North Dakota County Roads - Pavement Network Structural Assessment: Integration of GPR and FWD Data

by

Ken Maser, Adam Carmichael
Infrasense, Inc.
Regis Carvalho
Dynatest, Inc
Andrew Bratlien
Transportation Solutions, Inc

Pavement Evaluation 2014, September 15-17
Blacksburg, VA
Background

• ND State Legislature Commissioned Study
• Assess 20-year transportation Infrastructure Needs
 – County, townships, tribal roads
• Motivated by
 – Oil related traffic
 – Agricultural related traffic
Background

• 2010 study: UGPTI estimated road investment needs for the 2011 session
 – Based on 21,500 new wells
• 2012 study: updated road investment needs for the 2013 session
 – Based on 46,000 new wells
• Current study: updated estimates based on higher forecasts (e.g., 60,000 new wells)
Pavement Data Collection

• Ride and Distress Data – 4786 miles
• Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR) – 1519 miles
 – Western ND (785 mi)
 – Eastern ND (734 mi)
Nondestructive Testing - Statewide
FWD/GPR Testing Equipment

Dynatest Model 8002 FWD

GSSI 1-GHz Horn Antenna
GPR System
FWD/GPR Testing

• Testing period: 08/05 through 9/21/2013
• GPR/FWD collected independently
 – Coordinated using GPS
• Numbers:
 – Number of segments: 169
 – GPR data collected continuously at 1 foot intervals
 – Number of FWD test locations: 6,259
 – FWD used two load levels and two replicates
 – 21,560 deflection basins collected
Sample GPR Output

<table>
<thead>
<tr>
<th>Segment</th>
<th>station</th>
<th>lat</th>
<th>lon</th>
<th>L1Thk</th>
<th>L2Thk</th>
<th>L1Type</th>
<th>L2Type</th>
<th>Inline</th>
<th>Crossline</th>
</tr>
</thead>
<tbody>
<tr>
<td>3924</td>
<td>0</td>
<td>46.3114167</td>
<td>-96.72965</td>
<td>6.90</td>
<td>18.35</td>
<td>ac</td>
<td>base</td>
<td>0.00</td>
<td>0.76</td>
</tr>
<tr>
<td>3924</td>
<td>1320</td>
<td>46.3114367</td>
<td>-96.724423</td>
<td>7.80</td>
<td>16.96</td>
<td>ac</td>
<td>base</td>
<td>0.31</td>
<td>0.24</td>
</tr>
<tr>
<td>3924</td>
<td>2640</td>
<td>46.3114633</td>
<td>-96.719187</td>
<td>7.25</td>
<td>17.47</td>
<td>ac</td>
<td>base</td>
<td>0.54</td>
<td>-1.18</td>
</tr>
<tr>
<td>3924</td>
<td>3960</td>
<td>46.3114817</td>
<td>-96.713955</td>
<td>7.59</td>
<td>19.23</td>
<td>ac</td>
<td>base</td>
<td>0.31</td>
<td>-0.05</td>
</tr>
<tr>
<td>3924</td>
<td>5280</td>
<td>46.3114933</td>
<td>-96.70872</td>
<td>7.62</td>
<td>15.41</td>
<td>ac</td>
<td>base</td>
<td>0.31</td>
<td>0.87</td>
</tr>
<tr>
<td>3924</td>
<td>6600</td>
<td>46.311505</td>
<td>-96.703482</td>
<td>7.58</td>
<td>18.34</td>
<td>ac</td>
<td>base</td>
<td>0.00</td>
<td>-0.43</td>
</tr>
<tr>
<td>3924</td>
<td>7920</td>
<td>46.3115133</td>
<td>-96.698255</td>
<td>7.92</td>
<td>14.92</td>
<td>ac</td>
<td>base</td>
<td>0.44</td>
<td>-0.86</td>
</tr>
<tr>
<td>3924</td>
<td>9240</td>
<td>46.3115233</td>
<td>-96.69302</td>
<td>8.36</td>
<td>18.25</td>
<td>ac</td>
<td>base</td>
<td>0.44</td>
<td>-1.31</td>
</tr>
<tr>
<td>3924</td>
<td>10560</td>
<td>46.3115317</td>
<td>-96.687787</td>
<td>8.81</td>
<td>18.65</td>
<td>ac</td>
<td>base</td>
<td>0.31</td>
<td>1.05</td>
</tr>
<tr>
<td>3924</td>
<td>11880</td>
<td>46.3115283</td>
<td>-96.68255</td>
<td>7.96</td>
<td>14.74</td>
<td>ac</td>
<td>base</td>
<td>0.00</td>
<td>1.44</td>
</tr>
<tr>
<td>3924</td>
<td>13200</td>
<td>46.311505</td>
<td>-96.677317</td>
<td>7.82</td>
<td>16.98</td>
<td>ac</td>
<td>base</td>
<td>0.00</td>
<td>-0.85</td>
</tr>
<tr>
<td>3924</td>
<td>14520</td>
<td>46.311485</td>
<td>-96.672082</td>
<td>8.01</td>
<td>17.12</td>
<td>ac</td>
<td>base</td>
<td>-0.44</td>
<td>0.20</td>
</tr>
<tr>
<td>3924</td>
<td>15840</td>
<td>46.311447</td>
<td>-96.666847</td>
<td>7.11</td>
<td>14.94</td>
<td>ac</td>
<td>base</td>
<td>-0.44</td>
<td>0.03</td>
</tr>
<tr>
<td>3924</td>
<td>17160</td>
<td>46.311455</td>
<td>-96.661617</td>
<td>8.17</td>
<td>11.95</td>
<td>ac</td>
<td>base</td>
<td>0.54</td>
<td>-0.13</td>
</tr>
<tr>
<td>3924</td>
<td>18480</td>
<td>46.3114233</td>
<td>-96.656375</td>
<td>10.58</td>
<td>10.22</td>
<td>ac</td>
<td>base</td>
<td>0.44</td>
<td>-0.36</td>
</tr>
<tr>
<td>3924</td>
<td>19800</td>
<td>46.3114317</td>
<td>-96.651147</td>
<td>10.47</td>
<td>12.35</td>
<td>ac</td>
<td>base</td>
<td>-0.31</td>
<td>1.23</td>
</tr>
<tr>
<td>3924</td>
<td>21120</td>
<td>46.311415</td>
<td>-96.645912</td>
<td>10.45</td>
<td>10.89</td>
<td>ac</td>
<td>base</td>
<td>0.00</td>
<td>1.65</td>
</tr>
<tr>
<td>3924</td>
<td>22440</td>
<td>46.31146</td>
<td>-96.6352483</td>
<td>10.45</td>
<td>11.85</td>
<td>ac</td>
<td>base</td>
<td>0.00</td>
<td>0.67</td>
</tr>
<tr>
<td>3924</td>
<td>23760</td>
<td>46.311475</td>
<td>-96.635445</td>
<td>9.94</td>
<td>13.15</td>
<td>ac</td>
<td>base</td>
<td>-0.31</td>
<td>0.82</td>
</tr>
<tr>
<td>3924</td>
<td>24456.96</td>
<td>46.3114767</td>
<td>-96.632685</td>
<td>8.80</td>
<td>11.34</td>
<td>ac</td>
<td>base</td>
<td>-1.32</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Backcalculation

- **Software:** ELMOD (Dynatest)
- **Assumptions:**
 - Linear elastic moduli for HMA and unbound base layers
 - Non-linear elastic modulus for subgrade
 - Thicknesses from GPR
 - All structures were limited to max 3 layers
Iterative FWD and GPR analysis

- GPR layer interpretation checks done through the backcalculation
- Modulus reasonable checks applied
- Layer type interpretation updated iteratively
- Result improve the overall quality and accuracy of both analyzes
Impact of Iterative Technique

First Second Final

Analysis Iteration

Deflection Basins with Unreasonable Backcalculated Layer Moduli (%)
Results - HMA

Backcalculated Surface Layer Modulus (ksi) at Reference Temperature of 77°F
Results – Unbound Base Layer

Frequency of Observations

Backcalculated Base Layer Modulus (ksi)

0% 20% 40% 60% 80% 100% 120%

0 500 1000 1500 2000 2500 3000 3500

Frequency
Cumulative %
Results - Subgrade

Frequency of Observations

Backcalculated Subgrade Layer Modulus (ksi)

Frequency
Cumulative %
Analysis Steps & Review

• FWD/GPR Structure Information used with AASHTO 1993 Design Guide
• Year & type of improvement predicted.
• Improvement threshold: PSR < 2.5
• Year of improvement based on:
 – Existing structural capacity
 – Forecasted ESALs
Summary

- GPR/FWD combination effectively provides pavement structure data at network level
- Results can be used to predict remaining life and project required improvements
- North Dakota was able to use this approach to evaluate its 20 year transportation infrastructure needs.