A Novel Rough Wall Boundary Condition for LES of high Reynolds Number Flows

Yu Liu, Rui Sun, William Devenport, Heng Xiao

Department of Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University
Outline

- Methodology
- Implementations
- Results
Methodology
Methodology—wall modeling

- For Large Eddy Simulation (LES) at high Reynolds number, wall shear stress should be modeled.

- The total wall shear stress is composed of the “smooth” part and the “rough” part:

\[\tau_{total} = \tau_{smooth} + \tau_{rough} \]
Methodology—wall modeling

- Smooth wall modeling
 - Obtain flow velocity U by interpolating from LES mesh.
 - Solve boundary layer equation in the wall-modeling mesh:
 \[
 \frac{d}{d\eta} \left((\mu + \mu_{t,wm}) \frac{du_\parallel}{d\eta} \right) = 0,
 \]
 \[
 \mu_{t,wm} = \kappa \eta \sqrt{\rho \tau_w} \left[1 - \exp \left(-\frac{\eta^+}{A^+} \right) \right]^2 , \text{ with } A^+ = 17, \kappa = 0.41.
 \]
 - Obtain the shear stress τ_{smooth} from the velocity field in the wall-modeling mesh.
Methodology—wall modeling

- Rough wall modeling
 - Elevation of the elements expressed in h on WM mesh.
 - Obtain flow pressure P by interpolating from LES mesh.
 - Obtain the force induced by the pressure on each element.
Methodology—wall modeling

- Rough wall modeling

We have:

\[\vec{n} = [-dh/dx, 1, -dh/dz]/dS \]

\[d\vec{F} = -p \cdot \vec{n}dS \]

Finally,

\[d\vec{F} = -p \cdot [dh/dx, -1, dh/dz] \]

\[\tau_{\text{rough}} = -p/A \cdot [dh/dx, -1, dh/dz] \]

- Obtain the shear stress \(\tau_{\text{rough}} \) due to roughness.
Code Implementations

❖ OpenFOAM
❖ open-source
❖ C++ tool box

❖ OpenFOAM solver pisoFoam
❖ Incompressible solver
❖ PISO algorithm
Numerical tests

❖ Smooth wall modeling test
 ❖ High Reynolds number, channel flow.

❖ Rough wall modeling test
 ❖ High Reynolds number, channel flow. Roughness elements at bottom.
Numerical tests

- **Case setup:** smooth wall modeling test.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds number (Re)</td>
<td>300,000</td>
<td>domain size</td>
<td>0.42 m × 0.04 m × 0.18 m</td>
</tr>
<tr>
<td>average flow velocity</td>
<td>17.15 m/s</td>
<td>CFD cells</td>
<td>240 × 31 × 100</td>
</tr>
<tr>
<td>y+</td>
<td>100</td>
<td>computational cost</td>
<td>3,200 CPU hours</td>
</tr>
<tr>
<td>computational cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPU hours
Numerical tests

- Smooth wall modeling test ($Re_{bulk} = 300,000$)

Mean velocity profile
Numerical tests

- Smooth wall modeling test ($Re_{bulk} = 300,000$)

- Reynolds stresses: R_{xy}
Numerical tests

❖ Rough wall modeling test
 ❖ Validation test: simulations of turbulent flow over rough surface.
 ❖ Half-sphere elements.
 ❖ High Reynolds number flow.
Numerical tests

- Case setup: rough wall modeling test.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds number (Re)</td>
<td>100,000</td>
</tr>
<tr>
<td>Domain size</td>
<td>0.22 m × 0.06 m × 0.11 m</td>
</tr>
<tr>
<td>Average flow velocity</td>
<td>27 m/s</td>
</tr>
<tr>
<td>CFD cells</td>
<td>80 × 30 × 40</td>
</tr>
<tr>
<td>y+</td>
<td>80</td>
</tr>
<tr>
<td>Computational cost</td>
<td>400 CPU hours</td>
</tr>
<tr>
<td>Roughness element diameter</td>
<td>2 mm</td>
</tr>
<tr>
<td>Distance between elements</td>
<td>11 mm</td>
</tr>
</tbody>
</table>
Numerical tests
Numerical tests

- Rough wall modeling test:

- Mean velocity profile
Numerical tests

- Rough wall modeling test:

- Reynolds stresses: R_{xy}
Numerical tests

- Rough wall modeling test:

- Power spectral density
Questions?