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CHAPTER 2

NOTATIONS

MAB End moment of branch (member) AB at Joint A

FMAB Fixed end moment at branch AB at Joint A

M sz1rr¤e¤¤ (s¤1rr.) : 1/L

L Length of a member

E Young'a Modulus

I Moment of lnertla of a cross-section about the axla
of bendlng

k Stlffness factor

s M¤a1r1¤a stlffncss (M. s.)

a Modified stiffneas factor (M. S. F.)

ß Modified stlffneas coefflcient (M. S. C.)

C Modified carry-over factor (M. C. O. F.)

OA Rotation of joint A

R Relative lateral dleplacement of branch dlvlded by
the length of the branch

KAB End ahear of branch AB at Joint A
”A I“°°'“‘1 “°“°“”

Reactlons atnjoint A
HA Internal horizontalforce/f{;VA

Internal vertical force
npart fr°“°°"

M Loading function

Q Ooefflcient of the loading function
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CHAPTER 3

INTRODUCTIOH AND REVIEW OF LITERATURE

The analysis of statloally lndetermlnate frames becomes

more and more involved as te number of their bays and stor-

ies increases. Finite approximations, auch as the widely

used Hardy·Cross(1) method of moment distribution, are no

exceptions from this rule. Many successful attempts have

been made during the last thirty years to simplify its pro-

cedure. Many modified versions of the conventional moment

distribution method were introduced, although their treat-

ment in textbooks is often neglected or incomplete. The

author feels that with this thesis he may contrlbute his

small share to the continuous effort of the structural

engineer to improve its methods and procedures.

With the development of the computer techniques and

the increasing popularity of using the computers for analysis

and design, the slmplification of methods may seem to have

lost some of its significance and challenge. It is true

that for very complex frames, with a large number of

branches, the computer analysis may be the best approach.

One should th1nk,.however, of structures which are too small

to Justify the use of computers on the basis of economy and

still sufficlently complex to make the simplification of

the conventional methods desirable. Of course, as a final
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consideration, simplified methods should readily be adapt-

able also for use on coaputers and in such a case they may

simplify and economize even the programming and automatic

computation. Still, the author feels that the major sig-

nificance of the methods presented herein lays in their

simplicity for conventional calculations. For this type

of analysis they already proved themselves to be time-

savlng to a great extent.

The main subjects of the thesis will be presented in

three chapters. Chapter four reviews basic definitions

of frequently used concepts of the conventional moment

distribution method and of one of its simplified versions,

named "Synthetic Method" by Professor Yu(2l It also

deflnes several new concepts pertinent to the development

of the theory to the simplifled methods presented there-

after.

Chapter five will develop a simplifisd method applicable

to single-bay, multiple-story rigid frames consisting of

prismatic members.

Chapter six extends the simplifications to multiple-bay,

multiple-story rigid frames also consisting of prismatic

members. It develops a new, slmplified version of the

Hardy-Cross method to the above described frames.

The development of the theories in Chaptersfive and six

will be followed by the presentation of two illustrative
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examples, one tor each ot these chapters. The thesis is

then oencluded by a general discussion in Chapter seven.
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cHAP1·ER 4

DEFINITIONS

This chapter presents the definition of some of the

frequently used concepts as they are lnterpreted throughout

the thesis. Furthermore, it aims to clarify the meaning of

several other items of the nomenclature which were intro-

duced speclfically for this thesis or which are used incon—

sistently elsewhere in the technical literature. It is

hoped that a brief study of this chapter will contribute to

a clear understanding of the principles and methods intro-

duced in the following two chapters.

It should be pointed out here that for all definitions

involving the Young's modulus, Qg it ls assumed that Q is

constant throughout the thesis.

4-1. Superposition. Superposltion, as generally defined,

refers also here to loading systems only. Two or more load-

ing systems acting simultaneously on the same structure may

be super1mposed,together with their effects, under certain

conditions. These conditions are stated in standard texts

and it is assumed throughout this thesis that they are

satisfied.

4-2. "Combinat1on" of Structures. In this thesis, two

or more structures are said to be combined into an "equ1valent"
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single structure, if their physlcal characterlsties (1.e.,

stlftnesses) and their loading systems are both integrated

into a single system. This can be done only lf the con-

flguratlons of the involved structure; are compatible, fur-

thermore, their physical characteristics and the applied

loading systems are related to each other in auch a manner

that all deflectlons and rotatlons of every structure in-

volved in this process become ldentical, as will be shown

in chapter 5.

#-3. "Reduction" of a Frame. A hypothetlcal process

which ls the inverse ot the "eomb1nat1on" of structures, as

outlined above.

#-#, "Rgducgg §;ame' or ”§ubfragg”. When an arbitrary

frame le reaolved into a symetrlcally stift frame and say,

a column, the— obtained symmetrically etiff frame is some-

times called in this thesis a ”reduced frame" or "subfraae".

#:5. Sygggtrlcally Stift Frame. A frame whose geo-

metrlcal and material properties are symmetrlcal about its

center line ls called a symmetrloally stift frame.

#:5, Sygggrgcal Frame. A frame whose geometrlcal and

material properties are symmetrlcal about its center line and

which ls furthermore symmetrically loaded is called a sym-

metrical frame.
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M-1, Antlsygmetrlcal Frame. A frame whose gecmetrical and

material properties are symmetrical about its center line and

which is furthermcre antisymmetrically loaded is called an

antlsymmetrical frame.

R-8, Branch. Any member (beam or column) of a frame is

called a branch.

¥—Q, Pr;smat1c Branch. A branch with uniform cross-

section is called a prismatic branch.

Ä-10, Branch End Moment. The mcments acting on the ends

of the free body dlagram cf a branch are called branch end

moments.

Q-ll, gcigt Branch Moment. Moments applied to the free

body diagram of a joint by individual branches which are in

fact fixed to this joint are called Joint branch moments. If

a symbol (M) deslgnates a joint branch moment, lt always has

two subscrlpts. The first subscrlpt then refers to the Joint

and the two subscripts together refer to the specific branch.

A joint branch moment is equal in magnitude and cpposite in

direction to the corresponding branch end moment.

Ä—l2. Stiffnessesz 4EK. Stiffnesa is the moment at a

hlnged end cf a member necessary to produce a unit rotatlon

cf this end while the other end of the member is fixed. For

instance for a member ab:
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‘*EK1¤ = *1:19, e 1
Gb = ¤

I: O

where Rab ls relative lateral dlsplacement of two ende a

and b of a member ab.

Ä-13, Hggified Stlffneass S. The term "Hodltled Stift-

ness" applies to several different cases. It may represent

the moment which must be applied to a hinged or free end

of a member in order to produce a unit rotatlon of this end

while the other end of the member remain: hlnged or fixed.

On the other hand, it also may represent the magnitude ot

one of two moment: which are of equal magnltude and are

applied in identical or opposing direction to the hinged ends

of a member, in order to produce a unit rotatlon of both ot

these ends.

Sau =
”¤1>‘6a • 1

or
Sab = la ga ¤ 1

li; :
ä‘

Por caleulation S, a "modifled stlffnesa coefflclent",

(see Art. Ä-lä below), will be determlned for each joint

branch from Table 1. S may be ealculated then by the

relatioz
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S :ßEK.

#-}#, Modified Stifgness Coefficlentzug. Modified

stiffness coeffiolent is the ratio of the modified stiffneas

of a member to the stiffness of the same member, 1.e.

fhb = Sah / Exab

may be determined for each Joint branch by the uae of

Table 1.

#-15, Stlffness Factor: k. Stlffness factors are the

relative stiffnesses of two or more members which ars con-

nected. Notlce that k ls a pure number, not containing the

EK factor and lt should be the lowest possible integer, 1.e.

kuh = 1:uh/ (:1.::.1:.),

where (H.C.F.) 1s the highest comon factor of the stiffnesses

of all branches at Joint
”a".

This "stiffness factor" is

used in the conventional moment distribution method, but will

not be used in this thesis. It 1; shown only to compare it

w1th the "Modified etlffness factor" shown in Art. #·l6 below.

#-16. Modlfled Stigfness Factor: s. Modified stiffness

factors are the relative stiffnesses of two or more members

which are connected at the same joint. Notice that als a

pure number, not containing the EK factor and it should be

the lowest poselble integer, 1.e.
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sah : Sah/ (H.C.P.)

where (H.C.F.) is the hlghest common factor of the stiffnessee

of all branches at Joint
”a".

M~11, Caggg-over Pagtor: C,0,F. If the hinged end

of a member is rotated while the other end is fixed, the

ratio of the moment at the fixed end to the moment producing

rotation at the hinged end is called the carryeover factor.

rab : uba /¤ab|9b = O
This oonventional carry—over factor 1e not need in this thesis.

§·18, Hodlgged Caggx•over Factor: N.C.0.F. or ICQ? or C.

The tern "modifled carry-over factor" appliea to several cases.

Consider a member AB which is hlnged or free at the end A

while its other end B is fixed or hlnged. If now end A is

rotated, the ratio of the moment at end B to the moment at

end A le herein called the modified carry~over factor. On

the other hand, if two momentsof equal magnitnde are applied

in identloal or opposing dlrections to the two hinged ends

of a member AB, the modified cerry·over factor is equal to

zero (see Table 1).

cab = ER;
Mb

or

Rab? O
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4-19. Remarks. The det1n1t1ons or Art. 4-121 15 and 

17 were introduced by Professor Hardy Crosa(l) in 1931. 

The definitions or Art. 4-13. 141 161 and 18 were adopted 

by Protesaor Yu(2) in 1956. 

Th.,. LE for 0 = 1 
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As an example, let us conslder three "flxed" beaua,

A'B', A"B", and AB loaded by Q'w, Q”w, and Qw respeetlvely,

where Q', Q", and Q are arbltrary seallng eonstants and

w ls an arbltrary loadlng functlon of x, as shown ln Flgure 1.

Deflne the stlffness of beams A'B', A"B", end AB as K', K",

and K respectlvely. Let us lmpose now the eondltlons that

the loadlng eonetants Q', Q", and Q are related to the stlff-

nesses K', K", and K ln the followlng manners

Q': Q": Q e K' : K" ; K (1)

and that all three beams have ldentleal defleetlon ourves.

Then, the ratlos of the flxed and moments at the left support

are equal to the ratlos of the flxed and moments at the rlght

support, furthermore tethe ratlos of the stlffnesses, and

also to the ratlos of the loadlng rconstants (equatlon l) ot

the three beams, l.e.,

=K':K°°:K (2)

=Q•:Q"¤o.

The total end moments of the members can be expressed by the

slope defleetlon equatlons as followa:
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I

Ria ; 2EK'( 29é + OA - 3B') + FHBA

(3)
II

where 9 ls the rotation of a eross—sect1on end R is the

relative laterel dieplacement per unit length of the been

between the two ends. However, by hypetheeis, the deflection

curves are ldentieal, therefore,

e·-e"—eA · A · A

R':R°°:R •

Henee, RZB ean be expressed in terms of RAG and the stiff-

nesses ae follows:
II

RxB:2EK"(2Gx+Oä·3R")+F”AB

LZ'. ·£-2EK'K, (20A+0A-3R')+F‘ABx,

:[2EK' ( 26A + Qé - 3R' ) + HAB ] ä? ,

KN
OP HXB:HÄBi-T.

Simllarly, we have

¤ - Ei‘BA·"ßAK
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and M" - ' El
B/¥°HBA KI

KN
II

___

or (u)

=K'=K"=K•

The above relations lndicate that the end monents on beams

A'B', A"B", and AB are proportional to the corresponding

stiffnesses of the beams.

Also, since the stiffness factors are proportional to

the stiffnesses all corresponding loads on the three beaus

must be proportional to the stiffness factors. For in-

stance:

·
II • _ • ll (5)

where k is defined ln Art. #-15.

Looking at Figure 1, let us ccmbine now beaus A'B' and

A"B" in order to obtaln an equivalent single beam AB, by in-

posing the following conditions:

Q'+Q“:Q
„ (6)

K•+K =K•

Slnce fixed end monents are always proportional to the loads,

the following relationshlps will exist:
”

H1¤·"Äs+r"As=rAs ()H 7ana 1«·"éA+r"sA=r"sA.
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Furthermore, substltuting Equatlon Ä into Equation 6:

HAB + HAB : HAB
(8)

äh +¤£„ =¤„-

Looking at Flgure 2a, consider now a beam AB as a branch

of an arbitrary frame. Define K as the stiffness of beam AB.

Applying the above developed principle, beam AB may be resolved

into two component beams A'B' and A"B", as lndicated in

Figures 2a and 2b. These figures show three free body dia-

grams, each consisting of a beam, its end Jolnts, and a

short part of all other branches connected to these jolnts.

In order to malntain equilibrium on the free body diagrams

of Figure 2b, it ls assumed that equal and opposite reactions

(moments HA and HB and force: VA, VB, and HA) are acting

between the corresponding Joints of these two component struc-

tures. By addlng the stiffnesses and all loads of these two

component beams, the equivalent beam of Figure 2a will be

obtalned.

The end moments of the two component beams of Figure 2b

can be expressed now in the following ways:

HAB : HAC + HA and HBA ; HBE + HB

HAB : HAB $ HA and HÄA ; HBB — HB
(9)

where HA and HB are unknown ~oments.
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~"1 AC MrE (' (.' 

T Iv.AC 
f""'.MBE HA~' K' B' I 

~MB MA V 
K Bl 

A VB 
-

YA VB 
I ,+\Mp \..../ 

'rdBF 
H.. K" 

MAD It' 

(,J ) 
\..JM 

AD u 
MEF 

(6) 
Fig. 2 

By hypothesis, beam A'Br and A"Bu have the same 

elastic curve, therefore, according to Equation 4 the fol-

lowing relations apply: 

MA» : M,Aa: MBA : MBA= K' • K". (10) 

Substituting Equations 9 into Equation 10: 

( M + MA 1) s (MAD -MA ) = K' : Kn Ac 
( M_aE t Ma ) • (M_a1 -Ma ) = K' -: K,. • • 

and finally the unknown moments M8 and Mb may be expressed as 

•• K"MAc .. K'MAD --
K' "" IC" 

(ll) 
·1ea K"lla .. K'tfar = -I 

K + K" • 



MA and ·Ms of Equation 11 are internal joint moments, 
which will occur externally at the ends ot the component 

branches whenever a branch is resolved into two components. 

------::lMBG 

K' +K" 

/ 

Fig. 3 

L 

~B 
B" H -=H B 

K" 
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MoG-t Ms Msq. f Ma ;> -------~-..:::.. G ~ ~ !, d lfe 

C ...,..d-------b 2. '- d' ll H 

K' K.' 

MAF+MA. 1-"c.'--------~ 
2 

E~ . 4 _, 

5-2 • .Extension of the Basic Theory to Frames. Let us 

extend now these principles to a closed frame ABCD loaded by 

two moments M:sa and MAP, and supported as shown in Figure 3a. 
Consider Figu~ 3b, where internal moments MA and MB and 

internal forces HA and H.a are developed by Ilsa and MAP as 

internal reactions between the joints A' and B' or the 

reduced frame A'B'CD (which also carries the originally 

applied moments) and Joints A0 and B" or the otherwise un-

loaded separated column A"B". Then the loads on reduced 

frame A'B'CD, as shown in FigUre 3, will be considered as 

the superposition of two separated loading systems applied 



-21-

to the same reduced frame as shown in Figure Äa and Äb.

Both a'b'c'd' and abcd deslgnate in Figure Ä the reduced

frame A'B'CD of Figure 3a and the notations a'b'c'd' and

abcd refer actually to the two separated loading systems

applied to th1s reduced frame. In th&proces= of aeparatlon,

moments IA and HB will be divided equally between jolnts

A' and A", and B' and B" respectively. Furthermore,

opposite moments of equal magnitudes will be applied at

joints c, c', and d, d' respectively in order to transform

a'b'c'd' and abcd into a symmetrical and antlsymmetrlcal

frame, as illustrated in Figure Ä. HA and HB will not be

resolved but are applied in their original magnitudea to the

antisymmetrical frame.

The original frame ABCD is now represented by the
A

reduced, symmetrically stlff frame A'B'CD and "subeolu¤n”

A"B", while the original loads IAF and MG are ¤sca1¤•d by

superimposlng the two separated loading systems a'b'c'd'

and abcd of the subframe and the loads on the subcoluun

A"B".

The magnltudes of the branch end moments of systeme

a'b'c'd' and abcd can be determlned now by a simpllfied methcd

granted by symmetry and antisymmetry. It ls apparent that

these branch end moments in the symmetrically loaded frame

will appear in terms of MA and HB while in the antlsymmetric-

ally loaded frames then they will be expressed as functions

of HA and HB and HA and HB.
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It is now apparent from Figure 3c that HA:HB:H and from

Figure 5 that the sum of the shears of eolumns CD and A'B'

is also equal to H, 1.e.

2 H •

Figure 3b ls the superposltion of Figures Äa and Äb. Con-

sequently, comparing Figure 5b, which shows the oolumns

of Figure 3b, and Figure Ä,

TÄB *Tc¤ = Tab + Tad *Téb *Té¤·

where the right hand side represents the shears in the

vertical branches ot Figure Ä. But, for the symmetrical

frame of Figure Äa,

Hence täb +2éd : Tßg
+’tcp

or H.

Furthernore, equilibrlum requires that on Figure 5b

and by superposition

IAB 4 MCD + MÄA + MDC : Mah + Mcd + Mba + Mac

*'*äb+"éa+“éa+*‘Aa.
Consequently,

Mah + lcd 4 Mba + Mac + Mäb + Méd + léa 4 Mac z -HL
But, by syuuetry,
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and Ib, + Ida : O ,

therefore,

Méb + Iéd + Méa + Mac =
—HL.

Furthermore, by antisymmetry

"“"
"é¤ = "éc·

Therefore,

Igb + léa = Méd + Mac : äHL. (12)

From Figure 3c
N NIAB + IEA - HL.

However, by superposition

or, by Equation 12

1"ÄB ""éA zuab *”b¤ 'EHL·

Furthermore, by the basic theory, Art. 5-1,

- K'

KI

- KR( HL )•

Therefore,
KI

uab *
uba ' %HL = §W ( HL )
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so M M.. - l HL K' HL ab t ··oa - 2 · t i(ii 

or HL 2K" ) - ( Mab + Mba · • - 2JC I tlf 11 
(13) 

Now, since H is expressed in terms of the moments of 

the symmetrical frame only, one unknown remains only for 

each story, namely the moments between the subframe and the 

subcolumn, MA and M8 • 

1 oc. = Cc.o 

,... 
j 

.........._, _ ~ 
;J 

5-3, Illustrative Example. Givenas1ngle-bay three-

story rigid frame, cona1st1ng of prismatic branches, and 

loaded by three horizontal forces as shown in Figure 6. 
Find the M-d1agram. 
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101 2EK 

'- r: f 

20fd~I- 0 4EK ' - ~ 
' II 

3 OOKi, 
K " E 4EK 

"- t") 
EK 

Fig. 6 

Solution: In order to analyze this frame by a simplified 

moment distribution method. we resolve the frame 1nto a 
"symmetrically stifflf• "reduced " frame and a column, as 

shown in Figure 7. The loading system of the reduced frame 

is then resolved into a symmetrical and an antisymmetrioal 

system, as shown in Figure 8. Thus, the original frame may 

be expressed as the superposition or a symmetrical and an 

antisymmetrical frame and then the combination of this super-

imposed frame with a column, according to the principles 

developed earlier in this article. 
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B'' 
EK 

D" 

El EK EK 
2M 

F" 
HF 

EK 

300- H F E 4EK f ' ) 2N F 

EK EK 
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I 

(a) (b ) 

Fig. 7 

100- . 
MB 

) M B B • I ZEK a - M8( a ) MB ---EK JK K 
200- ._J c ' 4E K Mr( c 4 )MD ...., 

K K LK 
300- --{F 4EK 4EK t 

I 

r ' :J 

( a ) (b) 

Fig , ---

F1rst1 we consider the analysis of the symmetrical frame. 

The modified stiffnesses and modified carry-over factors of 
its branches can be found from Table l. 
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For example, in Figure Sb, due to symmetrical loading, 

the end ~ of the branch ac has no relative displacement with 

respect to end e. Joint ~ is rotated by a moment applied to 

~while joint c remains fixed. Furthermore, the deflection 

of beam ab is syaunetrical • . So, the needed properties of 

the branches meeting at joint a can be determined as follows: 

TABLE 2 
Branch ac c.L 

Case 4 5 

Stiffness EK 2EK 

M. S. C. ( ) 4 2 

M . S. (S) 4EK 4EK 

M. S. F . (S ) 1 1 

M. C. 0. (C) 1/2 i 0 

By similar procedure, all the modified constants can 

be determined tor the left half of the frame. 

Let us now cut the frame along its center line which is 

the line of symmetry. Because ot symmetry only a half of the 

frame, say the left half, needs to be analyzed. The half 

frame considered in this example is shown in Figure 9. 

Notice that because of symmetry the slope of the branches 

at the center line must be zero, therefore, we may introduce 

fixed ends there for the branches of' the half frame. The 

final moments in the right half frame will be equal in mag-

nitude and opposite in direction to those obtained in this 
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analysis for the left half. 

The only loads applied to th1s half frame are the moments 

applied to the joints as shown in Figure 9. Moment distri-

bution can be carried out now on this half frame. The cal-

culations are shown in Table 3. 

In Table 3, the seoond line lista the joints and the 

third line lists the branches of the half frame as needed for 

the moment distribution. From the fourLh to the seventh 

line, the calculation of the modified stiffness factors is 

shown, and the eighth line lists the modified carry-oV'er 

factors. The caloulation of these eol'stante was illustrated 

in Table 2. In lines nine through eleven the '1moment dis-

"tribution' is carried out. This procedure is different than 

th~ conventional moment distribution and is explained below. 
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Lines twelve states the equatlon to be solved for the un-

known moment X. Lines thirteen through sixteen llst the

coefficients of the applied moments (IB, ID, and IF) for

the equations expressing the branch moments (Iab, etc.) in

terms of these applied moments.

The moment distribution (lines 9 through ll) in Table

3 is carried out by the following procedure.

First we consider the Joint E of this frame. Since

the modified stiffness factors of branches_Eb and EE are

both equal to unity, the "d1str1but1on" moments of the

branches_£b and_gg are equal to each other and are called

X, where X ls an arbitrary unknown moment. Since the

carry—over moment in branch ab (col. 5) is equal to zero,

the total moment of this branch (line 12) ia also equal to

X. For equllibrium, the sum of the total moments (line 12)

of branches_gp and_gc and the external moment applied at

Jo1nt_g should vanish. I.e.

Iac + X + IB : 0

Therefore, nac =
,, ( X + nß )'

a relation stated in line 12 of column 6. Adding vertically

in column 6, line 12 must be equal to the sum of lines 10

and ll. Therefore, the distributed moment of branch ac

(Col. 6) must be equal to ·2X-IB, as indlcated in line ll of

column 6.
I
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Now we consider the joint g. The carry-over factor of

branch gg (col. 7) ls equal to 1/2, and the moment which was

"carrled—over" from column 7 to the branch gg_(co1. 6) was
”

equal to —2X—MB. But since this carry—over moment ls equal

to the distributed moment of column 7 tlmes the carry-over

factor of col. 7, therefore, the distributed moment of

col. 7 can be found as followsz

( c.0.M.)ae = ( c.0.F.)ee x (D.M.)ee (14)

or ( D. M. )ee ; ( c. 0.M.)ac/ (c.0.F.)ed , (15)

aus ( 0.0.M.)ee : -2x — MB

and ( c.0.R.)ca ; 1/2

cnus ( D.M. )ee : 2(—2x — 2MB)

= -4x-2MB ,
which ls the value to be listed ln column 7.

All the other distributed moments in line 9 of branches

gg, gg, and ge can be found from (D.M.)ca ln the ratlos of

the modifled stiffness factors, S, 1.e.

(D.M.)ca : (D.M.)ed : (D.M.)ee : see : sed : see
But lt was shown above that (D.M.)ea = -4X — 2MB, therefore

(D.M.)ed ; ~4MB—8x . . . c¤1. 8
in line 9(D.M.)ce : —2MB—4x . . . co1. 10

The carry-over moment (line ll) of branch gg_(col. 7)

ls equal to the product of the distributed moment (line 12)
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of gg (col. 6) and the carry-over factor (line 8) of gg

(col. 6). Also the carry-over moment (line 12) of branch gg

(col. 8) is equal to zero. Since branch gg is "fixed" at

the center line as shown in Figure 9, line ll, col. 8 must

be zero, and the total moment of branches gg and gg can be

determined now by adding col. 7 and 8. For equllibrium,

the total branch moment (line 12) of gg (col. 10) can be

determined by setting the sum of col. 7, 8, 9, and 10 in

line ll equal to zero. This enforces .zMc=0, and all

quantitles related to joint g may now be determined in

terms of S, MB, and MD by the same procedure used for joint

g above.

By identical procedure as used for joint g, the dis-

tributed moments (line 10) carry-over moments (line ll) and

total branch moments (line 12) can be determined for all the

branches of Joint g (col. 11-15). In case of more than

three stories, identical procedure will be repeated for all

Joints of the left half of the symmetrical frame.

The only devlation for the above typical procedure

occurs with regard to the very last branch (col. lü and 15

in this example), ahd the last joint (Joint g of this

example). Since joint g is fixed, the carry-over moment

(line 11) of branch gg_(col. lä) is equal to zero and the

total branch moment (line 12) of gg (col. lä) is equal to the
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distributed moment (line 10) only. For equilibrium of the

last joint, the sum of the total branch moments (line 12) and

the external, applied, joint moment at joint g (col. 11-14)

must be equal to zero. Therefore, the external unknown

moment X can be determined from this relation, 1.e.

29X - 15MB-2MD - 62X — 32MB

— 4MD - MF - 31X — 16MB - 2MD : O

A11 branch moments of the antisymmetrical frame can be

obtained by similar procedure. The only difference is that

one assumes all fixed end moments to be known and represents

them by a symbol. For instance, in this particular example

there is no fixed end moment in the horizontal branches. In

the vertical branches, due to sidesway, fixed end moments

N, M, end L are introduced as shown in Table 4. Actually,

N, M, and L are unknowns and represent the product of the

story shear and the story height. They can be eliminated

by Equation 13, leaving only three unknowns, MB, MD and MF,

for the given three-story frame.
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Now, we have three unknowns in this example, MB, MD,

and MF. From each Joint of the left half frame, we can get

an equllibrlum equation. Therefore, three unknowns can be

determined in the following way:

EINE = 0
2.450MB - 0.019HD - 0.005MF + 72.05 ; 0

END : O
-0.39MB - 2.444MD - 0.019MF + 273.40 ; 0

2MFsO

0.012MB + 0.02OMD - 2.456nF - 564.36 = 0

Solving these equations, we obtain

MB :-30.86 ft-kips

MD : -114.19 ft—k1ps

MF : -230.86 ft•k1ps

Finally, the branch end moments (end moments) in kips·ft

are shown in Table 5 as follows.
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cuAPTER 6

SIMPLIFIED MOMENT DISTRIBUTION METHOD

FOR MULTIPLE-BAY FRAMES

6-l. Theory. The "exact" method introduced in Chapter

5 may become very complex ln case of multiple-bay multistory

frames. Therefore, a simple approximation method will be

introduced.

. Resolve a given, arbitrary, mult1ple—bay, multistory

frame into two or more symmetrically stiff, single-bay

frames, as illustrated later in Art. 6-3. This article

explains how the horizontal loads must be distributed among

single-bay part frames in proportion to their corresponding

column stiffnesses. The loading systems on each part frame

will be resolved into components which are eitkar symmetrical

or antisymmetrical.

After the fixed end moments are determlned, the fhst

cycle of moment distribution begins with a single modification

outlined as follows. Distribute moments at each Joint and

carry-over. Then, according to our theory developed in

Art. 5-1, the ratio of the end moments of component branches

must be equal to the ratio of their stiffnesses. This prin-

ciple applies to the "1nside" component branches of two part

frames. Therefore, in this modified moment distribution,

after each carry-over step, balancing moments must be added
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at the joints of the inside component branches in order to 

satisfy the above theory. 

This balancing principle will be illustrated now on two 

branches (Figure 11) which are components of a single 

equivalent branch. The basic theory requires that the 

relation 

MDE MDE - K' K" (14) 

must be satisfied. 

m m£D ( DE l<' 

~ed de -

M ~ed de . 

f(-m' k~ ) ED - DE 

.t iq. 11 

Suppose, during a moment distribution process the branch 

end moments of a cycle (distribution and carry-over) are m' DE 
and m~E' and it is found that 

mDE : ~E ~ K ' K" • 
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Then, to satisfy the theory, equal and opposlte balancing

moments, Mde, must be introduced at the ends between the two

branches. Mde can be determlndd now by the relations

Mas = mba * Mae • MÄE = mba ' Mde
and Equation (4)

(möE + nde) : (mßE - nde) : x• : K" .

Solving for Mdez

Md. = "......"‘¤I«*g_'+“K'f¤$E um
If now this Mde is applied to branch D'E' and simultaneously,

with opposite sign, to D"E", the ratio of the moments at end

D of the two component branches is corrected for this cycle.

Accordingly, in this method one complete cycle will con-

sist of three steps, namely

1. distribution

2. carry-over

3. balanclng

In Art. 6-2 an illustrative example will be introduced

and then the procedure of its solution is shown in Art. 6-3.

6-2. Example. A double bay two-story frame is loaded

by two horizontal forces and one uniform vertical load as

shown in Figure 12. Find the end moments of each branch, and

sketch the M-dlagram of the frame.
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lOOlbs · EK 2EK 

EK 3EK 2EK 

2001 s 2EK 
E 

2EK 2EK 

~ c I 
, 

Fi _, 12 

The complete solution of this example is shown and dis-

cussed in Art. 6~3 below. 

6-3. soiution Procedure. The following solution pro-

cedurereters to example 2 as well ea to a more general mul-

tistory frame. It will be discussed in four parts. 

Part 1. Preliminaries 

Step 1. Break up the given frame into two symmetrically 

stiff single-bay frames called part frames as shown in Figure 

13. If the ratio of column stiffnesses does not permit doing 



-41-

this directly, introduce add1t1onal single columns, whenever 

required, as waa done in example 1. 

100 A EK . D' D' 2EK G 

EK EK 2EK 2EK 

200 B 2EK E' 

2EK 2EK 2EK 2EK 

c F " I 
(a ) (b) 

Fir . 13 

Step 2. Branch loads (loads acting directly on branches) 

remain unchanged on thei~ branches, as illustrated by the 

uniform load o~ branch Ell or example 2. It the branch is 

resolved,, the component branches carry the branch load tn 

proportion to their st1rrn~sses. 

Step 3. The 1n1t1al story shears in the part frames must 
add up tor each story to the horizontal forces applied to this 
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story. Their value must be proportional to the story col-

umn stiffnesses or these symmetrically stiff part frames in 

the corresponding story. Values or all initial story 

shears tor Ex. 2 are shown 1n Pigure 14. 
100 .... 

50/3 0/3 00/3 0/3 

fK 

r E' E' 
0/3 0/3 0/3 o/~ 

300 - 75 5 75 ..., r 

E' E ' I .J 

l Ek ZEk lEK zr r< 

c 
5 

F' F' 15 I . _) 

15 

Step •· The above defined total initial load system 
on each of the part frames will now be separated into two 

superimposable forces systems, one of which is symmetrical 

while the other one is ant1symmetr1cal. For instance, in 

Ex. 2, the uniform load on beam EH becomes part of the 

symmetrical load system of the right part frame, while, in 

general, story shears and column loads create the antisym-

metr1cal systems. Having no single columns in this example, 

we obtain a total or four force systems, a symmet~ical and an 

ant1symmetrical one tor each of the two part frames, as 1t 

may be seen in Table 6 (6a and 6b). 
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Steg Q. By reasons explained ln Ex. 1 (symmetry and

antlsymmetry), only half of the free jolnts are needed in

Table 6 for each force system. The columns of Table 6 may

be set up now accordingly. As it will be seen later, the

procedure can be followed easier, if for each part frame

the Joints of rather the "1ns1de" half frame are listed,

since these are the Jolnts where the balancing mouents

actually occur.

Steg 6. Calculate K,g?, S, s, and C for each branch,

as explained in Ex. 1, and list these constants in Table 6

as shown.

Steg 1. Calculate the fixed end moments due to branch

loads and initial sidesways, and list them in Table 6

according to symmetry and antisymmetry. In Ex. 2, branch

EH is symmetrlcally loaded and the fixed end moments,

1*1:11 2 -p"uE
=g‘E

= 120 1·t—1b ,

are shown in the table columns cf the symmetrical system.

All fixed end moments due to sidesway effect the ant1sym—

metrlcal system. For instance, in Ex. 2, the fixed end

moments on branches AB and D°E' will be calculated by the

relations

FIAB + P“DE + F”BA + FHED : lgg X 12 : 400

and PHAB : F!BA : FMÜE : FNÜD .
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Therefore, from Figure lk,

FMAB = FMBA = FMDE = FMED : Ifé = L—{3)—1°°12

Similarly,

FMöE Z FMED Z FMGH = FMHG Z 200 ft—lb

By similar calculations it becomes apparent, that in this

example the fixed end moments in all columns of the first

story are equal, since story shears and column height are

both equal for the part frames. Therefore,

FMBC Z FMCB Z FMEF Z FMFE Z k50 ft-lb

Fixed end moments due to sidesways are to be listed in the

table columns of the antisymmetrical force systems as ex-

plained before and as shown in Table 6.

Part II. First Cycle of Moment Distribution and Correction.

Steg 1. Distribute moments at all joints simultaneously

by the conventional method.

Steg 2. Carry over simultaneously at each joint.

Steg 3. Calculate the balancing moments for the ends

of the component (inside) branches, i.e., find the balancing

joint branch moments for DE, ED, and EF. Assign half of the

balancing moments to the symmetrical systems and the other
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half to the antisymmetrlcal systems and list these values in

Table 6a and 6b as shown.

For instance,

Hßg : -28.6 - #6.l

nde 2 K..°."_...._öE‘
_‘”.,‘_ÜE

2 - 2.5 rc-1b
K' + I"

The other two balancing equations for this particular cx-

ample are

%[—46.4 + 28.6 - #0-2 (14.3-36)] 2 22.3

%·[·46.# + 40-(-73.3)]: 33•‘*5 = 33•'* •

Consider now Joint branch Bl. Add !%;=¢=-1.2, -1.1 in the
two (symmetrical and antlsymmetrical) DE columns of Table 6a

and add nds : 1.2 in the corresponding columns of Table 6b.

Remarks to Part II. Steps 1, 2 and 3 of Part II are con-

sidered ss one complete cycle. Notice that ln this nethod each

cycle starts with "d1str1bution” and ends with ”balancing“.

The final cycle will be an incomplete one which consists of

distribution only.

Part III. Iteration.

Repeat the cycle outllned in Part II as many times as

necessary. When the carry-over moments and balanclng moments
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are very small, carry out the last (lneomplete) cycle con-

slstlng of distribution only, then stop.

Part IV. Results.

Steg 1. Adding all momenta ln the columns of Tables

6a and 6b the component branch end momenta (C. B. E. I.)

will be obtalned.

Steg 2. Summing the two or four C. B. E. l.'s of each

branch end, we obtaln the final branch end moments, and the

analysis is eompleted. The results of Ex. 2 are shown ln

Table 7, and are lllustrated by a moment diagram of the

complete frame in Figure 16.
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306.9 
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

Two methods were lntroduced ln this thesls. The first

one applles to s1ngle—bay frames, with an arbitrary number

of stories. This first method incorporates certain prin-

ciples of both the mount distribution and slope·deflectlon

methods. The tabulation form and other details were taken

from versions of the Hardy-Cross method while the solution

of a set of simultaneous equatlons in a single cycle of

calculaticns reassembles features of the slope-deflection

method. However, the concept of primary unknowns (slopes

and defleetlons) of this later method is ellminated and the

number of unknowns per story is cut to one third, 1.e., to

one unknown moment per story. This fact implles the super-

lorlty of the new procedure over both of the conventlonal

methods.

The second method introduced in this theals was dev-

eloped for completely general multiple-bay, multiple-story

frames. The only lmposed speclalizatlon was the reguirement

of prismatic members, a restrlction which may be removed by

further development of the method. It employs a quite dif-

ferent approach than the first method and is a genulne

"moment distribution method" with its lteratlon procedure.

It takes full advantage of symmetry and ant1—symmetry,
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furthermore of the lntroduced modified constants. On

thls account lt converges more rapldly to the true moment

values than the conventlonal method, and lt also cuts down

on the number of Jolnts to be analyzed. Notlce ln Example 2

that after only three cycles of lteratlon the errors of

the branch end moments become very small, l.e., less than

two per cent.

The modlfled constants lntroduced ln Chapter four are

adopted from the "Synthetlc Analysls" of Professor Yu(2)

and they are suitable for frames conslstlng of prlsmatlc

members. But thelr concept may readlly be developed into

the concept of generallzed constants lf someone deslres to

employ thls new method to frames conslstlng of non—prlsmatlc

members.

The baslc princlple of the two methods, the separatlon

of the given frame lnto symmetrlcal stlff "reduced" frames

(and slngle columns) and the resolution: of the force system

lnto symmetrlcal and antl-symmetrlcal ones should prove lt-

self adoptable for the analysis of a great variety. of

frames besldes those shown ln the lllustratlon:. The author

belleves that they wlll permlt slgnlflcant tlme-savlng and

lncreased accuracy ln the analysl: or deslgn of statleally

lndetermlnate frames.
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ABSTRACT

Mument Distribution Method was modified so that simple

techniques applicable to symmetrical and anti-symmetrical

frames may be applied to non-symmetrical rigid frames con-

sisting of prismatic members. This approach simplifies

considerably the calculations.

Using the above approach, two different "Simplified

Moment Distribution Methode" were introduced. Method No. l,

an “exact” method, makes it possible to exeeute moment dis-

tribution in a single cycle. The ”exact" values of the

unknown moments are obtained by solving a set of simultan-

eous equations. This method is applicable to single-bay

frames having an arbitrary number of stories. In the solu-

tion there is one unknown moment and one equation for each

story.

Method No. 2 simplifies the analysis of multlple—bay,

multiple-story frames. It ls a modified version of the stan-

dard moment dlstrlbution. Only half of the total number of

joints has to be considered in this analysis and the con-

vergence of the iteratlon process is accelerated.

The presentation of the theory is preeeded by the

definition of a set of modified constants pertinent to the

two methods. Illustrative examples for the analysis of

single-bay as well as multiple-bay frames are included.


