The Impact of Offshore Wind Turbines on Underwater Ambient Noise Levels

Stewart Glegg
Center for Acoustics and Vibration
Florida Atlantic University
1. With the current interest in offshore wind farm development there is concern about any negative environmental impacts caused by offshore developments.

2. One concern that needs to be considered (Kochinski (2003), NRC (2003), and dismissed, is the impact of increased operational noise levels on the behavior, mating characteristics and migration of endangered species, including marine mammals.

3. Since sound is key to underwater communication, navigation and foraging for marine mammals we need to demonstrate that wind farms will not create sound levels that interfere with the normal behavior of marine mammals (Richardson (1995).
To assess the impact of increased made sound on marine mammals Richardson (1995) defines four zones:

Zone One: The zone of audibility
Zone Two: The zone of responsiveness
Zone Three: The zone of masking
Zone Four: The zone of injury
Zone One: The zone of audibility

Limited by the threshold of hearing or background noise TOL (1/3rd octave level).

If the signal has clearly defined characteristics then it can be detected at levels below the background noise, but not below the threshold of hearing.
Zone Two: The zone of responsiveness
Defines the region where the animal responds to increased noise levels.
This is the most difficult to estimate, define and detect (Madsen (2006), Richardson (1995)).

Zone Three: The zone of masking
Where the man made sound adds significant energy to the ambient noise such that the reception of the signal of interest is impaired.
Madsen et al (2006) defines this as equal to the existing background noise
Zone Four: The zone of injury
Defines the region where the levels are so high that injury or hearing loss occurs
Usually indicated by temporary threshold shifts (TTS) (Madsen et al (2006), Richardson (1995). Depends on exposure time. NMFS (2003) set this limit using source levels of 180 dB re 1e-6 Pa for cetaceans and 190 dB re 1e-6 Pa for pinnipeds
Threshold of Hearing

The affected species in shallow water are the Harbor Porpoise, the Bottle Nose Dolphin, the Northern Right whale, the harbor seal and maybe the Baleen whale for depths greater than 20m. Their hearing is based on 1/3rd octave bands (as with humans) and examples are given below. The whale species have low frequency hearing but threshold data not available (Madsen et al (2006)).

- Harbor porpoise and bottle nose dolphins
- Pinnipeds (seals)

![Graph showing the threshold of hearing for harbor porpoise and bottle nose dolphins and pinnipeds (seals).]
Measured Offshore WT Noise
This report published the measurements of Nedwell et al (2006) for four different wind farms in the coastal waters of the UK. The main concern of the report was the construction noise caused by pile driving that caused source level of ~250 dB re 1e-6 Pa. In general, there was difficulty in separating wind turbine noise from the background noise apart from in one case where OASLs of 122-147 dB were reported and separated from the background noise by 20 dB. In general, all the wind farms were located in very shallow water (5m or less). Water depth varied from 4-12m during the measurement period. The measurements were taken using a drifting vessel on specific days and long term in situ measurements were not made. In some cases, wind speeds were very low.
This study used bottom mounted hydrophones that were fixed at three different ranges (83m, 160m and 483m) from one turbine in the Utgrunden wind farm.
• The water depth of the turbine was 10 m. Details of the turbine and its operational characteristics were provided, and simultaneous measurements were made of the tower vibration.

• The far field sound levels showed clearly defined tones with the maximum peaking at 170 Hz. These tones were correlated to the gearbox vibration by comparing the acoustic spectra with the vibration spectra. The peak tone spectral level was 124 dB re 1e-6 Pa at 83 m.

• The data scaled with range as $13\log_{10}(r)$
Shallow Water Sound Propagation

Transmission loss vs frequency for the measurement at Utgruden with a hydrophone 1m above bottom based on adiabatic mode theory.

The prediction is consistent with the $\text{TL}=13 \log_{10}(r)$ of the measured data.

Estimating Source levels in shallow water environments is difficult.

Low frequency cut off at 60 Hz.
In deep water and larger ranges (1km shown below) the low frequencies are no longer cut off but the high frequencies are suppressed.

It is not clear that shallow water levels can be scaled to deep water without detailed analysis.
How Should We Scale Offshore Wind Turbine Noise?
Offshore Wind Farms

Aerodynamic Wind Turbine Noise is diffracted at the air water interface

Structureborne Noise
It is assumed that the blade noise is dominated by trailing edge scattering of boundary layer pressure fluctuations.

The basic TE noise source is coupled to a rotating blade and the propagation to the observer is calculated.

Amplitude modulation is caused by blade motion relative to the observer.
Basic Formulation

\[p(x,t) = \int_{-T}^{T} \int_{S} p(y,\tau) \frac{\partial}{\partial y_i} G(x,t \mid y,\tau)n_i dS(y) d\tau \]

Fundamental Equation

\[
 p(x,t) = \int_{-T}^{T} \int_{\Sigma} \left\{ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{P}(\omega,k_1,k_3) e^{-i\omega\tau-ik_1z_1-ik_3z_3} d\omega dk_1 dk_3 \right\} \frac{\partial}{\partial y_i} G(x,t \mid y,\tau) e_i^{(2)} dz_1 dz_3 d\tau
\]

Wavenumber Spectrum of Surface Pressure

\[G(x,t \mid y,\tau) = \int_{-\infty}^{\infty} \frac{e^{ik_a R - ik_a (x_1 y_1 + x_2 y_2 + x_2 y_2)/R}}{4\pi R} e^{-i\omega_o (t-\tau)} d\omega_o \]

Free field Greens function for rotating source
\(\Omega T << 1 \quad \text{Slow speed of rotation} \)

\[
p(x, \omega_o, t_s) = D_a(x, t_s) \left\{ \frac{\hat{P}(\omega_o, k_1^{(a)}, k_3^{(a)}) e^{ik_a R}}{4\pi R} \right\}
\]

\[
D_a(x, t_s) = -k_a(x_1 \cos \mu - x_2 \sin \mu \cos \Omega t_s + x_3 \sin \mu \sin \Omega t_s) / R
\]

Far field Sound

Directionality Factor (time dependent)
VT Wind Tunnel

- 117 microphone array for far field acoustics
- Surface pressure taps for C_p and lift
- Wake rake and drag measurements

- 0.8 m chord DU96-W-80 airfoil
- Tripped (0.5 mm tape) at 5% /10% chord
- Flow speeds 50 m/s and 60 m/s ($M=0.18$, $Re=3 \times 10^6$)
- 19AoA from -2.5° (zero lift) to 14.8°
Clean Airfoil

Clean

File: AOELab_DU96W180Run310, Freq.: 3000 Hz (1/12th)

-2.5° Zero Lift
Propagation Effects into water

Critical Angle of incidence 15 deg

Trapped Waves that decay as $p^2 \sim 1/R$
Modified Theory for UW sound

\[G(x,t | y, \tau) \approx \int \frac{1}{2} \sum_n \frac{e^{i\gamma_n (y_3+h) - ik_n (x_1y_1+x_2y_2)/r_o + ik_n r_o}}{\gamma_n H \sqrt{\pi k_n r_o / 2}} v_n \sin(v_n z) e^{-i\omega_o (t-\tau)} d\omega_o \]

\[p(x, \omega_o, t_s) = \sum_n A_n(\omega_o, t_s) \sin(v_n z) \frac{e^{ik_n r_o}}{\sqrt{\pi k_n r_o / 2}} \]

\[A_n(\omega_o, t_s) = \int_{-T}^{T} \int_{-T}^{T} \left\{ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{P}(\omega, k_1, k_3) e^{-i\omega \tau - ik_1 \zeta_1 - ik_3 \zeta_3} d\omega dk_1 dk_3 \right\} \]

\[\times \frac{\partial}{\partial y_i} \left(\frac{v_n e^{i\gamma_n (y_3+h) - ik_n (x_1y_1+x_2y_2)/r_o + i\omega_o (\tau+t_s)}}{2\gamma_n H} \right) e_i^{(2)} dz_1 dz_3 d\tau \]
Estimated Noise Levels at Utgrunden

measured TOL without tones

range of levels in water

range of levels in air
Estimated Deep Water Noise Levels at 500m and 50m depth for 3MW WT

measured TOL without tones at 83 m

range of levels in water

range of levels in air
Estimated Deepwater Noise Levels at 10 km and 50m depth for 3MW WT

Background Noise Limit

range of levels in water

range of levels in air

- underwater TOL dB re 1e–6 Pa
- airborne TOL dB re 20e–6 Pa
- measured TOL at 82m
Amplitude Modulation
Acoustic Signature for Harmonic Rotating Source

Doppler Amplification

\[p', (t) \left(R_2 \right)^2 \text{/} \text{LdS}_{M_t} \]

\[\frac{t}{T_p} \]
Traditional Sources of Amplitude Modulation

The engineering task is to understand and predict the sources of amplitude modulation. These have been characterized into two types:

1) Traditional AM caused by trailing edge noise and blade rotation
2) Other Sources of AM (or EAM) which are intermittent and not well understood
Predicted Directionality and the Effect of Multiple Blades

Predicted Near Field Levels

Single Blade

Three Blades

in plane of the rotor at 40m

upstream of the rotor at 40m
Predicted Levels of AM

Upwind Level

Cross wind Level

3 MW wind turbine
60m hub height
blade radius 41.2 m
observer at 1 km

3-4 dB of AM in cross wind direction
Predicted EAM from Blade Stall

- Blade stall implemented over 50 deg arc
- Assumed level increase 12 dB
Offshore Wind Farms Noise Directionality

Upwind Level

Side Line Level
1. We have reviewed the currently available information on offshore wind turbine noise as it affects marine mammals and it is clear that offshore wind farms in shallow water do not cause a significant increase in ambient noise levels.

2. We have developed a model to scale existing measurements of wind turbine noise to deep water installations. The input being the noise spectrum of the same turbine operating in air.

3. Results indicate that offshore wind turbines in deep water will couple acoustically to the water column more efficiently than in shallow water, and that signals may be observable for distances of 10 km.
Ambient Noise Levels

The graph shows the relationship between frequency (Hz) and spectrum level in dB re 1 microPa. Lines represent different sea states:

- **Shipping**: Heavy, Moderate, Light
- **Sea State**: 0, 1, 3, 6

The graph illustrates how noise levels vary with frequency and sea state conditions.