Constraint Based Program Synthesis for Embedded Software

Hassan Eldib

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Computer Engineering

Chao Wang, Chair
Patrick Schaumont
Michael Hsiao
Sandeep Shukla

Eli Tilevich

May 5, 2015
Blacksburg, Virginia

Keywords: Program Synthesis, Formal Verification, Embedsieftware, Security, Cryptography,
Side-Channel Attacks and Countermeasures
(© Copyright 2015, Hassan Eldib

Constraint Based Program Synthesis for Embedded Software

Hassan Eldib

(ABSTRACT)

In the world that we live in today, we greatly rely on softwanenearly every aspect of our lives.
In many critical applications, such as in transportatiod aredical systems, catastrophic conse-
guences could occur in case of buggy software. As the cortipoigh power and storage capacity
of computer hardware keep increasing, so are the size anplewity of the software. This makes
testing and verification increasingly challenging in pi@gtand consequentially creates a chance

for software with critical bugs to find their way into the comser market.

In this dissertation, | present a set of innovative new mashfor automatically verifying, as well
as synthesizing, critical software and hardware in embe&ddenputing applications. Based on a
set of rigorous formal analysis techniques, my methods canagtee that the resulting software

are efficient and secure as well as provably correct.

Acknowledgment

First and foremost, | would like to express my deepest ajpgiea to my Ph.D. advisor, Professor
Chao Wang, from whom | have learned incredibly a lot. His oardus guidance, dedication
and encouragement has helped me become a more mature heseard shape my future goals.

Professor Wang will always remain a source of inspiratiomie, even after graduation.

| would also like to express my gratitude to Professor Plaichaumont, Professor Michael Hsiao,
Professor Sandeep Shukla, and Professor Eli Tilevich fmirsggon my committee. It has been a

great honor for me to work closely with them.

| am grateful to my parents for their never-ending encouragyg and support throughout my life.

| am truly fortunate to have such parents.

Finally, I want to thank my wife and my daughter for their ez love and support throughout

these years.

Hassan Eldib

Contents

Abstract
Acknowledgment
List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1 Background

1.1.1 Embedded Control Software

1.1.2 Cryptographic Software

1.2 Contribution

1.3 Organization

2 Background

Xi

Xiii

10

CONTENTS CONTENTS
2.0.1 InductiveSynthesis 10
2.1 Intermediate Representation e 11
2.2 SideChannelAttacks 12
2.3 Leakage Model 13
24 Masking e
25 PerfectMasking e 14
2.6 Insensitivity e 15
2.6.1 Fault Sensitivity Analysis (FSA) 16
2.6.2 FSACountermeasures i 19
3 Optimizing Arithmetic Computation in Embedded Software Code 20
3.1 Motivating Example 23
3.2 Fixed-pointNotations 27
3.3 Overall Algorithm e e 27
3.3.1 Region for Optimization 29
3.3.2 Truncation ErrorMargin 29
3.4 TheInductive Synthesis Procedure 31
3.4.1 Constructing the New Region Skeleton 32
3.4.2 Inductively Generatingthe NewRegion 33
3.4.3 Checking the Equivalence ofthe Regions 35
3.5 Implementation 36
3.6 ExperimentalResults e 37

CONTENTS CONTENTS
3.6.1 Benchmarks. 37
3.6.2 Results e 39
3.7 RelatedWork 41
3.8 Summary . .. e e e e 43
4 Detecting Power Side-Channel Leaks in Cryptographic Softare 44
4.1 SMT-based Method for Verification of Perfect Masking 46
4.1.1 TheTheory e e e a7
4.1.2 TheEncoding. 48
4.1.3 AnExample 50
4.2 TheRunning Example 51
4.3 The Incremental Verification Algorithm 53
4.3.1 Extracting the Verification Region 53
4.3.2 TheOverall Algorithm 56
4.4 ExperimentalResults e 57
441 Benchmarks. 58
442 Results 59
4.5 Related Work 62
4.6 SUMMANY e e e e e e e e e e 63
5 Quantifying the Masking Strength against Side-Channel Atacks 64
5.1 Quantitative Masking Strength (QMS) L. 66

Vi

CONTENTS

CONTENTS

5.2 Static Code Analysis to Compute the QMS

5.2.1 Checking a Program against a QMS Requirement

5.2.2 Checking the Fan-in AST Nodes Incrementally

5.2.3 Estimating the QMS of a Given Program

5.3 Measurementsonembedded Devices e .
5.4 ExperimentalResults

55 Summary

6 Synthesizing Countermeasures against Power Side-Charirtacks

6.1 MotivatingExample 0.
6.2 Inductive Synthesis of Masking Countermeasures
6.3 Synthesis Algorithm L.
6.3.1 Computing the Candidate Program
6.3.2 \Verifying the Candidate Program.
6.4 Partitioned Synthesis Algorithm
6.4.1 SelectingaCodeRegion
6.4.2 Replacingthe Code Region
6.4.3 Reusing Random Variables
6.5 ExperimentalResults

6.6 Summary

7 Synthesis of Countermeasures for Fault Attacks

Vii

68

68

71

72

73

......... 77

CONTENTS

CONTENTS

7.1 lllustrativeExample
7.2 Synthesis of FSA Countermeasures
7.3 The Partitioned Synthesis Approach
7.3.1 RegionSelection
7.3.2 Relevant Parameters
7.4 The Synthesis Subroutine

7.4.1 Computing the InputDepth

7.4.2 Generating a Candidate Circuit

7.4.3 \Verifying the Equivalence
7.5 ExperimentalResults
7.5.1 ExperimentalResults
7.5.2 Detailed Statistics
76 RelatedWork

7.7 Summary ... e e e

8 Conclusions

8.1 Summary

8.2 FutureWork

Bibliography

viii

List of Figures

2.1 Example of difference between masking and perfectmgski. 15
2.2 Examples of masking and leakage of secret information.. 16
2.3 The fault sensitivityofan ANDgate. 17
3.1 The original C program for implementing an embeddedrodet. 23
3.2 Optimized C code for implementing the same embeddedatert 24
3.3 Theextractedregion. e 31
3.4 Thesynthesizedregion. e 31
3.5 Skeletonof 7ASTnodes. 33
3.6 Synthesized newregion. e 33

4.1 Example: the program under verification (left) and iegdpic representation (right). 47
4.2 SMT encoding for checking the statistical dependenceecret daték1, £2). . . . 49
4.3 The truth-tables for internal nodes, n8, andc of the example program in Fig. 4.1. 52
4.4 Applying the SMT based analysis to a small fan-inregiolyo. 54

4.5 Scalabilitycurves. 61

LIST OF FIGURES LIST OF FIGURES

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

A program and the abstract syntax tree (AST)nodes. 69
SMT encoding to verify the QMS w.rgk1,k2). 71
Incremental applying the SMT based analysis only to sfaain region. 72
The side-channel attack measurement systemsetup. 74
DPA attacks on SHA3: QMS vs. number of traces needed rrdate the key. . . 75
DPA attacks on AES: QMS vs. number of traces needed todete the key. . . . 76
The originaly function, its truth table, and the synthesizetunction. 85
The iterative inductive synthesis procedure. 86
A candidate program skeleton consisting of 11 paramzettAST nodes. 89
The synthesized candidate program with instantiatededm masking. 89

SMT encoding for checking the statistical dependen@najutput on secret data. . 92

The partitioned synthesis procedure for applying magskountermeasures locally. 94

Results: Comparing the execution time of the two symsi@ecedures. 100
Our iterative procedure for FSA countermeasure syrghes. 103
Partial PPRM1 AES S-box: vulnerable to FSA attacks. 105
AES S-box with inefficient implemented countermeasures 107
AES S-box with efficient implemented countermeasures.. 108
The FSA-resistant template circuit structure.110
Example foraselectedregioey. Lo 115
Example for avulnerable circuit. oo L. 117
Example for a countermeasure circuit. 118

List of Tables

3.1 Statistics of the benchmark C programs. 38
3.2 Increase in the overflow/underflow free inputrange. 39
3.3 Increase in the overflow/underflow free outputrange. 39
3.4 Increase in the minimum and average bit-widths. 40
3.5 Decrease inthe maximumrelativeerror. 41
3.6 Statistics of the incremental optimization process...... 41
4.1 The benchmark description and statistics. 59

4.2 The experimental results: comparing our new methodtwe¢fCHES13 method [10]. 60

5.1 The description and statistics of the masked softwametbwarks. 74
5.2 Relation between QMS and the number of traces neededeiordee the key. . . . 77
5.3 Statically computing the QMS of the Cprograms. 78
5.4 \Verifying a C program against the QMS requirement. 79
6.1 Comparing performance of the monolithic and partittbsgnthesis algorithms. . . 99
7.1 The statistics of the benchmark circuits used in our exyntal evaluation. 121

Xi

LIST OF TABLES LIST OF TABLES
7.2 Synthesisresults. L e 122
7.3 Statisticaldata. e 123

Xii

List of Abbreviations

AES

AST

BFS

DAC

DC

DFS

DPA

DSP

EDA

FPGA

FSA

HD

HW

LSB

Advanced Encryption Standard
Abstract Syntax Tree
Breadth-First Search

Directed Acyclic Graph

Don’t Care

Depth-First Search

Differential Power Attack
Digital Signal Processing
Electronic Design Automation
Field Programmable Gate Array
Fault Sensitivity Analysis
Hamming Distance

Hamming Weight

Least Significant Bit

Xiii

LIST OF TABLES LIST OF TABLES

LTL Linear Temporal Logic

IR Intermediate Representation
MAC Message Authentication Code
MO Memory Out

NIST National Institute of Standards and Technology
OS Operating System

RSA Rivest, Shamir and Adleman
SAT Satisfiability

SHA Secure Hash Algorithm

SMT Satisfiability Modulo Theories
TO Time Out

QMS Quantitative Masking Strength

Xiv

Chapter 1

Introduction

Embedded devices are found in many critical systems, sugh@snmunication, transportation,
medical and military. Errors in such systems could have stetimg consequences economically
or even worse, loss of life. Skillful and experienced engimseare needed to design these systems
to create robust products, but unfortunately there is areasing shortage in these engineers,
according to the Bureau of Labor statistics. An effectiviigon is developing innovative tools

to support software/hardware engineers in increasing pmeductivity and the efficiency of their

code to keep the pace needed for development.

Recent research has led to progress in inductive prograthesis methods which have the po-
tential to help software developers in programming [78,44),38, 39, 41, 67, 75, 4, 26, 28, 27].
A developer could use inductive program synthesis to gémexgprogram code by specifying
some input-output relation examples and the grammar redjuirthe new code. This method has
advantage over the traditional time-consuming progrargmethods. In the traditional method,
the software developer writes the complete program thesfuér analyzes the code to optimize
it. In some case, the developer would even need to get sonetesgpin sophisticated fields to
complete the task. Inductive program synthesis enhaneasetieloper’s capabilities by generating
a complete or partial program that satisfies a specified ioptgut relation and optional added

optimization constraints.

Hassan Eldib Chapter 1. Introduction 2

An example for using inductive program synthesis is showilbhyriset al. [41, 76], who imple-
mentedFlash Fill, an autocomplete method for Microsoft Excel SpreadsheateApty spread-
sheet column that is function of another non-empty columauteomatically filled by just having

the user fill a few cells and without the need to define theimidtinction between both columns.

Another example for a usage of inductive program synthestown by Solar-Lezanet al.[77,
78], who presented Sketchingnethod to aid the programmer to write code for stencil comput
tions. The programmer would write a partial code implemioraof the desired program while
leaving the hard to code fragments empty, then the missidg tmgments are completed by the

inductive synthesis tool.

There is large potential for using inductive program sysihié novel applications to aid software
developers in programming reliable code. Two prospectigasawith good potential for research

are embedded control and cryptography software.

The main obstacle for practically using program inductiuetiesis in different fields is the unscal-
ability of the method. The number of possible programs tockefiom for a satisfying program
has an exponential relation to the size of the program to bthegized. Currently, the state of the

art program inductive synthesis tools still cannot synthpgactical programs of large size.

1.1 Background

1.1.1 Embedded Control Software

Hardware of embedded devices has improved in the previars yad has become more complex
to the extent that some of the embedded devices are now cabipdo general purpose computer

systems. These devices are now running more sophisticedgogmns than before.

In recent years, we have seen an increasingly large amowgafsiare code developed for em-

bedded systems. These software codes are often respdiesibntrolling many transportation,

Hassan Eldib Chapter 1. Introduction 3

medical, industrial machinery and weapon systems.

It is important to optimize the embedded software and abapitto the device hardware for
efficiency. In addition, embedded software must be canefigbted to be error free in order to
avoid possible damaging failure consequences. This is keohing task as designers have to

reason about many factors under which the device is run.

For example, embedded systems often execute fixed-pothtregiic computations [88]. Due to
limitations in the bitwidth of the embedded device regisi¢ne software computation results may
have values that are larger than the maximum register sizehveauses overflow and underflow
errors. In practice, programmers often mitigate this probby reordering the code instructions, or
adding instructions to estimate the resulting value ramgethen add some branching statements
to limit the value to the default maximum or minimum. Both loése methods reduce the accuracy

and reliability of the computation.

If available, tools could be used by the software develop@rsimplify problems like this and
avoid degradation in the code execution. Tools could afiséstleveloper in adapting complex
computational algorithms to the targeted embedded hasjwaaddition to reducing the time and

effort spent for this task.

1.1.2 Cryptographic Software

Sensitive information is usually encrypted to avoid adages from accessing it. Cryptographic
software such as encryption are run on many embedded devisesuccessful attack on an
embedded device would make sensitive information availablthe attacker which could have

many damaging effects.

Embedded devices that implement cryptographic algoritarasncreasingly susceptible to power
and fault analysis-based side-channel attacks [50, 51, Sife-channel attacks may arise when
computers and microchips leak sensitive information atimisoftware code that they execute, e.g.

through power and heat dissipation or response to fauttstiegl to the hardware. Such information

Hassan Eldib Chapter 1. Introduction 4

leaks have been exploited in many commercial systems innitiedded space.

A common strategy for designing countermeasures againgtmpside-channel attacks is using
randomization techniques to remove the statistical deprerydbetween the sensitive data and the

side-channel leakage [20, 7, 68]. However, this processtislabor intensive and error prone.

Currently, there is a lack of automated tools to formallyegssif a countermeasure really is
secure. Furthermore, there is no formal method to quartéyattual strength of a countermeasure.
Security design errors may therefore go undetected urdilptinysical product is produced and

evaluated.

Another closely related problem is that side-channel cenméasures are difficult to design and
implement. Although it would be desirable to have a desigoraation tool that can automatically
generate provably secure countermeasures, in realitystamplementations of such tools do not

yet exist.

1.2 Contribution

In this dissertation, | address the challenges facing soéwlevelopers in producing reliable and
secure code for embedded systems. | propose a set of teebrfmuautomatically verifying, as
well as automatically synthesizing, software with a focasembedded control and cryptography
software. | also propose innovative new techniques to sgalthe proposed program synthesis
methods to software code of realistic size and complexityg drogram synthesis methods | present
are capable of synthesizing code that is more efficient thartbde experts in their fields would

write. The challenges | explore in this dissertation canlrarearized as follows:

e How to automatically tailor existing critical code to embded systems without degradation

in its execution?

e How to automatically fully verify embedded software foriaddility and security issues?

Hassan Eldib Chapter 1. Introduction 5

e How to synthesize code for embedded devices that is morenetil than that written by

experts?

e How to overcome the main drawback of program synthesis amdaiomethods of unscala-

bility, and synthesize programs that are of practical size?

Altering code to fit a targeted embedded device is not a trigik, and in most cases needs to be
done by an expert. Directly incorporating an algorithm codplementation, that was not written
for the targeted platform, into the embedded program cadkédyi lead to errors during the code
execution. A serious source of error is overflow/underflowioltoccurs due to the limited fixed-
point processor’s register size. These errors are ciigisaportant to address because no warnings
are given during compilation of the code, and this most pobbanake a developer believe that the
embedded program is safe while in reality it is not. | preserthis dissertation an automated

method to avoid these errors.

Specifically, | propose a method that automatically modifiegiven arithmetic computational
code in order to suit the smaller targeted bitwidth of a fipeilat embedded device [26, 27]. To
avoid overflow/underflow errors, the method verifies whictemstructions are susceptible to the
errors then synthesizes another functionally equivaledéemplementation that is not vulnerable.
The synthesized code would then replace the vulnerable. cBgeusing formal verification it
is guaranteed that the new synthesized code is equivaleéhétoriginal code but will not cause
overflow/underflow errors. By iteratively repeating thi®pess, an implementation that requires
the minimum processor bitwidth to execute the code, coultbbed. The instructions requiring
the largest register bitwidth are repeatedly searchedtfen equivalent instructions that require a
reduced bitwidth are synthesized to replace them. Sincdythamic range is proportional to the
bitwidth, the method | present has another advantage oéasing the code dynamic range. This
is done by reducing the minimum bitwidth needed to execgetde bellow the actual embedded

device available bitwidth.

Using a formal program synthesis method guarantees alwajiadj an optimized code if it exists.

The proposed method searches for a valid solution from aibpte codes that could be generated

Hassan Eldib Chapter 1. Introduction 6

with the specified grammar. Unscalability is a downsidelfits because the size of the search space
is exponentially proportional to the size of the code to betlsgsized. | present a solution to this
problem by performing static analysis techniques to partithe code into smaller regions. Each
region could have a new optimized region synthesized taoepit. The applied static analysis
techniques allow maintaining useful information from tloenplete code and then make use from it
during the synthesis of an optimized region. This methodam@es the unscalability disadvantage
of program synthesis tools and makes it possible to syrabgsactical programs of large size and

in reasonable time.

In this dissertation, | also apply program synthesis tempies to other new fields such as embed-
ded cryptography. Securing the sensitive information yptographic implementations against
malicious attacks has always been a tedious task assignegptographic experts and not to

design engineers due to its complications. Although thil,tkere has been many cases where

vulnerabilities were discovered in the cryptographic iempéntations [42, 16, 10].

Power side-channel attacks is one of the most carried oatkatton embedded devices. By
monitoring the device power consumption, an attacker cguésks the secret key from a correlation
between the secret key value and the power consumptiommaite a countermeasure against such
attacks, the secret key is masked with random generatedarsitdxreduce the correlation between
the secret key and the power consumption pattern. This psdasenanually done by cryptography

experts.

| propose an automated method to verify if the countermeasoplemented are perfectly masked
or still have vulnerabilities [31, 30]. In many cases my noettinds vulnerabilities in crypto-
graphic code thought to be secure against power side-chattaeks. To improve scalability of
this method and to reduce the verification problem time, aremmental procedure is proposed by

which the cryptographic code is gradually verified.

The previous state of the art automated verification metliodgsed by Bayrakt al.[10] could
only detect if instructions were masked but could not dgiish if the masking was vulnerable or

not. |1 show that the proposed verification procedure [31,i8@jore accurate and faster than the

Hassan Eldib Chapter 1. Introduction 7

previous state of the art method.

| also propose a new notion, called Quantitative Maskingr&jth (QMS), to quantify the resis-
tance of masking countermeasures against attacks [32,I138h instruction result in the cryp-
tographic code is strongly dependent on the value of a $emslata bit then it is considered
weakly masked, while if it is strongly dependent on a gemetatndom number bit then it is
considered strongly masked. By performing static analgeishe cryptographic source code, a
value between 0 and 1 is returned to describe the degree wiahleng strength of the implemented
countermeasure. A formula is proposed to relate the cordpQdS value to the difficulty of

preforming a successfully power side-channel attack.

Furthermore, | propose a new method for synthesizing pilgveécure masking countermea-
sures [28]. For the cryptographic implementations that\ardeerable to power side-channel
analysis. The method synthesizes a cryptographic codeidmadly equivalent to the vulnerable
code and eliminates all information leakage via power sid@anels. It is based on formal program
synthesis methods and so guarantees to find a counterméagleenentation if it exists within
the specified search space. Results show that synthesiurtbomeasures can be more optimized
than those proposed by cryptographic experts. Furthernagpartitioned method that combines

static analysis with the program synthesis method is preghtsimprove scalability.

Fault sensitivity analysis (FSA) is another type of sidesufel attack on cryptographic hardware.
To launch an attack, a fault is injected during the executibthe cryptographic algorithm, for
example by increasing the embedded device clock frequdisoyuess the secret key, the attacker
exploits the dependency between the intensity of the iege€ault at which an execution error
starts to occur and the value of the secret key. For exampde;extain increased clock frequency,
if the chance for an error to occur during execution is depahdn the values of the secret key
bits, then the cryptographic implementation is vulnerablESA attacks. The main contributor to

this dependency is the difference in paths’ propagatioaydigbm the sensitive bits to the output.

The latest proposed method by Ghalatyal. [35] for generating countermeasures against FSA

attacks is based on adding delay elements in the paths afthet &ey bits to equate all propagation

Hassan Eldib Chapter 1. Introduction 8

delays. This method has a drawback of an exponential rald&tiween the number of added
gates and the longest path for a sensitive bit. In contragtppose a novel method to create
countermeasures based on inductive program synthesisf2@mpletely new circuit is generated
that is functionally equivalent to the original vulneralsiecuit, but constrained to ensure that all
delay paths in the implementation are independent of theiteendata. This method reduces the
needed gates, which greatly reduces the synthesized cowegasure circuit size. A partitioned
method incorporating static analysis is also proposed fwronwe the scalability of the proposed

method.

To summarize, | propose in this dissertation a set of newvatie techniques to automate the
verification and synthesis of embedded systems softwardamhvare [26, 27, 31, 30, 32, 33, 28,
29]. The presented methods are either first to be proposdtinftelds or if previous methods
were proposed, our methods surpass the performance ofdieeostthe art methods. Partitioning
methods are proposed to overcome the unscalability prabteinthe formal program synthesis

tools. All proposed methods are shown to be effective byyapglthem on practical benchmarks.

1.3 Organization

This dissertation is organized as follows. First, | beginriyoducing the background and notation
needed to read this dissertation in Chapter 2. Then, fronpteh& to Chapter 7, | present the
main research contributions in detail. Specifically, in Qtea 3, | introduce the new method
for optimizing fixed-point arithmetic computation softwarThe method reduces the embedded
device required minimum bitwidth to execute an arithmetimputational program. In Chapter 4,
| present the new method for verifying whether a cryptogragbftware is vulnerable to power
side-channel attacks. Static analysis and formal verifinahethods are combined to speed up the
verification process. In Chapter 5, | address the importahbaving power side-channel counter-
measures perfectly masked. | introduce the new notion QMBaatify the masking strength of an

implemented countermeasure. The method statically cagsghe QMS from the cryptographic

Hassan Eldib Chapter 1. Introduction 9

software source code, and reflects the resistance of themgpited countermeasure against an
attack. In Chapter 6, | present the new method for synthesginasking countermeasures for cryp-
tographic software code against power side-channel attagkcode partitioning method is also

introduced to improve the scalability and synthesize magskbuntermeasures for practical large
cryptography programs. In Chapter 7, | present the new ndeftbrasynthesizing countermeasures
against FSA attacks for embedded cryptography hardware.nféthod applies constraint-based
program synthesis methods to synthesize compact circuitteomeasures. Finally, in Chapter 8, |

conclude the dissertation by summarizing the contribstenmd outlining the potential future work.

Chapter 2

Background

In this chapter, we intruduce the needed background to stfipe dissertation.

2.0.1 Inductive Synthesis

In inductive synthesis, we are concerned with azsef inputs, a theoryl’, and a gramma¢,
which collectively define the design space. The synthesiblpm is defined as constructing a
function f such that it satisfies a correctness specificaitamder all possible input conditions. In
this context, the theory and the grammatz are used to restrict the search space.;Lie¢ the set
of auxiliary variables that control how the functigns chosen from the pool of candidates in the
design space. That is, each valuationy@brresponds to a candidate functiBfiz, y). At the high

level, the synthesis problem can be expressed as a consiwhiimg problem as follows:
Jy.Vx. P(z,y)

That is, we want to find a configuration gfsuch that, for all possible, the correctness condition

P(z,y) holds.

However, since directly solving a quantified logical foraulith alternation depth 2 is difficult, the

10

Hassan Eldib Chapter 2. Background 11

more pragmatic solution is to use an iterative, counterg@tedguided, inductive synthesis. First,
we solve the simpler problemy. P(X,y). Thatis, we want to find a candidate configuration

of y such that, at least for some input valugs the correctness conditioR(.X, ¢) holds. If we
cannot find any solution, then we know there is no solutiortferoriginal logical formula. But if

we find a candidate solution, the next step is to verify thatsthiutionc is valid under all possible
input values. That isyz. P(z,c). If this verification step passes, we are done. Otherwise, we
need to block this bad solutian and compute a new candidatesuch thatP (X', ¢’) holds for at

least some input values’.

Therefore, the inductive synthesis procedure consistw@tubroutines: the synthesis subroutine
and the verification subroutine. The synthesis subrouikeg a set of test examples as input,
solvesdy.P(X,y), and returns a candidate functigras output. The verification subroutine takes
the candidate functiorf as input and formally verifiegz. P(z, ¢), i.e., whether it is valid for all
possible test examples. Initially, the set of test examgdesbe empty or consist of some randomly
generated input-output pairs. Whenever the candidateiumis proved to be invalid, new test
examples can be deduced from the counterexamples gendmatdad verification subroutine.
Adding these new test examples back to the synthesis suteatdn guarantee to eliminate the

bad candidate in the future.

2.1 Intermediate Representation

The standard C language cannot explicitly represent fixedt@rithmetic operations, so we use
an intermediate representation (IR) for the fixed-poinigpams. We use a combination of the
integer C program representation and a separate configuiridg, which defines the fixed-point
types of all program variables. More specifically, we scalehdixed-point constant (other than the
ones used ishift operations) to an integer by using the scaling fagtorwherem is the number
of bits representing the fractional part. For example, adfigeint with two fractional bits, the

representation of a constant with the value of 2.5 will beespnted as 10, where = 2.

Hassan Eldib Chapter 2. Background 12

After each multiplication, ahift-rightis added to normalize the result so as to match the fixed-
point type for the result. For example,= ¢ x z, where variables andz and constant all have

the fixed-point typ€1, 8, 3), would be represented as= (¢ x z) >> 3.

For each multiplication, we also assign ancumulate flagwhich can be set by the user to
indicate whether the microcontroller has the capabilitteshporally storing the multiplication
result into two registers, which effectively doubles théwidth of the registers. Many real-
world microcontrollers have been designed in this way. @aoig with the same example =

(c x z) >> 3. If the accumulate flags set to 1 by the user, the multiplication node will not be
checked for overflow and underflow. Only after the right-shifill the final result be checked for

overflow and underflow.

For all the other operations(-, >>, <<), we do notrewrite the default IR representation and
do not allow the user to set tlrecumulate flagbecause most of the microcontrollers do not have

double sized registers to temporally store the resultseddtoperations.

In general, the class of programs that we consider here dbawetinput-dependent control flow,
meaning that we can easily remove all the loops and functdis from the code using standard
loop unrolling and function inlining techniques. Furthem, the program can be transformed into
a branch-free representation, where the if-else branakeeserged. Finally, since all variables are

bounded integers, we can convert the program to a purelygdogdrogram through bit-blasting.

2.2 Side Channel Attacks

Following the notation used by Blomet al. [16], we assume that a sensitive computatioa-
enc(x, k) takes a plaintext and a secret key as input and returns a ciphertexaés output. The
implementation of functiorenc(x, k) consists of a sequence of intermediate operations. Each

intermediate operation is referred to as functig, k), wherei is the index of that operation.

We assume that the plaintexand the ciphertext may be observed by an adversary, whereas the

Hassan Eldib Chapter 2. Background 13

secret keyt is hidden in the computing device. The goal of the adversaty deducé: based on
observingr, ¢, and the power leakage of the device. Based on the widely ldaatming Weight
(HW) and Hamming Distance (HD) models, we assume that theepd®akage of the device
correlates to the values involved in the sensitive opematig(«x, k) . .. I,(z, k). For example, for
two different key valueg andk’, the power consumption éf & = andk’ & = may differ. Such

information leaks may be exploited by techniques such desrdiitial power analysis (DPA [51]).

2.3 Leakage Model

A leakage model specifies the amount of information obséevdlring program execution through
side channels, such as timing variation, power consumptiad electromagnetic radiation. In
power analysis, a simple but effective leakage model, foingle instruction, is theHamming

Weight (HW)f the operand. An equally effective leakage model, for tavesecrative instructions,

is theHamming Distance (HDf the two operands.

2.4 Masking

To resist power side-channel attacks on cryptographiovend, a countermeasure callethsk-
ing can be implemented to eliminate side-channel leaks. Itaamzes the instantaneous power

consumption to make it statistically independent from therst data.

For example, when the computatigiiz) is a linear function of sensitive variablein the &
domain, meaning that(z; ®2,) = f(z1)® f(22), masking requires no modification of the original

implementation of functiorf (z).

fear) e fir) =)o f(r)e flr)=f(z).

Here, the random bit is generated internally on the cryptographic device so tlversary cannot

Hassan Eldib Chapter 2. Background 14

access its value. Due to commutativity of the XOR operatwa,can mask with » before the

computation and demask wiff{r) afterward.

However, whenf(z) is a non-linear function, the implementation fifz) often needs to be com-
pletely redesigned. Depending on the order of attacks to itigated, for instance; may have
to be divided inton chunks by using XOR operations withrandom bitsr ...r,. Then, each
chunk is fed to a newly designed cryptographic functfdfx & r;, r;), wherel < i < n. Atthe
end, these results are combined to reconstf(ct by using XOR operations with another function
f'(z@r;,r;). Considem=1 as an example, we require the newly designed functféhsand f”()

to satisfy the following constraint:
fermye ffzerr) = f(2).

However, the design of such cryptographic functighand f” is a highly creative manual process
currently undertaken by experts — it is labor intensive amdrgorone. Furthermore, even if the
masking algorithm is provably secure, bugs introducedmduthe software coding process may

still cause information leaks.

2.5 Perfect Masking

For a pair(x, k) of plaintext and key for the functioanc(x, k) andd intermediate computation
resultsy(x, k,r), ..., Iy(x, k,r), wherer is an s-bit random variable uniformly distributed in
the domainkR = {0,1}*, we useD, ,(R) to denote the joint distribution af;, ..., ;. In side
channel analysis/ is assumed to be the maximal number of leakage channelssédudee® an
adversary. IfD, ,(R) is statistically independent frorh, we say that the function ierder-d

perfectly masked [16]. Otherwise, the function has sidennkaleaks.

Definition 1. Given an implementation of functiemc(x, k) and a set of its intermediate results

=
a1

Hassan Eldib Chapter 2. Background

X k rl r2 cl c¢c2 c¢c3 «c4 X k rl r2 cl c2 c¢c3 «c4

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

cl = x&® kA(r1Ar2) 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0

€2 = x& kv(riar2) 0 ©0 1 0 0 0 0 1 1 0 1 0 0 1 1 0

0 o0 1 1 0 1 1 0 1 0 1 1 1 1 0 1

€3 = x@ k&(riar2) 0 1 0 o0 0 1 1 1 1 1 0 o0 0 0 0 0

_ 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 1
c4d = x® ka(rlar2

() 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1

0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0

Figure 2.1: Example of difference between masking and penfiasking.
{I;(z, k,r)}, we say that the function is orderperfectly masked if for all-tuples(/i, ..., I,),

D, 1(R) = D, (R) forany two pairsz, k) and (z, k') .

As an example, consider Fig. 2.1 where ciphertextsc2, c3, c4 are results of four different
masking schemes for plaintext bitand key bitk using random bits 1 andr 2. According to
the truth tables on the right-hand side, all of these foupwoistare logically dependent on, r 2.
However, this does not imply statistical independence ftbensecrek. Indeed,c1, c2, c¢3 all
leak sensitive information. Specifically, fers logical 0, and whenr1 is 1, we know for sure that
the secrek is also 1, regardless of the values of the random variableslasly, whenc?2 is logical
0, we know for sure that is also 0. Whert3 is logical 1 (or 0), there is a 75% chance tkab
logical 1 (or 0). In contrask; 4 is the only leak-free output because it is statisticallyejpendent

of k. Whenk is logical 1 (or 0), there is 50% chance tledtis logical 1 (or 0).

To check for violations ofperfect maskingwe need to decide whether there existg-tple
(I, ..., 1) such thatD, ,(R) # D, i (R) for some(z, k) and(«’, k'). Here, the main challenge
is to computeD, ;.(R).

2.6 Insensitivity

A necessary condition for power side-channel resistanéeriall the intermediate computation

results of a function to bmsensitiveas in Bayralet al.[10]. An intermediate resulf; is sensitive

Hassan Eldib Chapter 2. Background 16

_‘
[N
-
o
ey
o
N
o
w
o
S

k 2

0 0 0 0 0 0 0
0l = kA(r1Ar2) 0 0 1 0 0 0 1
02 = kv(rlar2) 0 1 0 0 0 0 1

0 1 1 0 1 1 0
03 = ka(rlar2) 1 0 0]0 1 1 1
04 = kd(rlpr2) 1 0 1 0 1 1 0

1 1 0 0 1 1 0

1 1 1 1 1 0 1

Figure 2.2: Examples of masking and leakage of secret irdtom.

if it depends on the secret/plaintext and, at the same titndoas not depend on any random
variable. According to [10], this dependency analysis is\ejent to computinglon’t cares (DCs)
in logic synthesis: If random bit is adon't careof I;, then/; does not depend oan Recall that
r is adon’t careif I; remains unchanged whetheiis set to logical O or 1. However, even an
insensitivel; may still leak secret information, becaudgpending on a random hitoes not mean

that/; is statistically independent from the secret.

Figure 2.2 shows an example, whéres the secret; 1 andr 2 are the random variables, andl,

02, 03, ando4 are the results of four masking schemes. According to thé table on the
right-hand side, all four outputs depend oh r 2 and therefore arasensitivg10], but three of
them still leak secret information. When is logical 1, we know for sure that the seckeis also
1, regardless of the values of the random variables. Sipilaheno2 is logical 0, we know for
sure thak is also 0. Wher3 is logical 1 (or 0), there is a 75% chance tkas logical 1 (or 0).
In contrast,04 is the only side-channel resistant output because it Statlly independent of..

Whenk is logical 1 (or 0), there is 50% chance tlodtis logical 1 (or 0).

2.6.1 Fault Sensitivity Analysis (FSA)

Fault attacks are typically conducted by changing the aysinvironment of the circuit executing
a cryptographic algorithm, to introduce logical errorshe ttherwise normal computation. These
in turn lead to information leaks that are leveraged to dedhe sensitive data. Various fault
injection techniques have been used in practice, incluganging the voltage of the power supply,

the clock frequency, and the temperature of the executismamment. Here we focus on faults

Hassan Eldib Chapter 2. Background 17

injected by disturbing the external clock, more specificaly aggressively increasing the clock

frequency beyond its normal range.

In a digital circuit, the time taken by a signal to change friogical 1 to logical O (or vice versa)
in response to the inputs often depends on both the circuittsite and the values of its signals.
In general, the arrival time of the output signal is deterniby the delay of the paths connecting
the input signals to this output. In addition, the delay adsth paths may depend on the values
of the internal signals of the circuit. For the same circoitt with different values of the internal
signals, the delay of these input-to-output paths may Herdiit. This is important because it
means the impact of the same injected fault, but under difteinternal states of the circuit, may
be significantly different.

T,

A
—

Tg B N
Tanp

Figure 2.3: The fault sensitivity of an AND gate.

Consider the example AND gate in Fig. 2.3, which has two irgigmals A and B and an output
signal C. LetTy and Tz be the arrival time of signals A and B, respectively, angd,p be the
propagation delay of the AND gate. Consider a scenario where T3, i.e., signal B has a longer
arrival time than signal A. In this case, the time it takesdignal C to stabilize{.) depends on

the value of signal A. Specifically,

e when Ais logical 0, we havé: = Ty + Tanp; and
e when Aislogical 1, we havé: = Tg + Tanp-
In other words, even if we do not know the value of signal A, Imgerving the difference in the

arrival timeT,., we can reliably deduce the sensitive information basedurkoowledge of the

circuit structure.

Hassan Eldib Chapter 2. Background 18

It is worth pointing out that such dependency relation betwthe gate delay and the values of
input signals is not unique for the AND gate; other types gidayates have similar dependency

relations.

In general, for a large digital circuit with a wide range ofiio gates, the delay along its various
input-to-output paths may depend on the values of the Sgralthat is the main source of
vulnerability for Fault sensitivity analysis (FSA) attack To successfully launch fault attacks,
merely injecting faults into a circuit is not enough. In adth, these faults must be propagated
through the circuit to become observable at the output. dotare, the susceptibility of developing
a faulty output often depends on the intensity of the fauljeated, for example, the degree of
over-clocking, since the more intense the faults are, theerikely they will be propagated to the
output. The least intensity level under which injected tublecomes observable at the output is
referred to as theritical level. Due to the dependency between gate propagation delay aresva
of the signals in the circuit, in general, tbetical levelwill be different for different values of the

signals.

FSA attacks, in particular, rely on exploiting a dependdmetyveen theritical leveland values of
the sensitive signals. Since the time taken by a signal tpgmate through the circuit depends on
both the circuit structure and values of its internal signtile attacker needs to have knowledge of
the circuit under attack. This is a realistic assumptiomsesimost cryptographic algorithms, along

with their implementations, are publicly available.
An FSA attack typically consists of three steps:

1. The attacker injects faults and then measures the ¢riéeal of a circuit for a set oN

randomly generated plaintexts (test inputs);

2. The attacker computes, using computer simulation, titieadrlevel for each of theN se-

lected plaintexts, together with each possible sensitata dalue combination;

3. The attacker performs a correlation analysis betweenmibasured critical level and the

simulated critical level for each possible sensitive dala& combination.

Hassan Eldib Chapter 2. Background 19

At the end of the third step, the sensitive data value contioinghat results in the highest correla-
tion coefficient will be identified. This information will #n be used to deduce the sensitive data

value from the circuit.

2.6.2 FSA Countermeasures

The necessary condition for carrying out a successful F&lais having easily distinguishable
fault sensitivitycritical levelsfor the different sensitive data value combinations. Amongput
signals whose arrive time depends on the sensitive datgréaer the difference in their arrival
times, the more distinguishable the critical levels, antseguently, the higher the chance attackers
will have in successfully deducing the sensitive data. &fwee, the goal of an FSA countermea-

sure is to disable the aforementioned condition.

All previously proposed countermeasures against FSA ketfg4, 35] rely on adding delay to
certain parts of the circuit to make the arrival time of thépai signals independent from the
sensitive data. Such solution often adds an unnecessagig humber of buffers, which results in

larger area and higher power consumption.

Chapter 3

Optimizing Arithmetic Computation in

Embedded Software Code

Analyzing and optimizing the fixed-point arithmetic comgtitns in embedded control software
is crucial to avoid overflow and underflow errors and minintizencation errors within the des-
ignated input range. Implementation errors such as overfloderflow, and truncation can lead
to degradation of the computation results, which in turn degtabilize the entire system. The
conventional solution is to carefully estimate the minimbittwidth required by the software
code to run in the error-free mode and then choose a micrasantthat matches the minimum
bit-width. However, this can be expensive or even infeasiblg., when the microcontroller at

hand has 16 bits but the code requires 17 bits.

In many cases, it is possible for the developer to manuablyder the arithmetic computation
operations and optimize the code structure to avoid thefloveland underflow errors and to
minimize truncation errors. However, the process is labtrisive and error prone. In this chapter,
we present a new compiler assisted code transformationathéthautomate the process. More
specifically, we apply inductive synthesis incrementatlyoptimize the arithmetic computations

so that the code can be safely executed on microcontroliénsavemaller bit-width.

The content of this chapter is originally published in [26]

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod@1

For example, consider the code in Fig. 3.1, where all inpuapaters are assumed to be in the
range|0, 9000]. A quick analysis of this program shows that, to avoid overflihe program must
be executed on a microcontroller with at least 32 bits. Iféerevto run on a 16-bit microcontroller,
many of the arithmetic operations, e.g., the subtractidririe 13, would overflow. In this case, a
naive solution is to scale down the bit-widths of the overflgywoperations by eliminating some
of their least significant bits (LSBs). However, this wouktdease the dynamic range, ultimately

leading to a large accumulative error in the output.

Our method, in contrast, can reduce the minimum bit-widtjuned to run this piece of fixed-point
arithmetic computation code without any loss in accuraayr @ethod would take the original C
code in Fig. 3.1 and the user-specified ranges of its inpwrpeters, and returns the optimized
C code in Fig. 3.2 as output. Our method guarantees that thetegrams are mathematically
equivalent — if all program variables represent unboundtjers — but the one in Fig. 3.2 requires
a smaller bit-width to achieve the same dynamic range. Moeeifically, the new code can run on
a 16-bit microcontroller. Furthermore, our method enstines the new code does not introduce
any additional truncation error. In other words, the newecalalways more accurate than the

original one.

The optimization in our method is carried out by an SMT solasedinductive synthesipro-
cedure, which is customized specifically for efficient hamglof fixed-point arithmetic computa-
tions. Recent years of have seen a renewed interest in agphductive synthesis techniques to a
wide variety of applications (e.g., [79, 78, 44, 38, 39, 44,, B]). However, a naive application of
these techniques would not work due to their limited scétsi@nd large computational overhead.
For example, our experience with the Sketch tool [79] shdwas twhen being applied to synthe-
sizing arbitrary fixed-point arithmetic computations, @de$ not scale beyond programs with 3-4

lines of code.

The main contribution here is our proposal ofiacremental inductive synthesggyorithm, where
the SMT solver based analysis is carried out only on smakkeedions of bounded size, one at a

time, as opposed to the entire program. This incrementahggation approach allows our method

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod@?2

to scale up to programs of practical size and complexity.

Our new method differs from most of the existing methods fatiroizing arithmetic computations
in embedded software code. These existing methods, imgjutte recent ones [45, 71], focus
primarily on computing the optimal (smallest) bit-widthe fall program variables. Instead, our
method focuses on re-ordering the arithmetic operatiodsedstructuring the code, which in turn
may lead to reduction in the minimum bit-width. In other werdve are not merelfinding the
minimum bit-width, but alsaeducingthe minimum bit-width through code transformation. Due
to the use of an SMT solver based search, our method can finask#templementation solution
within a bounded search space. This is in contrast to stdraanpiler optimizations, which are

based on matching simple syntactic patterns.

We have implemented our new method in a software tool basethemopular Clang/LLVM
compiler framework [21] and the Yices SMT solver [25]. We a@awaluated the performance of
our tool on a representative set of public domain benchmeokected from embedded control
applications and digital signal processing (DSP) appbcat Our results show that the new
method can achieve a significant reduction in the minimurwimdth required by the program,

and alternatively, a significant increase in the dynamigean

To sum up, the main contributions here are:

e We propose the first method for incrementally optimizing lihear fixed-point arithmetic
computations in C/C++ code via inductive synthesis to redhie minimum bit-width and

increase the error-free dynamic range.

e We implement the new method in a practical software tool aseClang/LLVM and the
Yices SMT solver and demonstrate its effectiveness andlsitiy on a set of representative

embedded control and DSP applications.

The remainder of this Chapter is organized as follows. Irti&e8.1, we illustrate our new method
by using an example. Then we present the overall algorithi8dation 3.3. We present our

inductive synthesis procedure in Section 3.4. The impldatem details and experimental results

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod@3

1: int conmp(int Ajint B,int Hint Eint Diint F,int K) {
2: int t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12;
3 tl1l2 =3 * A

4. t10 = t12 + B;

5: tl1l1l = H << 2;

6 t9 =1t10 + t11;

7 t6 =19 >> 3;

8 t8 =3 * E

9: t7 =18 + D

10: t5 =17 - 16469;

11: t3 =1t5 + t6;

12: t4 =12 * F;

13: t2 =13 - t4;

14: t1 =12 >> 2;

15: t0 =11 + K

16: return tO;

17:}

Figure 3.1: The original C program for implementing an endezticontroller.

are given in Section 3.5 and Section 3.6, respectively. Wiewerelated work in Section 3.7, and

finally give a summary in Section 3.8.

3.1 Motivating Example

We illustrate the overall flow of our method by using the ex#amp Fig. 3.1. Our method takes

this program and a configuration file that defines the valugesrof all parameter variables as
input, and returns the program in Fig. 3.2 as output. It staytparsing the original program and
constructing an abstract syntax tree (AST). Each programabla in Fig. 3.1 corresponds to a
node in the AST. The root node of the AST is the return valudefdrogram. The leave nodes are

the input parameters.

The AST is first traverseforwardly, from the parameters to the return value, to compute the
value ranges. Each value range ig1a@n, max) pair for representing the minimum and maximum
values of the node. They are computed by using a symbolieranglysis [70]. Then, the AST is
traversedackwardly from the return statement to the entry statement, to itletite list of AST
nodes that may overflow or underflow when using a reduced ibithwThe first overflowing node

in Fig. 3.1 is the subtraction in Line 13. Although batB andt 4 can be represented in 16 bits,

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputaiimEmbedded Software Code4

1: int conmp(int Ajint B,int Hint Eint Diint F,int K) {
2: int t0,t1,t3,t4,t5,t6,t8,t12;
3: int N1, N2, N3, N4, N5, N6, N7, N9, N10;
4. t12 = 3 « A

5. N6 =H

6 N10 = t12 - B;

7 N9 = N10 >> 1;

8 N7/ =B+ N9

9: N5 = N7 >> 1;

10: NAd = N5 + N6;

11: t6 = N4 >> 1;

12: t8 =3 * E;

13: N3 =18 - 16469;

14: t5 = N3 + D

15: t3 =15 + t6;

16: t4 =12 * F

17: N2 =14 >> 2;

18 N1 =13 >> 2;

19: t1 = N1 - N2;

20: t0 =1t1 + K

21: return tO;

22:}

Figure 3.2: Optimized C code for implementing the same eméedontroller.

the subtraction may produce a value that requires more bits.

For each AST node that may overflow or underflow, we carve aueseeighboring nodes to form
aregion for optimization The region should include the node, its parent node, itd coides, and
optionally, the transitive fan-in and fan-out nodes up t@aried depth. The region size is limited
by the capacity of the subsequent inductive synthesis droee For the subtraction in Line 13, if
we bound the region size to 2 AST node levels, the extracgdmevould include the right-shift

in Line 14 (parent node).

The extracted region is then subjected to an inductive ggiglprocedure, which generates a new
region that is mathematically equivalent to the extractggian butoverflow/underflow freeFor

Line 13 in Fig. 3.1, the extracted region and the new regiersaown side by side as follows:

t2 =t3 - t4; N2 =t4 >> 2;
tl =t2 > 2; --> N1 =t3 >> 2;
tl = N1 - N2;

That is, instead of applying right-shift to the operandeftubtraction, we apply right-shift first.

Because of this, the new region needs a smaller bit-widthdalaverflow.

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod@5

However, it is important to note that the new region is noteals/better, because sometimes it may
introduce additional truncation errors. Consitdér= 2, t4 = -2 as atest case. We haye3

- t4)>>2 = land(t3>>2 - t4>>2) = 0. The newregion may lose precision if the two least
significant bits (LSBs) of 3, t 4 are not zero. Therefore, an integral part of our new optitiona
method is to synthesize a new region only when it does natdoire additional truncation errors
that affect the final output. For this reason, we perform adation error margin analysis to
identify, for each AST node, the number of LSBs that are inemakin deciding the final output.
For Line 13, the two LSBs of both3 andt 4 can be ignored. Therefore, the truncation error

introduced above will not affect the final output.

Since the new region is strictly better, the original ASTpslated by replacing the extracted region
with the new region. After that, our method continues to tdgnhe next node that may overflow
or underflow. The entire procedure terminates when it is myéo possible to optimize any
further. In the remainder of this section, we provide a maitled description of the subsequent

optimization steps.

After optimizing the subtraction in Line 13, the next AST moithat may overflow is in Line 10.

The extracted region and the new region are shown side byasittdlows:

t7 =t8 + D t8 - 16469;
t5 t7 - 16469; --> t5 = N3 + D

Our analysis shows that variable8, D and constant6469 all have zero truncation error mar-
gins. The new region does not introduce any additional &tion error. Therefore, the original

AST is updated with the new region.

The next AST node that may overflow is in Line 6. The extractgian and the new region are

shown as follows:

t9 =t10 + t11; N6 = t11 >> 2;
t6 =t9 >> 3; N5 = t10 >> 2;
--> N4 = N5 + N6;

te = N4 >> 1;

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod@6

The truncation error margins are 2 fiot0 and 2 fort 11. Therefore, the truncation error margin
for t 9 is 2, meaning that the two LSBs may be ignored. Since the ngwnas strictly more

accurate, the original AST is again updated with the neworegi

The next AST node that may overflow is in Line 4. The extractgian and the new region are

shown as follows:

t10 = t12 + B; N10 = t12 - B;

N5 = t10 >>2, N9 = N10 >> 1;
--> N7 =B + N9;

N5 = N7 >> 1

Notice that this extracted region consists of a node thatasrésult of a previous optimization
step. The truncation error margins are 0 fdr2 and O forB. The new code region does not
suffer from the same truncation error that would be intraduby N5 = (B>>2 + t 12>>2),

because the truncation error is not amplified while beingagated to the final result. Instead, it

is compensated by the addition®&f

The last node that may overflow is in Line 5 of Fig. 3.1. The &otied region and the new region

are shown as follows:

t1l = H << 2;
N6 = t11 >> 2; --> N6

I
£

By now, all arithmetic operations that may overflow are ojed. The new program in Fig. 3.2
can run on a 16-bit microcontroller while still maintainitige same accuracy as the original
program running on a 32-bit microcontroller. Another wayldok at it is that, if the optimized
code were to be executed on the original 32-bit microcoletrat would have a significantly larger

dynamic range.

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod@7

3.2 Fixed-point Notations

We follow [88] to represent the fixed-point type by a tugke N, m), wheres is the sign bit
(1 for signed and O for unsigned) is the total number of bits or thieit-width, andm is the
number of bits representing the fractional part. The nunadbdxits representing the integer part
isn = (N — m). Different variables and constants in the original progi allowed to have

different bit representations, but all of them should hdneegame bit-widthV.

Signed numbers are represented in the stanwa® complemenform. For an/N-bit numbera,

which is represented by bit-vectok_; zy_1 ... g, its value is defined as follows:

N-2

1 N-1 7
a:2—m>< (—2 xN_1+;2xi> ,
where z; is the value of the'" bit. The value ofa lies in the rangg—2",2" — 2=™]. If a
number to be represented exceeds the maximum value, thibdeevan overflow If a number
to be represented is less than the minimum value, there eéitunderflow If the number to be
represented requires more designated fractional bitsithahere will be aruncation error The

maximum error caused by truncatior2is™.

We define thestepof a variable or a constant as the number of consecutive LsBsatways have
the value zero. For example, the number 1024 hsie@®, meaning that nine of the LSBs are zero.

On the other hand, the number 3 hastepO.

3.3 Overall Algorithm

The overall flow of our method in shown in Algorithm 1. The infncludes the original program
and the value ranges of all the parameter variables. FiesipvokeCOMPUTERANGES to compute
the value ranges of all non-leave AST nodes. Then, we inecakePUTEIGNOREBITS to compute

the truncation error margins (LSBs whose values can be @ghdor all AST nodes. Finally, we

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod@8

compute the bit-widthigv1) required by the original program to run within the givenunpange.

Algorithm 1 Optimizing the program within its input range.
1: OPTIMIZEPROGRAM (prog, p-ranges) {
2. ranges < COMPUTERANGES(prog, p_ranges);
3. ig_bits + COMPUTE GNOREBITS(prog);

4: bwl < COMPUTMINBITWIDTH(prog, ranges);

5.

6

7

8

while (true){
bw?2 + bwl —1;
for each (Noden € prog that may overflow or underflow))
: reg < EXTRACTREGION(prog,n);
9: new_reg < SYNTHESIZE(reg, bwl, bw2, ranges, ig_bits);

10: if (new_reg does not existpreak;

11: REPLACEREGION(prog, reg, new_reg);
12: }

13: bwl + bw2;

14: }

15: return prog;

16: }

After the bit-width of the original programb{1) is determined, we enter the while-loop to iter-
atively optimize the program. In each iteration, we try tduee the bit-width fronmbw1 to bw?2.
The loop terminates as soon as a call to the inductive syistpescedure fails to return the new

region.

Within each loop iteration, we search for all nodes that magribow or underflow when the new
bit-width (bw?2) is used. We process these nodes in a breadth-first sear&) @éer, i.e., from
the return value of the program to the parameter variables.e&ch node, we invokexTRAC-
TREGION to extract a neighboring region and then invoke the indecsynthesis procedure. If
successful, the inductive synthesis procedure wouldmeturew region, which is mathematically
equivalent to the extracted region but would not overflowraderflow. It also ensures that the new
region would not introduce additional truncation errortekfthe new region is found, we use it to

replace the extracted region in the program.

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod@9
3.3.1 Region for Optimization

The size of the extractegion affects both the effectiveness and the computational eaetiof
the inductive synthesis procedure. The minimum extractgibn should include the erroneous
node and its parent node. Since we follow the BFS order, thenpaode must have no overflow
or underflow since it is already tested negative or optimiz&ince in the original program,
the parent operation restores the overflowed value creatélgei overflowing node back to the
normal operation range, when the parent node is includdtkinggion, it is more likely to find an

alternative implementation that is more accurate thanxtraeted region.

In general, a larger extracted region allows for more opputy to find a suitable new region.
The maximum extracted region — if it were not for the limitegpability of the SMT solver —
would be the entire input program. This is equivalent to giogl inductive synthesis tools such as
Sketch [79, 78] to the entire program, provided that the figetht arithmetic optimization problem
is modeled in the Sketch input language. In practice, howeteh a monolithic optimization
approach seldom works. Indeed, our experience with thecBkebl shows that it cannot scale

beyond arbitrary fixed-point arithmetic computation coéie-8 lines.

Therefore, in addition to implementing our customized ictdke synthesis procedure, which can
efficiently handle fixed-point arithmetic computations, aleo bound the size of the extracted
region so that inductive synthesis is applied only in thetextof incremental optimization. More

specifically, the extracted region is bounded to an AST withast 5 node levels, which represents

up to 63 AST nodes.

3.3.2 Truncation Error Margin

We compute thetepand theignore bitsfor all AST nodes recursively. During the optimization
process, the calculatediepwill be used to compute the truncation error margin (the L®Bsse
values can be ignored). Our method will leverage the truocatrror margins to obtain the best

possible optimization results.

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputaiimEmbedded Software Cod&0

First, we determine thetepof each leave node based on the definition in Chapter 2. Irrgetiee

stepmay originate from &hift-leftoperation, atepin a parameter variable, orséepin a constant.

We compute the step of each internal AST node as follows:

o step(x xy) = step(x) + step(y);

o step(x +y) = min(step(x), step(y));
o step(z — y) = min(step(z), step(y));
o step(x << ¢) = step(x) + ¢;

o step(x >> ¢) = mazx(step(z) — ¢,0).

Theignore bitsare those consecutive LSBs that can be ignored during thmiaption process. If
these bits are truncated in the new region, for example, moo @ll occur in its output. By taking
into account these bits in the optimization process, we ake @ synthesis more compact new

regions.

To clarify this, consider the example in Fig. 3.3, where theacted region is shown inside the
dotted box. We start by analyzing the AST to determinediepof each node. For the purpose
of optimizing the extracted region, we need to know shepof the region’s inputs, which are the
nodes labeled asandb. Due to the shift-left operations, tis¢epof « is 4, while thestepof b is 3.
Considering thesstepvalues, we determine that, when optimizing the extractgire we have
a “credit” of 3 bits to ignore. In other words, we have the &tem to truncate up to 3 consecutive
LSBs of the two inputsd andb) without decreasing the accuracy of the result. Becausasifwe

are able to synthesize the new region as shown in Fig. 3.4.

Notice that, even if we do not consider the ignore bits, outhoe can still synthesize a new region
to remove the overflowing node in the above example. Howevstch case, the extracted region
would have to be larger. That is, the extracted region woelketrto include all the AST nodes in
Fig. 3.3. The synthesized new region would include all th& ABdes in Fig. 3.4. However, this

would also lead to a significantly longer synthesis time.

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod&1

Figure 3.3: The extracted region. Figure 3.4: The synthesized region.

3.4 The Inductive Synthesis Procedure

At the high level, our inductive synthesis procedure caesistwo steps: (1) run a set of test cases
on the extracted region, and based on the results, genersw gegion that is equivalent to the
extracted region at least for the set of test cases; (2) dfi¢o& two regions are equivalent in the

full input range. If they are not equivalent, block this i@gibad solution) and try again.

Algorithm 2 shows the pseudo code of our synthesis procedulmeeh computes a new region
(new_reg) of bit-width bw2, such that it is equivalent to the original regioreq) of bit-width
bwl, under the value ranges specifiedrimges while considering the truncation error margins
specified inig_bits. The procedure starts by initializinjockedRegionandtestSeto empty sets,
wheretestSetonsists of the test cases used for inductively generagugssing) a new region, and
blockedRegionsonsists of the previously explored regions that fail theiemjence check. The
procedure initializes theizeof the new region to 1, and then enters the while-loop to titesky
search for a new region of increasingly larger size. Wsieaexceeds a predetermined bound, we

have proved that no solution exists in this search space.

SubroutineSENREGION uses an SMT solver to inductively generate a new region doaiséhe test
examples inestSetand the already explored regionshiockedRegionsSubroutineCOMPDIFF
formally checks the equivalence of the extracted regiem)(and the new regionngew_r), and

returns a concrete test if they are not equivalent.

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod&2

Algorithm 2 Inductively synthesizing the new code region.
1: SYNTHESIZE (reg, bwl, bw2,ranges, ig_bits) {

2: blockedRegions- { };
3: testSet{ };
4: size <+ 1;
5: while (size < MAX _REGION.SIZE) {
6: newr < GENREGION(reg, bwl, bw2, size,blockedRegiongestSe};
7. if (new_r exists){
8: test + COMPDIFF(reg, new_r, bwl, bw2, ranges, ig-bits);
9: if (test exists){
10: blockedRegions- blockedRegions/{new_reg};
11: testSet— testSetU{test};
12: }
13: else
14: return new_r;
5. }
16: else
17: size <+ size + 1;
18: }
19: return no_solution;
20: }

3.4.1 Constructing the New Region Skeleton

First, we generate skeletorof the new region, which is a generalized AST capable of mspréng
any linear arithmetic equation up to a bounded size. In tH8§ Aeach leave node is either a
constant or any of the set of input variables of the extractgtbn Each internal node is any of
the linear arithmetic operations,(+, -, >>, <<). Theroot node is the result of the arithmetic
computation and should compute the same result as the owdgetin the extracted region. Fig. 3.5
shows an examplskeletonof 7 AST nodes. HereQp represents any binary arithmetic operator

andV'|C represents a leave node (either a variable or a constant).

For each AST node in thekeleton we assign an auxiliary variable called teelector whose
value determines the node type. For example, a leave no@elé1), which may be variablg1i,

variablev2, or constantCl, is represented as follows:

((LNodel == V1) && (sell == 0) ||
(LNodel == V2) && (sell == 1) |]
(LNodel == Cl) && (sell == 2))

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod&3

Figure 3.5. Skeleton of 7 AST Figure 3.6: Synthesized new re-
nodes. gion.

where the integer value of selector variabkd 1 ranges from 0 to 2. Similarly, a generalized
internal node I(Node3), which may be an addition or a subtraction.ddode1 andLNode2, is

represented as follows:

((1 Node3 == LNodel+LNode2) && (sel2 == 0) ||
(1 Node3 == LNodel-LNode2) && (sel2 == 1))

where the integer value of selector variabt 2 ranges from 0 to 1. The actual node types in the
skeletorare determined later, when we encode the skeleton into anfSivula, and then call the

SMT solver to find a set of suitable values for all these seteairiables.

3.4.2 Inductively Generating the New Region

To generate the new region, we need a representative sestafases for the extracted region.
These are test values for the input variables of the regimhsaould include both the corner cases
and the intermediate values. Since the arithmetic computaare linear, we construct the corner
cases by including the minimum and maximum values of all iryamiables as defined iranges
Additional test values are generated by taking semi-egtadt intermediate values between values

in the corner cases.

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputaiimEmbedded Software Cod&4

We create an SMT formulé such thatd is satisfiable iff the resulting new region — induced by
a satisfying assignment to aklectorvariables — is mathematically equivalent to the extracted

region, but does not overflow or underflow.

® = (I)reg A (I)skel A (I)samel A (I)sameO A (I)tests A (I)blockeda

where the subformulas are defined as follows:

e Extracted region&,.,): It encodes the transition relation of the extracted nedig using
bit-vector arithmetic, where the bit-width lsvl

e New region skeletond,,.;): It encodes the transition relation of the skeleton by giiit-

vector arithmetic, where the bit-width msv2

e Same input valuesi,,..;): It asserts that the input variables of the two regions rahate

the same values.

e Same output valuely,,,...0): It asserts that the output variables of the two regionst imaxge

the same value.

e Test casesd;..;;): It asserts that the input variables must adopt concrdteesdrom the

given test cases.

e Blocked solutions®,,,...q): It asserts that theelectorvariables should not take values that

represent any previously explored (bad) solution.

If ® is unsatisfiable, no solution exists in the bounded searekbespin this case, we need to
increase theizeof the skeletonand try again. If® is satisfiable, we have computed a candidate
new region. As an example, consider the first extracted regidsection 3.1. The new region

generated from the skeleton in Fig. 3.5 is shown in Fig. 3.6.

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod&5
3.4.3 Checking the Equivalence of the Regions

The candidate new region is guaranteed to be equivalenetextinacted region over the given set
of test cases. However, they may not be equivalent over thanfwt range. Therefore, the next
step is to formally verify their equivalence over the fulpirt range. Toward this end, we create
another SMT formulal, which is satisfiable iff the two regions anet equivalent; that is, if there

exists a test case that can differentiate them. Formiikdefined as follows:
U = (I)reg A (I)new_reg A (I)samel A (I)diffO A (I)ranges A (big_bitsa
where the subformulas are defined as follows:

e New region (..., .¢,): It €ncodes the transition relation of the candidate neyiorein bit-

vector arithmetic, where the bit-width lsv2

e Different output values®,;;s0): It asserts that the output variables of the two regionghav

different values.

e Value ranges®,.,.q.s): Itasserts that all input variables should stay withinrthee-computed
value ranges. We are not interested in checking the equisalef the two regions outside

the designated value ranges.

e Ignore bits @,,,:15): It asserts that the LSBs as specified in the ignore bitsldralLibe set
to zero. This allows us to ignore the differences betweenwioeregions for LSBs within

the truncation error margins.

If U is unsatisfiable, it means that the two regions are matheailgtiequivalent within the given

input range and under the consideration of the ignore bits.

If W is satisfiable, the candidate new region is not correct. idhse, we add it to thaockedRe-
gions and then try again. The blocking of an incorrect solutidiofes the counter-example guided

inductive synthesis algorithm [79, 80], where the blockellitons are encoded as an additional

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod&6

constraintin the SMT formula, by adding an extra pair of astedregionand new regioskeleton
with the blocked assignment selectorvariables. It ensures that, when the SMT solver is invoked

again to find a candidate new region, the same solution wilbeaeturned.

3.5 Implementation

We have implemented our new method in a software tool fornuping the C/C++ code of
embedded control and DSP applications based on the Claviylldompiler framework [21] and
the Yices SMT solver [25]. Our tool has two modes: the whalegpam optimization mode and
the incremental optimization mode. The two modes diffeyanithe size bound imposed on the

extracted region.

When the bound is set to an arbitrarily large number, our taok in the whole-program op-
timization mode. This makes it somewhat comparable to thmulao inductive synthesis tool
called Sketch [79, 80], provided that our new reggikeletonis carefully modeled in the Sketch
input language, with theelectorvariables defining the “integer holes” for Sketch to fill. Bedf
implementing our own inductive synthesis procedure, weeteplored this approach. However,
it turns out to be not scalable: synthesizing a new regioh wisize bound of more than 2 would
cause Sketch to quickly run out of the 4 GB memory. We belibat there are two reasons for
this. First, the performance of Sketch is not optimized famdiing arbitrary combinations of linear
fixed-point arithmetic computations. Second, inductivetsgsis, in general, may not be able to

scale up to arbitrarily large arithmetic computation pesgs.

Due to the scalability problem encountered by using Sketeh,have implemented our own
inductive synthesis procedure directly using the Yices Sdlver, which is designed for efficient
handling of fixed-point arithmetic operations, e.g., byigesig SMT encoding schemes for ex-
ploiting the AST structures encountered in this type of aggpions. Our experimental evaluation
shows that the new procedure is significantly more efficieahtSketch. Instead of a size bound

of 2, it now can routinely optimize thekeletorwith a size bound of 5 (representing up to 63 AST

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod&7

nodes). Nevertheless, this improvement alone is not seffidor supporting the whole-program

optimization.

Instead, we propose an incremental optimization methaodaghglies inductive synthesis only to
individual regions of a bounded size. More specifically, agerset the maximum bound fehift-
right andshift-leftoperations to 4, and the maximum level of AST nodes in the egon skeleton
to 5. By incrementally optimizing one extracted region aihaet our method is able to avoid the
scalability bottleneck imposed by the SMT solver, and tfogeecan be applied to programs of

practical size and complexity.

3.6 Experimental Results

We have evaluated our tool on a set of public domain bencheraknples. The experiments are

designed to answer the following three questions:

e How much can our method reduce the minimum bit-width requfoe the program to run

in the given input range?

e How much can our method increase the dynamic range of thegroépr the given bit-
width?

¢ If both the original and the optimized programs are forcedutowith a reduced bit-width,

what is the difference between their fixed-point specificlenmpentation errors?

3.6.1 Benchmarks

Our benchmark includes a set of public domain C programs mabbezlded control and DSP
applications. They come from various sources includingepagextbooks, and the output of code
generation tools. The sizes of the programs range from 2% lii code (LoC) to 131 lines, with

an average LoC of 79. The number of fixed-point arithmeticatpens on average is 58. For the

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod&8

kind of cyber-physical systems (CPS) software targetedudsyew method, these are programs of

realistic size and complexity.

Table 3.1 shows the statistics of each benchmark exampleidimg the name, the LoC, and the

number of arithmetic operations.

Table 3.1: Statistics of the benchmark C programs.

Name of the Benchmark Line of Code| Arithmetic Operationg
Sobel Image filter (3x3) 42 28

Bicycle controller 37 27
Locomotive controller 42 38

IDCT (N=8) 131 114

Control. Impl. 21 8

Diff. image filter (5x5) 131 77

FFT (N=8) (no DC component) 112 82

IFFT (N=8) 112 90

The first test case, taken from [69], is a 3x3 Sobel digitaffilbat is widely used in image process-
ing applications. The second test case, taken from [71]bisycle controller optimally synthe-
sized for a custom-designed microprocessor with doulzledsnternal registers. The third test case
is a locomotive controller generated by using Fixed Pointiddr and Real Time Workshop of the
Matlab toolkit [57]. The fourth test case, taken from [4%]ain inverse discrete cosine transform
(IDCT), which is widely used in mobile communication and geacompression applications. The
fifth test case is the fixed-point version of a control rule liempentation from [57]. The sixth
test case is a 5x5 kernel sized difference image filter [18fe Seventh test case is a fast Fourier
transform (FFT) implementation, where the floating-poietsion was taken from [86] and then
converted to fixed-point, by changing dlbubl e variables intd nt variables without modifying
or reordering any of its instructions. The eighth test casthé inverse fast Fourier transform
(IFFT) for test case 7. None of the benchmarks was modified their original forms in any way

to give performance advantage to our method.

All experiments were conducted on a machine with a 3.4 GHA I#t2600 CPU, 3.3GB of RAM,
and 32-bit Linux.

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Cod&9

Table 3.2: Increase in the overflow/underflow free input eang

benchmark | bit original optimized %
Sobel Imagd 32 [0, 16320] [-65536, 49152] 602
Bicycle 32| [3.4%10%,3.4*10°] | [-1.0%10°, 1.0*1C°] | 194
Locomotive | 64 | [-8.7*10'8, 8.7*10'%] | [-9.2*10'8, 9.2*10'%] 5
IDCT 32 [0, 1.5%10] [0,2.1*10°] | 40
Controller | 32 In1 [0, 5.01C] In1 [-0, 6.6*10] 32
In2 [-5.0%1C%, 0] In2 [-6.6*10°,0] | 32

In3 [-5.0%1C%, 0] In3 [-6.6*1C%,0] | 32

Diff. Image | 32 [0, 1.3*10%] [0, 2.1*10] | 1515
FFT (N=8) | 32 [0, 32736] [0,32736]] O
IFFT (N=8) | 32 [0, 2.6*10F] [0,5.3*10°] | 103
Table 3.3: Increase in the overflow/underflow free outpugiean
benchmark | bit original optimized %
Sobel Imageg 32 [0, 16320] [-49184, 65504] 602
Bicycle 32| [5.3*10% 5.3*1%] | [-1.5*10°,1.5*10°] | 194
Locomotive | 64 | [-3.6*10'%, 5.0*10'%] | [-3.9*10'8, 5.2*10'%] 5
IDCT 32| [1.4*10°,2.9*10°%] | [-1.9*107,3.9*10°] | 40
Controller | 32 [0, 1.0*10] [0, 1.4*10] 32
Diff. Image | 32 [0,1.3*1C°] | [-1.0*10°, 1.1*1(] | 1515
FFT (N=8) | 32 [25600, 25600] [25600, 25600] 0
IFFT (N=8) | 32| [1.3*10%, 2.6*10°] | [-2.6*1C%, 5.3*10°] | 103

3.6.2 Results

First, we show that there is a significant increase in the tioptput range from the original
program to the optimized program, when they both use thanadidit-width. Tables 3.2 and
3.3 show the results. Column 1 shows the name of the benchn@kimns 2 and 3 show the
input (output) ranges of the original program and the opediprogram, respectively. Column 4
shows the percentage of the range increase. The increagauin(output) range spans from 0% to
1515%, with an average increase of 307%. The increase isodhe removal of the overflowing
and underflowing nodes in the original program. As a reshé#,dutput range is also increased.

Together, they lead to a significant increase in the dynaamge of the entire application.

Second, we show that there is a significant decrease in thienomm bit-width required for the

program to run without overflow/underflow errors for the givieput range. The experimental

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputaiimEmbedded Software Codeé0

Table 3.4: Increase in the minimum and average bit-widths.

Name of Original (bit-width) | Optimized (bit-width)
Benchmark Minimum | Average| Minimum | Average
Sobel image filter (3x3) 17 10.26 15 6.67
Bicycle controller 18 14.47 16 14.16
Locomotive controller 33 29.41 32 29.32
IDCT (N=8) 20 16.29 19 16.38
Control. Impl. 17 15 16 14.67
Diff. image filter (5x5) 17 11.11 13 8.09
FFT (N=8) 18 7.32 16 6.95
IFFT (N=8) 17 7.11 16 7.26

results are shown in Table 3.4. Column 1 is the name of thehmeark. Column 2 is the minimum
bit-width of the original program to avoid overflow and uniflewv, and Column 3 is the average
bit-width for all program variables. Column 4 is the minimunt-width of the new program to

avoid overflow and underflow, and Column 5 is the average tdthwfor all program variables.

Our results show that the bit-width reduction spans fromtido4 bits. Consider the Sobel Image
filter as an example. The minimum bit-width required to rua dhiginal program is 17 bits. After
optimization, it is reduced to 15 bits. This is significargchuse now the code can be executed on

a 16-bit microcontroller instead of a 32-bit microcontenjiwhich is often significantly cheaper.

To further illustrate the benefit of our new method, constdermaximum error bound in a scaled-
down version of the original program in order to downgracde llardware from 32-bit to 16-bit,

or from 64-bit to 32-bit. Table 3.5 shows the comparison leetwthe optimized program and a
scaled-down version of the original program. Column 1 isrthme of the benchmark. Column 2
is the scaling level. Columns 3 and 4 are the maximum relatik@s of the original program and
the optimized program, respectively. Our results show ti@toptimized programs have smaller

errors in all test cases.

We also show, in Table 3.6, the statistics of running ourrojztation method. Column 1 is the
name of the benchmark. Column 2 is the number of lines opéichizy the incremental inductive
synthesis procedure in the original program. Column 3 idated execution time by our method.

The data show that, by using incremental synthesis, we haepttke overall runtime down. In

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Codél1l

Table 3.5: Decrease in the maximum relative error.
Benchmark Scaling Error original | Error optimized
Sobel Image filter (3x3) 32-b— 16-b| 3.1x 1072 0.0
Bicycle controller 32-b— 16-b| 3.5%x1074 2.0%1074
Locomotive controller | 64-b— 32-b| 2.9% 1078 1.5% 1079
IDCT (N=8) 32-b— 16-b| 9.2x 1073 1.8 %1077
Control. Impl. 32-b— 16-b| 5.2x%107* 2.9%107*
Diff. image filter (5x5) | 32-b— 16-b| 1.2 1072 2.5%107°
FFT (N=8) 32-b— 16-b| 8.1% 1072 4.4%1073
IFFT (N=8) 32-b— 16-b| 8.4% 1072 3.2%1072

Table 3.6: Statistics of the incremental optimization s

Name of the Benchmark Num. Optimized Lineg Total Time
Sobel Image filter (3x3) 22 2s
Bicycle controller 2 5s
Locomotive controller 1 5m 41s
IDCT (N=8) 3 2.7s
Control. Impl. 1 46s
Diff. image filter (5x5) 23 10s
FFT (N=8) 14 1m9s
IFFT (N=8) 1 4s

fact, it is no longer directly dependent on the program giz¢ more on the number of extracted

regions and the time spent on optimizing each region.

3.7 Related Work

Our new method incrementally optimizes the fixed-pointemietic computations in an embedded
software program with the objective of reducing the minimhitawidth through code transforma-
tion, without changing the computational accuracy. Theec®ynthesis routine in our method
follows the same counter-example guided inductive progsgnthesis paradigm pioneered by
Sketch [79, 78]. However, our method is significantly diéfietin that it has an implementation that
is designed for more efficiently handle linear fixed-pointhemetic computations. Furthermore,
we apply inductive synthesis incrementally to regions obarizled size, one at a time, as opposed

to the entire program.

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Codel2

Gulwaniet al.[39] propose a method for synthesizing bit-vector progrénms a linear reference

code by leveraging a set of user defined library function®ifminethod does not use incremental
inductive synthesis, and the largest synthesized codetezpm their paper has 16 lines of code,
for which their tool takes over 45 minutes. Jbial. [44] use the same symbolic encoding as

in [39] but replace the logical specification of the desireagpam by an input-output oracle.

The SCIDUCTION tool implemented by Jha [45] can automalycainthesize a fixed-point arith-
metic program from the floating-point arithmetic code. Huere the focus of this tool is solely
onfindingthe smallest possible bit-width astioosinghe best fixed-point representation for each
program variable. They have not attempted to change thestagigture or synthesize completely

new code for the purpose aéducingthe minimum bit-width.

Another closely related work is the linear fixed-point ogtiation method proposed in [71], which
relies on using a Mixed Integer Linear Programming (MILHysoto minimize the error bound by

changing the fixed-point representation of the program.i\dheir method can only optimize the
bit-vector representations of the program variables, butat change the structure of the original

code or synthesize new completely new code in order to retthgckit-width.

Darulovaet al.[23] proposed a method for compiling real-valued arithmetipressions to fixed-
point arithmetic programs to minimize the discrepancy leetwthe fixed-point values and the real
values. Their method uses genetic programming, which msithe order of the original arithmetic
expressions to find better fixed-point representations. Mheéhod differs from ours in three
aspects. First, their method takes a real-valued expressiblatlab format as input and returns
a fixed-point arithmetic program as output whereas our ntettamsforms an existing fixed-point
C program into another fixed-point C program — this also magerimental comparison of the
two approaches difficult to conduct. Second, their methdds®n genetic programming, which
consists of random mutation and filtering of the mutants,r@&® our methods relies on exhaustive
search via an SMT solver. Third, their method does not emplosgemental inductive analysis,

which is one of the main contributions of our work.

Our new method is also related to the various superoptimizaéechniques that are becoming

Hassan Eldib Chapter 3. Optimizing Arithmetic ComputafimEmbedded Software Codél3

popular in compilers in recent years [46, 8, 74]. Superopens are more powerful than conven-
tional compiler based optimizations that rely on matchingwn code patterns and then applying
predetermined transformation rules. In contrast, sugenigers often perform a more involved
search in the implementation space of a set of valid instnstequences, for example, to optimize
performance-critical inner loops. However, to the bestwfknowledge, there has not been any
existing superoptimizer that can be used to increase the feee dynamic range, or to minimize

the minimum bit-width, of fixed-point arithmetic computatis in embedded C programs.

3.8 Summary

We have presented a new method for incrementally optimittieglinear fixed-point arithmetic
computations of an embedded software program via codeftramation to reduce the required
bit-width and to increase the dynamic range. Our method $&dan judicious application of
an SMT solver based inductive synthesis procedure to caglen® of bounded size. We have
implemented our method in a software tool and evaluated & eat of representative embedded
programs. Our results show that the new method can signifjoaaluce the bit-width and handle

programs of realistic size and complexity.

Chapter 4

Detecting Power Side-Channel Leaks in

Cryptographic Software

Security analysis of the hardware and software systemsemmghted in embedded devices is
becoming increasingly important, since an adversary masg Ipaysical access to such devices
and therefore can launch a whole new class of side-chantaalkat which utilize secondary
information resulting from the execution of sensitive altfons on these devices. For example,
the power consumption of a typical embedded device exegtiia instructiort np=t ext dkey
depends on the value of the sedtety [56]. This value can be reliably deduced using a statistical
method known aslifferential power analysi$DPA [51, 81]). In recent years, many commercial

systems in the embedded space have shown weaknesses sgetinattacks [66, 59, 7].

A common mitigation strategy against such attacks is usanglomization techniques to remove
the statistical dependency between the sensitive dataha@nside-channel information. This can
be done in multiple ways. Boolean masking, for example, @aseXOR operation of a random
numberr with a sensitive variable to obtain a masked (randomized) variahklg; = a & r [7, 68].
Later, the sensitive variable can be restored by a second ¥@#ration with the same random
number:a,, & r = a. Other randomization based countermeasures have usdd/@adasking

(@, = a + r mod n), multiplicative maskingd,,, = a * r mod n), and application-specific code

The content of this chapter is originally published in [31]

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 45

transformations such as RSA blinding,(= ar® mod N).

However, designing and implementing such side-channeiteomeasures are labor intensive and
error prone, and currently, there is a lack of formal vertfma tools to evaluate how secure a
countermeasure really is. Software countermeasures dieyparly challenging to design, since
the source of the information leakage is not the cryptogmapbftware but the microprocessor
hardware that executes the software. From the perspedtaxecage software developers — who
may not know all the architectural details of the device s difficult to predict the myriad possible
ways in which side-channel information may be leaked. Farrtfore, bugs in implementation can

also break an otherwise secure countermeasure.

In this chapter, we propose a new method for verifying theisgcof randomization based coun-
termeasures against side-channel attacks. Our methodans8MT solver to check if any in-
termediate computation result of a software statisticaéipends on the sensitive data. Since the
security of the countermeasure against power analysiskatta a statistical property, the problem
cannot be solved by conventional techniques such symbadideinchecking based on Binary
Decision Diagrams (BDDs) and satisfiability (SAT) solve?2[54, 43, 82, 84, 87]. Although
in the literature, there exists some work on tackling thebfam using type-based information
flow analysis techniques [1, 72], these methods are oftenlyogenservative, leading to the
classification of countermeasures as secure when they ardmaoontrast, our method always
returns the precise result. Although Bayetlal.[10] also used a constraint solver in their CHES13
method, its analysis is significantly less precise than.olirey only check whether a variable is
maskedby some random variable, but do not check whether jtegfectly masked.e., whether
the probability distribution is dependent on the sensitigga. To the best of our knowledge, our
method is the first automated verification method that chemkserfect maskingThis is important
because wittorder-d perfect masking, an implementation is provably securersgainy type of

order-d (and lower-order) power analysis attack [47].

We have implemented our new method in an automated verdicaipl based on the Clang/LLVM

compiler [21] and the Yices SMT solver [25]. We encode thefwation problem into a series of

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 46

guantifier-free first-order logic formulas, whose satigfigbcan be decided by Yices. Our SMT
encoding scheme is significantly different from the onesluse standard verification methods,
because thperfect maskingroperty checked by our tool is statistical in nature. Fanparison,
we also implemented the CHES13 method [10] in our tool. Weelenducted experiments on a
large set of recently proposed countermeasures, inclutlangnes applied to AES and the MAC-
Keccak reference code submitted to Round 3 of NIST's SHAmmetition. Our results show that
the new method is effective in detecting flaws in the maskimglémentation. Furthermore, the

method is scalable enough to handle programs of practmalsid complexity.

The remainder of this section is organized as follows. Wesgameour SMT based verification
algorithm in Section 4.1. Then, we illustrate the entireifiGation process using an example in
Section 4.2. We present our incremental verification meth&#ction 4.3, which further improves
the scalability of our SMT-based method. We present our ixqaatal results in Section 4.4, We

review related work in Section 4.5, and finally provide a suaryrin Section 4.6.

4.1 SMT-based Method for Verification of Perfect Masking

We first illustrate the overall flow of our verification methading the program in Fig. 4.1. The
program is a masked version ok— (k1 A k2), wherek1l andk2 are two secret keys,1 andr2
are random variables with independent and uniform distidbun {0, 1}, andc is the computation
result. The objective of masking is to make the power condgiommwf the device executing this
code independent from the values of the secret keys. Thikinggscheme originated from Blomer
et al. [16]. The return valueis logically equivalenttdk1 A k2) @ (r1 A r2). The corresponding
demasking function, which is not shown in the figure;ds(r1 Ar2). Therefore, demasking would

produce a result that is logically equivalent to the desuade (k1 A k2).

Our method will determine if all the intermediate variabtdshe program are perfectly masked.
We use the Clang/LLVM compiler to parse the input Booleangpsimn and construct the data-

flow graph, where the root represents the output and the tdsrepresent the input bits. Each

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 47

1 compute(bool k1, bool k2, bool ri1, bool r2){
2 bool nl,n2,n3,n4,n5,n6,n7,n8,c;
3 nl =k1@ri;

4: n2 =k2Pr2;

5: n3 = nl An2;

6: n4d = k2@ r2;

7 n5 = rl1 A n4;

8: né =kl @ri;

9: n7 = r2 A n6;

10 : n8 = nb G n7;

11: ¢ =n3 @ n8§;

12 return c;

13: }

Figure 4.1: Example: the program under verification (lefifl &s graphic representation (right).

internal node represents the result of a Boolean operafiam® of the following types: AND,

OR, NOT, and XOR. For the example in Fig. 4.1, our method staytparsing the program and
creating a graph representation. This is followed by trsingrthe graph in a topological order,
from the program inputs (leaf nodes) to the return valuet(node). For each internal node, which
represents an intermediate result, we check whether irfegiy masked. The order in which we

check the internal nodes is as followsl, n2, n3, n4, n5, n6, n7, n8, and finally,c.

4.1.1 The Theory

As the starting point of the verification process, we marktad plaintext bits inz as public, the
key bits ink as secret, and the mask bitsrias random. Then, for each intermediate computation
result/(z, k,) of the program, we check whether it is perfectly masked.dvalg Definition 1,

we formulate this check as a satisfiability problem as folow
Az 3k, k. (ZTE{O,l}SI(xa k,r) # SreqoayI(x, k:’,r))

Here, z represents the plaintext bits,and £’ represent two different valuations of the key bits,
andr is the random number uniformly distributed in the domginl }*, wheres is the number of

random bits. For any fixedv(k, k'),

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 48

® Y,cq01y:1(x, k,7) is the number of satisfying assignments fot, &,), and

® X cqo1y:L(x, k', r) is the number of satisfying assignment fgr:, £/, r).

Assume that is uniformly distributed in the domaif0, 1}*, the above summations can be used

to indicate the probabilities af being logical 1 under two different key valuesandk'.

If the above formula is satisfiable, there exists a plainteand two different keysk(, k) such
that the distribution of (x, k, r) differs from the distribution of (z, ',). In other words, some
information of the secret key is leaked throughand therefore we say thdtis not perfectly
masked. If the above formula is unsatisfiable, then suchnmédtion leakage is not possible, and

therefore we say thdtis perfectly masked.

Another way to understand the above satisfiability problertoilook at the negation. Instead of

checking thesatisfiabilityof the formula above, we check thalidity of the formula below:
Vo Yk, K. (Ere{m}s](x, k,r) =Yy I (x, K, 7"))

If this formula is valid — meaning that it holds for all vali@is ofz, k£ andk’ — then we say that

is perfectly masked.

4.1.2 The Encoding

Let & denote the SMT formula to be created for checking intermedwsult/ (z, k,r). Let s be
the number of random bits in Our encoding method ensures tkiais satisfiable if and only if

is not perfectly masked. We defideas follows:

251 25—1
b = (/\ \Iﬂ];> AN (/\ \Iﬂ];,/) A \Iiji A ‘Ilsum A ‘Ildiﬁ)
r=0

r=0

where the subformulas are defined as follows:

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 49

SAT? |
Code under Code under Code under Code unde
test test test test
T I | |
[[‘
k1 k2 rlr2 k1k2 rlr2 k1k2 rirp k1 k2 r* r%
00 0 1 10 11
[
\ A L \
Code under Code under Code under Code unde
test test test test
I I |
\ \ |
k1’ k2’ r1|r2 k1 k2’ rlr2 k1 k2’ r1r2 k1’ k2’ rj_‘ 2
00 0 1 10 11

Figure 4.2: SMT encoding for checking the statistical dejgzice on secret datal, £2).

e Program logic (¥7}): Each subformulaj, encodes a copy of the functionality ofz, &,),
with the random variable set to a concrete value {i, ..., 2° — 1} and the key set to value

k or k’. All copies share the same plaintext variable

e Boolean-to-int (Vy;): It encodes the conversion of the Boolean valued output efk, r)
to an integer (true becomes 1 and false becomes 0), so thate¢her values can be summed

up later to comput&?_, I (x, k, r).

e Sum-up-the-1s(¥,,,,): It encodes the two summations of the logical 1s in the ostptithe

2¢ program logic copies, one fdi(z, k, r) and the other fof (z, &', r).

o Different sums (U4 /): It asserts that the two summations should have differesutit®

Fig. 4.2 is a pictorial illustration of our SMT encoding fan atermediate result(k1, k2,71, r2),

wherekl, k2 are the secret key bits and, r2 are two random bits. Here, the first four boxes,
encoding??, ... U$ are the four copies of the program logic for key bit$#2), with the random
bits set to 00, 01, 10, and 11, respectively. The other fouespencodingt?,, ..., U, are the

four copies of the program logic for key bitg1(k2’), with the random bits set to 00, 01, 10, and

Hassan Eldib Chapter 4. Detecting Power Side-Channel LieaRs/ptographic Software 50

11, respectively. The formula checks for security agaimst-brder DPA attacks — whether there

exists two sets of keyk{ k2andkl’ k2") under which the distributions dfare different.

4.1.3 An Example

Consider node8 in Fig. 4.1 as the node under verification. The function isreifiasn8 = (r1
& (k2 xor r2)) xor (r2 & (k1 xor r1)). The SMT formula that our method generates

— by instantiating 1r 2 to 00, 01, 10, and11 — is the conjunction of all of the formulas listed below:

ng_1 (0 & (k2 xor 0)) xor (0 & (k1 xor 0)) /1 four copies of I(k, r)
n8_2 (0 & (k2 xor 1)) xor (1 & (k1 xor 0))

n8_3 = (1 & (k2 xor 0)) xor (0 & (k1 xor 1))

n8_4 = (1 & (k2 xor 1)) xor (1 & (k1 xor 1))

n8_1’ (0 & (k2 xor 0)) xor (0 & (k1" xor 0)) /1 four copies of I(k',r)
ng_ 2" = (0 & (k2" xor 1)) xor (1 & (k1" xor 0))

n8_3 = (1 & (k2" xor 0)) xor (0 & (k1" xor 1))

ng_4 = (1 & (k2" xor 1)) xor (1 & (k1" xor 1))

(C nunk = 1) &n8_1) | ((nunl=0) & not n8_1) /1 convert bool to integer
((nun2 = 1) &n8_2) | ((nhunk=0) & not n8_2)

((nunB =1) &n8_3) | ((nhunB=0) & not n8_3)

((numd = 1) &n8_4) | ((num=0) & not n8_4)

((nunl” =1) &n8_1") | ((num’=0) & not n8_1") /1 convert bool to integer
((nung’ 1) &n8_2") | ((nunk’=0) & not n8_2")

((nunB =1) &n8.3) | ((nunB =0) & not n8_3")

((numd =1) &n8_4") | ((numd =0) & not n8_4")

(numl + num2 + nunm8 + numd) != (numl’ + nun®2’ + nunB + nun¥#’) /'l the check

We solve the conjunction of the above formulas using antagfghelf SMT solver called Yices [25].
In this particular example, the formula is satisfiable. Baraple, one of the satisfying assignments
isk1k2=00 andk1’ k2’ =01. We shall show in the next section that, when the key b&98a, the
probability forn8 to be logical 1 is 0%; but when the key bits are 01, the proiiglid 50%. This

makes it vulnerable to first-order DPA attacks. Therefefeis not perfectly masked.

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 51
High-Order Attacks

For a masked code to be resistantfitst-order differential power analysis (DPA) attacks, all
the intermediate results must be perfectly masked. Howewven if each intermediate result is
perfectly masked, it is still not sufficient to reskggh-orderDPA attacks, where an adversary can
simultaneously observe more than one intermediate cormiputesults. For a masking scheme
to be resistant tawrder-d DPA attacks, we need to ensure that the joint distributiormamyf d
intermediate results (wheré = 2,3,...) is independent of the secret key. That is, for ahy

intermediate results,, . . ., I;, we check the satisfiability of the following formula:
.3k, K . (Sreqoayp S L, k1) # Sreqory S Li(z, K, 1))

Our aforementioned encoding algorithm can be easily extmd implement this new check. In
practice, most countermeasures assume that the advesasaagdess to the side-channel leakage of
either one or two intermediate results, which correspoadsdt-order and second-order attacks.
In our actual implementation, we handle both first-order sexbnd-order attacks. In our experi-
ments, we also evaluate our new method on verifying courdasures against both first-order and

second-order attacks (whefe= 1 or 2).

4.2 The Running Example

Consider the automated verification of our running examplBig. 4.1. For each internal node
1, we first identify all the transitive fan-in nodes éfin the program to form @ode regionfor

the subsequent SMT solver based analysis. In the worst tasextracted code region should
start from the instruction (node) to be verified, and covkthal transitive fan-in nodes on which it
depends. Then, the extracted code region is given to our Si&dverification procedure, whose

goal is to prove (or disprove) that the node is statisticaltiependent of the secret key.

Following a topological order, our method starts with nede which is defined in Line 3 of the

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 52

=
N
I
N
w
N
N
I
N
(o]
[N
N
=
N

PRRPRRRRRROOOOOCOOOX
PR PRPrPROOCOORRLRERLRROOCOOX
PR OORROORROORROO-S
RrORrOrROROFRPORORORO-
coor|loorooroolrooo|s
FRrPRPPRRPRPRPPRPROOCOOOCOOOX
PP RPrPRrOOCOORRRROOCOOX
PR OORROORROORROO-S
RPORrRORrROROROROROR O
OrRrROFPORORROOOOOO|S
FRrPRPPRRPRPRPPRPROOCOOOCOOOX
PP PRrPRrOOCOORRRROOCOOX
PP OORrRrROORROORROO-
RPORORrROROROROROR O
OrRrRRROOOROOOROOOO

Figure 4.3: The truth-tables for internal node} »8, andc of the example program in Fig. 4.1.

program in Fig. 4.1. The extracted code region consistslof k1 & r1 itself. Since it involves
only one key and one random variable in the XOR operationimgplg static analysis can prove
that it is perfectly masked. Therefore, although we couleeheerified it using SMT, we skip it for
efficiency reasons. Such simple static analysis is abledeghatn2, n4 andn6 are also perfectly

masked.

Next, we try to prove that node3 is perfectly masked. The truth table a88 is shown in
Fig. 4.3 (left). In all four valuations ok1 and %2, the probability ofn3 being logical 1 is 25%.
Thereforen3 is perfectly masked. When we apply our SMT based method,dlversis not able
to find any satisfying assignment fbt andk2 under which the probability distributions o8 are
different. Note that our method does not check the proliglafithe output being logical 0, since
having an equal probability distribution of logical 1 is égalent to having an equal probability

distribution for logical 0.

The verification steps for nodes) andn»7 are similar to that oh3 — all of them are perfectly

masked.

Next, we try to prove that node8 is perfectly masked. However, the proof would fail because,
as shown in the truth table in Fig. 4.3 (middle), the probgbfbr »n8 to be logical 1 is not the
same under different valuations of the keys. For exampliaftkeys aré)0, thenn8 would be

0 regardless of the values of the random variables. Recallbaave shown the detailed SMT

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 53

encoding fom8 in Section 4.1.3. Using our method, the solver can quickly fimo configurations
of the key bits (for example)0 and 11) under which the probabilities 0f8 being logical 1 are

different. Thereforeys is not perfectly masked.

The remaining node is, whose truth table is shown in Fig. 4.3 (right). Similari®, our SMT

based method will be able to show that it is not perfectly redsk

It is worth pointing out that the result of applying the CHBShethod [10] would have been
different. Althoughn8 and ¢ are clearly vulnerable to first-order DPA attacks, the CHES1
method, based on the notions#nsitivity would have classified them as “securely masked.” This

demonstrates a major advantage of our new method over th&CBEethod.

4.3 The Incremental Verification Algorithm

It is worth pointing out that the size of the formula creatgabr SMT encoding is linear in the size
of the program and exponential in the number of random vkasab for s random bits, we need
to make2°*! copies of the program logic. This is the main bottleneck fuplging our method to
large programs. In this section, we propose an incremestd#ication algorithm, which applies
SMT solver based analysis only to small code regions — ondiatea— as opposed to the entire
fan-in cone of the node under verification. This is crucialdcaling the method up to programs of

practical size and complexity.

4.3.1 Extracting the Verification Region

In practice, a common strategy in implementing randonmazetiased countermeasures is to have a
chain of modules, where the inputs of each module are masiéfdebexecuting its logic, and
are demasked afterward. To avoid having an unmasked intiéateevalue, the inputs to the
successor module are masked with fresh random variablésebiney are demasked from the

random variables of the previous module. This can be ibtist by the example in Fig. 4.4, where

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 54

I; ® de-mask(z, k, r)
Tnew ® mask(z, k, r) ® de-mask(z, k, r)
Tnew @D (.)

Tdummy

Before verifyingmask? if we have already proved thas

is perfectly maskedand r,,.,, is @ hew random variable
not used elsewhere, then for the purpose of checking
mask2only, we can substitut&, with r,,.,, while verifying
mask2

Figure 4.4: Applying the SMT based analysis to a small faregion only.

the output oimask(x,k,rjs masked with the new random variablg,, before it is demasked from

the old random variable.

Due toassociativityof the & operator, reordering the masking and demasking operatvonsd

not change the logical result. For example, in Fig. 4.4, tiséruction being verified is imask2()
Since the newly added random variablg,, is not used insidenask()or de-mask() or in the
support of/;, we can replace the entire fan-in conelefby a new random variable;,,», (or
evenr,., itself) while verifyingmask2() We shall see in the experimental results section that such
opportunities are abundant in real-world applicationser€fore, in this subsection, we present a

sound algorithm for extract a small code region from theifacene of the node under verification.

Our algorithm relies on some auxiliary data structures @ased with the current nodeunder

verification: supportV[i], uniqueM[i] andperfectM[i].

e supportV[i]is the set of inputs in the support of the function of nade
e uniqueM[i] is the set of random inputs that each reachasng only one path.

e perfectM[i] is a subset ofiniqueM[i] where each random variable, by itself, guarantees that

nodes is perfectly masked.

These tables can be computed by a traversal of the prograesrasddescribed in Algorithm 3.

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 55

For example, for nodd, in Fig. 4.4, supportV[li|= {z, k, 7, "pew}, UniqueM[l1]= {r, 7new},
andperfectM[[;]= {r...}, @aSsuming- is not repeated in the mask block. For nddewe have
supportVIl]= {x, k, 7, ruew t, uniqueM[ls]= {r...}, sincer reached, twice and so may have
been de-masked, aperfectM[l5]= {rcw }-

Algorithm 3 Computing the auxiliary tables for all internal nodes of piegram.

1: supportV[i]« { v } for each input node i with variable v

2: uniqueM[i]+ { v } for each input node i with random mask variable v
3: perfectM[i]« { v } for each input node i with random mask variable v
4: for each (internal node i in a leaf-to-root topological ord€r)

5 L <« LEFTCHILD (i)

6: R+ RIGHTCHILD(i)

7. supportV[i]« supportV[L]U supportV[R]

8: uniqueM<«+ (uniqgueM[L]U uniqueM[R])\ (supportV[L]N supportV[R])
9: if (iis an XOR node)

10: perfectM[i]«— uniqueM[i] N (perfectM[L]uperfectM[R])
11: else

12: perfectM[i]« { }

13: }

Algorithm 4 Extracting a code region for noddor the subsequent SMT based analysis.

1: GETREGION (n, uniqgueMATI){

2: if (nis aninput node with variable v)

3 region.add— (n, v)

4: elseif(d random variable e perfectM[n]N uniqueMATi)
5

6

7

8

region.add— (n, r)
else
region.add— (n, {})
region.add— GETREGION(n.Left, uniqueMATI)

9: region.add— GETREGION(n.Right, uniqueMATI)
10: return region
11: }

Our idea of extracting a small code region for SMT based aimig formalized in Algorithm 4.
Given the node under verification, andiniqueM|i] as the set of random variables that each
reacheg along only one path, we call E¥REGION(i,uniqueM][i]) to compute the region. Inside
GETREGION, uniqueM[i] is renamed tdreshMasksATiMore specifically, we start by checking
each transitive fan-in node of the current node. If n is a leaf node (Line 2), then we addand

the input variables to the region. Ifn is not a leaf node, we check if there is a random variable

r euniqueMATithat, by itself, can perfectly mask nodgLine 4). In Fig. 4.4, for example;,...,

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 56

by itself, can uniformly mask nod&. If such random variable exists, then we add paifr,)
to the region and return — skipping the entire fan-in cone.oDtherwise, we recursively invoke

GETREGION to traverse the two child nodes of

4.3.2 The Overall Algorithm

Algorithm 5 shows the overall flow of our incremental verifioa method. Given the program
and the lists of secret, random and plaintext variablespmthod systematically scan through all
the internal nodes from the inputs to the return value. Foh @@dei, our method first extracts a
small code region (Line 4). Then, we invoke the SMT basedyaisl If the node is not perfectly

masked, we add it to the list bfad nodes.

Algorithm 5 Incremental verification of perfect masking.

1: VERIFYPERFECTMASKING (Prog, keys, rands, plaing)

2: badNodes— { }

3: for each(internal node i Prog in a topological order)

4: region«— GETREGION(i, uniqueM][i])

5: notPerfeck— CHECKMASKINGBYSMT (i, region, keys, rands, plains)
6

7

8

9

if (notPerfect)
badNodes.add(i)

return badNodes
10: }

To optimize the performance of Algorithm 5, we conduct a dergtatic analysis between Line 4
and Line 5 to quickly check whether it is fruitful to invokegtfsMT solver. The first one checks
if the region contains any secret keys, if not then the salveot invoked and the instruction is
perfectly masked. The second analysis checks some syntaatiitions — if all of these conditions
are satisfied, the current nodes guaranteed to be perfectly masked. In such case, we ais® av

invoking the SMT solver. The implemented syntactic comxdisi are listed as follows:

e The instruction has no secret input as its child. This guasmthat when a secret variable

is introduced, its masking operation will be verified.

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 57

e None of the random variables appears in both operangigortV tables. This guarantees

that no perfectly masking of a secret variable in any of therapds may be affected.

e Both operands are perfectly masked. This guarantees to Miridearesultant imperfect

masked instructions due to an initial imperfectly maskestrurction.

To further optimize the performance of Algorithm 5, we implent a method for identifying
random variables that agon’t caresfor the node; under verification, and use the information to
reduce the cost of the SMT based analysis. Prior to the SMdd#ng, for each random variable
r esupportV[i], we check if the value aof can ever affect the output afIf the answer is no, then

is adon’t care During our SMT encoding, we will setto logical O rather than treatas a random
variable, to to reduce the size of the SMT formula. This ca I a significant performance

improvement since the formula size is exponential in the lmemof relevant random variables.

We check whether € support[i] is adon’t carefor nodei by constructing a Boolean SAT formula
and solving it using the SMT solver. The SAT formula is defiasdollows:

Yr=0 A gr=l oA \deiﬁO ,

region region

where W;20 encodes the program logic of the region, with the randonr Isiet to 0,772} |
encodes the program logic of the region, with the random bét to 1, andb ;50 asserts that the
outputs of these two copies differ. If the above formula isatisfiable, them is adon’t carefor

nodes.

4.4 Experimental Results

We have implemented our new method in an automated verdicaipl based on the Clang/LLVM
compiler [21] and the Yices SMT solver [25]. Our tool runs imot modes: the monolithic
verification mode and the incremental verification mode. Mie@olithic verification mode applies

our SMT based encoding to the entire fan-in cone of each nodbe program, whereas the

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 58

incremental verification method tries to restrict the SMTaing to a localized region. In addition
to our new method, we also implemented the CHES13 method¢t@je purpose of experimental
comparison. The main difference is that our method not ohgcks whether an node is masked
(as in the CHES13 method), but also checks whether it is giiyfenasked, i.e. it is statistically

independent of the secret key.

We have evaluated our verification tool on a set of recentippsed side-channel countermeasures.

Our experimental evaluation was designed to answer thesoily research questions:

e How effective is our new method? We know that in theory, th& nesthod is more accurate
than the CHES13 method. But does it has a significant advamtegy the CHES13 method

in practice?

e How scalable is our new method, especially in verifying aions of realistic code size
and complexity? We have extended our SMT based method vagtanmental verification. Is

it effective in practice?

4.4.1 Benchmarks

Table 4.1 shows the statistics of the benchmarks used inxparienental evaluation. Column 1
shows the name of each benchmark example. Column 2 showstadsoription of the imple-
mented algorithm. Column 3 shows the number of lines of cotlere, each instruction is a bit
level operation. Column 4 shows the number of nodes thagsepit the intermediate computation
results. Columns 5-7 show the number of input bits that ages#itret key, the plaintext, and the

random variable, respectively.

The benchmarks are classified into three groups. The firstpgod test cases (P1 to P5) are
taken from the CHES13 benchmark [10], all of which contaiteimediate variables that are
not masked at all. More specifically, P1 is the masking keyteviing code on Page 12 of the
CHES13 paper. P2 is the AES8 example, a smart card impletranid AES resistant to power
analysis, originated from Herbest al.[42]. P3 is the code on Page 13 of the CHES13 paper, also

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 59

originated from Herbstt al.[42]. P4 is the code on Page 18 of the CHES13 paper, origirfiated
Messerges [58]. P5 is the code on Page 18 of the CHES13 paiggmated from Goubin [36].

The second group of test cases (P6 to P11) are examples whst®hthe intermediate variables
are masked, but none of the masking schemes is perfect. FB7aack the two examples used by
Blomeret al.[16] (on Page 7). P8 and P9 are the SHA3 MAC-Keccak computatiordered ex-
amples, originated from Bertont al.[14] (Eq. 5.2 on Page 46). P10 and P11 are two experimental

masking schemes for the Chi function in SHA3, none of whigheidectly masked.

The third group of test cases (P12 to P17) come from the regeoe of MAC-Keccak reference
code submission to NIST in the SHA-3 competition [64]. Thare a total of 285k lines of
Boolean operation code. The difference among these te=t athat they are protected by various

countermeasures, some of which are perfectly masked (&2).vihereas others are not.

Table 4.1: The benchmark description and statistics.

Name Description Code Size | Nodes | Keys | Plains | Rands
P1 CHES13 Masked Key Whitening 79 47 16 16 16
P2 CHES13 De-mask and then Mask 67 31 8 0 16
P3 CHES13 AES Shift Rows [2nd-order] 21 21 2 0 2
P4 CHES13 Messerges Boolean to Arithmetic (bit0) [2-order] 23 24 1 0 2
P5 CHES13 Goubin Boolean to Arithmetic (bit0) [2-order] 27 60 1 0 2
P6 Logic Design for AES S-Box (1st implementation) 32 9 2 0 2
P7 Logic Design for AES S-Box (2nd implementation) 40 6 2 0 3
P8 Masked Chi function MAC-Keccak (1st implementation) 59 19 3 0 4
P9 Masked Chi function MAC-Keccak (2nd implementation) 60 19 3 0 4
P10 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 22 3 0 4
P11 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 22 3 0 4
P12 MAC-Keccak 512b Perfect masked 285k 128k 288 288 805
P13 MAC-Keccak 512b De-mask and then mask — compiler erro 285k 128k 288 288 805
P14 MAC-Keccak 512b Not-perfect Masking of Chi function (v1) 285k 128k 288 288 805
P15 MAC-Keccak 512b Not-perfect Masking of Chi function (v2) 285k 152k 288 288 805
P16 MAC-Keccak 512b Not-perfect Masking of Chi function (v3) 285k 128k 288 288 805
P17 MAC-Keccak 512b Unmasking of Pi function 285k 131k 288 288 805
4.4.2 Results

Table 4.2 shows the experimental results run on a machieandt4 GHz Intel i7-2600 CPU, 3.3
GB RAM, and a 32-bit Linux OS. We have compared the perforraarithree methods: CHES13,
New (monolithic), and New (incremental). Here, CHES13 s mhethod proposed by Bayrak

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedaRs/ptographic Software 60

al. [10], while the other two are our own method. In this tablelu@m 1 shows the name of each
test program. Columns 2-5 show the results of running CHEBtBuding whether the program

passed the check, the number of nodes failed the check, artdtdi number of nodes checked.
Columns 6-9 show the results of running our new monolithithoé. Herepem out means that

the method requires more than 4 GB of RAM. Columns 10-14 shewesults of running our new
incremental method. Here, we also show the number of SMTdoasesking checks made, which
is often much smaller than the number of nodes checked, begaany of them are resolved by

our static analysis.

Table 4.2: The experimental results: comparing our new atethith the CHES13 method [10].

Name CHES13 New (monoalithic) New (incremental)

masked| nodes| nodes time | masked| nodes| nodes time | masked nodes| nodes | SMT time

failed | checked perfect | failed | checked perfect | failed | checked| mask

P1 No 16 a7 0.16s| No 16 a7 0.22s| No 16 a7 16 0.09s
P2 No 8 31 0.21s| No 8 31 0.20s| No 8 31 8 0.09s
P3 No 9 21 1.17s| No 9 21 1.27s| No 9 21 18 0.46s
P4 No 2 24 0.58s| No 2 24 0.65s| No 2 24 8 0.57s
P5 No 2 60 1.19s| No 2 60 1.40s| No 2 60 20 1.12s
P6 Yes 0 9 0.06s| No 2 9 0.10s| No 2 9 2 0.08s
pP7 Yes 0 6 0.04s| No 1 6 0.07s| No 1 6 1 0.03s
P8 No 1 19 0.15s| No 3 19 0.26s| No 3 19 3 0.11s
P9 Yes 0 19 0.13s| No 2 19 0.27s| No 2 19 2 0.10s
P10 Yes 0 22 0.18s| No 1 22 0.32s| No 1 22 2 0.14s
P11 Yes 0 22 0.20s| No 1 22 0.37s| No 1 22 3 0.18s
P12 Yes 0 128k 91m53s - 0 34 mem-out| Yes 0 128K 0 10m48s
P13 No 2560 | 128k 92m59s| No 1 46 mem-out| No 2560 | 128K | 2560 | 14m10s
P14 Yes 0 128k 97m38s - 0 31 mem-out| No 1024 | 128K | 1024 | 18m20s
P15 Yes 0 152k | 132m10s - 0 32 mem-out| No 512 152K 1024 | 37m37s
P16 No 512 128k | 113m12s - 0 40 mem-out| No 1536 | 128K | 1536 | 17m24s
P17 No 4096 | 131k | 103m56s - 0 34 mem-out| No 4096 | 131K | 4096 | 17m35s

First, the experimental results show that our new algoritarmore accurate than CHES13 in
deciding whether a node is securely masked. Every nodedited the security check of CHES13
would also fail the security check of our new method. Howgtheare are many nodes that passed
the check of CHES13, but failed the check of our new metho@se&lare the nodes that are masked,
but their probability distributions are still dependenttbe sensitive inputs — in other words, they

are not perfectly masked.

Second, the experimental results show that our new incregharethod is significantly more
scalable than the monolithic method. On the first two group®est cases, where the programs

are relatively small, both methods can complete the vetifingrocess, and the difference in run

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 61

time is small. However, on large programs such as the Kecefgkance code, the monolithic
method could not finish since it quickly ran out of the 4GB RANhereas the incremental method
can finish in a reasonable amount of time. Moreover, althahgftCHES13 method implements
a significantly simpler (and hence weaker) check, it is alased on a monolithic verification

approach. Our results in Table 4.2 show that, on large exasn@ur incremental method is
significantly faster than the CHES13 method.

1000

=== CHES13
100 =@==ono

Incremental

10

0.1

0.01

Figure 4.5: Scalability curves.

As a measurement of the scalability of the algorithms, weel@nducted experiments on a 1-
bit version of test program P1 for 1 to 10 encryption rounasedch parameterized version, the
input for each round is the output from the previous round. rdvethe experiment twice, once
with an unmasked instruction in each round, and once witmsltuctions perfectly masked. The
results of the two experiments are almost identical, antetbee, we only plot the result for the
perfectly masked version. In Figure 4.5, the@xis shows the program size, and ghaxis shows
the verification time in seconds. Among the three methodsjraumemental method is the most

scalable.

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 62

4.5 Related Work

Perfect Masking The notion ofperfect maskingvas first introduced by Blomer [16] and subse-
guently applied to various countermeasures for AES [19}et,.a&5oubin [36] proposed a sound
method for switching between Boolean masking and arithematisking. In addition, there is a
large body of work on side-channel analysis resistant ded AES [65, 42, 58, 60]. However, to
the best of our knowledge, there does not exist a method fmtgying the strength of a software

countermeasure implementation.

Verification Tools Tools that can formally verify the security of a software ierpentation are
severely lacking. To the best of our knowledge, the onlytexgstool that can check whether the
intermediate computation results of a software implenmentare masked iSleut10]. However,

it only checks whether the intermediate results are maskedtheir values depends on some
random bits, but does not check the quality of the maskimgg véhether the intermediate results are
statistically independent from the sensitive data. As weslgnown in previous sections, there is a
big difference betweemathmetically dependent on some random &itdstatistical independent
from sensitive dataas we have shown in the previous sections. Our new notiorMf Qas been

proposed specifically to address this problem.

Other Side Channels Beside power side channels, sensitive information mayddeekd through
many other side channels, such as the execution time [50fd&fl{s [15], and cache side chan-
nels [37]. Various leak detection and mitigation techngjhave also been proposed for these
types of side channels. For example, K@pfal. proposed methods for conducting quantitative
information flow analysis [53, 6]. Doycheat al.[24] developed a static analysis tool for detecting
information leaks through cache side channels. Bagthal. [9] proposed a mitigation method
designed for defending against concurrent cache attagkse iese methods focus on other types

of side channels, they are orthogonal to the new verificatiethod proposed in this work.

Hassan Eldib Chapter 4. Detecting Power Side-Channel LiedRs/ptographic Software 63

4.6 Summary

We have presented the first fully automated method for fdgmadrifying whether a software
implementation igerfectly maskedy uniformly random inputs, and therefore is secure against
power analysis based side-channel attacks. Our new meglied on translating the verification
problem into a set of constraint solving problems, which bardecided by off-the-shelf solvers
such as Yices. We have also presented an incremental ciggmanedure to drastically improve
the scalability of the SMT based algorithm. We have conduetgeriments on a large set of
recently proposed countermeasures. Our results shovhthaetv method is not only more precise

than existing methods, but also scalable for practical use.

Chapter 5

Quantifying the Masking Strength against
Side-Channel Attacks

In recent years, many commercial systems in the embedded spae shown weaknesses against
side-channel attacks [66, 59, 7], where an adversary chretgecondary information such as tim-
ing and power consumption resulting from the execution asgie algorithms on these devices.
For example, the power consumption of an embedded deviaaitng instructiona=t ¢k may
depend on the value of the sedkdb6] and as a resulk, can be reliably deduced using a statistical

method known adifferential power analysi§DPA [51]).

Masking, which is a randomization technique for removing $tatistical dependency between
sensitive data and the side-channel information, is a comynased mitigation strategy. For
example, Boolean masking uses an XOR operation of a randormvwith a variablea to obtain

a masked variables,, = a @ r [7, 68]. Later, the original variable can be restored by asdc
XOR operation:a,, ® r = a. Other similar countermeasures have used additive masgking-

a + r mod n), multiplicative maskingd,,, = a * r mod n), as well as application-specific masking
such as RSA blindinga(,, = ar® mod N).

However, side-channel countermeasures are difficult tmdesd implement because the process

The content of this chapter is originally published in [32]

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks65

is both labor intensive and error prone. There is also no &mrethod to quantify how secure a
software countermeasure really is. This is a problem intm@because the source of the informa-
tion leakage is not the cryptographic software but the npicoessor hardware that executes the
software. For average software developers, who often démm# all the architectural details of

the device, it can be difficult to understand when side-ckhimfiormation may be leaked.

In this chapter, we solve the problem by introducing the arotf quantitative masking strength
(QMS)to estimate the side-channel resistance of a software mgi&ation. To demonstrate the
effectiveness of QMS in quantifying the side-channel tasise, we conduct experiments on a
set of cryptographic software on real devices while laumgHDPA attacks. For each software
implementation, we record the number of traces required¢oessfully break the countermeasure.
Our experimental results show that the number of tracesctwborrelates to the difficulty in

breaking the countermeasure, matches the QMS.

We also develop a design automation tool, which leveragesnastatic code analysis method to
compute the QMS of a given C program. The tool can be used asmafoerification procedure

as well, to decide whether a program satisfies a given QMSiresgant. In case that some
intermediate computation results of the program do nosfatine QMS requirement, our method
can produce a side-channel attack scenario, consistingofrdination of the plaintext and the

relevant code region that leaks an excessive amount ofhnaftbon about the secret.

Our static code analysis tool builds upon the popular LLVMnpder [21] and the Yices SMT
solver [25]. We encode the verification problem into a seokegquantifier-free first-order logic
formulas, whose satisfiability can be decided by the SMTeollthough in the literature there
exists some work on statically checking the security of nedlkware code, e.g. using type-based
information flow analysis [72], they are significantly lescarate and therefore may generate
many false positives. Bayrak al.[10] have used SAT solvers to check if the softwarmesked
but they cannot quantitatively check the masking strendib.the best of our knowledge, our
method is the first fully automated static analysis methadcfeecking the strength of masking

quantitatively.

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks66

We have conducted experiments on a set of cryptographwaadtimplementations to evaluate the
performance of our static analysis tool. The benchmarksidecseveral recent countermeasures
for AES as well as MAC-Keccak, a MAC based on the new SHA-3ddath Our experimental
results show that the new method is effective in detectingenabilities in the software code and

is scalable enough to handle cryptographic software oftigasize.

To sum up, this chapter contains the following contribusion

e We propose the new notion gtiantitative masking strength (QM&3 a way to estimate the
side-channel resistance of a masked software implementatpractice.

e We conduct DPA attack experiments on real devices to confiahthe QMS is indeed a
good indicator of the side-channel resistance of the mas&tdare.

e We propose a static code analysis method for computing thé& @Ma given software
program. It can also formally verify that a program satiséi€ggven QMS requirement.

e When a program fails to satisfy the QMS requirement, our teidll produce an attack

scenario, consisting of the plaintext and the code regitin @icessive information leakage.

The remainder of this chapter is organized as follows. Wendefie QMS in Section 5.1. We
present our static code analysis method in Section 5.2, ascritbe our DPA attack experiments
in Section 5.3. We present our experimental results in 8e&i4, and finally, give a summary in
Section 5.5.

5.1 Quantitative Masking Strength (QMS)

Given a pair(z, k) of plaintext and secret key for the functienc(z, k), ans-bit random number
r uniformly distributed in the domai® = {0,1}°, andd intermediate result§,, ..., I;, we use
D, x(R) to denote the joint distribution ofy, ..., ;. If D, ,(R) is statistically independent of
the secret;, we say that the function isrder-d perfectly masked [16]. Otherwise, the function

is vulnerable to side-channel attacks, and we would likeuantjfy the bias ofD,, ,(R), denoted

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresg Side-Channel Attacks67

Ayms, With respect ta andk.

Definition 2. Given an implementation of functienc(z, k) and a set of intermediate computation
results{I;(x, k,)}, we define the quantitative masking strength (QMS) as themairvalue of
(1 — Ayns) such that, for alld-tuple (14, . . ., 1),

|Dyk(R) — Dy o (R)| < Ayms forany(z, k) and (2, k) .

In this sense, thperfect maskingriterion introduced by Blomeet al. [16] is an extreme where
A,ms = 0. Thesensitivitycriterion introduced by Bayrakt al. [10] is another extreme where
A,ms = 1. They represent two extreme cases of the spectrum, wheid&safows us to quantify
the side-channel resistance of the vast number of desigiceshin between. As an example,
consider the four masking schemes in Figure 2.2. In the gbofeorder-1side-channel attacks,
we have

01) =1/4—0/4=1025 Agms(ol) =

02) =4/4—1/4=0.75 Agms

03) =3/4—1/4=050 Agms
)

04) =2/4—2/4=0.00 Agms(od) =

4/4—3/4=0.25
=3/4—0/4=0.75
3
2

qms
qms
/4 —1/4=0.50
/4 —2/4 =0.00

qms

A
A
A
A

o~ o~ o~ —~

All four outputs arensensitiveaccording to [10] because of their logical dependence oratfigom

bits, but onlyo4 is statistically independent of the secket

To check if a function satisfies the given QMS requirementneed to decide whether there exists
ad-tuple (Iy,...,1;) such thatD, (R) — D, x(R)| > Ams for some(z, k) and (2, k’). The
functionenc(z, k) satisfies the QMS requirement if and only if no suktuple exists for the given
A,ms and the givenl. Note thatd = 1, 2, . .., ¢ specifies the order of the side-channel attack. In an
order+ attack, we assume that an adversary can measure the ledkbigeeomediate computation

results simultaneously.

The main challenge for static code analysis — whether to coenjhe QMS of a given program or
to verify that the program satisfies the given QMS requiremeis to computeD,. ,(R). As the
starting point, we mark all the plaintext bits:iras public, the key bits ik as secret, and the mask
bits inr as random. Then, for eadlix, k,), we check whether it satisfies the QMS requirement.

Following Definition 2, we can formulate therder-1 QMS check as a satisfiability problem as

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks68

follows:
Jz, kK (Srerl (@, k1) — Seerl(a, K 1)) > Agns

Here,z is the plaintextk andk’” are two different values of the secret key, arid thes-bit random
number in domaim? = {0, 1}*. For any fixed ¢, k, k), the summatiort, g (x, k, r) represents
the number of satisfying assignmentsiot, k,), and the summatiol, g/ (x, k', r) represents
the number of satisfying assignment bfx, &',). Assume that- is uniformly distributed in
domainR = {0, 1}*, the summations represent the probabilitied dfeing logical 1 under key

valuesk and’, respectively.

If the above formula is satisfiable, there exisand two keys K, k') such that the distribution of
I(z, k,r) differs from the distribution of (=, &', r) by more tham\,,,;. In other words, the secret
values oft and%’ are leaked, and the amount of information leakage is mome élkpected. On

the other hand, if the above formula is unsatisfiable, theatisfies the given QMS requirement.

5.2 Static Code Analysis to Compute the QMS

In this section, we first present our verification proceduvhich takes a program and a QMS
as input and checks whether the program satisfies the QM&eatgnt. Then, we present our
algorithm for estimating the QMS of a given program, whicksuthe aforementioned verification

procedure as a subroutine.

5.2.1 Checking a Program against a QMS Requirement

Our method is based on translating the verification probleima set of quantifier-free first-order
logic (FOL) formulas and then deciding the formulas usingMil solver. For each intermediate
computation resulf (z, k, r), we construct the formul@ that is satisfiable if and only if there
exist a plaintextz and two key values: and £’ such that the probability fof(z, k,r) to be

logical 1 differs from the probability fof (z, ',) to be logical 1 by more than ... Although

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks69

1 : compute(bool k1, bool k2, bool rl, bool r2){
2: Dboolnl,n2 ,n3,n4,n5 n6,n7,n8,c;
3 nl =k1@ri;

4: n2=k2¢r2;

5: n3 =nl&n2;

6: nd=k2Pr2;

7 n5 = rl1 & n4;

8: n6=kl1dri;

9: n7=r2&n6;

10: n8 = nb P nT;

11: ¢ =n3@ns8;

12: return c;

Figure 5.1: A program and the abstract syntax tree (AST) siode

satisfiability (SAT) based verification techniques havernbesdely used in EDA for checking
functional correctness properties, our method is sigmiflgadifferent from them because QMS

is a quantitative property and is statistical in nature.

Given a Boolean program as input, we first construct a datadlaph, where the root represents
the return value and the leaf nodes represent the inputs. iBenal node represents the result of
a Boolean operation of one of the following types: AND, OR, N@nd XOR. For the example
in Figure 5.1, our method starts by parsing the program agaticlg a graph representation. This
is followed by traversing the graph in a topological ordesni the program inputs (leaf nodes) to
the return value (root node). For each internal node, whaphasents an intermediate computation
result, we check whether it satisfies the given QMS requirgmihe order in which we check the

internal nodes is as follows:1, n2, n3, n4, n5, n6, n7,n8, and finally,c.

Notice that the program in Figure 5.1 is a masked version«of (k1&k2), wherek1 andk2 are
secret keysy1 andr2 are random variables, ands the computation result. The return value

is logically equivalent tdk1&k2) @ (r1&r2). This masking scheme (from [16]) is used to make
the power consumption independent from the valugsiadndk2. The corresponding demasking
function (not shown in the figure) isb (r1&r2). Therefore, demasking would produce the desired
value(k1&k2).

Our method will determine if all intermediate variables foé fprogram have a masking strengthen

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks70

higher thanA ;. Let ® denote the SMT formula to be created for checking the intdiate
result/(x, k,r). Lets be the number of random bits in Our encoding method ensures tkais

satisfiable if and only if violates the QMS requirement. Therefore, we definas follows:

251 25—1
b = (/\ \If};> AN </\ \Iﬂ];/> N \Iiji A\ ‘Ilsum A ‘Ildiﬁ)
r=0

r=0

where the subformulas are defined as follows:

e Program logic (¥}): Each subformulaj, encodes a copy of the functionality 6fz, &,),
with the random variable set to a concrete value {0, ..., 2° — 1} and the key set to value
k or k’. All copies share the same plaintext value

e Boolean-to-int (¥,y;): It encodes the conversion of the output/¢f, k, r) from Boolean to
integer (true becomes 1 and false becomes 0), so that tlyeintalues can be summed up
later to computé&,.c gl (z, k, 7).

e Sum-up-the-1s(¥,,,,): It encodes the two summations of the logical 1s in the ostptithe
2¢ copies of program logic, one fdi(z, k, r) and the other fof (z, &', r).

o Different sums (¥,4¢): It asserts that the difference between the two summatsbigger

than the required\,,,;.

Figure 5.2 is a pictorial illustration of the SMT encoding tutput/(k1, k2,71, 72), wherek1, k2
are the secret bits and, 2 are two random bits. The first four boxes, encodity . .., U3,
are copies of the program logic for key bitsl£2) with random bits set to 00, 01, 10, and 11,
respectively. The other four boxes, encodiy, ..., ¥%,, are copies of the program logic for
key bits ¢1'k2") with random bits set to 00, 01, 10, and 11, respectively. fohmula checks for
security against first-order DPA attacks — whether therstéwio sets of keyskll k2andkl’ k2’)

under which the distributions dfdiffers from each other by more thay,,,,.

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresg Side-Channel Attacks71

I
‘ ‘ SAT?
‘code checke# ‘code checke# ‘code checke ‘ code checke
I I I I |
[[‘
ki| k2 r1 r2 k1 k2 rl r2 ki k2 L rR kil k2 }1 }2 A
0 0 0 1 10 11 qms
\
‘code checkec{ ‘code checke(# ‘code checke# ‘ code checket#
I I I I I
[[‘
k1’ k2’| r1| r2 k1 k2" r1| r2 k1 k2" r1| r2 k1 k2" r1| r2
0 0 0 1 1 0 1 1

Figure 5.2: SMT encoding to verify the QMS w.r(k:1, £2).

5.2.2 Checking the Fan-in AST Nodes Incrementally

Since the SMT formula size is linear in the size of the proghbarhexponential in the number of
random variables, it may become a bottleneck if the progrses a large numberof random bits.

To avoid the potential performance problem, we propose ereimental algorithm, which applies
the SMT based analysis only to small code regions of the progrs opposed to the entire fan-in
cone of each intermediate computation result. This is atdor scaling our method to code of

practical complexity.

Our incremental algorithm can be illustrated by Figure SvBgere the output ofmask(x,k,r)is
masked again with the new random variablg, before it is demasked from the old random
variabler. Before verifyingmask? if we have already proved thd is perfectly maskedand
Tnew 1S @ NEW random variable not used elsewhere (not in computnghen for the purpose of

checkingmask? we can substituté, with a new random variable;,,,,.,, while verifying mask2

Due toassociativityof the® operator, reordering the masking and demasking operationkl not
change the logical result. For example, in Figure 5.3, tsuction being analyzed is mask2()

Since random variable,.,, is not used insidenask()or de-mask()or in the support of;, we can

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresg Side-Channel Attacks72

rdummy | 3

|
(Y 8
de-mas
A i B e b e (e k)
frew ‘ = Tnew @ (2, k, 1) ® de-M (z, k, 1)
x k r

= Tnew D (...)

= Tdummy

k r
Figure 5.3: Incremental applying the SMT based analysig tmémall fan-in region.

replace the entire fan-in cone 6f by a new random variable;,,,.,, While verifying mask2()

The effectiveness of our incremental algorithm relies anftillowing observation. In practice,
a common used strategy for implementing randomization d@seintermeasures is to have a
chain of modules, where the inputs of each module are masifedebexecuting its logic, and
are demasked afterward. To avoid having an unmasked intikaueevalue, the inputs to the
successor module are masked with fresh random variablésebiney are demasked from the
random variables of the previous module. We shall see in xperénental results section that

such optimization opportunities are abundant in real appibns.

5.2.3 Estimating the QMS of a Given Program

Given a program, we can estimate the QMS of all the interntediamputation results by itera-
tively invoking our SMT based verification procedure as arsubne. We start with\,,,; = 1.0,
and check whether the program satisfies this QMS requiremiénthe answer is no, then we
decrease\,,,; and check again. We stop as soon as the program satisfies tBer€Mirement.
At that moment, the value fad,,; is the estimated QMS of the given program. Algorithm 6
shows the overall flow of our iterative procedure. To makdfitient, we have used the binary

search.

It is worth pointing out that in this work, we focus on verifig implementations of cryptographic
algorithms, as opposed to arbitrary software applicatidhge program under verification typically

does not have input-dependent control flow, meaning that aveeasily remove all the loops

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks73

Algorithm 6 Iteratively computing the QMS of a given program.
1: comPUTEQMS (Prog){

20 Ay < 0.00

31 Apign < 1.00

4: while (Alow < Ahigh) {

5: Amid (Alow + Ahigh)/2'0
6: if (CHECKQMS(Prog,A,,;q) = SAT)
7: Alo'Lu — A'mid +0.01;

8: else

9: Ahpigh + Apign — 0.01;
10:

11: return Ay

12:%

and function calls from the code using standard loop umgl&nd function inlining techniques.
Furthermore, the program can be transformed into a bramehrépresentation, where the if-else
branches are merged. Finally, since all program varialskeb@unded integers, we can convert the
program to a purely Boolean program through bit-blastinger&fore, in this chapter, our static

code analysis method is concerned with only the bit-leyalesentation of a branch-free program.

5.3 Measurements on embedded Devices

To check if QMS reflects the masking strength of a softwarecar@ucted a set of side-channel
attacks on implementations of countermeasures for MACeKeCAES, and a few other crypto-
graphic algorithms. We ran all software code on a 32-bit blitaze processor [85] built on a
Xilinx Spartan-3e FPGA (Figure 5.4). To measure the powesumption of the processor core,
we used a Tektronix DPO 3034 oscilloscope and a CT-2 curmaitepto sample the power con-
sumption of the FPGA. The side-channel attack was condutied) differential power analysis
(difference of means [51]). To limit the effect of measuratm@oise, we collected eattaceafter
running the same software code 128 times and using the asmmibe to calculate the average.

Here, a trace refers to a set of samples taken during the #xeatf the software.

We used DPA to determine whether a key guess was correct. ||Reaa DPA relies on the
observation that power consumption variations correlatiné values of the sensitive bits being

manipulated. Using the same input vector stream of plairdsxin the measured traces, we

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks74

usB

Embedded Computing HW
! Cryptographic SW?aCiphertext Oscilloscope
Plaintext 1 ! (c)
x) Key 1 enc(x,k)
™ : P
L) - Q0
Power
Current
sensor /\/\/ —
— Time

Figure 5.4: The side-channel attack measurement systemm. set

compute the value of the sensitive variable assuming thetsdtret key was one of the key
guesses. For an-bit key, there would b@™ key guesses. For each key guess, we divide the
set of measurement traces into two bins, one for all the Bemsalues of logic 0, and one for all
the sensitive values of logic 1. Then we compute the diffeeesf means between those two bins,

for each key guess. We select the key guess that result indkemam difference.

Table 5.1: The description and statistics of the maskedveoét benchmarks.

[Name| Description | LoC | Nodes] Keys [Plains [Rands |
SHA3 A series of masked MAC-Keccak with varying levels of maskibigised random | 61 31 3 3 3
number generators from 0.01 to 0.5 to vary QMS from 0.0 to 1.0)
AES A series of masked AES with varying levels of masking (biasedlom number 52 37 8 8 8
generators from 0.01 to 0.5 to vary QMS from 0.5 to 1.0)
P1 CHES13 Masked Key Whitening 79 47 16 16 16
P2 CHES13 De-mask and then Mask 67 31 8 8 16
P3 CHES13 AES Shift Rows 21 21 2 2 2
P4 CHES13 Messerges Boolean to Arithmetic (bit0) 23 24 1 1 2
P5 CHES13 Goubin Boolean to Arithmetic (bit0) 27 60 1 1 2
P6 Logic Design for AES S-Box (1st implementation) 32 9 2 2 2
P7 Masked Chi function MAC-Keccak (1st implementation) 59 19 3 3 4
P8 Masked Chi function MAC-Keccak (2nd implementation) 60 19 3 3 4
P9 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 22 3 3 4
P10 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 22 3 3 4

We have conducted three sets of experiments. Table 5.1 shewsatistics of the benchmarks,
including the name of the program, a short description, itheslof code, the number of compu-
tation nodes, as well as the numbers of key bits, plaintest bnd random bits. The first two

sets consist of various versions of the MAC-Keccak and ASElementations [14, 64, 81, 17]

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks75

10

= SHA3 Measured
- - Empirical (c = 2.2)

=
o
(S
T

Traces needed to get key
BN 'Sm

=
[=]
-
T

105~ 0.2 0.4 0.6 038 1

QMS
Figure 5.5: DPA attacks on SHA3: QMS vs. number of traces ee¢a determine the key.

with gradually degrading QMS values. We measured the aeenagnber of traces needed to
determine the secret key. In the third set of experimentsusexl a set of recently published
software countermeasures [10, 42, 58, 36, 16], with fixed Q&l8es, and measured the average

number of traces needed to determine the secret key.

Figure 5.5 shows our results on the SHA3 benchmark. iHaeis is the QMS value, while the
y-axis is the measured average number of traces needed tandetdhe secret key. Notice that
the y-axis is in logarithmic scale. In addition to the measurethgae have plotted an empirical
approximation rule (dotted curve) to estimate the measdatal. \We can see that when the QMS
value approaches 1.0, the number of traces needed to deéthe secret key will approach
infinity. This is as expected because QMS=1.0 means thatdtie is perfectly masked — since
there is no information leakage, the implementation is abby secure. However, when the
QMS value deviates from 1.0 slightly, the number of tracesded to determine the secret key
drops drastically — QMS=0.90 corresponds to around 100 D&?es. Overall, the side-channel
resistance, as measured by the number of traces neededrnmihet the secret key, is exponentially

dependent on QMS.

Figure 5.6 shows our results on the AES benchmark. Here, éasuaned data are similar to those in

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks76

10

= AES Méasured
- - Empirical (c = 2.2)

=
o
(S
T

Traces needed to get key
BN 'Sm

=
[=]
-
T
%

105~ 0.2 0.4 0.6 038 1

QMS

Figure 5.6: DPA attacks on AES: QMS vs. number of traces rebemldetermine the key.

Figure 5.5. Furthermore, we note that the approximate ecapformula computed to estimate the
number of required DPA traces has the following relatiorhvtiite QMS valueN;, .. = m
wherec ~ 2.2 for these two sets of experiments. In generais an empirical constant that
ultimately will be decided by the actual hardware and mearsent set-up. We shall leave the
investigation of the theoretical nature of this constanfutare work. What is important is that,

overall, the side-channel resistance is exponentiallgddent on QMS.

Table 5.2 shows our results on the third set of benchmarkse,Héolumns 1 and 2 show the
program name and the node to which we have applied the DPgkattolumn 3 shows the QMS
value computed statically for the software code. Column@wshthe number of traces needed
to determine the secret key. T.O. medinsed outafter 100,000 traces are measured. It is worth
pointing that we performed second order analysis on P3-Réral, we have observed a similar
exponential dependence between the number of measured trad the QMS value. For example,
when the QMS is 0.00 — meaning that the node is not masked-atalhave found that the secret
key can be determined with merely a handful of DPA traces. Mthe QMS is 1.00 — meaning it
is perfectly masked — the key cannot be determined withirtioe limit of 100,000 traces. When

the QMS is between 0.00 and 1.00, the number of DPA traceslygléslows the same empirical

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresg Side-Channel Attacks77

Table 5.2: Relation between QMS and the number of traceseddedietermine the key.
[Name| Node |QMS |Trace | Name| Node |QMS | Trace]

P1 noll | 0.00| 2 P1 n0l2 | 1.00 | T.O.

P2 n21 0.00| 3 P2 nil | 1.00 | T.O.

P3 |stlo@st2| 0.00 | 2 P3 |rx2@st2| 1.00 | T.O.

P4 X®A3 | 000 2 P4 |Al®A3| 1.00 | T.O.

P5 X®R2 | 0.00| 3 P5 |Ti®R2| 1.00 | T.O.

P6 n09 0.50 | 936 | P6 no7 1.00 | T.O.
P7 n32 0.50 | 992 | P7 n35 1.00 | T.O.
P8 n02 0.50 | 587 | P8 n23 1.00 | T.O.
P9 n47 0.50 | 255 | P9 n39 1.00 | T.O.
P10 n47 0.50 | 426 || P10 n48 1.00 | T.O.

formula (exponential dependence on the QMS) that we hawedsed earlier, but with a slightly

different value for constant

5.4 Experimental Results

We have also evaluated the efficiency of our new static codlysis methods for QMS estimation
and checking in the context of related work. Our experimeataluation was designed to answer

the following questions:

e Is it practical to compute the QMS of a C program through puséhtic code analysis?

e Does the new method offer significant advantages over agistiethods such &lueth[10]?

Our benchmarks included a set of recently published masilongtermeasures [10, 17, 42, 58, 36,
16, 14, 64] whose statistics have been shown in Table 5.louklexperiments were obtained on a
desktop computer with a 3.4 GHz Intel i7-2600 CPU, 3.3 GB RANK a 32-bit Linux operating

system.

Table 5.3 shows the results of applying our new method to coenine QMS of a given software.
Column 1 shows the name of the software. Column 2 shows théeuaf internal nodes checked.
Columns 3-6 show the QMS computed, including the minimakimal, local average, and global

average. Columns 7 and 8 show the number of iterations artdtddeexecution time. The number

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks78

of iterations is for the combination of checks on all intdrnades. Also, for P3-P5, we have
applied second-order DPA following [10] as opposed to firster DPA, so each node has been
checked against every other node of the program. The restubtey that our iterative method
converged quickly in all cases. Due to page limit, we omit description of several pieces of
useful information reported by our new method, e.g. whicdenm the program has the lowest

QMS and therefore is the most vulnerable to side-chanrestlegt

Table 5.3: Statically computing the QMS of the C programs.

Program QMS Performance
Name| nodes| Min. | Max. | Local Avg. | Global Avg. | Iters| Time
P1 47 0.00 | 1.00 0.00 0.66 31| 0.13s
P2 31 0.00 | 1.00 0.00 0.74 23| 0.41s
P3 21 0.00 | 1.00 0.33 0.71 108 1.6s
P4 24 0.00 | 1.00 0.17 0.93 151 1.7s
P5 60 0.00 | 1.00 0.17 0.97 367 3.1s
P6 9 0.50 | 1.00 0.50 0.83 11| 0.15s
P7 19 0.00 | 1.00 0.17 0.86 19| 0.17s
P8 19 0.50 | 1.00 0.50 0.92 20| 0.16s
P9 22 0.50 | 1.00 0.50 0.97 23| 0.18s
P10 22 0.50 | 1.00 0.50 0.97 23| 0.24s

Table 5.4 shows the results of applying our new method tolcindether a program satisfies
a given QMS requirement. For comparison, we have re-imphtegeand evaluated theleuth
algorithm of Bayraket al.[10] in our framework. Here, Columns 1 and 2 show the programe
and the number of nodes checked. Columns 3-5 show the Emti$Sleuth including whether it
finds any unmasked node, the number of unmasked nodes, aotalexecution time. Columns 6-
8 show the statistics of our new method, including whethimdts any node that leaks side-channel
information, the number of vulnerable nodes found, anddted execution time. In addition to the
P1-P10 examples, we have experimented on a set of full-82€ci Keccak implementations [14]

(P11-P16) in order to compare the scalability of the two rodh

From the results, we have observed several advantages neaumethod oveSleuth First, our
new method can check for the quantitative masking strendthm any QMS value ranging from
0.00 to 1.00 — whereaSleuthcan only check whether a node is masked (whether the QMS is

zero or non-zero). The results in Table 5.4 clearly show thate are many cases (e.g. in P6

Hassan Eldib Chapter 5. Quantifying the Masking Streng#iresy Side-Channel Attacks79

Table 5.4: Verifying a C program against the QMS requirement

Program Sleuth [10] New
name| nodes| masked| nodes| time masked | nodes time

failed gms=1.0| failed
P1 47 No 16 0.16s No 16 0.09s
P2 31 No 8| 0.21s No 8 0.14s
P3 21 No 9 1.17s No 9 1.14s
P4 24 No 2 0.58s No 2 1.25s
P5 60 No 2 1.19s No 2 2.53s
P6 9 Yes 0 0.06s No 2 0.08s
P7 19 No 1 0.15s No 3 0.12s
P8 19 Yes 0| 0.13s No 2 0.10s
P9 22 Yes 0 0.18s No 1 0.16s
P10 22 Yes 0| 0.20s No 1 0.18s
P11 | 128k Yes 0| 91m53s Yes 0 11m20s
P12 | 128k No 2560| 92m59s No 2560 | 14m45s
P13 | 128k Yes 0| 97m38s No 1024 | 19m26s
P14 | 152k Yes 0| 132m10s| No 512 | 37ml7s

P15 | 128k No 512| 113m12s| No 1536 | 17m44s
P16 | 131k No 4096 | 103m56s No 4096 | 18m29s

and P8) where the nodes are masked by some random bits, buiadieng is not perfect, and
therefore the nodes can still leak sensitive informaticgcddd, our new method is more scalable
than Sleuth Although the two methods have comparable run time on snmafjrams, our new
method is significantly faster theBleuthon large programs, despite the fact that it is checking a
more sophisticated quantitative property. This is due édalet that we are using incremental SMT

analysis as described in Section 5.2.2.

5.5 Summary

We have proposed the notion of quantitative masking stre(@MS), which can, for the first
time, represent the side-channel resistance of a maskungtemneasure numerically. We have
confirmed through experiments that the QMS is a good indicaftthe actual masking strength
of the software. We have developed a new static analysisttocbmpute the QMS of a C
program. The method can also be used as a procedure to fprmeaify a program against a

QMS requirement. Our experimental results show that thestatic analysis method is effective

Hassan Eldib Chapter 5. Quantifying the Masking Strengdiresg Side-Channel Attacks80

in detecting masking flaws and is scalable to handle crypfyc software code of practical size.

Chapter 6

Synthesizing Countermeasures against

Power Side-Channel Attacks

When cryptographic algorithms are proved to be secure asgtiiousands of years of brute force
cryptanalysis attacks, the assumption is that sensitieerimation can be manipulated in a closed
computing environment. Unfortunately, real computers amcrochips leak information about

the software code that they execute, e.g. through heat amdrmhssipation or electromagnetic
radiation. For example, the power consumption of a typindd@dded device executing instruction
a=t &k may depend on the value of the secret variab]86]. Such information can be exploited
by an adversary through statistical post-processing ssidiffarential power analysis (DPA [51]),

leading to successful attacks in linear time. In recent gjearany commercial systems in the

embedded space have shown weakness against such attack3, [6p

In this chapter, we propose a new synthesis method, whi@stak unprotected software program
as input and returns a functionally equivalent but side nbhleak free new program as output.
By leveraging a new verification procedure that we develogeently, calledSC Sniffer[31,
32], we can guarantee that the synthesized new program usesbg construction. That is, all
intermediate computations of the program aesfectly maskedl16] in that their computation

results are statistically independent from the secret ddtesking is a popular and relatively low-

The content of this chapter is originally published in [28]

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attacki

cost mitigation strategy for removing the statistical degency between sensitive data and side
channel emissions. For example, Boolean masking uses anop@ftion of a random bit with
variablea to obtain a masked variable;, = a ® r [7, 68]. The original value can be restored
by a second XOR operationi,, ® » = a. Sincea,, no longer depends on the sensitive data
statistically, subsequent computations based,pmwill not leak information about the value of
Other similar countermeasures have used additive maskjng= a + r» mod n), multiplicative
masking ¢,, = a * r mod n), as well as application-specific masking such as RSA biigdi

(ay, = ar® mod N).

When a computatiorf(z) is in the linear domaindg domain), with respect to the sensitive input
z, masking can be implemented easily, e.gfés® r) @ f(r) since it is equivalent tgf (z) @
f(r)® f(r) = f(2). Thatis, we mask using an XOR with random bit before the computation
and de-mask using an XOR wiff{r) afterward. However, wheyi(z) is a non-linear function, the
computationf(z) often needs to be completely redesigned, e.g., by spliftingnto f/() and f”()
such thatf’'(z @ r) @ f”(r) = f(z). Finding the propey’() and f”() is a highly creative process
currently performed by cryptographic experts. Indeedigih#isg a new masking countermeasure

for algorithms such as AES and SHA-3 would be publishabldwotop cryptographic venues.

Our new synthesis method relies oructive synthesiand satisfiability modulo theory (SMT)
solvers to search for masking countermeasures within adexlidesign space. More specifically,
given the software program to be masked, we use a set of §jaadftee first-order logic formulas
to encode the two requirements of the synthesized new progtthat it must be perfectly masked
and that it must be functionally equivalent to the originedgram. The resulting formulas can be
decided by an off-the-shelf SMT solver. Based on this foramallysis with SMT solvers, we can
guarantee that the synthesized program is provably segarest power analysis attacks, even on

devices with physical emissions.

In the past few years, there is a growing interest in usingpil@ms to automate the application
of side-channel countermeasures [2, 11, 12, 63]. Howelveset existing tools rely on matching

known code patterns and applying predefined transformstidhey do not employ SMT solver

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attackis

based exhaustive search or the notionpeffect masking They cannot guarantee to find the
leakage free new program even if such program exists, ordibymrove that the generated code
is leakage free. Our new method provides both guaranteethoudgh inductive synthesis has
enjoyed remarkable success (e.g. [78, 40, 4]), this is teetfine that it is applied to mitigating

power analysis attacks.

We have implemented our new method in a tool built on the LLMdmpiler [21] and the Yices
SMT solver [25]. We have conducted experiments on a set gtogyaphic software benchmarks,
including AES and MAC-Keccak. Our experiments show thatrtee method is both effective in

eliminating side channel leaks and scalable for handliggtographic software of practical size.

To sum up, we have made the following contributions:

e We propose a new method for synthesizimgskingcountermeasures to protect crypto-
graphic software code against power analysis attacks.

e We implement the method in a software tool, which takes amatepted C program as input
and returns a perfectly masked new program as output.

e We conduct experiments on a set of cryptographic softwanehraarks to demonstrate the

effectiveness and scalability of the new method.

The remainder of this chapter is organized as follows. Weilkiktrate the overall flow of our

method using an example in Section 6.1. We define the systpesblem in Section 6.2. The
detailed algorithms will be presented in Section 6.3, whiatludes inductively computing the
candidate program, and formally verifying the candidaegpam. We will present a partitioned
synthesis procedure in Section 6.4 to improve the run tinm®paance. Our experimental results

will be presented in Section 6.5. Finally, we will give a suamnin Section 6.6.

Hassan Eldib Chapter 6. Synthesizing Countermeasuressag@wer Side-Channel Attaclks!

6.1 Motivating Example

In this section, we illustrate the overall flow of our syntiseeethod using an example. Our exam-
ple is part of the implementation of MAC-Keccak, the newlgrstardized SHA-3 cryptographic
hashing algorithm [64], after three rounds of competitibgscryptographic experts worldwide.
The MAC-Keccak code [14] consists of five main functions the repeated for 24 rounds on
the input bits (plaintext and key) in order to compute thepat{ciphertext). The computation
in a single round can be representedoby = ¢.x.7.p.0(in), wherew(), 7(), p() andé() are linear
functions in the domain ab, consisting of operations such as XOR, SHIFT and ROTATE redire

x() is a nonlinear function, containing nonlinear operatiamshsas AND.

Our synthesis procedure takes the MAC-Keccak code as inpitreturns a perfectly masked
version of the code as output. It starts by transforming tigiral program into an intermediate
representation (IR) using the LLVM compiler frontend. Siwee focus on cryptographic software,
not general purpose software, we can assume that all progaaables are bounded integers and
there is no input-dependent control flow. (Cryptographittveare typically do not have input-
dependent control flow because it is vulnerable to timingckis.) Therefore, it is relatively
straightforward to transform the input program into a Baolgrogram, e.g., by merging if-else
conditions, unwinding loops, inlining functions, and biasting the integer operations. Thus, from
now on, we are only concerned with an IR where all instrucioperate on bits. Focusing on the

bit-level analysis allows us to detect leaks at the finest@geaity possible.

The next step is traversing the abstract syntax tree (AS@es@f the Boolean program in a
topological order, starting at the input nodes and endintpatoutput node. For each internal
node, we first check whether its function is linear or nordine the domain ofp. As we have
shown earlier, for a linear functiofiz), we can mask the inputwith an XOR of a random bit
before the computation and demask with an XORf of) afterward. Furthermore, to make sure
that all intermediate nodes stay masked, we need to chamak&-demask segments together, by
masking the output of a linear function with a new randomalale before demasking it with the

previous random variable.

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attackkd

1
2
3:
4:
5.
6
7

)

bool nl,n2,n3;

n3 = —i2;

n2 =n3 A i3;
nl =n2 @ il;

return ni;

: Chi(bool i1, bool i2, bool i3) {

=

S

o

>
w

>
N

>
[y

PR RPRPRPOOOO

PPk, OORrREFr OO

P ORFRORFRORFrOo

OO R RFRPOOREF

[eNeoNoNolloNoN o)

RrRrRrRPROORO

o m!

© 00Uk W

Chi(bool i1, bool i2,bool i3) {

bool rl,r2,r3; //random bits added

bool b1, b2,b3,n1,n2,n3,n4,n5,n6,n7,n8,n9;
bl =11 P ril;

b2 =i2P r2;

b3 =13 P r3;

n9 = b3 A r2;

n8 = r3 A r2;

n7 = r3V b2;

: n6 =rl1@n9;
: nb =n7 G ng;
: n4 =b2Vb3;
: n3 = nb @ nb;
: n2 =n4 P bl;
: n1l =n2@n3;
: returnni;

Figure 6.1: The original function, its truth table, and the synthesizetunction.

For nonlinear functions, such as thé), there are no easy ways of generating the countermeasures.

In this work, we rely on the use of iterative inductive syrgiseand SMT solvers to search for

valid countermeasures in a bounded design space. Giveq(jhfenction in Fig. 6.1 (left), our

method will produce the new code in Fig. 6.1 (right). Our nogetlensures that these two versions

have the same input-output relation, and at the same tifntbeaihtermediate computation results

in the new program are perfectly masked with some random Iiitar method has two main

advantages over the state of the art. First, it is more ecamabm@and sustainable than the manual

mitigation approach, especially when considering thedapireases in the application size and

platform variety. Second, it eliminates both the desigomsrand the implementation errors while

guaranteeing that the synthesized program is secure byragotign. That is, assume that each

of r1,r2,r3 in Fig. 6.1 (right) is randomly distributed in the domain i, 1}, our method

guarantees that the probability of each intermediate céatipn result being logical 1 (or 0) is

statistically independent from the valuesidf, i 2, i 3.

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attackké

6.2 Inductive Synthesis of Masking Countermeasures

We propose using inductive synthesis to generate impleatiens of perfect masking counter-
measures. We follow the iterative synthesis procedure showig. 6.2, which consists of three

steps:

1. Given an unprotected program as input, we first computendidate new program that is
masked and is functionally equivalent to the original pewgy at least for a small set of test
inputs.

2. We try to prove that the candidate program is perfectlykedgnd is functionally equivalent
to the original program under all possible test inputs.

3. If the verification succeeds, we are done. Otherwise,dhdidate program is invalid. In the

latter case, we block this solution, go back to Step 1, anddain.

— Find a candidate Verify found Passed [
— | =P program ? program = | —
Program ﬁ @ Failed Synthesized
* program
Spec Block the
program

Figure 6.2: The iterative inductive synthesis procedure.

The reason why we choose not to generate, in one step, a etagicbgram that is valid for all
possible test inputs is because of performance concerngndigate program valid for all possible
test inputs would be prohibitively more expensive for an Ssblver to compute. By separating
the synthesis task into three subtasks, namely the indusyimthesis of candidate programs, the
formal verification of candidate programs, and the itemtefinement step, we can make all three

substeps practically feasible to complete.

In this work, the verification step will consist of two sulys¢e First, we prove that the candidate

program is functionally equivalent to the original programder all possible inputs. Second, we

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attacky

prove that all intermediate computations in the candidabgiam are perfectly masked. Toward
this end, we leverage a verification procedure that we dpeeloecently, calle®&C Sniffe31],
which can check whether an intermediate computation re$tiie program is statistically depen-

dent on the secret data.

Our method inSC Sniffe{31, 32] relies on translating the verification problem iatseries of
satisfiability (SAT) problems, each of which is encoded inea &f logical constraints. These
constraints can be decided using an off-the-shelf SMT soere specifically, we start by making
all the plaintext bits inz as public, the key bits ik as secret, and the mask bitsrims random.
Then, we traverse the entire program and for each interrreedaamputatior/ (x, k,), check the

satisfiability of the following formula:

Jz, kK. (Z I(x, k,r) # Zl(x, k:',r))

reR reR

Here,k andk’ are two different values of the secret key aik the domain of random variable

For a fixed value combinatior:(k, £’), the summatiory . I(x, k,r) represents the number of
values ofr that make/ (z, k, r) evaluate to logical 1, and the summatien_, /(x, k', r) represents
the number of values ofthat makel (z, £/, r) evaluate to logical 1. Assume that random variable
r is uniformly distributed in the domaiR, the above two summations represent the probabilities
of I being logical 1 under key valudsandk’, respectively. If the above formula is satisfiable,
then there exist a plaintext and two valuesi; k') such that the distributions df(x, k£,) and
I(x, k', r) differs — it means that the value of the secret key is leakedohtrast, if the formula is
unsatisfiable, it is a proof thdtis perfectly masked. We will present the detailed SMT enagdi

in Section 6.3.2.

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attacii8

6.3 Synthesis Algorithm

In this section, we present our basic algorithm for iteedtinsynthesizing a masked version of the
input Boolean program. We leave performance optimizatiorise next section. The pseudocode
is shown in Algorithm 7, wheré is the original programinputs is the set of inputs, andutput

is the output. The input variables also have annotationsatidg whether they are plaintext bits,
key bits, or random bits. The synthesis procedure returesvgonogrammew P whose input-output
relation is equivalent to that aP. At the same time, all internal nodes oéwP are perfectly

masked. New random bits may be added by the synthesis pmacgdadually on aneed-tdbasis.

Algorithm 7 Inductive synthesis of a masked version of the input progFam
1: SYNTHESIZEMASKING (P, inputs, output) {
2: blocked+ { };

3: testSet { };

4: size +— 1;
5
6
7
8

while (size < MAX_CODESIZE){
newP < COMPUTECANDIDATE (P, inputs, output, size, blocked, testSet
if (newP does not exist)
size < size+ 1;

9: else{
10: test! + CHECKEQUIVALENCE(newP, P);
11: test2 < CHECKINFOLEAKAGE(newP);
12: if ({testl,test2}=={1})
13: return newP;
14: blocked— blockedU{newP};
15: testSet— testSetU{test1, test2};
16: }
17: }
18: return no_solution;
19: }

The synthesis procedure iterates through three elemestiepyg: (1) compute a candidate program
newP which is functionally equivalent to the original progra at least for a selected set of test
inputs; (2) verify thatvewP is functionally equivalent ta for all possible inputs and is perfectly
masked; (3) if any of the two verification substeps fails, W@ck this solution, add the failure
triggering inputs tatestSetand repeat. The synthesis procedure iteratively searfoines new
candidate program with increasing code size, until ther&aehes MAXCODE_SIZE. We record

the bad solutions in the séfocked to avoid repeating them in the future. We recorddsSet all

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attacii®

Figure 6.3: A candidate program skeleton Figure 6.4: The synthesized candidate pro-
consisting of 11 parameterized AST nodes. gram with instantiated Boolean masking.

the test cases that led to failures at some previous verificateps.

In the remainder of this section, we present the detailedrdigns for two elementary steps:

computing the candidate program and verifying the candigetgram.

6.3.1 Computing the Candidate Program

The first step in computingewP from P is to create a parameterized AST that captures all possible
masked Boolean programs up to a bounded size. We refer tA$iss askeleton. An example is
shown in Fig. 6.3, which has 11 nodes. Each node is eithélzamode or & node. The internal
nodeOp can be instantiated to any bit-level operation suckbag, |, or!. TheV node can be
instantiated to any variable in the original program, osfreandom bit added by the synthesis
procedure, or constant (logicabr 1). The instantiation o®p nodes and” nodes is controlled by

a set of auxiliary variables, whose values will be assignethb SMT solver.

As an example, consider nodgin Fig. 6.3. The corresponding logical constraint may beoeled
as((N8==V1) &bV1) | | (N8==V2) &&bV2) ,whereN8 denotes the output o andv1 andv2 are
two variables in the input program. Auxiliary variablegl andbV2 are added to decide which of
the node types are chosen — we would add another constrgingghat one and only one bdfvi
andbV2 must be true. Based on which variable is set to true by the SM/EES the output of node
ng IS determined. Similarly, for node,, the constraint may bg(N1==(N2&N3)) &&bAND1) | |
((N1==(N2| N3)) &bOR1) | | ((N1==(N2&N3)) &&bXOR1) | | ((NL==(IN2)) &&bNOT1 whereN1,

Hassan Eldib Chapter 6. Synthesizing Countermeasuressag@wer Side-Channel Attack®

N2 andN3 denote the output of node;, n,, andng, respectively. Auxiliary variablebAND1,
bOR1, bXOR1, andbNOT1 are constrained such that one and only one of them must be true
Fig. 6.4 shows a masked candidate program synthesized b$Niesolver, which represents

s :7:1 @7,2

The next step is to build an SMT formudawhich imposes two additional requirements: (1) the
input-output relation of the candidate prograkeleton is equivalent to the original prograi,
and (2) the internal nodes of the candidate program are akethby some random variables.

More formally, the formulap is defined as follows:

d = (I)P A (bskel A (I)iEqv A (I)oEqv A (bmasked A (btestSet A (I)blockeda

where the subformulas are defined as follows:

e &, encodes the program logic &f.

e O, encodes the program logic of tekeleton

o &,z asserts that the input variables@fandskeletorhave the same values.
e &,5,, asserts that the outputs Bfandskeletorhave the same value.

o &, ...q asserts that all internal nodes are masked by some randem bdme random bit

must appear in the support of the function of each node.
o &, asserts that the input variables should take values onty featSet.

o O,.1q @sserts that the previously failed solutions should noetected.

If formula ® is satisfiable, a candidate solution is found, and it will kefied for equivalence and
perfect masking in the following step. Otherwise, the skelaize will be incremented and the

SMT solver will be invoked again on the new formula.

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attackd
6.3.2 \Verifying the Candidate Program

Given a candidate progranew P, which is computed by the SMT solver for a set of selected test
inputs, we verify that it is a valid solution for all possililguts. We formulate the verification
problem into two satisfiability subproblems, where we look ¢ounterexamples, or test inputs,

under which eithenew P is not equivalent ta®, or some nodes inew P are not perfectly masked.

Checking Functional Equivalence

We construct formul@; such that it is satisfiable if and only if there exists a tegtitrunder which

newP and P have different outputs. The formula is defined as follows:
‘Ill = (I)P A (I)newP A (I)iEqv A (boDiﬁa

where®» and?,,.,,» encode the input-output relations of the two prograins,, asserts that they
have the same input values, afgl;; asserts that they have different outputsl|fis satisfiable,
we find a test case showing thatwP is a bad solution. I/, is unsatisfiable, thenewP and P

are functional equivalent.

Checking for Information Leakage

We construct formulal, such that it is satisfiable if and only if there exists an imtediate node
in newP that leaks sensitive information. Toward this end, we lagera verification procedure
that we developed recently [31] to check, for each interetedAST nodd (z, k,), whether there
exist a plaintext: and two key values, &’ such thaty | _, I(x, k,r) # > cpI(x, K 7). As we
have explained in Section 6.1, this inequality means tteaptbbabilistic distributions of (z, &,)

and(x, k', r) differ for the two key valueg and%’. The formulal, is defined as follows:

Hassan Eldib Chapter 6. Synthesizing Countermeasuressag@ower Side-Channel Attack?

i

x1 *‘ code checke# x1 *‘ code check%d‘1 *‘ code che#kéé *‘ code ch%cked
X2 —| X2 —| X2 — X2 —|
— — L] SAT?
kl| k2 r1 r2 ki1 k2 rl1 r2 ki k2 L R k1 k2 r1 r2
0 0 0 1 1 O 1 1 @
[
x1 *‘ code checke# x1 *‘ code check%d‘1 *‘ code che#kéé *‘ code ch%cked
X2 —| X2 —| - X2 — — X2 —| ‘

\ \ |
k1 k2’| r1| r2 k1l k2' r1| r2 k1’ k2" r1|r2 k1l k2’ r1| r2

0 0 01 1 0 11

Figure 6.5: SMT encoding for checking the statistical dejgece of an output on secret data.

Uy = (/\ (I)](x,k,r)> A (/\ (I)I(x,k’,r)> A P@yoi N Pgum A PsumpDigy

reR reR

where the subformulas are defined as follows:

e Program logic €, ,): Each subformulab,, , . encodes the input-output relation of
I(z, k,r) with a fixed valuer € R and variablek. Each subformul@, ;) encodes the
input-output relation of (z, &', r) with a fixed value € R and variable:’. All subformulas
share the same plaintext variable

e Boolean-to-int ¢,,;): This subformula encodes the conversion of the bit outputefk, r)
to an integer (true becomes 1 and false becomes 0), whichb@iBummed up later to

Iz, k,r)and)” o I(z, K, 7).

e Sum-up-the-1s%,,,,): This subformula encodes the two summations of the logitsainl

computed

the outputs of théR| copies ofl (z, k,) and the| R| copies ofl (z, k', r).

¢ Different sums®,,,.p;7): It asserts that the two summations have different results.

If U, is unsatisfiable, the intermediate reslils perfectly masked. I, is satisfiable, ther has

information leakage.

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attacks

Fig. 6.5 provides a pictorial illustration of our SMT encodifor an intermediate resultk1, k2,1, r2),
wherekl, k2 are the key bits and1,r2 are the random bits. The first four boxes encode the
program logic of®;(, 1.0y - . . P12 x,3) for key bits ¢1%£2), with the random bits set to 00, 01, 10,
and 11, respectively. The other four boxes encode the protrgic of ®;¢, 1) . .. (3 fOr

key bits ¢1'k2"), with the random bits set to 00, 01, 10, and 11, respectivihe entire formula
checks whether there exist two sets of key valkdskRandk1’ k2’) under which the probabilities

of I being logical 1 are different.

As a more concrete example, consider the computafior = & k V (r1 A r2) in Fig. 2.1. The
SMT solver may return the solutior=0, k=0 andk’=1 because, according to the truth table in
Fig. 2.1, . ¢2(0,0,r) = 1 whereasy |, ., c2(0,1,7) = 4. Considercd =2 ® k @ (rl ©r2)

in Fig. 2.1 as another example. The SMT solver will not be ablénd any solution because it

is perfectly masked. For instance, wher0, k=0 andk'=1, we have) _,.c4(0,0,7) = 2 and
Y orercd(0,1,7r) = 2.

6.4 Partitioned Synthesis Algorithm

SMT solver based inductive synthesis has the advantagemj bghaustive during the search of
countermeasures within a bounded design space. With tpeoéthe verification subprocedure,
our method also guarantees that the resulting programusesbg construction. However, its main
disadvantage is the limited scalability, since the SMT epbblows down quickly as the program
size increases. Although we expect SMT solvers to contimpgaving in the coming years, it is
unlikely that a monolithic SMT based synthesis proceduleseale up to large programs (this is
consistent with what other researchers in the field havereedé4, 3]). In this section, we propose
a partitioned synthesis procedure to combine a simple static code asalyth judicious use of
an SMT solver, so that the combined method is able to hangfgayraphic software of realistic

size.

The partitioned synthesis procedure (Fig. 6.6) startsdmetsing the AST nodes of the program in

Hassan Eldib Chapter 6. Synthesizing Countermeasuressag@wer Side-Channel Attacks!

! 1
' Find a candidate Verify found | Passed I
|

! |§|=D program = program —9> 3
! 1

I
1 ! Program ﬁ @ Failed Synthesized 3
I + I

program

‘ ‘
| Spec Block the '
> For each ! program '

node — e
A Tl T
If there is - Extract »| synthesis > ves Replace
info. leakage code region code region
No
L 4

Figure 6.6: The partitioned synthesis procedure for apglynasking countermeasures locally.

a topological order from the inputs to the output. Dependingvhether the AST node is linear

or nonlinear as shown in Algorithm 8, it invokes eith@kSKLINEAR Or SYNTHESIZEMASKING
(presented in the previous section). Whers a linear function, we mask its input variables and
demask the output with random variables, without modifghmglinear function itself, as explained
in Section 6.1. When is a nonlinear function, instead of invokiisyNTHESIZEMASKING for the
entire fan-in cone ofi, we partition it into small code regions, and synthesize aked version
for each region. Then, we substitute the original code regig in programP with the new
code regiomew_reg. The entire synthesis procedure terminates when all srodé cegions of all

nonlinear AST nodes in prograi are perfectly masked.

Algorithm 8 Partitioned synthesis algorithm for masking the program
1: PARTITIONEDSYNTHESIS (P, inputs, output) {
2: foreach(AST noden € P) {

3: if (nrepresents a linear function)

4: new_n < MASKLINEAR(P, inputs, n);

5

6

7

8

replacen in programP with new_n;
else{
while (3 unprotected code regiafg € Fanln(n)) {
Let (reg_ins, reg_out) be the inputs and output @ég;

9: new_reg < SYNTHESIZEMASKING(P, reg_ins, reg_out);
10: replace-eg in programP with new_reg;
11: }
12: }
13: }
14: return P,

15: }

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attackd
6.4.1 Selecting a Code Region

While selecting a code region ifunin(n), we first start from an AST node € Fanln(n) that is
not yet perfectly masked, and then include a number of iteeoted unprotected nodes. The exact
number of fan-in nodes to be included in the code region oémods controlled by a user specified
bound. Choosing the right bound, and hence the size of the i@mgion, is a tradeoff between the
compactness of the synthesized program and the compwbhtiverhead. If we set the bound to
positive infinity, the partitioned synthesis procedure {dalegenerate to the monolithic approach.
However, this approach is limited by the capacity of the SMlvars. On the other hand, if
the bound is too small, the synthesized solution may be girbapin that some of the masking

operations are unnecessary.

For illustration purposes only, we consider an extreme e@sere the region size is set to 1,
meaning that each nonlinear AST node is masked separatetierithis assumption, we illustrate
the process of masking the() function in Fig. 6.1. The first code region involves the NOT

operation at Line 3, whose masked version is shown as follows

bl =i2 & ri;
Li ne 3: n3 = =12 — tl = = bl;
n3d =tl1 & rl;

The second code region involves the AND operation at Lineihsg masked version is shown as

follows:

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attacks

b3 =i3 & r3;

b2 =n3 @ rz

t10 = - b2;

t9 =Db3 AT2;
Li ne 4: n2 = n3 Ais3; — t8 = -r3;

t7 =t10 A 3
t6 = b2 A b3

t5 = -1t9;

t4d =t8 VvV rz
t3 =t6 VvV t7,
t2 =t4 & t5
n2 =t2 & t3;

The third code region involves the XOR o2 and:1 at Line 5, whose masked version is shown as

follows:
b4 =n2 & r4
b5 =il & ri;
Li ne 5: nl =n2 & il — t12 = b4 & b5;
t1l1 =rl1 & r4,
nl =1tl1ll ¢ t12;

It is worth pointing out that, in this extreme case, the riisglprogram will be suboptimal.
However, the actual implementation of our partitioned bgsts procedure was able to obtain a

perfectly masked countermeasure whose size is more compact

6.4.2 Replacing the Code Region

Continue with the abovextreme casexercise, we now explain how to use the newly synthesized
code region few_reg) to replace the original code regiore{) in programP. The replacement
process is mostly straightforward, due to the fact that autifponed synthesis procedure traverses
regions in a bottom-up topological order. However, therene caveat — before demasking the
output of the new regiomew_reg, we need to mask it with another random variable; otherwise,

the output ofnew_reg would become unmasked.

Hassan Eldib Chapter 6. Synthesizing Countermeasuresstg@ower Side-Channel Attacks

We solve this problem by asserting, while computing the @hatd program in procedurgyN-
THESIZEMASKING, that the output and all inputs must be an XOR operation wathesrandom
variables. Due to the associativity of XOR operations, drafact that now two adjacent code
regions are connected through two XOR operations, we cattlswhe order of the two XOR

operations during region replacement, without modifyimg functionality of the final output.

Below is an example for chaining the three new code regiorte¥ function obtained in our

extreme casexercise, by swapping their adjacent XOR operations.

bl =i2 & ril,
Line 3: n3 = =12 — tl = - bil;
n3 =tl & r2; //swapped with rl
b3 =i3 & r3;
b2 =n3 @ rl; //swapped with r2
t10 = - b2;
t9 =Db3 A r2
Li ne 4: n2 = n3 A i3; — t8 = - 18,
t7 =1t10 A r3;
t6 = b2 A b3;
t5 = -1t9;
t4d =1t8 VvV r2;
t3 =t6 VvV t7;
t2 =t4 @ th5;
n2 =t2 & r4, //swapped with t3
b4 =n2 & t3; //swapped with r4
b5 =il & r1,;
Line 5: nl =n2 & il — t12 = b4 @ b5;
tll =rl1 & ré4;
nl =1tl1l1 & t12;

6.4.3 Reusing Random Variables

To further reduce the size of the synthesized program, weereandom variables as much as
possible while masking the non-adjacent code regions. iffgaly, while building the candidate
programskeletonfor a code regioneg, we first need to create a list of random variables to be

used in thel” nodes. The number of random variables is at most as largeeasuthber of input

Hassan Eldib Chapter 6. Synthesizing Countermeasuressag@ower Side-Channel Attacks

variables inreg. However, we do not have to create fresh random variabley évee they are
needed. Instead, we can reuse existing random variablég iprogram, as long as they are not
used in the code regions adjacent¢g. This optimization can significantly reduce the number of
random bits required in the masked new program, while ataheegime soundly maintaining the

statistical independence of the masked nodes.

6.5 Experimental Results

We have implemented our synthesis method in a software taitil ipon the LLVM compiler
frontend and the Yices SMT solver. Our tool runs in two modég monolithic mode and the
partitioned mode, to facilitate experimental comparisbthe two approaches. We have evaluated
our method on a set of cryptographic software benchmarks: e@perimental evaluation was

designed to answer the following questions:

e How effective is the new synthesis method in eliminatinggesidannel leaks? Is the synthe-
sized program as compact as the countermeasures handdraiaperts?
e How scalable is the tool in handling code of realistic siza# @artitioned synthesis proce-

dure is designed to address the scalability problem. I$att¥e in practice?

Our benchmarks fall into three categories. The first semfRi to P8, are medium sized cryp-
tographic functions that are partially masked. Specifjcddll and P2 are taken from Bayrak
al. [10], which are incorrectly masked computations due to gaddon in compiler optimization.
P3 and P4 are from Herbet al.[42], which are gate-level implementations of partiallysked
AES. P5 and P6 are masked versions of thieinction from Bertoniet al. [14], after integer to
Boolean compilation with optimizations. P7 and P8 are twadlified versions of the MAC-Keccak
nonlineary functions. The second set, from P9 to P12, are small to medined cryptographic
functions that are completely unmasked. Specifically, RBasoriginal MAC-Keccaky function

taken from the reference implementation [14] (EquationdnZPage 46). P10 and P11 are two

Hassan Eldib Chapter 6. Synthesizing Countermeasuressag@ower Side-Channel Attack®

Table 6.1: Comparing performance of the monolithic andifianed synthesis algorithms.

Program Monolithic Partitioned
Name LoC Keys | Plains | Rands | Nodes Rands | Nodes Time Rands | Nodes Time
P1 79 16 16 16 47 16 85 2.9s 16 85 2.9s
P2 67 8 8 16 31 16 55 1.5s 16 55 1.5s
P3 32 2 2 2 9 4 15 8.3s 4 15 8.1s
P4 32 2 2 6 6 9 0.2s 6 9 0.2s
P5 59 3 3 4 18 8 24 19m17s 8 27 8.3s
P6 60 3 3 4 18 8 24 0.5s 8 24 0.5s
pP7 66 3 3 4 22 8 25 0.3s 8 25 0.3s
P8 66 3 3 4 22 8 25 0.3s 8 25 0.3s
P9 9 3 0 0 3 - - TO 4 14 3.1s
P10 57 8 0 0 37 - - TO 8 264 4m36s
P11 82 8 0 0 48 - - TO 4 485 13m10s
P12 365 8 0 0 182 - - TO 8 1072 22m10s
P13 56k 58 161 58 19k - - TO 58 20k 24m7s
P14 56k 58 161 58 19k - - TO 58 21k 41m37s
P15 56k 58 161 58 19k - - TO 58 21k 36m21s
P16 56k 58 161 58 19k - - TO 58 21k 35m42s
P17 56k 58 161 58 19k - - TO 58 21k 48m15s
P18 56k 58 161 58 19k - - TO 58 20k 23m4ls

nonlinear functionsmul4 andinvg4, from an implementation of AES in [17]. P12 is a single-
round complete implementation of AES found in [17]. Thedtset, from P13 to P18, are partially
masked large programs with a significant number of instomstinot yet masked. These programs
are generated by us from the MAC-Keccak reference code [6 @onverting it from an integer
program to a Boolean program. In each case, the whole progaarneen transformed into a single

function to test the scalability of our new methods.

Table 6.1 shows the experimental results obtained on a machith a 3.4 GHz Intel i7-2600
CPU, 4 GB RAM, and a 32-bit Linux OS. Columns 1-6 show the stas of each benchmark,
including the name, the lines of code, the number of key Ihis,number of plaintext bits, the
number of random bits, and the number of operations (Nod€sjumns 7-9 show the results
of the monolithic synthesis algorithm, including the numbérandom bits and the number of
operations (Nodes) in the synthesized program, as welleasuthtime. Columns 10-12 show the
results of the partitioned synthesis algorithm, includimg number of random bits and the number
of operations (Nodes) in the synthesized program, as weheasun time. Here, TO means that

the tool ran out of the time limit of 4 hours.

Hassan Eldib Chapter 6. Synthesizing Countermeasuressag@wer Side-Channel AttackB0

The experimental results show that our new synthesis metbgpkcially when it runs in the
partitioned mode, is scalable in handling cryptographitvere of realistic size. On the first
set of test cases, where the programs are small, both moaihd partitioned procedures can
complete quickly, and the differences in run time and cortygess of the new program are small.
However, on large programs such as AES and MAC Keccak, thehtioic method can not finish
within four hours, whereas the partitioned method can fimshreasonably small amount of time.

Furthermore, we can see that most of the existing randonntiiie original programs were reused.

As far as the compactness of the new program is concernedhove &f only one benchmark (P9)
that has a previously published masking countermeasure.cduntermeasure [14], handcrafted
by cryptographic engineering experts, has 14 operatiortse dbuntermeasure synthesized by
our own tool (using the partitioned approach) also has 14atipms. Therefore, at least for this
example, it is as compact than the handcrafted countermeeasiowever, recall that our method
has the additional advantages of being fully automated &ndeasame time guaranteeing that
the synthesized new program is provably secure. Furthesnwinen given more CPU time —
for example, by setting the time limit to 10 hours and usindighly larger region size — our
synthesis procedure, based on exhaustive search, wa®airteduce a countermeasure with only

12 operations, which is even more compact than the countesune handcrafted by experts.

1000 ==¢==Monolithic
Partitioned
100
10
1
0.1 /
0.01

1 2 3 4 5 6 7 8 9 10 11

Figure 6.7: Results: Comparing the execution time of theswahesis procedures.

Hassan Eldib Chapter 6. Synthesizing Countermeasuressadgzower Side-Channel Attack81

As another measurement of the scalability of our new methagsconducted experiments on
a parameterized version of test program P1 by expandingmt ft encryption round up to 10
rounds. In each program, the input for one round is the oditput the previous round. We ran the
synthesis tool twice, once with the monolithic approach ande with the partitioned approach.
The results are plotted in Fig. 6.7, where thaxis shows the program size and tjraxis shows
the run time (in seconds). Note that thexis is in logarithmic scale. Whereas the monolithic
approach quickly ran out of time for programs withs rounds, the execution time increase of the

partitioned approach remains modest.

6.6 Summary

We have presented a new synthesis method for automaticatigrgting perfect masking coun-
termeasures for cryptographic software to defend agaimsepanalysis attacks. It guarantees
that the resulting software code is secure by constructiva.have implemented our method in
a tool and evaluated it on a set of cryptographic softwareherrks. Our experiments show
that the new method is effective in eliminating side chaheaks and at the same time is scalable
for handling programs of practical size. For future work, plan to continue optimizing our
SMT based encoding and at the same time, extending it to @aaidlitive masking, multiplicative

masking, as well as application specific masking such as Ri8dibhg.

Chapter 7

Synthesis of Countermeasures for Fault

Attacks

The rising security risks in embedded computing systems hel/to the increasingly widespread
use of cryptographic modules, implemented either in hardwain software, to guarantee secure
authentication, privacy, and integrity. Although modemptographic algorithms are designed to
be secure against hundred years of brute-force cryptasatyeir implementations in hardware
or software are often not as secure. For example, there e teported cases of successful
attacks on cryptographic modules in embedded systems, djaity of which were carried out
through side-channel attacks [66, 59, 7]. In this conténd,ddversaries leverage their knowledge
of the cryptographic implementations — which are typicalsailable to the public — as well as

supplementary information leaked through various sicenaels.

Fault Sensitivity Analysis (FSA) is a side-channel attag&iast cryptographic hardware [55, 73],
which exploits the correlation between secret data valnddlae time needed to propagate them
through the cryptographic module and become externallgmbble. An FSA attack is typically
carried out by first injecting a fault to the circuit, e.g., dggressively reducing the clock period,
and then gradually increasing its fault intensity untilitad errors occur in the output. One can

measure the fault intensityritical level, which is defined as the faulty intensity where a faulty

102

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 103

— Find a candidate Verify found Passed | __
— | =>| countermeasure |=| candidate = | —
Program ﬁ @ Failed Synthesized
+ program
Spec Block the

candidate

Figure 7.1: Our iterative procedure for FSA countermeasynghesis.

output first occurs. This critical level is then compare@ siatistical analysis, with a simulated
critical level computea priori. The comparison result can be used to determine the most like

values of the secret variables.

In this chapter, we propose a new synthesis method for agstg countermeasures of crypto-
graphic hardware to defend against FSA attacks. Given arotegied circuit as input, together
with its sensitive signals clearly marked, our method mefuas output a functionally equivalent
circuit where the time delay for all output signals are ineleghent of the values of the sensitive

signals. In other words, the new circuit is guaranteed tebistant to FSA attacks.

Figure 7.1 shows the overall flow of our method. Given theuir¢’ and a setS of sensitive
signals, our method first generate a candidate ciCyitvhich produces the same result@sat
least for some input values and is also more likely to havaruad delay along sensitive paths.
Then, our method invokes a verification subroutine to fotynatrify, for all input values,C’ is
functionally equivalent ta”'. Furthermore(”’ is FSA resistant in that the output delay along all
paths are independent of the secret data value§! ffasses the verification step, we are done.
Otherwise, we add some logical constraints to block the lzandlidate so that it will never be
reexamined in the future. In this work, our verification suliine is implemented as a formal
equivalence checking process augmented with lightweiglitsanalysis for computing the delay

along sensitive paths.

In practice, the main hurdle of applying inductive syntBesuch as the one illustrated in Fig. 7.1,
is scalability. Since the search space can be enormous;tinesynthesis procedures typically

work well on small programs or circuits but do not scale upamér designs. Fortunately, for

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 104

this particular application, we can make inductive synghedfficient by exploiting the idea of
compositionality. Since the delay of a path in a circuit isa}s the summation of the delays of its
individual path segments, we can design a partitioned sgilprocedure to scale up the baseline
inductive synthesis algorithm. Our new method relies on fiestitioning the entire circuit into
smaller regions, then synthesizing a solution for eachviddal region, and finally composing

these partial solutions to form a countermeasure for thdewticcuit.

We have implemented our new method in a software tool andiated it on a set of cryptographic
circuits, including nonlinear components of the AES and MK€xcac algorithms. Our experi-
mental results show that the new method is both effectivénmmating FSA attack vulnerabilities

and efficient enough for practical use.

To summarize, this chapter makes the following contritngio

e We propose a new inductive synthesis method for generatmgaply secure cryptographic
circuits to defend against FSA attacks;

e We propose a partitioned synthesis procedure to scale upsspumethod in order to handle
large circuits;

e We implement the new methods in a software tool and demdedtrair effectiveness on a

set of cryptographic circuit benchmarks.

The remainder of this chapter is organized as follows. W $ha illustrating our main idea
using examples in Section 7.1. We present our baseline eouatasure synthesis algorithm in
Section 7.2, followed by the partitioned synthesis procedn Section 7.3. We present in more
detail the synthesis subroutine in Section 7.4. Our expantal results are presented in Section 7.5.

We review the related work in Section 7.6. Finally, we give summary in Section 7.7.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 105

Out0

Outl

Out2

Out3

XOR
Array Out4

Out5

Out6

Inl 05

Out7

Figure 7.2: Partial PPRM1 AES S-box: vulnerable to FSA &iac

7.1 lllustrative Example

In this section, we use examples to illustrate the main idedéd our new method for synthesizing
countermeasures to defend against FSA attacks. Our examnplet is an implementation of
part of the Advanced Encryption Standard (AES) algorithnESAhas four main functions that
are repeated for a number of rounds depending on the redeingth of the secret key. In this
section, we focus on one representative function, the S4ioge it is the only nonlinear function
in AES. In cryptographic algorithms, nonlinear functiorre aften the hardest to protect with

countermeasures.

We use the PPRM1 AES S-box implementation proposed in [6&Eh@matic representation of
which is shown in Fig. 7.2. This implementation scheme hanlv@dely used as a benchmark in
the cryptographic engineering field [35]. The circuit is stvacted from two networks. The first
one is a network of XOR gates and the second one is a networldf gates. For simplicity, we
will only explain the synthesis of a countermeasure for teework of AND ages. Therefore, in
the remainder of this section, we assume that the AND gateankis the complete circuit. Later
in this chapter, we explain how our method can be appliedrigelecircuits, by first partitioning a
circuit into smaller regions, synthesizing countermeestior these regions individually, and then

composing the solutions.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 106

The reason why the circuit in Fig. 7.2 is vulnerable to FSAaks is because the time taken for the
output of the circuit to be computed is dependent on the gabfiehe sensitive inputs. Consider
the output signab0 of the AND network and the two input signdla2 and/ .;,. Let Ticnqin b€

the signal arrival time of .;..;, andT,, be the time required for the last AND gate to propagate

input signals to the output.

If we assume that all input signal$10- | n7 have the same arrival time, and all gates have the
same delay, then we ha¥®,,,.;,>17,.. Furthermore, the value df;..;, depends on the value of
the input signaldn0, Inl, In3, In4, In5, In6 as well as the number of gates along the path. If
we assume n2 to be a sensitive variable, the aforementioned mismatchearatrival time of the
signals at the input of the last AND gate will lead to sigo@lbeing sensitive. In other words, the
secret value of n2 can be determined using a statistical analysis of the ogigotalo0 based on

its dependency dh2. In the next paragraph, we briefly explain the intuition Imehthis attack.

In the context of FSA attacks, we say that the outguts statistically dependent on the sensitive
variablel n2 for the following reasons. When the value Iafi2 is logical 1, the delayl,, is
determined byl ;... IN CcOntrast, when the value obh2 is logical 0, the delay’,, is determined
by T12. SINCET 7enain > Trno, the dependency relation between the required transitrndnd the
secret value of n2 causes a leak of the sensitive information, which is realerby correlation

analysis techniques such as FSA [55, 73].

All previously proposed countermeasures, which were slpichand-crafted by cryptographic
engineering experts [35, 34], rely on adding delay comptsencertain input-output paths to
eliminate information leaks arising from the nonuniforrgrsal arrival time. For example, Fig. 7.3
shows a recently published countermeasure for the cinodtig. 7.2, implemented by manually
analyzing the input-output signal paths for each output gatl then adding buffers accordingly to

make the delay along all its sensitive signal paths equal.

However, such countermeasure often results in an unnetgsame number of additional gates
in the circuit, thereby leading to higher area cost and gneogpsumption. Our new method, in

contrast, can synthesize a countermeasure with a sigrtlfi¢éawer gate count. Fig. 7.4 shows the

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 107

in >

i1 —>—-—> > >

o —>——4>—1>—

Ing —>—{>—

I3 ——=>——

In5 Out0
" Outl
::; Out2
::2 YOR out3
In5 Array | Oud

In6
Outd

In7
In0 outé

In1
In2 Out7

Figure 7.3: AES S-box with inefficient implemented counteasures.

circuit synthesized by our method, which is functionally®glent to the circuit Fig. 7.2 and at
the same time guarantees to be resistant against FSA atfukisis, each output gate in the new

circuit has the same arrival time for all sensitive inputahbles.

Comparing our synthesized countermeasure in Fig. 7.4 Wélptior solution in Fig. 7.3, we can

see that our solution is more efficient, both in terms of tlemamnd the latency of the circuit, and
in terms of the power consumption. In fact, our solution usgy 13 gates as opposed to the 41
gates used by the circuit in Fig. 7.3. Furthermore, our neaudiis even smaller in size than the

original circuit in Fig. 7.2, which has 21 AND gates.

At this moment, it is worth pointing out that traditional legsynthesis techniques, such as two-
level and multi-level minimization algorithms implemedtm state-of-the-art EDA tools, do not
have the capability of synthesizing secure-by-constoncESA countermeasures similar to ours.
Although these existing tools can optimize the area and poaesumption of a circuit as well as
reducing the delay of critical paths, they do not guarartiaedll sensitive signal paths exhibit the
same amount of delay. Furthermore, due to the lack of a dodidretical foundation, it is difficult

to customize such tools to solve the FSA countermeasuréasistproblem.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 108

Out0
Outl
In5 out2
::i out3
L XOR
) Array | ous
In0
Out5
In3
In7 Outé
In2
In1:D Out7

Figure 7.4: AES S-box with efficient implemented countersuges.

In this work, we leverage the idea wfductive synthesit generate secure-by-construction FSA
countermeasures. Although inductive synthesis has bemessfully applied to many domains, to
the best of our knowledge, it has never been used to syn&hESIA countermeasures. However, it
is not easy to synthesize FSA attack countermeasures leea@usave to search for an alternative,
equivalent, and FSA resistant implementation of the giveruit within an extremely large design
space. Furthermore, cryptographic circuits are known taliffecult to analyze by symbolic
techniques. Therefore, scaling up the synthesis algorfthnaryptographic circuits of practical
size is a challenging task. After presenting our baseligerghm in Section 7.2, we will leverage
the divide-and-conqueiprinciple to scale our countermeasure synthesis methodrd¢aits of

practical size and complexity.

7.2 Synthesis of FSA Countermeasures

In this section, we present our new method for synthesizB®y Eountermeasures, which takes an

unprotected circuit as input and returns an FSA-resisiariicas output.

Recall that in the context of inductive synthesis, theredsele be a synthesis subroutine and a

verification subroutine. The synthesis subroutine gueaseandidate solution and the verifica-

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 109

tion subroutine formally verifies that it is a valid solutiomn the context of synthesizing FSA

countermeasures, our verification subroutine needs tdkahedollowing two properties:

¢ (1) the new circuit is functionally equivalent to the origlrtircuit; and

e (2) the new circuit is FSA-resistant, meaning that it doeshawve unequal delay paths from

sensitive data to the circuit output.

To reduce the computational overhead, we formulate thénegig subproblem in such a way that,
every candidate solution is already guaranteed to be FSi&taamt (Property 2). In such case, the
verification subroutine has to check only the functionaliegjence between the candidate solution

and the original circuit (Property 1).

The main idea is to construct a so-calkednplate circuit whose instantiations are guaranteed to
be FSA-resistant and at the same time cover all possibleteouaasure solutions. Without loss
of generality, we assume that all logical gates of the sarpe have equal propagation delay to
ease our presentation. Under this assumption, we can eRSéeesistance by requiring all paths

from sensitive (input) signals to the output signals to evequal number of logic gates.

Consider the motivating example in Fig. 7.2 again. Its F8sistant template circuit can be
illustrated by the diagram in Fig. 7.5, where gates and $sgay@ distributed to five levels. Here,
Level O generally consists of the output signals, wherea®lL4£ consists of the input signals. In
between these two levels, there can be logic gates of vatypes such as AND, OR, and NOT.
This is a template circuit because the internal logic gad®e Imot yet been chosen and signals have

not yet been connected to each other.

To make sure that all instantiations of this template ctreue FSA-resistant, we restrict the

connection of signals as follows:

¢ All sensitive input nodes are placed on the same level — matethey do not have to be at

the bottom level;

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 110

Level O
Level 1 A A A
1 : : vy v Yy v v 0
v v v
Level 2 4 A A
: | | \ Yy v
v
Level 3 A A A
| | \ Yy v
Level 4 A

G
Figure 7.5: The FSA-resistant template circuit structure.

e Each node is constrained to connect to a node either oneHayetr or one level lower to

ensure the levels assigned to each node remain valid.

These constrains guarantee an equal number of gates beangegate’s output and all of its
connected sensitive inputs. In turn, this ensures theative of all sensitive inputs are equal.
However, it is worth pointing out that we do not require thgnsil arrival time of any two uncon-

nected gates to be equal.

To reduce the computational overhead of the synthesis guoegwe statically estimate the level
at which the output signals should be placed, based on thdéd@wuai inputs it is connected to

and the level required for each input. The initial level gasid to an output node is the minimal
depth needed to separate an output node from the sensipivenondes to fit all nodes in a tree
structure. If the synthesis procedure fails to find a sotutising the estimated level, another call
to the synthesis procedure will be performed, after shyfthre output nodes one level up in order

to search for a larger candidate circuit.

We have formulated our countermeasure synthesis algorithine SyGuS specification language,

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 111

and then leverage solvers implemented in the SyGuS toolo[sjenerate the countermeasure.
The SyGusS tool currently has three backend engines, fronchwbine can be chosen to solve
the problem. One backend engine is based on the use of SMé&rsplanother is based on
heuristic guided enumeration, and the third is based onahastic search of the design space.
Our experience shows that, for this work, the enumerativeesan SyGuS often has the best

performance.

However, since SyGuS was not designed to synthesis progsétmsnultiple output signals, the

existing SyGus tool can be suboptimal when used to synth&S82A countermeasures. To scale up
our new method to realistic cryptographic circuits, we alecthe synthesis subproblem to allow
different outputs to share the same set of intermediatesgateshown in the synthesized circuit
in Fig. 7.4. This is crucial for our method to generate cistihat are small in size; indeed, the

synthesized circuit with FSA countermeasure is sometimmegler than the original circuit.

Therefore, we not only propose the first method that leves&yg5uS to solve the FSA coun-
termeasure synthesis problem, but also extended thergxistiplementation of the enumerative
solver in SyGusS, to speed up the computation and reduce thgososize. In other words, we

allow SyGusS to synthesize functions with multiple inputsl amultiple outputs, where the internal

nodes are shared among the output functions as much aslppasishown in Fig. 7.4.

Unfortunately, applying the existing solvers in SyGusS dileto FSA countermeasure synthesis
is not practical for cryptographic circuits of large sizehi§ is due to the inherent complexity
of the inductive synthesis method, whose runtime increeesgislly as the size and complexity
of the circuit increase. As a result, only small circuits cenhandled by SyGuS directly. To
overcome this scalability problem, we propose a new pani#d synthesis approach, which applies
SyGusS only to small circuit regions, one at a time, as opptséue entire circuit at once. Due to
the compositionality of the FSA countermeasures, our ji@amgéd approach has the capability of

handling cryptographic circuits of any size.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 112

7.3 The Partitioned Synthesis Approach

In this section, we present our partitioned approach tohggizing FSA countermeasures. Our
method starts by parsing the original circuit and creatmgéermediate representation (IR) in the
form of a directed acyclic graph (DAG). The reason why thegioal circuit is a DAG is because it

represents on the combinational part of a sequential tilare specifically, the input signals are

either primary inputs or pseudo primary inputs (output tfhas from the previous clock cycle).

The DAG is first transversed in a topological order and thetitpaned into a set of smaller circuit
regions. Each circuit region is statically analyzed to $akis vulnerable to FSA attacks. For
example, if there are discrepancies between the delay diffegent paths from sensitive inputs to
the outputs, we would assume it is vulnerable. For each vailhe circuit region, we invoke
the SyGuS-based synthesis subroutine to generate a newt.ciBy replacing the vulnerable
circuit region with the synthesized circuit region, we céimaate the vulnerability. This process
(extracting and replacing vulnerable regions) is repeated no vulnerable circuit region can be

found.

Algorithm 9 shows the overall flow of the new partitioned $ygis procedure, wher® is the
original circuit, InputSort is a map from each primary input to a type (sensitive or narsisige),
GatesPD is a map from each logic gate in the original circuit to itsgagation delayzatesSyn

is a set of logic gates to be used during synthesis of the newitiiand/ev is the maximum depth
of the circuit to be synthesized, which in turn determines iaximum size of the synthesized

circuit.

The partitioned synthesis method first finds a sensitiveigates circuit, denotedGate, based on
which it partitions the circuif’ into smaller circuit regions. More specifically, it stargsdiatically
analyzing each logical gatgin the circuit P and creating three tables with values associated for
each gate. The firsi/ax P D is the maximum path delay from the gate to the output of theudir
The secondMinAr is the minimum arrival time of any of the sensitive inputs lte gate. The

third, MaxAr is the maximum arrival time of any of the sensitive inputsite gate.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 113

Algorithm 9 Partitioned Synthesis of the FSA-resistant circuit.
1: ANALYZE (P, InputSort, GatesPD, GatesSyn,lev) {

2: while true{

3 foreach gate g € P{

4: MaxPDlg] + GETMAXPD(g, GatesPD, P);

5

6

7

8

MinAr|[g] + GETMINAR(g, GatesPD, P);
MaxAr[g] < GETMAXAR(g, GatesPD, P);
}
: sGate < GETSENSITIVE(MaxPD, MinAr, MaxAr, P);

9: if (sGate =={1})
10: return P;
11: n=2k -1
12: newReg < {}
13: while (newReg == {}){

14: reg «+ GETREG(sGate, MinAr, MaxAr, P,n);

15: newReg < SYNTHESIZE(reg, MinAr, GatesSyn, lev);
16: n——;

17: }

18: P < UPDATEREGION(P, reg, newReg)

19: }

20: }

The subroutine GTSENSITIVE returns the next sensitive gaté/ate that is vulnerable to FSA
attacks. It is a gate where the maximum arrival tifdex Ar[g] differs from the minimum arrival
time MinAr[g]. In the presence of multiple sensitive gates, this submeuteturns the sensitive
gate with the minimum propagation delay from the sensitiymits. If there is a tie, the gate with
the maximum propagation delay to the output of the circugakected asGate. This ranking

heuristic is crucial to ensure that our method finds a smalht@armeasure circuit.

Next, we iteratively extract a circuit regiorg of sizen, consisting of gates close to the sensitive
gatesGate, and synthesize a new regieaw Reg. The subroutine GTREG returns a regiomeg
consisting of bothsGate and gates close to it. Then, the subroutieN8HESIZE is invoked to
compute the new regionew Reg: it needs to be functionally equivalent teg and at the same
time more FSA-resistant thaeg. We say thatiew Reg IS more resistant, rather than completely
resistant, if the mismatch between the maximum and minimnaah times of the inputs of
reg exceeds the maximum depth ofw Reg defined by the user ifev. In such casepew Reg
reduces the mismatch in arrival time between the inputsttaerdthe arrival time mismatch will be

eliminated in later synthesis iterations. We illustrate skibroutine in more details in Section 7.4.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 114

If the synthesis subroutine fails to fimdw Reg within the given size, it will be invoked again to
search for a solution for another circuit regioty with a smaller number of gatés — 1). Since
lev has to be assigned to a value greater than one, the procediuagoid running in an infinite

loop at Line 13. It will always find a new region befatgeaches zero.

After a successful synthesis of a countermeasure for a mgarreircuit, the region in the original
program will be replaced with the synthesized region. Théitpaned synthesis method will con-
tinue until no more sensitive gates remain in the circuitttA$ point, the synthesis is considered

complete and the new circult is returned to the user.

7.3.1 Region Selection

The subroutine >REG in Algorithm 9 is responsible for extracting a vulnerablecuit region
with at mostn gates. Inside this subroutine, the sensitive gétete is first added in the region
reg. Then,reg is expanded by adding the chain of sensitive fan-out gatew further sensitive
fan-out gates are available, the chain of sensitive faratagofsGate are added. If there are more

than one sensitive fan-in gate, the gate with the minimumanime is added teeg first.

It is worth pointing out that the above ordering heuristic fbe gate selection can guarantee
termination of the partition method. The reason is that $ugas our synthesis of countermeasures
for the circuit regions follows a topological order, stagifrom the inputs. This avoids the need
to re-synthesize countermeasures for the same gate. Aathe 8me, it reduces the maximum
mismatch in the arrival time by decreasing the circuit maximdepth rather than inserting gates

for a delay effect, which in turn avoids a blow-up in the syasdized circuit size.

The selected regioreg would have a maximum size of = 2'* — 1 gates, which occurs if all
inputs variables have equal arrival time from the inputghé region inputs have different arrival
times, this is accounted and compensated for by assignengqiputs at different depths in new
region. In this case, the number of gates would decreasaifesmme of the internal nodes are

converted to input nodes and their children are removed. F&illustrates why for aew Reg

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 115

Figure 7.6: Example for a selected regiafy.

with lev of 2 and three inputs with arrival time af « anda + 1 cannot have any more inputs added

to it, although normally a tree of depth 2 can have up to 4 isput

7.3.2 Relevant Parameters

In Algorithm 9, the parameter§atesSyn andlev are decided by the user to find a sweet spot
among the several optimization factors. For example, byding more types of gates (HatesSyn

(to be used during the synthesis process), the number abp®sslutions will increase, which may
lead to a more compact countermeasure. On the other hanill,ats® increase the search space

and make our method less scalable.

Increasingev will increase the size of the extracted region, which in tunproves the quality of
the synthesized circuit regions. This is because optinozatsuch as gate sharing is more likely
in larger circuits than in smaller circuits. On the other dthaimcreasingev will lead to harder

synthesis subproblems, which would take the SyGusS solvee tirae to return a solution.

7.4 The Synthesis Subroutine

The subroutine 8NTHESIZE attempts to generate a new circaitw Reg that is logically equiva-
lent toreg and at the same time FSA-resistant. The pseudocode is shogarithm 10, where

the input consists of the regioreg, the mapMinAr from inputs to each gate minimum arrival

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 116

time, the setGatesSyn of logic gates to be used in the new circuit, alad the the maximum
allowed depth of the new circuit. The procedure returns alickate circuit if such a solution exists

within the given solution space.

Algorithm 10 Inductively synthesizing the new circuit region.

1: SYNTHESIZE (reg, MinAr, GatesSyn, lev) {
2: testEx+ { };
3: Depth+ GETINPUTDEPTH (reg, lev, MinAr);
4: while (true) {
5. newReg + GENNEWREGION(reg,testEx Depth, GatesSyn, lev);
6: if (newReg exists){
7: test + CHECKEQUIVALENCE(reg, newReg);
8: if (test =={})
9: return newReg;
10: testEx— testExu{test};
11: }
12: else
13: return { };
14: }
15: }

The synthesis subroutine starts by initializing thetsetE'x of test examples to an empty set. This
set consists of test examples used to check the partialagote between the candidate circuit
new Reg and the original circuiteg. That is, at least for all the test examplegdnt Ex, the two
circuits should behave the same. SubroutirerlGPUTDEPTH computes the appropriate depth
for each of the input signals in order to reduce the discrelearamong their arrival time at the

outputs.

Then, the synthesis subroutine enters a while-loop cantitwo main steps. The first step,
consisting of a call to GNNEWREGION, searches for a candidate solutianw Reg that behaves
the same as the original circuit, at least for all test exas\pltcst Ex. The second step, consisting
of a call toCHECKEQUIVALENCE, tries to prove the functional equivalencerely andnew Reg
for all input values. If the two circuits are not equivaleittcomputes a test example that can
differentiate them. This test example is added to thesétrx before the while-loop enters the

next iteration.

The while-loop terminates either when a candidate solusigmoved to be the real solution, or no

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 117

Figure 7.7: Example for a vulnerable circuit.

new candidate solution can be computed.

7.4.1 Computing the Input Depth

The subroutine GTINPUTDEPTH computes, for each input signal ig, its allowed depth in
new Reg (or the so-calledevel). Since each of the input signalsing may have a different arrival
time, it must be placed at different depths in order to redaceliminate, the mismatch in the time
taken for them to arrive at the outputs.

Consider, for example, the vulnerable circuit illustrabgd=ig. 7.7, which has the following input-
output relations:

X = C AND D
Y = X AND B;
O =Y AND A

Due to the mismatch in the number of gates between the cirquits and the output, this circuit

is vulnerable to FSA attacks.

Assume that, during synthesis, the boxed region in Fig.s/tfid extracted regioreg. Each of the

input nodes (A, B and X) could have a different depth assigméae new region to be synthesized.
To eliminate the mismatch in the delay, in the synthesizediti nodes A and B should be placed
one gate closer to the output than node X. The pseudocodartpute such depths for all input

signals is shown in Algorithm 11.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 118

Algorithm 11 Computing the depths of inputs itew Reg.
1: GETINPUTDEPTH (reg, lev, MinAr) {

2: minMinAr + minimum of MinAr[in] for all inputin;

3: foreach (inputsignalin € reg) {

4: delta Ar Mismatch < MinAr[in] — minMinAr

5

6

7

8

newRegDepth[in] + MAX (2, (lev — delta Ar Mismatch))

return newRegDepth;

)

Figure 7.8: Example for a countermeasure circuit.

7.4.2 Generating a Candidate Circuit

Subroutine @GNNEWREGION computes a candidate circuitw Reg that is functionally equivalent
to reg on the setest Ex of examples. It first generates a logical formula and theokasg the
SyGusS solver to search for a candidate solution. Recal] ilh@abnstructing the logical formula,
we use a certain template circuit to ensure that the newitinew Reg is less vulnerable to FSA
attacks than the original circuitg. A solution returned for the example in Fig. 7.7 is shown ia th
boxed area in Fig. 7.8, whose corresponding input-outpatioms are as follows:

X = C AND D
W= A AND B;
O =X AND W

If no solution can be found, the subroutine returns immetiatThen, inside Algorithm 9, the

synthesis subroutine is invoked again for a smaller ex@chtgionr-eg.

The logical formula generated by our method is

¢ = (I)reg A (I)skel A (I)qu A (I)EqO A (I)testEmp

where the subformulas are defined as follows:

e Extracted region®,.,): Encodes the logical function of the extracted circuitioeg

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 119

e Skeleton ¢...;): Encodes the structure and possible logical functionfiefrtew circuit to

be synthesized.

e Equal input ¢ z,;): Asserts that the inputs of the extracted and synthesizegits have the

same values.

e Equal output©,0): Asserts that the outputs of the extracted and synthesireuits have

the same values.

e TestcasesX,..;z,): Restricts the input signals of the circuits to the valuethese test cases.

7.4.3 \Verifying the Equivalence

After a candidate circuit is generated by solving the foraik) which is a satisfiability problem,

we need to prove that the two circuits not only behave the $antbe setest Ex of test examples,

but also prove that they are functionally equivalent forpal$sible input values. Toward this end,
we construct a new logical formul®, whose satisfying assignment represents a test example tha
can differentiate the behaviors ofg andnewReg. By showing thatV is unsatisfiable, we can

prove that the two circuits are functionally equivalent.

The new logical formula generated by our method is
U= \Ilreg A \IlnewReg A \I]qu A \I]Uneru
where the subformulas are defined as follows:

e Extracted regionV¥,.,): Encodes the logical function of the extracted region.
e Candidate region¥,,..,z.,): Encodes the logical function of the synthesized circegfion.

e Equal input {g,;): Asserts that the inputs of the extracted and synthesizeits have the

same values.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 120

e Unequal outputW¥y,.,0): Asserts that the outputs of the extracted and synthesizewits

have different values.

If the formulaV¥ is unsatisfiable, we have proved that the two regions are/algmt; in such case,
the synthesized circuit is returned. On the other hand,affttmula ¥ is satisfiable, the two
regions are not equivalent. In such case, the solutioh tepresents a new test example, which
differentiates the behaviors of the two regions. In ordevtoid the bad solutionew Reg from be-
ing resynthesized in the future, the new test example ischttdke st Ex before GENNEWREGION

is invoked again.

7.5 Experimental Results

In this section, we present the experimental results ofy@pglour new method to a set of crypto-

graphic circuits. Our method has been implemented usin§yi@uS solver.

The benchmarks used in our experiments are circuits thdemmgnt parts of the AES and MAC-
Keccak. Table 7.1 shows the statistics of these benchm@dsmns 1 and 2 show the name and
brief description of the benchmark circuit, respectiv€lgplumn 3 shows the size of the benchmark
circuit. Column 4 shows the number of node count. Columnsdbéshow the number of input

signals and output signals, respectively.

Among the circuits in Table 7.1, C1 and C2 are two differensians of the MAC-Keccak non-
linear Chi function [14], designed with masking countersweas for power side-channel attacks.
C3 and C4 are different implementations of the Chi functiothwnasking countermeasures. C5
is the original unmasked Chi function from [14]. C6 and C7 ianplementations of part of the
AES, i.e., the Boyar-Peralta S-box nonlinear invg4 and mundtions, respectively, from [17]. C8
is the combination of all the S-box nonlinear functions i@][1C9 is the complete AES PPRM1
implementation of the S-box in [62]. C10 is a different versof the AES Boyar-Peralta S-box

implementation from [17].

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 121

Table 7.1: The statistics of the benchmark circuits usedimeagperimental evaluation.

| Name| Description | Circuit Size | Node count| Input bits | Output bits |
C1l MAC-Keccak nonlinear masked Chi function 1 59 35 10 1
Cc2 MAC-Keccak nonlinear masked Chi function 2 60 35 10 1
C3 Generated MAC-Keccak masked Chi function 1 67 44 10 1
Cc4 Generated MAC-Keccak masked Chi function 2 66 44 10 1
C5 Unmasked MAC-Keccak nonlinear Chi function 10 6 3 1
C6 AES S-Box design of nonlinear invg4 function 15 83 4 4
Cc7 AES S-Box design of nonlinear mul4 function 14 63 8 4
Cc8 AES S-Box single round nonlinear functions 41 209 8 8
C9 Complete AES PPRM1 S-box design 1045 8054 8 8
C10 Complete AES Boyar-Peralta S-box design 276 156 8 8

We have conducted the experimental evaluation in order ssvanthe following research ques-

tions:

e Can our method synthesize more efficient countermeasuessadg-SA attacks compared

to existing techniques such as buffer insertion?

e Can our method robustly handle cryptographic circuits atpcal size and complexity?

7.5.1 Experimental Results

We evaluated our method on all benchmarks. During the etralyave used the AND, XOR, OR
and NOT gates as logic gates allowedinteSyn. We assumed that all logical gates are designed
with the same propagation delay. We set the depth of the sgizibd circuit fev) to 3, which
allows for the synthesis of a circuit region of up to 7 gatesdach invocation of the synthesis
subroutine. We ran all experiments on a computer with a 3.4 (k¢! i7-2600 processor, 4 GB

RAM, and a 64-bit Ubuntu operating system.

Table 7.2 shows the results of our experiments. Here, wecbrapare the performance of our new
method and the buffer insertion method. Recall that ther peichnique relies on inserting buffers
in the circuit to eliminate mismatch in the signal arrivathé for each gate, whereas our method
achieves the same goal by generating an entirely differiecditimplementation. In the results

table, Column 1 shows the benchmark name. Column 2 showsithber of nodes in the original

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 122

circuit. Columns 3 and 4 show the number of nodes in the nawitiobtained by buffer insertion
and the increase in number of nodes, respectively. Colunamsl® show the number of nodes in

the new circuit obtained by our method and the increase intingber of nodes, respectively.

Table 7.2: Synthesis results.

Name Original Buffer insertion alg. New Synthesis alg.
Nodes Synthesized | Nodes | Synthesized | Nodes
count nodes increase nodes increase

C1 35 51 45.71% 42 20.00%

C2 35 48 37.14% 40 14.29%

C3 44 54 22.73% 48 9.10%

C4 44 59 34.09% 45 2.27%

C5 6 9 50% 9 50%

C6 83 134 61.45% 98 18.07%

C7 63 79 25.40% 73 15.87%

c8 209 292 39.71% 244 16.75%

C9 8054 77717 864.90% 8943 11.04%

C10 156 9585 6044% 370 137.2%

The results demonstrate the effectiveness of our new méthehthesizing more compact coun-
termeasures against FSA attacks. Compared to the buffatims method, the circuits produced
by our method do not need as many additional gates. For exaoym new circuit for C9 has only

11.04% more nodes, whereas the circuit produced by therbnffertion method has 864.9% more

nodes than the original circuit.

7.5.2 Detailed Statistics

Table 7.3 shows the detailed statistics of our countermeasunthesis process. Column 1 is the
name of the benchmark. Column 2 is the number of calls to tl@uSysolver, which attempts
to computes the new region for a given region. Column 3 is tmber of successful SyGuS
solver calls, which found a new circuit. Column 4 is the numbieunsuccessful SyGusS solver
calls, which failed to find a new circuit — in such cases, ttze %if the extracted circuit had to
be reduced before invoking the SyGusS solver again. Colunente reduction in the number of
nodes in our synthesized circuit compared the that of thiebufsertion method. Column 6 is the

time (in seconds) spent by our method.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 123

Table 7.3: Statistical data.

Name Synthesis | Successful| Failed Nodes Run
iterations iterations | iterations | reduction | time [s]
Cl 7 7 0 17.65% 1.22
C2 5 5 0 16.67% 0.10
C3 4 4 0 11.11% 0.09
C4 2 2 0 23.73% 0.06
C5 4 3 1 0% 0.13
C6 23 23 0 26.87% 0.48
C7 12 12 0 7.60% 0.26
C8 47 47 0 16.44% 1.11
C9 2627 2627 0 88.49% | 412.32
C10 219 217 2 96.14% 13.74

Our results show that, for most of the benchmarks, the nurabéiled SyGusS calls is O for

lev = 3, which leads to a reduction in total countermeasure syrghiese. This is advantageous
not only because failed synthesis attempts are a waste efltirnalso because, in general, failed
SyGusS calls take significant more time than successful Sy€allS. The reason is that solving
UNSAT instances are usually more difficult than solving SAStances. Therefore, in practice, the
key to achieve a significant runtime reduction is to acclyastimate an important parameter: the

number of nodes to be included in the extracted region béfwoking the SyGusS solver.

We also notice from Table 7.3 the scalability of our tool. Tgatitioned method has made the
SyGuS-based countermeasure synthesis process mordectilalmverall runtime increases only
moderately as the circuit size increases. Furthermorenewr method is effective in reducing
the size of the new circuit when compared to the prior tealesg As the circuit size increases,
the saving by our new method in terms of the number of addedsal$o increases significantly

compared to the buffer insertion method.

7.6 Related Work

As we have mentioned earlier, our method is the first indecinthesis-based method for synthe-
sizing FSA countermeasures for cryptographic circuitac8it is based on inductive synthesis, our

method has the potential to search within a significantlydadesign space than prior techniques.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 124

Ghalaty et al. [35] proposed a method for implementing FSAntermeasures based on the ad-
dition of delay elements at the input of certain gates in tineud to equalize the path delays
from all the sensitive inputs to the output. It can lead tortetmeasures with more additional
gates than ours, as we have demonstrated in experimentthefuore, their method does not
eliminate mismatch in the arrival time of the input signads &ll logical gates. In particular, it
ignores XOR gates. After analyzing their method, we havadoihat their countermeasure could
still be vulnerable to FSA attacks if the attacker uses thia dapendency of hamming distance of

successive inputs.

Endo et al. [34] proposed another countermeasure to defgndst FSA attacks based on adding a
configurable buffer circuitry to delay the propagation af thutput signals from the cryptographic
module. However, the method is a post-silicon solution &edefore is expensive to implementin
practice, since the delay period needs to be configuredth&erhip is manufactured. To configure
the delay, they first measure the delay needed for securtngémufactured cryptography module
and then store the delays in an on-chip memory. They implézdehe proposed countermeasure
only for the benchmark C9, and reported a gate overhead ofta%%. However, note that their
countermeasure was designed manually, whereas in our dhetfeocountermeasure is generated

fully automatically.

Furthermore, both of the existing techniques [35, 34] irecgignificant amount of area overhead
and performance degradation in terms of the operating &necyu In contrast, our new method,
due to its capability of discovering entirely new circuitpfamentations, has the potential to
significantly reduce the area overhead and performanceadation. In some cases, our method
can actually reduce the area overhead and improve the perfme, as shown in the example in
Fig. 7.2 — Fig. 7.4.

Hassan Eldib Chapter 7. Synthesis of Countermeasures tittr Atacks 125

7.7 Summary

We have presented a new method for synthesizing counteamesa® defined against fault sensi-
tivity analysis-based side-channel attacks. Our methlogkren inductive synthesis to search for a
new circuit that is functionally equivalent to the origirgaicuit and at the same time is FSA resis-
tant. It has the potential to discover more compact and efftaiountermeasure implementations
than the prior techniques such as buffer insertions. We mapéemented the new method and
evaluated it on a set of cryptographic circuits. Our experita show that the use of partitioned
synthesis approach can scale up our method to circuitsgé lsize. For future work, we plan to

evaluate our synthesized countermeasures on real deviesséss its effectiveness in defending

against FSA attacks.

Chapter 8

Conclusions

In this dissertation, | have presented a set of automatédiaes for improving the reliability and
security of hardware and software code in critical embedgmalications. Experimental results

show that all the proposed methods are indeed effective &pplied to practical benchmarks.

8.1 Summary

In Chapter 3, we proposed a new inductive program synthesed method for optimizing the
fixed-point arithmetic computation software executed orbetded processors with relatively
small register bitwidths. Our method guarantees that theswtware is functionally equivalent

to the original one, but without overflow and underflow errors

In Chapter 4, we proposed a new formal verification methodhieck for sensitive information
leakage in cryptographic software via power side-chanmelsontrast to the existing method, that
is capable only of checking whether the intermediate coatprt results are logically dependent

on some random bits, our new method checks for statistidelibandence, which is more accurate.

In Chapter 5, we proposed a new method for quantifying trength of masking countermeasures

against power side-channel attacks. Our evaluation, basedeasuring the power traces on real

126

Hassan Eldib Chapter 9. Conclusions 127

devices, showed that our method is accurate enough forqgabase.

In Chapter 6, we proposed a new method for automatically rgéing masking countermeasures
for cryptographic software code vulnerable to power sidannel attacks. We have demonstrated
the method efficiency and its capability of synthesizingrdtetmeasures more compact than those

proposed by cryptographic experts.

In Chapter 7, we proposed a new method for synthesizing php\secure cryptography circuit
implementations to defend against fault sensitivity asiglyFSA) side-channel attacks. The syn-
thesized countermeasures are shown to be extremely effighean compared to those generated

by the previous methods.

For all of the presented techniques, we have proposedipaitity approaches, which combine
statistical analysis procedures within the methods inmi@enprove scalability. We have imple-
mented our methods in software tools and demonstrateddtieativeness using realistic practical

benchmarks.

In summary all the presented methods clearly show improwemeer the previously used meth-
ods. The presented program synthesis methods would dgresise development of embedded

software and hardware.

8.2 Future Work

Although | explored many new research topics in this dissem, and in some cases were the
first to introduce automated verification and synthesis ougho these applications, this is just the

beginning. There are still much more opportunities for iaygment.

The work on optimizing fixed-point arithmetic computatiayde has clearly attracted the attention
of the community. Extending the method to optimize floatpayat code and expanding the set
of supported instructions and theories could be benefi@ptimizing other performance aspects,

such as the execution time and power consumption, could becmgsearch direction as well.

Hassan Eldib Chapter 9. Conclusions 128

Implementing cryptographic systems has always been a-labemsive task. It is time-consuming
and error-prone even for cryptographic experts. Develppiore types of automation tools to
assist in the software/hardware implementation procedsssable and promising. In addition to
verification and synthesis, developing new methods for agerpaided error diagnosis [83, 13, 90,

89] and program repair [48] could be a good research dinectio

Another open question is whether it is possible to autoralyisynthesize cryptographic software
code that are better than those designed manually by expettss dissertation, | have made the
first step by showing this is possible for countermeasuragmagpower side-channel attacks and
fault attacks. Still, there are many other types of sideaclehattacks and related countermeasures,

which require further investigation, e.g., synthesiziogmtermeasures against timing attacks.

All the techniques presented in this dissertation haveamraee the scalability problems of the
underlying verification and synthesis techniques by exipl@icompositionality and using fast
static analysis methods. This hybrid method makes it ptessibapply the proposed techniques
on large practical benchmarks. One potential disadvarttaatearises from using these hybrid
methods, however, is that the synthesized code may not bargaad optimum. If the underlying
verification and synthesis techniques can be advanced thehianger hardware and software code,

it would certainly improve the quality of the synthesizedleo

Bibliography

[1]

[2]

[3]

[4]

[5]

Johan Agat. Transforming out timing leaks. ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languaggsages 40-53, 2000.

Giovanni Agosta, Alessandro Barenghi, and Gerardo$tel code morphing methodology
to automate power analysis countermeasureAdNl/IEEE Design Automation Conference
pages 77-82, 2012.

Takuya Akiba, Kentaro Imajo, Hiroaki lwami, Yoichi Iwat Toshiki Kataoka, Naohiro
Takahashi, Michal Moskal, and Nikhil Swamy. Calibratingearch in program synthesis

using 72,000 hours of programmer time. Technical reportRME)13.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M..KMartin, Mukund Raghothaman,
Sanijit A. Seshia, Rishabh Singh, Armando Solar-Lezama,n&niiorlak, and Abhishek
Udupa. Syntax-guided synthesis. International Conference on Formal Methods in

Computer-Aided Desigmpages 1-17, 2013.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M..KWMartin, Mukund Raghothaman,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,n&niorlak, and Abhishek
Udupa. Syntax-guided synthesis. Farmal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, October 20-23, 20fp8ges 1-8, 2013.

129

Hassan Eldib Chapter 9. Conclusions 130

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Michael Backes, Boris Kopf, and Andrey Rybalchenko. tématic discovery and quantifi-
cation of information leaks. IHEEE Symposium on Security and Privapages 141-153,
20009.

Josep Balasch, Benedikt Gierlichs, Roel Verdult, Ldgatina, and Ingrid Verbauwhede.
Power analysis of Atmel CryptoMemory - recovering keys freecure EEPROMSs. IGT-
RSA pages 19-34, 2012.

Sorav Bansal and Alex Aiken. Automatic generation ofdese superoptimizers. limter-
national Conference on Architectural Support for ProgramgnLanguages and Operating
Systemspages 394—-403, 2006.

Gilles Barthe, Boris Kopf, Laurent Mauborgne, and MaK®choa. Leakage resilience against
concurrent cache attacks. International Conference on Principles of Security andstru
pages 140-158, 2014.

Ali Bayrak, Francesco Regazzoni, David Novo, and Pdelone. Sleuth: Automated
verification of software power analysis countermeasuresCryptographic Hardware and
Embedded Systenz013.

Ali Galip Bayrak, Francesco Regazzoni, Philip BriskaRcois-Xavier Standaert, and Paolo
lenne. A first step towards automatic application of powealygsis countermeasures. In
ACM/IEEE Design Automation Conferengages 230-235, 2011.

Ali Galip Bayrak, Nikola Velickovic, Paolo lenne, andayhe Burleson. An architecture-
independent instruction shuffler to protect against stioel attacksSTACQ, 8(4):20, 2012.

Mitra Tabaei Befrouei, Chao Wang, and Georg WeisseimdacAbstraction and mining of
traces to explain concurrency bugs. liternational Conference on Runtime Verification
pages 162-177, 2014.

Hassan Eldib Chapter 9. Conclusions 131

[14] Guido Bertoni, Joan Daemen, Michael Peeters, Gilleas Xasche, and Ronny Van Keer.
Keccak implementation overview. URL: http://keccak.neof.org/Keccak-implementation-
3.2.pdf.

[15] Eli Biham and Adi Shamir. Differential fault analysid secret key cryptosystems. In
Advances in Cryptology - CRYPTO 97, 17th Annual InternaidCryptology Conference,
Santa Barbara, California, USA, August 17-21, 1997, Proaegs pages 513-525, 1997.

[16] Johannes Blomer, Jorge Guajardo, and Volker KrumrRebvably secure masking of AES.
In Selected Areas in Cryptographyages 69-83, 2004.

[17] Joan Boyar and René Peralta. A small depth-16 cirauitlie aes s-box. ISEC pages
287-298, 2012.

[18] Wihelm Burger and Mark BurgeDigital Image ProcessingSpringer, 2008.

[19] David Canright and Lejla Batina. A very compact "petfganasked” S-Box for AES. In
ACNS pages 446-459, 2008.

[20] Suresh Chari, Charanijit S. Jutla, Josyula R. Rao, amkd&aRohatgi. Towards sound
approaches to counteract power-analysis attackERWPTQ pages 398-412, 1999.

[21] Chris Lattner and Vikram Adve. The LLVM Instruction Smtd Compilation Strategy. Tech.
Report UIUCDCS-R-2002-2292, CS Dept., Univ. of lllinois @tbana-Champaign, Aug
2002.

[22] E. M. Clarke, O. Grumberg, and D. A. Peleddodel CheckingMIT Press, Cambridge, MA,
1999.

[23] Eva Darulova, Viktor Kuncak, Rupak Majumdar, and Imdf&aha. Synthesis of fixed-point
programs. IPACM international conference on Embedded softwpeges 1-10, 2013.

[24] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Maargne, and Jan Reineke. CacheAu-
dit: A tool for the static analysis of cache side channel$JSENIX Securitypages 431-446,
2013.

Hassan Eldib Chapter 9. Conclusions 132

[25] B. Dutertre and L. de Moura. A fast linear-arithmetidvas for DPLL(T). In International
Conference on Computer Aided Verificatipages 81-94. Springer, 2006. LNCS 4144.

[26] Hassan Eldib and Chao Wang. An SMT based method for ephigharithmetic computations
in embedded software code. limternational Conference on Formal Methods in Computer-
Aided Design2013.

[27] Hassan Eldib and Chao Wang. An SMT based method for ephigharithmetic computations
in embedded software codelEEE Trans. on CAD of Integrated Circuits and Systems

33(11):1611-1622, 2014.

[28] Hassan Eldib and Chao Wang. Synthesis of masking couetsures against side channel

attacks. InComputer Aided Verification, CA2014.

[29] Hassan Eldib and Chao Wang. Synthesis of countermesiarrfault attacks. Iimanuscript
in preparation) 2015.

[30] Hassan Eldib, Chao Wang, and Patrick Schaumont. Forerdication of software counter-
measures against side-channel attadkdM Trans. Softw. Eng. Methodat4(2):11:1-11:24,
2014.

[31] Hassan Eldib, Chao Wang, and Patrick Schaumont. SM#Edasrification of software
countermeasures against side-channel attackslntémnational Conference on Tools and

Algorithms for Construction and Analysis of Systegtsl 4.

[32] Hassan Eldib, Chao Wang, Mostafa Taha, and PatrickiBuobat. QMS: Evaluating the side-
channel resistance of masked software from source codeCM/IEEE Design Automation

Conference2014.

[33] Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Bobat. Quantitative masking
strength: Quantifying the power side-channel resistaricgftware code.l[EEE Trans. on
CAD of Integrated Circuits and Systen2§15.

Hassan Eldib Chapter 9. Conclusions 133

[34] Sho Endo, Yang Li, Naofumi Homma, Kazuo Sakiyama, OhtaaQ Daisuke Fujimoto,
Makoto Nagata, Toshihiro Katashita, Jean-Luc Danger, amdafimi Aoki. A silicon-
level countermeasure against fault sensitivity analysdits evaluation.Very Large Scale
Integration (VLSI) Systems, IEEE TransactionsBR(99):1-10, 2014.

[35] Nahid Farhady Ghalaty, Aydin Aysu, and Patrick Schaotménalyzing and eliminating the
causes of fault sensitivity analysis. DATE, pages 1-6. IEEE, 2014.

[36] Louis Goubin. A sound method for switching between leaol and arithmetic masking. In

Cryptographic Hardware and Embedded Systgpagies 3—15, 2001.

[37] Philipp Grabher, Johann Gro3schadl, and Dan Pagept@yyaphic side-channels from low-
power cache memory. Imternational Conference on Cryptography and Codipgges 170—
184, 2007.

[38] Sumit Gulwani. Automating string processing in spr&aekts using input-output examples.
In ACM SIGACT-SIGPLAN Symposium on Principles of Programrhargguages pages
317-330, 2011.

[39] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramamath Venkatesan. Synthesis of
loop-free programs. IACM SIGPLAN Conference on Programming Language Design and

Implementationpages 62—73, 2011.

[40] Sumit Gulwani, Saurabh Srivastava, and Ramarathnankatesan. Program analysis as
constraint solving. IPACM SIGPLAN Conference on Programming Language Design and

Implementationpages 281-292, 2008.

[41] William R. Harris and Sumit Gulwani. Spreadsheet tabd@sformations from examples. In
ACM SIGPLAN Conference on Programming Language Design mpdeinentationpages
317-328, 2011.

[42] Christoph Herbst, Elisabeth Oswald, and Stefan MashgAn AES smart card implementa-
tion resistant to power analysis attacks AGNS pages 239-252, 2006.

Hassan Eldib Chapter 9. Conclusions 134

[43] Franjo Ivanci¢, |. Shlyakhter, Aarti Gupta, M.K. GainV. Kahlon, Chao Wang, and Z. Yang.
Model checking C program using F-Soft. limernational Conference on Computer Design
pages 297-308, October 2005.

[44] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and AshisVari. Oracle-guided component-
based program synthesis. IRSE (1) pages 215-224, 2010.

[45] Susmit Kumar JhaTowards Automated System Synthesis Using SCIDUCTRDID thesis,
UC Berkeley, Nov 2011.

[46] Rajeev Joshi, Greg Nelson, and Keith H. Randall. Deragjoal-directed superoptimizer. In
ACM SIGPLAN Conference on Programming Language Design mpdeinentationpages
304-314, 2002.

[47] Marc Joye, Pascal Paillier, and Berry Schoenmakers.séwond-order differential power

analysis. InCryptographic Hardware and Embedded Systepagies 293-308, 2005.

[48] Sepideh Khoshnood, Markus Kusano, and Chao Wang. Cgadsist: Constraint solving for
diagnosis and repair of concurrency bugs.lfdternational Symposium on Software Testing

and Analysis2015.

[49] Seehyun Kim, Ki-Il Kum, and Wonyong Sung. Fixed-poiptionization utility for c and c++
based digital signal processing programsHEE Trans. Circuits and Systemsvblume 45,
pages 1455-1464, 1998.

[50] Paul C. Kocher. Timing attacks on implementations dfieihellman, rsa, dss, and other
systems. Irinternational Cryptology Conference — CRYPTQ'@ages 104-113, 1996.

[51] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Diffii@epower analysis. ICRYPTQ
pages 388—397, 1999.

[52] Boris Kopf and Markus Durmuth. A provably secure arificeent countermeasure against
timing attacks. INIEEE Symposium on Computer Security Foundatigrasges 324—335,
20009.

Hassan Eldib Chapter 9. Conclusions 135

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Boris Kopf, Laurent Mauborgne, and Martin Ochoa. @mftic quantification of cache side-

channels. Innternational Conference on Computer Aided Verificatiseiges 564-580, 2012.

Bing Li, Chao Wang, and Fabio Somenzi. Abstraction mafient in symbolic model
checking using satisfiability as the only decision procedurnternational Journal on

Software Tools for Technology Transfé(2):143—-155, 2005.

Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinatkihaga, Junko Takahashi, and

Kazuo Ohta. Fault sensitivity analysis. GHES pages 320—334. Springer, 2010.

Stefan Mangard, Elisabeth Oswald, and Thomas P&opver Analysis Attacks - Revealing
the Secrets of Smart SardSpringer, 2007.

Adolfo Anta Martinez, Rupak Majumdar, Indranil SahaadaPaulo Tabuada. Automatic
verification of control system implementations. ACM international conference on

Embedded softwaypages 9-18, 2010.

Thomas S. Messerges. Securing the AES finalists agpoveér analysis attacks. Irast
Software Encryptioppages 150-164, 2000.

Amir Moradi, Alessandro Barenghi, Timo Kasper, and iStaf Paar. On the vulnerability
of FPGA bitstream encryption against power analysis ataaxtracting keys from Xilinx

Virtex-1l FPGAs. IACR Cryptology2011.

Amir Moradi, Axel Poschmann, San Ling, Christof Paargddiuaxiong Wang. Pushing the
limits: A very compact and a threshold implementation of dasEUROCRYPTpages 69—
88, 2011.

Sumio Morioka and Akashi Satoh. An optimized s-box git@architecture for low power aes
design. INCHES pages 172-186. Springer, 2002.

Sumio Morioka and Akashi Satoh. An optimized s-box gitarchitecture for low power aes
design. InCryptographic Hardware and Embedded Systems - CHES, 263Qjes 172—-186.
Springer, 2003.

Hassan Eldib Chapter 9. Conclusions 136

[63] Andrew Moss, Elisabeth Oswald, Dan Page, and Michaelstall. Compiler assisted
masking. InCryptographic Hardware and Embedded Systgmagies 58—75, 2012.

[64] NIST. Keccak reference code submission to NIST's SHéepetition (Round 3). URL:
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3idents/KeccakinalRnd.zip.

[65] Elisabeth Oswald, Stefan Mangard, Norbert Pramstalted Vincent Rijmen. A side-channel
analysis resistant description of the AES S-BoxInternational Workshop on Fast Software
Encryption pages 413-423, 2005.

[66] Christof Paar, Thomas Eisenbarth, Markus Kasper, Tiasgper, and Amir Moradi. Keeloq

and side-channel analysis-evolution of an attack=IdTC, pages 65—69, 2009.

[67] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dangsman. Type-directed comple-
tion of partial expressions. CM SIGPLAN Conference on Programming Language Design

and Implementatiorpages 275-286, 2012.

[68] Emmanuel Prouff and Matthieu Rivain. Masking againdeschannel attacks: A formal
security proof. InAdvances in Cryptology jV EUROCRYPT 20fp8ges 142-159. Springer,
2013.

[69] Shehrzad QureshEmbedded Image Processing on the TMS320C600Q Bfnhger, 2005.

[70] Radu Rugina and Martin C. Rinard. Symbolic bounds asialgf pointers, array indices, and

accessed memory regions.PhDI, pages 182—-195, 2000.

[71] Majumdar Rupak, Indranil Saha, and Majid Zamani. Sgsth of minimal-error control

software. INACM international conference on Embedded softwpeges 123-132, 2012.

[72] Andrei Sabelfeld and Andrew C. Myers. Language-baséarmation-flow security.|EEE
Journal on Selected Areas in Communicatid2ig(1):5-19, 2003.

[73] Hikaru Sakamoto, Yang Li, Kazuo Ohta, and Kazuo Sakiganfault sensitivity analysis
against elliptic curve cryptosystems. 2011 Workshop on Fault Diagnosis and Tolerance in

Cryptography, FDTC 2011, Tokyo, Japan, September 29, dfddes 11-20, 2011.

Hassan Eldib Chapter 9. Conclusions 137

[74] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stocltastiperoptimization. Irdnter-
national Conference on Architectural Support for ProgramgnLanguages and Operating
Systemspages 305-316, 2013.

[75] Rishabh Singh and Sumit Gulwani. Synthesizing numiarsformations from input-output
examples. Ininternational Conference on Computer Aided Verificatipages 634—-651,
2012.

[76] Rishabh Singh and Sumit Gulwani. Predicting a correctgmm in programming by
example. InComputer Aided Verification - 27th International Conferen€AV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Pgrages 398-414, 2015.

[77] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rslav Bodik, Vijay A. Saraswat,
and Sanijit A. Seshia. Sketching stencils.Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementatiayes 167-178. ACM, 2007.

[78] Armando Solar-Lezama, Christopher Grant Jones, asti$ta Bodik. Sketching concurrent
data structures. IMMCM SIGPLAN Conference on Programming Language Design and

Implementationpages 136—148, 2008.

[79] Armando Solar-Lezama, Rodric M. Rabbah, RastislaviBodnd Kemal Ebcioglu. Pro-
gramming by sketching for bit-streaming programs. AGM SIGPLAN Conference on
Programming Language Design and Implementatjmages 281-294, 2005.

[80] Armando Solar-Lezama, Liviu Tancau, Rastislav Bod#anjit A. Seshia, and Vijay A.
Saraswat. Combinatorial sketching for finite programsA8PLOSpages 404-415, 2006.

[81] M. Taha and P. Schaumont. Differential power analy$is1AC-Keccak at any key-length.
In IWSEC 2013.

[82] Chao Wang, Gary D. Hachhtel, and Fabio SomeAnistraction Refinement for Large Scale
Model Checking Springer, 2006.

Hassan Eldib Chapter 9. Conclusions 138

[83] Chao Wang, Zijiang Yang, Franjo Ivancic, and Aarti GaiptWWhodunit? causal analysis for

counterexamples. lAutomated Technology for Verification and Analypeges 82—-95, 2006.

[84] Chao Wang, Zijiang Yang, Franjo Ivancic, and Aarti GaupbDisjunctive image computation

for software verificationACM Trans. Design Autom. Electr. Sydi2(2), 2007.
[85] Xilinx. Microblaze soft processor core. URL.: http:Mmv.xilinx.com/tools/microblaze.htm.

[86] Jianxin Xiong, Jeremy R. Johnson, Robert W. Johnsath[avid A. Padua. Spl: A language
and compiler for dsp algorithms. PLDI, pages 298-308, 2001.

[87] Zijiang Yang, Chao Wang, Aarti Gupta, and Franjo IvanciModel checking sequential
software programs via mixed symbolic analysBCM Trans. Design Autom. Electr. Syst.
14(1), 20009.

[88] Randy Yates. Fixed-point arithmetic: An introductian Digital Signal Labs, Technical
Reference, 2013.

[89] Qiuping Yi, Zijiang Yang, Jian Liu, Chen Zhao, and Cha@aWj. Explaining software
failures by cascade fault localizatioACM Transactions on Design Automation of Electronic
Systems2015.

[90] Qiuping Yi, Zijiang Yang, Jian Liu, Chen Zhao, and Cha@Mj. A synergistic analysis
method for explaining failed regression tests. liternational Conference on Software

Engineering 2015.

