THE RESIDUAL STRENGTH DETERMINATION DUE TO FATIGUE LOADING
BY FRACTURE MECHANICS IN NOTCHED COMPOSITE MATERIALS

by

Ming-Hwa Robert Jen

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
Engineering Mechanics

APPROVED:

K. L. Reifsnider, Chairman

C. W. Smith

J. N. Reddy

D. P. Telionis

R. H. Plaut

January, 1985
Blacksburg, Virginia
THE RESIDUAL STRENGTH DETERMINATION DUE TO FATIGUE LOADING BY FRACTURE MECHANICS IN NOTCHED COMPOSITE MATERIALS

by

Ming-Hwa Robert Jen

(ABSTRACT)

The objective of this investigation is to predict the residual strength of notched composite laminates with various layups, subjected to low frequency fatigue loading with constant amplitude at room temperature, by using a material modeling approach, fracture and fatigue mechanics and the finite element method (FEM).

For simplicity, after thousands of cycles, the geometry of a circular hole of the deformed laminate was categorized as (1) uniformly expanded hole into elliptic shape, (2) crack propagation around the hole transversely. Both types were studied for 12 cases of layups with various proportions of 0, 45, -45 and 90 degree plies. The effect of geometry change during fatigue on residual strength was attributed to the elliptical hole, longitudinal splitting, matrix cracking (reduction moduli of plies), crack propagation and local delamination. Due to the thin through-the-thickness notched laminate, two-dimensional FEM was used and interlaminar stresses were not considered.

Reduction of stress concentration is a reason for the increase of the residual strength of the notched laminate. The stress concentration
factor decreases while the elliptic hole becomes more slender; that was examined by the FEM. The residual strength and stiffness were determined by the material modeling with moduli reduction and damaged zone, and the numerical result was obtained by FEM. Laminate theory, point stress criterion, polynomial failure criterion, ply discount method, and fatigue and fracture mechanics (Paris' Power Law) were also included in this research.

Geometry change and moduli reduction are two major effects that are considered to predict the notched strength. The WN point stress fracture model is adopted for simplicity, instead of the average stress criterion. K_{tg} that corresponds to the unnotched strength in the normalized stress base curve is used to obtain the characteristic length (d_o). We find that K_{tg} decreases when the elliptic hole becomes more slender and more moduli are reduced (more plies crack). At the time d_o that is determined from K_{tg} in the base curve is not necessarily a fixed material constant.

The correlation between the fatigue life and the residual strength as predicted by the model and those determined numerically is found within acceptable errors in comparison with the experimental data.
ACKNOWLEDGEMENTS

I am deeply indebted to Professor Reifsnider for the many opportunities and guidance in the course of my graduate education. His assistance and continued encouragement is deeply appreciated.

I am grateful to Professors C. W. Smith, J. N. Reddy, D. P. Telionis and R. H. Plaut for serving as members of my examining committee and for their review of this dissertation. Also I would like to thank Professor W. W. Stinchcomb for his kind suggestions in my dissertation.

Finally, and most importantly, I am forever indebted to my parents who instilled the value of an education in their son, and to my wife, , for her moral support and unselfish sacrifices throughout this research.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER I: LITERATURE REVIEW</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II: INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER III: ANALYSIS AND FORMULATION</td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER IV: NUMERICAL METHODS</td>
<td>20</td>
</tr>
<tr>
<td>CHAPTER V: RESULTS AND DISCUSSIONS</td>
<td>29</td>
</tr>
<tr>
<td>CHAPTER VI: SUMMARY AND CONCLUSIONS</td>
<td>35</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>112</td>
</tr>
<tr>
<td>APPENDIX I: Nomenclature</td>
<td>120</td>
</tr>
<tr>
<td>APPENDIX II: Equation</td>
<td>122</td>
</tr>
<tr>
<td>APPENDIX III: Calculation</td>
<td>123</td>
</tr>
<tr>
<td>APPENDIX IV: FEM Computer Program</td>
<td>125</td>
</tr>
<tr>
<td>VITA</td>
<td>152</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Laminate with a Central Circular Hole in x-y Coordinates</td>
<td>39</td>
</tr>
<tr>
<td>2.</td>
<td>Laminate with a Central Elliptical Hole in Elliptical Coordinates</td>
<td>40</td>
</tr>
<tr>
<td>3.</td>
<td>Fracture Model (Mode I) for Transverse Crack Growth</td>
<td>41</td>
</tr>
<tr>
<td>4.</td>
<td>FEM Meshes for Laminate with a Central Circular Hole</td>
<td>42</td>
</tr>
<tr>
<td>5.</td>
<td>FEM Meshes for Laminate with a Central Elliptical Hole</td>
<td>43</td>
</tr>
<tr>
<td>6.</td>
<td>SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Graphite/Epoxy T300/5208 1.5"x8" with Layup [0_\theta]_4</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>T300/5208 1.5"x8" with Layup [0/90]_2s</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>T300/5208 1.5"x8" with Layup [0/\pm45/90]_s</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>T300/5208 1.5"x8" with Layup [0/\pm45/90_4]_s</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>T300/5208 1.5"x8" with Layup [0/\pm45/90_8]_s</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>T300/5208 1.5"x8" with Layup [0/\pm45/90_4]_s</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>T300/5208 1.5"x8" with Layup [0_\pm45/90]_8</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>T300/5208 1.5"x8" with Layup [0/\pm45/90]_8</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>T300/5208 1.5"x8" with Layup [0/\pm45/90]_8</td>
<td></td>
</tr>
</tbody>
</table>
15. SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0/45/90]s..........................53
16. SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0/45/90]s..........................54
17. SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0/45/90]s..........................55
18. SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" one ply 0, 45, -45, 90 degree..................56
19. Longitudinal Semi-axis of Elliptical Hole, b vs. Cycles for T300/5208 Laminate with Layup [0/45/90]s...............57
20. Superposition of Effective Notch on Fatigued Specimen with [0/45/90]s Layup...58
21. SCF vs. Radius of Curvature, p for T300/5208 Laminate with Layup [0/45/90]s..........................59
22. Log Stresses Around the Notch of First Quarter for T300/5208 1.5"x8" with a Central Hole dia=3/8" Layup [0/45/90]s........60
23. Stresses Around the Notch of First Quarter for T300/5208 1.5"x8" with a Central Hole dia=3/8" Layup [0/45/90]s...........61
24. Stresses Around the Notch of First Quarter for T300/5208 1.5"x8" with a Central Hole dia=3/8" Layup [0/45/90]s...........62
25. Stress σy Around the Notch of First Quarter for T300/5208 1.5"x8" with a Central Hole dia=3/8" one ply 0, 45, -45, 90.....63
26. Stresses Around the Notch of First Quarter for T300/5208 with an Elliptical Hole a=3/16", b=1.2" Layup [0/45/90]s........64
27. Stresses Around the Notch of First Quarter for T300/5208 with an Elliptical Hole a=3/16", b=1.2" Layup [0/45/90]s...........65
28. Stresses Around the Notch of First Quarter for T300/5208 with an Elliptical Hole a=3/16", b=1.2" one ply 0, 45, -45, 90...........66
29. Log Stresses Around the Notch of First Quarter for T300/5208 with an Elliptical Hole a=3/16", b=0.28" Layup [0/±45]_s.............67
30. SCF vs. Longitudinal Semi-axis of Elliptic Hole, b, and with Moduli Reduction for T300/5208 Laminate with Layup [0/±45/90]_s.........68
31. The Point Stress and Average Stress Criterion WN Fracture Model
a. Stress Distribution at Failure to Determine d_0 and a_0
b. Normalized Stress Distribution at Failure to Determine d_0 and a_0...69
32. Normalized Stress (σ_y) along x-axis and the Determination of d_0 and K_tg for T300/5208 [0/±45/90]_s Layup..................70
33. Enlarged Scale of Important Portion in Fig. 31 to Determine d_0 and K_tg..71
34. Longitudinal Semi-axis of Elliptic Hole, b vs Log Cycles for T300/934 Laminate with [0/±45/0]_2s Layup..........................72
35. Longitudinal Semi-axis of Elliptic Hole, b vs Log Cycles for T300/934 Laminate with [0/±45/90]_2s Layup.......................73
36. Normalized Stress (σ_y) along x-axis and the Determination of d_0 from K_tg for T300/934 [0/±45/0]_2s Layup....................74
37. Normalized Stress (σ_y) along x-axis and the Determination of d_0 from K_tg for T300/934 [0/±45/90]_2s Layup....................75
38. The Measurement of Major Semi-axis, b, for T300/934 [0/±45/0]_2s at the Specific Cycles of Loading.................................76
39. The Measurement of Major Semi-axis, b, for T300/934 [0/±45/90]_2s at the Specific Cycles of Loading.................................77
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stiffnesses for Graphite/Epoxy T300/5208 Laminates</td>
<td>78</td>
</tr>
<tr>
<td>2. SCF for T300/5208 Coupons 1.5"x8" with a Central Circular Hole Dia.=3/8" with Various Layups</td>
<td>79</td>
</tr>
<tr>
<td>3. SCF for T300/5208 Coupons 1.5"x4" with a Central Circular Hole Dia.=3/8" with Various Layups</td>
<td>81</td>
</tr>
<tr>
<td>4. SCF for T300/5208 Coupons 3"x8" with a Central Circular Hole Dia.=3/8" with Various Layups</td>
<td>82</td>
</tr>
<tr>
<td>5. SCF for T300/5208 Coupons 1.5"x8" with a Central Elliptical Hole a=0.1875", b=0.28" with Various Layups</td>
<td>83</td>
</tr>
<tr>
<td>6. SCF for T300/5208 Coupons 1.5"x8" with a Central Elliptical Hole a=0.1875", b=0.375" with Various Layups</td>
<td>84</td>
</tr>
<tr>
<td>7. SCF for T300/5208 Coupons 1.5"x8" with a Central Elliptical Hole a=0.1875", b=0.4" with Various Layups</td>
<td>85</td>
</tr>
<tr>
<td>8. SCF for T300/5208 Coupons 1.5"x8" with a Central Elliptical Hole a=0.1875", b=0.5" with Various Layups</td>
<td>86</td>
</tr>
<tr>
<td>9. SCF for T300/5208 Coupons 1.5"x8" with a Central Elliptical Hole a=0.1875", b=0.8" with Various Layups</td>
<td>87</td>
</tr>
<tr>
<td>10. SCF for T300/5208 Coupons 1.5"x8" with a Central Elliptical Hole a=0.1875", b=1.2" with Various Layups</td>
<td>88</td>
</tr>
<tr>
<td>11. Experimental Fatigue Data for T300/5208 Quasi-isotropic Laminate with Geometry Change and Residual Strength Increase</td>
<td>89</td>
</tr>
<tr>
<td>12. Moduli Reduction Data for T300/5208 Quasi-isotropic Laminate</td>
<td>90</td>
</tr>
<tr>
<td>13. SCF for T300/5208 Quasi-isotropic Laminate with Both Geometry and Moduli Changes</td>
<td>91</td>
</tr>
</tbody>
</table>
14. The Notched Strength for Quasi-isotropic Laminate via WEK Fracture Model...94
15. SCF for an Infinite Orthotropic Laminate with a Central Circular Hole from Eq. (4).......................................95
16. Notched Strength for T300/5208 Quasi-isotropic Laminate with Plies Cracked..97
17. T300/5208 Notched Quasi-isotropic Laminate Residual Strength via WN Fracture Model Point Stress Criterion with No Ply Cracked....99
18. Notched Strength for T300/5208 Quasi-isotropic Laminate with All Plies Cracked and Constant Characteristic Length.........100
19. Notched Strength for T300/934 [0/±45/0]_2s Laminate with a Central Circular Hole due to T-T Fatigue Loading..............101
20. Notched Strength for T300/934 [0/±45/90]_2s Laminate with a Central Circular Hole due to T-T Fatigue Loading..............102
21. Stiffnesses for a Cracked Single Ply by Reducing Moduli............103
22. Maximum Stress and Displacement for T300/5208 [0] Ply with Moduli Reduction and Geometry Change...........................104
23. Maximum Stress and Displacement for T300/5208 [45] Ply with Moduli Reduction and Geometry Change...........................105
24. Maximum Stress and Displacement for T300/5208 [-45] Ply with Moduli Reduction and Geometry Change...........................106
25. Maximum Stress and Displacement for T300/5208 [90] Ply with Moduli Reduction and Geometry Change...........................107
26. The Predicted Residual Strength for T300/5208 [0] Ply............108
27. The Predicted Residual Strength for T300/5208 [45] Ply............109
28. The Predicted Residual Strength for T300/5208 [-45] Ply............110
29. The Predicted Residual Strength for T300/5208 [90] Ply...........111
Chapter I
LITERATURE REVIEW

In recent years, composite materials have replaced metals in many applications because of their light weight, high strength and low cost. Composites also provide improved fatigue capability, good damage tolerance and the ability to be molded in complex aerodynamic configurations.

In many structural applications, notched composite material components can not be avoided. However, the effects on the component itself and the whole structure caused by notches are very complex. The problem and the influence of a notched component can be found in the literature in the recent ten years. For simplicity, in this work we are only concerned with the change of residual strength of a composite laminate with a central hole subjected to two types of fatigue loadings, tension-tension and tension-compression, (T-T and T-C), with constant amplitude at room temperature and low frequency.

A few investigators have reported the increase of residual strength after fatigue loading for certain composite material laminates. Most of these observations can not be used as clearcut evidence, because of the experimental complexity involved. It is felt that comparing the residual mean strength with the mean of the top percent of the static strength leads to fairer conclusion [1]. Now let us summarize a few of the experimental works that involve an increase of residual strength. Reifs-
nider et al. [2] measured residual strength of boron/epoxy laminates with layup of \([0/\pm 45/0]_s\), and with a central hole. After cyclic loading, static residual strength was measured. Their results show that specimens with higher applied cycles had higher residual strength. They concluded that fatigue loading may increase the residual strength. Kulkarni et al. [3] also observed an increase in residual strength after tension-tension fatigue in notched boron/epoxy laminates. Their results for notched (circular hole) coupons of \([0_2/\pm 45]_s\) layup with maximum fatigue stress equal to 80% of the static strength, and \(R=0.1\), show an increase of residual strength of 10% after 50000 cycles. The increase was 15% after 500000 cycles, and 16% after 1.5 million cycles.

Waddoups et al. [4] observed an increase in residual strength in \([0/90]_s\) graphite/epoxy composite laminate with circular notch, subjected to fatigue loading. Chang et al. [5] observed approximately 30% increase of residual strength in \([0/\pm 45]_s\) graphite/epoxy coupons with a center slit under fatigue loading to 0.2 million cycles without failure. Their results were described by the nonlinear damage growth rate rule quite well. Chang et al. [6] also found an increase in residual strength in \([0/\pm 45/90]_s\) graphite/epoxy notched specimens.

To explain the increase of residual strength, a few investigators have attempted to use fracture mechanics. Zweben [7] offered an explanation for notched composite specimens. He studied the 0 deg layer of a composite laminate subjected to an axial loading. The notch is perpendicular to axial direction and cuts n fibers. In a fatigue loading
situation the fiber at the root of the notch might not fail but the length of the matrix failed region might continue to grow. Thus the stress concentration might decrease with applied fatigue cycles. In such a case it is not unexpected to find the residual tensile strength to be higher than the static tensile strength for some composites and layups. Sendeckyj [8] also cited the decrease in stress concentration as the reason for increase of residual strength. He discussed the fatigue failure of \([0/45/90]\) graphite/epoxy laminates with a central hole. Under fatigue loading, matrix cracks will occur in various laminates which eventually lead to a decrease in the stress concentration caused by the hole. As a result, the residual tensile strength could increase.

The test data of Chou [9], Awerbuch and Hahn [10], indicate an increase in fatigue residual strength in unidirectional graphite/epoxy composites. There are also other test data of different composites and layups which have an increase in residual strength in graphite/epoxy specimens with a central hole after fatigue loading, see reference [11] for T-T test and [12] for T-C test. It is also reported in [1] that graphite/epoxy (AS-3501-05) \([0_6]\) specimens without notches also show an increase in residual (tension and compression) strength after T-T test. That behavior might be due to micro-damage of the coupon.

Some investigators [3]-[4], [7]-[8], [13]-[20], analyzed the problem theoretically by fracture mechanics and found good agreement with experimental data. They considered the cumulative damage, crack growth rate and fracture toughness at the notch, and attributed the
increase of residual tensile strength to the reduction of stress concentration. Chou and Croman [9], [21] used the "strength-life equal rank assumption" and "degradation and sudden-death models" to predict the residual strength and life. However, there is no satisfactorily complete theoretical or analytical way to predict the residual strength after cyclic loading due to the complexity of the notched composite specimen, especially since the micro-mechanical properties and micro-damage development details around the notch are still unknown.

To date there exist only a few attempts to consider the specific effects of the complexity of damage around notches in composite materials, and to derive a theoretical or analytical method to predict the residual strength and life. The importance of understanding fracture behavior is intensified because of the characteristic statistical variability in material strength and the observation of fracture phenomena that are significantly different from those of metals.

There are two common approaches to describe the notched strength phenomena; the first is by statistics using the strength-life equal rank assumption, and the second is to use fracture and fatigue mechanics. In this work the latter approach is used in combination with the stress analysis theorem and finite element method (FEM). Our goal is to work out an analytical method that closely correlates with experimental data.

The objective of this research is to model the stress redistribution caused by damage development around a hole in a composite coupon, and to estimate the residual strength as a function of cycles of loading.
using those stress states and an appropriate failure theory. The present approach is the first reported attempt to account for both the relaxation of the stress concentration around the hole and the change in stiffness due to matrix cracking throughout the laminate. A normal feature of the approach is the representation of the stress concentration change by an effective change in the hole from circular to elliptical.
The analysis of crack problems in plane elasticity has intrigued mathematicians for nearly sixty years. Inglis [22] found the solution for a single crack in an infinite sheet with the use of elliptical coordinates. Muskhelishvili's work on the complex form of the two-dimensional equations due to Kolosoff [23] has undoubtedly been the major development and influence on analytical techniques for solving plane crack problems during this era. Several results of the complex variable formulation of two-dimensional elasticity for both isotropic and orthotropic materials will be summarized briefly. For complete accounts of the isotropic and anisotropic theories, the reader is referred to the classical treatments of Muskhelishvili [24] and Lekhnitskii [25-26], respectively. A brief introduction to the respective theories may be found in Timoshenko and Goodier [27], and Savin [28].

In reference [27] is found the solution for the stress distribution around an elliptic hole in homogeneous isotropic infinite plate due to uniaxial tension. The solution for tension or compression in two perpendicular directions can easily be obtained by superposition. The case of a circular hole near a straight boundary of a semi-infinite plate under tension parallel to this boundary was analyzed by Jeffery [29]. A corrected result and a comparison with photoelastic tests were given later by Mindlin [30]. The stress at the hole, at the point nearest the
edge, becomes a very large multiple of the remote tensile stress when the distance from the circle to edge is small \([31]\) compared with the diameter. The case of a plate of finite width with a circular hole on the axis of symmetry was discussed by Howland \([32]\). The method used in \([27]\) for analyzing stress around a small circular hole can be applied when the plate is subjected to pure bending. Many specific cases for both tension and bending have been worked out. These include one hole or a row of holes in a strip and in a semi-infinite plate, circular arrays of holes, and semicircular notches in a strip. Most different geometries of notches and notches with inclusions are not considered here.

The circular hole can be thought of as the special case of an elliptic hole with both semiaxes equal to the radius. The problem of a plate with an elliptic hole is more complicated than the circular hole. For an infinite isotropic plate loaded in tension with an elliptic hole, the stress distribution can be found in \([27]\) by complex variables in elliptic coordinates which is a type of curvilinear coordinates. Solutions for the plate with an elliptic hole were first given by Kolosoff and Inglis. The method employed in \([27]\) is that of Kolosoff. The same method was applied to several two-dimensional problems of elasticity by Stevenson \([33]\). Also many further solutions for elliptic and other noncircular holes, or inclusions, with various loadings, have been worked out in detail but are not of interest here. Other stress distribution information for elliptic holes under axial loading were given in \([34-39]\).
In general, we can not employ the above solutions of stress distributions directly to the finite width composite laminate with an elliptic hole, because we have to modify infinite to finite width and isotropic and anisotropic plate to orthotropic layered plate. The exact solution for the stress distribution for an isotropic infinite plate with an elliptic hole due to axial tension is shown in Eq. (1), see Appendix II. The exact solution for finite width composite laminate is not available. Actually, there exists a general polynomial and series equation approximate solution to this complex problem. Cracks in plates of finite size are of great practical interest, but for these cases no closed form solutions are available. The problems are difficult because of the presence of complex boundary conditions [40]. An approximate solution can be obtained for a strip of finite width loaded in tension and containing a central crack.

There exist several possible methods to obtain approximate solutions of the stress fields for a finite composite laminate with an elliptic hole. One is to revise the solutions for an anisotropic infinite plate with an elliptic hole by coefficients of a function of \((d/w)\). Others are the finite difference method, finite element method and approximate theoretical series solutions (Exponential power series, Hyperbolic trigonometric series, etc). For simplicity we could use the method of modifying the exact solutions with finite-width coefficients. For more complete considerations of the influence of all factors associated with damage we chose to use the FEM. Finite element methods have difficul-
ties in regions with rapidly varying stress gradients such as notches. Such devices as building in specialized local displacement fields into the elements are often awkward and imprecise. In fact, as we have already remarked, in the case of notches the singular nature of the solution is usually not sufficiently understood to estimate the local character of the displacement fields. These difficulties can be removed by utilizing a continuous representation of the solution locally and a finite element representation elsewhere. In FEM the concept of isoparametric elements for inclusion of irregular boundaries in a finite element formulation poses no great difficulty. Also moving the central nodal points to the quarter point on the sides near singularities for triangle and quadrilateral elements can achieve better accuracy close to the singular points of notches.

Implicit to the classical technique of conformal mapping is the global representation of the solution. When a closed-form solution for the stress function can be found, this solution is ideal. Usually, however, this is not possible and a series or integral representation of the solution must be considered. Owing to rapidly varying stress gradients in the notch vicinity as contrasted to the more remote stress distribution, it is evident that numerical convergence can become a factor in a global representation of the stress functions. When a series representation is taken, it is usually necessary to retain a large number of terms to ensure notch stress accuracy. The classical approach lacks the flexibility to provide effective localized expressions, and, at the same time, a less
demanding representation of the more uniform portions of the solution. Effective local expressions are clearly desirable to document numerical solutions for general use.
Chapter III

ANALYSIS AND FORMULATION

Actually, some factors are neglected such as frequency, temperature and moisture. Also, the interlaminar stresses which we do not consider in the process may be the controlling stress for residual tensile strength. Zweben [7] suggested three main approaches to analyze the present problem. The first applies classical fracture mechanics (CFM) on a macroscopic level, treating composites as homogeneous, anisotropic materials. The second recognizes material heterogeneity and applies CFM to the problems of crack propagation in the matrix and fiber phases and interfaces separately. The third method, which might be called the material modeling approach, uses approximate models in order to represent the major effects of heterogeneity and to simplify the analysis.

After the advantages and limitations of the three approaches are compared, the emphasis will be placed on material modeling for simple analysis. Waddoups et al [4] reported the fracture model by the application of CFM to laminated composites with a central hole. That approach will be tested here. Also, we will use a crack growth rate theorem and stress analysis theorem in the process to solve the problem. The stress analysis is based on treating the laminate as a homogeneous plate using a finite element technique. The strength analysis is based on the tensor polynomial failure criterion applied to each ply.
The ultimate laminate failure strength is based on the last ply failure stress \[41\]. After the simulation of material modeling, we can find the residual tensile strength after the specific cycles of loading and see the change of residual tensile strength and a function of the increase of cycles.

Consider a composite laminate with a central hole shown in Fig. 1. Our aim is to determine the residual strength of this notched laminate subjected to fatigue loadings. For simplicity, we neglect the parameters that are not important, such as environmental effects. First, the aspect ratio of \(l\) and \(w\) should not be large in order to avoid the buckling by compressive loading. The test environment is assumed to be room temperature and dry, with no temperature and moisture changes. The test frequency is taken to be constant at some normal frequency. The stress amplitude is constant and the stress ratio is a fixed value. The geometries of the through-the-thickness notches will be of two types, circular hole, ellipse, slit, etc. First, we consider a graphite/epoxy composite laminate with a central hole, subjected to T-T test. Other types of notches, fatigue loadings, and the parameters will be considered later.

After several thousand cycles, the geometry of a circular hole of the deformed laminate is categorized as (1) uniformly expanded hole into an elliptic shape, (2) symmetric crack propagation at the hole edge transversely, (3) irregularly deformed shape. However, the case of irregularly deformed shape is omitted here, because it is very difficult to
model. The case of transverse crack propagation is expressed in a compact form shown in the last section of this chapter, because some damage properties are still unknown.

First, let us consider the case of a circular hole deformed into an elliptic hole. For a homogeneous isotropic plate with a central circular hole due to uniaxial tension, see Fig. 1. We know that a circular hole is the special case of an elliptical hole, so we directly consider an elliptical hole. There are several ways to derive stress and strain fields for a notched plate with an elliptical hole subjected to uniaxial loadings, such as classical complex potential methods and finite element methods. The classical method is suitable for only special cases. Muskhelishvili [42] worked on the complex form of two-dimensional elasticity to solve plane crack problems. Timoshenko et al [43] derived the stress distribution for a homogeneous, isotropic, infinite plate with a centered elliptical hole due to uniaxial tension. In elliptical coordinates ξ and η shown in Fig. 2 instead of x and y, we obtain the stress distribution along ξ-axis expressed in Eq. (1), see Appendix II. At $\beta=0$, $\eta=\pi/2$, $\xi=\xi_0$, Eq. (1) reduces to

$$\sigma_\eta = S(1+2b/a) \quad (2)$$

That is the stress concentration. For a circular hole $a=b=$radius, $\sigma_\eta = 3S$, i.e., the SCF=3. Similarly, we can derive σ_ξ, $\sigma_{\xi\eta}$ and strain field. In fact, the stresses σ_ξ and $\sigma_{\xi\eta}$ are not important in the consideration of SCF. To apply Eq. (1) for rectangular coordinates, we set
\[
\begin{align*}
c \cosh \xi_0 &= a, \quad c \sinh \xi_0 = b, \quad c^2 = a^2 - b^2 \\
\sinh 2 \xi_0 &= 2ab/c^2, \quad \cosh 2 \xi_0 = (a^2 + b^2)/c^2 \\
e^{2 \xi_0} &= (a+b)^2/c^2, \quad e^{-2 \xi_0} = (a-b)^2/c^2
\end{align*}
\]

where \(2c\) is the length of the foci. If \(a\) and \(b\) are known, we can determine \(c\) and \(\xi_0\). Then setting \(\eta = \pi/2\) and \(\xi = \xi_0, 1.1\xi_0, \ldots\), we have the stress distribution \(\sigma_\eta\) along the \(\xi\)-axis. For special cases, \(\xi_0 = 0\) or \(b = 0\) and \(a = ±c\), that is a crack of length \(2c\). And if \(\xi_0 = ±a = \infty\) and \(b = \infty\), that is an infinite hole.

However, for composite laminates we have to modify isotropic plate to make it anisotropic, see Ref. [44]. The orthotropic stress concentration factor \(K_t^\infty\) for an infinite width plate with a circular hole, Lekhnitskii [45] expressed it as

\[
K_t^\infty = 1 + \sqrt{\frac{\sqrt{A_{11}A_{22} - A_{12}^2} + (A_{11}A_{22} - A_{12}^2)/2A_{66}}}{A_{22}}}
\]

(4)

In order to obtain SCF for an elliptical hole, Eq. (4) is not applicable. For the real finite width plate, we also need to modify Eq. (1) from infinite width to finite and isotropic to anisotropic. That is a very complicated problem. In addition, the resulting complex expressions are not well suited to be adopted to practical applications. So the approximate numerical methods are the direct and applicable way to solve the problems. The finite element method and the numerical results will be discussed later.
Now consider the failure criteria suggested by Whitney and Nuismer [46] and [47], such as the point stress and the average stress criteria. The first failure criterion referred to as the "point stress criterion"; it assumes failure to occur when \(\sigma_y \) at some distance, \(d_0 \), ahead of the hole first reaches the unnotched tensile strength of the material. The relation of notched and unnotched strength of the infinite width laminate is

\[
\frac{\sigma_N}{\sigma_o} = \frac{2}{2 + \xi_1^2 + 3\xi_1^6 - (K_{t}^{\infty} - 3)(5\xi_1^6 - 7\xi_1^8)}
\]

where \(\xi_1 = R/(R + d_0) \), \(d_0 \) is characteristic distance and a material property, \(\sigma_o \) = unnotched strength, \(\sigma_N \) = notched strength.

The details of the numerical results will be included in the following chapters for the case of an elliptic hole. Now we try to formulate the transverse crack propagation in the last part of this chapter.

We describe the transverse crack propagation problem in Fig. 3 by using linear elastic fracture mechanics, we obtain the Stress Intensity Factor (SIF) at the crack tip. That is

\[
K_1 = \sigma\sqrt{\pi a f(a/r)}
\]

where \(a \) is characteristic dimension of the intense energy region. The energy available for crack extension in isotropic materials is

\[
G_1 = (1 - \nu^2)\pi K_1^2 / E
\]

\[
\sqrt{G_1} = [(\pi a(1 - \nu^2)/E)\sigma f(a/r)]
\]

\[
(8)
\]
G_I will be a material constant if the material is an ideal Griffith solid. Then

$$\sqrt{G_I} [\pi \sqrt{a(1-\nu^2)}/E]^{-1} = \sigma f(a/r) = \text{constant} \quad (9)$$

When Eq. (6) is critical,

$$\sigma_c = K_{lc} / [\sqrt{\pi a f(a/r)}] \quad (10)$$

For a specimen with no hole (control), we have

$$\sigma_o = \sigma_c a/r = K_{lc} / [\sqrt{\pi a} (1.00)] \quad (11)$$

$$\sigma_o/\sigma_c = f(a/r), \sigma_c/\sigma_o = 1/f(a/r) \quad (12)$$

From experimental observations, this model is found to be consistent with the observed behavior predicted for a constant value of $a=0.04" \quad [4]$. However, several limitations of the Waddoups model preclude its general utility. First the necessary development by Bowie [48] is limited to isotropic material systems. In addition, the assumption that the characteristic dimension is a material constant is invalid [49] and [50].

With the constant amplitude of stress and fixed frequency, after N cycles, fatigue crack growth can be represented by the Paris' Law [51].

$$da/dN = C(\Delta K)^m \quad (13)$$

where C and m are experimentally determined material constants.
\[\Delta K = \Delta \sigma \sqrt{\pi a f(a/r)} \quad \text{(14)} \]

where \(\Delta \sigma = \sigma_{\text{max}} - \sigma_{\text{min}} \) and \(\Delta K = K_{\text{max}} - K_{\text{min}} \). We use \(K_{\text{min}} = 0 \) for \(K_{\text{min}} < 0 \), then \(\Delta K = K_{\text{max}} \) [52]. Substituting Eq. (14) into Eq. (13), we have

\[\frac{da}{dN} = C [\sqrt{\pi a f(a/r)}]^m (\Delta \sigma)^m \quad \text{(15)} \]

In integral form

\[\int_a^{a_o} \frac{N da}{[\sqrt{\pi a f(a/r)}]^m} = C \int_0^N (\Delta \sigma)^m dN \quad \text{(16)} \]

The function, \(f(a/r) \), was tabulated for uniaxial and biaxial stresses [53]. Mode I & II problems are included. If we assume that \(a_0 = 0.0" \) (very small crack initiation), and the crack extends perpendicular to loading, we get

\[K_1 = \sigma \sqrt{\pi L} \quad \text{(17)} \]

The effective half-crack length is \((L+a) \), then

\[K_1 = \sigma \sqrt{\pi (L+a)} \quad \text{(18)} \]

\[\sigma_o / \sigma_c = (L+a)/a \quad \text{(19)} \]

When \(r+a_N \) approaches \(L \) and \(a_N \) approaches \(a \), we obtain

\[\sigma_c / \sigma_o = \sqrt{a_N / (r+a_N)} \quad \text{(20)} \]
Actually, Paris' Law is not sufficient to express the defect initiation and growth in notched composite laminates. Delamination growth is a major concern to designers of composite structures and is usually planar and self similar. Using principles of fracture mechanics as the delamination grows along the interface, the growth rate \(\frac{da}{dN} \) is related to the strain energy release rate \(G \) by the power law [54-55].

\[
da/dN = A(G)^n
\]

In general practice, \(G \) is the total strain energy release rate with components due to mode I, mode II, and mode III deformation. The growth rates of interfacial cracks and delaminations are particularly sensitive to the mode of cyclic loading. In the case of plane stress

\[
G_I = K_I^2/E
\]

Then,

\[
da/dN = A(K_I^2/E)
\]

Plugging Eq. (6) into Eq. (23), we get

\[
da/dN = A\left(\sigma \sqrt{\pi a} Y\right)^n
\]

where \(A \) and \(n \) are material properties, \(Y \) is \(f(a/r) \) and \(E \) is modulus changing with cycles. After rearrangement, we express it in the integral form

\[
\int_{a_0}^{a} \frac{da}{a^n} = \int_{0}^{N} \left[A(\pi Y^2)^n \sigma^2 a^n / E^n \right] dN
\]
where σ is a function of cyclic loading (sine or step function) and E is a function of (a,N). Now we can obtain a_N'. Replacing a_N by a_N' in Eq. (20), we obtain

$$\frac{\sigma_c}{\sigma_o} = \frac{a_N'/(r+a_N')}{(r+a_N')/(r+a_N')}$$

(26)

However, it is hard to find a numerical solution, because some micro-damage properties around the hole due to cyclic loading are not well understood. So we express the relation between the critical and the unnotched strength in simple compact form. The further study on this work is suggested.
Chapter IV
NUMERICAL METHODS

In the case of two-dimensional plane stress quasi-isotropic, orthotropic and anisotropic composite laminates we apply finite element method to the laminate coupon with a center hole to get the approximate solutions of stress and strain fields. Two computer programs given in Ref. [56] and [57] are slightly modified for the composite materials. Here we use the program described in [57] for time and space savings. The documentation and a modified FEM computer program are listed in Appendix IV. The documentation is omitted here, refer to the implementation of the finite element method in the Appendix of Ref. [57].

The objective is to discuss finite element analysis procedures for linear problems in solid and structural mechanics. It is the displacement-based FEM that can be regarded as an extension of the displacement method of analysis. The finite element discretization procedure and derivation of the equilibrium equations are presented in general, i.e., a general three-dimensional body (generalized coordinates) was considered. The general equations derived must be specialized in specific analyses to the specific stress and strain conditions considered. In this research a two-dimensional plane stress problem is solved by using the general formulation with the appropriate displacement, stress and strain variables, i.e., the stresses in the z-plane are zero. In most practical analyses the use of isoparametric finite elements is more effec-
tive. The principal idea of the isoparametric finite element formulation is to achieve the relationship between the element displacements at any point and the element nodal point displacements directly through the use of interpolation functions (also called shape functions). This means that the transformation matrix is not evaluated; instead, the matrices corresponding to the required degrees of freedom are obtained directly. Also, the continuum and structural isoparametric element formulations satisfy the convergence criteria (compatible and complete). For practical consideration in isoparametric element calculations, each element of the composite coupon has 8 nodes (8 nodes for plate, 9 nodes for shell) and 9 Gaussian points. The integration order is 3x3 and the degree of precision is 5. Each element has 8 nodes to eliminate the geometric error and has 9 Gaussian points to yield the closest results (the SCF is determined at element 1 Gaussian point 9). In addition, for notched problem there exists a new-developing method, boundary element method, to achieve numerical solution, see Ref. [58].

From experimental data of notched composite specimens, we consider 1.5"x8" specimens with a central hole with a diameter of 3/8", see Fig. 4. The ratio of hole diameter to width is 1:4, which is smaller than 0.33 [59]. In order to see the influences of length and width on the SCF, we reduce the length to half length and double the width to 3" with the length up to 10". One important point is that the aspect ratio should not be large enough to cause buckling of the specimen in compression. For symmetry, we only consider the first quarter of the
coupons of Fig. 4. For \([0/45_2/90]_s\) and \([0/45_4/90]_s\) layups, we consider the upper half of the coupons. To make meshes and nodes, the elements around the hole have to be as small as possible to meet the localized stress concentration.

Due to fatigue loadings, the circular hole will be deformed into the elliptical hole with the assumption that the diameter of the semi-axis perpendicular to the loading is unchanged. The diameter parallel to loading is enlarged with the increase of the cycles, see Fig. 5. Although it is not yet possible to predict the relation of the enlarged diameter to cycles, we can obtain such data experimentally. The stress distributions for graphite/epoxy T300/5208 specimens with various orientations and elliptic holes are tabulated. The stiffness data in Table 1 are from Ref. [60]. From Table 2 and 3 we see that the length does not influence the SCF. The changes of strains and stresses only occur at the remote points. From Table 2 and 4 we see that the width slightly influences the SCF. Comparing the data, we see that as the elliptical hole becomes slender, the SCF becomes smaller. That is a stress concentration reduction which can contribute to the increase of residual strength, see Fig. 6-18 for the variety of layups. The plotting scheme for the numerical results is to use the cubic spline function, see the subroutines from the computer library (IMSL), to achieve a smooth curve for each data set.

From plate theory, laminate theory and the finite element analysis, we can obtain the stresses and strains at all the elements of every lay-
er at the applied stress range from min to max at the first cycles. Similarly, we can obtain from X-ray radiographs of damage zones the different elliptical dimensions. The strength analysis is based on the tensor polynomial failure criterion can be applied to each ply. Then the initial laminate strength can be estimated by the first-ply failure theory on the conservative side [60]. But the ultimate laminate failure strength is based on the last-ply failure stress, that is used as baseline information for comparison with the residual strength after N cyclic loads have been applied.

In this way we can determine the residual strength after N cycles by means of the simplified model. The results obtained from this procedure are within acceptable error in comparison with the experimental data.

The diameter of the semi-axis parallel to loading direction enlarges with the increase of the number of applied cycles, see Fig. 19. Actually, the longitudinal semi-axis, b, is not a hole shape change. It is a superposition of effective notch determined by the damaged region around a hole. We consider the total region of hole and effective notch as an elliptical hole for simplicity, see Fig. 20 for T300/5208 fatigued specimen with [0/±45/90]s layup. However, the mathematical relationship of the enlarged diameter to the number of applied cycles is difficult to predict. The determination of such a relationship requires extensive experimental data showing the deformed geometry by X-ray or C-scan at specific cycles of loading. The complexity of this problem is
increased by the fact that the response depends on ply orientations, stacking sequence, and geometrical factors.

We begin by applying the finite element method to obtain the approximate solution of stress and strain fields for a two-dimensional plane stress specimen with a central hole. Also via the FEM we can obtain the stress in each ply and, from last-ply failure theory, we can estimate the failure strength of that notched specimen.

From Table 2 and 5-10 we see the SCF decreases as the semiaxis, b, becomes larger for $0, +45, -45, 90$ deg single ply laminae and twelve cases of layups. The geometry change does influence the SCF and the reduction of SCF can contribute to the increase of residual strength. Also we find that the more 90 deg plies present in the laminate, the higher is the SCF. Additionally, we also plot the stresses (axial, transverse, and shear) around the notch of the first quarter for various layups in different scales as shown in Fig. 21-29, although shear stress is not used in the present model. The above mentioned results are associated with the effect of notch geometry only.

Actually, the elastic moduli are also reduced during cyclic loading, in addition to the geometry effect changes. In order to better represent the real phenomena, we use discount theory to predict the last-ply failure of the laminate [61] [62]. In many cases, laminates have considerable strength remaining after first-ply failure and there arises the difficult and important problem of analytically determining subsequent failures. Initial failure of a layer may occur in the fiber or in the ma-
trix mode. In the first case, the stiffness in the fiber direction E_1 is reduced, and in the second case the elastic properties E_2 and G_{12} are reduced. These elastic properties are not reduced to zero, because the uncracked regions remain bonded to adjacent layers. A precise estimate of these stiffness reductions is difficult to make. The simple (but extreme) assumption is that E_1 reduces to zero in the fiber failure mode and that E_2 and G_{12} reduce to zero in the matrix mode. Since a laminate in most cases will not survive a fiber mode failure, the progressive failure cases of interest are initial and subsequent failures in the matrix mode. If it is assumed that, for failure of a lamina in the matrix mode, E_2 and G_{12} can be set equal to zero, eventually the assumptions of netting analysis result. For netting analysis, the ultimate load is defined by the state when E_2 and G_{12} vanish in all laminae.

We know that the internal stress redistribution is a driving force for subsequent subcritical element damage and critical element degradation. The basic nature of that stress redistribution can be established by considering the quasi-static strength of such a laminate since such cracks also form before fracture under quasi-static loading. When edge effects do not dominate the failure process, the ply discount method is a good engineering approach to estimate laminate strength. To apply the scheme one must calculate ply stresses, use a failure criterion to predict first ply failure (matrix cracking), reduce the moduli in the broken plies ($E_2, G_{12} = 0$), recalculate ply stresses, test for second...
ply failure, etc. until last ply failure is predicted. First consider a quasi-isotropic laminate with a \([0/\pm 45/90]_s\) layup. The experimental data is shown in Table 11 [63]. The residual strength \(S_n\) and the measured 0 deg crack length \(C\) increase with increasing cycles. The radius of the circular hole, \(a\), remains unchanged as the short semi-axis of elliptic hole with increasing cycles. The long semi-axis of elliptic hole, \(b\), as stated in Fig. 20, enlarges with increasing cycles, but \(b\) is not a hole shape change. It is the region of effective notch which includes the hole and the damaged area. We measure the values of \(b\) before observing the residual strengths. In addition to changing the hole geometry to ellipse, we also adopt discount theory to reduce moduli after the 90, -45, +45, and 0 deg plies crack. The moduli reduction data is shown in Table 12. The stress and strain fields are obtained for all cases of geometry and moduli changes via the FEM. The data for the SCF and maximum displacement are shown in Table 13. We see that the SCF deceases when more moduli are reduced, i.e., more cracked plies are introduced for the case of constant geometry. Also, when both the hole becomes slender and the moduli are reduced, the SCF becomes less and less. Finally, the SCF will approach the asymptotic value under both conditions. The asymptotic value is 1 for ideal isotropic materials, but it is slightly higher than 1 for orthotropic or anisotropic materials. These results are shown in Fig. 30.

The literature indicates that there are several fracture models which have been used to determine the notched strength of composite
laminates. After reviewing these methods, we first choose to consider the Waddoups, Eisenmann, and Kaminski (WEK) fracture model [4]. The unnotched strength of a given quasi-isotropic laminate \([0/\pm 45/90]_s \) is 550 MPa. Following the steps stated in [4], we can calculate the notched residual strength as shown in Table 14. We find that the predicted results in in Table 14 are quite different from the experimental data in Table 11. The example of calculation for T300/5208 graphite/epoxy quasi-isotropic notched strength is as follows:

Plug the first two values of column 3 in Table 14 into Eq. (12),

\[f(a/r) = \sigma_o / \sigma_c = 79.57 / 37 = 2.15 \]

From Table 7 in Ref. [53],
\[a/r = 0.3 \]
\[a = 0.1875" \times 0.3 = 0.05625" \]

Plug into Eq. (10),

\[K_{IC} = \sigma_c \sqrt{\pi a f(a/r)} = 37 \sqrt{3.1416 \times 0.05625 \times 2.15} = 33.44 \text{ KSI/IN} \]

Now \(a = 0.1875" \), \(b = 0.5" \), \(w = 0.75" \)
\[r = (a+b)/2 = 0.34375" \] (average)
\[a/r = 0.05625 / 0.34375 = 0.164 \]

From Table 7 in Ref. [53],
\[f(a/r) = 2.53 \]
\[\sigma_c = K_{IC} / \sqrt{\pi a f(a/r)} = 33.44 / \sqrt{3.1416 \times 0.05625 \times 2.53} = 31.44 \text{ KSI} \]

The calculated notched strength = 31.44 KSI, is shown in Table 14 column 3.

The finite width correction factor, \(Y \), is
\[Y = \left[2 \left(1 - 2r/w \right) \right] / \left[3 \left(1 - 2r/w \right) \right] = 1.33 \]
The modified notched strength is
$1.33 \times 31.44 \text{ Ksi} = 41.77 \text{ Ksi}$

The modified strength=41.77 Ksi, is shown in Table 14 column 4.

The disadvantages of the WEK fracture model are 1) the SCF is not involved, 2) the change of hole geometry from circular to elliptic is not incorporated, 3) the finite width correction factor is not involved. Due to the shortcomings of the Waddoups, Eisenmann, and Kaminski fracture model we concluded that the WEK fracture model was not adequate to find the residual strength, since it only shows the decrease of static strength with the increase of hole diameter. Then we choose the Whitney and Nuismer (WN) fracture model to determine the notched strength. The SCF calculated from Eq. (4) shown in Table 15 for an infinite orthotropic laminate with a central circular hole can be used as a comparison to the SCF in Table 2 for finite width obtained via FEM. We see that there is only a small difference in the values. So the SCF, K_t^*, in Table 2 can be used for the WN fracture model.
Chapter V
RESULTS AND DISCUSSIONS

Now we attempt to use the Whitney and Nuismer (WN) fracture model to determine the notched strength (the residual tensile strength) for a specific number of cycles of fatigue loading after comparing with several fracture models. At the beginning we use the point stress criterion instead of average stress criterion for simplicity, although the later generally has better accuracy than the former. From the experimental data for T300/5208 quasi-isotropic laminate in reference [63], we have the residual tensile strength (Sn) at specific cycles of T-T fatigue loading and the corresponding geometry changes. The unnotched tensile strength for those specimens is 71 ksi. The point stress criterion is shown in Eq. (5). For different cracked situations in each b value, we assume that K_{tg} is equal to K_t when all 90, -45 and +45 deg plies have cracked, i.e. at $b=0.1875''$ $K_{tg}=1.98$, at $b=0.5''$ $K_{tg}=1.73$, at $b=0.8''$ $K_{tg}=1.67$, and at $b=1.2''$ $K_{tg}=1.63$, see column 2 in Table 16 and curve 3 in Fig. 30 for K_{tg} at each b value. With the K_{tg} value known, we obtain d_o by intersecting the base normalized stress distribution curve which is the stress state for the circular hole ($a=b=R$) with no ply cracking. We use the base curve to represent the WN normalized point stress criterion, since it is suitable for the circular hole. The scheme to determine the characteristic length (d_o) at the unnotched laminate strength (failure) from the WN
fracture model is shown in Fig. 31a, and d_o determined at K_{tg} in normalized stress distribution is shown in Fig. 31b. K_t^* is the SCF at the hole edge and K_{tg} is the SCF (normalized by the unnotched strength) corresponding to the characteristic length. It is reasonable to have larger d_o when K_t^* is decreasing. That can be explained by the normalized stress distribution ($\sigma_y/\sigma_{applied}$) along the x-axis used to find d_o from K_{tg} for moduli changes shown in Fig. 32. It is very important to determine d_o accurately from K_{tg} in Fig. 32, but that is not easy to do due to the small changes in the normalized stress curves in that region and the very small changes of d_o which occur. The enlarged scale of a portion of that Fig. is shown in Fig. 33. Then, we obtain $d_o=0.05, 0.08, 0.09$ and 0.10 respectively, see column 3. That shows d_o has a slight change in the same layup. We conclude that d_o is not necessarily a material constant for the same layup. With d_o and K_t^* for each case, we can predict the notched tensile strength via Eq. (5), see column 4 in Table 16.

Then, if we assume no ply cracking, we have the notched strength and the errors in comparison with experimental data listed in Table 17, where d_o is the same as Table 16 and K_t^* is the SCF at the hole edge without ply cracking (no moduli reduction). We also find that K_{tg}^* is close to K_{tg}, where K_{tg}^* is defined as the unnotched strength divided by the observed strength (S_n). Similarly, d_o^* determined by K_{tg}^* in the base curve is close to d_o. That sug-
gests that the empirical proof what we assumed is reasonable. To simplify the problem we set $d_o=0.08$ (average) as a constant for this lay-up; the result is shown in Table 18. We see the error between the experimental data and the predicted values is also small and acceptable. Due to the fact that the maximum displacement when all of the (90, -45, +45 and 0) plies have cracked reaches the order of 10E5 inch (rupture), the laminate failed before all 0 deg plies cracked. That is shown in Table 16, K_{tg} at d_o is assumed to equal $K_t^{∞}$ for the situation of all 90, -45 and +45 degree plies cracked. So $K_t^{∞}$ at that stage is the lower limit. Obviously, $K_t^{∞}$ and d_o obtained without ply cracking define the upper limit. The detailed calculation of notched strength and the determination of d_o from K_{tg} are shown in Appendix III as an example. Physically, we use K_{tg} to determine d_o in the base normalized stress distribution based on the ideas that: 1) K_{tg} corresponds to failure in Fig. 31, 2) K_{tg} equals to $K_t^{∞}$ when 90, -45 and +45 plies are cracked, and is the lower limit of values used to calculate the notched strength, i.e., on conservative side, 3) we can directly obtain the base normalized curve to find d_o from K_{tg} according to the point stress criterion, because the base curve ($σ_y/σ_{applied}$) is the same no matter what the $σ_{applied}$ is. But we can not directly obtain K_{tg} by normalizing the unnotched strength, because $σ_o/σ_{applied}$ is arbitrary due to $σ_{applied}$ between $σ_{max}$ and $σ_{min}$, 4) It is not easy to observe experimentally that at the specific cycles which plies reach the saturated patterns of cracking exact-
ly, so we consider the worst case when all 90, -45 and +45 deg plies have cracked.

We assume that all 90, -45 and +45 deg plies have cracked for the cases of longitudinal semi-axis, \(b, =0.1875", 0.5", 0.8" \) and 1.2" at the corresponding cycles of 10E0, 10E1, 10E3 and 10E4 for the quasi-isotropic notched laminate. Actually, 90, -45 and +45 deg plies start to crack simultaneously as cycles of load are applied. It is certain that the 90 deg plies reach saturated crack patterns first, followed by the -45 deg plies and +45 deg plies. That can be shown by the stress concentration factor at the hole edge for a single ply, because the SCF for 90 deg plies is the largest, then the -45 deg plies followed by the +45 deg plies which the SCF is the smallest. The strength of the plies relative to the stress state will control failure. We can also observe this damage development phenomenon in Ref. [64] for three types of quasi-isotropic laminates, \([(0/\pm 45/90)_s]_{3s}\), \([(0/90/\pm 45)_s]_{3s}\) and \([(0/\pm 45/90/-45)_s]_{3s}\) under T-T fatigue tests. 90 deg plies started cracking at cycles 10E1-10E3, -45 deg plies at 10E3-10E4 and +45 deg plies at 10E3-10E5. At 10E4-10E5 cycles the 90 deg ply cracking reached saturation, at 10E5-10E6 cycles -45 and +45 deg ply cracking reached saturation.

There are two sets of fatigue data from [65] which show the compliances, residual strengths and geometry changes of graphite/epoxy T300/934 laminates with a central circular hole for both \([0/\pm 45/0]_{2s}\) and \([0/\pm 45/90]_{2s}\) layups. Following the same procedure, the \(K_{tg}\)
equals to K_t^* when all the -45 and +45 deg plies have cracked for each b value with the $[0/\pm 45/0]_{2s}$ layup, and when all of the 90, -45 and +45 deg plies have cracked for the $[0/\pm 45/90]_{2s}$ layup. The d_0 was also determined from K_{tg} in the base curve ($a=b=0.06$, no ply cracking). When we have determined K_t^* and d_0, we can compute the notched strength. The predicted notched strengths and errors in comparison with empirical data are shown in Table 19 and 20. We see that the WN fracture model can be used to predict the notched strength. The point stress criterion is a simple way to find the notched strength with increasing d_0 while K_t^* is decreasing. In Table 19 and 20 we see that compliance increases with increasing cycles, i.e., the modulus decreases with increasing cycles. That will result in a stress concentration loss and the characteristic length, d_0, will become larger with increasing cycles. Additionally, if we plot the major effective notch axis, b vs log cycles for these layups, we do not find a clearly linear relation (see Fig. 34 and 35, where the solid line represents linear and the dotted line expresses nonlinear relation). Also, the determination of d_0 from K_{tg} in the normalized stress base curve for the T300/934 $[0/\pm 45/0]_{2s}$ and $[0/\pm 45/90]_{2s}$ layups are shown in Fig. 36 and 37 respectively, we find that for small holes the stress concentration is localized near the hole, i.e., small holes cause less strength reduction than do large holes. The longitudinal semi-axis, b, measured from X-ray radiographs are shown in Fig. 38 and 39 for these two layups. The scheme of measuring b is the same as that shown in Fig. 20.
In our analysis, we assume that when all plies which crack reach a saturated pattern, then the stress concentration factor is the lower bound, i.e., the most damaged case. As for the observed data in Table 16, we do not know exactly the number of cycles for which the 90, -45 and 45 deg plies become saturated. However, when all plies are not cracked and the laminate is subjected to fatigue loading that case is the upper bound on the stress concentration factor. As a matter of fact, it is generally not possible to have plies not cracked under T-T fatigue tests. So the predicted residual strength should be within the upper and lower bounds.

Similarly, the single ply (0, 45, -45 and 90) notched strengths are computed. The reduced moduli for a cracked ply are listed in Table 21. The SCF and maximum displacement for each ply are listed in Table 22-25. We see that the SCF for each cracked ply is almost unchanged no matter what the b value is. Then K_{tg} is equal to the average value of the SCF for each ply. Following the same procedure, we can find d_o from K_{tg} in the base normalized curve. d_o is a fixed material constant for each ply. With the knowns of the SCF, d_o and the unnotched strength, via Eq. (5) we can compute the single ply notched strength, see Table 26-29.
Chapter VI

SUMMARY AND CONCLUSIONS

This research concerns the use of a stress redistribution material modeling method to predict the notched strength of damaged laminates, including theoretical, numerical and experimental analyses. We considered the case of a circular hole deformed into an effective elliptical shape. This model is developed in detail and shows satisfactory agreement with experimental data. This approach can be summarized as follows:

1. Geometry changes; It is assumed that damage around the hole relaxes the geometrical constraint associated with the stress concentration in a manner which can be simulated analytically by assuming that a central circular hole deforms into an elliptical-shaped hole when subjected to T-T fatigue loading, which results in a progressive stress concentration loss as the elliptic hole becomes slender.

2. Moduli reduction; As damage develops, the stiffness of the damaged plies is reduced using the ply discount method to solve for the redistributed stress field, by assuming that the 90, -45, +45 and 0 deg plies crack successive in stages. It was found that the ply cracking also reduced the stress concentration near the hole.

3. The WN fracture model was adopted to the damage accumulation problem determine the notched laminate strength, i.e., the residual tensile strength at a given number of cycles. K_t and d_o are
the two parameters that control notched strength. The former becomes less with increasing cycles and the later becomes larger due to loss of SCF.

Last ply failure determines the ultimate strength of the laminate.
The ply level strength is also predicted.

The procedure used to apply the model is described in steps as follows:
1. From experimental data we determine the notched composite specimen layup, length, width, thickness and notch geometry, etc.
2. Obtain estimates of the damage zone around the hole as a function of cycles from experimental data.
3. Use FEM to obtain stress and strain fields with the input of loading, node, mesh and stiffnesses for each effective elliptic hole shape as a function of the number of cycles of loading. Then we have laminate and ply stress and strain fields. At the time we consider progressive moduli changes for each elliptic hole shape to determine the differences caused in the stresses and strains.
4. With the output of stress and strain fields we obtain K^r_t and the normalized stress curves, which are important to calculate the notched strength using a chosen fracture model, such as the WN fracture model. In the WN fracture model we predict notched strength with the knowns of unnotched strength, semi-major and -minor axes of the hole, K^r_t and the characteristic length. In this research we find that the characteristic length d_o (a parameter in the WN model) is not necessarily a fixed material constant for the same layup.
The determination of \(d_o\) for the WN fracture model is achieved as follows: 1) obtain \(K_t^*\) and the normalized stress distribution curve due to geometry and moduli changes, 2) take \(K_{tg}\) equal to \(K_t^*\) for the most damaged state (90, -45 and +45 plies cracked, moduli reduced) for each \(b\) value, i.e., for a \([0/90]_s\) layup, 90 deg plies cracked, for a \([0/\pm 45/90]_s\) layup, 90, -45 and +45 deg plies cracked, for a \([0/\pm 45/0]_s\) layup, -45 and +45 deg plies cracked; for each cracked ply we set \(E_2=G_{12}=0\), 3) use the normalized stress curve for the circular hole (no ply cracking) as the base curve, 4) intersect the base curve at \(K_{tg}\) to find \(d_o\), 5) plug \(K_t^*\) and \(d_o\) into Eq. (5) to calculate the notched strength.

If there exists observed data, we can obtain \(K_{tg}^*\) and \(d_o^*\) to compare with \(K_{tg}\) and \(d_o\). The steps to find \(K_{tg}^*\) and \(d_o^*\) are: 1) calculate \(K_{tg}^*\) which is the SCF of the unnotched strength \((\sigma_o)\) divided by the observed strength \((S_n)\), i.e., \(K_{tg}^* = \sigma_o / S_n\), 2) refer to the normalized stress curve \((\sigma_y)\) along \(x\)-axis corresponding to the circular hole and no ply cracking (the base curve), 3) determine the characteristic length \((d_o^*)\) corresponding to the intersection of the stress curve at \(K_{tg}^*\), 4) compare \(K_{tg}^*\) and \(d_o^*\) with \(K_{tg}\) and \(d_o\).

Using this method we have found that the predicted notched strength for a laminate and single plies is within acceptable error in comparison with experimental data.
Due to the scarcity of observed data and the lack of statistics for available data, the present model has been verified for only three data sets. Furthermore, more experimental work is need to generate more residual strength data.

However, the present work suggests that even a very approximate account of stress redistribution associated with damage accumulation caused by fatigue loading of center-notched composite laminate coupons can be used to obtain engineering estimates of residual strength.
Fig. 1 Laminate with a Central Circular Hole in x-y Coordinates
Fig. 2 Laminate with a Central Elliptical Hole in Elliptical Coordinates
Fig. 3 Fracture Model (Mode I) for Transverse Crack Growth
Fig. 4 FEM Meshes for Laminate with a Central Circular Hole
Fig. 5 FEM Meshes for Laminate with a Central Elliptical Hole
Fig. 6 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for Graphite/Epoxy T300/5208 1.5"x8" with Layup [0_8]_t
Fig. 7 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0/90]_{2s}
Fig. 8 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0/±45/90]s
Fig. 9 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0/±45/90]s
Fig. 10 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup \([0/\pm45/90_8]_s\)
Fig. 11 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup $[0_4/\pm 45/90]_s$
Fig. 12 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup $[0^8/\pm 45/90]_s$
Fig. 13 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0/±45/90]s
Fig. 14 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0/±45/90]s
Fig. 15 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0/45/90]_s
Fig. 16 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0/45/90]s
Fig. 17 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" with Layup [0\textdegree/\pm45]_s
Fig. 18 SCF vs. Longitudinal Semi-axis of Elliptical Hole, b, for T300/5208 1.5"x8" one ply 0, 45, -45, 90 degree
Fig. 19 Longitudinal Semi-axis of Elliptical Hole, b vs. Cycles for T300/5208 Laminate with Layup [0/±45/90]s
Fig. 20 Superposition of Effective Notch on Fatigued Specimen with [0/±45/90] \textsubscript{s} Layup
Fig. 21 SCF vs. Radius of Curvature, \(\rho \) for T300/5208 Laminate with Layup \([0/\pm45/90]_s\)
Fig. 22 Log Stresses Around the Notch of First Quarter for T300/5208
1.5" x 8" with a Central Hole dia=3/8" Layup [0_2/±45]_s
Fig. 23 Stresses Around the Notch of First Quarter for T300/5208
1.5"x8" with a Central Hole dia=3/8" Layup $[0_2/\pm45]_s$
Fig. 24 Stresses Around the Notch of First Quarter for T300/5208

1.5"x8" with a Central Hole dia=3/8" Layup [0/±45/90]
Fig. 25 Stress σ_y Around the Notch of First Quarter for T300/5208

1.5"x8" with a Central Hole dia=3/8" one ply 0, 45, -45, 90
Fig. 26 Stresses Around the Notch of First Quarter for T300/5208 with an Elliptical Hole a=3/16\"\", b=1.2\"\" Layup [0_{2}/\pm 45]_s
Fig. 27 Stresses Around the Notch of First Quarter for T300/5208 with an Elliptical Hole $a=3/16''$, $b=1.2''$ Layup $[0/\pm 45/90]_s$
Fig. 28 Stresses Around the Notch of First Quarter for T300/5208 with an Elliptical Hole $a=3/16''$, $b=1.2''$ one ply 0, 45, -45, 90
Fig. 29 Log Stresses Around the Notch of First Quarter for T300/5208 with an Elliptical Hole a=3/16", b=0.28" Layup [0/±45]s
1: 90 deg plies cracked

2: 90 & -45 deg plies cracked

3: 90 & -45 & +45 deg plies cracked

4: 90 & -45 & +45 & 0 deg plies cracked, all plies cracked

Fig. 30 SCF vs. Longitudinal Semi-axis of Elliptic Hole, b, and with Moduli Reduction for T300/5208 Laminate with Layup [0/±45/90]s
a. Stress Distribution at Failure to Determine d_o and a_o

b. Normalized Stress Distribution at Failure to Determine d_o and a_o

Fig. 31 The Point Stress and Average Stress Criteria in WN Fracture Model
Fig. 32 Normalized Stress (σ_y) along x-axis and the Determination of d_0 from K_{tg} for T300/5208 [0/±45/90]_s Layup
Fig. 33 Enlarged Scale of Important Portion in Fig. 31 to Determine d_o from K_{tg}
Fig. 34 Longitudinal Semi-axis of Elliptic Hole, b vs Log Cycles for T300/934 [0/±45/0]₂s Layup
Fig. 35 Longitudinal Semi-axis of Elliptic Hole, b vs Log Cycles for T300/934 [0/±45/90]_{2s} Layup
Fig. 36 Normalized Stress \(\sigma_y \) along x-axis and the Determination of \(d_0 \) from \(K_{tg} \) for T300/934 \([0/\pm45/0]_{2s}\) Layup
Fig. 37 Normalized Stress (σ_Y) along x-axis and the Determination of d_0 from K_{tg} for T300/934 [0/±45/90]_2s Layup
Fig. 38 The Measurement of Major Semi-axis, b, for T300/934 [0/±45/0] at the Specific Cycles of Loading
Fig. 39 The Measurement of Major Semi-axis, b, for T300/934 [0/±45/90] at the Specific Cycles of Loading
Table 1. Stiffnesses for Graphite/Epoxy T300/5208 Lamminates

<table>
<thead>
<tr>
<th>No.</th>
<th>Layups</th>
<th>Plies</th>
<th>A11</th>
<th>A12</th>
<th>A16</th>
<th>A22</th>
<th>A26</th>
<th>A66</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[08]t</td>
<td>8</td>
<td>1054440</td>
<td>16820</td>
<td>0</td>
<td>59740</td>
<td>0</td>
<td>41586</td>
</tr>
<tr>
<td>2</td>
<td>[0/90]2s</td>
<td>8</td>
<td>557090</td>
<td>16820</td>
<td>0</td>
<td>557090</td>
<td>0</td>
<td>41586</td>
</tr>
<tr>
<td>3</td>
<td>[0/±45/90]s</td>
<td>8</td>
<td>442685</td>
<td>131138</td>
<td>0</td>
<td>442685</td>
<td>0</td>
<td>155904</td>
</tr>
<tr>
<td>4</td>
<td>[0/±45/904]s</td>
<td>14</td>
<td>487490</td>
<td>143753</td>
<td>0</td>
<td>1233515</td>
<td>0</td>
<td>187094</td>
</tr>
<tr>
<td>5</td>
<td>[0/±45/908]s</td>
<td>22</td>
<td>547230</td>
<td>160573</td>
<td>0</td>
<td>2287955</td>
<td>0</td>
<td>228680</td>
</tr>
<tr>
<td>6</td>
<td>[04/±45/90]s</td>
<td>14</td>
<td>1233515</td>
<td>143753</td>
<td>0</td>
<td>487490</td>
<td>0</td>
<td>187094</td>
</tr>
<tr>
<td>7</td>
<td>[08/±45/90]s</td>
<td>22</td>
<td>2287955</td>
<td>160573</td>
<td>0</td>
<td>547230</td>
<td>0</td>
<td>228680</td>
</tr>
<tr>
<td>8</td>
<td>[0/±452/90]s</td>
<td>12</td>
<td>606825</td>
<td>253866</td>
<td>0</td>
<td>606825</td>
<td>0</td>
<td>291015</td>
</tr>
<tr>
<td>9</td>
<td>[0/±454/90]s</td>
<td>20</td>
<td>935105</td>
<td>499322</td>
<td>0</td>
<td>935105</td>
<td>0</td>
<td>561237</td>
</tr>
<tr>
<td>10</td>
<td>[0/452/90]s</td>
<td>8</td>
<td>442685</td>
<td>131138</td>
<td>124323</td>
<td>442685</td>
<td>124323</td>
<td>155904</td>
</tr>
<tr>
<td>11</td>
<td>[0/454/90]s</td>
<td>12</td>
<td>606825</td>
<td>253866</td>
<td>248646</td>
<td>606825</td>
<td>248646</td>
<td>291015</td>
</tr>
<tr>
<td>12</td>
<td>[02/±45]s</td>
<td>8</td>
<td>691360</td>
<td>131138</td>
<td>0</td>
<td>194010</td>
<td>0</td>
<td>155904</td>
</tr>
<tr>
<td>13</td>
<td>[0]</td>
<td>1</td>
<td>131805</td>
<td>2103</td>
<td>0</td>
<td>7468</td>
<td>0</td>
<td>5198</td>
</tr>
<tr>
<td>14</td>
<td>[-45]</td>
<td>1</td>
<td>41035</td>
<td>30682</td>
<td>-31081</td>
<td>41035</td>
<td>-31081</td>
<td>33778</td>
</tr>
<tr>
<td>15</td>
<td>[+45]</td>
<td>1</td>
<td>41035</td>
<td>30682</td>
<td>31081</td>
<td>41035</td>
<td>31081</td>
<td>33778</td>
</tr>
<tr>
<td>16</td>
<td>[90]</td>
<td>1</td>
<td>7468</td>
<td>2103</td>
<td>0</td>
<td>131805</td>
<td>0</td>
<td>5198</td>
</tr>
</tbody>
</table>

Notes: 1. Each ply is 0.005 inch thick
2. The unit of stiffness A_{ij} is lb/in
Table 2. Graphite/Epoxy T300/5208 Coupons 1.5"x8" with a Centered Circular Hole Dia=3/8", Total Nodes=332, Elements=95

<table>
<thead>
<tr>
<th>No.</th>
<th>Layups</th>
<th>Total Plies</th>
<th>Max Displacement (Δl, inch)</th>
<th>Max Stress (σ_y, lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[0₄₆]</td>
<td>8</td>
<td>0.239668</td>
<td>0.896601 E4</td>
<td>2.58</td>
</tr>
<tr>
<td>2</td>
<td>[0/90]₂ₛ</td>
<td>8</td>
<td>0.026249</td>
<td>0.151108 E5</td>
<td>4.34</td>
</tr>
<tr>
<td>3</td>
<td>[0/±45/90]ₛ</td>
<td>8</td>
<td>0.0354944</td>
<td>0.108267 E5</td>
<td>3.11</td>
</tr>
<tr>
<td>4</td>
<td>[0/±45/90₄ₛ]</td>
<td>14</td>
<td>0.0182147</td>
<td>0.200396 E5</td>
<td>3.29</td>
</tr>
<tr>
<td>5</td>
<td>[0/±45/90₈ₛ]</td>
<td>22</td>
<td>0.0178664</td>
<td>0.407125 E5</td>
<td>4.25</td>
</tr>
<tr>
<td>6</td>
<td>[0₄/±45/90]ₛ</td>
<td>14</td>
<td>0.0532301</td>
<td>0.182233 E5</td>
<td>2.99</td>
</tr>
<tr>
<td>7</td>
<td>[0₈/±45/90]ₛ</td>
<td>22</td>
<td>0.0734037</td>
<td>0.278502 E5</td>
<td>2.91</td>
</tr>
<tr>
<td>8</td>
<td>[0/±45₂₉₀]ₛ</td>
<td>12</td>
<td>0.0428343</td>
<td>0.150359 E5</td>
<td>2.88</td>
</tr>
<tr>
<td>9</td>
<td>[0/±45₄₉₀]ₛ</td>
<td>20</td>
<td>0.053348</td>
<td>0.233788 E5</td>
<td>2.69</td>
</tr>
<tr>
<td>10</td>
<td>[0₄/±45₂₉₀]ₛ</td>
<td>8</td>
<td>0.0454244</td>
<td>0.137247 E5</td>
<td>3.94</td>
</tr>
<tr>
<td>11</td>
<td>[0₄/±45₄₉₀]ₛ</td>
<td>12</td>
<td>0.0596081</td>
<td>0.201470 E5</td>
<td>3.86</td>
</tr>
<tr>
<td>12</td>
<td>[0₂/±45]ₛ</td>
<td>8</td>
<td>0.0842416</td>
<td>0.883823 E4</td>
<td>2.53</td>
</tr>
<tr>
<td>13</td>
<td>[0]</td>
<td>1</td>
<td>0.239684</td>
<td>0.112075 E4</td>
<td>2.58</td>
</tr>
<tr>
<td>14</td>
<td>[-45]</td>
<td>1</td>
<td>0.159766</td>
<td>0.157455 E4</td>
<td>3.62</td>
</tr>
<tr>
<td>15</td>
<td>[45]</td>
<td>1</td>
<td>0.1549</td>
<td>0.111432 E4</td>
<td>2.56</td>
</tr>
<tr>
<td>16</td>
<td>[90]</td>
<td>1</td>
<td>0.142629</td>
<td>0.23373 E4</td>
<td>5.37</td>
</tr>
</tbody>
</table>

Notes: 1. Applied uniform stress 600 MPa (87000psi)
2. Max displacement at remote loading points
3. Max stress σ_y at (0.00353",0.00331") away from the
hole edge, (0.1875", 0")

4. [-45°] max stress=0.125962 E5; [45°] max stress=0.89146 E4; [90°] max stress=0.186982 E5

5. SCF stands for stress concentration factor
Table 3. Graphite/Epoxy T300/5208 Coupons 1.5"x4" with a Centered Circular Hole Dia=3/8", Total Nodes=264, Elements=75

<table>
<thead>
<tr>
<th>No. Layups</th>
<th>Total Plies</th>
<th>Max Displacement Δl (inch)</th>
<th>Max Stress σ_y (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [0_8]_t</td>
<td>8</td>
<td>0.122659</td>
<td>0.896602 E4</td>
<td>2.58</td>
</tr>
<tr>
<td>2 [0/90]_2s</td>
<td>8</td>
<td>0.014252</td>
<td>0.152466 E5</td>
<td>4.38</td>
</tr>
<tr>
<td>3 [0/±45/90]_s</td>
<td>8</td>
<td>0.0182659</td>
<td>0.108269 E5</td>
<td>3.11</td>
</tr>
<tr>
<td>4 [0/45_2/90]_s</td>
<td>8</td>
<td>0.0250203</td>
<td>0.137256 E5</td>
<td>3.94</td>
</tr>
<tr>
<td>5 [0/45_4/90]_s</td>
<td>12</td>
<td>0.0328529</td>
<td>0.201471 E5</td>
<td>3.86</td>
</tr>
</tbody>
</table>

Notes: 1. Applied uniform stress 600 MPa (87000psi)
2. Max displacement at remote loading points
3. Max stress σ_y at (0.00353",0.00331") away from the hole edge, (0.1875",0.0")
4. This is half length of the previous case, other conditions are the same
5. SCF has no change, i.e., length does not influence SCF
6. The stress and displacement fields have large change at the remote loading points
7. St. Vernant's Principle can explain this phenomena
Table 4. Graphite/Epoxy T300/5208 Coupons 3"x8" with a Centered Circular Hole Dia=3/8", Total Nodes=332, Elements=95

<table>
<thead>
<tr>
<th>No.</th>
<th>Layups</th>
<th>Total Plies</th>
<th>Max Displacement ((\Delta l) inch)</th>
<th>Max Stress (\sigma_y) (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[0(_8)]_t</td>
<td>8</td>
<td>---------</td>
<td>0.823384 E4</td>
<td>2.37</td>
</tr>
<tr>
<td>2</td>
<td>[0/90](_2)</td>
<td>8</td>
<td>---------</td>
<td>0.145243 E5</td>
<td>4.17</td>
</tr>
<tr>
<td>3</td>
<td>[0/\pm45/90](_s)</td>
<td>8</td>
<td>---------</td>
<td>0.102002 E5</td>
<td>2.93</td>
</tr>
<tr>
<td>4</td>
<td>[0/\pm45/90](_s)</td>
<td>12</td>
<td>---------</td>
<td>0.140653 E5</td>
<td>2.69</td>
</tr>
<tr>
<td>5</td>
<td>[0/45/90](_s)</td>
<td>8</td>
<td>---------</td>
<td>0.141387 E5</td>
<td>4.06</td>
</tr>
<tr>
<td>6</td>
<td>[0/45/90](_s)</td>
<td>12</td>
<td>---------</td>
<td>0.208388 E5</td>
<td>3.99</td>
</tr>
</tbody>
</table>

Notes:
1. Applied uniform stress 600 MPa (87000psi)
2. Max displacement at remote loading points
3. Max stress \(\sigma_y\) at (0.00353",0.00331") away from the hole edge, (0.1875",0.0")
4. This is double width of the first case with hole dia. and other conditions unchanged
5. Width change influences SCF slightly
6. [-45\(_8\)] max stress=0.128189 E5; [45\(_8\)] max stress=0.76822 E4; [90\(_8\)] max stress=0.18278E5
Table 5. Graphite/Epoxy T300/5208 Coupons 1.5"x8" with a Centered Elliptical Hole $a=0.1875''$ $b=0.28''$, Nodes=332, Elements=95

<table>
<thead>
<tr>
<th>No.</th>
<th>Layups</th>
<th>Total Plies</th>
<th>Max Displacement Δl (inch)</th>
<th>Max Stress σ_y (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$[0_8]_t$</td>
<td>8</td>
<td>0.240983</td>
<td>0.759887 E4</td>
<td>2.18</td>
</tr>
<tr>
<td>2</td>
<td>$[0/90]_{2s}$</td>
<td>8</td>
<td>0.0263677</td>
<td>0.115844 E5</td>
<td>3.33</td>
</tr>
<tr>
<td>3</td>
<td>$[0/\pm 45/90]_s$</td>
<td>8</td>
<td>0.0356767</td>
<td>0.873614 E4</td>
<td>2.51</td>
</tr>
<tr>
<td>4</td>
<td>$[0/\pm 45/90]_4$</td>
<td>14</td>
<td>0.0213508</td>
<td>0.181758 E5</td>
<td>2.98</td>
</tr>
<tr>
<td>5</td>
<td>$[0/\pm 45/90]_8$</td>
<td>22</td>
<td>0.0179462</td>
<td>0.311862 E5</td>
<td>3.26</td>
</tr>
<tr>
<td>6</td>
<td>$[0_4/\pm 45/90]_s$</td>
<td>14</td>
<td>0.0535091</td>
<td>0.148421 E5</td>
<td>2.44</td>
</tr>
<tr>
<td>7</td>
<td>$[0_8/\pm 45/90]_s$</td>
<td>22</td>
<td>0.0737927</td>
<td>0.228481 E5</td>
<td>2.39</td>
</tr>
<tr>
<td>8</td>
<td>$[0/\pm 45/90]_2$</td>
<td>12</td>
<td>0.0430598</td>
<td>0.123391 E5</td>
<td>2.36</td>
</tr>
<tr>
<td>9</td>
<td>$[0/\pm 45/90]_4$</td>
<td>20</td>
<td>0.0536377</td>
<td>0.195112 E5</td>
<td>2.24</td>
</tr>
<tr>
<td>10</td>
<td>$[0/\pm 45/90]_6$</td>
<td>8</td>
<td>0.0457003</td>
<td>0.110720 E5</td>
<td>3.18</td>
</tr>
<tr>
<td>11</td>
<td>$[0/\pm 45/90]_8$</td>
<td>12</td>
<td>0.0599876</td>
<td>0.165024 E5</td>
<td>3.16</td>
</tr>
<tr>
<td>12</td>
<td>$[0_2/\pm 45]_4$</td>
<td>8</td>
<td>0.0847028</td>
<td>0.748689 E4</td>
<td>2.15</td>
</tr>
<tr>
<td>13</td>
<td>$[0]$</td>
<td>1</td>
<td>0.240999</td>
<td>0.949856 E3</td>
<td>2.18</td>
</tr>
<tr>
<td>14</td>
<td>$[-45]$</td>
<td>1</td>
<td>0.160848</td>
<td>0.134289 E4</td>
<td>3.09</td>
</tr>
<tr>
<td>15</td>
<td>$[45]$</td>
<td>1</td>
<td>0.155673</td>
<td>0.884514 E3</td>
<td>2.03</td>
</tr>
<tr>
<td>16</td>
<td>$[90]$</td>
<td>1</td>
<td>0.0143144</td>
<td>0.173817 E4</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Notes: 1. Applied uniform stress 600 MPa (87000psi)
2. Max displacement at remote loading points
3. Max stress σ_y at $(0.0141'',0.00331'')$ away from the edge
Table 6. Graphite/Epoxy T300/5208 Coupons 1.5”x8” with a Centered Elliptical Hole a=0.1875" b=0.375", Nodes=332, Elements=95

<table>
<thead>
<tr>
<th>No. Layups</th>
<th>Total Plies</th>
<th>Max Displacement (inch)</th>
<th>Max Stress (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0\textsubscript{8}]\textsubscript{t}</td>
<td>8</td>
<td>0.24241</td>
<td>0.710511 E4</td>
<td>2.04</td>
</tr>
<tr>
<td>[0/90\textsubscript{2s}]</td>
<td>8</td>
<td>0.265293</td>
<td>0.109211 E5</td>
<td>3.14</td>
</tr>
<tr>
<td>[0/±45/90\textsubscript{s}]</td>
<td>8</td>
<td>0.0358846</td>
<td>0.790634 E4</td>
<td>2.27</td>
</tr>
<tr>
<td>[0/±45/90\textsubscript{4s}]</td>
<td>14</td>
<td>0.0214735</td>
<td>0.164847 E5</td>
<td>2.71</td>
</tr>
<tr>
<td>[0/±45/90\textsubscript{8s}]</td>
<td>22</td>
<td>0.0180518</td>
<td>0.286429 E5</td>
<td>2.99</td>
</tr>
<tr>
<td>[0\textsubscript{4}/±45/90\textsubscript{s}]</td>
<td>14</td>
<td>0.0538219</td>
<td>0.136127 E5</td>
<td>2.24</td>
</tr>
<tr>
<td>[0\textsubscript{8}/±45/90\textsubscript{s}]</td>
<td>22</td>
<td>0.0742253</td>
<td>0.210667 E5</td>
<td>2.20</td>
</tr>
<tr>
<td>[0/±45\textsubscript{2}/90\textsubscript{s}]</td>
<td>12</td>
<td>0.0433122</td>
<td>0.111589 E5</td>
<td>2.14</td>
</tr>
<tr>
<td>[0/±45\textsubscript{4}/90\textsubscript{s}]</td>
<td>20</td>
<td>0.0539555</td>
<td>0.176927 E5</td>
<td>2.03</td>
</tr>
<tr>
<td>[0/45\textsubscript{2}/90\textsubscript{s}]</td>
<td>8</td>
<td>0.0460032</td>
<td>0.104582 E5</td>
<td>3.01</td>
</tr>
<tr>
<td>[0/45\textsubscript{4}/90\textsubscript{s}]</td>
<td>12</td>
<td>0.0603962</td>
<td>0.156229 E5</td>
<td>2.99</td>
</tr>
<tr>
<td>[0\textsubscript{2}/±45\textsubscript{s}]</td>
<td>8</td>
<td>0.0852091</td>
<td>0.694139 E4</td>
<td>1.99</td>
</tr>
<tr>
<td>[0]</td>
<td>1</td>
<td>0.242426</td>
<td>0.888137 E3</td>
<td>2.04</td>
</tr>
<tr>
<td>[-45]</td>
<td>1</td>
<td>0.161993</td>
<td>0.126783 E4</td>
<td>2.91</td>
</tr>
<tr>
<td>[45]</td>
<td>1</td>
<td>0.156485</td>
<td>0.808762 E3</td>
<td>1.86</td>
</tr>
<tr>
<td>[90]</td>
<td>1</td>
<td>0.0144191</td>
<td>0.169794 E4</td>
<td>3.90</td>
</tr>
</tbody>
</table>

Notes: 1. Applied uniform stress 600 MPa (87000 psi)
2. Max displacement at remote loading points
3. Max stress σ_y at (0.001875", 0.008749") away from the edge
Table 7. Graphite/Epoxy T300/5208 Coupons 1.5"x8" with a Centered Elliptical Hole a=0.1875" b=0.4", Nodes=332, Elements=95

<table>
<thead>
<tr>
<th>No. Layups</th>
<th>Total Plies</th>
<th>Max Displacement</th>
<th>Max Stress σ_y (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $[0_8]_t$</td>
<td>8</td>
<td>0.242782</td>
<td>0.698501 E4</td>
<td>2.01</td>
</tr>
<tr>
<td>2 $[0/90]_2$s</td>
<td>8</td>
<td>0.0265665</td>
<td>0.105041 E5</td>
<td>3.02</td>
</tr>
<tr>
<td>3 $[0/-45/90]_s$</td>
<td>8</td>
<td>0.0359383</td>
<td>0.771487 E4</td>
<td>2.22</td>
</tr>
<tr>
<td>4 $[0/-45/90_4]_s$</td>
<td>14</td>
<td>0.0215039</td>
<td>0.159383 E5</td>
<td>2.62</td>
</tr>
<tr>
<td>5 $[0/-45/90_8]_s$</td>
<td>22</td>
<td>0.0180768</td>
<td>0.275687 E5</td>
<td>2.88</td>
</tr>
<tr>
<td>6 $[0_4/-45/90]_s$</td>
<td>14</td>
<td>0.0539032</td>
<td>0.133064 E5</td>
<td>2.18</td>
</tr>
<tr>
<td>7 $[0_8/-45/90]_s$</td>
<td>22</td>
<td>0.0743378</td>
<td>0.206154 E5</td>
<td>2.15</td>
</tr>
<tr>
<td>8 $[0/-45_2/90]_s$</td>
<td>12</td>
<td>0.0433783</td>
<td>0.109234 E5</td>
<td>2.09</td>
</tr>
<tr>
<td>9 $[0/-45_4/90]_s$</td>
<td>20</td>
<td>0.054039</td>
<td>0.173681 E5</td>
<td>2.00</td>
</tr>
<tr>
<td>10 $[0/45_2/90]_s$</td>
<td>8</td>
<td>0.0460786</td>
<td>0.101633 E5</td>
<td>2.92</td>
</tr>
<tr>
<td>11 $[0/45_4/90]_s$</td>
<td>12</td>
<td>0.0604981</td>
<td>0.152188 E5</td>
<td>2.92</td>
</tr>
<tr>
<td>12 $[0_2/-45]_s$</td>
<td>8</td>
<td>0.085342</td>
<td>0.683386 E4</td>
<td>1.96</td>
</tr>
<tr>
<td>13 $[0]_t$</td>
<td>1</td>
<td>0.242798</td>
<td>0.873125 E3</td>
<td>2.01</td>
</tr>
<tr>
<td>14 [-45]</td>
<td>1</td>
<td>0.162277</td>
<td>0.124133 E4</td>
<td>2.85</td>
</tr>
<tr>
<td>15 [45]</td>
<td>1</td>
<td>0.156692</td>
<td>0.79156 E3</td>
<td>1.82</td>
</tr>
<tr>
<td>16 [90]</td>
<td>1</td>
<td>0.014439</td>
<td>0.162024 E4</td>
<td>3.72</td>
</tr>
</tbody>
</table>

Notes: 1. Applied uniform stress 600 MPa (87000psi)
2. Max displacement at remote loading points
3. Max stress σ_y at (0.001875", 0.009385") away from the edge
Table 8. Graphite/Epoxy T300/5208 Coupons 1.5"x8" with a Centered Elliptical Hole $a=0.1875"$, $b=0.5"$, Nodes=332, Elements=95

<table>
<thead>
<tr>
<th>No.</th>
<th>Layups</th>
<th>Total Plies</th>
<th>Max Displacement Δl (inch)</th>
<th>Max Stress σ_y (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$[0_8]^t$</td>
<td>8</td>
<td>0.244293</td>
<td>0.665502 E4</td>
<td>1.91</td>
</tr>
<tr>
<td>2</td>
<td>$[0/90]_{2s}$</td>
<td>8</td>
<td>0.0267448</td>
<td>0.955703 E4</td>
<td>2.75</td>
</tr>
<tr>
<td>3</td>
<td>$[0/\pm45/90]_s$</td>
<td>8</td>
<td>0.0361602</td>
<td>0.719931 E4</td>
<td>2.07</td>
</tr>
<tr>
<td>4</td>
<td>$[0/\pm45/90_4]_s$</td>
<td>14</td>
<td>0.0216363</td>
<td>0.145928 E5</td>
<td>2.40</td>
</tr>
<tr>
<td>5</td>
<td>$[0/\pm45/90_{8s}]_s$</td>
<td>22</td>
<td>0.0181925</td>
<td>0.250721 E5</td>
<td>2.62</td>
</tr>
<tr>
<td>6</td>
<td>$[0_4/\pm45/90]_s$</td>
<td>14</td>
<td>0.0542360</td>
<td>0.124833 E5</td>
<td>2.05</td>
</tr>
<tr>
<td>7</td>
<td>$[0_8/\pm45/90]_s$</td>
<td>22</td>
<td>0.0747972</td>
<td>0.193958 E5</td>
<td>2.03</td>
</tr>
<tr>
<td>8</td>
<td>$[0/\pm45_2/90]_s$</td>
<td>12</td>
<td>0.0436491</td>
<td>0.102739 E5</td>
<td>1.97</td>
</tr>
<tr>
<td>9</td>
<td>$[0/\pm45_4/90]_s$</td>
<td>20</td>
<td>0.0543805</td>
<td>0.164554 E5</td>
<td>1.89</td>
</tr>
<tr>
<td>10</td>
<td>$[0/45_2/90]_s$</td>
<td>8</td>
<td>0.0463868</td>
<td>0.949852 E4</td>
<td>2.73</td>
</tr>
<tr>
<td>11</td>
<td>$[0/45_4/90]_s$</td>
<td>12</td>
<td>0.0609096</td>
<td>0.143012 E5</td>
<td>2.74</td>
</tr>
<tr>
<td>12</td>
<td>$[0_2/\pm45]_s$</td>
<td>8</td>
<td>0.0858802</td>
<td>0.654046 E4</td>
<td>1.88</td>
</tr>
<tr>
<td>13</td>
<td>[0]</td>
<td>1</td>
<td>0.244309</td>
<td>0.831876 E3</td>
<td>1.91</td>
</tr>
<tr>
<td>14</td>
<td>[-45]</td>
<td>1</td>
<td>0.163403</td>
<td>0.117821 E4</td>
<td>2.71</td>
</tr>
<tr>
<td>15</td>
<td>[45]</td>
<td>1</td>
<td>0.157545</td>
<td>0.731406 E3</td>
<td>1.68</td>
</tr>
<tr>
<td>16</td>
<td>[90]</td>
<td>1</td>
<td>0.0145642</td>
<td>0.145752 E4</td>
<td>3.35</td>
</tr>
</tbody>
</table>

Notes: 1. Applied uniform stress 600 MPa (87000psi)
2. Max displacement at remote loading points
3. Max stress σ_y at (0.001875",0.01173") away from the edge
Table 9. Graphite/Epoxy T300/5208 Coupons 1.5" x 8" with a Centered Elliptical Hole a=0.1875", b=0.8", Nodes=298, Elements=85

<table>
<thead>
<tr>
<th>No.</th>
<th>Layups</th>
<th>Total Plies</th>
<th>Max Displacement (delta)</th>
<th>Max Stress σ_y (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$[0_8]_t$</td>
<td>8</td>
<td>0.2535</td>
<td>0.617671 E4</td>
<td>1.77</td>
</tr>
<tr>
<td>2</td>
<td>$[0/90]_{2s}$</td>
<td>8</td>
<td>0.0284035</td>
<td>0.782478 E4</td>
<td>2.25</td>
</tr>
<tr>
<td>3</td>
<td>$[0/\pm45/90]_s$</td>
<td>8</td>
<td>0.038077</td>
<td>0.649940 E4</td>
<td>1.87</td>
</tr>
<tr>
<td>4</td>
<td>$[0/\pm45/90_0^4]_s$</td>
<td>14</td>
<td>0.0230463</td>
<td>0.124659 E5</td>
<td>2.05</td>
</tr>
<tr>
<td>5</td>
<td>$[0/\pm45/90_0^8]_s$</td>
<td>22</td>
<td>0.0194691</td>
<td>0.207913 E5</td>
<td>2.17</td>
</tr>
<tr>
<td>6</td>
<td>$[0/\pm45/90]_s$</td>
<td>14</td>
<td>0.0568521</td>
<td>0.113074 E5</td>
<td>1.86</td>
</tr>
<tr>
<td>7</td>
<td>$[0_8/\pm45/90]_s$</td>
<td>22</td>
<td>0.0782063</td>
<td>0.176311 E5</td>
<td>1.84</td>
</tr>
<tr>
<td>8</td>
<td>$[0/\pm45/90_2/90]_s$</td>
<td>12</td>
<td>0.0458466</td>
<td>0.946611 E4</td>
<td>1.81</td>
</tr>
<tr>
<td>9</td>
<td>$[0/\pm45/90_4/90]_s$</td>
<td>20</td>
<td>0.0570038</td>
<td>0.154192 E5</td>
<td>1.77</td>
</tr>
<tr>
<td>10</td>
<td>$[0/45_2/90]_s$</td>
<td>8</td>
<td>0.0458248</td>
<td>0.817368 E4</td>
<td>2.35</td>
</tr>
<tr>
<td>11</td>
<td>$[0/45_4/90]_s$</td>
<td>12</td>
<td>0.0602274</td>
<td>0.123973 E5</td>
<td>2.37</td>
</tr>
<tr>
<td>12</td>
<td>$[0_2/\pm45]_s$</td>
<td>8</td>
<td>0.087448</td>
<td>0.614592 E4</td>
<td>1.77</td>
</tr>
<tr>
<td>13</td>
<td>[0]</td>
<td>1</td>
<td>0.248762</td>
<td>0.772096 E3</td>
<td>1.77</td>
</tr>
<tr>
<td>14</td>
<td>[-45]</td>
<td>1</td>
<td>0.166526</td>
<td>0.103913 E4</td>
<td>2.39</td>
</tr>
<tr>
<td>15</td>
<td>[45]</td>
<td>1</td>
<td>0.160159</td>
<td>0.675495 E3</td>
<td>1.55</td>
</tr>
<tr>
<td>16</td>
<td>[90]</td>
<td>1</td>
<td>0.0148801</td>
<td>0.113916 E4</td>
<td>2.62</td>
</tr>
</tbody>
</table>

Notes: 1. Applied uniform stress 600 MPa (87000 psi)
2. Max displacement at remote loading points
3. Max stress σ_y at (0.001875", 0.02635") away from the edge
Table 10. Graphite/Epoxy T300/5208 Coupons 1.5"x8" with a Centered Elliptical Hole \(a=0.1875\)" \(b=1.2\)", Nodes=298, Elements=85

<table>
<thead>
<tr>
<th>No. Layups</th>
<th>Total Pliess</th>
<th>Max Displacement (\Delta l) (inch)</th>
<th>Max Stress (\sigma_y) (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ([0_8]_t)</td>
<td>8</td>
<td>0.2596</td>
<td>0.593054 E4</td>
<td>1.70</td>
</tr>
<tr>
<td>2 ([0/90]_{2s})</td>
<td>8</td>
<td>0.02894</td>
<td>0.692228 E4</td>
<td>1.99</td>
</tr>
<tr>
<td>3 ([0/\pm45/90]_s)</td>
<td>8</td>
<td>0.03898</td>
<td>0.616314 E4</td>
<td>1.77</td>
</tr>
<tr>
<td>4 ([0/\pm45/90_4]_s)</td>
<td>14</td>
<td>0.0235567</td>
<td>0.114198 E5</td>
<td>1.88</td>
</tr>
<tr>
<td>5 ([0/\pm45/90_8]_s)</td>
<td>22</td>
<td>0.0198593</td>
<td>0.186394 E5</td>
<td>1.95</td>
</tr>
<tr>
<td>6 ([0/\pm45/90]_s)</td>
<td>14</td>
<td>0.0582026</td>
<td>0.107202 E5</td>
<td>1.76</td>
</tr>
<tr>
<td>7 ([0_8/\pm45/90]_s)</td>
<td>22</td>
<td>0.08007</td>
<td>0.167478 E5</td>
<td>1.75</td>
</tr>
<tr>
<td>8 ([0/\pm45/2/90]_s)</td>
<td>12</td>
<td>0.0469466</td>
<td>0.908671 E4</td>
<td>1.74</td>
</tr>
<tr>
<td>9 ([0/\pm45/4/90]_s)</td>
<td>20</td>
<td>0.0583733</td>
<td>0.149442 E5</td>
<td>1.72</td>
</tr>
<tr>
<td>10 ([0/45_2/90]_s)</td>
<td>8</td>
<td>0.04696</td>
<td>0.743726 E4</td>
<td>2.14</td>
</tr>
<tr>
<td>11 ([0/45_4/90]_s)</td>
<td>12</td>
<td>0.0617235</td>
<td>0.113106 E5</td>
<td>2.17</td>
</tr>
<tr>
<td>12 ([0/\pm45]_s)</td>
<td>8</td>
<td>0.0896431</td>
<td>0.593962 E4</td>
<td>1.71</td>
</tr>
<tr>
<td>13 ([0])</td>
<td>1</td>
<td>0.254866</td>
<td>0.741325 E3</td>
<td>1.70</td>
</tr>
<tr>
<td>14 ([-45])</td>
<td>1</td>
<td>0.170565</td>
<td>0.95884 E3</td>
<td>2.20</td>
</tr>
<tr>
<td>15 ([45])</td>
<td>1</td>
<td>0.163846</td>
<td>0.679173 E3</td>
<td>1.56</td>
</tr>
<tr>
<td>16 ([90])</td>
<td>1</td>
<td>0.0153575</td>
<td>0.970891 E3</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Notes: 1. Applied uniform stress 600 MPa (87000psi)
2. Max displacement at remote loading points
3. Max stress \(\sigma_y \) at \((0.001875", 0.03954") \) away from the edge
Table 11. Experimental Fatigue Data for T300/5208 Quasi-isotropic Laminates

<table>
<thead>
<tr>
<th>Cycles</th>
<th>% Increase of S_n</th>
<th>S_n (Ksi)</th>
<th>Crack (in)</th>
<th>K_{tg}</th>
<th>a (in)</th>
<th>b (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10E0</td>
<td>0.00</td>
<td>37</td>
<td>0.000</td>
<td>1.92</td>
<td>0.1875</td>
<td>0.1875</td>
</tr>
<tr>
<td>10E1</td>
<td>11.5</td>
<td>41</td>
<td>0.258</td>
<td>1.73</td>
<td>0.1875</td>
<td>0.5</td>
</tr>
<tr>
<td>10E3</td>
<td>18.0</td>
<td>44</td>
<td>0.354</td>
<td>1.61</td>
<td>0.1875</td>
<td>0.8</td>
</tr>
<tr>
<td>10E4</td>
<td>24.4</td>
<td>46</td>
<td>0.524</td>
<td>1.54</td>
<td>0.1875</td>
<td>1.2</td>
</tr>
<tr>
<td>10E5</td>
<td>29.6</td>
<td>48</td>
<td>0.635</td>
<td>1.48</td>
<td>0.1875</td>
<td>1.65</td>
</tr>
</tbody>
</table>

Notes: 1. S_n: Residual strength calculated over gross area, i.e., observed data
2. C: Measured crack length at 0 degree
3. K_{tg}: SCF at 0.06 inch away from the hole edge
4. Short semi-axis of elliptic hole, a, remains unchanged; long semi-axis of elliptic hole, b, enlarges with increasing cycles and b is the effective notch which includes the hole and the damaged area
Table 12. Moduli Reduction for T300/5208 [0/±45/90]s Laminates

<table>
<thead>
<tr>
<th>Pies</th>
<th>A_{11}</th>
<th>A_{12}</th>
<th>A_{16}</th>
<th>A_{22}</th>
<th>A_{26}</th>
<th>A_{66}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>442685</td>
<td>126933</td>
<td>0</td>
<td>179075</td>
<td>0</td>
<td>155904</td>
</tr>
<tr>
<td>-45</td>
<td>442685</td>
<td>65569</td>
<td>0</td>
<td>97005</td>
<td>0</td>
<td>155904</td>
</tr>
<tr>
<td>+45</td>
<td>442685</td>
<td>4205</td>
<td>0</td>
<td>14935</td>
<td>0</td>
<td>155904</td>
</tr>
<tr>
<td>0</td>
<td>442685</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>155904</td>
</tr>
</tbody>
</table>

Notes: 1. Plies cracked means first 90 degree plies cracked with moduli reduction, then 90 and -45 degree plies cracked with more moduli reduction and so on.

2. To avoid singularity of the stiffness matrix via FEM, set value 1 instead of zero for A_{12} and A_{22} with all plies cracked.
Table 13. SCF and Displacement of Notched T300/5208 [0/±45/90]s Laminates with both Geometry and Moduli Changes

<table>
<thead>
<tr>
<th>Hole Radius (in)</th>
<th>Ply (°)</th>
<th>Max Displacement (Δl in)</th>
<th>Max Stress (σ_y)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1875</td>
<td>90</td>
<td>0.0998133</td>
<td>0.869582E4</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>-45</td>
<td>0.162891</td>
<td>0.81409E4</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>+45</td>
<td>0.951125</td>
<td>0.687725E4</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.140641E5</td>
<td>0.413523E4</td>
<td>1.19</td>
</tr>
<tr>
<td>0.28</td>
<td>90</td>
<td>0.100361</td>
<td>0.739051E4</td>
<td>2.12</td>
</tr>
<tr>
<td></td>
<td>-45</td>
<td>0.163802</td>
<td>0.705769E4</td>
<td>2.03</td>
</tr>
<tr>
<td></td>
<td>+45</td>
<td>0.956668</td>
<td>0.637531E4</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.141371E5</td>
<td>0.416517E4</td>
<td>1.20</td>
</tr>
<tr>
<td>0.375</td>
<td>90</td>
<td>0.100962</td>
<td>0.683048E4</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>-45</td>
<td>0.164794</td>
<td>0.661331E4</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>+45</td>
<td>0.962591</td>
<td>0.616664E4</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.142178E5</td>
<td>0.440157E4</td>
<td>1.26</td>
</tr>
<tr>
<td>0.4</td>
<td>90</td>
<td>0.10112</td>
<td>0.672865E4</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>-45</td>
<td>0.165055</td>
<td>0.653419E4</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>+45</td>
<td>0.964137</td>
<td>0.613071E4</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.142388E5</td>
<td>0.443315E4</td>
<td>1.27</td>
</tr>
<tr>
<td>Thickness</td>
<td>Angle</td>
<td>SCF</td>
<td>Modulus Reduction</td>
<td>Displacement</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>0.5"</td>
<td>90</td>
<td>0.101762</td>
<td>0.645079E4</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>-45</td>
<td>0.166106</td>
<td>0.631993E4</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>+45</td>
<td>0.970295</td>
<td>0.601554E4</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.143261E5</td>
<td>0.462214E4</td>
<td>1.33</td>
</tr>
<tr>
<td>0.8"</td>
<td>90</td>
<td>0.103671</td>
<td>0.610895E4</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>-45</td>
<td>0.169219</td>
<td>0.602998E4</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>+45</td>
<td>0.988070</td>
<td>0.579937E4</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.145477E5</td>
<td>0.41575E4</td>
<td>1.19</td>
</tr>
<tr>
<td>1.2"</td>
<td>90</td>
<td>0.106241</td>
<td>0.592263E4</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>-45</td>
<td>0.173414</td>
<td>0.584027E4</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>+45</td>
<td>1.01254</td>
<td>0.567321E4</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.148935E5</td>
<td>0.421274E4</td>
<td>1.21</td>
</tr>
</tbody>
</table>

Notes: 1. SCF decreases with both the moduli reduction (plies cracked) and the slenderness of elliptic hole.
2. Hole radius means the semi-axis of elliptic hole parallel to the loading direction.
3. At last 0 degree plies cracked, we see the maximum displacement reaches the order of E5 inch, i.e., the rupture of the specimen.
4. At all plies cracked A_{11} still unchanged by the assumption that in the matrix mode of failure transverse stiffnesses reduced to zero, i.e., A_{22} and $A_{12}=0$. It is reasonable to
have maximum displacement reaches 10×10^5 inch, since not in the fiber mode of failure
Table 14. The Notched Strength for Quasi-isotropic Laminate via the WEK Model

<table>
<thead>
<tr>
<th>Semi-axis (in)</th>
<th>Calculated Notched Strength (Ksi)</th>
<th>Multiplied by Finite Width Correction Factor (Ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a= 0.0</td>
<td>b= 0.0</td>
<td>79.75</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.1875</td>
<td>37</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.5</td>
<td>31.44</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.8</td>
<td>29.57</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.2</td>
<td>27.81</td>
</tr>
</tbody>
</table>

Notes: 1. Calculated notched strength decreases while b increasing
 2. Modified by finite width correction factor, the calculated notched strength becomes very bad and unacceptable
Table 15. SCF for an Infinite Orthotropic Laminate with a Central Circular Hole from Eq. (4)

<table>
<thead>
<tr>
<th>Layups</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $[0_8]_t$</td>
<td>2.37</td>
</tr>
<tr>
<td>2. $[0/90]_{2s}$</td>
<td>4.91</td>
</tr>
<tr>
<td>3. $[0/\pm 45/90]_s$</td>
<td>3.00</td>
</tr>
<tr>
<td>4. $[0/\pm 45/90_4]_s$</td>
<td>3.99</td>
</tr>
<tr>
<td>5. $[0/\pm 45/90_8]_s$</td>
<td>4.65</td>
</tr>
<tr>
<td>6. $[0_4/\pm 45/90]_s$</td>
<td>2.88</td>
</tr>
<tr>
<td>7. $[0_8/\pm 45/90]_s$</td>
<td>2.78</td>
</tr>
<tr>
<td>8. $[0/\pm 45_2/90]_s$</td>
<td>2.70</td>
</tr>
<tr>
<td>9. $[0/\pm 45_4/90]_s$</td>
<td>2.46</td>
</tr>
<tr>
<td>10. $[0/45_2/90]_s$</td>
<td>3.00</td>
</tr>
<tr>
<td>11. $[0/45_4/90]_s$</td>
<td>2.70</td>
</tr>
<tr>
<td>12. $[0_2/\pm 45]_s$</td>
<td>2.33</td>
</tr>
<tr>
<td>13. $[0]$</td>
<td>2.37</td>
</tr>
<tr>
<td>14. $[-45]$</td>
<td>2.02</td>
</tr>
<tr>
<td>15. $[+45]$</td>
<td>2.02</td>
</tr>
<tr>
<td>16. $[90]$</td>
<td>6.75</td>
</tr>
</tbody>
</table>

Notes: 1. Switch A_{11} with A_{22} in Table 1 while using Eq. (4) to calculate SCF.

2. SCF in this Table for infinite orthotropic laminate has some difference from that in Table 2 which obtained via FEM for
finite width

3. A_{16} and A_{26} are not involved in Eqn. (4), so that cases 3, 10; cases 8, 11; cases 14, 15 have same SCF

4. SCF for elliptic holes all via FEM
Table 16. Notched Strength for T300/5208 Quasi-isotropic Laminate with Plies Cracked

<table>
<thead>
<tr>
<th>Plies</th>
<th>K_t</th>
<th>d_o (in)</th>
<th>Prcct (ksi)</th>
<th>K_{tg}^*</th>
<th>d_o^* (in)</th>
<th>S_n (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N=10E0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b=0.1875"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>2.50</td>
<td>0.05</td>
<td>36.73</td>
<td>1.92</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>-45</td>
<td>2.34</td>
<td>0.05</td>
<td>36.50</td>
<td>1.92</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>*45</td>
<td>1.98</td>
<td>0.05</td>
<td>35.99</td>
<td>1.92</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.19</td>
<td>0.05</td>
<td>34.91</td>
<td>1.92</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>N=10E1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b=0.5"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1.85</td>
<td>0.08</td>
<td>41.42</td>
<td>1.73</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>-45</td>
<td>1.82</td>
<td>0.08</td>
<td>41.35</td>
<td>1.73</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>*45</td>
<td>1.73</td>
<td>0.08</td>
<td>41.15</td>
<td>1.73</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.33</td>
<td>0.08</td>
<td>40.29</td>
<td>1.73</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>N=10E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b=0.8"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1.76</td>
<td>0.09</td>
<td>43.10</td>
<td>1.61</td>
<td>0.09375</td>
<td></td>
</tr>
<tr>
<td>-45</td>
<td>1.73</td>
<td>0.09</td>
<td>43.03</td>
<td>1.61</td>
<td>0.09375</td>
<td></td>
</tr>
<tr>
<td>*45</td>
<td>1.67</td>
<td>0.09</td>
<td>42.90</td>
<td>1.61</td>
<td>0.09375</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0.19</td>
<td>0.09</td>
<td>41.86</td>
<td>1.61</td>
<td>0.09375</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>

N=10E4

b=1.2"

<table>
<thead>
<tr>
<th></th>
<th>1.70</th>
<th>0.10</th>
<th>44.78</th>
<th>1.54</th>
<th>0.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-45</td>
<td>1.68</td>
<td>0.10</td>
<td>44.74</td>
<td>1.54</td>
<td>0.11</td>
</tr>
<tr>
<td>45</td>
<td>1.63</td>
<td>0.10</td>
<td>44.62</td>
<td>1.54</td>
<td>0.11</td>
</tr>
<tr>
<td>0</td>
<td>1.21</td>
<td>0.10</td>
<td>43.73</td>
<td>1.54</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Notes:
1. K_{tg} equal to K_{tg} at 90, -45 and +45 degree plies crack, i.e.,
 K_{tg}=1.98, 1.73, 1.67 and 1.63 for b=0.1875, 0.5, 0.8 and 1.2
2. d_o is determined from K_{tg} in the base curve
3. d_o is not a fixed constant for different b in the same layup
4. Prdct strength is the predicted strength via WN fracture model
5. $K_{tg}^{*}=\sigma_o/S_n$ (unnotched strength/observed strength)
6. d_o^{*} is determined from K_{tg}^{*} in the base curve
Table 17. T300/5208 Notched Quasi-isotropic Laminate Residual Strength via the WN Fracture Model Point Stress Criterion with No Ply Cracking

<table>
<thead>
<tr>
<th>Cycles</th>
<th>S_n (ksi)</th>
<th>K_t^o</th>
<th>b (in)</th>
<th>d_o (in)</th>
<th>Prdct (ksi)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10E0</td>
<td>37</td>
<td>3.11</td>
<td>0.1875</td>
<td>0.05</td>
<td>37.31</td>
<td>0.84</td>
</tr>
<tr>
<td>10E1</td>
<td>41</td>
<td>2.07</td>
<td>0.500</td>
<td>0.08</td>
<td>41.92</td>
<td>2.24</td>
</tr>
<tr>
<td>10E3</td>
<td>44</td>
<td>1.87</td>
<td>0.800</td>
<td>0.09</td>
<td>43.35</td>
<td>1.48</td>
</tr>
<tr>
<td>10E4</td>
<td>46</td>
<td>1.77</td>
<td>1.200</td>
<td>0.10</td>
<td>44.94</td>
<td>2.30</td>
</tr>
<tr>
<td>10E5</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x10E5</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. $a=0.1875$ in for all cases
2. d_o is characteristic length, not constant
3. S_n is observed strength
4. Prdct strength is the predicted strength via WN fracture model
Table 18. Notched Strength for T300/5208 Quasi-isotropic Laminate with All Plies Cracked and Constant Characteristic Length d_o

| Cycles | S_n (ksi) | K_t^* | b (in) | d_o (in) | Prdct (ksi) | Error (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10E0</td>
<td>37</td>
<td>1.19</td>
<td>0.1875</td>
<td>0.08</td>
<td>39.99</td>
<td>8.08</td>
</tr>
<tr>
<td>10E1</td>
<td>41</td>
<td>1.33</td>
<td>0.500</td>
<td>0.08</td>
<td>40.29</td>
<td>1.73</td>
</tr>
<tr>
<td>10E3</td>
<td>44</td>
<td>1.19</td>
<td>0.800</td>
<td>0.08</td>
<td>39.99</td>
<td>9.11</td>
</tr>
<tr>
<td>10E4</td>
<td>46</td>
<td>1.21</td>
<td>1.200</td>
<td>0.08</td>
<td>40.04</td>
<td>12.96</td>
</tr>
</tbody>
</table>

Notes: 1. K_t^* is SCF at hole edge with moduli reduction of all plies cracked

2. a is 0.1875 inch for all cases

3. b is the measured long semi-axis of effective notch which includes the hole and the damaged region

4. d_o is the average value of those d_o in Table 17

5. Prdct strength is the predicted strength via WN fracture model
Table 19. The Notched Strength for T300/934 [0/-45/0]_{2s} Laminate with a Central Circular Hole due to T-T Fatigue Loading

<table>
<thead>
<tr>
<th>Cycles</th>
<th>S_n (MPa)</th>
<th>% Incrse</th>
<th>C (in)</th>
<th>a (in)</th>
<th>b (in)</th>
<th>K_{tg}^*</th>
<th>d_o (in)</th>
<th>Prdct (MPa)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10E0</td>
<td>505</td>
<td>0</td>
<td>0</td>
<td>0.06</td>
<td>0.06</td>
<td>2.53</td>
<td>0.02</td>
<td>472.17</td>
<td>6.50</td>
</tr>
<tr>
<td>10E3</td>
<td>525</td>
<td>0.16</td>
<td>0</td>
<td>0.06</td>
<td>0.11</td>
<td>2.01</td>
<td>0.03</td>
<td>531.05</td>
<td>1.15</td>
</tr>
<tr>
<td>10E4</td>
<td>560</td>
<td>1.7</td>
<td>0.18</td>
<td>0.06</td>
<td>0.12</td>
<td>1.99</td>
<td>0.03</td>
<td>530.50</td>
<td>5.27</td>
</tr>
<tr>
<td>10E5</td>
<td>613</td>
<td>3.3</td>
<td>0.32</td>
<td>0.06</td>
<td>0.16</td>
<td>1.88</td>
<td>0.04</td>
<td>590.61</td>
<td>3.65</td>
</tr>
<tr>
<td>10E6</td>
<td>682</td>
<td>4</td>
<td>0.96</td>
<td>0.06</td>
<td>0.48</td>
<td>1.71</td>
<td>0.05</td>
<td>638.57</td>
<td>6.37</td>
</tr>
<tr>
<td>2x10E6</td>
<td>707</td>
<td>5</td>
<td>0.076</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5x10E6</td>
<td>Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Laminate is 6 in long, 1 in wide
2. A central circular hole diameter is 0.12 in
3. The unnotched strength is 850 MPa
4. Maximum stress is 430 MPa, stress ratio, R=0
5. 1 MPa = 0.145 ksi
6. The third item is the % of compliance increase
7. C is the measured 0 degree crack length
8. b is the measured long semi-axis of effective notch which includes the hole and damaged region
9. $K_{tg}^*=1.73, 1.65, 1.58, 1.42$ and 1.26 respectively
10. $K_{tg}^*=1.68, 1.62, 1.52, 1.39$ and 1.25 respectively
11. $d_o^*=0.0225, 0.03, 0.035, 0.0435$ and 0.0515 inch
12. Prdct is the predicted strength via WN fracture model
Table 20. Notched strength for T300/934 [0/±45/90]_2s Laminate with a Central Circular Hole due to T-T fatigue Loading

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Sn (MPa)</th>
<th>% Incrs</th>
<th>C (in)</th>
<th>a (in)</th>
<th>b (in)</th>
<th>K_{tg}</th>
<th>d_0 (in)</th>
<th>Prdct (MPa)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10E0</td>
<td>370</td>
<td>0</td>
<td>0</td>
<td>0.06</td>
<td>0.06</td>
<td>3.11</td>
<td>0.03</td>
<td>364.38</td>
<td>1.52</td>
</tr>
<tr>
<td>10E3</td>
<td>374</td>
<td>2</td>
<td>0.18</td>
<td>0.06</td>
<td>0.10</td>
<td>2.51</td>
<td>0.03</td>
<td>352.76</td>
<td>5.68</td>
</tr>
<tr>
<td>10E4</td>
<td>415</td>
<td>3</td>
<td>0.20</td>
<td>0.06</td>
<td>0.11</td>
<td>2.27</td>
<td>0.04</td>
<td>388.24</td>
<td>6.45</td>
</tr>
<tr>
<td>10E5</td>
<td>433</td>
<td>5</td>
<td>0.34</td>
<td>0.06</td>
<td>0.20</td>
<td>1.87</td>
<td>0.04</td>
<td>382.00</td>
<td>11.78</td>
</tr>
<tr>
<td>10E6</td>
<td>401</td>
<td>14</td>
<td>0.96</td>
<td>0.06</td>
<td>0.48</td>
<td>1.77</td>
<td>0.04</td>
<td>380.48</td>
<td>5.12</td>
</tr>
<tr>
<td>2x10E6</td>
<td>Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Laminate is 6 in long, 1 in wide
2. A central circular hole diameter is 0.12 in
3. The unnotched strength is 550 MPa
4. Maximum stress is 315 MPa, stress ratio, R=0
5. 1 MPa= 0.145 ksi
6. The third item is the % of compliance increase
7. C is the measured 0 degree crack length
8. b is the measured long semi-axis of effective notch which includes the hole and damaged region
9. K_{tg} = 1.55, 1.52, 1.41, 1.39 and 1.39 respectively
10. K_{tg*} = 1.49, 1.47, 1.33, 1.27 and 1.37 respectively
11. d_0* = 0.0315, 0.032, 0.042, 0.0415 and 0.043 inch
12. Prdct is the predicted strength via WN fracture model
Table 21. Stiffnesses for a Cracked Single Ply by Reducing Moduli

<table>
<thead>
<tr>
<th>Ply</th>
<th>A_{11}</th>
<th>A_{12}</th>
<th>A_{16}</th>
<th>A_{22}</th>
<th>A_{26}</th>
<th>A_{66}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>131805</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5198</td>
</tr>
<tr>
<td>[45]</td>
<td>41035</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>33778</td>
</tr>
<tr>
<td>[-45]</td>
<td>41035</td>
<td>1</td>
<td>-100</td>
<td>1</td>
<td>-100</td>
<td>33778</td>
</tr>
<tr>
<td>[90]</td>
<td>7468</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5198</td>
</tr>
</tbody>
</table>

Notes: 1. A_{12} and A_{22} equal to 1 instead of zero to avoid singularity
2. To avoid negative definite stiffness matrix, A_{16} and A_{26} equal to 100 and -100 for 45 and -45 degree ply
Table 22. Maximum Stress and Displacement for T300/5208 [0] Ply with Moduli Reduction and Geometry Change

<table>
<thead>
<tr>
<th>a (in)</th>
<th>b (in)</th>
<th>Max Displace. (in)</th>
<th>Max Stress (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1875</td>
<td>0.1875</td>
<td>0.176039E4</td>
<td>0.595864E3</td>
<td>1.37</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.28</td>
<td>0.177014E4</td>
<td>0.600485E3</td>
<td>1.38</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.375</td>
<td>0.178024E4</td>
<td>0.596400E3</td>
<td>1.37</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.4</td>
<td>0.178284E4</td>
<td>0.595016E3</td>
<td>1.37</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.5</td>
<td>0.179345E4</td>
<td>0.591767E3</td>
<td>1.36</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.8</td>
<td>0.182484E4</td>
<td>0.593238E3</td>
<td>1.36</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.2</td>
<td>0.186628E4</td>
<td>0.579497E3</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Notes: 1. SCF at hole edge almost unchanged for 7 cases of b
2. The average value of SCF is 1.36
3. Use SCF=1.36 as K_{tg} to find d_o in the base curve, $d_o=0.17$ in
Table 23. Maximum Stress and Displacement for T300/5208 [45] Ply with Moduli Reduction and Geometry Change

<table>
<thead>
<tr>
<th>a (in)</th>
<th>b (in)</th>
<th>Max Displace. (in)</th>
<th>Max Stress (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1875</td>
<td>0.1875</td>
<td>0.250008E4</td>
<td>0.565617E3</td>
<td>1.30</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.28</td>
<td>0.25135E4</td>
<td>0.613992E3</td>
<td>1.41</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.375</td>
<td>0.252830E4</td>
<td>0.590079E3</td>
<td>1.36</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.4</td>
<td>0.2532E4</td>
<td>0.590907E3</td>
<td>1.36</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.5</td>
<td>0.254715E4</td>
<td>0.590140E3</td>
<td>1.36</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.8</td>
<td>0.258876E4</td>
<td>0.558815E3</td>
<td>1.28</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.2</td>
<td>0.264847E4</td>
<td>0.563902E3</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Notes: 1. SCF for seven cases of b changes slightly
2. The average SCF is 1.34
3. Set $K_{tg} = 1.34$ in the base curve to find d_o, $d_o = 0.18$ in
Table 24. Maximum Stress and Displacement for T300/5208 [-45] Ply with Moduli Reduction and Geometry Change

<table>
<thead>
<tr>
<th>a (in)</th>
<th>b (in)</th>
<th>Max Displace. (in)</th>
<th>Max Stress (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1875</td>
<td>0.1875</td>
<td>0.24996E4</td>
<td>0.575962E3</td>
<td>1.32</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.28</td>
<td>0.251168E4</td>
<td>0.547542E3</td>
<td>1.26</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.375</td>
<td>0.252631E4</td>
<td>0.594622E3</td>
<td>1.37</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.4</td>
<td>0.252999E4</td>
<td>0.596109E3</td>
<td>1.37</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.5</td>
<td>0.254508E4</td>
<td>0.602226E3</td>
<td>1.38</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.8</td>
<td>0.258685E4</td>
<td>0.561328E3</td>
<td>1.29</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.2</td>
<td>0.264631E4</td>
<td>0.52979E3</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Notes: 1. SCF changes slightly.
2. The average of SCF is 1.32
3. Set $K_{tg}=1.32$ in the base curve to find d_o, $d_o=0.09$ in
Table 25. Maximum Stress and Displacement for T300/5208 [90] Ply with Moduli Reduction and Geometry Change

<table>
<thead>
<tr>
<th>a (in)</th>
<th>b (in)</th>
<th>Max Displace. (in)</th>
<th>Max Stress (lb/in)</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1875</td>
<td>0.1875</td>
<td>0.176178E4</td>
<td>0.635071E3</td>
<td>1.46</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.28</td>
<td>0.177174E4</td>
<td>0.650189E3</td>
<td>1.49</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.375</td>
<td>0.178224E4</td>
<td>0.640486E3</td>
<td>1.47</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.4</td>
<td>0.178482E4</td>
<td>0.637742E3</td>
<td>1.47</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.5</td>
<td>0.179529E4</td>
<td>0.632509E3</td>
<td>1.45</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.8</td>
<td>0.182586E4</td>
<td>0.605048E3</td>
<td>1.39</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.2</td>
<td>0.186815E4</td>
<td>0.589966E3</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Notes: 1. SCF almost the same for the first five cases
2. The average value of SCF is 1.44
3. Set $K_{tg} = 1.44$ in the base curve to find d_o, $d_o = 0.08$ in
Table 26. The Predicted Residual Strength for T300/5208 [0] Ply

<table>
<thead>
<tr>
<th>a (in)</th>
<th>b (in)</th>
<th>SCF</th>
<th>d_o (in)</th>
<th>Predicted Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1875</td>
<td>0.1875</td>
<td>2.58</td>
<td>0.17</td>
<td>1186.26</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.28</td>
<td>2.18</td>
<td>0.17</td>
<td>1174.38</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.375</td>
<td>2.04</td>
<td>0.17</td>
<td>1170.27</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.4</td>
<td>2.01</td>
<td>0.17</td>
<td>1169.39</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.5</td>
<td>1.91</td>
<td>0.17</td>
<td>1166.49</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.8</td>
<td>1.77</td>
<td>0.17</td>
<td>1162.44</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.2</td>
<td>1.70</td>
<td>0.17</td>
<td>1160.42</td>
</tr>
</tbody>
</table>

Notes: 1. The unnotched strength for a 0 degree ply is 1500 MPa

2. \(K_{tg} = 1.36 \)

3. \(d_o = 0.17 \) for all values of \(b \)

4. \(d_o \) is the same for single ply

5. 1 MPa = 0.145 Ksi
Table 27. The Predicted Residual Strength for T300/5208 [45] Ply

<table>
<thead>
<tr>
<th>a (in)</th>
<th>b (in)</th>
<th>SCF</th>
<th>d_o (in)</th>
<th>Predicted Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1875</td>
<td>0.1875</td>
<td>2.56</td>
<td>0.18</td>
<td>79.41</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.28</td>
<td>2.03</td>
<td>0.18</td>
<td>78.48</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.375</td>
<td>1.86</td>
<td>0.18</td>
<td>78.18</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.4</td>
<td>1.82</td>
<td>0.18</td>
<td>78.11</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.5</td>
<td>1.68</td>
<td>0.18</td>
<td>77.87</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.8</td>
<td>1.55</td>
<td>0.18</td>
<td>77.65</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.2</td>
<td>1.56</td>
<td>0.18</td>
<td>77.66</td>
</tr>
</tbody>
</table>

Notes:
1. The unnotched strength for a 45 degree ply is 98.8 MPa
2. $K_{tg} = 1.34$
3. $d_o = 0.18$ for all values of b
4. d_o is the same for single ply
5. 1 MPa = 0.145 Ksi
Table 28. The Predicted Residual Strength for T300/5208 [-45] Ply

<table>
<thead>
<tr>
<th>a (in)</th>
<th>b (in)</th>
<th>SCF</th>
<th>d_o (in)</th>
<th>Predicted Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1875</td>
<td>0.1875</td>
<td>3.62</td>
<td>0.09</td>
<td>61.03</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.28</td>
<td>3.09</td>
<td>0.09</td>
<td>59.22</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.375</td>
<td>2.91</td>
<td>0.09</td>
<td>58.63</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.4</td>
<td>2.85</td>
<td>0.09</td>
<td>58.44</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.5</td>
<td>2.71</td>
<td>0.09</td>
<td>57.99</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.8</td>
<td>2.39</td>
<td>0.09</td>
<td>56.99</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.2</td>
<td>2.20</td>
<td>0.09</td>
<td>56.27</td>
</tr>
</tbody>
</table>

Notes: 1. The unnotched strength for a -45 degree ply is 90.8 MPa
2. $K_{tg} = 1.32$
3. $d_o = 0.09$ for all values of
4. d_o is the same for single ply
5. 1 MPa = 0.145 Ksi
Table 29. The Predicted Residual Strength for T300/5208 [90] Ply

<table>
<thead>
<tr>
<th>a (in)</th>
<th>b (in)</th>
<th>SCF</th>
<th>d₀ (in)</th>
<th>Predicted Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1875</td>
<td>0.1875</td>
<td>5.37</td>
<td>0.08</td>
<td>39.70</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.28</td>
<td>4.00</td>
<td>0.08</td>
<td>36.38</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.375</td>
<td>3.90</td>
<td>0.08</td>
<td>36.16</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.4</td>
<td>3.72</td>
<td>0.08</td>
<td>35.77</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.5</td>
<td>3.35</td>
<td>0.08</td>
<td>34.99</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.8</td>
<td>2.62</td>
<td>0.08</td>
<td>33.55</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.2</td>
<td>2.23</td>
<td>0.08</td>
<td>32.83</td>
</tr>
</tbody>
</table>

Notes: 1. The unnotched strength for a 90 degree ply is 55.12 MPa
2. $K_{tg} = 1.44$
3. $d₀ = 0.08$ for all values of b
4. $d₀$ is the same for single ply
5. 1 MPa = 0.145 Ksi
REFERENCES

15. Owen, M.J., "Static and Fatigue Strength of Glass Chopped

24. Muskhelishvili, N.I., *Some Basic Problems of Mathematical Theory*

47. Whitney, J.M. and Nuismer, R.J., "Stress Fracture Criterion for Laminated Composites Containing Stress Concentration,"

65. Ramani, S.V. and Williams, D.P., "Notched and Unnotched
Fatigue Behavior of Angle-Ply Graphite/Epoxy Composites,

APPENDIX I: NOMENCLATURE

A material constant
a crack length of symmetrically double crack propagation;
 short semi-axis of elliptic hole
\(a_0\) initial crack length
\(a_N\) crack length at \(N\) cycles
b measured effective notch as long semi-axis of elliptic hole
C cracked region length
d diameter of hole
\(d_0\) characteristic length from \(K_{tg}\) of WN fracture model
\(d_0^*\) observed characteristic length from \(K_{tg}^*\)
E Young’s modulus
G total strain energy release rate
K SIF, sub I means mode I and so on
\(K_{t}^*\) elastic SCF at the hole edge
\(K_{tg}\) SCF at the characteristic length corresponding to normalized
 unnotched strength
\(K_{tg}^*\) unnotched strength divided by observed strength, \(\sigma_o/S_n\)
L crack length
l specimen half length
m material constant
N number of cycles
n material constant
R radius
r radius of hole
\(S_n\) observed notched strength from experimental data
s symmetry
t total
w specimen half width
x axis vertical to loading
Y crack correction factor
y axis parallel to loading
σ stress
σ_η longitudinal stress in the curvilinear coordinates
σ_ξ transverse stress in the curvilinear coordinates
σ_ηξ shear stress in the curvilinear coordinates
σ_c critical stress
σ_o unnotched strength
σ_N notched strength
ν Poisson's ratio
Appendix II: Equation

Eq. (1) is expressed as:

\[
\alpha_n = \frac{S}{2} \left\{ e^{2\xi_o \cos 2\beta} \left[\text{Sinh} 2\xi (1 - e^{2\xi_o \cos 2\beta}) - e^{2\xi_o \sin 2\beta \sin 2\eta} \right] / \right. \\
\left. (\text{Cosh}^2 \xi - \text{Cos} 2\eta) \right\} + \\
\frac{S}{4} \left\{ \left[(e^{2\xi_o \cos 2\beta} - 1)(1 - 2\sin^2 \eta) \text{Sinh} \xi \text{Cosh} \xi + e^{2\xi_o \sin 2\beta \sin \eta \cos \eta} \right] / \right. \\
\left. (\text{Sinh}^2 \xi \text{Cos}^2 \eta + \text{Cosh}^2 \xi \sin^2 \eta) \right\} - \\
\left\{ (\cos 2\beta - \text{Cosh} 2\xi_o - 2e^{2\xi_o} \sinh (\xi - \xi_o)) \cosh (\xi - \xi_o) \right\} \left[(1 - 2\sin^2 (\eta - \beta)) \right]. \\
\left. \text{Sinh} \xi \text{Cosh} \xi / (\text{Sinh}^2 \xi \text{Cos}^2 \eta + \text{Cosh}^2 \xi \sin^2 \eta) \right\} - \\
\left\{ 2e^{2\xi_o} [1 + 2\sin^2 (\xi - \xi_o)] \sin (\eta - \beta) \cos (\eta - \beta) \sin \eta \cos \eta / \right. \\
\left. (\text{Sinh}^2 \xi \text{Cos}^2 \eta + \text{Cosh}^2 \xi \sin^2 \eta) \right\}^2 + \\
\left\{ 2e^{2\xi_o} (2 \cosh^2 (\xi - \xi_o) \cos^2 (\eta - \beta) - \sinh^2 (\xi - \xi_o) \sin^2 (\eta - \beta) - 1) / \right. \\
\left. (\text{Sinh}^2 \xi \text{Cos}^2 \eta + \text{Cosh}^2 \xi \sin^2 \eta) \right\}.
\]
APPENDIX III: CALCULATION

The determination of the value of K_{tg}, the characteristic length (d_o), and the calculation of notched strength are expressed as follows:

First we know the unnotched strength (σ_o) for T300/5208 quasi-isotropic laminate is 71 Ksi, and from Table 16 we have the observed residual strength (S_n) equal to 44 Ksi at 10E3 cycles, $a=0.1875''$, $b=0.8''$ and $K_t^m=1.87$. Now assume $K_{tg}=K_t^m$ at the worst state (90, -45 and +45 deg plies cracked), i.e., K_{tg} corresponds to the normalized unnotched strength at the characteristic length (d_o) as the point stress criterion stated. Here we have $K_{tg}=1.67$ when all 90, -45 and +45 deg plies have cracked, see column 2 in Table 16.

At the circular hole shape and with no ply cracking we can obtain a stress distribution along x-axis via FEM. After normalizing the stress distribution by applied stress, we have a normalized curve and treat it as the base curve. According to the intersection of this curve, we obtain $d_o=0.09''$ corresponding to $K_{tg}=1.67$ shown in Fig. 33 and column 3 in Table 16.

We use $d_o=0.09''$ and $R=a=0.1875$ to calculate ξ_1:

$$\xi_1 = \frac{R}{R + d_o} = \frac{0.1875}{0.1875 + 0.09} = 0.6756767$$

It is easy to find ξ_1 square, fourth, sixth and eighth power values. Plug these values into Eq. (5), we have the predicted notched strength =42.90 Ksi (column 4) with 2.5% error in comparison with the observed data.

If we have the observed data, define $K_{tg}^* = \frac{\sigma_o}{S_n}$
$K_{tg}^*=\frac{o}{S_n}=71/44=1.61$, see column 5 in Table 16.

According to the intersection of base curve, we obtain $d_o^*=0.09375''$ (column 6) at $K_{tg}^*=1.61$ shown in Fig. 33. We see that K_{tg}^* and d_o^* are close to K_{tg} and d_o. That shows that our assumption is reasonable. Other cases are listed in Table 16.
APPENDIX IV: FEM COMPUTER PROGRAM

A modified FEM computer program is listed next. The documentation of this computer program follows the implementation of the finite element method in the Appendix of Ref. [57].
J O I N T

PROGRAM FOR STRESS ANALYSIS OF TWO-DIMENSIONAL
LINEAR ELASTIC QUASI-ISOTROPIC, ORTHOTROPIC AND
ANISOTROPIC COMPOSITE LAMINATES AND STRUCTURES

COMMON /SOL/ NUMNP, NEQ, NWK, NUMEST, MIDEST, MAXEST, MK
COMMON /DIM/ N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13
COMMON /DIM/ N14, N15
COMMON /EL/ IND, NPAR(10), NUMEG, MTOT, NFIRST, NLAST, ITWO
COMMON /VAR/ NG, MODEX
COMMON /TAPES/ IELMNT, ILOAD, IIN, IOUT

DIMENSION TIM(5), HED(20)
DIMENSION IAI
EQUIVALENCE (A(I), IA(I))

THE FOLLOWING TWO CARDS ARE USED TO DETERMINE THE
MAXIMUM HIGH SPEED STORAGE THAT CAN BE USED FOR
SOLUTION. TO CHANGE THE HIGH SPEED STORAGE
AVAILABLE FOR EXECUTION CHANGE THE VALUE OF MTOT
AND CORRESPONDINGLY COMMON A(MTOT)

COMMON A(100000)
MTOT = 100000
CALL TIMEON

DOUBLE PRECISION CARD
ITWO = 1 SINGLE PRECISION ARITHMETIC
ITWO = 2 DOUBLE PRECISION ARITHMETIC

ITWO=2

THE FOLLOWING SCRATCH RULES ARE USED
IELMNT = TAPE STORING ELEMENT DATA
ILOAD = TAPE STORING LOAD VECTORS
IIN = INPUT TAPE
IOUT = OUTPUT TAPE

IELMNT = 1
ILOAD = 2
IIN = 5
IOUT = 6

200 NUMEST = 0
MAXEST = 0

CALL SECOND (TIM(1))
READ CONTROL INFORMATION

READ (IIN,1000) HED,NUMNP,NUMEG,NLCASE,MODEX
IF (NUMNP.EQ.0) STOP
WRITE (IOUT,2000) HED,NUMNP,NUMEG,NLCASE,MODEX

READ NODAL POINT DATA

N1 = 1
N2 = N1 + 3 * NUMNP
N3 = N2 + NUMNP * ITWO
N4 = N3 + NUMNP * ITWO
N5 = N4 + NUMNP * ITWO
IF (N5.GT.MTOT) CALL ERROR (N5 - MTOT,1)

CALL INPUT (A(N1),A(N2),A(N3),A(N4),NUMNP,NEQ)
NEQ1 = NEQ + 1

CALCULATE AND STORE LOAD VECTORS

N6 = N5 + NEQ * ITWO
WRITE (IOUT,2005)
REWIND ILOAD
DO 300 L= 1, NLCASE
READ (IIN,1010) LL,NLOAD
WRITE (IOUT,2010) LL, NLOAD
IF (LL.EQ.L) GO TO 310
WRITE (IOUT,2020)
STOP
310 CONTINUE

N7 = N6 + NLOAD
N8 = N7 + NLOAD
N9 = N8 + NLOAD * ITWO
IF (N9.GT.MTOT) CALL ERROR (N9 - MTOT,2)
CALL LOADS (A(N5),A(N6),A(N7),A(N8),A(N1),NLOAD,NEQ)
300 CONTINUE

READ, GENERATE AND STORE ELEMENT DATA

N6 = N5 + NEQ
DO 10 I = N5,N6
10 IA(I) = 0
IND=1
C CALL ELCAL
C CALL SECOND (TIM(2))
C SOLUTION PHASE
C ASSEMBLE STIFFNESS MATRIX
C CALL ADDRES (A(N2),A(N5))
C
MM = NWK/NEQ
N3 = N2 + NEQ *1
N4 = N3 + NWK * ITWO
N5 = N4 + NEQ * ITWO
N6 = N5 + MAXEST
IF (N6.GT.MTOT) CALL ERROR (N6 - MTOT,4)
C WRITE TOTAL SYSTEM DATA
C WRITE(IOUT,2025) NEQ,NWK,MK,MM
C IN DATA CHECK ONLY MODE WE SKIP ALL FURTHER CALCULATIONS
IF (MODEX.GT.0) GO TO 100
CALL SECOND (TIM(3))
CALL SECOND (TIM(4))
CALL SECOND (TIM(5))
GO TO 120
C CLEAR STORAGE
C 100 NNL = NWK * NEQ
CALL CLEAR(A(N3), NNL)
C IND = 2
C CALL ASSEM (A(N5))
C CALL SECOND (TIM(3))
C TRIANGULARIZE STIFFNESS MATRIX
C KTR = 1
CALL COLSOL (A(N3),A(N4),A(N2),NEQ,NWK,NEQ1,KTR)
C 35 CALL SECOND (TIM(4))
C KTR = 2
IND = 3
C REWIND ILOAD
DO 400 L=1,NLCASE
C CALL LOADV (A(N4),NEQ)
C CALCULATION OF DISPLACEMENTS
CALL COLSOL (A(N3),A(N4),A(N2),NEQ,NWK,NEQ1,KTR)
WRITE(IOUT,2015) L I
CALL WRITE (A(N4),A(N1),NEQ,NUMNP)
C CALCULATION OF STRESSES
CALL STRESS (A(N5))
400 CONTINUE
CALL SECOND (TIM(5))
C PRINT SOLUTION TIMES
120 TT = 0.
DO 500 I = 1,4
TIM(I) = TIM(I+1) - TIM(I)
500 TT = TT + TIM(I)
WRITE (IOUT,2030) HED,(TIM(I),I=1,4),TT
C READ NEXT ANALYSIS CASE
GO TO 200
C 1000 FORMAT (20A4/5I5)
1010 FORMAT (2I5)
2000 FORMAT (1H1,20A4///
155H CONT R O L I N F O R M A T I O N ///5X,
255H NUMBER OF NODAL POINTS (NUMNP) = 15///5X,
355H NUMBER OF ELEMENT GROUPS (NUMEG) = 15///5X,
455H NUMBER OF LOAD CASES (NLCASE) = 15///5X,
555H SOLUTION MODE (MODEX) = 15 /5X,
655H EQ.0, DATA CHECK ///5X,
755H EQ.1, EXECUTION)
2005 FORMAT (1H1,26H LOAD CASE DATA)
2010 FORMAT(///4X,33H LOAD CASE NUMBER =,15///5X,
132H NUMBER OF CONCENTRATED LOADS . = ,15)
2015 FORMAT(1H1,9H LOAD CASE,13)
2020 FORMAT (1X,40H*** ERROR LOAD CASES ARE NOT IN ORDER)
2025 FORMAT (1H1,
155H TOTAL SYSTEM DATA ///5X,
255H NUMBER OF EQUATIONS (NEQ) = 15///5X,
NUMBER OF MATRIX ELEMENTS . . . (NWK) = 15//5X,
MAXIMUM HALF BANDWIDTH (MK) = 15//5X,
MEAN HALF BANDWIDTH (MM) = 15

SOLUTION TIME LOG IN
SEC S,12X,11HFOR PROBLEM//IX,20A4 ///5X,
TIME FOR INPUT PHASE = ,F12.2//5X,
TIME FOR CALCULATION OF STRUCTURE STIFFNESS MATRIX
3=,F12.2//5X,
TRIANGULARIZATION OF STIFFNESS MATRIX . . . =,F12.2//5X,
TIME FOR LOAD CASE SOLUTIONS =,F12.2//5X,
TOTAL SOLUTION TIME = ,F12.2)

END

SUBROUTINE ERROR(N,I)

PROGRAM
TO PRINT MESSAGES WHEN HIGH-SPEED STORAGE IS EXCEEDED
COMMON/TAPES/ IELMNT,ILOAD,IIN,IOUT
GO TO (I,2,3,4),I
1 WRITE(IOUT,2000)
GO TO 6
2 WRITE(IOUT,2010)
GO TO 6
3 WRITE(IOUT,2020)
GO TO 6
4 WRITE(IOUT,2030)
6 WRITE (IOUT,2050) N STOP
2000 FORMAT (//48H NOT ENOUGH STORAGE FOR READ-IN OF ID
AND 23HNDAL POINT COORDINATES)
2010 FORMAT (//50H NOT ENOUGH STORAGE FOR DEFINITION OF
LOAD VECTORS)
2020 FORMAT (//42H NOT ENOUGH STORAGE FOR ELEMENT DATA
1INPUT)
2030 FORMAT (//53H NOT ENOUGH STORAGE FOR ASSEMBLAGE OF
GLOBAL STRUCTUR 55HE STIFFNESS, AND DISPLACEMENT AND
2STRESS SOLUTION PHASE)
2050 FORMAT (// 32H *** ERROR STORAGE EXCEEDED BY, I9)
RETURN
END

SUBROUTINE INPUT (ID,X,Y,Z,NUMNP,NEQ)

PROGRAM
TO READ, GENERATE, AND PRINT NODAL POINT INPUT DATA
TO CALCULATE EQUATION NUMBERS AND STORE THEM IN ID
ARRAY
N=ELEMENT NUMBER
ID=BOUNDARY CONDITION CODES (0=FREE,1=DELETED)
X,Y,Z= COORDINATES
KN= GENERATION CODE
 I.E. INCREMENT ON NODAL POINT NUMBER

IMPLICIT REAL*8(A-H,O-Z)

THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON
CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM
OR UNIVAC MACHINES .ACTIVATE,DEACTIVATE OR ADJUST
ABOVE CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

COMMON /TAPES/ IELMNT,ILOAD,INN,IOUT
DIMENSION X(1),Y(1),Z(1),ID(3,NUMNP)

READ AND GENERATE NODAL POINT DATA

WRITE (IOUT,2000)
WRITE (IOUT,2010)
WRITE (IOUT,2020)
KNOLD=0
NOLD=0

10 READ (INN,1000) N,(ID(I,N),I=1,3),X(N),Y(N),Z(N),KN
WRITE (IOUT,2030) N,(ID(I,N),I=1,3),X(N),Y(N),Z(N),KN
IF (KNOLD.EQ.0) GO TO 50
NUM=(N-NOLD) / KNOLD
NUMN=NUM-1
IF(NUMN.LT.1) GO TO 50
XNUM=NUM
DX=(X(N)-X(NOLD))/XNUM
DY=(Y(N)-Y(NOLD))/XNUM
DZ=(Z(N)-Z(NOLD))/XNUM
K=NOLD
DO 30 J=1,NUMN
 KK=K
 K=K + KNOLD
 X(K)=X(KK)+DX
 Y(K)=Y(KK)+DY
 Z(K)=Z(KK)+DZ
DO 30 I=1,3
 ID(I,K)=ID(I,KK)
30 CONTINUE

50 NOLD=N
 KNOLD=KN
IF(N.NE.NUMNP) GO TO 10

WRITE COMPLETE NODAL DATA
SUBROUTINE LOADS (R, NOD, IDIRN, FLOAD, ID, NLOAD, NEQ)

C PROGRAM TO READ NODAL LOAD DATA
TO CALCULATE THE LOAD VECTOR R FOR EACH LOAD CASE
AND WRITE ONTO TAPE ILOAD

IMPLICIT REAL * 8 (A-H, O-Z)

THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON
CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM
OR UNIVAC MACHINES. ACTIVATE, DEACTIVATE OR ADJUST
ABOVE CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

COMMON /VAR/ NG, MODEX
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT
DIMENSION R(NEQ),NOD(1),IDIRN(1),FLOAD(1)
DIMENSION ID(3,1)
WRITE (IOUT,2000)
READ (IIN,1000) (NOD(I),IDIRN(I),FLOAD(I),I=1,NLOAD)
WRITE(IOUT,2010) (NOD(I),IDIRN(I),FLOAD(I),|=1,NLOAD)
IF (MODEX.EQ.0] RETURN
DO 210 I=1,NEQ
210 R(I)=0.
DO 220 L=1,NLOAD
LN=NOD(L)
LI=IDIRN(L)
II=ID(LI,LN)
IF(II) 220,220,240
240 R(II) = R(II)+ FLOAD(L)
CONTINUE
WRITE (ILOAD) R
CONTINUE
1000 FORMAT(215,F15.5)
2000 FORMAT (////4X,30HNODE DIRECTION LOAD/
1 3X,6HNUMBER,19X,9HMAGNITUDE)
2010 FORMAT (1H0,|6,9X,I4,7X,E12.5)
RETURN
END

SUBROUTINE ELCAL

PROGRAM
TO LOOP OVER ALL ELEMENT GROUPS FOR READING,
GENERATING AND STORING THE ELEMENT DATA

COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MK
COMMON /EL/ IND,NPAR(10),NUMEG,MTOT,NFIRST,NLAST,ITWO
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT
COMMON A(1)
REWIND IELMNT
WRITE (IOUT,2000)
DO 100 N=1,NUMEG
IF (N.NE.1) WRITE (IOUT,2010)
READ (I1N,1000) NPAR
CALL ELEMNT
IF (MIDEST.GT.MAXEST) MAXEST=MIDEST
WRITE (I1MNT) MIDEST,NPAR,(A(I),I=NFIRST,NLAST)
100 CONTINUE
RETURN

1000 FORMAT (20I5)
2000 FORMAT (1H1,36HE L E M E N T G R O U P D A T A ///</)2010 FORMAT (1H1)

END

SUBROUTINE ELEMNT
PROGRAM TO CALL THE APPROPRIATE ELEMENT SUBROUTINE
COMMON /EL/ IND,NPAR(10),NUMEG,MTOT,NFIRST,NLAST,ITWO
NPAR1=NPAR(1)
GO TO (1,2,3),NPAR1
1 CALL TRUSS
RETURN
COTHER ELEMENT TYPES WOULD BE CALLED HERE, IDENTIFYING EACH ELEMENT TYPE BY A DIFFERENT NPAR(1) PARAMETER
C2 RETURN
C3 RETURN
CEND

SUBROUTINE COLHT (MHT,ND,LM)
PROGRAM TO CALCULATE COLUMN HEIGHTS
COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MK
DIMENSION LM(1),MHT(1)
LS=100000
DO 100 I=1,ND
IF(LM(I)) 110, 100, 110
110 IF(LM(I)-LS) 120, 100, 100
120 LS=LM(I)
100 CONTINUE

DO 200 I=1, ND
II=LM(I)
IF(II.EQ.0) GO TO 200
ME=II - LS
IF(ME.GT.MHT(II)) MHT(II)=ME
200 CONTINUE

RETURN
END

C

SUBROUTINE ADDRES(MAXA, MHT)

PROGRAM
TO CALCULATE ADDRESSES OF DIAGONAL ELEMENTS IN BANDED
MATRIX WHOSE COLUMN HEIGHTS ARE KNOWN

MHT = ACTIVE COLUMN HEIGHTS
MAXA = ADDRESSES OF DIAGONAL ELEMENTS

COMMON/SOL/ NUMP, NEQ, NWK, NUMEST, MIDEST, MAXEST, MK
DIMENSION MAXA(1), MHT(1)

C
CLEAR ARRAY MAXA

NN=NEQ + 1
DO 20 I=1, NN
20 MAXA(I)=0.0

MAXA(1)=1
MAXA(2)=2
MK=0
IF (NEQ.EQ.1) GO TO 100
DO 10 I=2, NEQ
IF (MHT(I).GT.MK) MK=MHT(I)
10 MAXA(I+1)=MAXA(I) + MHT(I) + 1
100 MK=MK + 1
NWK=MAXA(NEQ+1) - MAXA(1)

RETURN
END

C
SUBROUTINE CLEAR(A, N)

PROGRAM
TO CLEAR ARRAY A
IMPLICIT REAL*8(A-H,O-Z)

C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM OR UNIVAC MACHINES. ACTIVATE, DEACTIVATE OR ADJUST ABOVE CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

DIMENSION A(1)
DO 10 I=1,N
10 A(I)=0.
RETURN
END

SUBROUTINE ASSEM (AA)

PROGRAM TO CALL ELEMENT SUBROUTINES FOR ASSEMBLAGE OF THE STRUCTURE STIFFNESS MATRIX

COMMON /EL/ IND, NPAR(10), NUMEGM, MTOT, NFIRST, NLAST, ITWO
COMMON /TAPES/ IELMNT, ILOAD, IIN, IOUT
DIMENSION AA(1)

REWIND IELMNT

DO 200 N=1, NUMEG
READ (IELMNT) NUMEST, NPAR, (AA(I), I=1, NUMEST)

CALL ELEMNT

200 CONTINUE
RETURN
END

SUBROUTINE ADDBAN (A, MAXA, S, LM, ND)

PROGRAM TO ASSEMBLE UPPER TRIANGULAR ELEMENT STIFFNESS INTO COMPACTED GLOBAL STIFFNESS

A = GLOBAL STIFFNESS
S = ELEMENT STIFFNESS
ND = DEGREE OF FREEDOM IN ELEMENT STIFFNESS

S(1) S(2) S(3) ...
S(ND+1) S(ND+2) ...
S(2*ND) ...

A(1) A(3) A(6) ...
A(2) A(5) ...
A(4) ...

S = A

A = A

S = S

A = A

S = S

A = A
IMPLICIT REAL*8(A-H,O-Z)

THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM OR UNIVAC MACHINES . ACTIVATE, DEACTIVATE OR ADJUST ABOVE CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

DIMENSION A(1), MAXA(1), S(1), LM(1)

NDI = 0
DO 200 I = 1, ND
II = LM(I)
IF (II) 200, 200, 100
100 MI = MAXA(II)
 KS = I
 DO 220 J = 1, ND
 JJ = LM(J)
 IF (JJ) 220, 220, 110
110 IJ = II - JJ
 IF (IJ) 220, 210, 210
210 KK = MI + IJ
 KSS = KS
 IF (J .GE. I) KSS = J + NDI
 A(KK) = A(KK) + S(KSS)
220 KS = KS + ND - J
200 NDI = NDI + ND - I

RETURN
END

SUBROUTINE COLSOL(A, V, MAXA, NN, NWK, NNM, KKK)

TO SOLVE FINITE ELEMENT STATIC EQUILIBRIUM EQUATIONS IN
CORE, USING COMPACTED STORAGE AND COLUMN REDUCTION
SCHEME

-- INPUT VARIABLES --
A(NWK) = STIFFNESS MATRIX STORED IN COMPACED FORM
V(NN) = RIGHT-HAND-SIDE VECTOR
MAXA(NNM) = VECTOR CONTAINING ADDRESSES OF DIAGONAL
ELEMEATS OF STIFFNESS MATRIX IN A
NN = NUMBER OF EQUATIONS
NWK = NUMBER OF ELEMENTS BELOW SKYLINE OF
MATRIX
NNM = NN + 1
KKK = INPUT FLAGE
EQ. 1 TRIANGULARIZATION OF STIFFNESS MATRIX
EQ. 2 REDUCTION AND BACK-SUBSTITUTION OF
LOAD VECTOR
IOUT = NUMBER OF OUTPUT DEVICE
-- OUTPUT VARIABLES --
A(NWK) = D AND L - FACTORS OF STIFFNESS MATRIX
V(NN) = DISPLACEMENT VECTORS

IMPLICIT REAL*8(A-H,O-Z)

THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM OR UNIVAC MACHINES. ACTIVATE, DEACTIVATE OR ADJUST ABOVE CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

COMMON /TAPES/ IELMNT, ILOAD, IIN, IOUT
DIMENSION A(NWK), V(1), MAXA(1)

PERFORM L*D*L(T) FACTORIZATION OF STIFFNESS MATRIX

IF(KKK-2)40,150,150
40 DO 140 N=1,NN
 KN=MAXA(N)
 KL=KN+1
 KU=MAXA(N+1) -1
 KH=KU-KL
 IF(KH)110,90,50
50 K=N-KH
 IC=0
 KLT=KU
 DO 80 J=1,KH
 IC=IC * 1
 KLT=KLT -1
 KI=MAXA(K)
 ND=MAXA(K+1) - KI - 1
 IF(ND)80,80, 60
60 KK=MIN0(IC,ND)
 C=0.
 DO 70 L=1,KK
 C=C+A(KI+L)*A(KLT*L)
 70 A(KL)=A(KLT)-C
50 K=N-KH
 B=0.
 DO 100 KK=KL,KU
 K=K - 1
 KI=MAXA(K)
 C=A(KK)/A(KI)
 B=B + C*A(KK)
100 A(KK)=C
 A(KN)=A(KN) -B
110 IF(A(KN)) 120,120,140
120 WRITE(IOUT,2000) N, A(KN)
STOP
140 CONTINUE
RETURN

C REDUCE RIGHT-HAND-SIDE VECTOR

150 DO 180 N=1,NN
 KL=MAXA(N)*1
 KU=MAXA(N+1)-1
 IF(KU-KL)180,160,160
160 K=N
 C=0.
 DO 170 KK=KL,KU
 K=K-1
170 C=C*A(KK)*V(K)
 V(N)=V(N)*C
180 CONTINUE

C BACK-SUBSTITUTE

200 DO 200 N=1,NN
 K=MAXA(N)
200 V(N)=V(N)/A(K)
 IF (NN.EQ.1) RETURN
 N=NN
 DO 230 L=2,NN
 KL=MAXA(N)*1
 KU=MAXA(N+1)-1
 IF(KU-KL)230,210,210
210 K=N
 DO 220 KK=KL,KU
 K=K-1
220 V(K)=V(K)-A(KK)*V(N)
 230 N=N-1
RETURN

2000 FORMAT(//48H STOP - STIFFNESS MATRIX NOT POSITIVE
1DEFINITE ,//
1 32H NONPOSITIVE PIVOT FOR EQUATION ,14,//
2 10H PIVOT = ,E20.12)
END

C SUBROUTINE LOADV (R,NEQ)

C PROGRAM TO OBTAIN THE LOAD VECTOR
C
C IMPLICIT REAL*8(A-H,O-Z)
C
C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON
C CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM
C OR UNIVAC MACHINES .ACTIVATE,DEACTIVATE OR ADJUST
C ABOVE CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC
COMMON /TAPES/ IELMNT, ILOAD, IIN, IOUT
DIMENSION R(NEQ)

READ (ILOAD) R
RETURN
END

SUBROUTINE WRITE(DISP,ID,NEQ,NUMNP)

PROGRAM TO PRINT DISPLACEMENTS

IMPLICIT REAL*8(A-H,O-Z)

THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM OR UNIVAC MACHINES. ACTIVATE, DEACTIVATE OR ADJUST ABOVE CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

COMMON /TAPES/ IELMNT, ILOAD, IIN, IOUT
DIMENSION DISP(NEQ), ID(3, NUMNP)
DIMENSION D(3)

PRINT DISPLACEMENTS

WRITE(IOUT,2000)
IC=4
DO 100 II=1, NUMNP
IC=IC +1
IF(IC.LT.56) GO TO 105
WRITE(IOUT,2000)
IC=4
105 DO 110 I=1, 3
110 D(I)=0.

DO 120 I=1, 3
KK=ID(I,II)
IL=I
120 IF(KK.NE.0) D(IL)=DISP(KK)

WRITE(IOOUT,2010) I, D
RETURN

2000 FORMAT(///, 26H DISPLACEMENTS // 7H NODE ,9X
114HX-DISPLACEMENT, 4X, 14HY-DISPLACEMENT, 4X, 14HZ-DISPLACEMENT
2MENT)
2010 FORMAT(1X, I3, 8X, 3E18.6)
END
SUBROUTINE STRESS (AA)

PROGRAM TO CALL THE ELEMENT SUBROUTINE FOR THE CALCULATION OF STRESSES

COMMON /VAR/ NG, MODEX
COMMON /EL/ IND, NPAR(10), NUMEG, MTOT, NFIRST, NLAST, ITWO
COMMON /TAPES/ IELMNT, ILOAD, IIN, IOUT
DIMENSION AA(1)

LOOP OVER ALL ELEMENT GROUPS

REWIND IELMNT

DO 100 N=1, NUMEG
NG=N

READ (IELMNT) NUMEST, NPAR, (AA(I), I=1, NUMEST)

CALL ELEMNT

100 CONTINUE

RETURN
END

SUBROUTINE TRUSS

PROGRAM TO SET UP STORAGE AND CALL THE TRUSS ELEMENT

SUBROUTINE
COMMON /SOL/ NUMNP, NEQ, NWK, NUMEST, MIDEST, MAXEST, MK
COMMON /DIM/ N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12
COMMON /DIM/ N13, N14, N15
COMMON /EL/ IND, NPAR(10), NUMEG, MTOT, NFIRST, NLAST, ITWO
COMMON /TAPES/ IELMNT, ILOAD, IIN, IOUT
COMMON A(1)

EQUIVALENCE (NPAR(2), NUME), (NPAR(3), NUMMAT)

NFIRST=N6
IF(IND.GT.1) NFIRST=N5
N101=NFIRST
N102=N101 + 16*NUME
N103=N102 + 8*NUME*ITWO
N104=N103 + 8*NUME*ITWO
N105=N104 + NUMMAT*ITWO
N106=N105 + NUMMAT*ITWO
N107=N106 + NUMMAT*ITWO
N108 = N107 * NUMMAT * ITWO
N109 = N108 + NUMMAT * ITWO
N110 = N109 + NUMMAT * ITWO
N111 = N110 + NUME
NLAST = N111

C

IF (IND.GT.1) GO TO 100
IF (NLAST.GT.MTOT) CALL ERROR(NLAST-MTOT,3)
GO TO 200
100 IF (NLAST.GT.MTOT) CALL ERROR(NLAST-MTOT,4)

C
MIDEST = NLAST - NFIRST
C
CALL RUSS (A(N1), A(N2), A(N3), A(N4), A(N4), A(N5), A(N101),
1 A(N102), A(N103), A(N104), A(N105), A(N106), A(N107), A(N108),
2 A(N109), A(N110).
C
RETURN
C
END
C
SUBROUTINE RUSS (ID, X, Y, Z, U, MHT, LM, XX, YY,
1 A1, A2, A3, A4, A5, A6, MATP)
C
PROGRAM
TRUSS ELEMENT SUBROUTINE
C
IMPLICIT REAL*8(A-H, O-Z)
C
THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON
CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM
OR UNIVAC MACHINES. ACTIVATE, DEACTIVATE OR ADJUST
ABOVE CARDS FOR SINGLE OR DOUBLE PRECISION ARITHMETIC
C
COMMON / SOL/ NUMNP, NEQ, NWK, NUMEST, MIDEST, MAXEST, MK
COMMON / DIM/ N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11, N12
COMMON / DIM/ N13, N14, N15
COMMON / EL/ IND, NPAR(10), NUMEG, MTOT, NFIRST, NLAST, ITWO
COMMON / VAR/ NG, MODEX
COMMON / TAPES/ IELMNT, ILOAD, IIN, IOUT
COMMON A(1)
C
REAL A
C
DIMENSION X(1), Y(1), Z(1), ID(3, 1), LM(16, 1), MATP(1), U(1), MHT(1)
DIMENSION XX(8, 1), YY(8, 1), A1(1), A2(1), A3(1), A4(1), A5(1), A6(1)
DIMENSION DR(3), IPS(1)
DIMENSION EPSX(3, 3), EPSY(3, 3), GAMA(3, 3)
DIMENSION S(136), SS(16, 16), UU(8), VV(8)
DIMENSION AX(3), H(3), E(8), F(8), PNXSI(8), PNXIT(8)
DIMENSION SIGX(3, 3), SIGY(3, 3), TUXY(3, 3)
EQUIVALENCE (NPAR(1),NPARI),(NPAR(2),NUME),(NPAR(3),NUMMAT)

ND = NUMBER DEGREE OF FREEDOM PER EACH ELEMENT
AX = GAUSSIAN INTEGRATION POINTS
H = GAUSSIAN INTEGRATION WEIGHTS
XX = X COORDINATE OF NODE
YY = Y COORDINATE OF NODE
MTYP = NUMBER OF MATERIAL TYPE AT EACH ELEMENT
NUMMAT= TOTAL NUMBER OF MATERIAL TYPES
A1,A2,A3,A4,A5,A6 = A11,A12,A16,A22,A26,A66 ARE EXTENSIONAL MATRIX
I1, I2, I3, I4, I5, I6, I7, I8 ARE NODE ORDER STARTS FROM THE RIGHT-UPPER CORNER OF AN ELEMENT AND COUNTED COUNTER-CLOCKWISELY

ND=16

AX(1)=0.774596669241483D0
AX(2)=0.000000000000000D0
AX(3)=0.774596669241483D0
H(1)=0.555555555555556D0
H(2)=0.888888888888889D0
H(3)=0.555555555555556D0

GO TO (300,610,900),IND

READ AND GENERATE ELEMENT INFORMATION

300 DO 10 I=1,NUMMAT
READ(IIN,9000)N,A1(N),A2(N),A3(N),A4(N),A5(N),A6(N)
WRITE(IOUT,9000)N,A1(N),A2(N),A3(N),A4(N),A5(N),A6(N)
9000 FORMAT(I5,6F10.0)
10 CONTINUE

N=1

100 READ (IIN,1020) M,I1,I2,I3,I4,I5,I6,MTYP,KG
1020 FORMAT(11I5)
120 IF(M.NE.N) GO TO 200
MY=MTYP
KKK=KG

SAVE COORDINATE SYSTEM

200 XX(1,N)=X(I1)
YY(1,N)=Y(I1)
XX(2,N)=X(I2)
YY(2,N)=Y(I2)
XX(3,N)=X(I3)
YY(3,N)=Y(I3)
XX(4,N)=X(I4)
YY(4,N)=Y(I4)
XX(5,N)=X(I5)
YY(5,N)=Y(I5)
XX(6,N)=X(I6)
YY(6,N)=Y(I6)
XX(7,N)=X(I7)
YY(7,N)=Y(I7)
XX(8,N)=X(I8)
YY(8,N)=Y(I8)

C MATP(N)=MY
C
C LM = DEGREE OF FREEDOM IN X, Y DIRECTIONS PER EACH NODE
C
DO 390 L=1,16
390 LM(L,N)=0°
DO 391 LK=1,2
LM(LK,N)=ID(LK,I1)
LM(LK*2,N)=ID(LK,I2)
LM(LK*4,N)=ID(LK,I3)
LM(LK*6,N)=ID(LK,I4)
LM(LK*8,N)=ID(LK,I5)
LM(LK*10,N)=ID(LK,I6)
LM(LK*12,N)=ID(LK,I7)
LM(LK*14,N)=ID(LK,I8)
391 CONTINUE
C
CALL COLHT (MHT,ND,LM(1,N))
C
WRITE(IOUT,2050) N,I1,I2,I3,I4,I5,I6,I7,I8,MY
2050 FORMAT(10I5)
IF (N.EQ.NUME) RETURN
N=N+1
I1=I1+KKK
I2=I2+KKK
I3=I3+KKK
I4=I4+KKK
I5=I5+KKK
I6=I6+KKK
I7=I7+KKK
I8=I8+KKK
C
IF (N.GT.M) GO TO 100
GO TO 120
C
C DEVELOP STIFFNESS MATRIX OF EIGHT-NODED ELEMENT
C
610 DO 611 N=1,NUME
MY=MATP(N)
A11=A1(MY)
A12 = A2(MY)
A16 = A3(MY)
A22 = A4(MY)
A26 = A5(MY)
A66 = A6(MY)
DO 612 I = 1, 16
DO 612 J = 1, 16
SS(I, J) = 0.D0
612 CONTINUE
C
DO 102 L = 1, 3
XA = AX(L)
DO 102 K = 1, 3
YA = AX(K)
C
XJ11 = 0.D0
XJ12 = 0.D0
XJ21 = 0.D0
XJ22 = 0.D0
C
PARTIAL PHI OVER PARTIAL XSI
PNXSI(1) = (2.D0*XA*YA + 2.D0*XA*YA*YA*YA)/4.D0
PNXSI(2) = (-2.D0*XA - 2.D0*XA*YA)/2.D0
PNXSI(3) = (2.D0*XA - YA + 2.D0*XA*YA - YA*YA)/4.D0
PNXSI(4) = (-1.D0*YA*YA)/2.D0
PNXSI(5) = (2.D0*XA*YA - 2.D0*XA*YA - YA*YA)/4.D0
PNXSI(6) = (-2.D0*XA*2.D0*YA)/2.D0
PNXSI(7) = (2.D0*YA - YA*YA*YA - 2.D0*XA*YA)/4.D0
PNXSI(8) = (1.D0*YA*YA/2.D0
C
PARTIAL PHI OVER PARTIAL ETA
PNXIT(1) = (2.D0*YA*XA + XA*XA + 2.D0*XA*YA)/4.D0
PNXIT(2) = (1.D0*XA*XA)/2.D0
PNXIT(3) = (2.D0*YA - XA + 2.D0*XA*YA)/4.D0
PNXIT(4) = (-2.D0*YA*YA + 2.D0*XA*YA)/2.D0
PNXIT(5) = (2.D0*YA - XA - XA*XA - 2.D0*XA*YA)/4.D0
PNXIT(6) = (-1.D0*XA*XA)/2.D0
PNXIT(7) = (2.D0*YA - XA - XA*XA + 2.D0*XA*YA)/4.D0
PNXIT(8) = (-2.D0*YA - 2.D0*XA*YA)/2.D0
C
ELEMENTS OF JACOBIAN
DO 52 KK = 1, 8
XJ11 = XJ11 * PNXSI(KK) * XX(KK, N)
XJ12 = XJ12 * PNXSI(KK) * YY(KK, N)
XJ21 = XJ21 * PNXIT(KK) * XX(KK, N)
XJ22 = XJ22 * PNXIT(KK) * YY(KK, N)
52 CONTINUE
DETERMINANT OF JACOBIAN

\[AVXJ = (XJ11 \times XJ22) - (XJ12 \times XJ21) \]

INVERSE OF JACOBIAN

\[STJ11 = \frac{XJ22}{AVXJ} \]
\[STJ12 = -\frac{XJ12}{AVXJ} \]
\[STJ21 = -\frac{XJ21}{AVXJ} \]
\[STJ22 = \frac{XJ11}{AVXJ} \]

\[E(I) : \text{PARTIAL PHI OVER PARTIAL X} \]

\[\text{DO } 12 \ I=1,8 \]
\[E(I) = STJ11 \times PNXSI(I) \times STJ12 \times PNXIT(I) \]
\[12 \ \text{CONTINUE} \]

\[F(I) : \text{PARTIAL PHI OVER PARTIAL Y} \]

\[\text{DO } 13 \ I=1,8 \]
\[F(I) = STJ21 \times PNXSI(I) \times STJ22 \times PNXIT(I) \]
\[13 \ \text{CONTINUE} \]

STIFFNESS MATRIX OF EIGHT-NODED ELEMENT: 16 BY 16

\[\text{DO } 90 \ I=1,8 \]
\[\text{DO } 90 \ J=1,8 \]
\[KI = I \times 2 - 1 \]
\[KJ = J \times 2 - 1 \]
\[SS(KI, KJ) = SS(KI, KJ) + (A11 \times E(I) \times E(J) + A16 \times F(I) \times E(J) + A16 \times E(I) \times F(J)) \times AVXJ \times H(L) \times H(K) \]
\[SS(KI+1, KJ) = SS(KI+1, KJ) + (A12 \times F(I) \times E(J) + A16 \times E(I) \times E(J) + A66 \times F(I) \times F(J)) \times AVXJ \times H(L) \times H(K) \]
\[SS(KI, KJ+1) = SS(KI, KJ+1) + (A16 \times E(I) \times E(J) + A66 \times F(I) \times E(J) + A12 \times F(I) \times F(J) + A26 \times F(I) \times F(J)) \times AVXJ \times H(L) \times H(K) \]
\[SS(KI+1, KJ+1) = SS(KI+1, KJ+1) + (A26 \times F(I) \times E(J) + A66 \times E(I) \times E(J) + A12 \times F(I) \times F(J) + A26 \times F(I) \times F(J)) \times AVXJ \times H(L) \times H(K) \]
\[90 \ \text{CONTINUE} \]
\[102 \ \text{CONTINUE} \]

TRANSFORM SS(I, J) INTO S(IJ)

\[IJ=0 \]
\[\text{DO } 95 \ I=1,16 \]
\[\text{DO } 95 \ J=1,16 \]
\[IJ=I+J \]
\[S(IJ) = SS(I, J) \]
\[95 \ \text{CONTINUE} \]

WRITE(OUT,9070)

WRITE(OUT,9075) \(S(IJ), IJ=1,136 \)

9070 FORMAT(/)
C9075 FORMAT(8E10.3)
C CALL ADDBAN (A(N3),A(N2),S,LM(1,N),ND)
C
611 CONTINUE
RETURN
C
C STRESS CALCULATION
C
C EPSX = EPSILON X
C EPSY = EPSILON Y
C GAMA = GAMA XY
C SIGX = SIGMA X
C SIGY = SIGMA Y
C TUXY = TAU XY
C
900 WRITE(OUT,9090)
DO 663 N=1,NUME
C
DO 664 I=1,8
UU(I)=0.D0
VV(I)=0.D0
664 CONTINUE
C
DO 666 I=1,3
DO 666 J=1,3
EPSX(I,J)=0.D0
EPSY(I,J)=0.D0
GAMA(I,J)=0.D0
666 CONTINUE
C
MY=MATP(N)
A11=A1(MY)
A12=A2(MY)
A16=A3(MY)
A22=A4(MY)
A26=A5(MY)
A66=A6(MY)
C
DO 655 L=1,3
XA=AX(L)
DO 655 K=1,3
YA=AX(K)
C
XJ11=0.D0
XJ12=0.D0
XJ21=0.D0
XJ22=0.D0
C
C PARTIAL PHI OVER PARTIAL XSI
\begin{align*}
\text{PNXSI}(1) &= (2.0*XA*YA+2.0*XA*YA+YA*YA)/4.0 \\
\text{PNXSI}(2) &= (-2.0*XA-2.0*XA*YA)/2.0 \\
\text{PNXSI}(3) &= (2.0*XA-YA+2.0*XA*YA-YA*YA)/4.0 \\
\text{PNXSI}(4) &= (-1.0*YA*YA)/2.0 \\
\text{PNXSI}(5) &= (2.0*XA+YA-2.0*XA*YA-YA*YA)/4.0 \\
\text{PNXSI}(6) &= (-2.0*XA+2.0*XA*YA)/2.0 \\
\text{PNXSI}(7) &= (2.0*XA-YA-2.0*XA*YA*YA)/4.0 \\
\text{PNXSI}(8) &= (1.0*YA*YA)/2.0 \\
\end{align*}

\textbf{PARTIAL PHI OVER PARTIAL ETA}

\begin{align*}
\text{PNXIT}(1) &= (2.0*YA+XA*XA*XA+2.0*YA*YA)/4.0 \\
\text{PNXIT}(2) &= (1.0-XA*XA)/2.0 \\
\text{PNXIT}(3) &= (2.0*YA-XA*XA-2.0*YA*YA)/4.0 \\
\text{PNXIT}(4) &= (-2.0*YA*YA+2.0*YA*YA)/2.0 \\
\text{PNXIT}(5) &= (2.0*YA+XA-XA*XA-2.0*YA*YA)/4.0 \\
\text{PNXIT}(6) &= (-1.0+XA*XA)/2.0 \\
\text{PNXIT}(7) &= (2.0*YA-XA-XA*XA+2.0*YA*YA)/4.0 \\
\text{PNXIT}(8) &= (-2.0*YA-2.0*YA*YA)/2.0 \\
\end{align*}

\textbf{ELEMENTS OF JACOBIAN}

\begin{align*}
\text{DO } 53 & \text{ KK}=1,8 \\
XJ11 &= XJ11 + \text{PNXSI}(KK)*XX(KK,N) \\
XJ12 &= XJ12 + \text{PNXSI}(KK)*YY(KK,N) \\
XJ21 &= XJ21 + \text{PNXIT}(KK)*XX(KK,N) \\
XJ22 &= XJ22 + \text{PNXIT}(KK)*YY(KK,N) \\
\text{53 CONTINUE} \\
\end{align*}

\textbf{DETERMINANT OF JACOBIAN}

\begin{align*}
\text{AVXJ} &= (XJ11*XJ22)-(XJ12*XJ21) \\
\text{STJ11} &= XJ22/AVXJ \\
\text{STJ12} &= -XJ12/AVXJ \\
\text{STJ21} &= -XJ21/AVXJ \\
\text{STJ22} &= XJ11/AVXJ \\
\end{align*}

\textbf{E(I): PARTIAL PHI OVER PARTIAL X}

\begin{align*}
\text{DO } 771 & \text{ I}=1,8 \\
E(I) &= \text{STJ11} \text{PNXSI}(I)+\text{STJ12} \text{PNXIT}(I) \\
\text{771 CONTINUE} \\
\end{align*}

\textbf{F(I): PARTIAL PHI OVER PARTIAL Y}

\begin{align*}
\text{DO } 772 & \text{ I}=1,8 \\
F(I) &= \text{STJ21} \text{PNXSI}(I)+\text{STJ22} \text{PNXIT}(I) \\
\text{772 CONTINUE} \\
\end{align*}

\textbf{CALCULATION OF STRAIN}
C
KK=LM(1,N)
IF (KK.EQ.0) GO TO 801
UU(1)=U(KK)
C
801 KK=LM(2,N)
IF (KK.EQ.0) GO TO 802
VV(1)=U(KK)
C
802 KK=LM(3,N)
IF (KK.EQ.0) GO TO 803
UU(2)=U(KK)
C
803 KK=LM(4,N)
IF (KK.EQ.0) GO TO 804
VV(2)=U(KK)
C
804 KK=LM(5,N)
IF (KK.EQ.0) GO TO 805
UU(3)=U(KK)
C
805 KK=LM(6,N)
IF (KK.EQ.0) GO TO 806
VV(3)=U(KK)
C
806 KK=LM(7,N)
IF (KK.EQ.0) GO TO 807
UU(4)=U(KK)
C
807 KK=LM(8,N)
IF (KK.EQ.0) GO TO 808
VV(4)=U(KK)
C
808 KK=LM(9,N)
IF (KK.EQ.0) GO TO 809
UU(5)=U(KK)
C
809 KK=LM(10,N)
IF (KK.EQ.0) GO TO 810
VV(5)=U(KK)
C
810 KK=LM(11,N)
IF (KK.EQ.0) GO TO 811
UU(6)=U(KK)
C
811 KK=LM(12,N)
IF (KK.EQ.0) GO TO 812
VV(6)=U(KK)
C
812 KK=LM(13,N)
IF (KK.EQ.0) GO TO 813
UU(7)=U(KK)

813 KK=LM(14,N)
 IF (KK.EQ.0) GO TO 814
 VV(7)=U(KK)

814 KK=LM(15,N)
 IF (KK.EQ.0) GO TO 815
 UU(8)=U(KK)

815 KK=LM(16,N)
 IF (KK.EQ.0) GO TO 816
 VV(8)=U(KK)

816 DO 655 LK=1,8
 EPSX(L,K)=EPSX(L,K)+UU(LK)*E(LK)
 EPSY(L,K)=EPSY(L,K)+VV(LK)*F(LK)
 GAMA(L,K)=GAMA(L,K)*(UU(LK)*F(LK)*VV(LK)*E(LK))
 655 CONTINUE

STRESS-STRAIN RELATIONSHIP

DO 667 L=1,3
 DO 667 K=1,3
 SIGX(L,K)=A11*EPSX(L,K)+A12*EPSY(L,K)+A16*GAMA(L,K)
 SIGY(L,K)=A12*EPSX(L,K)+A22*EPSY(L,K)+A26*GAMA(L,K)
 TUXY(L,K)=A16*EPSX(L,K)+A26*EPSY(L,K)+A66*GAMA(L,K)
 667 CONTINUE

LK=0
DO 668 L=1,3
DO 668 K=1,3
LK=LK+1
WRITE(IOUT,9095)N,LK,SIGX(L,K),SIGY(L,K),TUXY(L,K)
 9095 FORMAT(1X,I5,1X,5H NODE,14X,14X,14H SIGMA - X ,14X,14H SIGMA - Y ,14X,14H TAU - XY)
 668 CONTINUE
 9085 FORMAT(/)

CONTINUE

SUBROUTINE SECOND(TIM)

SUBROUTINE TO OBTAIN TIME

CALL TIMECK(II)
TIM=FLOAT(II)/100.
RETURN
END
The vita has been removed from the scanned document