
00 240 J·l,3

CAC(J)•(KK(2,1)*KK(3,JP))/KK(3,1)+KK(2,JP)
DAO(J)·(KK(l,1)*KK(3,JP))/KK(3,1)+KK(I,JP)

240 CONTINUE „
CZ(4)•l.
CZ(3)•((DAO(l)*CAC(3))/CAC(l)-OAD(3))

+/(OAO(2)-OAD(1)*OAD(2)/CAC(1))
CZ(2)·-(CAC(3)+CAC(2)*CZ(3))/CAC(1)
CZ(1)·(KK(3,2)*CZ(Z)+KK(3,3)*CZ(3)+KK(3,4))/KK(3,1)
KO-K
wRITE(7,250) FR,0MG

' VPH·OMG/RK „
FR·OMG/(2.*PI)
WRITE(8,250) FR,VPH

C DO 245 J•1,4
C WRITE(9,255) ALO(J),ALT(J),L(J)
C 245 CONTINUE
C NRITE(9,250) CZ(1),CZ(Z)
C WRITE(9,250) CZ(3),CZ(4)

‘

250 FORMAT( 2El8.6)
C 255 FORMAT( 3E18.6)

300 CONTINUE
STOP
ENO

Appcndix E. (ORTILFOR)- fortran program 249



Appendix F. (GENE.FOR)- fortran program

Appcndix F. (GENE.FOR)- fortran program 250



. C*****THIS PROGRAM DETERMINES THE DISPERSION RELATIONS FOR
C***** AN ORTHOTROPIC MATERIAL WHERE THE WAVE IS SENT IN -
C*****ANY DIRECTION DEFINED BY THE INPUT DIRECTION

DIMENSION C(6,6), D(6,6), CO(6,6) ‘

CHARACTER *12 DISC
COMPLEX FF
COMPLEX RKB,RNB,CMD,CKD
COMPLEX CMPLX,CEXP,X(3)
COMPLEX Y(3),TL(6),CM(3,3),AL(6,3),RKB,RNB

· COMPLEX CEP,CEN,KK(6,6),CSQRT
V-O

C%%%%%%%B-HALF PLATE THICKNESS
C%%%%%%%%RHO-MATERIAL DENSITY
C%%%%%%%CO(I,J)·STIFFNESS MATRIX FOR ORTHOTROPIC DIRECTION

IDIOT·0
IV-0
B¤.O63
KO-1
RHO-.000151 _
CO(1,1)-23.4E6 _
C0(I,2)-.943E6
CO(l,3)•C(1,2) „ .
CO(2,2)-2.1E6
CO(2,3)-1.05E6
CO(3,3)-2.lE6
CO(4,4)•.5Z7E6
CO(5,5)¤1.03E6
CO(6,6)•1.03E6
PI-3.1456

c«««««««« ROTATE STIFFNESS MATRIX
-

C*******INPUT ROTATION ANGLE (IE. DEFINE AZIMUTHAL ANGLE)
WRITE(*,*) "WHAT ANGLE DO YOU WANT FOR ROTATION"
READ(*,*) ANG
ANG•PI*ANG/180.
SN-SIN(ANG)
CSM¤COS(ANG)
CF-CSM**4
C$¤CSM**Z
SF·SN**4
SS-SN**2
D0 Z5 1-1,6
DO ZS J¤1,6
C(I,J)·0.0

25 CONTINUE
C(1,1)-CO(1,1)*CF+2.*CS*SS*(CO(1,2)+CO(6,6))

++CO(2,2)*SF
WRITE(*,*) C(1,1)
C(1,2)-CS*SS*(CO(1,1)+CO(2,2)·4.*CO(6,6))

++C0(1,2)*(CF+SF)
WRITE(*,*) C(1,2)
C(1,3)¤CO(1,3)*CS+CO(2,3)*SS
WRITE(*,*) C(1,3)
C(1,6)-SN*CSM*(C0(l,1)*CS-C0(2,2)*SS

+-(CO(I,2)+2.*CO(6,6))*(CS-SS))
WRITE(*,*) C(1,6)
C(2,2)·C0(I,1)*SF+2.*CS*SS*(CO(1,2)+2.*CO(6,6))

++CO(Z,2)*CF
WRITE(*,*) C(2,2)
C(Z,3)•CO(1,3)*SS+CO(2,3)*CS
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WRITE(*,*) C(2,3)
C(Z,6)-CSM*SN*(C0(l,1)*SS-CO(2,2)*CS

++(C0(I,2)+Z.*C0(6,6))*(CS-SS))
WRITE(*,*) C(Z,6)
C(3,3)-C0(3,3)
WRITE(*,*) C(3,3) ·
C(3,6)·(C0(2,3)-CO(1,3))*SN*CSM V
WRITE(*,*) C(3,6)
C(4,4)-C0(4,4)*CS+CO(5,5)*SS
WRITE(*,*) C(4,4)
C(4,5)¤(CO(4,4)-CO(5,5))*SN*CSM
WRITE(*,*) C(4,5)
C(5,5)-C0(4,4)*SS+CO(5,5)*CS
WRITE(*,*) C(5,S)
C(6,6)•(CO(1,1)+CO(2,2)-2.*C0(I,2))*CS*SS

++CO(6,6)*(CS-SS)**2
WRITE(*,*) C(6,6)

STIFFNESS

OUTPUTWRITE(*,*)
”WHAT IS THE NAME FOR OUT-FILE? "

READ(*,*) DISC „
OPEN (UNIT-7,FILE·DISC)
NOMG-I

CI|I#I|#|SECTION l####I#SECTION 1########SECTION l#||####IfI
C@@@@@DEFINE K-WAVENUMBER FOR VARIOUS POINTS ON DISPERSION CURVE

DO 500 K·1,24O ·
RK·FLOAT(K)

CIIIEND SECTION 1#!########IEND SECTION 1##!|###I#####
C||#|###SECTION Z#######I###SECTION 2###I###SECTION 2#########I
C%%%OEFINE THE VALUE
FORC@@@@DEFINESWHERE THE PROGRAM STARTS LOOKING FOR THE SOLUTION
C@@@@WHICH MEETS DISPERSION CONDITION.

NOO·NOMG
. IF (K.EQ.1) N0O•1

C
IOV¤0

C
C|#######SECTION 3#####I##SECTION 3#########SECTION 3#####!###
C@@@@@DEFINES THE OMG VALUE

V C%%%%OMG·CIRCULAR FREQUENCY FOR WAVE
C

OO 400 NOMG·NOO,99999$99
ROMG·FLOAT(NOMG)

‘ .
C OMG¤ROMG/.00002

OMG·ROMG/.002
c OMG•ROMG/.001 °

C OMG-ROMG/.05
C
C|I|####ENOSECTIONC

WRITE(*,*) 'OMG¤,RK-'
WRITE(*,*) OMG,RK

C RK-RK/100.
C RK-RK/1000.

RL-RHO*0MG**2/RK**2 -
_ C WRITE(*,*)

'RL•”

C WRITE(*,*) RL
CIIIISECTION 4##I#ISECTION 4II##I#SECTION 4#I##|##|I##
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C@@@@@SOLVE THE CHRISTOFFEL EQUATXON FOR THE PARTIAL HAVES
C@@@@FIND THE HAVE NUMBERS
C%%%%%%%%TL(6)-HAVENUMBER RATIOS OF X~3 HAVENUMBER TO X-1 HAVENUMBERE%%%FOR EACH SLOUTION

D(I,1)·C(1,1)-RL
D(6,6)·C(6,6)-RL
D(5,5)·C(5,5)·RL
XT·C(3,3)*O(6,6)+C(4,4)*O(5,5)-(C(3,6)+C(4,5))**Z

A
. YT·D(5,S)*C(4,5)+C(l,6)*C(3,3)-(C(4,5)+C(3,6))

+*(C(1,3)+C(5,5))
Z-C(1.6)*(C(3„6)+C(4•5))·¤(6.6)*(C(1•3)+C(5.5))

. W-C(4.5)*(C(3„6)+C(4„5))-C(4„4)*(C(l•3)+C(5•5))
AE¤C(3,3)*(C(4,4)*C(5,5)-C(4,5)**2)
BE·XT*C(5,5)+D(1,1)*C(4,4)*C(3,3)·C(1,6)*C(4,5)*C(3,3)

+-C(4,5)*YT+W*(C(1,3)+C(5,5))
CE-C(5,5)*D(6,6)*D(5,5)+D(l,1)*XT·C(4,5)*O(5,5)*C(1,6)

+-C(1,6)*YT+Z*(C(1,3)+C(5,5)) .
DE·D(1,1)*O(6,6)*D(5,5)-C(1,6)**2*O(5,5)
P·BE/AE _ E
O·CE/AE

R•DE/AEHRITE(*,*) 'P O R'
WRITE(*,*) P,O,R
AS·(3.*O-P*P)/3.
BS-(Z.*P*P*P-9.*P*O+27.*R)/27.
ZI·BS*BS/4.+AS*AS*AS/27.
HRiTE(*,*) "ZI·", ZI
IF(ZI.EQ.O.) GO TO 50
IF(ZI.GT.0.) GO TO 55
ZL¤·(B$/2.)
WRlTE(*,*) "ZL-", ZL
ZB-(·ZI)**.S
HRITE(*,*) "ZB-', ZB
THT·ATAN(ZB/ZL)
ZM·(ZB**2+ZL**2)**.5
AT-THT/3.
BPA·ZM**.333333*2.*COS(AT)

X(2)•·BPA/2.-BMA/2.*(3.)**.5
X(3)·-BPA/2.+BMA/2.*(3.)**.5

O GO TO 65 .
50 CONTINUE ·

X(1)--2.*(BS/2.)**.333333
X(2)•-X(1)/Z.
X(3)-·X(1)/2.
GO TO 65

55 CONTINUE
ZL-BS/2.
ZB·SORT(ZI)
BML--ZL+ZB
BPL·ZL+ZB
OML·l.
QPL-1.
IF(BML.LT.O.) OML·-1.
IF(BPL.LT.0.) OPL-·1.
BML·BML*QML
BPL·BPL*QPL

C NRITE(*,*) “BEFORE"
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AB·QML*(BML)**.333333
BA-QPL*(-(BPL)**.333333)

C HRITE(*,*) "AFTER'
TRE·SQRT(3.)

C
C .

X(1)·AB+BA „
X(2)--X(1)/2.+CMPLX((AB~BA)/2.*TRE,0.)*CMPLX(0.,1.)
X(3)·-X(1)/2.-CMPLX((AB-BA)/2.*TRE,0.)*CMPLX(O.,1.)

65 CONTINUE
DO 75 1-1,3 _
Y(I)·X(I)-P/3.

C
WRITE(*,*) 'I,Y(I)',I,Y(I)

75 coürruus
C .
C****CALCULATE HAVE NUMBER RATIOS FOUND
C%%%%TL(I)·HAVENUMBER RATI0
C .DO 95 I-1.3 _

TL(I)-CSORT(Y(I))
TL(I+3)·-TL(I) „
HRITE(*,*) "1,TL(I)',I,TL(I)

95 CONTINUE
C NRITE(*,*) 'END OF SECTION 4'
C
C|I##END SECTION 4#|##|#|##I#|###l##|I|
C
CJSIISECTION S|##I###SECTION 5###########SECTION 5#|I##I|#
C@@@@@THIS SECTION FINDS THE DISPLACEMENT VECTOR TERMS
C
C%%%%AL(I,J)-DISPLACEMENT VECTORS (1)·HHICH SOLUTION OR PARTIAL HAVE
C(J)·THE INOICE THAT INDICATES THE OIRECTION OF THE VECTOR
C

CMD·CMPLX(1.E8,0.)
C

DO 100 I-1,6
CM(1,l)·D(1,1)+TL(I)**2*C(5,5)
CM(1,2)·C(1,6)+TL(I)**2*C(4,5)
CM(1,3)·TL(I)*(C(l,3)+C(5,5))
CM(2,2)-D(6,6)+TL(I)**2*C(4,4)
CM(2,3)·TL(I)*(C(4,5)+C(3,6))
CM(3,3)·TL(I)**2*C(3,3)+D(5,5) _
HRITE(*,*) "I·',I
AL(I,2)-1./CMD ‘

HRITE(*,*) "AL',I,'2',AL(I,2)
AL(I,1)--(CM(1,3)*CM(2,2)-CM(1,2)*CM(2,3))/

+(CM(1,1)*CM(Z,3)-CM(1,Z)*CM(1,3))
AL(1,1)•AL(1,1)/CMD
HRITE(*,*) 'AL',l,"1”,AL(I,1)
AL(I,3)~(CM(1,2)+AL(I,1)*CM(1,2))/CM(2,3)
AL(I,3)·AL(1,3)/CMD
WR1TE(*,*) ”AL”,I,'3',AL(I,3) ·

100 CONTINUE

E
HRITE(*,*) "END OF SECTION 5'

C
C#|#|##ENDSECTIONC

C|###SECTION 6I###SECTION 6####|##SECTION 6#I#|###|##|I
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C@@@@@THIS SECTION DEFINES THE KK(I,J) MATRIX FROM STRESS FREE BC’S
C%%%%KK(I,J)-MATRIX SET-UP BY IMPOSING THE STRESS FREE BC’S ·
C@@@THIS MATRIX MULTIPLIEO BY DISPLACEMENT VECTORS AND MUST EQUAL
g@@@MUST EQUAL THE IDENTITY VECTOR

DO 110 I-1,6
RKB-CMPLX(0.,RK*B)*TL(I)
RNB-CMPLX(0.,-RK*B)*TL(1)*2.
HRITE(*,*) "RK8, RNB', RKB, RNB

CEP-CEXP(RKB)
CEN-CEXP(RNB)
KK(1,I)-CEP*(C(1,3)*AL(I,1)+C(3,3)*AL(1,3)*TL(I)

++C(3,6)*AL(1,2))
· KK(2,1)-CEN*KK(1,I)

KK(3,1)-CEP*(C(4,4)*AL(I,2)*TL(I)
++C(4,5)*(AL(1,1)*TL(I)+AL(1,3)))
KK(4,I)-CEN*KK(3,I)
KK(5,I)-CEP*(C(4,5)*AL(I,2)*TL(I)

++C(5,5)*(AL(I,1)*TL(I)+AL(l,3)))
KK(6,I)-CEN*KK(5,I) 4

110 CONTINUE „
C HRITE(*,*)

”ENO
OF SECTION 6'

C CKD-CMPLX(1.E-27,0.)
DO 125 I-1,6
DO 125 J-1,6

C KK(I,J)-KK(1,J)/CKD
C HRITE(*,*) "KK(”,I,',',J,")',KK(I,J)

125 CONTINUE
C
C|l#END SECTION

-

CI|#SECTION 7!####SECT1ON 7#####SECTION 7#########|#
C@@@@@THIS SECTION CALCULATES THE DETERMINANT OF KK(I,J)
C%%%FF-IS THE VALUE FOR THE DETERMINANT OF KK(I,J)
C

FF-0.
DO 340 J-1,6
AN-(-1.)**(1+J)
D0 330 LP-1,6
IF(LP.EQ.J)GO TO 330
BN-(·1.)**(2+LP) ·
IF(LP.LT.J) BN--BN

‘

DO 320 N-1,6
1F(N.EQ.J.0R.N.EQ.LP) GO TO 320
CN-(-1.)**(3+N)
IF(N.LT.J.AND.N.GT.LP) CN--CN
IF(N.LT.LP.ANO.N.GT.J) CN--CN _
DO 310 1-1,6
1F(1.EQ.J.OR.I.EQ.LP.OR.1.EQ.N) GO TO 310
DN-(-1.)**(4+I) ·
IF(I.LT.J.ANO.I.LT.LP.AND.I.LT.N) DN--ON

° IF(1.GT.J.AND.I.GT.LP.AND.I.LT.N) DN--ON
1F(I.GT.N.AND.I.GT.J,AND.1.LT.LP) DN--DN
IF(I.GT.LP.AND.1.GT.N.AND.I.LT.J) DN--ON T
00 300 M-1,6
IF(M.EQ.J.OR.M.EQ.LP.OR.M.EQ.N.OR.M.EQ.I)GO TO 300
EN-(~1.)**(5+M)
IF(M.GT.J.ANO.M.LT.LP.AND.M.LT.N.AND.M.LT.I)EN-·EN
1F(M.GT.LP.AND.M.LT.J.AND.M.LT.N.AND.M.LT.I)EN--EN
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IF(M.GT.N.AND.M.LT.J.AND.M.LT.LP.AND.M.LT.I)EN--EN
IF(M.GT.I.ANO.M.LT.J.AND.M.LT.LP.AND.M.LT.N)EN·-EN
IF(M.LT.J.ANO.M.GT.LP.AND.M.GT.N.AND.M.GT.I)EN-·EN
IF(M.LT.LP.ANO.M.GT.J.AND.M.GT.N.ANO.M.GT.I)EN·-EN
IF(M.LT.N.ANO.M.GT.J.AND.M.GT.LP.ANO.M.GT.I)EN··EN
IF(M.LT.I.ANO.M.GT.J.ANO.M.GT.LP.ANO.M.GT.N)EN·-EN ‘

C IF(M.GT.J.ANO.M.GT.LP.AND.M.LT.N.AND.M.LT.I)EN·-EN
C IF(M.GT.J.ANO.M.GT.N.ANO.M.LT.LP.AND.M.LT.I)EN··EN
C IF(M.GT.J.ANO.M.GT.I.ANO.M.LT.LP.AND.M.LT.N)EN--EN
C IF(M.GT.LP.AND.M.GT.N.AND.M.LT.J.AND.M.LT.I)EN•·EN
C IF(M.GT.LP.AND.M.GT.I.ANO.M.LT.J.AND.M.LT.N)EN·-EN _
C IF(M.GT.N.ANO.M.GT.I.AND.M.LT.J.ANO.M.LT.LP)EN··EN

DO 290 IT·I,6
IF(IT.EO.J.OR.IT.E0.LP.OR.IT.EQ.N.OR.IT.EO.I.0R.IT.EQ.M) GO TO 290

C HRITE(*,*) 'CALCULATE FF'
FF·FF+KK(I,J)*KK(2,LP)*KK(3,N)*KK(4,I)*KK(5,M)

+*KK(6,IT)*AN*BN*CN*ON*EN
C NRITE(*,*) ”FF•',FF

290 CONTINUE
300 CONTINUE .
310 CONTINUE
320 CONTINUE „
330 CONTINUE
340 CONTINUE

C HRITE(*,*) “END OF SECTION 7"
C
C||##IEND OF SECTION 7####END OF SECTION 7##I#|####I
C
C|##|SECTION 8#####lSECTION 8##!#SECTION 8###|######
C@@@@THIS SECTION CHECKS TO SEE IF FF IS CLOSE TO ZERO
C@@@OR IN OTHER WORDS, IF THE DISPERSION CONOITION IS MET
C

CKV·CABS(FF)
HRITE(*,*) 'CKV·'
WRITE(*,*) CKV
IF (CKV.LT.I.E—10) GO TO 420
IF (NOMG.EO.NOO) GO TO 195
IF (CKV.GT.OKV) IV·1
IF (CKV.LT.OKV) IV--1
IIV·IV+IOV
WRITE(*,*) IV,IOV,IIV
IF (IIV.E0.0.ANO.CKV.GT.0KV) GO TO 420

I95 IOV¤IV
OKV-CKV

CII###!#END SECTION 8##################
C

400 CONTINUE
420 CONTINUE

NOO-NOMG ·WRITE(7,450) RK,OMG
C HRITE(7,450) CZ(1),CZ(2)‘
C NRITE(7,450) CZ(3),CZ(4)

450 FORMAT( 2E18.6)
500 CONTINUE

’

STOP
END
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C*****THIS PROGRAM CALCULATES VELOCITIES AND DISPLACEMENT VECTORS
C*****FOR STRESS NAVES PROPAGING IN ANY DIRECTION IN A COMPOSITE
C*****PLATE, BY SOLVING THE CHRISTOFFEL EQUATION.
C*****THE DIRECTION OF WAVE PROPAGATION IS DEFINED BY
C*****THE AZIMUTHAL ANGLE ON THE PLATE AND THEN AN INCLINATION ANGLE '

C*****IN THE PLANE FOR THAT AZIMUTHAL ANGLE
DIMENSION CA(6,6), VA(3), VB(3), V(3), DV(3,3)
DIMENSION C(3,3,3,3), CL(3,3), VL(3), VP(3), CN(3,3)
CHARACTER *12 DISC
DATA C/81*0./ * ‘

.PI¤3.145O
_ C*****INPUT AZIMUTHAL ANGLE ROTATION FOR DEFINING DIRECTION OF NAVE

C******NAVE PROPAGATION
HRITE(*,*) ”INPUT AZIMUTHAL ANGLE? ' ~
REAO(*,*) AZ

C******INPUT ROTATION ANGLE FOR ROTATION IN THE PLANE DEFINED
C******BY THE AZIMUTHAL ANGLE (THIS DEFINES ULTIMATE HAVE PROPAGATION
C******DIRECTION)

HRITE(*,*) "INPUT INCLINATION ANGLE? '
REAO(*,*) TH
AZ·AZ*PI/180.
TH-TH*PI/180. „

C*****VA(I) DEFINES THE ORIGNAL DIRECTION OF HAVE PROPAGATION
C***** IN THE X~DIRECTION OR FIBER DIRECTION

VA(I)-I.
VA(Z)-0.
VA(3)·0.

C*****THIS SECTION CALCULATES THE ROTATION MATRIX TO ROTATE
C*****VA(I) AT ANY ORIENTATION DESIRED RELATIVE TO THE FIBER
C*****DIRECTION

CA(l,1)-COS(AZ)
CA(1,2)·COS(PI/2.-AZ)
CA(],3)•0.
CA(2,1)-~SIN(AZ)
CA(2,2)·COS(AZ)

‘

CA(2,3)-0.
CA(3,1)-0.
CA(3,Z)-0. .
CA(3,3)-I.

C****THIS SECTION ROTATES THE VA(I) MATRIX TO NEN AZIMUTHAL ANGLE
C****AND RENAMES MATRIX VB(I) THE DIRECTION OF PROPAGATION

DO Z5 1-1,3
DO 25 J-1,3 ·
VB(I)·VA(J)*CA(I,J)

25 CONTINUE
C*****THIS SECTION CALCULATES THE ROTATION MATRIX FOR INCLINING
C*****THE WAVE VECTOR VB(I) IN THE PLANE DEFINED AFTER THE
C*****ROTATION INTO THE AZIMUTHAL ANGLE

CA(1,1)·COS(TH) .
CA(1,2)·O.
CA(1,3)--SIN(TH)

. CA(2,1)-O.
CA(2,2)-1.

‘

CA(2.3)-O.
CA(3,1)-COS(PI/2.-TH)
CA(3,2)-O. ·
CA(3,3)·COS(TH)

C****THIS SECTION ROTATES THE VB(I) MATRIX TO NEW INCLINATION ANGLE
C****AND RENAMES MATRIX V(I) THE DIRECTION OF PROPAGATION
C****THIS IS THE ULTIMATE HAVE VECTOR FOR THE HAVE PROPAGATION
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DO 50 I-1,3
DO 50 J-1,3 ’
V(I)-VB(J)*CA(1,J)

ZS CONTINUE
C*****C(1,J,K,L) IS THE STIFFNESS TENSOR FOR GR/EP AND RHO IS THEC*****DENSITY FOR GR/EP

RHO-.000151 _
C(1,1,1,1)-23.456
C(1,1,2,2)-.943E6 ‘

C(2,Z,l,1)-.943E6
C(l•l•3„3)-C(1„1„2•Z)
C(3,3,1,1)-C(1,1,2,2)
C(2,2,2,2)-2.1E6

- C(2,2,3,3)-1.05E6
C(3,3,Z,2)-1.05E6
C(3,3,3,3)-2.1E6
C(2,3,2,3)-.527E6/2.

·
C(2,3,3,2)-.527E6/2._ ”

C(3,2,2,3)-.527E6/2.
C(3,Z,3,2)-.527E6/2. _
C(3,1,3,1)-1.03E6/Z.
C(3,1,1,3)-1.03E6/2., „
C(1,3,3,1)-1.03E6/2.
C(1,3,1,3)-1.03E6/Z.
C(1,2,1,2)-1.03E6/2.‘
C(1,2,2,1)-1.03E6/2.
C(Z,1,1,2)-1.03E6/2.
C(2,1,Z,1)-1.03E6/Z.

C****THIS SECTION CARRIES OUT THE MULTIPLICATIONS FOR THE CHRISTOFFEL
C****EOUATION’S RIGHT SIDE OR THE STIFFNESS TERMS _DO 75 I-1,3

OO 75 K-1,3
DO 75 J-1,3
DO 75 L-1,3
CL(1,K)-C(I,J,K,L)*V(J)*V(L)

75 CONTINUEV
B¤O.

C****THIS SECTION CALCULATES THE COEFFICIENTS FOR THE CUBIC EQUATIONC***THAT RESULTS FROM SUBTRACTING THE UNKNOHN VELOCITY IN THE
C***INERTIAL TERM FROM THE STIFFNESS TERMS
C***SOLVING THIS EOUATION GIVES THE VELOCITIES OF POSSIBLE
C***STRESS HAVES‘

DO 100 1-1,3
C****P IS THE COEFFICIENT OF THE OUAORATIC TERM' P-CL(I,I)+B ·

100 CONTINUE
C****O IS THE COEFFICIENT OF THE LINEAR TERM .

0-CL(2,Z)*CL(3,3)-CL(2,3)*CL(2,3)
++CL(3,3)*CL(1,1)—CL(3,1)*CL(3,1)
++CL(1,1)*CL(2,2)—CL(1,2)*CL(1,2)

C****R IS THE CONSTANT TERM
R-CL(1,1)*(CL(2,2)*CL(3,3)-CL(2,3)*CL(3,2))

+-CL(1,2)*(CL(3,3)*CL(1,1)-CL(3,1)*CL(3,1))
++CL(1,3)*(CL(1,1)*CL(2,2)·CL(1,2)*CL(1,2))

C****THIS SECTION SOLVES THE CUBIC EOUATION TO FIND THE PHASE
C****VELOCITIES BY USING A STANDARD SOLUTION FROM THE CRC
C****HANDBOOK PAGE ”

A-3.*0-P*P
8-(2.*P**3-9.*P*O+27.*R)/27.
BT•·B/Z.
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AT--(8*8/4.+A**3/27.)
IF (AT.LT.0.) AT--AT
AT¤AT**.5 -
KT-(BT*BT+AT*AT)**.5
TT-ATAN(BT/AT)
TA-TT/3.
KT-KT**.333333
APB-2.*KT*COS(TA)
AMB-2.*KT*S1N(TA)

C*****CALCULATE PHASE VELOCITIES FOR WAVES J
VL(1)-APB-P/3. „
VL(2)--APB·AM8*3.**.5—P/3.
VL(3)--APB+AMB*3.**.5-P/3. ·
DO 125 1-1,3
VP(1)•(VL(I)/RHO)**.5

125 CONTINUE

C*****CALCULATE DISPLACEMENT VECTORS
DO 175 K-1,3 ·
DO 150 1-1,3
DO 150 J-1,3
CN(I,J)-CL(l,J)
CN(J,J)-CL(J,J)-VL(K)

150 CONTINUE
DV(K,3)¤1.
DVN-CN(2,2)*CN(1,1) '
DV(K,1)-DV(K,3)*(CN(1,2)*CN(2,3)/DVN·CN(1,3)/CN(1,1))

+/(1-CN(1,2)*CN(2,1)/DVN)
DV(K.2)•-(CN(2,1)*DV(K,1)+DV(K,3)*CN(Z,3))/CN(2,2)

175 CONTINUE
C****WR1TE PHASE VELOCITIES TO FILE

DO 225 1-1,3 .
WR1TE(6,200) AZ, TH, VP(I)

200 FORMAT (3El8.6) ·
C****STOP AREA

500 STOP
END
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Appendix H. Improved approaches for programming

As mentioned, the present programs need to be upgraded before full advantage can be taken of the

physical understanding of the AU technique which has been reached. Particularly, the programs

need to be optimized, so that all modes are automatically found, without the user manipulating

code, as is presently done. The following is a partial list of ideas for improving the programming

efforts:

Up load to mainframe

Apply numerical methods, such as Newton’s method to the function F

Use method of uncoupled modes to improve solution search (see discussion below)

Key solution only to areas of interest

The method of uncoupled modes (ref. 127) involves solving the boundary value problem for mixed

boundary conditions, which uncouples the P·wave and SV-wave. Then the dispersion curve for the

resonating uncoupled modes can be obtained. The following equations describe these modes

<M¤>’
= <«»h/

V„.>’
- <kh>*
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k _ . J_
w - sin(9) Vm

where M is an integer, V, is the phase velocity for the mode of propagation (P-wave or S·wave),

in the direction associated with the angle, 0, while h is half the plate thickness, and k is the

wavenumber in the plate direction for the partial wave solution. In this scheme, the value of V,

is found by solving the plane wave Christoffel problem (appendix G). These two equations can

then be used to obtain asymptotes for the coupled wave solution, the w and k values are simply

plotted. lt should be noted that these are not simple hyperbolas for anisotropic materials, because

the value of V, varies with angle 8.

Basically, the coupled modes follow these curves, intersecting their crossings for certain conditions

and then following other curves, drastically changing directions in some cases (see figs. 70 and 72).

Perhaps advanced work geared toward understanding how modes are guided in between these

curves and their crossings could greatly improve the ability to find points on the dispersion curve.

Appendix H. lmproved approaches for programming 262






