Distress Image Library for Precision and Bias of Fully Automated Pavement Cracking Survey

Kelvin C.P. Wang, Ran Ji, and Cheng Chen
kelvin.wang@okstate.edu
Oklahoma State University/WayLink
School of Civil and Environmental Engineering

Pavement Evaluation 2014
Blacksburg, VA
Outline

- Challenges of Distress Detection
- Benchmark Database and Evaluation Methods
- Case Studies of Algorithm Comparison
Manual Distress Survey

- Tedious manual measurement and rating processes
- Substantial manpower
- Access to pavement
- Traffic control
- Difficult or inconvenient in archiving and retrieving detailed quantitative information

Photo from: https://www.nevadadot.com/About_NDOT/NDOT_Divisions/Planning/Aviation/Pavement_Condition_Index.aspx
Challenges of Cracking Survey

- Analysis and Processing
 - Detection/Identification
 - Classification

- Precision and Bias
 - Reference???
PaveVision3D Ultra Systems
PaveVision3D Ultra - New
Green Lasers for 3D Ultra
3D Ultra Data at 60MPH (100KM/h)
3D Data at 60MPH (100KM/h)
3D Data at 60MPH (100KM/h)
3D Ultra Current Status

- Sensor technology: mature
- Challenges to software solutions
 - To be simple and usable to pavement engineers
 - Confidence in quality of data
 - Utilization and analysis of 1mm data sets
Data Analysis Challenges

- Detection Algorithms
 - Accuracy
 - Robust
 - Fast

- Result Evaluation
 - No benchmark database
 - No widely accepted evaluation criteria
Evaluation Methods

- Desired distress detection algorithms
 - Fast
 - Achieve high scores in both precision and recall rate
Need of Image Library

- What is the reference?
- Is there a “Ground-Truth”?
- What to use in benchmarking?
- Therefore: an Image Library
 - Manually developed with marked cracks
 - Multiple-checking for precision/bias
 - Expensive; but necessary
Precision Recall Analysis

- Precision: correctly identified cracks over total identified cracks
- Recall: correctly identified cracks over total crack

Example of good precision score

Example of good recall score
Precision Recall Analysis

Example of good precision score

Example of good recall score
Precision Recall Analysis

- **Confusion Matrix**

<table>
<thead>
<tr>
<th></th>
<th>Actual positive</th>
<th>Actual negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted positive</td>
<td>True Positive</td>
<td>False Positive</td>
</tr>
<tr>
<td>Predicted negative</td>
<td>False Negative</td>
<td>True Negative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Crack</th>
<th>Non-crack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted crack</td>
<td>True Positive</td>
<td>False Positive</td>
</tr>
<tr>
<td>Predicted non-crack</td>
<td>False Negative</td>
<td>True Negative</td>
</tr>
</tbody>
</table>
Precision Recall Analysis

\[
\text{Precision} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}}
\]

\[
\text{Recall} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}}
\]

\[
F = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]
ROC Curve

- Receiver Operating Characteristic (ROC curve)

- A perfect classifier: at the upper left corner (only the true positives, no false positives & no false negatives)
PR Curve

- **PR curve**: Precision vs Recall
 - Precision as Y axis
 - Recall as X axis
- **Goal**: select an algorithm at the upper right corner
Class Imbalance Problem

- The total # of a class of data (positive): far less than the total # of another (negative)

- Example
 - Model 1: 7 out of 10 cracks and 10 out of 10000 normal pavement pixels WRONG
 - Model 2: 2 out of 10 cracks and 100 out of 10000 normal pavement pixels WRONG

- If the classifier’s performance is determined by the number of mistakes,
 - Model 1 (17 mistakes) VS. Model 2 (102 mistakes)
PR Curve Vs ROC Curve

- Imbalance pavement image data set:
 - Distress pixels are far less than normal pixels

- ROC curve uses false positive, which is affected by the number of negative samples

- PR curve focuses on the detection performance of positive samples only

\[
\text{tpr} = \frac{tp}{tp + fn} \quad \text{fpr} = \frac{fp}{fp + tn}
\]

\[
\text{Recall} = \frac{tp}{tp + fn} \quad \text{Precision} = \frac{tp}{tp + fp}
\]
Benchmark Image Sources
3D Benchmark Image Library

- Total size: 1535
- Image group:
 - Flexible Pavement: 4
 - Rigid Pavement: 4
 - High Friction Surface
- Ground truth generation
 - Crack map images
 - Manual visual inspection
3D Benchmark Image Library

<table>
<thead>
<tr>
<th>Group</th>
<th>Flexible Pavement</th>
<th>High Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse Surface</td>
<td>Good Quality</td>
</tr>
<tr>
<td>Size</td>
<td>224</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>Rigid Pavement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complex Condition</td>
<td>Good Quality</td>
</tr>
<tr>
<td>Size</td>
<td>260</td>
<td>285</td>
</tr>
</tbody>
</table>
Examples Images

Intensity

3D Range data in grey image format

Range data openGL visualization

Ground truth manually labeling
Case Studies

- Performance
- Sensitivity
Performance Analysis

- Asphalt Bad Quality

<table>
<thead>
<tr>
<th>Test</th>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeedGrow</td>
<td>0.80</td>
</tr>
<tr>
<td>Lighting Model</td>
<td>0.72</td>
</tr>
<tr>
<td>Lighting 3D Image Model</td>
<td>0.73</td>
</tr>
<tr>
<td>ADA3D</td>
<td>0.56</td>
</tr>
</tbody>
</table>

![Graph showing performance analysis](image)
Performance Analysis

- Asphalt Good Quality

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeedGrow</td>
<td>0.90</td>
</tr>
<tr>
<td>Lighting Model</td>
<td>0.86</td>
</tr>
<tr>
<td>Lighting 3D Image Model</td>
<td>0.94</td>
</tr>
<tr>
<td>ADA3D</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Performance Analysis

- Concrete Complex Condition

<table>
<thead>
<tr>
<th>Test</th>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeedGrow</td>
<td>0.82</td>
</tr>
<tr>
<td>Lighting Model</td>
<td>0.72</td>
</tr>
<tr>
<td>Lighting 3D Image Model</td>
<td>0.80</td>
</tr>
<tr>
<td>ADA3D</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Diagram with Precision on the Y-axis and Recall on the X-axis, showing different models with their respective F-values.
Performance Analysis

Concrete Good Condition

- **SeedGrow**: F-value 0.88
- **Lighting Model**: F-value 0.82
- **Lighting 3D Image Model**: F-value 0.86
- **ADA3D**: F-value 0.72
Performance Analysis - F score

<table>
<thead>
<tr>
<th>Test Group</th>
<th>SeedGrow</th>
<th>Lighting Model</th>
<th>Lighting 3D Image Model</th>
<th>ADA3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Bad Quality</td>
<td>0.80</td>
<td>0.72</td>
<td>0.73</td>
<td>0.56</td>
</tr>
<tr>
<td>Asphalt Good Quality</td>
<td>0.90</td>
<td>0.86</td>
<td>0.94</td>
<td>0.74</td>
</tr>
<tr>
<td>Concrete Complex Condition</td>
<td>0.82</td>
<td>0.72</td>
<td>0.80</td>
<td>0.66</td>
</tr>
<tr>
<td>Concrete Good Condition</td>
<td>0.88</td>
<td>0.82</td>
<td>0.86</td>
<td>0.72</td>
</tr>
<tr>
<td>Average</td>
<td>0.85</td>
<td>0.78</td>
<td>0.83</td>
<td>0.67</td>
</tr>
</tbody>
</table>

SeedGrow > Lighting 3D > Lighting Model > ADA3D
Sensitivity Analysis

- Calculate SD of discrete PR points from top 40% F score

\[SD = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \bar{X})^2}{n} + \frac{\sum_{i=1}^{n}(y_i - \bar{Y})^2}{n}} \]

<table>
<thead>
<tr>
<th>Test Group</th>
<th>SeedGrow</th>
<th>Lighting Model</th>
<th>Lighting 3D Image Model</th>
<th>ADA3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Bad Quality</td>
<td>0.092</td>
<td>0.062</td>
<td>0.015</td>
<td>0.021</td>
</tr>
<tr>
<td>Asphalt Good Quality</td>
<td>0.069</td>
<td>0.062</td>
<td>0.020</td>
<td>0.032</td>
</tr>
<tr>
<td>Concrete Complex Condition</td>
<td>0.058</td>
<td>0.049</td>
<td>0.008</td>
<td>0.018</td>
</tr>
<tr>
<td>Concrete Good Condition</td>
<td>0.053</td>
<td>0.034</td>
<td>0.017</td>
<td>0.020</td>
</tr>
<tr>
<td>Average</td>
<td>0.068</td>
<td>0.052</td>
<td>0.015</td>
<td>0.023</td>
</tr>
</tbody>
</table>

Lighting 3D < ADA3D < Lighting Model < SeedGrow
ADA3D Interface
Questions?

Kelvin C.P. Wang
kelvin.wang@okstate.edu
Oklahoma State University
School of Civil and Environmental Engineering