Advanced Automated Detection Analysis and Classification of Cracks in Pavement
SSI-D-Vision Technology Partnership

Objectives

• Develop a lower cost pavement management solution relying on camera imagery and computer vision analysis for automated distress characterization.

• Scalable solution with instrumentation tailored according to end user specified requirements
 • Configurable for IRI, transverse profile, texture, geometry, distress
 • Fully instrumented cost, including vehicle = ~$250,000
 • Installable on end user’s vehicle

• Offer a lower cost solution to support increased usage by city and county agencies without compromising quality
D-Visions’ & SSI system

LMI Gocator lasers--full lane width transverse profile -rutting, lane-edge drop off

IMU with GPS

Inertial profiler for IRI (wide-footprint Roline lasers)

Texture laser (MPD)

Downward looking very fast camera

This simple setup with Automatic Computer Vision Analysis Is substantially more cost effective
Collection Vehicle
Collection Vehicle
Collection Vehicle
D-Visions’ system and experience in Computer Vision

2D – 3D Transformation (Defense – demo)

Camera based Navigation (Defense)

Anti Missile Interception system (Defense)

Real Time processing of cracks in Pavement – Demo

Viewer - Demo
Accurate and cost effective pavement condition analysis is essential for optimal usage of huge maintenance budgets

DOTs that do not use automatic analysis often encounter situations where:
• Roads got improved Pavement Condition Index (PCI) rating year-over-year even though rehabilitation was not performed
• Roads were rehabilitated but their PCI did not change, or the overall PCI expected improvement did not match reality and huge investment

In such cases it is impossible to manage the network maintenance or monitor the usage of enormous funds invested in preservation of roads. In 2003 CalTrans spent $300 million on pavement rehabilitation\(^1\). The improvement of network fell bellow expected improvement.

\(^1\) http://www.fhwa.dot.gov/pavement/preservation/ppc0622.cfm
The problem

You start with a crack

The eye has the expertise to analyze and define the crack
What do you do when you have thousands of miles to survey?

You want the computer to help, but the variety of distress appearances is enormous, and computed results are not sufficient
You bring in Lasers. Costs are high, and you are left with huge amount of info, and Quality control will always go over imagery since this is what people understand instantly and intuitively

The solution?

Now that Computer Vision can supply good results this is the way to go
Superiority of D-Vision solution

Humans rely mostly on their vision to perceive the world around them. That inspires efforts to create computer vision software that will do similar things.

The problem is that machine vision algorithms (example diagram:)

Look like a very simplified, partial versions of the inspiring visual cortex (example diagram:)}
Dvision's approach is derived from the brain's complexity - we use multiple feature detectors and classifiers with high degree of connectivity to obtain high classification probability.
Distress Characterization--Objective

Analysis must be automatic – **repeatable**, and comparable with previous surveys, transparent for quality checks and **accurate**, so that errors reduce to <5%

Generally, approaches for automatic crack detection include Laser data and images

Roughly:

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Advantages</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>laser</td>
<td>Direct depth measurement</td>
<td>$500,000--??</td>
</tr>
<tr>
<td>camera</td>
<td>Low cost with much higher resolution (1,000 higher)</td>
<td>$5000</td>
</tr>
</tbody>
</table>
Background

Technically the base is to detect gradients with some thresholds.

Contrast in images

Depth in laser

• The problem with laser depth analysis (in addition to cost) is that it will not detect sealed cracks, patches and others.
• We claim that accurate Automated Computer Vision Detection Analysis and classification can yield a cost effective solution to the challenge.
• We rely mostly on vision and assist also with the lasers data
The challenge

Realistically a simple threshold analysis on gradients is not enough. The variety of distress appearances is enormous:
The Solution:

An Advanced computer Vision Automatic Solution
• **Quality control will always go over imagery since this is what people understand instantly and intuitively.**
• **Automated analysis should therefore paint the cracks on the image automatically accurately and repeatably**
Analysis results
Analysis results
Detection and Analyze Results

App Detected

Unclassified crack
True positive: 77.7%
False positive: 750.9%

Longitudinal joint
Painted: 1
Detected: 1
True Positive: 100.0%
False Negative: 0.0%

Transverse joint
Painted: 1
Detected: 1
True Positive: 100.0%
False Negative: 0.0%

Analyze
Everyone can show slides of technology and example images. How do you know, as a client, if they really have a good automated system?
Our technology

💡 Automatic analysis runs quickly, e.g. 10 seconds(!) per frame. If 1 mile should produce some 1000 images, analysis should last 10,000 seconds, or 3 hours. If you use parallel computing, e.g. 6 processors, it should take half an hour.

A survey of 20,000 miles will take 10,000 hours to analyze. 416 days. Use 60 parallel processors (~10 computers), or 1 second per per frame, you get 41 days analysis.

Assume some QA, data storage and management.. You get 2 months.

The bottle neck for an automated system is data collection and not analysis!
All distresses should be marked on the image!

Low cost – everyone can make the calculation how much the above example should cost.

I’d like to quote 2 sentences from this presentation: **Quality control will always go over imagery since this is what people understand instantly and intuitively.** The variety of distress appearances is enormous - these 2 combine into suggesting that Advanced Computer Vision is the right approach
First Customers

Cal Trans HPMS survey, starting September 25

German BASt use of the solution starting Oct. 7
Residual life?

• Plot some graph of the impact of correct analysis on pavement residual life

• Variance of PCI in a section