Convergence of Extreme Loads for Offshore Wind Turbine Support Structures

NAWEA 2015 Presentation

Gordon M. Stewart1

Matthew Lackner1, Sanjay Arwade1, Andrew Myers2, Spencer Hallowell2

1: University of Massachusetts
2: Northeastern University

June 11, 2015
Motivation

- International Electrotechnical Commission (IEC) offshore design standards recommend the average of the maximums of 6 one hour simulations for the 50-year extreme event load cases (DLC 6.X)
- Research has shown that this amount of simulation time may not enough for convergence for fixed-bottom support structures, but little research has been done concerning convergence of extreme loads for floating platforms
- This presentation will discuss the convergence of extreme loads for a fixed bottom monopile support structure as well as two floating platforms.
Research Questions

How does the convergence of extreme loads of different support structures differ?

Can we create an analytical method of predicting how many simulations any given combination of support structure and set of input conditions requires for convergence?
To run the simulations, we use FAST; NREL’s computer-aided wind turbine design tool.

FAST version 8 is used, which can implement 2nd order waves.

TurbSim is used to create the turbulent wind fields.
Support Structures

OC3 Monopile

OC3 Hywind Spar Buoy

OC4 DeepCWind Semi-submersible
Simulation Overview

- Floating simulations used 35 m/s wind speeds, significant wave heights of 15 m, and a wave peak spectral period of 14 s, while monopile simulations used 54 m/s wind and 10 m significant wave heights.

- Each support structure was simulated for 1000 one-hour simulations for each of the following conditions: wind and second order waves, wind and first order waves, no wind with second order waves, no wind with first order waves, and wind but no waves.

- For brevity, we will show results from only the wind and second order waves simulations and the wind and first order waves simulations.

- The results use the resultant tower bending moment, calculated using a root sum square value of the fore-aft and side-side bending moments.
Extreme Load Convergence for Semi-Submersible
Extreme Load Convergence for Monopile

Number of simulations in a group

Percent Error from Whole Population Mean

Mean Value of Groups

95th/5th Percentile

68th/32nd Percentile

G Stewart (University of Massachusetts)
Support Structure Comparison

Note that the mean maximum value for each support structure is different; 1.67$\times 10^5$ kNm for the monopile, 1.78$\times 10^5$ kNm for the semi-submersible, and 2.79$\times 10^5$ kNm for the spar buoy.
Second Order Waves - Semi-submersible

G Stewart (University of Massachusetts) Extreme Load Convergence June 11, 2015 11 / 17
Probabilistic Problem Formulation

Consider a stochastic process (e.g. tower base bending moment) \(X(t) \) and a time interval \([0, tf)\) during which the process is observed. The maximum value of the process:

\[
X_{\text{max,} tf} = \max(X(t) : t \in [0, tf))
\]

is a random variable that depends on the properties of \(X(t) \) and \(tf \) and has distribution and second moment properties:

\[
F_{X_{\text{max,} tf}}(x), \mu_{X_{\text{max,} tf}}, \sigma_{X_{\text{max,} tf}}
\]

If \(n \) observations \(x(t) \) of \(X(t) \) in \([0, tf)\) are available and have maxima:

\[
x_{\text{max,} tf}
\]

one can employ the estimator:

\[
\bar{X}_{\text{max,} tf} = \frac{1}{n} \sum_{i=1}^{n} x_{\text{max,} tf, i}
\]
The estimator is itself a random variable with distribution and properties:

\[F_{\bar{x}_{\text{max}}, t_f}(x), \mu_{\bar{x}_{\text{max}}, t_f}, \sigma_{\bar{x}_{\text{max}}, t_f} \]

Assuming independence of the observations, the estimator:

\[\bar{X}_{\text{max}, t_f} \]

is unbiased with

\[
\sigma^2_{\bar{x}_{\text{max}, t_f}} = \frac{\sigma^2_{x_{\text{max}, t_f}}}{n} \quad \text{COV}_{\bar{x}_{\text{max}, t_f}} = \frac{\sigma_{x_{\text{max}, t_f}}}{\mu_{x_{\text{max}, t_f}} \sqrt{n}}
\]

implying a \(1/n\) convergence rate for the variance

Conclusion: One needs only accurately estimate:

\[\sigma^2_{x_{\text{max}, t_f}} \]

to understand the convergence of:

\[\bar{X}_{\text{max}, t_f} \]
COV = \frac{4.927e4}{(\mu_{X_{max}} n^{1/2})} \\
\text{std}(X_{max}) = 4.9368e4
Summary

- Current IEC guidelines for 50 year extreme condition cases require too few simulations for proper convergence of extreme loads.

- The convergence of extremes under these conditions is highly dependent on support platform.

- Second-order waves were important for semi-submersible extremes, but not for the spar buoy.

- Using probabilistic methods, the convergence of the variance of extreme loads can be defined.
Thanks and any questions?
Non-Gaussian

\[X(t) > 0 \]

Multiple frequencies present

▶ First natural freq.
▶ Wave freq.
Probabilistic Model Validation - Distribution Characteristics of X(t)

- Marginal
 - Non-Gaussian
 - Weibull and Lognormal poor fits
 - Weibull potentially better at upper tail

- Local peaks
 - Non-Gaussian
 - Non-narrow band

![PDF and CDF graphs showing Lognormal and Weibull distributions with empirical and exact curves for Gaussian narrow-band data.](image)
Extreme values $X_{\text{max},tf}$
- Non-Gaussian
- No good overall fits
- Weibull best at upper tail