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Constraint Based Program Synthesis for Embedded Software

Hassan Eldib

(ABSTRACT)

In the world that we live in today, we greatly rely on softwarein nearly every aspect of our lives.

In many critical applications, such as in transportation and medical systems, catastrophic conse-

quences could occur in case of buggy software. As the computational power and storage capacity

of computer hardware keep increasing, so are the size and complexity of the software. This makes

testing and verification increasingly challenging in practice, and consequentially creates a chance

for software with critical bugs to find their way into the consumer market.

In this dissertation, I present a set of innovative new methods for automatically verifying, as well

as synthesizing, critical software and hardware in embedded computing applications. Based on a

set of rigorous formal analysis techniques, my methods can guarantee that the resulting software

are efficient and secure as well as provably correct.
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Chapter 1

Introduction

Embedded devices are found in many critical systems, such asin communication, transportation,

medical and military. Errors in such systems could have devastating consequences economically

or even worse, loss of life. Skillful and experienced engineers are needed to design these systems

to create robust products, but unfortunately there is an increasing shortage in these engineers,

according to the Bureau of Labor statistics. An effective solution is developing innovative tools

to support software/hardware engineers in increasing their productivity and the efficiency of their

code to keep the pace needed for development.

Recent research has led to progress in inductive program synthesis methods which have the po-

tential to help software developers in programming [78, 40,44, 38, 39, 41, 67, 75, 4, 26, 28, 27].

A developer could use inductive program synthesis to generate a program code by specifying

some input-output relation examples and the grammar required in the new code. This method has

advantage over the traditional time-consuming programming methods. In the traditional method,

the software developer writes the complete program then carefully analyzes the code to optimize

it. In some case, the developer would even need to get some expertise in sophisticated fields to

complete the task. Inductive program synthesis enhances the developer’s capabilities by generating

a complete or partial program that satisfies a specified input-output relation and optional added

optimization constraints.

1
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An example for using inductive program synthesis is shown byHarriset al. [41, 76], who imple-

mentedFlash Fill, an autocomplete method for Microsoft Excel Spreadsheet. An empty spread-

sheet column that is function of another non-empty column isautomatically filled by just having

the user fill a few cells and without the need to define the relation function between both columns.

Another example for a usage of inductive program synthesis is shown by Solar-Lezamaet al. [77,

78], who presented aSketchingmethod to aid the programmer to write code for stencil computa-

tions. The programmer would write a partial code implementation of the desired program while

leaving the hard to code fragments empty, then the missing code fragments are completed by the

inductive synthesis tool.

There is large potential for using inductive program synthesis in novel applications to aid software

developers in programming reliable code. Two prospective areas with good potential for research

are embedded control and cryptography software.

The main obstacle for practically using program inductive synthesis in different fields is the unscal-

ability of the method. The number of possible programs to search from for a satisfying program

has an exponential relation to the size of the program to be synthesized. Currently, the state of the

art program inductive synthesis tools still cannot synthesis practical programs of large size.

1.1 Background

1.1.1 Embedded Control Software

Hardware of embedded devices has improved in the previous years and has become more complex

to the extent that some of the embedded devices are now comparable to general purpose computer

systems. These devices are now running more sophisticated programs than before.

In recent years, we have seen an increasingly large amount ofsoftware code developed for em-

bedded systems. These software codes are often responsiblefor controlling many transportation,
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medical, industrial machinery and weapon systems.

It is important to optimize the embedded software and adaptthem to the device hardware for

efficiency. In addition, embedded software must be carefully tested to be error free in order to

avoid possible damaging failure consequences. This is a challenging task as designers have to

reason about many factors under which the device is run.

For example, embedded systems often execute fixed-point arithmetic computations [88]. Due to

limitations in the bitwidth of the embedded device registers, the software computation results may

have values that are larger than the maximum register size, which causes overflow and underflow

errors. In practice, programmers often mitigate this problem by reordering the code instructions, or

adding instructions to estimate the resulting value range and then add some branching statements

to limit the value to the default maximum or minimum. Both of these methods reduce the accuracy

and reliability of the computation.

If available, tools could be used by the software developersto simplify problems like this and

avoid degradation in the code execution. Tools could assistthe developer in adapting complex

computational algorithms to the targeted embedded hardware, in addition to reducing the time and

effort spent for this task.

1.1.2 Cryptographic Software

Sensitive information is usually encrypted to avoid adversaries from accessing it. Cryptographic

software such as encryption are run on many embedded devices. A successful attack on an

embedded device would make sensitive information available to the attacker which could have

many damaging effects.

Embedded devices that implement cryptographic algorithmsare increasingly susceptible to power

and fault analysis-based side-channel attacks [50, 51, 15]. Side-channel attacks may arise when

computers and microchips leak sensitive information aboutthe software code that they execute, e.g.

through power and heat dissipation or response to faults injected to the hardware. Such information
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leaks have been exploited in many commercial systems in the embedded space.

A common strategy for designing countermeasures against power side-channel attacks is using

randomization techniques to remove the statistical dependency between the sensitive data and the

side-channel leakage [20, 7, 68]. However, this process is both labor intensive and error prone.

Currently, there is a lack of automated tools to formally assess if a countermeasure really is

secure. Furthermore, there is no formal method to quantify the actual strength of a countermeasure.

Security design errors may therefore go undetected until the physical product is produced and

evaluated.

Another closely related problem is that side-channel countermeasures are difficult to design and

implement. Although it would be desirable to have a design automation tool that can automatically

generate provably secure countermeasures, in reality, robust implementations of such tools do not

yet exist.

1.2 Contribution

In this dissertation, I address the challenges facing software developers in producing reliable and

secure code for embedded systems. I propose a set of techniques for automatically verifying, as

well as automatically synthesizing, software with a focus on embedded control and cryptography

software. I also propose innovative new techniques to scaleup the proposed program synthesis

methods to software code of realistic size and complexity. The program synthesis methods I present

are capable of synthesizing code that is more efficient than the code experts in their fields would

write. The challenges I explore in this dissertation can be summarized as follows:

• How to automatically tailor existing critical code to embedded systems without degradation

in its execution?

• How to automatically fully verify embedded software for reliability and security issues?
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• How to synthesize code for embedded devices that is more optimized than that written by

experts?

• How to overcome the main drawback of program synthesis and formal methods of unscala-

bility, and synthesize programs that are of practical size?

Altering code to fit a targeted embedded device is not a trivial task, and in most cases needs to be

done by an expert. Directly incorporating an algorithm codeimplementation, that was not written

for the targeted platform, into the embedded program could likely lead to errors during the code

execution. A serious source of error is overflow/underflow which occurs due to the limited fixed-

point processor’s register size. These errors are critically important to address because no warnings

are given during compilation of the code, and this most probably make a developer believe that the

embedded program is safe while in reality it is not. I presentin this dissertation an automated

method to avoid these errors.

Specifically, I propose a method that automatically modifiesa given arithmetic computational

code in order to suit the smaller targeted bitwidth of a fixed-point embedded device [26, 27]. To

avoid overflow/underflow errors, the method verifies which code instructions are susceptible to the

errors then synthesizes another functionally equivalent code implementation that is not vulnerable.

The synthesized code would then replace the vulnerable code. By using formal verification it

is guaranteed that the new synthesized code is equivalent tothe original code but will not cause

overflow/underflow errors. By iteratively repeating this process, an implementation that requires

the minimum processor bitwidth to execute the code, could befound. The instructions requiring

the largest register bitwidth are repeatedly searched for,then equivalent instructions that require a

reduced bitwidth are synthesized to replace them. Since thedynamic range is proportional to the

bitwidth, the method I present has another advantage of increasing the code dynamic range. This

is done by reducing the minimum bitwidth needed to execute the code bellow the actual embedded

device available bitwidth.

Using a formal program synthesis method guarantees always finding an optimized code if it exists.

The proposed method searches for a valid solution from all possible codes that could be generated
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with the specified grammar. Unscalability is a downside for this because the size of the search space

is exponentially proportional to the size of the code to be synthesized. I present a solution to this

problem by performing static analysis techniques to partition the code into smaller regions. Each

region could have a new optimized region synthesized to replace it. The applied static analysis

techniques allow maintaining useful information from the complete code and then make use from it

during the synthesis of an optimized region. This method overcomes the unscalability disadvantage

of program synthesis tools and makes it possible to synthesize practical programs of large size and

in reasonable time.

In this dissertation, I also apply program synthesis techniques to other new fields such as embed-

ded cryptography. Securing the sensitive information in cryptographic implementations against

malicious attacks has always been a tedious task assigned tocryptographic experts and not to

design engineers due to its complications. Although this, still there has been many cases where

vulnerabilities were discovered in the cryptographic implementations [42, 16, 10].

Power side-channel attacks is one of the most carried out attacks on embedded devices. By

monitoring the device power consumption, an attacker couldguess the secret key from a correlation

between the secret key value and the power consumption pattern. As a countermeasure against such

attacks, the secret key is masked with random generated numbers to reduce the correlation between

the secret key and the power consumption pattern. This process is manually done by cryptography

experts.

I propose an automated method to verify if the countermeasures implemented are perfectly masked

or still have vulnerabilities [31, 30]. In many cases my method finds vulnerabilities in crypto-

graphic code thought to be secure against power side-channel attacks. To improve scalability of

this method and to reduce the verification problem time, an incremental procedure is proposed by

which the cryptographic code is gradually verified.

The previous state of the art automated verification method proposed by Bayraket al. [10] could

only detect if instructions were masked but could not distinguish if the masking was vulnerable or

not. I show that the proposed verification procedure [31, 30]is more accurate and faster than the
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previous state of the art method.

I also propose a new notion, called Quantitative Masking Strength (QMS), to quantify the resis-

tance of masking countermeasures against attacks [32, 33].If an instruction result in the cryp-

tographic code is strongly dependent on the value of a sensitive data bit then it is considered

weakly masked, while if it is strongly dependent on a generated random number bit then it is

considered strongly masked. By performing static analysison the cryptographic source code, a

value between 0 and 1 is returned to describe the degree of themasking strength of the implemented

countermeasure. A formula is proposed to relate the computed QMS value to the difficulty of

preforming a successfully power side-channel attack.

Furthermore, I propose a new method for synthesizing provably secure masking countermea-

sures [28]. For the cryptographic implementations that arevulnerable to power side-channel

analysis. The method synthesizes a cryptographic code functionally equivalent to the vulnerable

code and eliminates all information leakage via power side-channels. It is based on formal program

synthesis methods and so guarantees to find a countermeasureimplementation if it exists within

the specified search space. Results show that synthesized countermeasures can be more optimized

than those proposed by cryptographic experts. Furthermore, a partitioned method that combines

static analysis with the program synthesis method is proposed to improve scalability.

Fault sensitivity analysis (FSA) is another type of side-channel attack on cryptographic hardware.

To launch an attack, a fault is injected during the executionof the cryptographic algorithm, for

example by increasing the embedded device clock frequency.To guess the secret key, the attacker

exploits the dependency between the intensity of the injected fault at which an execution error

starts to occur and the value of the secret key. For example, at a certain increased clock frequency,

if the chance for an error to occur during execution is dependent on the values of the secret key

bits, then the cryptographic implementation is vulnerableto FSA attacks. The main contributor to

this dependency is the difference in paths’ propagation delay from the sensitive bits to the output.

The latest proposed method by Ghalatyet al. [35] for generating countermeasures against FSA

attacks is based on adding delay elements in the paths of the secret key bits to equate all propagation
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delays. This method has a drawback of an exponential relation between the number of added

gates and the longest path for a sensitive bit. In contrast, Ipropose a novel method to create

countermeasures based on inductive program synthesis [29]. A completely new circuit is generated

that is functionally equivalent to the original vulnerablecircuit, but constrained to ensure that all

delay paths in the implementation are independent of the sensitive data. This method reduces the

needed gates, which greatly reduces the synthesized countermeasure circuit size. A partitioned

method incorporating static analysis is also proposed to improve the scalability of the proposed

method.

To summarize, I propose in this dissertation a set of new innovative techniques to automate the

verification and synthesis of embedded systems software andhardware [26, 27, 31, 30, 32, 33, 28,

29]. The presented methods are either first to be proposed in their fields or if previous methods

were proposed, our methods surpass the performance of the state of the art methods. Partitioning

methods are proposed to overcome the unscalability problems of the formal program synthesis

tools. All proposed methods are shown to be effective by applying them on practical benchmarks.

1.3 Organization

This dissertation is organized as follows. First, I begin byintroducing the background and notation

needed to read this dissertation in Chapter 2. Then, from Chapter 3 to Chapter 7, I present the

main research contributions in detail. Specifically, in Chapter 3, I introduce the new method

for optimizing fixed-point arithmetic computation software. The method reduces the embedded

device required minimum bitwidth to execute an arithmetic computational program. In Chapter 4,

I present the new method for verifying whether a cryptographic software is vulnerable to power

side-channel attacks. Static analysis and formal verification methods are combined to speed up the

verification process. In Chapter 5, I address the importanceof having power side-channel counter-

measures perfectly masked. I introduce the new notion QMS toquantify the masking strength of an

implemented countermeasure. The method statically computes the QMS from the cryptographic
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software source code, and reflects the resistance of the implemented countermeasure against an

attack. In Chapter 6, I present the new method for synthesizing masking countermeasures for cryp-

tographic software code against power side-channel attacks. A code partitioning method is also

introduced to improve the scalability and synthesize masking countermeasures for practical large

cryptography programs. In Chapter 7, I present the new method for synthesizing countermeasures

against FSA attacks for embedded cryptography hardware. The method applies constraint-based

program synthesis methods to synthesize compact circuit countermeasures. Finally, in Chapter 8, I

conclude the dissertation by summarizing the contributions and outlining the potential future work.



Chapter 2

Background

In this chapter, we intruduce the needed background to support this dissertation.

2.0.1 Inductive Synthesis

In inductive synthesis, we are concerned with a setx of inputs, a theoryT , and a grammarG,

which collectively define the design space. The synthesis problem is defined as constructing a

functionf such that it satisfies a correctness specificationP under all possible input conditions. In

this context, the theoryT and the grammarG are used to restrict the search space. Lety be the set

of auxiliary variables that control how the functionf is chosen from the pool of candidates in the

design space. That is, each valuation ofy corresponds to a candidate functionP (x, y). At the high

level, the synthesis problem can be expressed as a constraint solving problem as follows:

∃y.∀x. P (x, y)

That is, we want to find a configuration ofy such that, for all possiblex, the correctness condition

P (x, y) holds.

However, since directly solving a quantified logical formula with alternation depth 2 is difficult, the

10
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more pragmatic solution is to use an iterative, counterexample-guided, inductive synthesis. First,

we solve the simpler problem∃y. P (X, y). That is, we want to find a candidate configurationc

of y such that, at least for some input valuesX, the correctness conditionP (X, c) holds. If we

cannot find any solution, then we know there is no solution forthe original logical formula. But if

we find a candidate solution, the next step is to verify that the solutionc is valid under all possible

input values. That is,∀x. P (x, c). If this verification step passes, we are done. Otherwise, we

need to block this bad solutionc, and compute a new candidatec′ such thatP (X ′, c′) holds for at

least some input valuesX ′.

Therefore, the inductive synthesis procedure consists of two subroutines: the synthesis subroutine

and the verification subroutine. The synthesis subroutine takes a set of test examples as input,

solves∃y.P (X, y), and returns a candidate functionf as output. The verification subroutine takes

the candidate functionf as input and formally verifies∀x.P (x, c), i.e., whether it is valid for all

possible test examples. Initially, the set of test examplescan be empty or consist of some randomly

generated input-output pairs. Whenever the candidate function is proved to be invalid, new test

examples can be deduced from the counterexamples generatedby the verification subroutine.

Adding these new test examples back to the synthesis subroutine can guarantee to eliminate the

bad candidate in the future.

2.1 Intermediate Representation

The standard C language cannot explicitly represent fixed-point arithmetic operations, so we use

an intermediate representation (IR) for the fixed-point programs. We use a combination of the

integer C program representation and a separate configuration file, which defines the fixed-point

types of all program variables. More specifically, we scale each fixed-point constant (other than the

ones used inshift operations) to an integer by using the scaling factor2m, wherem is the number

of bits representing the fractional part. For example, a fixed-point with two fractional bits, the

representation of a constant with the value of 2.5 will be represented as 10, wherem = 2.
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After each multiplication, ashift-right is added to normalize the result so as to match the fixed-

point type for the result. For example,x = c× z, where variablesx andz and constantc all have

the fixed-point type〈1, 8, 3〉, would be represented asx = (c× z) >> 3.

For each multiplication, we also assign anaccumulate flag, which can be set by the user to

indicate whether the microcontroller has the capability oftemporally storing the multiplication

result into two registers, which effectively doubles the bit-width of the registers. Many real-

world microcontrollers have been designed in this way. Continuing with the same examplex =

(c × z) >> 3. If the accumulate flagis set to 1 by the user, the multiplication node will not be

checked for overflow and underflow. Only after the right-shift, will the final result be checked for

overflow and underflow.

For all the other operations (+, -, >>, <<), we do not rewrite the default IR representation and

do not allow the user to set theaccumulate flag, because most of the microcontrollers do not have

double sized registers to temporally store the results of these operations.

In general, the class of programs that we consider here do nothave input-dependent control flow,

meaning that we can easily remove all the loops and function calls from the code using standard

loop unrolling and function inlining techniques. Furthermore, the program can be transformed into

a branch-free representation, where the if-else branches are merged. Finally, since all variables are

bounded integers, we can convert the program to a purely Boolean program through bit-blasting.

2.2 Side Channel Attacks

Following the notation used by Blömeret al. [16], we assume that a sensitive computationc ←

enc(x, k) takes a plaintextx and a secret keyk as input and returns a ciphertextc as output. The

implementation of functionenc(x, k) consists of a sequence of intermediate operations. Each

intermediate operation is referred to as functionIi(x, k), wherei is the index of that operation.

We assume that the plaintextx and the ciphertextc may be observed by an adversary, whereas the
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secret keyk is hidden in the computing device. The goal of the adversary is to deducek based on

observingx, c, and the power leakage of the device. Based on the widely usedHamming Weight

(HW) and Hamming Distance (HD) models, we assume that the power leakage of the device

correlates to the values involved in the sensitive operationsI1(x, k) . . . In(x, k). For example, for

two different key valuesk andk′, the power consumption ofk ⊕ x andk′ ⊕ x may differ. Such

information leaks may be exploited by techniques such as differential power analysis (DPA [51]).

2.3 Leakage Model

A leakage model specifies the amount of information observable during program execution through

side channels, such as timing variation, power consumption, and electromagnetic radiation. In

power analysis, a simple but effective leakage model, for a single instruction, is theHamming

Weight (HW)of the operand. An equally effective leakage model, for two consecrative instructions,

is theHamming Distance (HD)of the two operands.

2.4 Masking

To resist power side-channel attacks on cryptographic software, a countermeasure calledmask-

ing can be implemented to eliminate side-channel leaks. It randomizes the instantaneous power

consumption to make it statistically independent from the secret data.

For example, when the computationf(z) is a linear function of sensitive variablez in the⊕

domain, meaning thatf(z1⊕z2) = f(z1)⊕f(z2), masking requires no modification of the original

implementation of functionf(z).

f(z ⊕ r)⊕ f(r) = f(z)⊕ f(r)⊕ f(r) = f(z) .

Here, the random bitr is generated internally on the cryptographic device so the adversary cannot
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access its value. Due to commutativity of the XOR operation,we can maskz with r before the

computation and demask withf(r) afterward.

However, whenf(z) is a non-linear function, the implementation off(z) often needs to be com-

pletely redesigned. Depending on the order of attacks to be mitigated, for instance,z may have

to be divided inton chunks by using XOR operations withn random bitsr1 . . . rn. Then, each

chunk is fed to a newly designed cryptographic functionf ′i(z ⊕ ri, ri), where1 ≤ i ≤ n. At the

end, these results are combined to reconstructf(z) by using XOR operations with another function

f ′′i (z⊕ ri, ri). Considern=1 as an example, we require the newly designed functionsf ′() andf ′′()

to satisfy the following constraint:

f ′(z ⊕ r, r)⊕ f ′′(z ⊕ r, r) = f(z) .

However, the design of such cryptographic functionsf ′ andf ′′ is a highly creative manual process

currently undertaken by experts – it is labor intensive and error prone. Furthermore, even if the

masking algorithm is provably secure, bugs introduced during the software coding process may

still cause information leaks.

2.5 Perfect Masking

For a pair(x, k) of plaintext and key for the functionenc(x, k) andd intermediate computation

resultsI1(x, k, r), . . . , Id(x, k, r), wherer is an s-bit random variable uniformly distributed in

the domainR = {0, 1}s, we useDx,k(R) to denote the joint distribution ofI1, . . . , Id. In side

channel analysis,d is assumed to be the maximal number of leakage channels accessible to an

adversary. IfDx,k(R) is statistically independent fromk, we say that the function isorder-d

perfectly masked [16]. Otherwise, the function has side channel leaks.

Definition 1. Given an implementation of functionenc(x, k) and a set of its intermediate results
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c1 = x⊕ k∧(r1∧r2)

c2 = x⊕ k∨(r1∧r2)

c3 = x⊕ k⊕(r1∧r2)

c4 = x⊕ k⊕(r1⊕r2)

x k r1 r2 c1 c2 c3 c4
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 0
0 1 1 1 1 1 0 1

x k r1 r2 c1 c2 c3 c4
1 0 0 0 0 1 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 1 0
1 0 1 1 1 1 0 1
1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 1 0 1 1 0

Figure 2.1: Example of difference between masking and perfect masking.

{Ii(x, k, r)}, we say that the function is order-d perfectly masked if for alld-tuples〈I1, . . . , Id〉,

Dx,k(R) = Dx,k′(R) for any two pairs(x, k) and(x, k′) .

As an example, consider Fig. 2.1 where ciphertextsc1,c2,c3,c4 are results of four different

masking schemes for plaintext bitx and key bitk using random bitsr1 andr2. According to

the truth tables on the right-hand side, all of these four outputs are logically dependent onr1,r2.

However, this does not imply statistical independence fromthe secretk. Indeed,c1,c2,c3 all

leak sensitive information. Specifically, forx is logical 0, and whenc1 is 1, we know for sure that

the secretk is also 1, regardless of the values of the random variables. Similarly, whenc2 is logical

0, we know for sure thatk is also 0. Whenc3 is logical 1 (or 0), there is a 75% chance thatk is

logical 1 (or 0). In contrast,c4 is the only leak-free output because it is statistically independent

of k. Whenk is logical 1 (or 0), there is 50% chance thatc4 is logical 1 (or 0).

To check for violations ofperfect masking, we need to decide whether there exists ad-tuple

〈I1, . . . , Id〉 such thatDx,k(R) 6= Dx′,k′(R) for some(x, k) and(x′, k′). Here, the main challenge

is to computeDx,k(R).

2.6 Insensitivity

A necessary condition for power side-channel resistance isfor all the intermediate computation

results of a function to beinsensitive, as in Bayraket al. [10]. An intermediate resultIi is sensitive
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o1 = k∧(r1∧r2)

o2 = k∨(r1∧r2)

o3 = k⊕(r1∧r2)

o4 = k⊕(r1⊕r2)

k r1 r2 o1 o2 o3 o4
0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 0 1
0 1 1 0 1 1 0
1 0 0 0 1 1 1
1 0 1 0 1 1 0
1 1 0 0 1 1 0
1 1 1 1 1 0 1

Figure 2.2: Examples of masking and leakage of secret information.

if it depends on the secret/plaintext and, at the same time, it does not depend on any random

variable. According to [10], this dependency analysis is equivalent to computingdon’t cares (DCs)

in logic synthesis: If random bitr is adon’t careof Ii, thenIi does not depend onr. Recall that

r is a don’t care if Ii remains unchanged whetherr is set to logical 0 or 1. However, even an

insensitiveIi may still leak secret information, becausedepending on a random bitdoes not mean

thatIi is statistically independent from the secret.

Figure 2.2 shows an example, wherek is the secret,r1 andr2 are the random variables, ando1,

o2, o3, ando4 are the results of four masking schemes. According to the truth table on the

right-hand side, all four outputs depend onr1,r2 and therefore areinsensitive[10], but three of

them still leak secret information. Wheno1 is logical 1, we know for sure that the secretk is also

1, regardless of the values of the random variables. Similarly, wheno2 is logical 0, we know for

sure thatk is also 0. Wheno3 is logical 1 (or 0), there is a 75% chance thatk is logical 1 (or 0).

In contrast,o4 is the only side-channel resistant output because it statistically independent ofk.

Whenk is logical 1 (or 0), there is 50% chance thato4 is logical 1 (or 0).

2.6.1 Fault Sensitivity Analysis (FSA)

Fault attacks are typically conducted by changing the physical environment of the circuit executing

a cryptographic algorithm, to introduce logical errors in the otherwise normal computation. These

in turn lead to information leaks that are leveraged to deduce the sensitive data. Various fault

injection techniques have been used in practice, includingvarying the voltage of the power supply,

the clock frequency, and the temperature of the execution environment. Here we focus on faults
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injected by disturbing the external clock, more specifically by aggressively increasing the clock

frequency beyond its normal range.

In a digital circuit, the time taken by a signal to change fromlogical 1 to logical 0 (or vice versa)

in response to the inputs often depends on both the circuit structure and the values of its signals.

In general, the arrival time of the output signal is determined by the delay of the paths connecting

the input signals to this output. In addition, the delay of these paths may depend on the values

of the internal signals of the circuit. For the same circuit,but with different values of the internal

signals, the delay of these input-to-output paths may be different. This is important because it

means the impact of the same injected fault, but under different internal states of the circuit, may

be significantly different.

A

BTB

TA

TAND

C = A ∧ B

Figure 2.3: The fault sensitivity of an AND gate.

Consider the example AND gate in Fig. 2.3, which has two inputsignals A and B and an output

signal C. LetTA andTB be the arrival time of signals A and B, respectively, andTAND be the

propagation delay of the AND gate. Consider a scenario whereTA < TB, i.e., signal B has a longer

arrival time than signal A. In this case, the time it takes forsignal C to stabilize (Tc) depends on

the value of signal A. Specifically,

• when A is logical 0, we haveTC = TA + TAND; and

• when A is logical 1, we haveTC = TB + TAND.

In other words, even if we do not know the value of signal A, by observing the difference in the

arrival timeTc, we can reliably deduce the sensitive information based on our knowledge of the

circuit structure.
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It is worth pointing out that such dependency relation between the gate delay and the values of

input signals is not unique for the AND gate; other types of logic gates have similar dependency

relations.

In general, for a large digital circuit with a wide range of logic gates, the delay along its various

input-to-output paths may depend on the values of the signals — that is the main source of

vulnerability for Fault sensitivity analysis (FSA) attacks. To successfully launch fault attacks,

merely injecting faults into a circuit is not enough. In addition, these faults must be propagated

through the circuit to become observable at the output. In practice, the susceptibility of developing

a faulty output often depends on the intensity of the faults injected, for example, the degree of

over-clocking, since the more intense the faults are, the more likely they will be propagated to the

output. The least intensity level under which injected faults becomes observable at the output is

referred to as thecritical level. Due to the dependency between gate propagation delay and values

of the signals in the circuit, in general, thecritical levelwill be different for different values of the

signals.

FSA attacks, in particular, rely on exploiting a dependencybetween thecritical leveland values of

the sensitive signals. Since the time taken by a signal to propagate through the circuit depends on

both the circuit structure and values of its internal signals, the attacker needs to have knowledge of

the circuit under attack. This is a realistic assumption, since most cryptographic algorithms, along

with their implementations, are publicly available.

An FSA attack typically consists of three steps:

1. The attacker injects faults and then measures the critical level of a circuit for a set ofN

randomly generated plaintexts (test inputs);

2. The attacker computes, using computer simulation, the critical level for each of theN se-

lected plaintexts, together with each possible sensitive data value combination;

3. The attacker performs a correlation analysis between themeasured critical level and the

simulated critical level for each possible sensitive data value combination.
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At the end of the third step, the sensitive data value combination that results in the highest correla-

tion coefficient will be identified. This information will then be used to deduce the sensitive data

value from the circuit.

2.6.2 FSA Countermeasures

The necessary condition for carrying out a successful FSA attack is having easily distinguishable

fault sensitivitycritical levelsfor the different sensitive data value combinations. Amongoutput

signals whose arrive time depends on the sensitive data, thegreater the difference in their arrival

times, the more distinguishable the critical levels, and consequently, the higher the chance attackers

will have in successfully deducing the sensitive data. Therefore, the goal of an FSA countermea-

sure is to disable the aforementioned condition.

All previously proposed countermeasures against FSA attacks [34, 35] rely on adding delay to

certain parts of the circuit to make the arrival time of the output signals independent from the

sensitive data. Such solution often adds an unnecessarily large number of buffers, which results in

larger area and higher power consumption.



Chapter 3

Optimizing Arithmetic Computation in

Embedded Software Code

Analyzing and optimizing the fixed-point arithmetic computations in embedded control software

is crucial to avoid overflow and underflow errors and minimizetruncation errors within the des-

ignated input range. Implementation errors such as overflow, underflow, and truncation can lead

to degradation of the computation results, which in turn maydestabilize the entire system. The

conventional solution is to carefully estimate the minimumbit-width required by the software

code to run in the error-free mode and then choose a microcontroller that matches the minimum

bit-width. However, this can be expensive or even infeasible, e.g., when the microcontroller at

hand has 16 bits but the code requires 17 bits.

In many cases, it is possible for the developer to manually reorder the arithmetic computation

operations and optimize the code structure to avoid the overflow and underflow errors and to

minimize truncation errors. However, the process is labor intensive and error prone. In this chapter,

we present a new compiler assisted code transformation method to automate the process. More

specifically, we apply inductive synthesis incrementally to optimize the arithmetic computations

so that the code can be safely executed on microcontrollers with a smaller bit-width.

The content of this chapter is originally published in [26]
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For example, consider the code in Fig. 3.1, where all input parameters are assumed to be in the

range[0, 9000]. A quick analysis of this program shows that, to avoid overflow, the program must

be executed on a microcontroller with at least 32 bits. If it were to run on a 16-bit microcontroller,

many of the arithmetic operations, e.g., the subtraction inLine 13, would overflow. In this case, a

naive solution is to scale down the bit-widths of the overflowing operations by eliminating some

of their least significant bits (LSBs). However, this would decrease the dynamic range, ultimately

leading to a large accumulative error in the output.

Our method, in contrast, can reduce the minimum bit-width required to run this piece of fixed-point

arithmetic computation code without any loss in accuracy. Our method would take the original C

code in Fig. 3.1 and the user-specified ranges of its input parameters, and returns the optimized

C code in Fig. 3.2 as output. Our method guarantees that the two programs are mathematically

equivalent – if all program variables represent unbounded integers – but the one in Fig. 3.2 requires

a smaller bit-width to achieve the same dynamic range. More specifically, the new code can run on

a 16-bit microcontroller. Furthermore, our method ensuresthat the new code does not introduce

any additional truncation error. In other words, the new code is always more accurate than the

original one.

The optimization in our method is carried out by an SMT solverbasedinductive synthesispro-

cedure, which is customized specifically for efficient handling of fixed-point arithmetic computa-

tions. Recent years of have seen a renewed interest in applying inductive synthesis techniques to a

wide variety of applications (e.g., [79, 78, 44, 38, 39, 41, 67, 75]). However, a naive application of

these techniques would not work due to their limited scalability and large computational overhead.

For example, our experience with the Sketch tool [79] shows that, when being applied to synthe-

sizing arbitrary fixed-point arithmetic computations, it does not scale beyond programs with 3-4

lines of code.

The main contribution here is our proposal of anincremental inductive synthesisalgorithm, where

the SMT solver based analysis is carried out only on small code regions of bounded size, one at a

time, as opposed to the entire program. This incremental optimization approach allows our method
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to scale up to programs of practical size and complexity.

Our new method differs from most of the existing methods for optimizing arithmetic computations

in embedded software code. These existing methods, including the recent ones [45, 71], focus

primarily on computing the optimal (smallest) bit-widths for all program variables. Instead, our

method focuses on re-ordering the arithmetic operations and re-structuring the code, which in turn

may lead to reduction in the minimum bit-width. In other words, we are not merelyfinding the

minimum bit-width, but alsoreducingthe minimum bit-width through code transformation. Due

to the use of an SMT solver based search, our method can find thebest implementation solution

within a bounded search space. This is in contrast to standard compiler optimizations, which are

based on matching simple syntactic patterns.

We have implemented our new method in a software tool based onthe popular Clang/LLVM

compiler framework [21] and the Yices SMT solver [25]. We have evaluated the performance of

our tool on a representative set of public domain benchmarkscollected from embedded control

applications and digital signal processing (DSP) applications. Our results show that the new

method can achieve a significant reduction in the minimum bit-width required by the program,

and alternatively, a significant increase in the dynamic range.

To sum up, the main contributions here are:

• We propose the first method for incrementally optimizing thelinear fixed-point arithmetic

computations in C/C++ code via inductive synthesis to reduce the minimum bit-width and

increase the error-free dynamic range.

• We implement the new method in a practical software tool based on Clang/LLVM and the

Yices SMT solver and demonstrate its effectiveness and scalability on a set of representative

embedded control and DSP applications.

The remainder of this Chapter is organized as follows. In Section 3.1, we illustrate our new method

by using an example. Then we present the overall algorithm inSection 3.3. We present our

inductive synthesis procedure in Section 3.4. The implementation details and experimental results
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1: int comp(int A,int B,int H,int E,int D,int F,int K) {
2: int t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12;
3: t12 = 3 * A;
4: t10 = t12 + B;
5: t11 = H << 2;
6: t9 = t10 + t11;
7: t6 = t9 >> 3;
8: t8 = 3 * E;
9: t7 = t8 + D;
10: t5 = t7 - 16469;
11: t3 = t5 + t6;
12: t4 = 12 * F;
13: t2 = t3 - t4;
14: t1 = t2 >> 2;
15: t0 = t1 + K;
16: return t0;
17:}

Figure 3.1: The original C program for implementing an embedded controller.

are given in Section 3.5 and Section 3.6, respectively. We review related work in Section 3.7, and

finally give a summary in Section 3.8.

3.1 Motivating Example

We illustrate the overall flow of our method by using the example in Fig. 3.1. Our method takes

this program and a configuration file that defines the value ranges of all parameter variables as

input, and returns the program in Fig. 3.2 as output. It starts by parsing the original program and

constructing an abstract syntax tree (AST). Each program variable in Fig. 3.1 corresponds to a

node in the AST. The root node of the AST is the return value of the program. The leave nodes are

the input parameters.

The AST is first traversedforwardly, from the parameters to the return value, to compute the

value ranges. Each value range is a(min,max) pair for representing the minimum and maximum

values of the node. They are computed by using a symbolic range analysis [70]. Then, the AST is

traversedbackwardly, from the return statement to the entry statement, to identify the list of AST

nodes that may overflow or underflow when using a reduced bit-width. The first overflowing node

in Fig. 3.1 is the subtraction in Line 13. Although botht3 andt4 can be represented in 16 bits,
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1: int comp(int A,int B,int H,int E,int D,int F,int K) {
2: int t0,t1,t3,t4,t5,t6,t8,t12;
3: int N1,N2,N3,N4,N5,N6,N7,N9,N10;
4: t12 = 3 * A;
5: N6 = H;
6: N10 = t12 - B;
7: N9 = N10 >> 1;
8: N7 = B + N9;
9: N5 = N7 >> 1;
10: N4 = N5 + N6;
11: t6 = N4 >> 1;
12: t8 = 3 * E;
13: N3 = t8 - 16469;
14: t5 = N3 + D;
15: t3 = t5 + t6;
16: t4 = 12 * F;
17: N2 = t4 >> 2;
18: N1 = t3 >> 2;
19: t1 = N1 - N2;
20: t0 = t1 + K;
21: return t0;
22:}

Figure 3.2: Optimized C code for implementing the same embedded controller.

the subtraction may produce a value that requires more bits.

For each AST node that may overflow or underflow, we carve out some neighboring nodes to form

a region for optimization. The region should include the node, its parent node, its child nodes, and

optionally, the transitive fan-in and fan-out nodes up to a bounded depth. The region size is limited

by the capacity of the subsequent inductive synthesis procedure. For the subtraction in Line 13, if

we bound the region size to 2 AST node levels, the extracted region would include the right-shift

in Line 14 (parent node).

The extracted region is then subjected to an inductive synthesis procedure, which generates a new

region that is mathematically equivalent to the extracted region butoverflow/underflow free. For

Line 13 in Fig. 3.1, the extracted region and the new region are shown side by side as follows:

t2 = t3 - t4; N2 = t4 >> 2;

t1 = t2 >> 2; --> N1 = t3 >> 2;

... t1 = N1 - N2;

That is, instead of applying right-shift to the operands after subtraction, we apply right-shift first.

Because of this, the new region needs a smaller bit-width to avoid overflow.
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However, it is important to note that the new region is not always better, because sometimes it may

introduce additional truncation errors. Considert3 = 2, t4 = -2 as a test case. We have(t3

- t4)>>2 = 1 and(t3>>2 - t4>>2) = 0. The new region may lose precision if the two least

significant bits (LSBs) oft3,t4 are not zero. Therefore, an integral part of our new optimization

method is to synthesize a new region only when it does not introduce additional truncation errors

that affect the final output. For this reason, we perform a truncation error margin analysis to

identify, for each AST node, the number of LSBs that are immaterial in deciding the final output.

For Line 13, the two LSBs of botht3 andt4 can be ignored. Therefore, the truncation error

introduced above will not affect the final output.

Since the new region is strictly better, the original AST is updated by replacing the extracted region

with the new region. After that, our method continues to identify the next node that may overflow

or underflow. The entire procedure terminates when it is no longer possible to optimize any

further. In the remainder of this section, we provide a more detailed description of the subsequent

optimization steps.

After optimizing the subtraction in Line 13, the next AST node that may overflow is in Line 10.

The extracted region and the new region are shown side by sideas follows:

t7 = t8 + D; N3 = t8 - 16469;

t5 = t7 - 16469; --> t5 = N3 + D;

Our analysis shows that variablest8, D and constant16469 all have zero truncation error mar-

gins. The new region does not introduce any additional truncation error. Therefore, the original

AST is updated with the new region.

The next AST node that may overflow is in Line 6. The extracted region and the new region are

shown as follows:

t9 = t10 + t11; N6 = t11 >> 2;

t6 = t9 >> 3; N5 = t10 >> 2;

... --> N4 = N5 + N6;

... t6 = N4 >> 1;
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The truncation error margins are 2 fort10 and 2 fort11. Therefore, the truncation error margin

for t9 is 2, meaning that the two LSBs may be ignored. Since the new region is strictly more

accurate, the original AST is again updated with the new region.

The next AST node that may overflow is in Line 4. The extracted region and the new region are

shown as follows:

t10 = t12 + B; N10 = t12 - B;

N5 = t10 >>2; N9 = N10 >> 1;

... --> N7 = B + N9;

... N5 = N7 >> 1;

Notice that this extracted region consists of a node that is the result of a previous optimization

step. The truncation error margins are 0 fort12 and 0 forB. The new code region does not

suffer from the same truncation error that would be introduced byN5 = (B>>2 + t12>>2),

because the truncation error is not amplified while being propagated to the final result. Instead, it

is compensated by the addition ofB.

The last node that may overflow is in Line 5 of Fig. 3.1. The extracted region and the new region

are shown as follows:

t11 = H << 2;

N6 = t11 >> 2; --> N6 = H;

By now, all arithmetic operations that may overflow are optimized. The new program in Fig. 3.2

can run on a 16-bit microcontroller while still maintainingthe same accuracy as the original

program running on a 32-bit microcontroller. Another way tolook at it is that, if the optimized

code were to be executed on the original 32-bit microcontroller, it would have a significantly larger

dynamic range.
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3.2 Fixed-point Notations

We follow [88] to represent the fixed-point type by a tuple〈s,N,m〉, wheres is the sign bit

(1 for signed and 0 for unsigned),N is the total number of bits or thebit-width, andm is the

number of bits representing the fractional part. The numberof bits representing the integer part

is n = (N − m). Different variables and constants in the original programare allowed to have

different bit representations, but all of them should have the same bit-widthN .

Signed numbers are represented in the standardtwo’s complementform. For anN-bit numberα,

which is represented by bit-vectorxN−1 xN−1 ... x0, its value is defined as follows:

α =
1

2m
×

(

−2N−1xN−1 +
N−2
∑

i=0

2ixi

)

,

wherexi is the value of theith bit. The value ofα lies in the range[−2n, 2n − 2−m]. If a

number to be represented exceeds the maximum value, there will be anoverflow. If a number

to be represented is less than the minimum value, there will be anunderflow. If the number to be

represented requires more designated fractional bits thanm, there will be atruncation error. The

maximum error caused by truncation is2−m.

We define thestepof a variable or a constant as the number of consecutive LSBs that always have

the value zero. For example, the number 1024 has astep9, meaning that nine of the LSBs are zero.

On the other hand, the number 3 has astep0.

3.3 Overall Algorithm

The overall flow of our method in shown in Algorithm 1. The input includes the original program

and the value ranges of all the parameter variables. First, we invokeCOMPUTERANGES to compute

the value ranges of all non-leave AST nodes. Then, we invokeCOMPUTEIGNOREBITS to compute

the truncation error margins (LSBs whose values can be ignored) for all AST nodes. Finally, we
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compute the bit-width (bw1) required by the original program to run within the given input range.

Algorithm 1 Optimizing the program within its input range.
1: OPTIMIZEPROGRAM (prog, p ranges) {
2: ranges← COMPUTERANGES(prog, p ranges);
3: ig bits← COMPUTEIGNOREBITS(prog);
4: bw1← COMPUTM INBITWIDTH(prog, ranges);
5: while (true){
6: bw2← bw1− 1;
7: for each (Noden ∈ prog that may overflow or underflow){
8: reg ← EXTRACTREGION(prog, n);
9: new reg ← SYNTHESIZE(reg, bw1, bw2, ranges, ig bits);

10: if (new reg does not exist)break;
11: REPLACEREGION(prog, reg, new reg);
12: }
13: bw1← bw2;
14: }
15: return prog;
16: }

After the bit-width of the original program (bw1) is determined, we enter the while-loop to iter-

atively optimize the program. In each iteration, we try to reduce the bit-width frombw1 to bw2.

The loop terminates as soon as a call to the inductive synthesis procedure fails to return the new

region.

Within each loop iteration, we search for all nodes that may overflow or underflow when the new

bit-width (bw2) is used. We process these nodes in a breadth-first search (BFS) order, i.e., from

the return value of the program to the parameter variables. For each node, we invokeEXTRAC-

TREGION to extract a neighboring region and then invoke the inductive synthesis procedure. If

successful, the inductive synthesis procedure would return a new region, which is mathematically

equivalent to the extracted region but would not overflow or underflow. It also ensures that the new

region would not introduce additional truncation error. After the new region is found, we use it to

replace the extracted region in the program.
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3.3.1 Region for Optimization

The size of the extractedregionaffects both the effectiveness and the computational overhead of

the inductive synthesis procedure. The minimum extracted region should include the erroneous

node and its parent node. Since we follow the BFS order, the parent node must have no overflow

or underflow since it is already tested negative or optimized. Since in the original program,

the parent operation restores the overflowed value created in the overflowing node back to the

normal operation range, when the parent node is included in the region, it is more likely to find an

alternative implementation that is more accurate than the extracted region.

In general, a larger extracted region allows for more opportunity to find a suitable new region.

The maximum extracted region – if it were not for the limited capability of the SMT solver –

would be the entire input program. This is equivalent to applying inductive synthesis tools such as

Sketch [79, 78] to the entire program, provided that the fixed-point arithmetic optimization problem

is modeled in the Sketch input language. In practice, however, such a monolithic optimization

approach seldom works. Indeed, our experience with the Sketch tool shows that it cannot scale

beyond arbitrary fixed-point arithmetic computation code of 2-3 lines.

Therefore, in addition to implementing our customized inductive synthesis procedure, which can

efficiently handle fixed-point arithmetic computations, wealso bound the size of the extracted

region so that inductive synthesis is applied only in the context of incremental optimization. More

specifically, the extracted region is bounded to an AST with at most 5 node levels, which represents

up to 63 AST nodes.

3.3.2 Truncation Error Margin

We compute thestepand theignore bitsfor all AST nodes recursively. During the optimization

process, the calculatedstepwill be used to compute the truncation error margin (the LSBswhose

values can be ignored). Our method will leverage the truncation error margins to obtain the best

possible optimization results.
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First, we determine thestepof each leave node based on the definition in Chapter 2. In general, the

stepmay originate from ashift-leftoperation, astepin a parameter variable, or astepin a constant.

We compute the step of each internal AST node as follows:

• step(x ∗ y) = step(x) + step(y);

• step(x+ y) = min(step(x), step(y));

• step(x− y) = min(step(x), step(y));

• step(x << c) = step(x) + c;

• step(x >> c) = max(step(x) − c, 0).

The ignore bitsare those consecutive LSBs that can be ignored during the optimization process. If

these bits are truncated in the new region, for example, no error will occur in its output. By taking

into account these bits in the optimization process, we are able to synthesis more compact new

regions.

To clarify this, consider the example in Fig. 3.3, where the extracted region is shown inside the

dotted box. We start by analyzing the AST to determine thestepof each node. For the purpose

of optimizing the extracted region, we need to know thestepof the region’s inputs, which are the

nodes labeled asa andb. Due to the shift-left operations, thestepof a is 4, while thestepof b is 3.

Considering thesestepvalues, we determine that, when optimizing the extracted region, we have

a “credit” of 3 bits to ignore. In other words, we have the freedom to truncate up to 3 consecutive

LSBs of the two inputs (a andb) without decreasing the accuracy of the result. Because of this, we

are able to synthesize the new region as shown in Fig. 3.4.

Notice that, even if we do not consider the ignore bits, our method can still synthesize a new region

to remove the overflowing node in the above example. However,in such case, the extracted region

would have to be larger. That is, the extracted region would need to include all the AST nodes in

Fig. 3.3. The synthesized new region would include all the AST nodes in Fig. 3.4. However, this

would also lead to a significantly longer synthesis time.
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Figure 3.3: The extracted region.
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Figure 3.4: The synthesized region.

3.4 The Inductive Synthesis Procedure

At the high level, our inductive synthesis procedure consists of two steps: (1) run a set of test cases

on the extracted region, and based on the results, generate anew region that is equivalent to the

extracted region at least for the set of test cases; (2) checkif the two regions are equivalent in the

full input range. If they are not equivalent, block this region (bad solution) and try again.

Algorithm 2 shows the pseudo code of our synthesis procedure, which computes a new region

(new reg) of bit-width bw2, such that it is equivalent to the original region (reg) of bit-width

bw1, under the value ranges specified inranges while considering the truncation error margins

specified inig bits. The procedure starts by initializingblockedRegionsandtestSetto empty sets,

wheretestSetconsists of the test cases used for inductively generating (guessing) a new region, and

blockedRegionsconsists of the previously explored regions that fail the equivalence check. The

procedure initializes thesizeof the new region to 1, and then enters the while-loop to iteratively

search for a new region of increasingly larger size. Whensizeexceeds a predetermined bound, we

have proved that no solution exists in this search space.

SubroutineGENREGION uses an SMT solver to inductively generate a new region, based on the test

examples intestSetand the already explored regions inblockedRegions. SubroutineCOMPDIFF

formally checks the equivalence of the extracted region (reg) and the new region (new r), and

returns a concrete test if they are not equivalent.
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Algorithm 2 Inductively synthesizing the new code region.
1: SYNTHESIZE (reg, bw1, bw2, ranges, ig bits) {
2: blockedRegions← { };
3: testSet← { };
4: size← 1;
5: while (size < MAX REGION SIZE){
6: newr← GENREGION(reg, bw1, bw2, size,blockedRegions, testSet);
7: if (new r exists){
8: test← COMPDIFF(reg, new r, bw1, bw2, ranges, ig bits);
9: if (test exists){

10: blockedRegions← blockedRegions∪{new reg};
11: testSet← testSet∪{test};
12: }
13: else
14: return new r;
15: }
16: else
17: size← size+ 1;
18: }
19: return no solution;
20: }

3.4.1 Constructing the New Region Skeleton

First, we generate askeletonof the new region, which is a generalized AST capable of representing

any linear arithmetic equation up to a bounded size. In this AST, each leave node is either a

constant or any of the set of input variables of the extractedregion. Each internal node is any of

the linear arithmetic operations (*, +, -, >>, <<). The root node is the result of the arithmetic

computation and should compute the same result as the outputnode in the extracted region. Fig. 3.5

shows an exampleskeletonof 7 AST nodes. Here,Op represents any binary arithmetic operator

andV |C represents a leave node (either a variable or a constant).

For each AST node in theskeleton, we assign an auxiliary variable called theselector, whose

value determines the node type. For example, a leave node (LNode1), which may be variableV1,

variableV2, or constantC1, is represented as follows:

((LNode1 == V1) && (sel1 == 0) ||

(LNode1 == V2) && (sel1 == 1) ||

(LNode1 == C1) && (sel1 == 2))
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Figure 3.5: Skeleton of 7 AST
nodes.

Figure 3.6: Synthesized new re-
gion.

where the integer value of selector variablesel1 ranges from 0 to 2. Similarly, a generalized

internal node (INode3), which may be an addition or a subtraction ofLNode1 andLNode2, is

represented as follows:

((INode3 == LNode1+LNode2) && (sel2 == 0) ||

(INode3 == LNode1-LNode2) && (sel2 == 1))

where the integer value of selector variablesel2 ranges from 0 to 1. The actual node types in the

skeletonare determined later, when we encode the skeleton into an SMTformula, and then call the

SMT solver to find a set of suitable values for all these selector variables.

3.4.2 Inductively Generating the New Region

To generate the new region, we need a representative set of test cases for the extracted region.

These are test values for the input variables of the region, and should include both the corner cases

and the intermediate values. Since the arithmetic computations are linear, we construct the corner

cases by including the minimum and maximum values of all input variables as defined inranges.

Additional test values are generated by taking semi-equidistant intermediate values between values

in the corner cases.
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We create an SMT formulaΦ such thatΦ is satisfiable iff the resulting new region – induced by

a satisfying assignment to allselectorvariables – is mathematically equivalent to the extracted

region, but does not overflow or underflow.

Φ = Φreg ∧ Φskel ∧ ΦsameI ∧ ΦsameO ∧ Φtests ∧ Φblocked,

where the subformulas are defined as follows:

• Extracted region (Φreg): It encodes the transition relation of the extracted region by using

bit-vector arithmetic, where the bit-width isbw1.

• New region skeleton (Φskel): It encodes the transition relation of the skeleton by using bit-

vector arithmetic, where the bit-width isbw2.

• Same input values (ΦsameI): It asserts that the input variables of the two regions mustshare

the same values.

• Same output value (ΦsameO): It asserts that the output variables of the two regions must have

the same value.

• Test cases (Φtests): It asserts that the input variables must adopt concrete values from the

given test cases.

• Blocked solutions (Φblocked): It asserts that theselectorvariables should not take values that

represent any previously explored (bad) solution.

If Φ is unsatisfiable, no solution exists in the bounded search space. In this case, we need to

increase thesizeof theskeletonand try again. IfΦ is satisfiable, we have computed a candidate

new region. As an example, consider the first extracted region in Section 3.1. The new region

generated from the skeleton in Fig. 3.5 is shown in Fig. 3.6.
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3.4.3 Checking the Equivalence of the Regions

The candidate new region is guaranteed to be equivalent to the extracted region over the given set

of test cases. However, they may not be equivalent over the full input range. Therefore, the next

step is to formally verify their equivalence over the full input range. Toward this end, we create

another SMT formulaΨ, which is satisfiable iff the two regions arenot equivalent; that is, if there

exists a test case that can differentiate them. FormulaΨ is defined as follows:

Ψ = Φreg ∧ Φnew reg ∧ ΦsameI ∧ ΦdiffO ∧ Φranges ∧ Φig bits,

where the subformulas are defined as follows:

• New region (Φnew reg): It encodes the transition relation of the candidate new region in bit-

vector arithmetic, where the bit-width isbw2.

• Different output values (ΦdiffO): It asserts that the output variables of the two regions have

different values.

• Value ranges (Φranges): It asserts that all input variables should stay within their pre-computed

value ranges. We are not interested in checking the equivalence of the two regions outside

the designated value ranges.

• Ignore bits (Φig bits): It asserts that the LSBs as specified in the ignore bits should all be set

to zero. This allows us to ignore the differences between thetwo regions for LSBs within

the truncation error margins.

If Ψ is unsatisfiable, it means that the two regions are mathematically equivalent within the given

input range and under the consideration of the ignore bits.

If Ψ is satisfiable, the candidate new region is not correct. In this case, we add it to theblockedRe-

gions, and then try again. The blocking of an incorrect solution follows the counter-example guided

inductive synthesis algorithm [79, 80], where the blocked solutions are encoded as an additional
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constraint in the SMT formula, by adding an extra pair of extractedregionand new regionskeleton

with the blocked assignment toselectorvariables. It ensures that, when the SMT solver is invoked

again to find a candidate new region, the same solution will not be returned.

3.5 Implementation

We have implemented our new method in a software tool for optimizing the C/C++ code of

embedded control and DSP applications based on the Clang/LLVM compiler framework [21] and

the Yices SMT solver [25]. Our tool has two modes: the whole-program optimization mode and

the incremental optimization mode. The two modes differ only in the size bound imposed on the

extracted region.

When the bound is set to an arbitrarily large number, our toolruns in the whole-program op-

timization mode. This makes it somewhat comparable to the popular inductive synthesis tool

called Sketch [79, 80], provided that our new regionskeletonis carefully modeled in the Sketch

input language, with theselectorvariables defining the “integer holes” for Sketch to fill. Before

implementing our own inductive synthesis procedure, we have explored this approach. However,

it turns out to be not scalable: synthesizing a new region with a size bound of more than 2 would

cause Sketch to quickly run out of the 4 GB memory. We believe that there are two reasons for

this. First, the performance of Sketch is not optimized for handling arbitrary combinations of linear

fixed-point arithmetic computations. Second, inductive synthesis, in general, may not be able to

scale up to arbitrarily large arithmetic computation programs.

Due to the scalability problem encountered by using Sketch,we have implemented our own

inductive synthesis procedure directly using the Yices SMTsolver, which is designed for efficient

handling of fixed-point arithmetic operations, e.g., by designing SMT encoding schemes for ex-

ploiting the AST structures encountered in this type of applications. Our experimental evaluation

shows that the new procedure is significantly more efficient than Sketch. Instead of a size bound

of 2, it now can routinely optimize theskeletonwith a size bound of 5 (representing up to 63 AST
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nodes). Nevertheless, this improvement alone is not sufficient for supporting the whole-program

optimization.

Instead, we propose an incremental optimization method that applies inductive synthesis only to

individual regions of a bounded size. More specifically, we have set the maximum bound forshift-

right andshift-leftoperations to 4, and the maximum level of AST nodes in the new region skeleton

to 5. By incrementally optimizing one extracted region at a time, our method is able to avoid the

scalability bottleneck imposed by the SMT solver, and therefore can be applied to programs of

practical size and complexity.

3.6 Experimental Results

We have evaluated our tool on a set of public domain benchmarkexamples. The experiments are

designed to answer the following three questions:

• How much can our method reduce the minimum bit-width required for the program to run

in the given input range?

• How much can our method increase the dynamic range of the program for the given bit-

width?

• If both the original and the optimized programs are forced torun with a reduced bit-width,

what is the difference between their fixed-point specific implementation errors?

3.6.1 Benchmarks

Our benchmark includes a set of public domain C programs for embedded control and DSP

applications. They come from various sources including papers, textbooks, and the output of code

generation tools. The sizes of the programs range from 21 lines of code (LoC) to 131 lines, with

an average LoC of 79. The number of fixed-point arithmetic operations on average is 58. For the
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kind of cyber-physical systems (CPS) software targeted by our new method, these are programs of

realistic size and complexity.

Table 3.1 shows the statistics of each benchmark example, including the name, the LoC, and the

number of arithmetic operations.

Table 3.1: Statistics of the benchmark C programs.
Name of the Benchmark Line of Code Arithmetic Operations
Sobel Image filter (3x3) 42 28
Bicycle controller 37 27
Locomotive controller 42 38
IDCT (N=8) 131 114
Control. Impl. 21 8
Diff. image filter (5x5) 131 77
FFT (N=8) (no DC component) 112 82
IFFT (N=8) 112 90

The first test case, taken from [69], is a 3x3 Sobel digital filter that is widely used in image process-

ing applications. The second test case, taken from [71], is abicycle controller optimally synthe-

sized for a custom-designed microprocessor with double-sized internal registers. The third test case

is a locomotive controller generated by using Fixed Point Advisor and Real Time Workshop of the

Matlab toolkit [57]. The fourth test case, taken from [49], is an inverse discrete cosine transform

(IDCT), which is widely used in mobile communication and image compression applications. The

fifth test case is the fixed-point version of a control rule implementation from [57]. The sixth

test case is a 5x5 kernel sized difference image filter [18]. The seventh test case is a fast Fourier

transform (FFT) implementation, where the floating-point version was taken from [86] and then

converted to fixed-point, by changing alldouble variables intoint variables without modifying

or reordering any of its instructions. The eighth test case is the inverse fast Fourier transform

(IFFT) for test case 7. None of the benchmarks was modified from their original forms in any way

to give performance advantage to our method.

All experiments were conducted on a machine with a 3.4 GHz Intel i7-2600 CPU, 3.3GB of RAM,

and 32-bit Linux.
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Table 3.2: Increase in the overflow/underflow free input range.
benchmark bit original optimized %
Sobel Image 32 [0, 16320] [-65536, 49152] 602
Bicycle 32 [-3.4*108, 3.4*108] [-1.0*109, 1.0*109] 194
Locomotive 64 [-8.7*1018, 8.7*1018] [-9.2*1018, 9.2*1018] 5
IDCT 32 [0, 1.5*106] [0, 2.1*106] 40
Controller 32 In1 [0, 5.0*108] In1 [-0, 6.6*108] 32

In2 [-5.0*108, 0] In2 [-6.6*108, 0 ] 32
In3 [-5.0*108, 0] In3 [-6.6*108, 0] 32

Diff. Image 32 [0, 1.3*108] [0, 2.1*109] 1515
FFT (N=8) 32 [0, 32736] [0, 32736] 0
IFFT (N=8) 32 [0, 2.6*108] [0, 5.3*108] 103

Table 3.3: Increase in the overflow/underflow free output range.
benchmark bit original optimized %
Sobel Image 32 [0, 16320] [-49184, 65504] 602
Bicycle 32 [-5.3*108, 5.3*18] [-1.5*109, 1.5*109] 194
Locomotive 64 [-3.6*1018, 5.0*1018] [-3.9*1018, 5.2*1018] 5
IDCT 32 [-1.4*106, 2.9*108] [-1.9*107, 3.9*108] 40
Controller 32 [0, 1.0*109] [0, 1.4*109] 32
Diff. Image 32 [0, 1.3*108] [-1.0*109, 1.1*109] 1515
FFT (N=8) 32 [25600, 25600] [25600, 25600] 0
IFFT (N=8) 32 [-1.3*108, 2.6*108] [-2.6*108, 5.3*108] 103

3.6.2 Results

First, we show that there is a significant increase in the input/output range from the original

program to the optimized program, when they both use the original bit-width. Tables 3.2 and

3.3 show the results. Column 1 shows the name of the benchmark. Columns 2 and 3 show the

input (output) ranges of the original program and the optimized program, respectively. Column 4

shows the percentage of the range increase. The increase in input (output) range spans from 0% to

1515%, with an average increase of 307%. The increase is due to the removal of the overflowing

and underflowing nodes in the original program. As a result, the output range is also increased.

Together, they lead to a significant increase in the dynamic range of the entire application.

Second, we show that there is a significant decrease in the minimum bit-width required for the

program to run without overflow/underflow errors for the given input range. The experimental
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Table 3.4: Increase in the minimum and average bit-widths.
Name of Original (bit-width) Optimized (bit-width)
Benchmark Minimum Average Minimum Average
Sobel image filter (3x3) 17 10.26 15 6.67
Bicycle controller 18 14.47 16 14.16
Locomotive controller 33 29.41 32 29.32
IDCT (N=8) 20 16.29 19 16.38
Control. Impl. 17 15 16 14.67
Diff. image filter (5x5) 17 11.11 13 8.09
FFT (N=8) 18 7.32 16 6.95
IFFT (N=8) 17 7.11 16 7.26

results are shown in Table 3.4. Column 1 is the name of the benchmark. Column 2 is the minimum

bit-width of the original program to avoid overflow and underflow, and Column 3 is the average

bit-width for all program variables. Column 4 is the minimumbit-width of the new program to

avoid overflow and underflow, and Column 5 is the average bit-width for all program variables.

Our results show that the bit-width reduction spans from 1 bit to 4 bits. Consider the Sobel Image

filter as an example. The minimum bit-width required to run the original program is 17 bits. After

optimization, it is reduced to 15 bits. This is significant, because now the code can be executed on

a 16-bit microcontroller instead of a 32-bit microcontroller, which is often significantly cheaper.

To further illustrate the benefit of our new method, considerthe maximum error bound in a scaled-

down version of the original program in order to downgrade the hardware from 32-bit to 16-bit,

or from 64-bit to 32-bit. Table 3.5 shows the comparison between the optimized program and a

scaled-down version of the original program. Column 1 is thename of the benchmark. Column 2

is the scaling level. Columns 3 and 4 are the maximum relativeerrors of the original program and

the optimized program, respectively. Our results show thatthe optimized programs have smaller

errors in all test cases.

We also show, in Table 3.6, the statistics of running our optimization method. Column 1 is the

name of the benchmark. Column 2 is the number of lines optimized by the incremental inductive

synthesis procedure in the original program. Column 3 is thetotal execution time by our method.

The data show that, by using incremental synthesis, we have kept the overall runtime down. In
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Table 3.5: Decrease in the maximum relative error.
Benchmark Scaling Error original Error optimized
Sobel Image filter (3x3) 32-b→ 16-b 3.1 ∗ 10−2 0.0
Bicycle controller 32-b→ 16-b 3.5 ∗ 10−4 2.0 ∗ 10−4

Locomotive controller 64-b→ 32-b 2.9 ∗ 10−8 1.5 ∗ 10−9

IDCT (N=8) 32-b→ 16-b 9.2 ∗ 10−3 1.8 ∗ 10−5

Control. Impl. 32-b→ 16-b 5.2 ∗ 10−4 2.9 ∗ 10−4

Diff. image filter (5x5) 32-b→ 16-b 1.2 ∗ 10−2 2.5 ∗ 10−3

FFT (N=8) 32-b→ 16-b 8.1 ∗ 10−2 4.4 ∗ 10−3

IFFT (N=8) 32-b→ 16-b 8.4 ∗ 10−2 3.2 ∗ 10−2

Table 3.6: Statistics of the incremental optimization process.
Name of the Benchmark Num. Optimized Lines Total Time
Sobel Image filter (3x3) 22 2s
Bicycle controller 2 5s
Locomotive controller 1 5m 41s
IDCT (N=8) 3 2.7s
Control. Impl. 1 46s
Diff. image filter (5x5) 23 10s
FFT (N=8) 14 1m9s
IFFT (N=8) 1 4s

fact, it is no longer directly dependent on the program size,but more on the number of extracted

regions and the time spent on optimizing each region.

3.7 Related Work

Our new method incrementally optimizes the fixed-point arithmetic computations in an embedded

software program with the objective of reducing the minimumbit-width through code transforma-

tion, without changing the computational accuracy. The core synthesis routine in our method

follows the same counter-example guided inductive programsynthesis paradigm pioneered by

Sketch [79, 78]. However, our method is significantly different in that it has an implementation that

is designed for more efficiently handle linear fixed-point arithmetic computations. Furthermore,

we apply inductive synthesis incrementally to regions of a bounded size, one at a time, as opposed

to the entire program.
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Gulwaniet al. [39] propose a method for synthesizing bit-vector programsfrom a linear reference

code by leveraging a set of user defined library functions. Their method does not use incremental

inductive synthesis, and the largest synthesized code reported in their paper has 16 lines of code,

for which their tool takes over 45 minutes. Jhaet al. [44] use the same symbolic encoding as

in [39] but replace the logical specification of the desired program by an input-output oracle.

The SCIDUCTION tool implemented by Jha [45] can automatically synthesize a fixed-point arith-

metic program from the floating-point arithmetic code. However, the focus of this tool is solely

onfindingthe smallest possible bit-width andchoosingthe best fixed-point representation for each

program variable. They have not attempted to change the codestructure or synthesize completely

new code for the purpose ofreducingthe minimum bit-width.

Another closely related work is the linear fixed-point optimization method proposed in [71], which

relies on using a Mixed Integer Linear Programming (MILP) solver to minimize the error bound by

changing the fixed-point representation of the program. Again, their method can only optimize the

bit-vector representations of the program variables, but do not change the structure of the original

code or synthesize new completely new code in order to reducethe bit-width.

Darulovaet al. [23] proposed a method for compiling real-valued arithmetic expressions to fixed-

point arithmetic programs to minimize the discrepancy between the fixed-point values and the real

values. Their method uses genetic programming, which mutates the order of the original arithmetic

expressions to find better fixed-point representations. Themethod differs from ours in three

aspects. First, their method takes a real-valued expression in Matlab format as input and returns

a fixed-point arithmetic program as output whereas our method transforms an existing fixed-point

C program into another fixed-point C program – this also makesexperimental comparison of the

two approaches difficult to conduct. Second, their method relies on genetic programming, which

consists of random mutation and filtering of the mutants, whereas our methods relies on exhaustive

search via an SMT solver. Third, their method does not employincremental inductive analysis,

which is one of the main contributions of our work.

Our new method is also related to the various superoptimization techniques that are becoming
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popular in compilers in recent years [46, 8, 74]. Superoptimizers are more powerful than conven-

tional compiler based optimizations that rely on matching known code patterns and then applying

predetermined transformation rules. In contrast, superoptimizers often perform a more involved

search in the implementation space of a set of valid instruction sequences, for example, to optimize

performance-critical inner loops. However, to the best of our knowledge, there has not been any

existing superoptimizer that can be used to increase the error free dynamic range, or to minimize

the minimum bit-width, of fixed-point arithmetic computations in embedded C programs.

3.8 Summary

We have presented a new method for incrementally optimizingthe linear fixed-point arithmetic

computations of an embedded software program via code transformation to reduce the required

bit-width and to increase the dynamic range. Our method is based on judicious application of

an SMT solver based inductive synthesis procedure to code regions of bounded size. We have

implemented our method in a software tool and evaluated it ona set of representative embedded

programs. Our results show that the new method can significantly reduce the bit-width and handle

programs of realistic size and complexity.



Chapter 4

Detecting Power Side-Channel Leaks in

Cryptographic Software

Security analysis of the hardware and software systems implemented in embedded devices is

becoming increasingly important, since an adversary may have physical access to such devices

and therefore can launch a whole new class of side-channel attacks, which utilize secondary

information resulting from the execution of sensitive algorithms on these devices. For example,

the power consumption of a typical embedded device executing the instructiontmp=text⊕key

depends on the value of the secretkey [56]. This value can be reliably deduced using a statistical

method known asdifferential power analysis(DPA [51, 81]). In recent years, many commercial

systems in the embedded space have shown weaknesses againstsuch attacks [66, 59, 7].

A common mitigation strategy against such attacks is using randomization techniques to remove

the statistical dependency between the sensitive data and the side-channel information. This can

be done in multiple ways. Boolean masking, for example, usesan XOR operation of a random

numberr with a sensitive variablea to obtain a masked (randomized) variable:am = a⊕r [7, 68].

Later, the sensitive variable can be restored by a second XORoperation with the same random

number:am ⊕ r = a. Other randomization based countermeasures have used additive masking

(am = a + r mod n), multiplicative masking (am = a ∗ r mod n), and application-specific code

The content of this chapter is originally published in [31]
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transformations such as RSA blinding (am = are mod N).

However, designing and implementing such side-channel countermeasures are labor intensive and

error prone, and currently, there is a lack of formal verification tools to evaluate how secure a

countermeasure really is. Software countermeasures are particularly challenging to design, since

the source of the information leakage is not the cryptographic software but the microprocessor

hardware that executes the software. From the perspective of average software developers – who

may not know all the architectural details of the device – it is difficult to predict the myriad possible

ways in which side-channel information may be leaked. Furthermore, bugs in implementation can

also break an otherwise secure countermeasure.

In this chapter, we propose a new method for verifying the security of randomization based coun-

termeasures against side-channel attacks. Our method usesan SMT solver to check if any in-

termediate computation result of a software statisticallydepends on the sensitive data. Since the

security of the countermeasure against power analysis attacks is a statistical property, the problem

cannot be solved by conventional techniques such symbolic model checking based on Binary

Decision Diagrams (BDDs) and satisfiability (SAT) solvers [22, 54, 43, 82, 84, 87]. Although

in the literature, there exists some work on tackling the problem using type-based information

flow analysis techniques [1, 72], these methods are often overly conservative, leading to the

classification of countermeasures as secure when they are not. In contrast, our method always

returns the precise result. Although Bayraket al.[10] also used a constraint solver in their CHES13

method, its analysis is significantly less precise than ours. They only check whether a variable is

maskedby some random variable, but do not check whether it isperfectly masked, i.e., whether

the probability distribution is dependent on the sensitivedata. To the best of our knowledge, our

method is the first automated verification method that checksfor perfect masking. This is important

because withorder-d perfect masking, an implementation is provably secure against any type of

order-d (and lower-order) power analysis attack [47].

We have implemented our new method in an automated verification tool based on the Clang/LLVM

compiler [21] and the Yices SMT solver [25]. We encode the verification problem into a series of
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quantifier-free first-order logic formulas, whose satisfiability can be decided by Yices. Our SMT

encoding scheme is significantly different from the ones used by standard verification methods,

because theperfect maskingproperty checked by our tool is statistical in nature. For comparison,

we also implemented the CHES13 method [10] in our tool. We have conducted experiments on a

large set of recently proposed countermeasures, includingthe ones applied to AES and the MAC-

Keccak reference code submitted to Round 3 of NIST’s SHA-3 competition. Our results show that

the new method is effective in detecting flaws in the masking implementation. Furthermore, the

method is scalable enough to handle programs of practical size and complexity.

The remainder of this section is organized as follows. We present our SMT based verification

algorithm in Section 4.1. Then, we illustrate the entire verification process using an example in

Section 4.2. We present our incremental verification methodin Section 4.3, which further improves

the scalability of our SMT-based method. We present our experimental results in Section 4.4, We

review related work in Section 4.5, and finally provide a summary in Section 4.6.

4.1 SMT-based Method for Verification of Perfect Masking

We first illustrate the overall flow of our verification methodusing the program in Fig. 4.1. The

program is a masked version ofc ← (k1 ∧ k2), wherek1 andk2 are two secret keys,r1 andr2

are random variables with independent and uniform distribution in {0, 1}, andc is the computation

result. The objective of masking is to make the power consumption of the device executing this

code independent from the values of the secret keys. This masking scheme originated from Blömer

et al. [16]. The return valuec is logically equivalent to(k1 ∧ k2)⊕ (r1 ∧ r2). The corresponding

demasking function, which is not shown in the figure, isc⊕(r1∧r2). Therefore, demasking would

produce a result that is logically equivalent to the desiredvalue(k1 ∧ k2).

Our method will determine if all the intermediate variablesof the program are perfectly masked.

We use the Clang/LLVM compiler to parse the input Boolean program and construct the data-

flow graph, where the root represents the output and the leaf nodes represent the input bits. Each
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1 : compute(bool k1, bool k2, bool r1, bool r2){
2 : bool n1, n2, n3, n4, n5, n6, n7, n8, c;
3 : n1 = k1⊕ r1;
4 : n2 = k2⊕ r2;
5 : n3 = n1 ∧ n2;
6 : n4 = k2⊕ r2;
7 : n5 = r1 ∧ n4;
8 : n6 = k1⊕ r1;
9 : n7 = r2 ∧ n6;
10 : n8 = n5⊕ n7;
11 : c = n3 ⊕ n8;
12 : return c;
13 : }

c

⊕
⊕

∧ ∧

⊕⊕

⊕

∧

n7

n6

r1r2k2
r1k1

n4

n5
n2

n3

n1

n8

r2

k2 r2 k1 r1

⊕

Figure 4.1: Example: the program under verification (left) and its graphic representation (right).

internal node represents the result of a Boolean operation of one of the following types: AND,

OR, NOT, and XOR. For the example in Fig. 4.1, our method starts by parsing the program and

creating a graph representation. This is followed by traversing the graph in a topological order,

from the program inputs (leaf nodes) to the return value (root node). For each internal node, which

represents an intermediate result, we check whether it is perfectly masked. The order in which we

check the internal nodes is as follows:n1, n2, n3, n4, n5, n6, n7, n8, and finally,c.

4.1.1 The Theory

As the starting point of the verification process, we mark allthe plaintext bits inx as public, the

key bits ink as secret, and the mask bits inr as random. Then, for each intermediate computation

resultI(x, k, r) of the program, we check whether it is perfectly masked. Following Definition 1,

we formulate this check as a satisfiability problem as follows:

∃x.∃k, k′ .
(

Σr∈{0,1}sI(x, k, r) 6= Σr∈{0,1}sI(x, k
′, r)
)

Here,x represents the plaintext bits,k andk′ represent two different valuations of the key bits,

andr is the random number uniformly distributed in the domain{0, 1}s, wheres is the number of

random bits. For any fixed (x, k, k′),
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• Σr∈{0,1}sI(x, k, r) is the number of satisfying assignments forI(x, k, r), and

• Σr∈{0,1}sI(x, k
′, r) is the number of satisfying assignment forI(x, k′, r).

Assume thatr is uniformly distributed in the domain{0, 1}s, the above summations can be used

to indicate the probabilities ofI being logical 1 under two different key valuesk andk′.

If the above formula is satisfiable, there exists a plaintextx and two different keys (k, k′) such

that the distribution ofI(x, k, r) differs from the distribution ofI(x, k′, r). In other words, some

information of the secret key is leaked throughI, and therefore we say thatI is not perfectly

masked. If the above formula is unsatisfiable, then such information leakage is not possible, and

therefore we say thatI is perfectly masked.

Another way to understand the above satisfiability problem is to look at the negation. Instead of

checking thesatisfiabilityof the formula above, we check thevalidity of the formula below:

∀x.∀k, k′.
(

Σr∈{0,1}sI(x, k, r) = Σr∈{0,1}sI(x, k
′, r)
)

If this formula is valid – meaning that it holds for all valuations ofx, k andk′ – then we say thatI

is perfectly masked.

4.1.2 The Encoding

Let Φ denote the SMT formula to be created for checking intermediate resultI(x, k, r). Let s be

the number of random bits inr. Our encoding method ensures thatΦ is satisfiable if and only ifI

is not perfectly masked. We defineΦ as follows:

Φ :=

(

2s−1
∧

r=0

Ψr
k

)

∧

(

2s−1
∧

r=0

Ψr
k′

)

∧Ψb2i ∧Ψsum ∧Ψdiff ,

where the subformulas are defined as follows:
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Figure 4.2: SMT encoding for checking the statistical dependence on secret data(k1, k2).

• Program logic (Ψr
k): Each subformulaΨr

k encodes a copy of the functionality ofI(x, k, r),

with the random variabler set to a concrete value in{0, . . . , 2s− 1} and the key set to value

k or k′. All copies share the same plaintext variablex.

• Boolean-to-int (Ψb2i): It encodes the conversion of the Boolean valued output ofI(x, k, r)

to an integer (true becomes 1 and false becomes 0), so that theinteger values can be summed

up later to computeΣ2s

r=1I(x, k, r).

• Sum-up-the-1s (Ψsum): It encodes the two summations of the logical 1s in the outputs of the

2s program logic copies, one forI(x, k, r) and the other forI(x, k′, r).

• Different sums (Ψdiff ): It asserts that the two summations should have different results.

Fig. 4.2 is a pictorial illustration of our SMT encoding for an intermediate resultI(k1, k2, r1, r2),

wherek1, k2 are the secret key bits andr1, r2 are two random bits. Here, the first four boxes,

encodingΨ0
k, . . . ,Ψ

3
k, are the four copies of the program logic for key bits (k1k2), with the random

bits set to 00, 01, 10, and 11, respectively. The other four boxes, encodingΨ0
k′, . . . ,Ψ

3
k′, are the

four copies of the program logic for key bits (k1′k2′), with the random bits set to 00, 01, 10, and
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11, respectively. The formula checks for security against first-order DPA attacks – whether there

exists two sets of keys (k1 k2andk1’ k2’) under which the distributions ofI are different.

4.1.3 An Example

Consider noden8 in Fig. 4.1 as the node under verification. The function is defined asn8 = (r1

& (k2 xor r2)) xor (r2 & (k1 xor r1)). The SMT formula that our method generates

– by instantiatingr1r2 to00, 01, 10, and11 – is the conjunction of all of the formulas listed below:

n8_1 = (0 & (k2 xor 0)) xor (0 & (k1 xor 0)) // four copies of I(k, r)

n8_2 = (0 & (k2 xor 1)) xor (1 & (k1 xor 0))

n8_3 = (1 & (k2 xor 0)) xor (0 & (k1 xor 1))

n8_4 = (1 & (k2 xor 1)) xor (1 & (k1 xor 1))

n8_1’ = (0 & (k2’ xor 0)) xor (0 & (k1’ xor 0)) // four copies of I(k’,r)

n8_2’ = (0 & (k2’ xor 1)) xor (1 & (k1’ xor 0))

n8_3’ = (1 & (k2’ xor 0)) xor (0 & (k1’ xor 1))

n8_4’ = (1 & (k2’ xor 1)) xor (1 & (k1’ xor 1))

(( num1 = 1 ) & n8_1 ) | ((num1=0) & not n8_1 ) // convert bool to integer

(( num2 = 1 ) & n8_2 ) | ((num2=0) & not n8_2 )

(( num3 = 1 ) & n8_3 ) | ((num3=0) & not n8_3 )

(( num4 = 1 ) & n8_4 ) | ((num4=0) & not n8_4 )

(( num1’ = 1 ) & n8_1’) | ((num1’=0) & not n8_1’) // convert bool to integer

(( num2’ = 1 ) & n8_2’) | ((num2’=0) & not n8_2’)

(( num3’ = 1 ) & n8_3’) | ((num3’=0) & not n8_3’)

(( num4’ = 1 ) & n8_4’) | ((num4’=0) & not n8_4’)

(num1 + num2 + num3 + num4) != (num1’ + num2’ + num3’ + num4’) // the check

We solve the conjunction of the above formulas using an off-the-shelf SMT solver called Yices [25].

In this particular example, the formula is satisfiable. For example, one of the satisfying assignments

is k1k2=00 andk1’k2’=01. We shall show in the next section that, when the key bits are 00, the

probability forn8 to be logical 1 is 0%; but when the key bits are 01, the probability is 50%. This

makes it vulnerable to first-order DPA attacks. Therefore,n8 is not perfectly masked.
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High-Order Attacks

For a masked code to be resistant tofirst-order differential power analysis (DPA) attacks, all

the intermediate results must be perfectly masked. However, even if each intermediate result is

perfectly masked, it is still not sufficient to resisthigh-orderDPA attacks, where an adversary can

simultaneously observe more than one intermediate computation results. For a masking scheme

to be resistant toorder-d DPA attacks, we need to ensure that the joint distribution ofany d

intermediate results (whered = 2, 3, . . . ) is independent of the secret key. That is, for anyd

intermediate resultsI1, . . . , Id, we check the satisfiability of the following formula:

∃x.∃k, k′ .
(

Σr∈{0,1}sΣ
d
i=1Ii(x, k, r) 6= Σr∈{0,1}sΣ

d
i=1Ii(x, k

′, r)
)

Our aforementioned encoding algorithm can be easily extended to implement this new check. In

practice, most countermeasures assume that the adversary has access to the side-channel leakage of

either one or two intermediate results, which corresponds to first-order and second-order attacks.

In our actual implementation, we handle both first-order andsecond-order attacks. In our experi-

ments, we also evaluate our new method on verifying countermeasures against both first-order and

second-order attacks (whered = 1 or 2).

4.2 The Running Example

Consider the automated verification of our running example in Fig. 4.1. For each internal node

I, we first identify all the transitive fan-in nodes ofI in the program to form acode regionfor

the subsequent SMT solver based analysis. In the worst case,the extracted code region should

start from the instruction (node) to be verified, and cover all the transitive fan-in nodes on which it

depends. Then, the extracted code region is given to our SMT based verification procedure, whose

goal is to prove (or disprove) that the node is statisticallyindependent of the secret key.

Following a topological order, our method starts with noden1, which is defined in Line 3 of the
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k1 k2 r1 r2 n3
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

k1 k2 r1 r2 n8
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

k1 k2 r1 r2 c
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Figure 4.3: The truth-tables for internal nodesn3, n8, andc of the example program in Fig. 4.1.

program in Fig. 4.1. The extracted code region consists ofn1 = k1 ⊕ r1 itself. Since it involves

only one key and one random variable in the XOR operation, a simple static analysis can prove

that it is perfectly masked. Therefore, although we could have verified it using SMT, we skip it for

efficiency reasons. Such simple static analysis is able to prove thatn2, n4 andn6 are also perfectly

masked.

Next, we try to prove that noden3 is perfectly masked. The truth table ofn3 is shown in

Fig. 4.3 (left). In all four valuations ofk1 andk2, the probability ofn3 being logical 1 is 25%.

Therefore,n3 is perfectly masked. When we apply our SMT based method, the solver is not able

to find any satisfying assignment fork1 andk2 under which the probability distributions ofn3 are

different. Note that our method does not check the probability of the output being logical 0, since

having an equal probability distribution of logical 1 is equivalent to having an equal probability

distribution for logical 0.

The verification steps for nodesn5 andn7 are similar to that ofn3 – all of them are perfectly

masked.

Next, we try to prove that noden8 is perfectly masked. However, the proof would fail because,

as shown in the truth table in Fig. 4.3 (middle), the probability for n8 to be logical 1 is not the

same under different valuations of the keys. For example, ifthe keys are00, thenn8 would be

0 regardless of the values of the random variables. Recall that we have shown the detailed SMT
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encoding forn8 in Section 4.1.3. Using our method, the solver can quickly find two configurations

of the key bits (for example,00 and11) under which the probabilities ofn8 being logical 1 are

different. Therefore,n8 is not perfectly masked.

The remaining node isc, whose truth table is shown in Fig. 4.3 (right). Similar ton8, our SMT

based method will be able to show that it is not perfectly masked.

It is worth pointing out that the result of applying the CHES13 method [10] would have been

different. Althoughn8 and c are clearly vulnerable to first-order DPA attacks, the CHES13

method, based on the notion ofsensitivity, would have classified them as “securely masked.” This

demonstrates a major advantage of our new method over the CHES13 method.

4.3 The Incremental Verification Algorithm

It is worth pointing out that the size of the formula created by our SMT encoding is linear in the size

of the program and exponential in the number of random variables – fors random bits, we need

to make2s+1 copies of the program logic. This is the main bottleneck for applying our method to

large programs. In this section, we propose an incremental verification algorithm, which applies

SMT solver based analysis only to small code regions – one at atime – as opposed to the entire

fan-in cone of the node under verification. This is crucial for scaling the method up to programs of

practical size and complexity.

4.3.1 Extracting the Verification Region

In practice, a common strategy in implementing randomization based countermeasures is to have a

chain of modules, where the inputs of each module are masked before executing its logic, and

are demasked afterward. To avoid having an unmasked intermediate value, the inputs to the

successor module are masked with fresh random variables, before they are demasked from the

random variables of the previous module. This can be illustrated by the example in Fig. 4.4, where



Hassan Eldib Chapter 4. Detecting Power Side-Channel Leaksin Cryptographic Software 54

rnew

rkx

rkx

I 1

I 2

I 3I 3
rdummy+

+ de−mask

mask

mask2 mask2 I2 := I1 ⊕ de-mask(x , k , r)
:= rnew ⊕mask(x , k , r)⊕ de-mask(x , k , r)
:= rnew ⊕ (. . .)
:= rdummy

Before verifyingmask2, if we have already proved thatI2
is perfectly masked, and rnew is a new random variable

not used elsewhere, then for the purpose of checking

mask2only, we can substituteI2 with rnew while verifying

mask2.

Figure 4.4: Applying the SMT based analysis to a small fan-inregion only.

the output ofmask(x,k,r)is masked with the new random variablernew before it is demasked from

the old random variabler.

Due toassociativityof the⊕ operator, reordering the masking and demasking operationswould

not change the logical result. For example, in Fig. 4.4, the instruction being verified is inmask2().

Since the newly added random variablernew is not used insidemask()or de-mask(), or in the

support ofI3, we can replace the entire fan-in cone ofI2 by a new random variablerdummy (or

evenrnew itself) while verifyingmask2(). We shall see in the experimental results section that such

opportunities are abundant in real-world applications. Therefore, in this subsection, we present a

sound algorithm for extract a small code region from the fan-in cone of the node under verification.

Our algorithm relies on some auxiliary data structures associated with the current nodei under

verification:supportV[i], uniqueM[i] andperfectM[i].

• supportV[i] is the set of inputs in the support of the function of nodei.

• uniqueM[i] is the set of random inputs that each reachesi along only one path.

• perfectM[i] is a subset ofuniqueM[i] where each random variable, by itself, guarantees that

nodei is perfectly masked.

These tables can be computed by a traversal of the program nodes as described in Algorithm 3.
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For example, for nodeI1 in Fig. 4.4, supportV[I1]= {x, k, r, rnew}, uniqueM[I1]= {r, rnew},

andperfectM[I1]= {rnew}, assumingr is not repeated in the mask block. For nodeI2, we have

supportV[I2]= {x, k, r, rnew}, uniqueM[I2]= {rnew}, sincer reachesI2 twice and so may have

been de-masked, andperfectM[I2]= {rnew}.

Algorithm 3 Computing the auxiliary tables for all internal nodes of theprogram.

1: supportV[i]← { v } for each input node i with variable v
2: uniqueM[i]← { v } for each input node i with random mask variable v
3: perfectM[i]← { v } for each input node i with random mask variable v
4: for each (internal node i in a leaf-to-root topological order){
5: L← LEFTCHILD (i)
6: R← RIGHTCHILD (i)
7: supportV[i]← supportV[L]∪ supportV[R]
8: uniqueM← (uniqueM[L]∪ uniqueM[R])\ (supportV[L]∩ supportV[R])
9: if (i is an XOR node)

10: perfectM[i]← uniqueM[i]∩ (perfectM[L]∪perfectM[R])
11: else
12: perfectM[i]← { }
13: }

Algorithm 4 Extracting a code region for nodei for the subsequent SMT based analysis.

1: GETREGION (n, uniqueMATi){
2: if (n is an input node with variable v)
3: region.add← (n, v)
4: else if(∃ random variable r∈ perfectM[n]∩ uniqueMATi)
5: region.add← (n, r)
6: else
7: region.add← (n, {})
8: region.add← GETREGION(n.Left, uniqueMATi)
9: region.add← GETREGION(n.Right, uniqueMATi)

10: return region
11: }

Our idea of extracting a small code region for SMT based analysis is formalized in Algorithm 4.

Given the nodei under verification, anduniqueM[i] as the set of random variables that each

reachesi along only one path, we call GETREGION(i,uniqueM[i]) to compute the region. Inside

GETREGION, uniqueM[i] is renamed tofreshMasksATi. More specifically, we start by checking

each transitive fan-in noden of the current nodei. If n is a leaf node (Line 2), then we addn and

the input variablev to the region. Ifn is not a leaf node, we check if there is a random variable

r ∈uniqueMATithat, by itself, can perfectly mask noden (Line 4). In Fig. 4.4, for example,rnew,
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by itself, can uniformly mask nodeI2. If such random variabler exists, then we add pair(n, r)

to the region and return – skipping the entire fan-in cone ofn. Otherwise, we recursively invoke

GETREGION to traverse the two child nodes ofn.

4.3.2 The Overall Algorithm

Algorithm 5 shows the overall flow of our incremental verification method. Given the program

and the lists of secret, random and plaintext variables, ourmethod systematically scan through all

the internal nodes from the inputs to the return value. For each nodei, our method first extracts a

small code region (Line 4). Then, we invoke the SMT based analysis. If the node is not perfectly

masked, we add it to the list ofbadnodes.

Algorithm 5 Incremental verification of perfect masking.

1: VERIFYPERFECTMASKING (Prog, keys, rands, plains){
2: badNodes← { }
3: for each (internal node i∈ Prog in a topological order ){
4: region← GETREGION(i, uniqueM[i])
5: notPerfect← CHECKMASKINGBYSMT (i, region, keys, rands, plains )
6: if (notPerfect)
7: badNodes.add( i )
8: }
9: return badNodes

10: }

To optimize the performance of Algorithm 5, we conduct a simple static analysis between Line 4

and Line 5 to quickly check whether it is fruitful to invoke the SMT solver. The first one checks

if the region contains any secret keys, if not then the solveris not invoked and the instruction is

perfectly masked. The second analysis checks some syntactic conditions – if all of these conditions

are satisfied, the current nodei is guaranteed to be perfectly masked. In such case, we also avoid

invoking the SMT solver. The implemented syntactic conditions are listed as follows:

• The instruction has no secret input as its child. This guarantees that when a secret variable

is introduced, its masking operation will be verified.
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• None of the random variables appears in both operand’ssupportV tables. This guarantees

that no perfectly masking of a secret variable in any of the operands may be affected.

• Both operands are perfectly masked. This guarantees to find all the resultant imperfect

masked instructions due to an initial imperfectly masked instruction.

To further optimize the performance of Algorithm 5, we implement a method for identifying

random variables that aredon’t caresfor the nodei under verification, and use the information to

reduce the cost of the SMT based analysis. Prior to the SMT encoding, for each random variable

r ∈supportV[i], we check if the value ofr can ever affect the output ofi. If the answer is no, thenr

is adon’t care. During our SMT encoding, we will setr to logical 0 rather than treatr as a random

variable, to to reduce the size of the SMT formula. This can lead to a significant performance

improvement since the formula size is exponential in the number of relevant random variables.

We check whetherr ∈ support[i] is adon’t carefor nodei by constructing a Boolean SAT formula

and solving it using the SMT solver. The SAT formula is definedas follows:

Ψr=0
region ∧Ψr=1

region ∧ΨdiffO ,

whereΨr=0
region encodes the program logic of the region, with the random bitr set to 0,Ψr=1

region

encodes the program logic of the region, with the random bitr set to 1, andΦdiffO asserts that the

outputs of these two copies differ. If the above formula is unsatisfiable, thenr is adon’t carefor

nodei.

4.4 Experimental Results

We have implemented our new method in an automated verification tool based on the Clang/LLVM

compiler [21] and the Yices SMT solver [25]. Our tool runs in two modes: the monolithic

verification mode and the incremental verification mode. Themonolithic verification mode applies

our SMT based encoding to the entire fan-in cone of each node in the program, whereas the
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incremental verification method tries to restrict the SMT encoding to a localized region. In addition

to our new method, we also implemented the CHES13 method [10]for the purpose of experimental

comparison. The main difference is that our method not only checks whether an node is masked

(as in the CHES13 method), but also checks whether it is perfectly masked, i.e. it is statistically

independent of the secret key.

We have evaluated our verification tool on a set of recently proposed side-channel countermeasures.

Our experimental evaluation was designed to answer the following research questions:

• How effective is our new method? We know that in theory, the new method is more accurate

than the CHES13 method. But does it has a significant advantage over the CHES13 method

in practice?

• How scalable is our new method, especially in verifying applications of realistic code size

and complexity? We have extended our SMT based method with incremental verification. Is

it effective in practice?

4.4.1 Benchmarks

Table 4.1 shows the statistics of the benchmarks used in our experimental evaluation. Column 1

shows the name of each benchmark example. Column 2 shows a short description of the imple-

mented algorithm. Column 3 shows the number of lines of code –here, each instruction is a bit

level operation. Column 4 shows the number of nodes that represent the intermediate computation

results. Columns 5-7 show the number of input bits that are the secret key, the plaintext, and the

random variable, respectively.

The benchmarks are classified into three groups. The first group of test cases (P1 to P5) are

taken from the CHES13 benchmark [10], all of which contain intermediate variables that are

not masked at all. More specifically, P1 is the masking key whitening code on Page 12 of the

CHES13 paper. P2 is the AES8 example, a smart card implementation of AES resistant to power

analysis, originated from Herbstet al. [42]. P3 is the code on Page 13 of the CHES13 paper, also
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originated from Herbstet al.[42]. P4 is the code on Page 18 of the CHES13 paper, originatedfrom

Messerges [58]. P5 is the code on Page 18 of the CHES13 paper, originated from Goubin [36].

The second group of test cases (P6 to P11) are examples where most of the intermediate variables

are masked, but none of the masking schemes is perfect. P6 andP7 are the two examples used by

Blömeret al. [16] (on Page 7). P8 and P9 are the SHA3 MAC-Keccak computation reordered ex-

amples, originated from Bertoniet al.[14] (Eq. 5.2 on Page 46). P10 and P11 are two experimental

masking schemes for the Chi function in SHA3, none of which isperfectly masked.

The third group of test cases (P12 to P17) come from the regeneration of MAC-Keccak reference

code submission to NIST in the SHA-3 competition [64]. Thereare a total of 285k lines of

Boolean operation code. The difference among these test cases is that they are protected by various

countermeasures, some of which are perfectly masked (e.g. P12) whereas others are not.

Table 4.1: The benchmark description and statistics.
Name Description Code Size Nodes Keys Plains Rands
P1 CHES13 Masked Key Whitening 79 47 16 16 16
P2 CHES13 De-mask and then Mask 67 31 8 0 16
P3 CHES13 AES Shift Rows [2nd-order] 21 21 2 0 2
P4 CHES13 Messerges Boolean to Arithmetic (bit0) [2-order] 23 24 1 0 2
P5 CHES13 Goubin Boolean to Arithmetic (bit0) [2-order] 27 60 1 0 2
P6 Logic Design for AES S-Box (1st implementation) 32 9 2 0 2
P7 Logic Design for AES S-Box (2nd implementation) 40 6 2 0 3
P8 Masked Chi function MAC-Keccak (1st implementation) 59 19 3 0 4
P9 Masked Chi function MAC-Keccak (2nd implementation) 60 19 3 0 4
P10 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 22 3 0 4
P11 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 22 3 0 4
P12 MAC-Keccak 512b Perfect masked 285k 128k 288 288 805
P13 MAC-Keccak 512b De-mask and then mask – compiler error 285k 128k 288 288 805
P14 MAC-Keccak 512b Not-perfect Masking of Chi function (v1) 285k 128k 288 288 805
P15 MAC-Keccak 512b Not-perfect Masking of Chi function (v2) 285k 152k 288 288 805
P16 MAC-Keccak 512b Not-perfect Masking of Chi function (v3) 285k 128k 288 288 805
P17 MAC-Keccak 512b Unmasking of Pi function 285k 131k 288 288 805

4.4.2 Results

Table 4.2 shows the experimental results run on a machine with a 3.4 GHz Intel i7-2600 CPU, 3.3

GB RAM, and a 32-bit Linux OS. We have compared the performance of three methods: CHES13,

New (monolithic), and New (incremental). Here, CHES13 is the method proposed by Bayraket
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al. [10], while the other two are our own method. In this table, Column 1 shows the name of each

test program. Columns 2-5 show the results of running CHES13, including whether the program

passed the check, the number of nodes failed the check, and the total number of nodes checked.

Columns 6-9 show the results of running our new monolithic method. Here,mem-out means that

the method requires more than 4 GB of RAM. Columns 10-14 show the results of running our new

incremental method. Here, we also show the number of SMT based masking checks made, which

is often much smaller than the number of nodes checked, because many of them are resolved by

our static analysis.

Table 4.2: The experimental results: comparing our new method with the CHES13 method [10].
Name CHES13 New (monolithic) New (incremental)

masked nodes nodes time masked nodes nodes time masked nodes nodes SMT time
failed checked perfect failed checked perfect failed checked mask

P1 No 16 47 0.16s No 16 47 0.22s No 16 47 16 0.09s
P2 No 8 31 0.21s No 8 31 0.20s No 8 31 8 0.09s
P3 No 9 21 1.17s No 9 21 1.27s No 9 21 18 0.46s
P4 No 2 24 0.58s No 2 24 0.65s No 2 24 8 0.57s
P5 No 2 60 1.19s No 2 60 1.40s No 2 60 20 1.12s
P6 Yes 0 9 0.06s No 2 9 0.10s No 2 9 2 0.08s
P7 Yes 0 6 0.04s No 1 6 0.07s No 1 6 1 0.03s
P8 No 1 19 0.15s No 3 19 0.26s No 3 19 3 0.11s
P9 Yes 0 19 0.13s No 2 19 0.27s No 2 19 2 0.10s
P10 Yes 0 22 0.18s No 1 22 0.32s No 1 22 2 0.14s
P11 Yes 0 22 0.20s No 1 22 0.37s No 1 22 3 0.18s
P12 Yes 0 128k 91m53s - 0 34 mem-out Yes 0 128K 0 10m48s
P13 No 2560 128k 92m59s No 1 46 mem-out No 2560 128K 2560 14m10s
P14 Yes 0 128k 97m38s - 0 31 mem-out No 1024 128K 1024 18m20s
P15 Yes 0 152k 132m10s - 0 32 mem-out No 512 152K 1024 37m37s
P16 No 512 128k 113m12s - 0 40 mem-out No 1536 128K 1536 17m24s
P17 No 4096 131k 103m56s - 0 34 mem-out No 4096 131K 4096 17m35s

First, the experimental results show that our new algorithmis more accurate than CHES13 in

deciding whether a node is securely masked. Every node that failed the security check of CHES13

would also fail the security check of our new method. However, there are many nodes that passed

the check of CHES13, but failed the check of our new method. These are the nodes that are masked,

but their probability distributions are still dependent onthe sensitive inputs – in other words, they

are not perfectly masked.

Second, the experimental results show that our new incremental method is significantly more

scalable than the monolithic method. On the first two groups of test cases, where the programs

are relatively small, both methods can complete the verification process, and the difference in run



Hassan Eldib Chapter 4. Detecting Power Side-Channel Leaksin Cryptographic Software 61

time is small. However, on large programs such as the Keccak reference code, the monolithic

method could not finish since it quickly ran out of the 4GB RAM,whereas the incremental method

can finish in a reasonable amount of time. Moreover, althoughthe CHES13 method implements

a significantly simpler (and hence weaker) check, it is also based on a monolithic verification

approach. Our results in Table 4.2 show that, on large examples, our incremental method is

significantly faster than the CHES13 method.

Figure 4.5: Scalability curves.

As a measurement of the scalability of the algorithms, we have conducted experiments on a 1-

bit version of test program P1 for 1 to 10 encryption rounds. In each parameterized version, the

input for each round is the output from the previous round. Weran the experiment twice, once

with an unmasked instruction in each round, and once with allinstructions perfectly masked. The

results of the two experiments are almost identical, and therefore, we only plot the result for the

perfectly masked version. In Figure 4.5, thex-axis shows the program size, and they-axis shows

the verification time in seconds. Among the three methods, our incremental method is the most

scalable.
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4.5 Related Work

Perfect Masking The notion ofperfect maskingwas first introduced by Blömer [16] and subse-

quently applied to various countermeasures for AES [19]. Later, Goubin [36] proposed a sound

method for switching between Boolean masking and arithmetic masking. In addition, there is a

large body of work on side-channel analysis resistant designs of AES [65, 42, 58, 60]. However, to

the best of our knowledge, there does not exist a method for quantifying the strength of a software

countermeasure implementation.

Verification Tools Tools that can formally verify the security of a software implementation are

severely lacking. To the best of our knowledge, the only existing tool that can check whether the

intermediate computation results of a software implementation are masked isSleuth[10]. However,

it only checks whether the intermediate results are masked,i.e. their values depends on some

random bits, but does not check the quality of the masking, e.g. whether the intermediate results are

statistically independent from the sensitive data. As we have shown in previous sections, there is a

big difference betweenmathmetically dependent on some random bitsandstatistical independent

from sensitive data, as we have shown in the previous sections. Our new notion of QMS has been

proposed specifically to address this problem.

Other Side Channels Beside power side channels, sensitive information may be leaked through

many other side channels, such as the execution time [50, 52], faults [15], and cache side chan-

nels [37]. Various leak detection and mitigation techniques have also been proposed for these

types of side channels. For example, Köpfet al. proposed methods for conducting quantitative

information flow analysis [53, 6]. Doychevet al. [24] developed a static analysis tool for detecting

information leaks through cache side channels. Bartheet al. [9] proposed a mitigation method

designed for defending against concurrent cache attacks. Since these methods focus on other types

of side channels, they are orthogonal to the new verificationmethod proposed in this work.
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4.6 Summary

We have presented the first fully automated method for formally verifying whether a software

implementation isperfectly maskedby uniformly random inputs, and therefore is secure against

power analysis based side-channel attacks. Our new method relies on translating the verification

problem into a set of constraint solving problems, which canbe decided by off-the-shelf solvers

such as Yices. We have also presented an incremental checking procedure to drastically improve

the scalability of the SMT based algorithm. We have conducted experiments on a large set of

recently proposed countermeasures. Our results show that the new method is not only more precise

than existing methods, but also scalable for practical use.



Chapter 5

Quantifying the Masking Strength against

Side-Channel Attacks

In recent years, many commercial systems in the embedded space have shown weaknesses against

side-channel attacks [66, 59, 7], where an adversary can utilize secondary information such as tim-

ing and power consumption resulting from the execution of sensitive algorithms on these devices.

For example, the power consumption of an embedded device executing instructiona=t⊕k may

depend on the value of the secretk [56] and as a result,k can be reliably deduced using a statistical

method known asdifferential power analysis(DPA [51]).

Masking, which is a randomization technique for removing the statistical dependency between

sensitive data and the side-channel information, is a commonly used mitigation strategy. For

example, Boolean masking uses an XOR operation of a random bit r with a variablea to obtain

a masked variable:am = a ⊕ r [7, 68]. Later, the original variable can be restored by a second

XOR operation:am ⊕ r = a. Other similar countermeasures have used additive masking(am =

a+ r mod n), multiplicative masking (am = a ∗ r mod n), as well as application-specific masking

such as RSA blinding (am = are mod N).

However, side-channel countermeasures are difficult to design and implement because the process

The content of this chapter is originally published in [32]
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is both labor intensive and error prone. There is also no formal method to quantify how secure a

software countermeasure really is. This is a problem in practice because the source of the informa-

tion leakage is not the cryptographic software but the microprocessor hardware that executes the

software. For average software developers, who often do notknow all the architectural details of

the device, it can be difficult to understand when side-channel information may be leaked.

In this chapter, we solve the problem by introducing the notion of quantitative masking strength

(QMS)to estimate the side-channel resistance of a software implementation. To demonstrate the

effectiveness of QMS in quantifying the side-channel resistance, we conduct experiments on a

set of cryptographic software on real devices while launching DPA attacks. For each software

implementation, we record the number of traces required to successfully break the countermeasure.

Our experimental results show that the number of traces, which correlates to the difficulty in

breaking the countermeasure, matches the QMS.

We also develop a design automation tool, which leverages a new static code analysis method to

compute the QMS of a given C program. The tool can be used as a formal verification procedure

as well, to decide whether a program satisfies a given QMS requirement. In case that some

intermediate computation results of the program do not satisfy the QMS requirement, our method

can produce a side-channel attack scenario, consisting of acombination of the plaintext and the

relevant code region that leaks an excessive amount of information about the secret.

Our static code analysis tool builds upon the popular LLVM compiler [21] and the Yices SMT

solver [25]. We encode the verification problem into a seriesof quantifier-free first-order logic

formulas, whose satisfiability can be decided by the SMT solver. Although in the literature there

exists some work on statically checking the security of masksoftware code, e.g. using type-based

information flow analysis [72], they are significantly less accurate and therefore may generate

many false positives. Bayraket al. [10] have used SAT solvers to check if the software ismasked,

but they cannot quantitatively check the masking strength.To the best of our knowledge, our

method is the first fully automated static analysis method for checking the strength of masking

quantitatively.



Hassan Eldib Chapter 5. Quantifying the Masking Strength against Side-Channel Attacks66

We have conducted experiments on a set of cryptographic software implementations to evaluate the

performance of our static analysis tool. The benchmarks include several recent countermeasures

for AES as well as MAC-Keccak, a MAC based on the new SHA-3 standard. Our experimental

results show that the new method is effective in detecting vulnerabilities in the software code and

is scalable enough to handle cryptographic software of practical size.

To sum up, this chapter contains the following contributions:

• We propose the new notion ofquantitative masking strength (QMS)as a way to estimate the

side-channel resistance of a masked software implementation in practice.

• We conduct DPA attack experiments on real devices to confirm that the QMS is indeed a

good indicator of the side-channel resistance of the maskedsoftware.

• We propose a static code analysis method for computing the QMS of a given software

program. It can also formally verify that a program satisfiesa given QMS requirement.

• When a program fails to satisfy the QMS requirement, our toolwill produce an attack

scenario, consisting of the plaintext and the code region with excessive information leakage.

The remainder of this chapter is organized as follows. We define the QMS in Section 5.1. We

present our static code analysis method in Section 5.2, and describe our DPA attack experiments

in Section 5.3. We present our experimental results in Section 5.4, and finally, give a summary in

Section 5.5.

5.1 Quantitative Masking Strength (QMS)

Given a pair(x, k) of plaintext and secret key for the functionenc(x, k), ans-bit random number

r uniformly distributed in the domainR = {0, 1}s, andd intermediate resultsI1, . . . , Id, we use

Dx,k(R) to denote the joint distribution ofI1, . . . , Id. If Dx,k(R) is statistically independent of

the secretk, we say that the function isorder-d perfectly masked [16]. Otherwise, the function

is vulnerable to side-channel attacks, and we would like to quantify the bias ofDx,k(R), denoted
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∆qms, with respect tox andk.

Definition 2. Given an implementation of functionenc(x, k) and a set of intermediate computation

results{Ii(x, k, r)}, we define the quantitative masking strength (QMS) as the minimal value of

(1−∆qms) such that, for alld-tuple〈I1, . . . , Id〉,

|Dx,k(R)−Dx′,k′(R)| ≤ ∆qms for any(x, k) and(x′, k′) .

In this sense, theperfect maskingcriterion introduced by Blömeret al. [16] is an extreme where
∆qms = 0. The sensitivitycriterion introduced by Bayraket al. [10] is another extreme where
∆qms = 1. They represent two extreme cases of the spectrum, whereas QMS allows us to quantify
the side-channel resistance of the vast number of design choices in between. As an example,
consider the four masking schemes in Figure 2.2. In the context of order-1side-channel attacks,
we have

∆qms(o1) = 1/4− 0/4 = 0.25 ∆qms(o1) = 4/4− 3/4 = 0.25

∆qms(o2) = 4/4− 1/4 = 0.75 ∆qms(o2) = 3/4− 0/4 = 0.75

∆qms(o3) = 3/4− 1/4 = 0.50 ∆qms(o3) = 3/4− 1/4 = 0.50

∆qms(o4) = 2/4− 2/4 = 0.00 ∆qms(o4) = 2/4− 2/4 = 0.00

All four outputs areinsensitiveaccording to [10] because of their logical dependence on therandom

bits, but onlyo4 is statistically independent of the secretk.

To check if a function satisfies the given QMS requirement, weneed to decide whether there exists

a d-tuple 〈I1, . . . , Id〉 such that|Dx,k(R) − Dx′,k′(R)| > ∆qms for some(x, k) and(x′, k′). The

functionenc(x, k) satisfies the QMS requirement if and only if no suchd-tuple exists for the given

∆qms and the givend. Note thatd = 1, 2, . . . , t specifies the order of the side-channel attack. In an

order-d attack, we assume that an adversary can measure the leakage of d intermediate computation

results simultaneously.

The main challenge for static code analysis – whether to compute the QMS of a given program or

to verify that the program satisfies the given QMS requirement – is to computeDx,k(R). As the

starting point, we mark all the plaintext bits inx as public, the key bits ink as secret, and the mask

bits in r as random. Then, for eachI(x, k, r), we check whether it satisfies the QMS requirement.

Following Definition 2, we can formulate theorder-1 QMS check as a satisfiability problem as
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follows:

∃x, k, k′ . (Σr∈RI(x, k, r)− Σr∈RI(x, k
′, r)) > ∆qms

Here,x is the plaintext,k andk′ are two different values of the secret key, andr is thes-bit random

number in domainR = {0, 1}s. For any fixed (x, k, k′), the summationΣr∈RI(x, k, r) represents

the number of satisfying assignments ofI(x, k, r), and the summationΣr∈RI(x, k
′, r) represents

the number of satisfying assignment ofI(x, k′, r). Assume thatr is uniformly distributed in

domainR = {0, 1}s, the summations represent the probabilities ofI being logical 1 under key

valuesk andk′, respectively.

If the above formula is satisfiable, there existx and two keys (k, k′) such that the distribution of

I(x, k, r) differs from the distribution ofI(x, k′, r) by more than∆qms. In other words, the secret

values ofk andk′ are leaked, and the amount of information leakage is more than expected. On

the other hand, if the above formula is unsatisfiable, thenI satisfies the given QMS requirement.

5.2 Static Code Analysis to Compute the QMS

In this section, we first present our verification procedure,which takes a program and a QMS

as input and checks whether the program satisfies the QMS requirement. Then, we present our

algorithm for estimating the QMS of a given program, which uses the aforementioned verification

procedure as a subroutine.

5.2.1 Checking a Program against a QMS Requirement

Our method is based on translating the verification problem into a set of quantifier-free first-order

logic (FOL) formulas and then deciding the formulas using anSMT solver. For each intermediate

computation resultI(x, k, r), we construct the formulaΦ that is satisfiable if and only if there

exist a plaintextx and two key valuesk and k′ such that the probability forI(x, k, r) to be

logical 1 differs from the probability forI(x, k′, r) to be logical 1 by more than∆qms. Although
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1 : compute(bool k1, bool k2, bool r1, bool r2){
2 : bool n1, n2, n3, n4, n5, n6, n7, n8, c;
3 : n1 = k1⊕ r1;
4 : n2 = k2⊕ r2;
5 : n3 = n1 & n2;
6 : n4 = k2⊕ r2;
7 : n5 = r1 & n4;
8 : n6 = k1⊕ r1;
9 : n7 = r2 & n6;
10 : n8 = n5⊕ n7;
11 : c = n3 ⊕ n8;
12 : return c;
13 : }

c
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Figure 5.1: A program and the abstract syntax tree (AST) nodes.

satisfiability (SAT) based verification techniques have been widely used in EDA for checking

functional correctness properties, our method is significantly different from them because QMS

is a quantitative property and is statistical in nature.

Given a Boolean program as input, we first construct a data-flow graph, where the root represents

the return value and the leaf nodes represent the inputs. Each internal node represents the result of

a Boolean operation of one of the following types: AND, OR, NOT, and XOR. For the example

in Figure 5.1, our method starts by parsing the program and creating a graph representation. This

is followed by traversing the graph in a topological order, from the program inputs (leaf nodes) to

the return value (root node). For each internal node, which represents an intermediate computation

result, we check whether it satisfies the given QMS requirement. The order in which we check the

internal nodes is as follows:n1, n2, n3, n4, n5, n6, n7, n8, and finally,c.

Notice that the program in Figure 5.1 is a masked version ofc ← (k1&k2), wherek1 andk2 are

secret keys,r1 andr2 are random variables, andc is the computation result. The return valuec

is logically equivalent to(k1&k2)⊕ (r1&r2). This masking scheme (from [16]) is used to make

the power consumption independent from the values ofk1 andk2. The corresponding demasking

function (not shown in the figure) isc⊕(r1&r2). Therefore, demasking would produce the desired

value(k1&k2).

Our method will determine if all intermediate variables of the program have a masking strengthen
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higher than∆qms. Let Φ denote the SMT formula to be created for checking the intermediate

resultI(x, k, r). Let s be the number of random bits inr. Our encoding method ensures thatΦ is

satisfiable if and only ifI violates the QMS requirement. Therefore, we defineΦ as follows:

Φ :=

(

2s−1
∧

r=0

Ψr
k

)

∧

(

2s−1
∧

r=0

Ψr
k′

)

∧Ψb2i ∧Ψsum ∧Ψdiff ,

where the subformulas are defined as follows:

• Program logic (Ψr
k): Each subformulaΨr

k encodes a copy of the functionality ofI(x, k, r),

with the random variabler set to a concrete value in{0, . . . , 2s− 1} and the key set to value

k or k′. All copies share the same plaintext valuex.

• Boolean-to-int (Ψb2i): It encodes the conversion of the output ofI(x, k, r) from Boolean to

integer (true becomes 1 and false becomes 0), so that the integer values can be summed up

later to computeΣr∈RI(x, k, r).

• Sum-up-the-1s (Ψsum): It encodes the two summations of the logical 1s in the outputs of the

2s copies of program logic, one forI(x, k, r) and the other forI(x, k′, r).

• Different sums (Ψdiff ): It asserts that the difference between the two summations is bigger

than the required∆qms.

Figure 5.2 is a pictorial illustration of the SMT encoding for outputI(k1, k2, r1, r2), wherek1, k2

are the secret bits andr1, r2 are two random bits. The first four boxes, encodingΨ0
k, . . . ,Ψ

3
k,

are copies of the program logic for key bits (k1k2) with random bits set to 00, 01, 10, and 11,

respectively. The other four boxes, encodingΨ0
k′, . . . ,Ψ

3
k′, are copies of the program logic for

key bits (k1′k2′) with random bits set to 00, 01, 10, and 11, respectively. Theformula checks for

security against first-order DPA attacks – whether there exist two sets of keys (k1 k2andk1’ k2’)

under which the distributions ofI differs from each other by more than∆qms.
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SAT?

code checked code checked code checked code checked

code checked code checked code checked code checked

qms
k1 k2 r1 r2 k1 k2 r1 r2 k1 k2 r1 r2 k1 k2 r1 r2

0    0 0    1 1    0 1    1

k1’ k2’ r1 r2 k1’ k2’ r1 r2 k1’ k2’ r1 r2 k1’ k2’ r1 r2

0    0 0    1 1    0 1    1

Figure 5.2: SMT encoding to verify the QMS w.r.t.(k1, k2).

5.2.2 Checking the Fan-in AST Nodes Incrementally

Since the SMT formula size is linear in the size of the programbut exponential in the number of

random variables, it may become a bottleneck if the program uses a large numbers of random bits.

To avoid the potential performance problem, we propose an incremental algorithm, which applies

the SMT based analysis only to small code regions of the program as opposed to the entire fan-in

cone of each intermediate computation result. This is crucial for scaling our method to code of

practical complexity.

Our incremental algorithm can be illustrated by Figure 5.3,where the output ofmask(x,k,r)is

masked again with the new random variablernew before it is demasked from the old random

variabler. Before verifyingmask2, if we have already proved thatI2 is perfectly masked, and

rnew is a new random variable not used elsewhere (not in computingI3), then for the purpose of

checkingmask2, we can substituteI2 with a new random variablerdummy while verifyingmask2.

Due toassociativityof the⊕ operator, reordering the masking and demasking operationswould not

change the logical result. For example, in Figure 5.3, the instruction being analyzed is inmask2().

Since random variablernew is not used insidemask()or de-mask(), or in the support ofI3, we can
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rnew

rkx

rkx

I 1

I 2

I 3I 3
rdummy+

+ de−mask

mask

mask2 mask2

I2 := I1 ⊕ de-M (x , k , r)
:= rnew ⊕ (x , k , r) ⊕ de-M (x , k , r)
:= rnew ⊕ (. . .)
:= rdummy

Figure 5.3: Incremental applying the SMT based analysis only to small fan-in region.

replace the entire fan-in cone ofI2 by a new random variablerdummy while verifyingmask2().

The effectiveness of our incremental algorithm relies on the following observation. In practice,

a common used strategy for implementing randomization based countermeasures is to have a

chain of modules, where the inputs of each module are masked before executing its logic, and

are demasked afterward. To avoid having an unmasked intermediate value, the inputs to the

successor module are masked with fresh random variables, before they are demasked from the

random variables of the previous module. We shall see in the experimental results section that

such optimization opportunities are abundant in real applications.

5.2.3 Estimating the QMS of a Given Program

Given a program, we can estimate the QMS of all the intermediate computation results by itera-

tively invoking our SMT based verification procedure as a subroutine. We start with∆qms = 1.0,

and check whether the program satisfies this QMS requirement. If the answer is no, then we

decrease∆qms and check again. We stop as soon as the program satisfies the QMS requirement.

At that moment, the value for∆qms is the estimated QMS of the given program. Algorithm 6

shows the overall flow of our iterative procedure. To make it efficient, we have used the binary

search.

It is worth pointing out that in this work, we focus on verifying implementations of cryptographic

algorithms, as opposed to arbitrary software applications. The program under verification typically

does not have input-dependent control flow, meaning that we can easily remove all the loops
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Algorithm 6 Iteratively computing the QMS of a given program.
1: COMPUTEQMS (Prog){
2: ∆low ← 0.00
3: ∆high ← 1.00
4: while ( ∆low ≤ ∆high ) {
5: ∆mid ← (∆low +∆high)/2.0
6: if ( CHECKQMS( Prog,∆mid) = SAT )
7: ∆low ← ∆mid + 0.01;
8: else
9: ∆high ← ∆high − 0.01;
10: }
11: return ∆low

12: }

and function calls from the code using standard loop unrolling and function inlining techniques.

Furthermore, the program can be transformed into a branch-free representation, where the if-else

branches are merged. Finally, since all program variables are bounded integers, we can convert the

program to a purely Boolean program through bit-blasting. Therefore, in this chapter, our static

code analysis method is concerned with only the bit-level representation of a branch-free program.

5.3 Measurements on embedded Devices

To check if QMS reflects the masking strength of a software, weconducted a set of side-channel

attacks on implementations of countermeasures for MAC-Keccak, AES, and a few other crypto-

graphic algorithms. We ran all software code on a 32-bit Microblaze processor [85] built on a

Xilinx Spartan-3e FPGA (Figure 5.4). To measure the power consumption of the processor core,

we used a Tektronix DPO 3034 oscilloscope and a CT-2 current probe to sample the power con-

sumption of the FPGA. The side-channel attack was conductedusing differential power analysis

(difference of means [51]). To limit the effect of measurement noise, we collected eachtraceafter

running the same software code 128 times and using the oscilloscope to calculate the average.

Here, a trace refers to a set of samples taken during the execution of the software.

We used DPA to determine whether a key guess was correct. Recall that DPA relies on the

observation that power consumption variations correlate to the values of the sensitive bits being

manipulated. Using the same input vector stream of plaintext as in the measured traces, we
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Figure 5.4: The side-channel attack measurement system setup.

compute the value of the sensitive variable assuming that the secret key was one of the key

guesses. For ann-bit key, there would be2n key guesses. For each key guess, we divide the

set of measurement traces into two bins, one for all the sensitive values of logic 0, and one for all

the sensitive values of logic 1. Then we compute the difference of means between those two bins,

for each key guess. We select the key guess that result in the maximum difference.

Table 5.1: The description and statistics of the masked software benchmarks.
Name Description LoC Nodes Keys Plains Rands
SHA3 A series of masked MAC-Keccak with varying levels of masking(biased random 61 31 3 3 3

number generators from 0.01 to 0.5 to vary QMS from 0.0 to 1.0)
AES A series of masked AES with varying levels of masking (biasedrandom number 52 37 8 8 8

generators from 0.01 to 0.5 to vary QMS from 0.5 to 1.0)
P1 CHES13 Masked Key Whitening 79 47 16 16 16
P2 CHES13 De-mask and then Mask 67 31 8 8 16
P3 CHES13 AES Shift Rows 21 21 2 2 2
P4 CHES13 Messerges Boolean to Arithmetic (bit0) 23 24 1 1 2
P5 CHES13 Goubin Boolean to Arithmetic (bit0) 27 60 1 1 2
P6 Logic Design for AES S-Box (1st implementation) 32 9 2 2 2
P7 Masked Chi function MAC-Keccak (1st implementation) 59 19 3 3 4
P8 Masked Chi function MAC-Keccak (2nd implementation) 60 19 3 3 4
P9 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 22 3 3 4
P10 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 22 3 3 4

We have conducted three sets of experiments. Table 5.1 showsthe statistics of the benchmarks,

including the name of the program, a short description, the lines of code, the number of compu-

tation nodes, as well as the numbers of key bits, plaintext bits, and random bits. The first two

sets consist of various versions of the MAC-Keccak and ASE implementations [14, 64, 81, 17]
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Figure 5.5: DPA attacks on SHA3: QMS vs. number of traces needed to determine the key.

with gradually degrading QMS values. We measured the average number of traces needed to

determine the secret key. In the third set of experiments, weused a set of recently published

software countermeasures [10, 42, 58, 36, 16], with fixed QMSvalues, and measured the average

number of traces needed to determine the secret key.

Figure 5.5 shows our results on the SHA3 benchmark. Thex-axis is the QMS value, while the

y-axis is the measured average number of traces needed to determine the secret key. Notice that

they-axis is in logarithmic scale. In addition to the measured data, we have plotted an empirical

approximation rule (dotted curve) to estimate the measureddata. We can see that when the QMS

value approaches 1.0, the number of traces needed to determine the secret key will approach

infinity. This is as expected because QMS=1.0 means that the code is perfectly masked – since

there is no information leakage, the implementation is provably secure. However, when the

QMS value deviates from 1.0 slightly, the number of traces needed to determine the secret key

drops drastically – QMS=0.90 corresponds to around 100 DPA traces. Overall, the side-channel

resistance, as measured by the number of traces needed to determine the secret key, is exponentially

dependent on QMS.

Figure 5.6 shows our results on the AES benchmark. Here, the measured data are similar to those in
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Figure 5.6: DPA attacks on AES: QMS vs. number of traces needed to determine the key.

Figure 5.5. Furthermore, we note that the approximate empirical formula computed to estimate the

number of required DPA traces has the following relation with the QMS value:Ntrace =
1

(1−QMS)c ,

wherec ≈ 2.2 for these two sets of experiments. In general,c is an empirical constant that

ultimately will be decided by the actual hardware and measurement set-up. We shall leave the

investigation of the theoretical nature of this constant tofuture work. What is important is that,

overall, the side-channel resistance is exponentially dependent on QMS.

Table 5.2 shows our results on the third set of benchmarks. Here, Columns 1 and 2 show the

program name and the node to which we have applied the DPA attack. Column 3 shows the QMS

value computed statically for the software code. Column 4 shows the number of traces needed

to determine the secret key. T.O. meanstimed outafter 100,000 traces are measured. It is worth

pointing that we performed second order analysis on P3-P5. Overall, we have observed a similar

exponential dependence between the number of measured traces and the QMS value. For example,

when the QMS is 0.00 – meaning that the node is not masked at all– we have found that the secret

key can be determined with merely a handful of DPA traces. When the QMS is 1.00 – meaning it

is perfectly masked – the key cannot be determined within ourtime limit of 100,000 traces. When

the QMS is between 0.00 and 1.00, the number of DPA traces closely follows the same empirical
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Table 5.2: Relation between QMS and the number of traces needed to determine the key.
Name Node QMS Trace Name Node QMS Trace
P1 n011 0.00 2 P1 n012 1.00 T.O.
P2 n21 0.00 3 P2 n 11 1.00 T.O.
P3 st10⊕ st2 0.00 2 P3 rx2⊕ st2 1.00 T.O.
P4 X ⊕ A3 0.00 2 P4 A1 ⊕ A3 1.00 T.O.
P5 X ⊕ R2 0.00 3 P5 T1⊕ R2 1.00 T.O.
P6 n09 0.50 936 P6 n07 1.00 T.O.
P7 n32 0.50 992 P7 n35 1.00 T.O.
P8 n02 0.50 587 P8 n23 1.00 T.O.
P9 n47 0.50 255 P9 n39 1.00 T.O.
P10 n47 0.50 426 P10 n48 1.00 T.O.

formula (exponential dependence on the QMS) that we have discovered earlier, but with a slightly

different value for constantc.

5.4 Experimental Results

We have also evaluated the efficiency of our new static code analysis methods for QMS estimation

and checking in the context of related work. Our experimental evaluation was designed to answer

the following questions:

• Is it practical to compute the QMS of a C program through purely static code analysis?

• Does the new method offer significant advantages over existing methods such asSlueth[10]?

Our benchmarks included a set of recently published maskingcountermeasures [10, 17, 42, 58, 36,

16, 14, 64] whose statistics have been shown in Table 5.1. Allour experiments were obtained on a

desktop computer with a 3.4 GHz Intel i7-2600 CPU, 3.3 GB RAM,and a 32-bit Linux operating

system.

Table 5.3 shows the results of applying our new method to compute the QMS of a given software.

Column 1 shows the name of the software. Column 2 shows the number of internal nodes checked.

Columns 3-6 show the QMS computed, including the minimal, maximal, local average, and global

average. Columns 7 and 8 show the number of iterations and thetotal execution time. The number
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of iterations is for the combination of checks on all internal nodes. Also, for P3-P5, we have

applied second-order DPA following [10] as opposed to first-order DPA, so each node has been

checked against every other node of the program. The resultsshow that our iterative method

converged quickly in all cases. Due to page limit, we omit thedescription of several pieces of

useful information reported by our new method, e.g. which node in the program has the lowest

QMS and therefore is the most vulnerable to side-channel attacks.

Table 5.3: Statically computing the QMS of the C programs.
Program QMS Performance

Name nodes Min. Max. Local Avg. Global Avg. Iters Time

P1 47 0.00 1.00 0.00 0.66 31 0.13s
P2 31 0.00 1.00 0.00 0.74 23 0.41s
P3 21 0.00 1.00 0.33 0.71 108 1.6s
P4 24 0.00 1.00 0.17 0.93 151 1.7s
P5 60 0.00 1.00 0.17 0.97 367 3.1s
P6 9 0.50 1.00 0.50 0.83 11 0.15s
P7 19 0.00 1.00 0.17 0.86 19 0.17s
P8 19 0.50 1.00 0.50 0.92 20 0.16s
P9 22 0.50 1.00 0.50 0.97 23 0.18s
P10 22 0.50 1.00 0.50 0.97 23 0.24s

Table 5.4 shows the results of applying our new method to check whether a program satisfies

a given QMS requirement. For comparison, we have re-implemented and evaluated theSleuth

algorithm of Bayraket al. [10] in our framework. Here, Columns 1 and 2 show the program name

and the number of nodes checked. Columns 3-5 show the statistics of Sleuth, including whether it

finds any unmasked node, the number of unmasked nodes, and thetotal execution time. Columns 6-

8 show the statistics of our new method, including whether itfinds any node that leaks side-channel

information, the number of vulnerable nodes found, and the total execution time. In addition to the

P1-P10 examples, we have experimented on a set of full-sizedMAC-Keccak implementations [14]

(P11-P16) in order to compare the scalability of the two methods.

From the results, we have observed several advantages of ournew method overSleuth. First, our

new method can check for the quantitative masking strength –for any QMS value ranging from

0.00 to 1.00 – whereasSleuthcan only check whether a node is masked (whether the QMS is

zero or non-zero). The results in Table 5.4 clearly show thatthere are many cases (e.g. in P6
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Table 5.4: Verifying a C program against the QMS requirement.
Program Sleuth [10] New

name nodes masked nodes time masked nodes time
failed qms=1.0 failed

P1 47 No 16 0.16s No 16 0.09s
P2 31 No 8 0.21s No 8 0.14s
P3 21 No 9 1.17s No 9 1.14s
P4 24 No 2 0.58s No 2 1.25s
P5 60 No 2 1.19s No 2 2.53s
P6 9 Yes 0 0.06s No 2 0.08s
P7 19 No 1 0.15s No 3 0.12s
P8 19 Yes 0 0.13s No 2 0.10s
P9 22 Yes 0 0.18s No 1 0.16s
P10 22 Yes 0 0.20s No 1 0.18s
P11 128k Yes 0 91m53s Yes 0 11m20s
P12 128k No 2560 92m59s No 2560 14m45s
P13 128k Yes 0 97m38s No 1024 19m26s
P14 152k Yes 0 132m10s No 512 37m17s
P15 128k No 512 113m12s No 1536 17m44s
P16 131k No 4096 103m56s No 4096 18m29s

and P8) where the nodes are masked by some random bits, but themasking is not perfect, and

therefore the nodes can still leak sensitive information. Second, our new method is more scalable

thanSleuth. Although the two methods have comparable run time on small programs, our new

method is significantly faster thanSleuthon large programs, despite the fact that it is checking a

more sophisticated quantitative property. This is due to the fact that we are using incremental SMT

analysis as described in Section 5.2.2.

5.5 Summary

We have proposed the notion of quantitative masking strength (QMS), which can, for the first

time, represent the side-channel resistance of a masking countermeasure numerically. We have

confirmed through experiments that the QMS is a good indicator of the actual masking strength

of the software. We have developed a new static analysis toolto compute the QMS of a C

program. The method can also be used as a procedure to formally verify a program against a

QMS requirement. Our experimental results show that the newstatic analysis method is effective



Hassan Eldib Chapter 5. Quantifying the Masking Strength against Side-Channel Attacks80

in detecting masking flaws and is scalable to handle cryptographic software code of practical size.



Chapter 6

Synthesizing Countermeasures against

Power Side-Channel Attacks

When cryptographic algorithms are proved to be secure against thousands of years of brute force

cryptanalysis attacks, the assumption is that sensitive information can be manipulated in a closed

computing environment. Unfortunately, real computers andmicrochips leak information about

the software code that they execute, e.g. through heat and power dissipation or electromagnetic

radiation. For example, the power consumption of a typical embedded device executing instruction

a=t⊕k may depend on the value of the secret variablek [56]. Such information can be exploited

by an adversary through statistical post-processing such as differential power analysis (DPA [51]),

leading to successful attacks in linear time. In recent years, many commercial systems in the

embedded space have shown weakness against such attacks [66, 59, 7].

In this chapter, we propose a new synthesis method, which takes an unprotected software program

as input and returns a functionally equivalent but side channel leak free new program as output.

By leveraging a new verification procedure that we developedrecently, calledSC Sniffer[31,

32], we can guarantee that the synthesized new program is secure by construction. That is, all

intermediate computations of the program areperfectly masked[16] in that their computation

results are statistically independent from the secret data. Masking is a popular and relatively low-

The content of this chapter is originally published in [28]
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cost mitigation strategy for removing the statistical dependency between sensitive data and side

channel emissions. For example, Boolean masking uses an XORoperation of a random bitr with

variablea to obtain a masked variable:am = a ⊕ r [7, 68]. The original value can be restored

by a second XOR operation:am ⊕ r = a. Sinceam no longer depends on the sensitive dataa

statistically, subsequent computations based onam will not leak information about the value ofa.

Other similar countermeasures have used additive masking (am = a + r mod n), multiplicative

masking (am = a ∗ r mod n), as well as application-specific masking such as RSA blinding

(am = are mod N).

When a computationf(z) is in the linear domain (⊕ domain), with respect to the sensitive input

z, masking can be implemented easily, e.g. asf(z ⊕ r) ⊕ f(r) since it is equivalent tof(z) ⊕

f(r)⊕ f(r) = f(z). That is, we maskz using an XOR with random bitr before the computation

and de-mask using an XOR withf(r) afterward. However, whenf(z) is a non-linear function, the

computationf(z) often needs to be completely redesigned, e.g., by splittingf() into f ′() andf ′′()

such thatf ′(z ⊕ r)⊕ f ′′(r) = f(z). Finding the properf ′() andf ′′() is a highly creative process

currently performed by cryptographic experts. Indeed, designing a new masking countermeasure

for algorithms such as AES and SHA-3 would be publishable work in top cryptographic venues.

Our new synthesis method relies oninductive synthesisand satisfiability modulo theory (SMT)

solvers to search for masking countermeasures within a bounded design space. More specifically,

given the software program to be masked, we use a set of quantifier-free first-order logic formulas

to encode the two requirements of the synthesized new program – that it must be perfectly masked

and that it must be functionally equivalent to the original program. The resulting formulas can be

decided by an off-the-shelf SMT solver. Based on this formalanalysis with SMT solvers, we can

guarantee that the synthesized program is provably secure against power analysis attacks, even on

devices with physical emissions.

In the past few years, there is a growing interest in using compilers to automate the application

of side-channel countermeasures [2, 11, 12, 63]. However, these existing tools rely on matching

known code patterns and applying predefined transformations. They do not employ SMT solver
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based exhaustive search or the notion ofperfect masking. They cannot guarantee to find the

leakage free new program even if such program exists, or formally prove that the generated code

is leakage free. Our new method provides both guarantees. Although inductive synthesis has

enjoyed remarkable success (e.g. [78, 40, 4]), this is the first time that it is applied to mitigating

power analysis attacks.

We have implemented our new method in a tool built on the LLVM compiler [21] and the Yices

SMT solver [25]. We have conducted experiments on a set of cryptographic software benchmarks,

including AES and MAC-Keccak. Our experiments show that thenew method is both effective in

eliminating side channel leaks and scalable for handling cryptographic software of practical size.

To sum up, we have made the following contributions:

• We propose a new method for synthesizingmaskingcountermeasures to protect crypto-

graphic software code against power analysis attacks.

• We implement the method in a software tool, which takes an unprotected C program as input

and returns a perfectly masked new program as output.

• We conduct experiments on a set of cryptographic software benchmarks to demonstrate the

effectiveness and scalability of the new method.

The remainder of this chapter is organized as follows. We will illustrate the overall flow of our

method using an example in Section 6.1. We define the synthesis problem in Section 6.2. The

detailed algorithms will be presented in Section 6.3, whichincludes inductively computing the

candidate program, and formally verifying the candidate program. We will present a partitioned

synthesis procedure in Section 6.4 to improve the run time performance. Our experimental results

will be presented in Section 6.5. Finally, we will give a summary in Section 6.6.
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6.1 Motivating Example

In this section, we illustrate the overall flow of our synthesis method using an example. Our exam-

ple is part of the implementation of MAC-Keccak, the newly standardized SHA-3 cryptographic

hashing algorithm [64], after three rounds of competitionsby cryptographic experts worldwide.

The MAC-Keccak code [14] consists of five main functions thatare repeated for 24 rounds on

the input bits (plaintext and key) in order to compute the output (ciphertext). The computation

in a single round can be represented byout = ι.χ.π.ρ.θ(in), whereι(), π(), ρ() andθ() are linear

functions in the domain of⊕, consisting of operations such as XOR, SHIFT and ROTATE, whereas

χ() is a nonlinear function, containing nonlinear operations such as AND.

Our synthesis procedure takes the MAC-Keccak code as input and returns a perfectly masked

version of the code as output. It starts by transforming the original program into an intermediate

representation (IR) using the LLVM compiler frontend. Since we focus on cryptographic software,

not general purpose software, we can assume that all programvariables are bounded integers and

there is no input-dependent control flow. (Cryptographic software typically do not have input-

dependent control flow because it is vulnerable to timing attacks.) Therefore, it is relatively

straightforward to transform the input program into a Boolean program, e.g., by merging if-else

conditions, unwinding loops, inlining functions, and bit-blasting the integer operations. Thus, from

now on, we are only concerned with an IR where all instructions operate on bits. Focusing on the

bit-level analysis allows us to detect leaks at the finest granularity possible.

The next step is traversing the abstract syntax tree (AST) nodes of the Boolean program in a

topological order, starting at the input nodes and ending atthe output node. For each internal

node, we first check whether its function is linear or nonlinear in the domain of⊕. As we have

shown earlier, for a linear functionf(z), we can mask the inputz with an XOR of a random bitr

before the computation and demask with an XOR off(r) afterward. Furthermore, to make sure

that all intermediate nodes stay masked, we need to chain themask-demask segments together, by

masking the output of a linear function with a new random variable before demasking it with the

previous random variable.
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1 : Chi(bool i1, bool i2, bool i3) {
2 : bool n1, n2, n3;
3 : n3 = ¬i2;
4 : n2 = n3 ∧ i3;
5 : n1 = n2⊕ i1;
6 : return n1;
7 : }

i1 i2 i3 n3 n2 n1
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1
1 0 1 1 0 1
1 1 0 0 0 1
1 1 1 0 0 1

1 : mChi(bool i1, bool i2, bool i3) {
2 : bool r1, r2, r3; //random bits added

3 : bool b1, b2, b3, n1, n2, n3, n4, n5, n6, n7, n8, n9;
4 : b1 = i1⊕ r1;
5 : b2 = i2⊕ r2;
6 : b3 = i3⊕ r3;
7 : n9 = b3 ∧ r2;
8 : n8 = r3 ∧ r2;
9 : n7 = r3 ∨ b2;
10 : n6 = r1⊕ n9;
11 : n5 = n7⊕ n8;
12 : n4 = b2 ∨ b3;
13 : n3 = n5⊕ n6;
14 : n2 = n4⊕ b1;
15 : n1 = n2⊕ n3;
16 : return n1;
17 : }

Figure 6.1: The originalχ function, its truth table, and the synthesizedχ function.

For nonlinear functions, such as theχ(), there are no easy ways of generating the countermeasures.

In this work, we rely on the use of iterative inductive synthesis and SMT solvers to search for

valid countermeasures in a bounded design space. Given theχ() function in Fig. 6.1 (left), our

method will produce the new code in Fig. 6.1 (right). Our method ensures that these two versions

have the same input-output relation, and at the same time, all the intermediate computation results

in the new program are perfectly masked with some random bits. Our method has two main

advantages over the state of the art. First, it is more economical and sustainable than the manual

mitigation approach, especially when considering the rapid increases in the application size and

platform variety. Second, it eliminates both the design errors and the implementation errors while

guaranteeing that the synthesized program is secure by construction. That is, assume that each

of r1,r2,r3 in Fig. 6.1 (right) is randomly distributed in the domain of{0, 1}, our method

guarantees that the probability of each intermediate computation result being logical 1 (or 0) is

statistically independent from the values ofi1,i2,i3.
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6.2 Inductive Synthesis of Masking Countermeasures

We propose using inductive synthesis to generate implementations of perfect masking counter-

measures. We follow the iterative synthesis procedure shown in Fig. 6.2, which consists of three

steps:

1. Given an unprotected program as input, we first compute a candidate new program that is

masked and is functionally equivalent to the original program, at least for a small set of test

inputs.

2. We try to prove that the candidate program is perfectly masked and is functionally equivalent

to the original program under all possible test inputs.

3. If the verification succeeds, we are done. Otherwise, the candidate program is invalid. In the

latter case, we block this solution, go back to Step 1, and tryagain.

Passed

Failed

      +
  Spec

program
 Block the 

Program Synthesized
    program

Find a candidate
       program

Verify found
    program

Figure 6.2: The iterative inductive synthesis procedure.

The reason why we choose not to generate, in one step, a candidate program that is valid for all

possible test inputs is because of performance concerns. A candidate program valid for all possible

test inputs would be prohibitively more expensive for an SMTsolver to compute. By separating

the synthesis task into three subtasks, namely the inductive synthesis of candidate programs, the

formal verification of candidate programs, and the iterative refinement step, we can make all three

substeps practically feasible to complete.

In this work, the verification step will consist of two substeps. First, we prove that the candidate

program is functionally equivalent to the original programunder all possible inputs. Second, we
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prove that all intermediate computations in the candidate program are perfectly masked. Toward

this end, we leverage a verification procedure that we developed recently, calledSC Sniffer[31],

which can check whether an intermediate computation resultof the program is statistically depen-

dent on the secret data.

Our method inSC Sniffer[31, 32] relies on translating the verification problem intoa series of

satisfiability (SAT) problems, each of which is encoded in a set of logical constraints. These

constraints can be decided using an off-the-shelf SMT solver. More specifically, we start by making

all the plaintext bits inx as public, the key bits ink as secret, and the mask bits inr as random.

Then, we traverse the entire program and for each intermediate computationI(x, k, r), check the

satisfiability of the following formula:

∃x, k, k′ .

(

∑

r∈R

I(x, k, r) 6=
∑

r∈R

I(x, k′, r)

)

Here,k andk′ are two different values of the secret key andR is the domain of random variabler.

For a fixed value combination (x, k, k′), the summation
∑

r∈R I(x, k, r) represents the number of

values ofr that makeI(x, k, r) evaluate to logical 1, and the summation
∑

r∈R I(x, k′, r) represents

the number of values ofr that makeI(x, k′, r) evaluate to logical 1. Assume that random variable

r is uniformly distributed in the domainR, the above two summations represent the probabilities

of I being logical 1 under key valuesk andk′, respectively. If the above formula is satisfiable,

then there exist a plaintextx and two values (k, k′) such that the distributions ofI(x, k, r) and

I(x, k′, r) differs – it means that the value of the secret key is leaked. In contrast, if the formula is

unsatisfiable, it is a proof thatI is perfectly masked. We will present the detailed SMT encoding

in Section 6.3.2.
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6.3 Synthesis Algorithm

In this section, we present our basic algorithm for iteratively synthesizing a masked version of the

input Boolean program. We leave performance optimizationsto the next section. The pseudocode

is shown in Algorithm 7, whereP is the original program,inputs is the set of inputs, andoutput

is the output. The input variables also have annotations indicating whether they are plaintext bits,

key bits, or random bits. The synthesis procedure returns a new programnewP whose input-output

relation is equivalent to that ofP . At the same time, all internal nodes ofnewP are perfectly

masked. New random bits may be added by the synthesis procedure gradually on aneed-tobasis.

Algorithm 7 Inductive synthesis of a masked version of the input programP .
1: SYNTHESIZEMASKING (P, inputs , output) {
2: blocked← { };
3: testSet← { };
4: size← 1;
5: while (size < MAX CODE SIZE){
6: newP ← COMPUTECANDIDATE(P, inputs , output , size, blocked, testSet);
7: if (newP does not exist)
8: size← size+ 1;
9: else{

10: test1 ← CHECKEQUIVALENCE(newP , P );
11: test2 ← CHECKINFOLEAKAGE(newP );
12: if ( {test1 , test2} == { } )
13: return newP ;
14: blocked← blocked∪{newP};
15: testSet← testSet∪{test1 , test2};
16: }
17: }
18: return no solution;
19: }

The synthesis procedure iterates through three elementarysteps: (1) compute a candidate program

newP which is functionally equivalent to the original programP , at least for a selected set of test

inputs; (2) verify thatnewP is functionally equivalent toP for all possible inputs and is perfectly

masked; (3) if any of the two verification substeps fails, we block this solution, add the failure

triggering inputs totestSet, and repeat. The synthesis procedure iteratively searchesfor a new

candidate program with increasing code size, until the sizereaches MAXCODE SIZE. We record

the bad solutions in the setblocked to avoid repeating them in the future. We record intestSet all
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Figure 6.3: A candidate program skeleton
consisting of 11 parameterized AST nodes.
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Figure 6.4: The synthesized candidate pro-
gram with instantiated Boolean masking.

the test cases that led to failures at some previous verification steps.

In the remainder of this section, we present the detailed algorithms for two elementary steps:

computing the candidate program and verifying the candidate program.

6.3.1 Computing the Candidate Program

The first step in computingnewP fromP is to create a parameterized AST that captures all possible

masked Boolean programs up to a bounded size. We refer to thisAST as askeleton. An example is

shown in Fig. 6.3, which has 11 nodes. Each node is either anOp node or aV node. The internal

nodeOp can be instantiated to any bit-level operation such as⊕,&, |, or !. TheV node can be

instantiated to any variable in the original program, or fresh random bit added by the synthesis

procedure, or constant (logical0 or 1). The instantiation ofOp nodes andV nodes is controlled by

a set of auxiliary variables, whose values will be assigned by the SMT solver.

As an example, consider noden8 in Fig. 6.3. The corresponding logical constraint may be encoded

as((N8==V1)&&bV1)||(N8==V2)&&bV2), whereN8 denotes the output ofn8 andV1 andV2 are

two variables in the input program. Auxiliary variablesbV1 andbV2 are added to decide which of

the node types are chosen – we would add another constraint saying that one and only one ofbV1

andbV2 must be true. Based on which variable is set to true by the SMT solver, the output of node

n8 is determined. Similarly, for noden1, the constraint may be((N1==(N2&N3))&&bAND1) ||

((N1==(N2|N3))&&bOR1)||((N1==(N2⊕N3))&&bXOR1)||((N1==(!N2))&&bNOT1whereN1,
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N2 andN3 denote the output of noden1, n2, andn3, respectively. Auxiliary variablesbAND1,

bOR1, bXOR1, andbNOT1 are constrained such that one and only one of them must be true.

Fig. 6.4 shows a masked candidate program synthesized by theSMT solver, which represents

n1 = i1 ⊕ i2.

The next step is to build an SMT formulaΦ which imposes two additional requirements: (1) the

input-output relation of the candidate programskeleton is equivalent to the original programP ,

and (2) the internal nodes of the candidate program are all masked by some random variables.

More formally, the formulaΦ is defined as follows:

Φ = ΦP ∧ Φskel ∧ ΦiEqv ∧ ΦoEqv ∧ Φmasked ∧ ΦtestSet ∧ Φblocked ,

where the subformulas are defined as follows:

• ΦP encodes the program logic ofP .

• Φskel encodes the program logic of theskeleton.

• ΦiEqv asserts that the input variables ofP andskeletonhave the same values.

• ΦoEqv asserts that the outputs ofP andskeletonhave the same value.

• Φmasked asserts that all internal nodes are masked by some random bits – some random bit

must appear in the support of the function of each node.

• ΦtestSet asserts that the input variables should take values only from testSet .

• Φblocked asserts that the previously failed solutions should not be selected.

If formulaΦ is satisfiable, a candidate solution is found, and it will be verified for equivalence and

perfect masking in the following step. Otherwise, the skeleton size will be incremented and the

SMT solver will be invoked again on the new formula.
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6.3.2 Verifying the Candidate Program

Given a candidate programnewP , which is computed by the SMT solver for a set of selected test

inputs, we verify that it is a valid solution for all possibleinputs. We formulate the verification

problem into two satisfiability subproblems, where we look for counterexamples, or test inputs,

under which eithernewP is not equivalent toP , or some nodes innewP are not perfectly masked.

Checking Functional Equivalence

We construct formulaΨ1 such that it is satisfiable if and only if there exists a test input under which

newP andP have different outputs. The formula is defined as follows:

Ψ1 = ΦP ∧ ΦnewP ∧ ΦiEqv ∧ ΦoDiff ,

whereΦP andΦnewP encode the input-output relations of the two programs,ΦiEqv asserts that they

have the same input values, andΦoDiff asserts that they have different outputs. IfΨ1 is satisfiable,

we find a test case showing thatnewP is a bad solution. IfΨ1 is unsatisfiable, thennewP andP

are functional equivalent.

Checking for Information Leakage

We construct formulaΨ2 such that it is satisfiable if and only if there exists an intermediate node

in newP that leaks sensitive information. Toward this end, we leverage a verification procedure

that we developed recently [31] to check, for each intermediate AST nodeI(x, k, r), whether there

exist a plaintextx and two key valuesk, k′ such that
∑

r∈R I(x, k, r) 6=
∑

r∈R I(x, k′, r). As we

have explained in Section 6.1, this inequality means that the probabilistic distributions ofI(x, k, r)

andI(x, k′, r) differ for the two key valuesk andk′. The formulaΨ2 is defined as follows:
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Figure 6.5: SMT encoding for checking the statistical dependence of an output on secret data.

Ψ2 :=

(

∧

r∈R

ΦI (x ,k ,r)

)

∧

(

∧

r∈R

ΦI (x ,k ′,r)

)

∧ Φb2i ∧ Φsum ∧ ΦsumDiff ,

where the subformulas are defined as follows:

• Program logic (ΦI (x ,k ,r)): Each subformulaΦI (x ,k ,r) encodes the input-output relation of

I(x, k, r) with a fixed valuer ∈ R and variablek. Each subformulaΦI (x ,k ′,r) encodes the

input-output relation ofI(x, k′, r) with a fixed valuer ∈ R and variablek′. All subformulas

share the same plaintext variablex.

• Boolean-to-int (Φb2i ): This subformula encodes the conversion of the bit output ofI(x, k, r)

to an integer (true becomes 1 and false becomes 0), which willbe summed up later to

compute
∑

r∈R I(x, k, r) and
∑

r∈R I(x, k′, r).

• Sum-up-the-1s (Φsum ): This subformula encodes the two summations of the logical 1’s in

the outputs of the|R| copies ofI(x, k, r) and the|R| copies ofI(x, k′, r).

• Different sums (ΦsumDiff ): It asserts that the two summations have different results.

If Ψ2 is unsatisfiable, the intermediate resultI is perfectly masked. IfΨ2 is satisfiable, thenI has

information leakage.
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Fig. 6.5 provides a pictorial illustration of our SMT encoding for an intermediate resultI(k1, k2, r1, r2),

wherek1, k2 are the key bits andr1, r2 are the random bits. The first four boxes encode the

program logic ofΦI(x,k,0) . . .ΦI(x,k,3) for key bits (k1k2), with the random bits set to 00, 01, 10,

and 11, respectively. The other four boxes encode the program logic ofΦI(x,k′,0) . . .ΦI(x,k′,3) for

key bits (k1′k2′), with the random bits set to 00, 01, 10, and 11, respectively. The entire formula

checks whether there exist two sets of key values (k1 k2andk1’ k2’) under which the probabilities

of I being logical 1 are different.

As a more concrete example, consider the computationc2 = x ⊕ k ∨ (r1 ∧ r2) in Fig. 2.1. The

SMT solver may return the solutionx=0, k=0 andk′=1 because, according to the truth table in

Fig. 2.1,
∑

r∈R c2(0, 0, r) = 1 whereas
∑

r∈R c2(0, 1, r) = 4. Considerc4 = x ⊕ k ⊕ (r1 ⊕ r2)

in Fig. 2.1 as another example. The SMT solver will not be ableto find any solution because it

is perfectly masked. For instance, whenx=0, k=0 andk′=1, we have
∑

r∈R c4(0, 0, r) = 2 and
∑

r∈R c4(0, 1, r) = 2.

6.4 Partitioned Synthesis Algorithm

SMT solver based inductive synthesis has the advantage of being exhaustive during the search of

countermeasures within a bounded design space. With the help of the verification subprocedure,

our method also guarantees that the resulting program is secure by construction. However, its main

disadvantage is the limited scalability, since the SMT solver slows down quickly as the program

size increases. Although we expect SMT solvers to continue improving in the coming years, it is

unlikely that a monolithic SMT based synthesis procedure will scale up to large programs (this is

consistent with what other researchers in the field have observed [4, 3]). In this section, we propose

a partitionedsynthesis procedure to combine a simple static code analysis with judicious use of

an SMT solver, so that the combined method is able to handle cryptographic software of realistic

size.

The partitioned synthesis procedure (Fig. 6.6) starts by traversing the AST nodes of the program in
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Figure 6.6: The partitioned synthesis procedure for applying masking countermeasures locally.

a topological order from the inputs to the output. Dependingon whether the AST noden is linear

or nonlinear as shown in Algorithm 8, it invokes eitherMASKL INEAR or SYNTHESIZEMASKING

(presented in the previous section). Whenn is a linear function, we mask its input variables and

demask the output with random variables, without modifyingthe linear function itself, as explained

in Section 6.1. Whenn is a nonlinear function, instead of invokingSYNTHESIZEMASKING for the

entire fan-in cone ofn, we partition it into small code regions, and synthesize a masked version

for each region. Then, we substitute the original code region reg in programP with the new

code regionnew reg. The entire synthesis procedure terminates when all small code regions of all

nonlinear AST nodes in programP are perfectly masked.

Algorithm 8 Partitioned synthesis algorithm for masking the programP .
1: PARTITIONEDSYNTHESIS (P, inputs , output) {
2: for each (AST noden ∈ P ) {
3: if ( n represents a linear function)
4: new n ← MASKL INEAR(P, inputs , n);
5: replacen in programP with new n;
6: else{
7: while ( ∃ unprotected code regionreg ∈ FanIn(n) ) {
8: Let (reg ins , reg out) be the inputs and output ofreg;
9: new reg ← SYNTHESIZEMASKING(P, reg ins , reg out);

10: replacereg in programP with new reg;
11: }
12: }
13: }
14: return P ;
15: }
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6.4.1 Selecting a Code Region

While selecting a code region inFanIn(n), we first start from an AST nodem ∈ FanIn(n) that is

not yet perfectly masked, and then include a number of its connected unprotected nodes. The exact

number of fan-in nodes to be included in the code region of nodem is controlled by a user specified

bound. Choosing the right bound, and hence the size of the code region, is a tradeoff between the

compactness of the synthesized program and the computational overhead. If we set the bound to

positive infinity, the partitioned synthesis procedure would degenerate to the monolithic approach.

However, this approach is limited by the capacity of the SMT solvers. On the other hand, if

the bound is too small, the synthesized solution may be suboptimal in that some of the masking

operations are unnecessary.

For illustration purposes only, we consider an extreme casewhere the region size is set to 1,

meaning that each nonlinear AST node is masked separately. Under this assumption, we illustrate

the process of masking theχ() function in Fig. 6.1. The first code region involves the NOT

operation at Line 3, whose masked version is shown as follows:

b1 = i2 ⊕ r1;

Line 3: n3 = ¬ i2; → t1 = ¬ b1;

n3 = t1 ⊕ r1;

The second code region involves the AND operation at Line 4, whose masked version is shown as

follows:
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b3 = i3 ⊕ r3;

b2 = n3 ⊕ r2;

t10 = ¬ b2;

t9 = b3 ∧ r2;

Line 4: n2 = n3 ∧ i3; → t8 = ¬ r3;

t7 = t10 ∧ r3;

t6 = b2 ∧ b3;

t5 = ¬ t9;

t4 = t8 ∨ r2;

t3 = t6 ∨ t7;

t2 = t4 ⊕ t5;

n2 = t2 ⊕ t3;

The third code region involves the XOR ofn2 andi1 at Line 5, whose masked version is shown as

follows:

b4 = n2 ⊕ r4;

b5 = i1 ⊕ r1;

Line 5: n1 = n2 ⊕ i1; → t12 = b4 ⊕ b5;

t11 = r1 ⊕ r4;

n1 = t11 ⊕ t12;

It is worth pointing out that, in this extreme case, the resulting program will be suboptimal.

However, the actual implementation of our partitioned synthesis procedure was able to obtain a

perfectly masked countermeasure whose size is more compact.

6.4.2 Replacing the Code Region

Continue with the aboveextreme caseexercise, we now explain how to use the newly synthesized

code region (new reg) to replace the original code region (reg) in programP . The replacement

process is mostly straightforward, due to the fact that our partitioned synthesis procedure traverses

regions in a bottom-up topological order. However, there isone caveat – before demasking the

output of the new regionnew reg, we need to mask it with another random variable; otherwise,

the output ofnew reg would become unmasked.
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We solve this problem by asserting, while computing the candidate program in procedureSYN-

THESIZEMASKING, that the output and all inputs must be an XOR operation with some random

variables. Due to the associativity of XOR operations, and the fact that now two adjacent code

regions are connected through two XOR operations, we can switch the order of the two XOR

operations during region replacement, without modifying the functionality of the final output.

Below is an example for chaining the three new code regions oftheχ function obtained in our

extreme caseexercise, by swapping their adjacent XOR operations.

b1 = i2 ⊕ r1;

Line 3: n3 = ¬ i2; → t1 = ¬ b1;

n3 = t1 ⊕ r2; //swapped with r1

b3 = i3 ⊕ r3;

b2 = n3 ⊕ r1; //swapped with r2

t10 = ¬ b2;

t9 = b3 ∧ r2;

Line 4: n2 = n3 ∧ i3; → t8 = ¬ r3;

t7 = t10 ∧ r3;

t6 = b2 ∧ b3;

t5 = ¬ t9;

t4 = t8 ∨ r2;

t3 = t6 ∨ t7;

t2 = t4 ⊕ t5;

n2 = t2 ⊕ r4; //swapped with t3

b4 = n2 ⊕ t3; //swapped with r4

b5 = i1 ⊕ r1;

Line 5: n1 = n2 ⊕ i1; → t12 = b4 ⊕ b5;

t11 = r1 ⊕ r4;

n1 = t11 ⊕ t12;

6.4.3 Reusing Random Variables

To further reduce the size of the synthesized program, we reuse random variables as much as

possible while masking the non-adjacent code regions. Specifically, while building the candidate

programskeletonfor a code regionreg, we first need to create a list of random variables to be

used in theV nodes. The number of random variables is at most as large as the number of input
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variables inreg . However, we do not have to create fresh random variables every time they are

needed. Instead, we can reuse existing random variables in the program, as long as they are not

used in the code regions adjacent toreg . This optimization can significantly reduce the number of

random bits required in the masked new program, while at the same time soundly maintaining the

statistical independence of the masked nodes.

6.5 Experimental Results

We have implemented our synthesis method in a software tool built upon the LLVM compiler

frontend and the Yices SMT solver. Our tool runs in two modes:the monolithic mode and the

partitioned mode, to facilitate experimental comparison of the two approaches. We have evaluated

our method on a set of cryptographic software benchmarks. Our experimental evaluation was

designed to answer the following questions:

• How effective is the new synthesis method in eliminating side channel leaks? Is the synthe-

sized program as compact as the countermeasures handcrafted by experts?

• How scalable is the tool in handling code of realistic size? Our partitioned synthesis proce-

dure is designed to address the scalability problem. Is it effective in practice?

Our benchmarks fall into three categories. The first set, from P1 to P8, are medium sized cryp-

tographic functions that are partially masked. Specifically, P1 and P2 are taken from Bayraket

al. [10], which are incorrectly masked computations due to codemotion in compiler optimization.

P3 and P4 are from Herbstet al. [42], which are gate-level implementations of partially masked

AES. P5 and P6 are masked versions of theχ function from Bertoniet al. [14], after integer to

Boolean compilation with optimizations. P7 and P8 are two modified versions of the MAC-Keccak

nonlinearχ functions. The second set, from P9 to P12, are small to mediumsized cryptographic

functions that are completely unmasked. Specifically, P9 isthe original MAC-Keccakχ function

taken from the reference implementation [14] (Equation 5.2on Page 46). P10 and P11 are two
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Table 6.1: Comparing performance of the monolithic and partitioned synthesis algorithms.
Program Monolithic Partitioned

Name LoC Keys Plains Rands Nodes Rands Nodes Time Rands Nodes Time

P1 79 16 16 16 47 16 85 2.9s 16 85 2.9s
P2 67 8 8 16 31 16 55 1.5s 16 55 1.5s
P3 32 2 2 2 9 4 15 8.3s 4 15 8.1s
P4 32 2 2 2 6 6 9 0.2s 6 9 0.2s
P5 59 3 3 4 18 8 24 19m17s 8 27 8.3s
P6 60 3 3 4 18 8 24 0.5s 8 24 0.5s
P7 66 3 3 4 22 8 25 0.3s 8 25 0.3s
P8 66 3 3 4 22 8 25 0.3s 8 25 0.3s
P9 9 3 0 0 3 - - TO 4 14 3.1s
P10 57 8 0 0 37 - - TO 8 264 4m36s
P11 82 8 0 0 48 - - TO 4 485 13m10s
P12 365 8 0 0 182 - - TO 8 1072 22m10s
P13 56k 58 161 58 19k - - TO 58 20k 24m7s
P14 56k 58 161 58 19k - - TO 58 21k 41m37s
P15 56k 58 161 58 19k - - TO 58 21k 36m21s
P16 56k 58 161 58 19k - - TO 58 21k 35m42s
P17 56k 58 161 58 19k - - TO 58 21k 48m15s
P18 56k 58 161 58 19k - - TO 58 20k 23m41s

nonlinear functions,mul4 and invg4, from an implementation of AES in [17]. P12 is a single-

round complete implementation of AES found in [17]. The third set, from P13 to P18, are partially

masked large programs with a significant number of instructions not yet masked. These programs

are generated by us from the MAC-Keccak reference code [64] after converting it from an integer

program to a Boolean program. In each case, the whole programhas been transformed into a single

function to test the scalability of our new methods.

Table 6.1 shows the experimental results obtained on a machine with a 3.4 GHz Intel i7-2600

CPU, 4 GB RAM, and a 32-bit Linux OS. Columns 1-6 show the statistics of each benchmark,

including the name, the lines of code, the number of key bits,the number of plaintext bits, the

number of random bits, and the number of operations (Nodes).Columns 7-9 show the results

of the monolithic synthesis algorithm, including the number of random bits and the number of

operations (Nodes) in the synthesized program, as well as the run time. Columns 10-12 show the

results of the partitioned synthesis algorithm, includingthe number of random bits and the number

of operations (Nodes) in the synthesized program, as well asthe run time. Here, TO means that

the tool ran out of the time limit of 4 hours.
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The experimental results show that our new synthesis method, especially when it runs in the

partitioned mode, is scalable in handling cryptographic software of realistic size. On the first

set of test cases, where the programs are small, both monolithic and partitioned procedures can

complete quickly, and the differences in run time and compactness of the new program are small.

However, on large programs such as AES and MAC Keccak, the monolithic method can not finish

within four hours, whereas the partitioned method can finishin a reasonably small amount of time.

Furthermore, we can see that most of the existing random bitsin the original programs were reused.

As far as the compactness of the new program is concerned, we know of only one benchmark (P9)

that has a previously published masking countermeasure. The countermeasure [14], handcrafted

by cryptographic engineering experts, has 14 operations. The countermeasure synthesized by

our own tool (using the partitioned approach) also has 14 operations. Therefore, at least for this

example, it is as compact than the handcrafted countermeasure. However, recall that our method

has the additional advantages of being fully automated and at the same time guaranteeing that

the synthesized new program is provably secure. Furthermore, when given more CPU time –

for example, by setting the time limit to 10 hours and using a slightly larger region size – our

synthesis procedure, based on exhaustive search, was able to produce a countermeasure with only

12 operations, which is even more compact than the countermeasure handcrafted by experts.
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Figure 6.7: Results: Comparing the execution time of the twosynthesis procedures.
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As another measurement of the scalability of our new methods, we conducted experiments on

a parameterized version of test program P1 by expanding it from 1 encryption round up to 10

rounds. In each program, the input for one round is the outputfrom the previous round. We ran the

synthesis tool twice, once with the monolithic approach andonce with the partitioned approach.

The results are plotted in Fig. 6.7, where thex-axis shows the program size and they-axis shows

the run time (in seconds). Note that they-axis is in logarithmic scale. Whereas the monolithic

approach quickly ran out of time for programs with≥ 5 rounds, the execution time increase of the

partitioned approach remains modest.

6.6 Summary

We have presented a new synthesis method for automatically generating perfect masking coun-

termeasures for cryptographic software to defend against power analysis attacks. It guarantees

that the resulting software code is secure by construction.We have implemented our method in

a tool and evaluated it on a set of cryptographic software benchmarks. Our experiments show

that the new method is effective in eliminating side channelleaks and at the same time is scalable

for handling programs of practical size. For future work, weplan to continue optimizing our

SMT based encoding and at the same time, extending it to handle additive masking, multiplicative

masking, as well as application specific masking such as RSA blinding.



Chapter 7

Synthesis of Countermeasures for Fault

Attacks

The rising security risks in embedded computing systems have led to the increasingly widespread

use of cryptographic modules, implemented either in hardware or in software, to guarantee secure

authentication, privacy, and integrity. Although modern cryptographic algorithms are designed to

be secure against hundred years of brute-force cryptanalysis, their implementations in hardware

or software are often not as secure. For example, there have been reported cases of successful

attacks on cryptographic modules in embedded systems, the majority of which were carried out

through side-channel attacks [66, 59, 7]. In this context, the adversaries leverage their knowledge

of the cryptographic implementations – which are typicallyavailable to the public – as well as

supplementary information leaked through various side-channels.

Fault Sensitivity Analysis (FSA) is a side-channel attack against cryptographic hardware [55, 73],

which exploits the correlation between secret data values and the time needed to propagate them

through the cryptographic module and become externally observable. An FSA attack is typically

carried out by first injecting a fault to the circuit, e.g., byaggressively reducing the clock period,

and then gradually increasing its fault intensity until logical errors occur in the output. One can

measure the fault intensitycritical level, which is defined as the faulty intensity where a faulty

102
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Figure 7.1: Our iterative procedure for FSA countermeasuresynthesis.

output first occurs. This critical level is then compared, via statistical analysis, with a simulated

critical level computeda priori. The comparison result can be used to determine the most likely

values of the secret variables.

In this chapter, we propose a new synthesis method for constructing countermeasures of crypto-

graphic hardware to defend against FSA attacks. Given an unprotected circuit as input, together

with its sensitive signals clearly marked, our method returns as output a functionally equivalent

circuit where the time delay for all output signals are independent of the values of the sensitive

signals. In other words, the new circuit is guaranteed to be resistant to FSA attacks.

Figure 7.1 shows the overall flow of our method. Given the circuit C and a setS of sensitive

signals, our method first generate a candidate circuitC ′, which produces the same result asC at

least for some input values and is also more likely to have balanced delay along sensitive paths.

Then, our method invokes a verification subroutine to formally verify, for all input values,C ′ is

functionally equivalent toC. Furthermore,C ′ is FSA resistant in that the output delay along all

paths are independent of the secret data values. IfC ′ passes the verification step, we are done.

Otherwise, we add some logical constraints to block the bad candidate so that it will never be

reexamined in the future. In this work, our verification subroutine is implemented as a formal

equivalence checking process augmented with lightweight static analysis for computing the delay

along sensitive paths.

In practice, the main hurdle of applying inductive synthesis, such as the one illustrated in Fig. 7.1,

is scalability. Since the search space can be enormous, inductive synthesis procedures typically

work well on small programs or circuits but do not scale up to larger designs. Fortunately, for
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this particular application, we can make inductive synthesis efficient by exploiting the idea of

compositionality. Since the delay of a path in a circuit is always the summation of the delays of its

individual path segments, we can design a partitioned synthesis procedure to scale up the baseline

inductive synthesis algorithm. Our new method relies on first partitioning the entire circuit into

smaller regions, then synthesizing a solution for each individual region, and finally composing

these partial solutions to form a countermeasure for the whole circuit.

We have implemented our new method in a software tool and evaluated it on a set of cryptographic

circuits, including nonlinear components of the AES and MAC-Keccac algorithms. Our experi-

mental results show that the new method is both effective in eliminating FSA attack vulnerabilities

and efficient enough for practical use.

To summarize, this chapter makes the following contributions:

• We propose a new inductive synthesis method for generating provably secure cryptographic

circuits to defend against FSA attacks;

• We propose a partitioned synthesis procedure to scale up ournew method in order to handle

large circuits;

• We implement the new methods in a software tool and demonstrate their effectiveness on a

set of cryptographic circuit benchmarks.

The remainder of this chapter is organized as follows. We start by illustrating our main idea

using examples in Section 7.1. We present our baseline countermeasure synthesis algorithm in

Section 7.2, followed by the partitioned synthesis procedure in Section 7.3. We present in more

detail the synthesis subroutine in Section 7.4. Our experimental results are presented in Section 7.5.

We review the related work in Section 7.6. Finally, we give our summary in Section 7.7.
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Figure 7.2: Partial PPRM1 AES S-box: vulnerable to FSA attacks.

7.1 Illustrative Example

In this section, we use examples to illustrate the main ideasbehind our new method for synthesizing

countermeasures to defend against FSA attacks. Our examplecircuit is an implementation of

part of the Advanced Encryption Standard (AES) algorithm. AES has four main functions that

are repeated for a number of rounds depending on the requiredlength of the secret key. In this

section, we focus on one representative function, the S-box, since it is the only nonlinear function

in AES. In cryptographic algorithms, nonlinear functions are often the hardest to protect with

countermeasures.

We use the PPRM1 AES S-box implementation proposed in [61], aschematic representation of

which is shown in Fig. 7.2. This implementation scheme has been widely used as a benchmark in

the cryptographic engineering field [35]. The circuit is constructed from two networks. The first

one is a network of XOR gates and the second one is a network of AND gates. For simplicity, we

will only explain the synthesis of a countermeasure for the network of AND ages. Therefore, in

the remainder of this section, we assume that the AND gate network is the complete circuit. Later

in this chapter, we explain how our method can be applied to larger circuits, by first partitioning a

circuit into smaller regions, synthesizing countermeasures for these regions individually, and then

composing the solutions.
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The reason why the circuit in Fig. 7.2 is vulnerable to FSA attacks is because the time taken for the

output of the circuit to be computed is dependent on the values of the sensitive inputs. Consider

the output signalo0 of the AND network and the two input signalsIn2 andIchain . Let TIchain be

the signal arrival time ofIchain andTo0 be the time required for the last AND gate to propagate

input signals to the output.

If we assume that all input signalsIn0-In7 have the same arrival time, and all gates have the

same delay, then we haveTIchain>TIn2. Furthermore, the value ofTIchain depends on the value of

the input signalsIn0, In1, In3, In4, In5, In6 as well as the number of gates along the path. If

we assumeIn2 to be a sensitive variable, the aforementioned mismatch in the arrival time of the

signals at the input of the last AND gate will lead to signalo0 being sensitive. In other words, the

secret value ofIn2 can be determined using a statistical analysis of the outputsignalo0 based on

its dependency ofIn2. In the next paragraph, we briefly explain the intuition behind this attack.

In the context of FSA attacks, we say that the outputo0 is statistically dependent on the sensitive

variableIn2 for the following reasons. When the value ofIn2 is logical 1, the delayTo0 is

determined byTIchain. In contrast, when the value ofIn2 is logical 0, the delayTo0 is determined

byTIn2. SinceTIchain > TIn2, the dependency relation between the required transition time and the

secret value ofIn2 causes a leak of the sensitive information, which is recoverable by correlation

analysis techniques such as FSA [55, 73].

All previously proposed countermeasures, which were typically hand-crafted by cryptographic

engineering experts [35, 34], rely on adding delay components to certain input-output paths to

eliminate information leaks arising from the nonuniform signal arrival time. For example, Fig. 7.3

shows a recently published countermeasure for the circuit in Fig. 7.2, implemented by manually

analyzing the input-output signal paths for each output gate and then adding buffers accordingly to

make the delay along all its sensitive signal paths equal.

However, such countermeasure often results in an unnecessarily large number of additional gates

in the circuit, thereby leading to higher area cost and energy consumption. Our new method, in

contrast, can synthesize a countermeasure with a significantly lower gate count. Fig. 7.4 shows the
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Figure 7.3: AES S-box with inefficient implemented countermeasures.

circuit synthesized by our method, which is functionally equivalent to the circuit Fig. 7.2 and at

the same time guarantees to be resistant against FSA attacks. That is, each output gate in the new

circuit has the same arrival time for all sensitive input variables.

Comparing our synthesized countermeasure in Fig. 7.4 with the prior solution in Fig. 7.3, we can

see that our solution is more efficient, both in terms of the area and the latency of the circuit, and

in terms of the power consumption. In fact, our solution usesonly 13 gates as opposed to the 41

gates used by the circuit in Fig. 7.3. Furthermore, our new circuit is even smaller in size than the

original circuit in Fig. 7.2, which has 21 AND gates.

At this moment, it is worth pointing out that traditional logic synthesis techniques, such as two-

level and multi-level minimization algorithms implemented in state-of-the-art EDA tools, do not

have the capability of synthesizing secure-by-construction FSA countermeasures similar to ours.

Although these existing tools can optimize the area and power consumption of a circuit as well as

reducing the delay of critical paths, they do not guarantee that all sensitive signal paths exhibit the

same amount of delay. Furthermore, due to the lack of a solid theoretical foundation, it is difficult

to customize such tools to solve the FSA countermeasure synthesis problem.
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Figure 7.4: AES S-box with efficient implemented countermeasures.

In this work, we leverage the idea ofinductive synthesisto generate secure-by-construction FSA

countermeasures. Although inductive synthesis has been successfully applied to many domains, to

the best of our knowledge, it has never been used to synthesize FSA countermeasures. However, it

is not easy to synthesize FSA attack countermeasures because we have to search for an alternative,

equivalent, and FSA resistant implementation of the given circuit within an extremely large design

space. Furthermore, cryptographic circuits are known to bedifficult to analyze by symbolic

techniques. Therefore, scaling up the synthesis algorithmfor cryptographic circuits of practical

size is a challenging task. After presenting our baseline algorithm in Section 7.2, we will leverage

the divide-and-conquerprinciple to scale our countermeasure synthesis method to circuits of

practical size and complexity.

7.2 Synthesis of FSA Countermeasures

In this section, we present our new method for synthesizing FSA countermeasures, which takes an

unprotected circuit as input and returns an FSA-resistant circuit as output.

Recall that in the context of inductive synthesis, there needs to be a synthesis subroutine and a

verification subroutine. The synthesis subroutine guessesa candidate solution and the verifica-
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tion subroutine formally verifies that it is a valid solution. In the context of synthesizing FSA

countermeasures, our verification subroutine needs to check the following two properties:

• (1) the new circuit is functionally equivalent to the original circuit; and

• (2) the new circuit is FSA-resistant, meaning that it does not have unequal delay paths from

sensitive data to the circuit output.

To reduce the computational overhead, we formulate the synthesis subproblem in such a way that,

every candidate solution is already guaranteed to be FSA-resistant (Property 2). In such case, the

verification subroutine has to check only the functional equivalence between the candidate solution

and the original circuit (Property 1).

The main idea is to construct a so-calledtemplate circuit, whose instantiations are guaranteed to

be FSA-resistant and at the same time cover all possible countermeasure solutions. Without loss

of generality, we assume that all logical gates of the same type have equal propagation delay to

ease our presentation. Under this assumption, we can ensureFSA-resistance by requiring all paths

from sensitive (input) signals to the output signals to havean equal number of logic gates.

Consider the motivating example in Fig. 7.2 again. Its FSA-resistant template circuit can be

illustrated by the diagram in Fig. 7.5, where gates and signals are distributed to five levels. Here,

Level 0 generally consists of the output signals, whereas Level 4 consists of the input signals. In

between these two levels, there can be logic gates of varioustypes such as AND, OR, and NOT.

This is a template circuit because the internal logic gates have not yet been chosen and signals have

not yet been connected to each other.

To make sure that all instantiations of this template circuit are FSA-resistant, we restrict the

connection of signals as follows:

• All sensitive input nodes are placed on the same level — note that they do not have to be at

the bottom level;
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Figure 7.5: The FSA-resistant template circuit structure.

• Each node is constrained to connect to a node either one levelhigher or one level lower to

ensure the levels assigned to each node remain valid.

These constrains guarantee an equal number of gates betweenany gate’s output and all of its

connected sensitive inputs. In turn, this ensures the arrival time of all sensitive inputs are equal.

However, it is worth pointing out that we do not require the signal arrival time of any two uncon-

nected gates to be equal.

To reduce the computational overhead of the synthesis procedure, we statically estimate the level

at which the output signals should be placed, based on the number of inputs it is connected to

and the level required for each input. The initial level assigned to an output node is the minimal

depth needed to separate an output node from the sensitive input nodes to fit all nodes in a tree

structure. If the synthesis procedure fails to find a solution using the estimated level, another call

to the synthesis procedure will be performed, after shifting the output nodes one level up in order

to search for a larger candidate circuit.

We have formulated our countermeasure synthesis algorithmin the SyGuS specification language,
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and then leverage solvers implemented in the SyGuS tool [5] to generate the countermeasure.

The SyGuS tool currently has three backend engines, from which one can be chosen to solve

the problem. One backend engine is based on the use of SMT solvers, another is based on

heuristic guided enumeration, and the third is based on a stochastic search of the design space.

Our experience shows that, for this work, the enumerative solver in SyGuS often has the best

performance.

However, since SyGuS was not designed to synthesis programswith multiple output signals, the

existing SyGuS tool can be suboptimal when used to synthesize FSA countermeasures. To scale up

our new method to realistic cryptographic circuits, we encode the synthesis subproblem to allow

different outputs to share the same set of intermediate gates, as shown in the synthesized circuit

in Fig. 7.4. This is crucial for our method to generate circuits that are small in size; indeed, the

synthesized circuit with FSA countermeasure is sometimes smaller than the original circuit.

Therefore, we not only propose the first method that leverages SyGuS to solve the FSA coun-

termeasure synthesis problem, but also extended the existing implementation of the enumerative

solver in SyGuS, to speed up the computation and reduce the solution size. In other words, we

allow SyGuS to synthesize functions with multiple inputs and multiple outputs, where the internal

nodes are shared among the output functions as much as possible, as shown in Fig. 7.4.

Unfortunately, applying the existing solvers in SyGuS directly to FSA countermeasure synthesis

is not practical for cryptographic circuits of large size. This is due to the inherent complexity

of the inductive synthesis method, whose runtime increasesrapidly as the size and complexity

of the circuit increase. As a result, only small circuits canbe handled by SyGuS directly. To

overcome this scalability problem, we propose a new partitioned synthesis approach, which applies

SyGuS only to small circuit regions, one at a time, as opposedto the entire circuit at once. Due to

the compositionality of the FSA countermeasures, our partitioned approach has the capability of

handling cryptographic circuits of any size.



Hassan Eldib Chapter 7. Synthesis of Countermeasures for Fault Attacks 112

7.3 The Partitioned Synthesis Approach

In this section, we present our partitioned approach to synthesizing FSA countermeasures. Our

method starts by parsing the original circuit and creating an intermediate representation (IR) in the

form of a directed acyclic graph (DAG). The reason why the original circuit is a DAG is because it

represents on the combinational part of a sequential circuit. More specifically, the input signals are

either primary inputs or pseudo primary inputs (output of latches from the previous clock cycle).

The DAG is first transversed in a topological order and then partitioned into a set of smaller circuit

regions. Each circuit region is statically analyzed to see if it is vulnerable to FSA attacks. For

example, if there are discrepancies between the delay alongdifferent paths from sensitive inputs to

the outputs, we would assume it is vulnerable. For each vulnerable circuit region, we invoke

the SyGuS-based synthesis subroutine to generate a new circuit. By replacing the vulnerable

circuit region with the synthesized circuit region, we can eliminate the vulnerability. This process

(extracting and replacing vulnerable regions) is repeateduntil no vulnerable circuit region can be

found.

Algorithm 9 shows the overall flow of the new partitioned synthesis procedure, whereP is the

original circuit,InputSort is a map from each primary input to a type (sensitive or non-sensitive),

GatesPD is a map from each logic gate in the original circuit to its propagation delay,GatesSyn

is a set of logic gates to be used during synthesis of the new circuit, andlev is the maximum depth

of the circuit to be synthesized, which in turn determines the maximum size of the synthesized

circuit.

The partitioned synthesis method first finds a sensitive gatein the circuit, denotedsGate, based on

which it partitions the circuitP into smaller circuit regions. More specifically, it starts by statically

analyzing each logical gateg in the circuitP and creating three tables with values associated for

each gate. The first,MaxPD is the maximum path delay from the gate to the output of the circuit.

The second,MinAr is the minimum arrival time of any of the sensitive inputs to the gate. The

third,MaxAr is the maximum arrival time of any of the sensitive inputs to the gate.



Hassan Eldib Chapter 7. Synthesis of Countermeasures for Fault Attacks 113

Algorithm 9 Partitioned Synthesis of the FSA-resistant circuit.
1: ANALYZE (P, InputSort,GatesPD,GatesSyn, lev) {
2: while true{
3: for each gate g ∈ P{
4: MaxPD[g]← GETMAX PD(g,GatesPD,P );
5: MinAr[g]← GETM INAR(g,GatesPD,P );
6: MaxAr[g]← GETMAX AR(g,GatesPD,P );
7: }
8: sGate← GETSENSITIVE(MaxPD,MinAr,MaxAr, P );
9: if (sGate == { })

10: return P ;
11: n = 2lev − 1;
12: newReg ← {}
13: while (newReg == {}){
14: reg ← GETREG(sGate,MinAr,MaxAr, P, n);
15: newReg ← SYNTHESIZE(reg,MinAr,GatesSyn, lev);
16: n−−;
17: }
18: P ← UPDATEREGION(P, reg, newReg)
19: }
20: }

The subroutine GETSENSITIVE returns the next sensitive gatesGate that is vulnerable to FSA

attacks. It is a gate where the maximum arrival timeMaxAr[g] differs from the minimum arrival

timeMinAr[g]. In the presence of multiple sensitive gates, this subroutine returns the sensitive

gate with the minimum propagation delay from the sensitive inputs. If there is a tie, the gate with

the maximum propagation delay to the output of the circuit isselected assGate. This ranking

heuristic is crucial to ensure that our method finds a small countermeasure circuit.

Next, we iteratively extract a circuit regionreg of sizen, consisting of gates close to the sensitive

gatesGate, and synthesize a new regionnewReg. The subroutine GETREG returns a regionreg

consisting of bothsGate and gates close to it. Then, the subroutine SYNTHESIZE is invoked to

compute the new regionnewReg: it needs to be functionally equivalent toreg and at the same

time more FSA-resistant thanreg. We say thatnewReg is more resistant, rather than completely

resistant, if the mismatch between the maximum and minimum arrival times of the inputs of

reg exceeds the maximum depth ofnewReg defined by the user inlev. In such case,newReg

reduces the mismatch in arrival time between the inputs, andthen the arrival time mismatch will be

eliminated in later synthesis iterations. We illustrate the subroutine in more details in Section 7.4.
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If the synthesis subroutine fails to findnewReg within the given sizen, it will be invoked again to

search for a solution for another circuit regionreg with a smaller number of gates(n− 1). Since

lev has to be assigned to a value greater than one, the procedure will avoid running in an infinite

loop at Line 13. It will always find a new region beforen reaches zero.

After a successful synthesis of a countermeasure for a new region circuit, the region in the original

program will be replaced with the synthesized region. The partitioned synthesis method will con-

tinue until no more sensitive gates remain in the circuit. Atthis point, the synthesis is considered

complete and the new circuitP is returned to the user.

7.3.1 Region Selection

The subroutine GETREG in Algorithm 9 is responsible for extracting a vulnerable circuit region

with at mostn gates. Inside this subroutine, the sensitive gatesGate is first added in the region

reg. Then,reg is expanded by adding the chain of sensitive fan-out gates. If no further sensitive

fan-out gates are available, the chain of sensitive fan-in gates ofsGate are added. If there are more

than one sensitive fan-in gate, the gate with the minimum arrival time is added toreg first.

It is worth pointing out that the above ordering heuristic for the gate selection can guarantee

termination of the partition method. The reason is that it ensures our synthesis of countermeasures

for the circuit regions follows a topological order, starting from the inputs. This avoids the need

to re-synthesize countermeasures for the same gate. At the same time, it reduces the maximum

mismatch in the arrival time by decreasing the circuit maximum depth rather than inserting gates

for a delay effect, which in turn avoids a blow-up in the synthesized circuit size.

The selected regionreg would have a maximum size ofn = 2lev − 1 gates, which occurs if all

inputs variables have equal arrival time from the inputs. Ifthe region inputs have different arrival

times, this is accounted and compensated for by assigning the inputs at different depths in new

region. In this case, the number of gates would decrease because some of the internal nodes are

converted to input nodes and their children are removed. Fig. 7.6 illustrates why for anewReg
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Figure 7.6: Example for a selected regionreg.

with lev of 2 and three inputs with arrival time ofa, a anda+1 cannot have any more inputs added

to it, although normally a tree of depth 2 can have up to 4 inputs.

7.3.2 Relevant Parameters

In Algorithm 9, the parametersGatesSyn and lev are decided by the user to find a sweet spot

among the several optimization factors. For example, by including more types of gates inGatesSyn

(to be used during the synthesis process), the number of possible solutions will increase, which may

lead to a more compact countermeasure. On the other hand, it will also increase the search space

and make our method less scalable.

Increasinglev will increase the size of the extracted region, which in turnimproves the quality of

the synthesized circuit regions. This is because optimizations such as gate sharing is more likely

in larger circuits than in smaller circuits. On the other hand, increasinglev will lead to harder

synthesis subproblems, which would take the SyGuS solver more time to return a solution.

7.4 The Synthesis Subroutine

The subroutine SYNTHESIZE attempts to generate a new circuitnewReg that is logically equiva-

lent toreg and at the same time FSA-resistant. The pseudocode is shown in Algorithm 10, where

the input consists of the regionreg, the mapMinAr from inputs to each gate minimum arrival
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time, the setGatesSyn of logic gates to be used in the new circuit, andlev the the maximum

allowed depth of the new circuit. The procedure returns a candidate circuit if such a solution exists

within the given solution space.

Algorithm 10 Inductively synthesizing the new circuit region.
1: SYNTHESIZE (reg,MinAr,GatesSyn, lev) {
2: testEx← { };
3: Depth← GETINPUTDEPTH (reg, lev,MinAr);
4: while (true) {
5: newReg← GENNEWREGION(reg,testEx, Depth,GatesSyn, lev);
6: if (newReg exists){
7: test← CHECKEQUIVALENCE(reg, newReg);
8: if (test == { })
9: return newReg;

10: testEx← testEx∪{test};
11: }
12: else
13: return { };
14: }
15: }

The synthesis subroutine starts by initializing the settestEx of test examples to an empty set. This

set consists of test examples used to check the partial equivalence between the candidate circuit

newReg and the original circuitreg. That is, at least for all the test examples intestEx, the two

circuits should behave the same. Subroutine GETINPUTDEPTH computes the appropriate depth

for each of the input signals in order to reduce the discrepancies among their arrival time at the

outputs.

Then, the synthesis subroutine enters a while-loop containing two main steps. The first step,

consisting of a call to GENNEWREGION, searches for a candidate solutionnewReg that behaves

the same as the original circuit, at least for all test examples intestEx. The second step, consisting

of a call toCHECKEQUIVALENCE, tries to prove the functional equivalence ofreg andnewReg

for all input values. If the two circuits are not equivalent,it computes a test example that can

differentiate them. This test example is added to the settestEx before the while-loop enters the

next iteration.

The while-loop terminates either when a candidate solutionis proved to be the real solution, or no
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Figure 7.7: Example for a vulnerable circuit.

new candidate solution can be computed.

7.4.1 Computing the Input Depth

The subroutine GETINPUTDEPTH computes, for each input signal inreg, its allowed depth in

newReg (or the so-calledlevel). Since each of the input signals inreg may have a different arrival

time, it must be placed at different depths in order to reduce, or eliminate, the mismatch in the time

taken for them to arrive at the outputs.

Consider, for example, the vulnerable circuit illustratedby Fig. 7.7, which has the following input-
output relations:

X = C AND D;

Y = X AND B;

O = Y AND A;

Due to the mismatch in the number of gates between the circuitinputs and the output, this circuit

is vulnerable to FSA attacks.

Assume that, during synthesis, the boxed region in Fig. 7.7 is the extracted regionreg. Each of the

input nodes (A, B and X) could have a different depth assignedin the new region to be synthesized.

To eliminate the mismatch in the delay, in the synthesized circuit, nodes A and B should be placed

one gate closer to the output than node X. The pseudocode to compute such depths for all input

signals is shown in Algorithm 11.
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Algorithm 11 Computing the depths of inputs innewReg.
1: GETINPUTDEPTH (reg, lev,MinAr) {
2: minMinAr← minimum ofMinAr[in] for all input in;
3: for each (input signalin ∈ reg) {
4: deltaArMismatch←MinAr[in]−minMinAr

5: newRegDepth[in]← MAX (2, (lev − deltaArMismatch))
6: }
7: return newRegDepth;
8: }

C
D X

B
A

O

Figure 7.8: Example for a countermeasure circuit.

7.4.2 Generating a Candidate Circuit

Subroutine GENNEWREGION computes a candidate circuitnewReg that is functionally equivalent
to reg on the settestEx of examples. It first generates a logical formula and then invokes the
SyGuS solver to search for a candidate solution. Recall that, in constructing the logical formula,
we use a certain template circuit to ensure that the new circuit newReg is less vulnerable to FSA
attacks than the original circuitreg. A solution returned for the example in Fig. 7.7 is shown in the
boxed area in Fig. 7.8, whose corresponding input-output relations are as follows:

X = C AND D;

W = A AND B;

O = X AND W;

If no solution can be found, the subroutine returns immediately. Then, inside Algorithm 9, the

synthesis subroutine is invoked again for a smaller extracted regionreg.

The logical formula generated by our method is

Φ = Φreg ∧ Φskel ∧ ΦEqI ∧ ΦEqO ∧ ΦtestEx,

where the subformulas are defined as follows:

• Extracted region (Φreg): Encodes the logical function of the extracted circuit region.
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• Skeleton (Φskel): Encodes the structure and possible logical functions of the new circuit to

be synthesized.

• Equal input (ΦEqI): Asserts that the inputs of the extracted and synthesized circuits have the

same values.

• Equal output (ΦEqO): Asserts that the outputs of the extracted and synthesizedcircuits have

the same values.

• Test cases (ΦtestEx): Restricts the input signals of the circuits to the values in these test cases.

7.4.3 Verifying the Equivalence

After a candidate circuit is generated by solving the formulaΦ, which is a satisfiability problem,

we need to prove that the two circuits not only behave the samefor the settestEx of test examples,

but also prove that they are functionally equivalent for allpossible input values. Toward this end,

we construct a new logical formulaΨ, whose satisfying assignment represents a test example that

can differentiate the behaviors ofreg andnewReg. By showing thatΨ is unsatisfiable, we can

prove that the two circuits are functionally equivalent.

The new logical formula generated by our method is

Ψ = Ψreg ∧ΨnewReg ∧ΨEqI ∧ΨUneqO,

where the subformulas are defined as follows:

• Extracted region (Ψreg): Encodes the logical function of the extracted region.

• Candidate region (ΨnewReg): Encodes the logical function of the synthesized circuit region.

• Equal input (ΨEqI): Asserts that the inputs of the extracted and synthesized circuits have the

same values.



Hassan Eldib Chapter 7. Synthesis of Countermeasures for Fault Attacks 120

• Unequal output (ΨUneqO): Asserts that the outputs of the extracted and synthesizedcircuits

have different values.

If the formulaΨ is unsatisfiable, we have proved that the two regions are equivalent; in such case,

the synthesized circuit is returned. On the other hand, if the formulaΨ is satisfiable, the two

regions are not equivalent. In such case, the solution toΨ represents a new test example, which

differentiates the behaviors of the two regions. In order toavoid the bad solutionnewReg from be-

ing resynthesized in the future, the new test example is added to testEx before GENNEWREGION

is invoked again.

7.5 Experimental Results

In this section, we present the experimental results of applying our new method to a set of crypto-

graphic circuits. Our method has been implemented using theSyGuS solver.

The benchmarks used in our experiments are circuits that implement parts of the AES and MAC-

Keccak. Table 7.1 shows the statistics of these benchmarks.Columns 1 and 2 show the name and

brief description of the benchmark circuit, respectively.Column 3 shows the size of the benchmark

circuit. Column 4 shows the number of node count. Columns 5 and 6 show the number of input

signals and output signals, respectively.

Among the circuits in Table 7.1, C1 and C2 are two different versions of the MAC-Keccak non-

linear Chi function [14], designed with masking countermeasures for power side-channel attacks.

C3 and C4 are different implementations of the Chi function with masking countermeasures. C5

is the original unmasked Chi function from [14]. C6 and C7 areimplementations of part of the

AES, i.e., the Boyar-Peralta S-box nonlinear invg4 and mul4functions, respectively, from [17]. C8

is the combination of all the S-box nonlinear functions in [17]. C9 is the complete AES PPRM1

implementation of the S-box in [62]. C10 is a different version of the AES Boyar-Peralta S-box

implementation from [17].
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Table 7.1: The statistics of the benchmark circuits used in our experimental evaluation.
Name Description Circuit Size Node count Input bits Output bits
C1 MAC-Keccak nonlinear masked Chi function 1 59 35 10 1
C2 MAC-Keccak nonlinear masked Chi function 2 60 35 10 1
C3 Generated MAC-Keccak masked Chi function 1 67 44 10 1
C4 Generated MAC-Keccak masked Chi function 2 66 44 10 1
C5 Unmasked MAC-Keccak nonlinear Chi function 10 6 3 1
C6 AES S-Box design of nonlinear invg4 function 15 83 4 4
C7 AES S-Box design of nonlinear mul4 function 14 63 8 4
C8 AES S-Box single round nonlinear functions 41 209 8 8
C9 Complete AES PPRM1 S-box design 1045 8054 8 8
C10 Complete AES Boyar-Peralta S-box design 276 156 8 8

We have conducted the experimental evaluation in order to answer the following research ques-

tions:

• Can our method synthesize more efficient countermeasures against FSA attacks compared

to existing techniques such as buffer insertion?

• Can our method robustly handle cryptographic circuits of practical size and complexity?

7.5.1 Experimental Results

We evaluated our method on all benchmarks. During the evaluation, we used the AND, XOR, OR

and NOT gates as logic gates allowed inGateSyn. We assumed that all logical gates are designed

with the same propagation delay. We set the depth of the synthesized circuit (lev) to 3, which

allows for the synthesis of a circuit region of up to 7 gates for each invocation of the synthesis

subroutine. We ran all experiments on a computer with a 3.4 GHz Intel i7-2600 processor, 4 GB

RAM, and a 64-bit Ubuntu operating system.

Table 7.2 shows the results of our experiments. Here, we firstcompare the performance of our new

method and the buffer insertion method. Recall that the prior technique relies on inserting buffers

in the circuit to eliminate mismatch in the signal arrival time for each gate, whereas our method

achieves the same goal by generating an entirely different circuit implementation. In the results

table, Column 1 shows the benchmark name. Column 2 shows the number of nodes in the original
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circuit. Columns 3 and 4 show the number of nodes in the new circuit obtained by buffer insertion

and the increase in number of nodes, respectively. Columns 5and 6 show the number of nodes in

the new circuit obtained by our method and the increase in thenumber of nodes, respectively.

Table 7.2: Synthesis results.
Name Original Buffer insertion alg. New Synthesis alg.

Nodes Synthesized Nodes Synthesized Nodes
count nodes increase nodes increase

C1 35 51 45.71% 42 20.00%
C2 35 48 37.14% 40 14.29%
C3 44 54 22.73% 48 9.10%
C4 44 59 34.09% 45 2.27%
C5 6 9 50% 9 50%
C6 83 134 61.45% 98 18.07%
C7 63 79 25.40% 73 15.87%
C8 209 292 39.71% 244 16.75%
C9 8054 77717 864.90% 8943 11.04%
C10 156 9585 6044% 370 137.2%

The results demonstrate the effectiveness of our new methodin synthesizing more compact coun-

termeasures against FSA attacks. Compared to the buffer insertion method, the circuits produced

by our method do not need as many additional gates. For example, our new circuit for C9 has only

11.04% more nodes, whereas the circuit produced by the buffer insertion method has 864.9% more

nodes than the original circuit.

7.5.2 Detailed Statistics

Table 7.3 shows the detailed statistics of our countermeasure synthesis process. Column 1 is the

name of the benchmark. Column 2 is the number of calls to the SyGuS solver, which attempts

to computes the new region for a given region. Column 3 is the number of successful SyGuS

solver calls, which found a new circuit. Column 4 is the number of unsuccessful SyGuS solver

calls, which failed to find a new circuit — in such cases, the size of the extracted circuit had to

be reduced before invoking the SyGuS solver again. Column 5 is the reduction in the number of

nodes in our synthesized circuit compared the that of the buffer insertion method. Column 6 is the

time (in seconds) spent by our method.
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Table 7.3: Statistical data.
Name Synthesis Successful Failed Nodes Run

iterations iterations iterations reduction time [s]
C1 7 7 0 17.65% 1.22
C2 5 5 0 16.67% 0.10
C3 4 4 0 11.11% 0.09
C4 2 2 0 23.73% 0.06
C5 4 3 1 0% 0.13
C6 23 23 0 26.87% 0.48
C7 12 12 0 7.60% 0.26
C8 47 47 0 16.44% 1.11
C9 2627 2627 0 88.49% 412.32
C10 219 217 2 96.14% 13.74

Our results show that, for most of the benchmarks, the numberof failed SyGuS calls is 0 for

lev = 3, which leads to a reduction in total countermeasure synthesis time. This is advantageous

not only because failed synthesis attempts are a waste of time but also because, in general, failed

SyGuS calls take significant more time than successful SyGuScalls. The reason is that solving

UNSAT instances are usually more difficult than solving SAT instances. Therefore, in practice, the

key to achieve a significant runtime reduction is to accurately estimate an important parameter: the

number of nodes to be included in the extracted region beforeinvoking the SyGuS solver.

We also notice from Table 7.3 the scalability of our tool. Thepartitioned method has made the

SyGuS-based countermeasure synthesis process more scalable; the overall runtime increases only

moderately as the circuit size increases. Furthermore, ournew method is effective in reducing

the size of the new circuit when compared to the prior techniques. As the circuit size increases,

the saving by our new method in terms of the number of added nodes also increases significantly

compared to the buffer insertion method.

7.6 Related Work

As we have mentioned earlier, our method is the first inductive synthesis-based method for synthe-

sizing FSA countermeasures for cryptographic circuits. Since it is based on inductive synthesis, our

method has the potential to search within a significantly larger design space than prior techniques.
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Ghalaty et al. [35] proposed a method for implementing FSA countermeasures based on the ad-

dition of delay elements at the input of certain gates in the circuit to equalize the path delays

from all the sensitive inputs to the output. It can lead to countermeasures with more additional

gates than ours, as we have demonstrated in experiments. Furthermore, their method does not

eliminate mismatch in the arrival time of the input signals for all logical gates. In particular, it

ignores XOR gates. After analyzing their method, we have found that their countermeasure could

still be vulnerable to FSA attacks if the attacker uses the data dependency of hamming distance of

successive inputs.

Endo et al. [34] proposed another countermeasure to defend against FSA attacks based on adding a

configurable buffer circuitry to delay the propagation of the output signals from the cryptographic

module. However, the method is a post-silicon solution and therefore is expensive to implement in

practice, since the delay period needs to be configured afterthe chip is manufactured. To configure

the delay, they first measure the delay needed for securing the manufactured cryptography module

and then store the delays in an on-chip memory. They implemented the proposed countermeasure

only for the benchmark C9, and reported a gate overhead of 10%to 16%. However, note that their

countermeasure was designed manually, whereas in our method, the countermeasure is generated

fully automatically.

Furthermore, both of the existing techniques [35, 34] incura significant amount of area overhead

and performance degradation in terms of the operating frequency. In contrast, our new method,

due to its capability of discovering entirely new circuit implementations, has the potential to

significantly reduce the area overhead and performance degradation. In some cases, our method

can actually reduce the area overhead and improve the performance, as shown in the example in

Fig. 7.2 – Fig. 7.4.
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7.7 Summary

We have presented a new method for synthesizing countermeasures to defined against fault sensi-

tivity analysis-based side-channel attacks. Our method relies on inductive synthesis to search for a

new circuit that is functionally equivalent to the originalcircuit and at the same time is FSA resis-

tant. It has the potential to discover more compact and efficient countermeasure implementations

than the prior techniques such as buffer insertions. We haveimplemented the new method and

evaluated it on a set of cryptographic circuits. Our experiments show that the use of partitioned

synthesis approach can scale up our method to circuits of large size. For future work, we plan to

evaluate our synthesized countermeasures on real devices to assess its effectiveness in defending

against FSA attacks.



Chapter 8

Conclusions

In this dissertation, I have presented a set of automated techniques for improving the reliability and

security of hardware and software code in critical embeddedapplications. Experimental results

show that all the proposed methods are indeed effective whenapplied to practical benchmarks.

8.1 Summary

In Chapter 3, we proposed a new inductive program synthesis-based method for optimizing the

fixed-point arithmetic computation software executed on embedded processors with relatively

small register bitwidths. Our method guarantees that the new software is functionally equivalent

to the original one, but without overflow and underflow errors.

In Chapter 4, we proposed a new formal verification method to check for sensitive information

leakage in cryptographic software via power side-channels. In contrast to the existing method, that

is capable only of checking whether the intermediate computation results are logically dependent

on some random bits, our new method checks for statistical independence, which is more accurate.

In Chapter 5, we proposed a new method for quantifying the strength of masking countermeasures

against power side-channel attacks. Our evaluation, basedon measuring the power traces on real

126
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devices, showed that our method is accurate enough for practical use.

In Chapter 6, we proposed a new method for automatically generating masking countermeasures

for cryptographic software code vulnerable to power side-channel attacks. We have demonstrated

the method efficiency and its capability of synthesizing countermeasures more compact than those

proposed by cryptographic experts.

In Chapter 7, we proposed a new method for synthesizing provably secure cryptography circuit

implementations to defend against fault sensitivity analysis (FSA) side-channel attacks. The syn-

thesized countermeasures are shown to be extremely efficient when compared to those generated

by the previous methods.

For all of the presented techniques, we have proposed partitioning approaches, which combine

statistical analysis procedures within the methods in order to improve scalability. We have imple-

mented our methods in software tools and demonstrated theireffectiveness using realistic practical

benchmarks.

In summary all the presented methods clearly show improvement over the previously used meth-

ods. The presented program synthesis methods would certainly ease development of embedded

software and hardware.

8.2 Future Work

Although I explored many new research topics in this dissertation, and in some cases were the

first to introduce automated verification and synthesis methods to these applications, this is just the

beginning. There are still much more opportunities for improvement.

The work on optimizing fixed-point arithmetic computation code has clearly attracted the attention

of the community. Extending the method to optimize floating-point code and expanding the set

of supported instructions and theories could be beneficial.Optimizing other performance aspects,

such as the execution time and power consumption, could be a good research direction as well.
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Implementing cryptographic systems has always been a labor-intensive task. It is time-consuming

and error-prone even for cryptographic experts. Developing more types of automation tools to

assist in the software/hardware implementation process isdesirable and promising. In addition to

verification and synthesis, developing new methods for computer-aided error diagnosis [83, 13, 90,

89] and program repair [48] could be a good research direction.

Another open question is whether it is possible to automatically synthesize cryptographic software

code that are better than those designed manually by experts. In this dissertation, I have made the

first step by showing this is possible for countermeasures against power side-channel attacks and

fault attacks. Still, there are many other types of side-channel attacks and related countermeasures,

which require further investigation, e.g., synthesizing countermeasures against timing attacks.

All the techniques presented in this dissertation have overcome the scalability problems of the

underlying verification and synthesis techniques by exploiting compositionality and using fast

static analysis methods. This hybrid method makes it possible to apply the proposed techniques

on large practical benchmarks. One potential disadvantagethat arises from using these hybrid

methods, however, is that the synthesized code may not be guaranteed optimum. If the underlying

verification and synthesis techniques can be advanced to handle larger hardware and software code,

it would certainly improve the quality of the synthesized code.
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