An evaluation of power performance for a small wind turbine in turbulent wind regimes

Nicholas J. Ward
Ph.D. Student, Energy Engineering
Advisor: Dr. Susan W. Stewart
The Pennsylvania State University
Why study turbulence?

- Increased attention towards engineering and economic feasibility in lower wind speed regimes [Ewing et al (2008)]
- Progressive damage and shortened turbine lifetime via stochastic loads [Saranyasootorn & Manuel (2008)]
- Increased interest in turbulence for future academic study [Web of Science]
 - 180 publications in 2014 (top)
 - 1400 cited articles in 2014 (bottom)
Wind Turbine & Site
Methodology

• Collect site characteristics data from wind turbine location
• Determine relationship between P and TI
• Quantify statistical distribution of in situ TI frequency
• Verify/compare results with IEC standards, Albers (1997) and Sunderland et al (2013)
The turbine power and turbulence intensity were quantified over 15 months (6/13-9/14). Excluding anomalies like turbine maintenance, power exhibits strong statistical correlation with turbulence intensity.
Seasonal Variation of Power & Turbulence Intensity

- **P_out v. TI (Summer 2013, 2014)**
 - Power (kW) vs. TI
 - Data points showing seasonal variation

- **P_out v. TI (Fall 2013)**
 - Similar to Summer data

- **P_out v. TI (Winter 13-14)**
 - Significant increase in power and turbulence intensity

- **P_out v. TI (Spring 2014)**
 - Further increase, possibly indicating higher turbulence intensity
Common industrial practice requires a Weibull distribution for frequency of wind speed [Woolmington et al (2014)]. However, an empirical distribution match for turbulence intensity is more difficult.
Wind speed dependence for the turbine power curve enables statistical correlation between frequency of occurrence for power and T_l.
The culmination of these turbulence intensities at constant velocities enable “binning” of turbine power output. With smaller wind speeds, the power output increases for increased TI, exhibiting periods of overdrive.
Turbulence intensity tends to follow a Gamma distribution \((k=12, \theta=0.014)\) at constant wind velocity.

\[
f(x; k, \theta) = \frac{x^{k-1} e^{-x/\theta}}{\theta^k \Gamma(k)}; \quad x, k, \theta > 0
\]
Relative Error Between Gamma Function and Observed T_I

<table>
<thead>
<tr>
<th>Wind Speed (m/s)</th>
<th>Min Error (%)</th>
<th>Max Error (%)</th>
<th>Mean Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00±0.25</td>
<td>0.00</td>
<td>1.66</td>
<td>0.45</td>
</tr>
<tr>
<td>7.50±0.25</td>
<td>0.00</td>
<td>1.67</td>
<td>0.42</td>
</tr>
<tr>
<td>10.0±0.25</td>
<td>0.00</td>
<td>3.18</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Example of TI Integration into Wind Turbine Power Curve
Conclusions & Future Work

• The gamma function is a good indicator to estimate power performance incorporating T/I.

• Power output increased by as much as 60% for lower wind speeds at higher T/I, but decreased power by as much as 17% for high wind speeds and T/I.

• A more standardized approach for T/I integration into the power curve was tested and correlated well with results from Sunderland et al. (2013) and Albers (1997).

• Over-performance is possible for low wind speed regimes with high T/I.

• This process can be integrated into (or verified by) industry accepted programs like WT_Perf and FAST for computer simulations predicting stochastic loads due to turbulence and their effects on power production for any turbine size in any location.
Acknowledgments

• Research advisor: Dr. Susan Stewart
• Mr. Brian Wallace
• Aerospace & Energy Engineering Departments
• Penn State Center for Sustainability
References

3. Web of Science

Questions?
Quantifying Power and Turbulence

- Turbine power \((P) \) is a function of the cube of the velocity \((v) \), air density \((\rho) \) and rotor area \((A) \) [Manwell et al (2010)]

\[
P = C_P \frac{1}{2} \rho A v^3
\]

- Turbulence intensity \((TI) \) is the ratio of the standard deviation \((\sigma) \) to the mean wind speed \((V) \) [Wang et al (2014)]

\[
TI = \frac{\sigma}{V}
\]

- It can therefore be quantified that turbine power can related to turbulence intensity

\[
P = f(TI)
\]
Fig. 5. Albers normalisation of the Skystream 3.7 (2.4 kW) power curve in terms of varying TI and wind speed.
Figure 6: same as Figure 4 but normalisation to 5% turbulence intensity (blue) and filtering to turbulence range 2.5%-7.5% (red).