Two Modifications of the k-kL-ω Transition Model based on Pohlhausen and Falkner-Skan Profiles

J. Fürst1 M. Islam2 J. Příhoda3 D. Wood2

1Department of Technical Mathematics
FME CTU in Prague

2Department of Mechanical and Manufacturing Engineering
Schulich School of Engineering, University of Calgary

3Institute of Thermomechanics AS CR, v.v.i.
Academy of Sciences of the Czech Republic
Introduction

- We present modifications of the three-equation $k - k_L - \omega$ eddy viscosity model proposed by Walters and Cokljat (Walters and Cokljat, 2008) for adverse pressure gradient flows.
- The model solves equations for the turbulent kinetic energy, k, the laminar kinetic energy, k_L, and the time scale $\omega = \epsilon/k$, where ϵ is the turbulent dissipation.
- The k_L equation describes the low-frequency laminar oscillations in the pre-transitional flow and allows prediction of natural transition.
- The model uses only local information and is therefore compatible with modern CFD codes including bypass transition data for zero pressure gradient flows (see e.g. (Walters and Cokljat, 2008)) but predicts late transition for adverse pressure gradient flows at low free-stream turbulence levels. (Fürst et al., 2013).
Applications

- Solidity effects on the lift and drag of blade elements modeled as a cascade. This can't be done with Xfoil and wind tunnel measurements are difficult.
- Airfoil lift and drag for Reynolds number, Re, down to 10,000 for medium and small wind turbine analysis, including multidimensional blade optimization.
- For these applications, prediction of transition can be more important than the turbulence model.
- This is work in progress.
The original model shows very good agreement with experimental data for zero pressure gradient flows (see e.g. (Walters and Cokljat, 2008)) but predicts late transition for adverse pressure gradient flows at low free-stream turbulence levels. (Fürst et al., 2013).

Both the stability analysis and experiments show that the pressure gradient has a big influence on transition (Schlichting and Gersten, 2003).

The production of k_L and transition are initiated when the vorticity Reynolds number, Re_Ω, exceeds some thresholds. Our modifications make these thresholds dependent on the dimensionless pressure gradient.

The threshold for the production of Tollmien-Schlichting waves was obtained using linear stability limits for the Orr-Sommerfeld equation using Pohlhausen (Schlichting and Ulrich, 1942) and Falkner-Skan (Wazzan et al., 1968) profiles for the laminar boundary layer.
Two Modifications of the k-kL-\omega Transition Model based on Pohlhausen and Falkner-Skan Profiles
Fürst, Islam, Přihoda, Wood

Introduction
Modifications
Computational Domain and the Mesh
Details of the OpenFOAM Cases
Concluding Remarks
Acknowledgment
References

References

Modifications
Thresholds

- In both cases, the threshold decreases with increasing adverse pressure gradients.
- A similar modification is used for the second threshold controlling the transfer of laminar kinetic energy to turbulent kinetic energy (and hence the natural transition process).
- The price for these modifications is that the model requires local free-stream velocity which can be obtained relatively easily from the static pressure and total pressure difference.
Two Modifications of the k-kL-ω Transition Model based on Pohlhausen and Falkner-Skan Profiles

Fürst, Islam, Přihoda, Wood

Introduction

Modifications

Computational Domain and the Mesh

Details of the OpenFOAM Cases

Concluding Remarks

Acknowledgment

References

References

Modifications

Pohlhausen profiles: \(U(y)/U_e = 2\eta - 2\eta^3 + \eta^4 + \frac{\Lambda}{6} \eta(1 - \eta)^3 \), with \(\eta = y/\delta \) and \(\Lambda = \frac{\delta^2}{\nu} \frac{dU_e}{dx} \).

Linear stability limit: based on Orr-Sommerfeld eq., calculation by (Schlichting and Ulrich, 1942) \(\Rightarrow Re_{ind} = f(\Lambda) \).

It is difficult to obtain \(\delta \) (and \(\Lambda \)) in general CFD codes, but one can express \(\Lambda = \Lambda(L) \) where \(L = Re_{\Omega,max}^2 \frac{\nu}{U_e^2} \frac{dU_e}{dx} \).

“Almost local” formulation for APG flows is obtained by replacing \(Re_{\Omega,max} \) with \(Re_{\Omega} \)

New correlation for the onset of instability \(C_{TS,crit}^{APG} \)

\[
C_{TS,crit}^{APG} = \frac{536.4}{1 - 8.963L}, \quad \text{for } -1.5 \leq L \leq 0.
\]

In original model \(C_{TS,crit} = 1000 \).

New correlation for natural transition \(C_{NAT,crit}^{APG} \)

\[
C_{NAT,crit}^{APG} = \frac{1250}{1 - 8.963L}, \quad \text{for } -1.5 \leq L \leq 0.
\]

In original model \(C_{NAT,crit} = 1250 \).
Modifications

Falkner-Skan profiles

- Linear stability limit calculated by (Wazzan et al., 1968),
 \[Re_{\theta, \text{ind}} = f(\lambda) \text{, where } \lambda = Re_{\theta}^2 \frac{\nu}{U_e^2} \frac{dU_e}{dx}. \]
 \[Re_{\theta, \text{ind}} \approx \frac{200.69}{1 - 55.287\lambda + 3.4992 \cdot 10^5 \lambda^4}. \]

- Using Falkner-Skan profiles one can get (for \(-1.5 < L \leq 0\))
 \[C := \frac{Re_{\Omega, \text{max}}}{Re_{\theta}} \approx 2.1884 \left(1 - 0.95419L - 0.13183L^2\right). \]

New correlation for the onset of instability \(C_{TS, \text{crit}} \)

\[C_{TS, \text{crit}}(L) := Re_{\Omega, \text{ind}} = CRe_{\theta, \text{crit}}(L/C^2). \]

In original model \(C_{TS, \text{crit}} = 1000. \)

New correlation for natural transition \(C_{NAT, \text{crit}} \)

\[C_{NAT, \text{crit}} := (C_{TS, \text{crit}}(L)/C_{TS, \text{crit}}(0)) C_{NAT, \text{crit}} \]

In original model \(C_{NAT, \text{crit}} = 1250. \)
An O-Type grid was used as it is more appropriate for CFD analysis of airfoils with blunt trailing edges.

Figure: Close-up NACA 0012

Figure: NACA 0012
Two Modifications of the k-kL-ω Transition Model based on Pohlhausen and Falkner-Skan Profiles

Fürst, Islam, Příhoda, Wood

Introduction

Modifications

Computational Domain and the Mesh

Details of the OpenFOAM Cases

Concluding Remarks

Acknowledgement

References

References

Figure: (a) NACA 0012

Figure: (b) NACA 4415
Details of the OpenFOAM Cases

The modified k-kL-ω model with pressure-gradient sensitive thresholds was implemented in OpenFOAM and validated for several test cases including:

- NACA 0012 at Reynolds number $Re = 600,000$ and free-stream turbulence level $Tu = 0.3\%$ corresponding to experimental data of Lee and Kang (Lee and Kang, 2000) at angle of attack, $\alpha = 0^\circ$, and
- NACA 4415 at $Re = 700,000$ with $Tu = 0.02\%$, also at $\alpha = 0^\circ$.
Results

NACA 0012 at $Re = 600,000$, $Tu = 0.3\%$, $\alpha = 0^\circ$

Figure: Local friction coefficient
Results

NACA 4415 at $Re = 700,000$, $Tu = 0.02\%$, $\alpha = 0^\circ$

Figure: Local friction coefficient
Results

Table: Lift and Drag Coefficients for NACA 0012 at $\alpha=0^\circ$

<table>
<thead>
<tr>
<th></th>
<th>C_l</th>
<th>C_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original $k - k_L - \omega$</td>
<td>-2.5×10^{-7}</td>
<td>0.0057</td>
</tr>
<tr>
<td>$k - k_L - \omega$ with Falkner-Skan</td>
<td>-4.2×10^{-7}</td>
<td>0.00693</td>
</tr>
<tr>
<td>$k - k_L - \omega$ with Pohlhausen</td>
<td>-3.2×10^{-8}</td>
<td>0.00708</td>
</tr>
<tr>
<td>McCroskey (1987) data correlation</td>
<td>0</td>
<td>0.00685</td>
</tr>
</tbody>
</table>

Table: Lift and Drag Coefficients for NACA 4415 at $\alpha=0^\circ$

<table>
<thead>
<tr>
<th></th>
<th>C_l</th>
<th>C_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original $k - k_L - \omega$</td>
<td>0.442</td>
<td>0.00778</td>
</tr>
<tr>
<td>$k - k_L - \omega$ with Falkner-Skan</td>
<td>0.454</td>
<td>0.00996</td>
</tr>
<tr>
<td>$k - k_L - \omega$ with Pohlhausen</td>
<td>0.455</td>
<td>0.00948</td>
</tr>
<tr>
<td>Miley (1982)</td>
<td>0.45</td>
<td>0.0094</td>
</tr>
<tr>
<td>Hoffmann et al. (1996) ($Re = 750,000$)</td>
<td>0.43</td>
<td>0.0081</td>
</tr>
</tbody>
</table>
The original model without pressure-gradient modification predicts delayed transition and separation at least on the NACA 4415.

Both the new correlations based on Pohlhausen and Falkner-Skan profiles agree with the experimental data for the NACA 0012, as well as with the results from the of Xfoil.

The Falkner-Skan based correlation predicts the transition slightly earlier than the Pohlhausen based one.

Despite these differences, both modifications show clear improvement in comparison with the original model.
Acknowledgment

Preparation of the article was partly supported by the Canadian Natural Sciences and Engineering Research Council (NSERC) and the ENMAX Corporation under the Industrial Research Chairs program.

