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CHAPTER 2
NOTATIONS

End moment of branch (member) AB at joint A
Fixed end moment at branch AB at joint A
Stiffness (Stifr.) - I/L

Length of a member

Young's Modulus

Moment of inertia of a cross-section about the axis
of bending

Stiffness factor

Modified stiffness (M. S.)

Modified stiffness factor (M. S. F.)
Modified stiffness coefficlent (M. S. C.)
Modified carry-over factor (M. C. 0. F.)
Rotation of Jjoint A

Relative lateral displacement of branch divided by
the length of the branch

End shear of branch AB at Jjoint A

Internal moment Reactions at joint A
between two component
Internal horiszontal force frames” or between two

" "
Internal vertical force part frames

Loading function
Coefficient of the loading function



CHAPTER 3

INTRODUCTION AND REVIEW OF LITERATURE

The analysis of statically indeterminate frames becomes
more and more involved as the number of their bays and stor-
1e8 inoreases, Piuite approximations, such as the widely
used Hardy-Cross(l) method of moment distribution, are no
exceptions from this rule. Many successful attempts have
been made during the last thirty years to simplify its pro-
cedure, Many modified versions of the conventional moment
distribution method were introduced, although their treat-
ment in textbooks is often neglected or incomplete. The
author feels that with this thesis he may contribute his
small share to the continuous effort of the structural
engineer to improve its methods and procedures,

With the development of the computer techniques and
the increasing popularity of using the computers for analysis
and design, the simplification of methods may seem to have
lost some of 1ts significance and challenge. It is true
that for very complex frames, with a large number of
branches, the computer analysis may be the best approach.
One should think, .however, of structures which are too small
to justify the use of computers on the basis of economy and
st1ill sufficiently complex to make the simplification of

the conventional methods desirable. Of course, as a final



consideration, simplified methods should readily be adapt-
able also for use on computers and in such a case they may
simplify and economize even the programming and automatic
computation., Still, the author feels that the major sig-
nificance of the methods preseunted herein lays in their
simplicity for conventional calculations. For this type
of analysis they already proved themselves to be time-
saving to a great extent,

The main subjects of the thesis will be presented in
three chapters., Chapter four reviews basic definitions
of frequently used concepts of the conventional moment
distribution method and of one of its simplified versions,
named "Synthetic Method" by Professor Yu(az It also
defines several new concepts pertinent to the development
of the theory to the simplified methods presented there-
after.

Chapter five will develop a simplified method applicable
to single-bay, multiple-story rigid frawmes consisting of
prismatic members.

Chapter six extends the simplifications to multiple-bay,
multiple-story rigid frames also consisting of prismatic
members. It develops a new, simplified version of the
Hardy-Cross method to the above described frames,

The development of the theories in Chapters five and six

will be followed by the presentation of two illustrative



examples, one for each of these chapters. The thesis 1is

then concluded by a general discussion in Chapter seven.



CHAPTER &

DEFINITIONS

This chapter presents the definition of some of the
frequently used concepts as they are interpreted throughout
the thesis, Furthermore, it aims to clarify the meaning of
several other items of the nomenclature which were intro-
duced specifically for this thesis or which are used lncon-
sistently elsewhere in the technical literature. It 1is
hoped that a brief study of this chapter will contribute to
a clear understanding of the principles and methods intro-

duced in the following two chapters.
It should be pointed out here that for all definltlons

involving the Young's modulus, E, it 1s assumed that E 1s

constant throughout the thesis.

4-1., Superposition. Superposition, as generally defilned,

refers also here to loading systems only. Two or more load-
ing systems acting simultaneously on the same structure may
be superimposed, together with their effects, under certain
conditions, These conditions are stated in standard texts
and it is assumed throughout this thesis that they are

satisfiled.
4-2, "Combination" of Structures. In this thesls, two

or more structures are sald to be combined into an "equivalent”



single structure, if their physical characteristics (1.e.,
stiffnesses) and their loading systems are both integrated
into a single system. This can be done only if the con-
figurations of the involved structures are compatible, fur-
thermore, their physical characteristics and the applied
loading systems are related to each other in such a manner
that all deflections and rotations of every structure in-

volved in this process become ldentical, as will be shown

in chapter 5,

4-3. "Reduction" of a Frame. A hypothetical process

which 1s the inverse of the "combination" of structures, as

outlined above,
§-&, "Reduced Prame" or "Subframe". When an arbitrary
frame 13 resolved into a symmetrically stiff frawme and, say,

a column, the  obtained symmetrically stiff frame is some-~

times called in this thesis a "reduced frame" or "subframe".

4-5. Syumetrically Stiff Frame. A frame whose geo-

metrical and material properties are aymmetrical about its

center line is called & symmetrically stiff frawe.

4-6, Symmetrical Frame. A frame whose geometrical and

material properties are symmetrical about its center line and
which is furthermore symmetrically loaded is called a sym-

metrical frame,



§4-7, Antisymmetrical Frame. A frame whose geometrical and

material properties are symmetrical about its center line and
which i3 furthermore antisymmetrically loaded is called an

antisymmetrical frame.

4-8, Branch. Any member (beam or column) of & frame 18

called a branch.

4-9, Prismatic Branch. A branch with uniform cross-

section is called a prismatic branch.

§4-10, Branch End Moment. The moments acting on the ends
of the free body diagram of a branch are called branch end

moments,

4-11, Joint Branch Moment. Moments applied to the free
body diagram of a Jjoint by individual branches which are in

fact fixed to this joint are called joint branch moments. If
a symbol (M) designates a joint branch moment, it always has
two subscripts. The first subseript then refers to the Jjoint
and the two subseripts together refer to the specific branch.
A joint branch moment is equal in magnitude and opposite in

direction to the corresponding branch end moment,

§-12, Stiffnesses: 4EK., Stiffness is the moment at a

R————

hinged end of a member necessary to produce a2 unit rotation

of this end while the other end of the member 128 fixed. For

instance for a member ab:



4EKgp = Map g, = 1
Op = O
=0

Rab

where Rab is relative lateral displacement of two ends a

and b of a2 member ab,

4-13, Modified Stiffuness: S. The term "Modified Stiff-

ness" applies to several different cases. It may represent

the moment which must be applied to a hinged or free end

of a member in order to produce a unit rotation of this end
while the other end of the member remains hinged or fixed.

On the other hand, it also may represent the magnitude of

one of two moments which are of equal magnitude and are
applied in identical or opposing direction to the hinged ends

of a member, in order to produce 2 unit rotation of both of

these ends.

Sab = Map Ga * 1

or
Sap = Map g, = 1
gb:i'l

Rap = ©

Por calculation S, a "modified stiffness coefficient”,
(see Art. ¥4-1% below), will be determined for each joint
branch from Table 1. S may be calculated then by the

relation:
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S :/BEK.

§-14, Modified Stiffness Coefficient: &. Modified
stiffness coefficient is the ratio of the modified stiffness

of a mewmber to the stiffness of the same member, 1i.e.
/%ab = Sap / EKap
may be determined for each Joint branch by the use of

Table 1.

§-15, Stiffness Factor: k. Stiffness factors are the

relative stiffnesses of two or more members which are con-

nected, Notice that k 1is a pure number, not containing the

EK factor and it should be the lowest possible integer, 1i.e.
kgp = Kap/ (H.C.F.),

where (H.C.P.) is the highest common factor of the stiffnesses
of all branches at joint "a". This "stiffness factor" is

used in the conventional moment distribution method, but will
not be used in this thesis, It is shown only to eompare it

with the "Modified =tiffness factor" shown in Art, 4#-16 below.

4-16. Modifled Stiffness Factor: s. Modified stiffness

factors are the relative stiffnesses of two or more members

which are counected at the same joint., Notice that s is a
pure number, not containing the EK factor and it should be

the lowest possible integer, 1.e.
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sab = Sab/ (H.C.F.)

where (H.C.F.) 18 the highest common factor of the stiffnesses

of all branches at joint "a".

4-17, Carry-over Factor: C,0,F. If the hinged end

of 2 member is rotated while the other end is fixed, the
ratio of the moment at the fixed end to the moment producing
rotation at the hinged end 1is called the carry-over factor,

Rab:‘. 0

This conventional carry-over factor is not used in this thesis,

4-18, Modified Carry-over Factor: M.C.O.F, or MCOF or C.

The term "modified ecarry-over factor"” applies to several cases.
Consider a member AB which is hinged or free at the end A
while its other end B 18 fixed or hinged., If now end A is
rotated, the ratio of the moment at end B to the moment at

end A is herein called the modified carry-over factor. On

the other hand, if two momentsof equal magnitude are applied

in identical or opposing directions to the twoe hinged ends

of a member AB, the modified carry-over factor is equal to

zero (see Table 1).

c. = Mpa

ab

or



4-19, Remarks. The definitions of Art. 4-12, 15 and
17 were introduced by Professor Hardy Crou(l) in 1931.
The definitions of Art. 4-13, 14, 16, and 18 were adopted
by Professor vul2) 1q 1956.
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S=1, Basic Theory. Consider two beams A'B' and A"B"
of equal length and each having 2 uniforam ¢ross-section as

shown in Figure 1. If their elestic curves miae}do under
eertalin loads then these two besms can be combined into

& single beam B which has the same elastie curve as either
besm A'B' or beam A"B", This can be accompliched by edding
the two loads and adding the two stiffnessea. By en inverse
process, a single beem ¢an be elso resolved into two “com-
ponent” beams which have the same elastic curve ss the ori-
ginel. It will be shown below that linear relationships ean
be set up between loads, reactions, and stiffnesses of the
tuo iadividual beams and of the equivalent single besm, if
all three have identical deflection curve.

M, I(é L Pl E)

K’\
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As an example, let us consider three "fixed" beams,
A'B', A"B", and AB loaded by Q'w, Q"w, and Qw respectively,
where Q', Q", and Q are arbitrary scaling constants and
w is an arbitrary loading function of x, as shown in Figure 1.
Define the stiffness of beams A'B!', A"B", and AB as K', K",
and K respectively. Let ua impose now the conditions that
the loading constants Q', Q", and Q are related to the stiff-

nesses K', K", and K in the followlng manner:
Q': Q": Q =K' : K" ; K (1)

and that all three beems have identiecal deflectlon curves.
Then, the ratios of the fixed and moments at the left support
are equal to the ratios of the fixed and moments at the right
support, furthermore i the ratios of the stiffnesses, and
also to the ratios of the loading constants (equation 1) of

the three beams, 1.e.,

F"AB:Pn"szHAB PniBtFN;ARFMBA

K' : X¥" : K (2)
Q' : Q" : Q.

The totai end moments of the members can be expressed by the

slope deflection equatious as follows:
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M, = 2EK'( 2] + @) - 3R') + F'AB
i, = 2EK'( 20 + ©f - 3R') + F"BA
M, = 2EK"( 26} « 6 - 3R") + P¥AB (3)
M3a = 2EK"( 267 + @) - 3R") + PMBA
Myg = 2EK ( 20, + 65 - 3R ) + P™AB
Mg, = 2EK ( 205 + @4 - 3R ) + F'BA

where © is the rotation of a cross-section and R is the
relative lateral displacement per unit length of the beam
between the two ends. However, by hypethesis, the deflection

curves are identical, therefore,

e} = O) = 9,
% = & = &

R' zR" =R .

Hence, !;B can be expressed in terms of M;B and the stiff-

nesses as follows:

2EK"( 20] + 0 - 3R" ) r P¥AB

Mg =
= 2EK’ %; (20, +0)-3R") 4 FHAB T
=[2EK' (1 26) + @3 - 3R' ) + F¥AB ] %; ,
or My = Mjg E; .

Similarly, we have

MBa = MBA %1



and MBA = HB'A E"-
" K"
or LHE A * Map = M, : Mgy @ Mpy (%)

K' : K" : K.

The above relations indicate that the end moments on beams
A'B', A"B", and AB are proportional to the corresponding
stiffnesses of the beams,

Also, since the stiffness factors are proportional to
the stiffnesses all corresponding loads on the three beams

must be proportional to the stiffness faotors. For in-

stance:

M'_ s MY s M. =-k':k":k (5)

AB AB AB
where k 18 defined in Art. 4-15,
Looking at Figure 1, let us combine now beams A'B' and
A"B" in order to obtain an equivalent single beam AB, by im-
posing the following conditions:

Q' +Q" = Q
K'+K":K.

(6)

Since fixed end moments are always proportional to the loads,
the following relationships will exist:
" M
PMiB + PMAB = F aB

and F"éA + FHSA P!BA.

(7)
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Furthermore, substituting Equation ¥4 into Equation 6:

"AB”X:
Maa t Mpa

Looking at Figure 2a, consider now a beam AB as a branch

" (8)
Mpa-

of an arbitrary frame. Define K as the stiffness of beam AB,
Applying the above developed principle, beam AB may be resolved
into two component beams A'B' and A"B", as indicated in
Figures 2a and 2b. These figures show three free body dia-
grams, each consisting of a beam, its end Joints, and a
short part of all other branches connected to these Jjoints,
In order to maintain equilibrium on the free body dlagrams
of Figure 2b, it is assumed that equal and opposite reactions
(moments M, and My and forces V,, Vg, and Hy) are acting
between the corresponding Joints of these two component struc-
tures. By adding the stiffnesses and all loads of these two
component beams, the equivalent beam of Figure 2a will be
obtained.

The end moments of the two component beams of Figure 2b

can be expressed now in the following ways:
1 - t -
!AB = nAc + lA and HBA - !BE + %

MAB . HA and ‘;A = Mgp - Ny (9)

"
nAB =

where KA and "B are unknown moments.
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M,
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Fig, 2

By hypothesis, beam A'B' and A"B" have the same
elastic curve, therefore, according to Equation 4 the fol-
lowing relations apply:

HAB : "RB s !éA H 'ﬁA =K' 1 K", (10)
Substituting Equations 9 into Equation 10:
( My, * M, Vs (Myp - My ) =K' & K"

(Mg + Mg ) : (Mgp - M5 ) =K' : K.

and finally the unknown moments M, and M, may be expressed as

- K"Mpc - K'Map
" K' + K"

My = XMpg - K'Mgp

K + K" .

(11)




HA and My of Equation 11 are internal joint moments,
which will occur externally at the ends of the component

branches whenever a branch is resolved into two components.

M,
B/\’ ™ RN

& K' +K" L
C A :
Yo gt o18
" 4 (a) 7 3
D B'] 7 Hg B"|Hp=H
K' K' Kn
c AN M, +M, ﬁ__HAzH
Ha 7
1bJ g M

(<)

Fig. 3
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5-2, ExTension of the Basic Theory to Frames. Let us

extend now these principles to a closed frame ABCD loaded by
two moments “na and “Ar' and supported as shown in Figure 3a.
Consider Figure 3b, where internal moments M and Mg and
internal forces H, and EB are developed by !BG and Mpp as
internal reactions between the Jjoints A' and B' of the
reduced frame A'B'CD (which also cérrics the originally
applied moments) and jolnts A" and B" of the otherwise un-
loaded separated column A"B". Then the loads on reduced
frame A'B'CD, as shown in Figure 3, will be considered as

the superposition of two separated loading systems applied
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to the same reduced frame as shown in Figure ¥a and ¥b.
Both a'b'c'd' and abcd designate in Figure ¥ the reduced
frame A'B'CD of Pigure 3a and the notations a'b'ec'd' and
abcd refer actually to the two separated loading systems
applied to this reduced frame. In this process of separation,
moments !A and ”B will be divided equally between Jjoints

A' and A", and B' and B" respectively. PFurthermore,
opposite moments of equal magnitudes will be applied at
Joints ¢, ¢', and d, d' respectively in order to transform
a'b'c'd' and abecd into & symmetrical and antisymmetrical
frame, a8 illustrated in Figure 4. H, and Hg will not be
resolved but are applied in thelir original magnitudes to the
antisymmetrical frame.

The original frame ABCD 18 now represented by the
reduced, symmetrically stiff frame A'B'CD and "subeolumn”
A"B", while the original loads Mpp and Mg; are obtained by
superimposing the two separated loading systems a'b'c'd’
and abed of the subframe and the loads on the subeolumn
A"B",

The magnitudes of the branch end moments of systems
a'b'c'd' and abed can be determined now by & simplified method
granted by symnmetry and antisymmetry. It 1s apparent that
these branch end moments in the symmetrically loaded frame
will appear in terms of M, and My while in the antisymmetric-

ally loaded frames then they will be expressed as functious

of "A and !B and HA and HB.
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It is now apparent from Figure 3¢ that nAznazn and from
Figure 5 that the sum of the shears of columns CD and A'B'

is also equal to H, i.e.

"\a' S

‘AB *‘cp = B |
Pigure 3b 1s the superposlition of Figures 4a and #b. Con-
sequently, comparing Figure 5b, which shows the columns

of Pigure 3b, and Figure &,

TAB +TCD = Tab * Ted *Tab * Ted!
where the right hand side represents the shears in the
vertical branches of Figure &. But, for the symmetrical

frame of Figure 3a,

Tab * Ted = 0.

Hence Tap *Zod = TAB + TCD
or Tab t Tea = H.

Furthermore, equilibrium requires that on Figure 5b

MAB 'f'ucn *"B{'A‘f'%c='lnl
and by superposition
e + Ny + Mpo =N, + Mg + Mpy + Mgo
PNyt Mig Y M, Mo
Consequently,
Map t Meg * Mo + Mac
But, by symmetry,

+

Ml + Mg + Mg 4 M} = -HL



and M + M

therefore,
Mip t Meq * Mpa * Mg = -HL.

Furthermore, by antisymmetry

My = Mg
and M = K-
Therefore,

W o+ M, = Mg + My, = BHL. (12)
Prom Figure 3c

HXB + ‘;A = HL.

However, by superposition

NKB + “ék = Mab + M&b + Hﬁa + My,
or, by Equation 12

Map * Mea
Furthermore, by the basic thecry, Art. 5-1,

Mip * Mia = 5x (g 7 ¥5,)

K’
Kﬂ( En‘ )‘

1
M, + Mpy - HL.

Therefore,

Map + Mpp - %HL = %% ( HL )



s0 uab+nm=é-m.+§,}m,
QK"
or HL = Eiﬁziw( Mgp + Mpa ). (13)

Now, since H is expressed in terms of the moments of
the symmetrical frame only, one unknown remains only for

each story, namely the moments between the subframe and the

subcolumn, My and Mp.

T e i
&),
A Toe=Tep 1 _Tas=Ts
N N
Fig, E

5-3. Illustrative Example., Givencesingle-bay three-

story rigid frame, consisting of prismatic branches, and
loaded by three horizontal forces as shown in Figure 6,
Find the M-diagram,
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Solution: In order to ;nalyze this frame by & simplified
moment distribution method, we resolve the frame into a
"symmetrically stiff", "reduced” frame and a column, as

shown in Figure 7, The loading system of the reduced frame
is then resolved into a symmetrical and an antisymmetrical
system, as shown in Figure 8. Thus, the original frame may
be expressed as the superposition of a symmetrical and an
»antiay-nctrieal frame and then the combination of this super-
imposed frame with a column, according to the principles
dovcloﬁod earlier in this article.
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Fig. .

First, we consider the enalysls of the symmetrical frame.

The meodified stiffnesses and modified carry-over factors of
its branches can be found from Table 1.
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For example, in Figure 8b, due to symmetrical loading,
the end a of the branch ac has no relative displacement with
respect to end ¢, Joint a is rotated by 2 moment applied to
8 while joint ¢ remains fixed., Furthermore, the deflection
of beam ab is symmetrieal, So, the needed properties of

the branches meeting at joint a can be determined as follows:

TABLE -2

Branch ac

Case B 5
Stiffness EK 2EK
M.S.C..(3) 4 2
M.S. (S) 4EK 4EK
M, S. F. (s) I

M. C.O.(C) /2 i 0

By similar procedure, all the modified constants can
be determined for the left half of the frame.

Let us now cut the frame along its center line which is
the line of symmetry. Because of symmetry ouly a half of the
frame, say the left half, needs to be analyzed. The half
frame considered in this example is shown in Figure 9.
Notlce that because of symmetry the slope of the branches
at the center line must be zero, therefore, we may introduce
fixed ends there for the branches of the half frame. The
final momenta in the right half frame will be equal in mag-
nitude and Gpposite in directlion to those obtailned in this



analysis for the left half.

The only loads applied to this half frame are the moments
applied to the joints as shown in Figure 9, Moment distri-
bution ¢an be carried out now on this half frame. The cal-

culations are shown in Table 3.

In Table 3, ﬁhc second line lists the Joints and the
third line lists the branches of the half frame as needed for
the moment distributlion. From the fouith to the seventh
line, the calculatlion of the modifled stiffuness factors is
shown, and the eighth line lists the mocdified carry-over
factors. The calculation of these constarnts was illustrated
inn Table 2., In lines nine through eleven the "moment dis-
tribution” is carried out. This procedure is different than

the conventional moment distribution and is expiained below.
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Lines twelve states the equation to be solved for the un-
kunown moment X. Lines thirteen through sixteen list the
coefficients of the applied momente (IB, My, and MF) for
the equations expressing the branch moments (nab, ete.) in
terms of these applled moments.

The moment distribution (lines 9 through 11) 1in Table
3 is carried out by the fbllowing procedure.

Pirst we consider the Joint.5 of this frame. Since
the modified stiffness factors of branches ab and ac are
both equal to unity, the "distribution” moments of the
branches &b and ac are equal to each other and are called
X, where X 18 an arbitrary unknown moment. Since the
carry-over moment in branch ab (col. 5) is equal to zero,
the total moment of this branch (line 12) is also equal to
X. PFor equilibrium, the sum of the total moments (line 12)
of branches ab and ac and the external moment applied at
joint _38 should vanish. I.e.

"y

c+x+-B:0

Therefore, Mgo = - ( X + M, ),

a relation stated in line 12 of column 6. Adding vertically
in column 6, 1line 12 must be equal to the sum of lines 10
and 11, Therefore, the distributed moment of branch ac
(Col. 6) must be equal to -2X-Mg, as indicated in line 11 of

column 6.
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Now we consider the Joint ¢. The carry-over factor of
branch ca (col. 7) 1s equal to 1/2, and the moment which was
"carried-over" from column 7 to the branch ac (col. 6) was
equal to -2X—MB. But since thils carry-over moment is equal
to the distributed moment of column 7 times the carry-over
factor of col. 7, therefore, the distributed moment of

col. 7 can be found as follows:

(c.oM.),, = (C.O0.F.),, x (D.M.), (1%)
or (D. M. ), =(C.0M),c/ (C.OF.)ey (15)
But ( C.OM.)y0 = -2X - Mg
and ( c.o.F.)ca = 1/2
thus (DM, ), = 2(-2x - 2Mg)

-hx-2M

which is the value to be listed in colummn 7.

All the other distributed moments in line 9 of branches
ca, cd, and ce can be found from (D.M.)ca in the ratios of
the modified stiffness factors, S, i.e.

(D.M.) ¢ (DM.) g ¢ (DM) g = Scq @ Seg  See
But it was shown above that (D.M.),, = -4X - 2My, therefore

(D.M.) g = ~iMg-8X .+ .col. 8
in line 9

(D.M.)ce = -2Mg-4X .« « o CcOl. 10

The carry-over moment (line 11) of branch ca (col. 7)

is equal to the product of the distributed moment (1ine 12)
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of ac (col. 6) and the carry-over factor (line 8) of ac
(col. 6). Also the carry-over moment (line 12) of branch cd
(col. 8) 1s equal to zero. Since branch cd is "fixed" at
the center line as shown in Figure 9, line 11, col. 8 must
be zero, and the total moment of branches ca and cd can be
determined now by adding col. 7 and 8. For equilibrium,
the total branch moment (line 12) of ce (col. 10) can be
determined by setting the sum of col. 7, 8, 9, and 10 in
line 11 equal to zero. This enforces .ch=0, and all
quantities related to joint ¢ may now be determined in
terms of S, Mg, and Mp by the same procedure used for Joint
a above.,

By identical procedure as used for joint ¢, the dis-
tributed moments (line 10) carry-over moments (line 11) and
total branch moments (line 12) can be determined for all the
branches of Joint e (col. 11-15). In case of more than
three stories, identical procedure will be repeated for all
Joints of the left half of the symmetrical frame.

The only deviation for the above typlcal procedure
occurs with regard to the very last branch (col. 14 and 15
in this example), ahd the last joint (Jolnt e of this
example). Since Jjoint g is fixed, the carry-over moment
(1ine 11) of branch eg (col. 14) is equal to zero and the
total branch moment (line 12) of eg (col. 1%) is equal to the
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distributed moment (line 10) only. For equilibrium of the
last joint, the sum of the total branch moments (1ine 12) and
the external, applied, joint moment at joint e (col. 11-14)
must be equal to zero. Therefore, the external unknown

moment X can be determined from this relation, 1i.e.

29X - 15Mg-2Mp - 62X - 32M
-MHD-MF-31X-16MB-2MD=0

1
x:ﬁ -63MB-8MD—MF).

All branch moments of the antisymmetrical frame can be
obtained by similar procedure. The only difference is that
one assumes all fixed end moments to be known and represents
them by a symbol. For 1instance, in this particular example
there 18 no fixed end moment in the horizontal branches. In
the vertical branches, due to sldesway, fixed end moments
N, M, and L are introduced as shown 1in Table 4. Actually,
N, M, and L are unknowns and represent the product of the
story shear and the story height. They can be eliminated
by Egquation 13, leaving only three unknowns, MB’ Mp and Mp,

for the given three-story frame.
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Now, we have three unknowns in this example, Mg, MD,
and M,., From each Joint of the left half frame, we can get
an equilibrium equation. Therefore, three unknowns can be

determined in the following way:
My =0

2Mp = O
-0.39M - 2.444M, - 0.019Mp + 273.40

ZMFSO
0.012!4B + 0.,020Mp - 2.456HF - 564,36 = O

Solving these equations, we obtain

Mg =-30.86 ft-kips
Mp

Mg

~114.19 ft-kips

-230.86 ft-kips

Finally, the branch end moments (end moments) in kips=-ft

are shown in Table 5 as follows,



TABLE 5
Mppg | Mpg| Mg, [Mgp | Mo | Mpg [ Mpp | Mg | Mgy
T13.1 | 82.3| 66.4|-416.6 | 235.4 | 202.3 | -813.2 | 379.9 447. 7
10.3 | 20.5| 25.5| 40.7] 47.9| 65.4| 110.3| 55.2| 27.6
2102.8 |102.8| 9.9 | 375.3 | 283.3 | 367.7 |-702.9 |435.1 |475.3
Mgy [Mpp [Mpp |Mpp | Mpp |Mpp |Mpe ([ Mpy My,
~113.1 |164.5] 132.8 | 470.8 | 404.6 |-813.2 |-416.1 |759. 8 |895.4
=10.3| 4.0 | =51.0 | 95.8 | ~130.8|-110.3 | -40.7 |-110.4 |-55. 2
-123.5 |123.5| 8L 8| 375.0 | 273.8|-923.5|-456.8 |649.4 |840.2

/e,

gl

1028

=2

2843

/235

8/.8

4568

2738

223 41
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CHAPTER 6

SIMPLIFIED MOMENT DISTRIBUTION METHOD

FOR _MULTIPLE-BAY FRAMES

6-1. Theory. The "exact" method introduced in Chapter

5 may become very complex in case of multiple-bay multistory
frames, Therefore, a simple approximation method will be
introduced.

Res§1ve a given, arbitrary, multiple-bay, multistory
frame into two or more symmetrically stiff, single-bay
frames, as illustrated later in Art. 6-3. This article
explains how the horizontal loads must be distributed among
single-bay part frames in proportion to their corresponding
column stiffnerses. The loadlng systems on each part frame
will be resolved into components which are eltlar symmetrical
or antisymmetrical.

After the fixed end moments are determined, the fist
cycle of moment distribution begins with a single modiflication
outlined as follows. Distribute moments at each joint and
carry-over. Then, according to our theory developed 1in
Art. 5-1, the ratio of the end moments of component branches
must be equal to the ratlo of their stiffnesses. This prin-
ciple applies to the "inside" component branches of two part
frames. Therefore, 1u this modified moment distribution,

after each carry-over step, balancing moments must be added
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at the joints of the inside component branches in order to
satisfy the above theory.

This balancing principle will be illustrated now on two
branches (Figure 11) which are compbnents of a single
equivalent branch. The basic theory requires that the
relation

Mpp : Mpp = K' : K" (1%)
must be satisfied.

: m

m D
(- v <! o g
Q} . Jled
Md i I\ALd
/c S
-TDE “ED
Fig, 1

Suppose, during a moment distribution process the branch
end moments of a cycle (distribution and carry-over) are mﬂE

and mBE, and it is found that

mpp * Wpg # K' ¢ KU .
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Then, to satisfy the theory, equal and opposite balancing
moments, My,, must be 1lntroduced at the ends between the two

branches. Mde can be determindd now by the relations

n "t
M = ™pe * Mge » Mpg = Mpg - Mge
and Equation (&)

(mlsE " Mde) : (mpg - Mde) =K' : K" .

Solving for Mde:

= K'Mpe - K 'Mpg (15)
K' + K

If now this Mde is applied to branch D'E' and simultaneously,
with opposite sign, to D"E", the ratio of the moments at end
D of the two component branches is corrected for this cycle.

Accordingly, 1n this method one complete cycle will con-
sist of three steps, namely

1. distribution

2. carry-over

3. balancing

In Art. 6-2 an 1llustrative example will be introduced
and then the procedure of its solution is shown in Art, 6-3.

6-2. Example. A double bay two-story frame is loaded

by two horizontal forces and one uniform vertical load as
shown in Figure 12. Pind the end moments of each branch, and

sketch the M-dlagram of the frame.
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The complete solution of this example is shown and dis-~
cussed in Art, 6-3 below.

6-3. Solution Procedure. The following solution pro-
cedurerefers to example 2 as well 28 to a more general wmul-

tistory frame. It will be discussed in four parts.

Part 1. Prelimivaries
Step 1. Break up the given frame into two symmetrically

stiff single-bay frames called part frames as shown in Figure
13. If the ratio of column stiffnesses does not permit doing
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this directly iutroduce additional single columns, whenever

required, as was done in example 1.

100 A EK D' D' 2EK G
EK EK 2EK 2EK
. 5 : ay w=10 L
200 2 2EK E E SSRRANETRERNNN NN N
- 4EK
2EK 2EK 2EK 2EK
C Lg P I

Fig, 15

Step 2. Branch loads (loads acting directly on branches)

remain unchanged on their branches, as fllustrated by the
uniform load on branch EH of example 2, If the branch is
resolved, the component branches carry the branch load in

proportion to thelir stiffnesses.

Step 3. The initial story shears in the part frames must
add up for each story to the horizontal forces applied to this
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story. Their value must be proportional to the story col-
umn stiffnesses of these symmetrically stiff part frames in
the corresponding story. Values of all initial story

shears for Ex. 2 are shown in Figure 14,
11 + S

T 50/3 DT50/3 D™™100/3 GTI00/3
EX EK Z2EK 2EK
r E 1 E |l

G g ~50/3 TUo0/3 =~T00/3

T

e Tﬁa Ty e g
CEK ZEK ZEK 2EK

4 , 2 3

Step 4. The above defined total initial load system
on each of the part frames will now be separated into two
superimposable forces systems, one of which is symmetrical
while the other one is antisymmetrical. For instance, in
Ex. 2, the uniform load on beam EH becomes part of the
symmetrical load system of the right part frame, while, in
general, story shears and column loads create the antisym-
metrical systems. Having no single ¢olumns in this example,
we obtain a total of four force systems, a symmetrical and an
antisymmetrical one for each of the two part frames, as it

may be seen in Table 6 (6a and 6b).
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Step 5. By reasons explalned in Ex. 1 (symmetry and
antisymmetry), only half of the frame joints are needed in
Table 6 for each force system. The columns of Table 6 may
be set up now accordingly. As 1t will be seen later, the
procedure can be followed easier, if for each part frame
the joints of rather the "inside" half frame are listed,
since these are the joints where the balancing moments
actually occur.

Step 6. Calculate X, 7, S, 8, and C for each branch,
as explained in Ex. 1, and list these constants in Table 6
as shown.

Step 7. Calculate the fixed end moments due to branch
loads and initial sidesways, and list them in Table 6
according to symmetry and antisymmetry. In Ex. 2, branch
EH 1s symmetrically loaded and the fixed end moments,

2
PMEN - -pMuE =¥12‘- = 120 £¢-1b ,

are shown in the table columns of the symmetrical system,
All fixed end moments due to sidesway effect the antisym-
metrical system. For instance, in Ex. 2, the fixed end

moments on branches AB and D'E' will be calculated by the

relations

e + e + PBa +P"ED=1°39X12:¥00
and P"AB = FHBA = Fuéﬂ = FnﬁD .
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Therefore, from Figure 14,
FMAB = PMBa = PMBE = PMEp - L - il99f3113

Similarly,

PED

By similar calculations it becomes apparent, that in this

FMHG = 200 rt-1b

PMgH

FMDE

example the fixed end moments in all columns of the first
story are equal, since story shears and column height are

both equal for the part frames., Therefore,
FMBC = FMcB = FMEF = PMFE = 450 ft-1b
Fixed end moments due to sidesways are to be listed in the

table columns of the antisymmetrical force systems as ex-

plained before and as shown in Table 6.

Part II. First Cycle of Moment Distribution and Correction.

Step 1. Distribute moments at all jolnts simultaneously

by the conventional method.

Step 2. Carry over simultaneously at each joint.

Step 3. Calculate the balancing moments for the ends
of the component (inside) branches, 1.e., find the balancing
Joint branch moments for DE, ED, and EF. Assign half of the

balancing moments to the symmetrical systems and the other
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half to the antisymmetrical systems and list these values 1in
Table 6a and 6b as shown.

For instance,

uﬁx - "1‘03 + 36.7
Ml = -28.6 - 46.
My, = SMDE " EME . - 2.5 re-1p
K' + X"

The other two balancing eguations for this particular ex-

ample are

L(-46.4 + 28.6 - #0-2 (14.3-36) | = 22.3

w

3 [-46.4 + ¥0-(-73.3)]= 33.45 = 33.4 .

Consider now Joint branch DE. Add !%g=:=-1.2, -1.1 in the

two (symmetrical and antisymmetrical) DE columns of Table 6a
and add Mae - 1.2 in the corresponding columns of Table 6b.

Remarks to Part II. Steps 1, 2 and 3 of Part II are con-

sidered as one complete cycle. Notice that in this wmethod each
cyocle starts with "distribution” and ends with "balancing".

The final cycle will be an incomplete one which consists of
distribution only.
Part III. Iteration.

Repeat the cycle outlined in Part II as many times as

necessary. When the carry-over moments and balancing moments
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are very small, carry out the last (incomplete) cycle con-

sisting of distribution only, then stop.

Part IV. Results.

Step 1. Adding 211 moments in the columns of Tables
62 and 6b the component branch end moments (C. B. E. M.)
will be obtained.

Step 2. Summing the two or four C. B, E. M,'s of each
branch end, we obtain the final branch end moments, and the
analysis 18 completed. The results of Ex. 2 are shown in
Tadle 7, and are illustrated by a moment diagram of the

complete frame in Pigure 16,
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

Two methods were introduced in this thesis. The first
one applies to single-bay frames, with an arbitrary number
of stories. This first method incorporates certain prin-
ciplés of both the momsnt distribution and slope-deflection
methods., The tabulation form and other details were taken
from versions of the Hardy-Croas method while the solutlon
of a set of simultaneous equations in a single cycle of
calculations reassembles features of the slope-deflectlion
method. However, the concept of primary unknowns (slopes
and deflections) of this later method is eliminated and the
number of unknowns per stcry is cut to one third, i.e., to
one unknown moment per story. This fact implies the super-
jority of the new procedure over both of the conventional
methods.

The second method introduced in this thesls was dev-
eloped for completely general multiple-bay, multiple-story
frames. The only imposed specialization was the reguirement
of prismatic members, a2 restriction which may be removed by
further development of the method. It employs a quite d4if-
ferent approach than the first method and is a genuilne
"moment distribution method” with its iteration procedure.

It takes full advantage of symmetry and anti-symmetry,



furthermore of the introduced modified constants. On

this account it converges more rapidly to the true moment
values than the conventional method, and it also cuts down
on the number of joints to be analyzed. Notice in Example 2
that after only three cycles of iteration the errors of

the branch end moments become very small, 1.e.,, less than

two per cent,

The modified constants introduced in Chapter four are
adopted from the "Synthetic Analysis" of Professor Yu(a)
and they are suitable for frames consisting of prismatic
members., But their concept may readily be developed into
the concept of generaliszed constants if someone desires to
employ this new method to frames consisting of non-prismatic
members.

The basic principle of the two methods, the separation
of the given frame into symmetrical stiff "reduced” frames
(and single columns) and the resolutions of the force system
into symetrical and anti-symmetrical ones should prove 1t-
self adoptable for the analysis of a great variéty. of
frames besides those shown in the illustrations. The author
believes that they will permit significant time-saving and

increased accuracy 1in the analysis or design of statically

indeterminate frames,
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ABSTRACT

Moment Distribution Method was modified so that simple
techniques applicable to symmetrical and anti-symmetrical
frames may be applied to non-symmetrical rigid frames con-
sisting of prismatic members. This approach simplifies
considerably the calculations.

Using the above approach, two different "Simplified
Moment Distribution Methods" were introduced. Method No, 1,
an "exact" method, makes it possible to execute moment dis-
tribution in a single cycle. The "exact" values of the
unknown moments are obtained by solving a set of simultan-
eous equations. This method is applicable to single-bay
frames having an arbitrary number of stories. In the solu-
tion there is one unknown moment and one equation for each
story.

Method No. 2 simplifies the analysis of multiple-bay,
multiple-story frames. It is a wmodified version of the stan-
dard moment distribution. Only half of the total number of
joints has to be considered in this analysis and the con-
vergence of the iteration process 1s accelerated.

The presentation of the theory is preceded by the
definition of a set of modified constante pertinent to the
two methods. Illustrative examples for the analysis of

single-bay as well as multiple-bay frames are included.



