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ABSTRACT 
 

FPGA fault recovery techniques, such as bitstream scrubbing, are only limited to 

detecting and correcting soft errors that corrupt the configuration memory.  Scrubbing 

and related techniques cannot detect permanent faults within the FPGA fabric, such as 

short circuits and open circuits in FPGA transistors that arise from electromigration 

effects. Several Built-In Self-Test (BIST) techniques have been proposed in the past to 

detect and isolate such faults. These techniques suffer from routing congestion problems 

in modern FPGAs that have a large number of logic blocks. This thesis presents an 

improved BIST architecture for all Xilinx 7-Series FPGAs that is scalable to large arrays. 

The two primary sources of overhead associated with FPGA BIST, the test time and the 

memory required for storing the BIST configurations, are also reduced when compared to 

previous FPGA-BIST approaches. The BIST techniques presented here also eliminate the 

need for using any of the user I/O pins, such as a clock, a reset, and test observation pins; 

therefore, it is suitable for immediate deployment on any system with Xilinx 7-Series 

FPGAs. With faults detected, isolated, and corrected, the effective MTBF of a system can 

be extended. 
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Chapter 1  

Introduction  

Advancement in VLSI technology has led to the ever-increasing density of logic 

resources in Field Programmable Gate Arrays (FPGAs), and also a significant 

improvement in clock speeds at which the logic resources can operate. These factors have 

fueled the computational capacity of FPGAs without significant increase in its power 

consumption. However, on the other hand, scaling down of transistor sizes, higher 

switching speeds and reduction in core voltage has drastically affected the vulnerability 

of these devices to faults.  

The faults in FPGAs can be broadly classified into two categories. The first 

category is soft-errors [1], such as single bit flip in configuration memory of the FPGA, 

alternatively known as Single Event Upsets (SEUs). The primary source of soft-errors is 

radiation effects present around FPGAs that are used in nuclear, space and aviation 

applications. The configuration memory of an FPGA can be thought of as a collection of 

bits, in which each bit controls a routing or a logic resource within the FPGA. For 

example, a configuration bit associated with a multiplexer controls the selection line of 
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the multiplexer. Similarly, a configuration bit in a switching matrix enables the 

connection between two wires. Any corruption in the configuration memory mimics 

incorrect behavior of the logic circuit. For example, corruption of a single bit in a LUT 

leads to incorrect implementation of the logic function in the LUT. These faults, by 

nature, are correctable. In order to correct these faults, the configuration memory is read 

back, and is compared with the golden image of the configuration memory. If a fault is 

detected, then the configuration memory is refreshed. Bitstream scrubbers are well 

known to combat these faults [2]. 

Another category of faults is permanent faults. These faults arise from various 

electrical effects, such as aging, electromigration and time dependent dielectric 

breakdown (TBBD) in a transistor. These effects eventually lead to an open circuit or a 

short circuit in the FPGA transistor. As a result of this, a particular net of a circuit 

behaves as if it is stuck at either a logic-1 or a logic-0, even when an input tries to pull the 

net in the other direction. Unfortunately, these faults cannot be corrected, and the only 

alternative is to avoid the faulty location. Fortunately, the FPGAs can be reconfigured to 

avoid the faulty locations given that the fault can be detected and isolated in some way. 

Any test that can detect such a fault without involving any dedicated external hardware is 

known as Built-in Self-test (BIST). 

Two essential conditions have to be satisfied in order to detect the fault - the fault 

should be excited, and the fault effect should be observed. For example, consider a stuck-

at-0 fault on one of the inputs of an AND gate. In this case, the fault can be excited by 

applying all of the inputs of the gate as a logic-1, and the fault effect will be observed as 

the output of the gate as a logic-0, whereas in ideal case the output should be a logic-1. 
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The conventional BIST facilitates both the generation of test vectors and the validation of 

the output response internally within the integrated circuit by inserting extra hardware; 

therefore, these approaches incur area overhead. However, the BIST for an FPGA 

exploits its reconfigurability to mitigate the area overhead. The conventional strategy 

behind the BIST for FPGAs is to configure some of the logic blocks inside the FPGA as 

Test Pattern Generators (TPGs), and others as Output Response Analyzers (ORAs). 

These elements carry out the test on the rest of the logic blocks, referred to as Blocks 

Under Test (BUTs). Once all of the BUTs are tested for all of their functionalities, then 

the role of the BUTs is swapped with the TPGs and ORAs through reconfiguration. In 

this way, the BIST tests the entire FPGA in two test sessions.  

The BIST for the FPGAs, henceforward referred to as FPGA BIST, is performed 

off-line and is independent of the application that is running on the FPGA. The test is 

performed by configuring the FPGA with a set of bitstreams, which are dedicatedly 

designed to perform the test on the FPGA. Once the testing is complete, the FPGA is 

reconfigured back into its normal operation. All of the configuration bitstreams that are 

required to perform the BIST are pre-computed and stored in external memory along with 

the user configuration. The sources of overhead associated with this approach are the 

external memory for storing the BIST configurations and a short system downtime 

required to perform the test.  

1.1 Objectives 

The primary goal of this thesis is to develop the BIST architecture to test all of the 

functionalities of Configurable Logic Blocks (CLBs) in Xilinx 7-Series FPGAs. The 7-
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Series FPGAs contain more advanced CLBs when compared to previous generation of 

Xilinx FPGAs; therefore, the BIST architecture discussed here can easily be extended to 

any of the previous generation Xilinx FPGAs. Moreover, Xilinx 7-Series FPGAs contain 

more CLBs when compared to previous Xilinx FPGAs, and, hence, this work is scalable 

to test any of the previous generation Xilinx FPGAs. Although the overall work presented 

in this thesis is directed to enhance the applicability of the test on systems that use Xilinx 

7-Series FPGAs, the proposed BIST architecture is generic to any FPGA architecture. 

It is highly desired that all of the CLBs in the FPGA be tested simultaneously in 

order to minimize the number of test sessions and test time. This implies that a typical 

BIST configuration may use the maximum possible number of CLBs in the FPGA, if 

possible all of the CLBs. With such a high resource usage, routing congestion becomes a 

serious problem [3]. The study of past BIST architectures reveals that the problem of 

routing congestion puts an upper bound on the number of CLBs that can be tested in a 

single test session. If all of the CLBs cannot be tested simultaneously, then the FPGA is 

divided into partitions, and each partition is tested one by one in different test session. As 

a result of this, the total test time multiplies by the number of test sessions. The BIST 

discussed in this thesis addresses the problem of routing congestion, and provides a 

solution to make the routing independent of the number of the CLBs used in the design. 

By doing this, all of the CLBs in the design can be tested in a single test session, and, 

hence, both the external memory for storing BIST configuration bitstreams and the 

system downtime during the testing process can be minimized. 

The concept of Iterative Logic Array to test the repeated logic cells has been used 

in past work[4][5], and this technique has also been applied to the FPGA BISTs [3][14]. 
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However, these approaches did not provide fault isolation. Fault isolation is necessary in 

order to narrow down the location of the fault within the FPGA. Such information is 

useful, particularly in the case of FPGAs, in order to exploit their reconfigurability for 

fault tolerance. Once the fault is isolated, it can be avoided by reconfiguring the FPGA 

with a new configuration. The BIST discussed in this thesis enables the fault isolation in 

the Iterative Logic Array based FPGA BISTs. 

Usually, FPGA BIST assumes the availability of a limited number of user I/O 

pins, such as a clock, a reset and test observation pins, in order to administer the test. This 

implies that the BIST has to be designed prior to the system design phase of the project. 

The BIST presented in this work eliminates the need for any of the user I/O pins; 

therefore, it is applicable for immediate deployment on any system with Xilinx 7-Series 

FPGA. 

The primary objectives of the thesis can be summarized as: 

1) Design a BIST to detect and isolate single stuck-at-fault present in any of the 

Configurable Logic Blocks (CLBs) in Xilinx 7-Series FPGAs.  

2) Minimize the primary sources of overhead associated with the FPGA BIST – the 

test time and the external memory for storing BIST configurations. 

3) Reduce the routing complexity associated with BIST architecture. As a result of 

this, the test can be developed for any size of the device.  

4) Eliminate the need for using user I/O pins, such as a clock, a reset and test 

observation pins, to administer the test. As a result of this, the BIST can be 

immediately deployed on in-use systems without making any system-level 

changes. 
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5) Enable the fault isolation in Iterative Logic Array (ILA) based BIST architectures.  

1.2 Organization of Thesis 

This thesis is organized in the following order. 

• Chapter 2 gives the overview of Xilinx FPGA architecture and previous work in 

the field of FPGA BIST.  

• Chapter 3 presents the system-level overview of the BIST. This chapter also 

discusses the BIST configurations at architecture level. 

• Chapter 4 gives the detailed description of the BIST configurations. The 

microarchitecture of the BIST configurations helps in understanding the fault 

coverage by the BIST configurations. 

• Chapter 5 discusses about various steps involved in the process of fault isolation.  

• Chapter 6 provides the details of the test generation process. Two alternative 

methods have been discussed in order to automate the generation of the BIST 

configurations. This chapter also provides the quantitative measurements of fault 

coverage and various sources of overhead that are associated with the FPGA 

BIST. 

• Chapter 7 concludes the thesis. 
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Chapter 2  

Background and Overview 

This chapter provides the necessary details of the Xilinx FPGA architecture and 

configuration bitstream in order to understand the details of BIST configurations, which 

are discussed in the later chapters. A comprehensive summary of previous FPGA BISTs 

is also presented in this chapter. This summary is useful to understand some of the factors 

that affect the selection of BIST architectures. 

2.1 Overview of Xilinx 7-Series FPGAs 

An FPGA consists of thousands of Configurable Logic Blocks (CLBs) arranged in a 

regular 2-D array as shown in Figure 2.1. Each CLB can be reconfigured to implement 

different logic functions. Each CLB also has an adjacent switch matrix that connects it to 

the rest of the FPGA. The number of CLBs in the FPGA varies across different devices 

of the same FPGA family. For example, the smallest Zync device (Zync is a SoC in 

Xilinx 7-Series FPGAs) has 2,200 CLBs, whereas the largest Zync device has 34,650 

CLBs.  
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Figure 2.1: Arrangement of CLBs and Switch Matrices in Xilinx FPGA 

2.1.1 Configurable Logic Blocks 

CLBs are considered as the primary logic resources to implement combinational and 

sequential logic circuits. Each CLB contains two SLICE blocks [6], which in-turn are 

composed of four identical logic circuits, known as circuits A, B, C and D.  

 

Figure 2.2: CLB in Xilinx FPGAs 

 
The logic diagram of one of the circuits is shown in Figure 2.3. Each circuit 

contains a 6-input LUT, which can implement a single 6-variable combinational logic 

function or two independent 5-variable combinational logic functions. Each output of the 

LUT can also be independently registered into a flip-flop. Besides the LUT and the flip-

flops, each circuit contains one XOR gate in order to facilitate the implementation of 
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arithmetic carry chain logic. The signals from one circuit can selectively be forwarded to 

the other circuits through various multiplexers present into horizontal and vertical data-

paths. These functionalities are common to all of the SLICEs in the FPGA. 

Approximately one-third of the SLICEs, known as SLICEMs, have additional capability 

to use their LUTs as distributed RAMs and shift-registers. 

 

Figure 2.3: Logic diagram of Circuit A in a SLICE. Xilinx Inc., “7 Series 

FPGAs Configurable Logic Block User Guide, UG474 (v1.7),” November 17, 

2014. Used under fair use, 2015. 

2.1.2 Routing Resources 

In contrast to fixed routing resources used in ASICs, the FPGAs contain programmable 

routing resources. The wires in the FPGA are preplaced, but different wire segments can 

be connected with each other using the programmable switch matrix. The switch matrix 

is a collection of thousands of tiny switches, each of which is controlled by a bit in 

configuration memory, and can connect two different wires passing through the switch 

matrix. 
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Each wire connects two CLBs, and is identified by the distance between the CLBs 

that it connects. As shown in Figure 2.4, single wires connect two adjacent CLBs, 

whereas double wires connect the CLBs that are two CLBs apart from each other. 

Similarly, quad and hex wires connect two CLBs that are four and six CLBs apart from 

each other respectively. Besides these wires, there are horizontal and vertical long wires 

that span across the device width and height.  

 

Figure 2.4: Wires in Xilinx FPGAs 

 
Singles, doubles, quads and hexes are proportional to the number of switch 

matrices in the device, i.e. each switch matrix has certain numbers of these wires 

originating from it. As each CLB has an adjacent switch matrix, these wires are also 

proportional to the number of CLBs in the device. Moreover, the singles and doubles are 

more in number as compared to the quads and hexes. The long wires are available in 

limited quantity, and do not increase in proportion to the number of CLBs in the device. 

The single and the double wires are termed as local wires throughout the thesis because 

their role is to provide local routing. The rest of the wires are referred to as global wires.  
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2.1.3 Configuration Bitstream and Partial Reconfiguration 

Implementation of different logic circuits on a single FPGA is made possible by the use 

of the configuration bitstream. Each bit in the configuration bitstream controls the state of 

a particular logic resource or a routing resource. The configuration bits associated with 

the CLBs are used as LUT content, selection channel of various multiplexers, and initial 

values of flip-flops. Each tiny switch inside a switch matrix that connects two different 

wire segments is controlled using a configuration bit.  

Each configuration bit is assigned a logical address in order to perform read and 

write operations on it. The configuration bits are grouped together to form a frame in 

order to simplify the addressing. The length of the frame varies across different FPGA 

families. The frame is considered as the fundamental unit of the configuration bitstream, 

i.e. all reads and writes to the configuration memory are referenced by frame addresses. 

The frame address is determined by the physical location of a resource that the frame 

controls. All of the logical and routing resources in the FPGA are arranged in columns as 

shown in Figure 2.5. The position of the column in the device determines the major 

address of the frame. Each column contains multiple frames, each of which is identified 

by minor address. Each column can have different number of minor frames depending on 

the type of the resource that it contains. 

 

Figure 2.5: Columns in Xilinx FPGAs 
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Full configuration refers to the process of writing all of the frames to the device. 

The full configuration is a lengthy process, which takes around one to three seconds 

depending on the speed of the configuration interface for the largest Xilinx 7-Series 

FPGA. In order to minimize the configuration time, alternatively known as download 

time, the FPGAs are sometimes configured partially. If the incremental changes in the 

design are confined only to the particular locations in the FPGA, then the frames 

corresponding to only those locations are likely to change. In such scenarios, instead of 

writing all of the frames to the FPGA, only the changed frames are written to the FPGA. 

The process of writing the configuration memory partially is known as partial 

configuration of the FPGA [7]. 

2.2 Previous Work 

The concept of BIST for the FPGAs was first introduced by Stroud [8]. The conventional 

strategy behind the FPGA BIST is to configure each CLB in the FPGA into Test Pattern 

Generator (TPG), Output Response Analyzer (ORA) or Block Under Test (BUT). The 

function of the TPG is to provide necessary input vectors to the BUTs in order to excite 

the faults. If a fault exists in the BUT, then the response of the BUT deviates from an 

ideal response, and this is validated in the ORA. Each configuration bitstream configures 

the BUTs in one of their possible modes, and, hence, multiple configuration bitstreams 

are needed to test all of the functionalities of the BUTs. Once the BUTs are tested for all 

of their functionalities, then the role of the BUTs is swapped with the TPGs and ORAs 

through reconfiguration. This way, the entire FPGA is tested in multiple test sessions. 

The arrangement of TPGs, BUTs, and ORAs is the key factor in determining the number 
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of test sessions required to test the entire FPGA. Two kinds of arrangement have been 

prevalent in all of the previous work. This section presents the brief overview of these 

two arrangements rather then discussing the details of all of the previous work. 

2.2.1 BIST Architecture using Global TPG 

Figure 2.6 shows the diagram of this BIST architecture. The term “global” is used to 

highlight the global nature of the TPG, i.e. a single TPG provides the input vectors to 

multiple BUTs in the FPGA. The TPG is configured to provide all of the necessary test 

vectors to perform pseudo exhaustive testing [13] of the BUTs. In the given 

configuration, all of the BUTs are configured identically, and the outputs of two alternate 

BUTs are compared with each other in adjacent ORAs. If identical BUTs are provided 

with a similar input vectors, then the outputs of both of the BUTs should ideally be 

identical. If a fault exists in any of the BUTs, then it will be observed in the ORA as 

unequal responses of the BUTs. The alternate BUTs, whose responses are compared in 

the same ORA, are provided the input by different TPGs so that the faulty BUT doesn’t 

escape by the faulty TPG. In a single test session, different configurations test different 

possible modes of the BUTs. In another test session, the role of the BUTs is swapped 

with the TPGs and ORAs through reconfiguration, i.e. the CLBs that were configured as 

the TPGs and ORAs will now be configured as the BUTs and vice versa.  
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Figure 2.6: BIST using global TPG 

 
In this architecture, half of the CLBs are configured as the ORAs. As a result of 

this, at maximum, only half of the CLBs can be configured as the BUTs, and, hence, only 

those many CLBs can be tested simultaneously in a single test session. Moreover, 

because of the “global” nature of the TPG, it is difficult to test the entire device in a 

single test session. It was shown in [3] that the routing congestion problem arising as a 

result of the “global” nature of this architecture strictly limits the scalability of this BIST 

architecture. As the device size increases, a single TPG has to provide the inputs to 

increasing number of BUTs, thereby the fan-out per TPG increases. Additionally, the 

TPG provides the inputs to the distant BUTs; therefore, routing heavily relies on long 

wires. Limited availability of the long wires, synchronization difficulties related to them, 

and high fan-out per TPG reduces the probability of successful routing in the larger 

devices. Modern FPGAs have the number of CLBs on order of 104; therefore, it is clearly 

evident that this architecture is not suitable for modern FPGA architectures. 

Several examples of BIST have been published using this architecture, however, 

almost all of these BISTs were published for the previous generation FPGA architectures 
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such as Xilinx 4000, Spartan, Virtex-I, Spartan-II and Virtex-V architectures[9][10] 

[11][12]. However, because of the limitations due to routing congestion, this approach, in 

general, is less attractive to create the test for modern FPGAs. 

2.2.2 Iterative Logic Array (ILA) Architecture 

The primary motivation for coming up with the ILA architecture was to combat the 

routing congestion problem. The ILA, as it name implies, is the cascaded connection of 

similar logic cells. Each row of the FPGA is configured as the 1-D ILA as shown in 

Figure 2.7. In this architecture, the TPG provides inputs to only the first BUT in the array 

instead of providing inputs to all of the BUTs. The output of one BUT is provided as the 

input to its successor; this way, each BUT acts as a local TPG for its successor. If a fault 

is present in any of the BUTs, then that BUT will provide incorrect inputs to its 

successive BUT, and in this way, the error propagates through the entire array until it 

reaches the final ILA output. The ORA observes the final ILA output, and determines the 

result of the test. 

 

Figure 2.7: Testing of FPGA using multiple 1-D ILAs 

 
As each BUT provides inputs to only its successor BUT, the average fan-out 

requirement per output pin reduces drastically. Additionally, the successive BUTs are 

placed adjacent to each other in order to constrain the routing locally. The switch matrix 
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that is available adjacent to each of the CLBs can easily accomplish local routing without 

using long wires; therefore, the problem of routing congestion reduces considerably.  

However, in the ILA architecture, it is challenging to satisfy both the 

controllability of the inputs and the observability of the outputs in each BUT. For 

example, consider the testing of LUTs using the ILA architecture as shown in Figure 2.8. 

Each LUT has six inputs and only one output; therefore, each LUT can control only one 

input of its successor. In one approach [14], a common shared bus was used to provide 

the remaining inputs to each LUT. Because of the global nature of the shared bus, this 

approach also had the similar routing problems as discussed in the previous BIST 

architecture.  

 

(a) ILA formation using shared bus  (b) Fault masking in ILAs 

Figure 2.8: An Example of fault masking in an ILA with shared bus  

 
Another problem with the ILA architectures that uses the shared bus is fault 

masking. For example, while testing the LUTs using the shared bus as shown in Figure 

2.8, the LUTs are configured to implement XOR function of its inputs [15]. Consider that 

input A[5:1] is set to 5’b00000, and input A[0] is set to 1’b0. In an ideal case, the output 

of both of the rows in the ILA is a logic-0, and, hence, the ORA finds equal response 

from both of the rows. However, consider a fault on the shared bus as shown in Figure 
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2.8(b). Such a fault can occur, if a switch in the switch matrix that connects two wires has 

a stuck-at-1 fault. Because of this fault, the subsequent LUTs in the first row will have 

their input A[5:1] as 5’b00001. The output of each LUT is also shown in the figure. It can 

be seen that even in the presence of this fault, the output of the first row is still a logic-0, 

and hence, the fault on the shared bus is not visible to the ORA. Huang et al. [16] used 

the XOR based tree as an local ORA to compare the output of two adjacent BUTs, and to 

propagate the faulty response. However, this technique also used shared bus, and requires 

an additional test session in which the roles of the local ORA and the BUTs is swapped.  

Stroud et al. [3] reduced the number of shared (global) inputs in the ILA by using 

an extra helper cell for each CLB. The function of the helper cell is to provide missing 

inputs to the intermediate BUTs in the ILA. Multiple 1-D ILAs were created, and each 

ILA spanned across a single row of the FPGA as shown in Figure 2.9(a) (Figure is taken 

from [3] for illustration). Each of the ILAs is provided an input by the TPGs that are 

implemented at the edge of the FPGA. The output of two identical ILA rows is compared 

in the ORA in order to identify the presence of a fault. This architecture requires at least 

two test sessions to test all of the CLBs in the device because in a single test session, half 

of the CLBs have to be configured as the helper CLBs. The actual work used an 

additional third test session to test the TPGs and the ORAs. The floor plan used in each of 

these test session is shown in Figure 2.9(b). 
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(a) ILA formation with helper cell 

 

 

(b) Floor-plan of different test sessions 

Figure 2.9: ILA formation using helper cells. Stroud C., Lee E., Konala 

S., Abramovici M., “Using ILA testing for BIST in FPGAs,” in proceedings 

of International Test Conference, 1996. Used under fair use, 2015. 

 
In another approach [17] to test the CLBs, the FPGA is configured as an ILA 

multiplier, and then pseudo exhaustive test patterns were applied to the ILA. This model, 

however, is not a directed test, and could provide only limited fault coverage in the 

CLBs. Huang and Lombardi [18] configured the FPGA as multiple parallel 1-D ILAs, 

and then used different configurations to test the different modes of the CLBs. This 

method used the external test vectors, and, hence, the test is suitable on the systems 

where the environment to provide the external test vector to the FPGA exists. 
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Chapter 3  

System Overview and BIST Architecture 

This chapter provides the high-level overview of the test design process. First, the 

system-level overview of the test setup is discussed in detail. The later sections in this 

chapter provide an overview of the BIST architecture that is used to design the test. The 

detailed discussion of the BIST architecture provides the necessary background to 

understand the BIST configurations that are discussed in later chapter. 

3.1 System Overview 

Figure 3.1 shows the system-level diagram of the test setup. A limited number of 

assumptions are made in order to maximize the applicability of the test. The test assumes 

that there exists an external programming agent, referred to as a Host, to administer the 

test. The host needs to have some kind of configuration connection to the FPGA 

configuration port. The configuration ports supported by this project are SelectMAP and 

JTAG. The host doesn’t need any other connection to the FPGA and the FPGA should 

also not have any special connection except a properly connected power supply. 
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Figure 3.1: System-level diagram of test setup 

 
The primary objective of the system design is to eliminate the need for using user 

I/O pins, such as a clock, a reset, and test observation pins, to perform the test. By 

eliminating the need for user I/O pins, the test can be immediately deployed on already 

in-use systems that don’t have the user I/O pins available for implementing the BIST 

environment. All of the test administration tasks are performed through the FPGA 

configuration interface. The required signals to administer the test are derived through 

STARTUPE2 hardware primitive provided by Xilinx [19]. This primitive provides an 

interface between the user logic and the FPGA configuration control and status signals. 

The internal ring oscillator present in the FPGA configuration block provides a 65MHz 

internal clock on CFGMCLK pin of the STARTUPE2 primitive. This clock is used as the 

primary clock for the entire test.  

Final result of the test indicates if there exists a fault in the FPGA or not; 

therefore, it can be stored in only a single bit. The DONE bit of the FPGA status register is 

“hacked” for this purpose. During the normal operation of the FPGA, the DONE bit is 

controlled through the FPGA configuration control logic, and it goes high to indicate that 
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the configuration process has completed successfully. However, the STARTUPE2 

primitive provides a way to control this bit through the user logic instead of the 

configuration control logic. The USRDONETS signal on the STARTUPE2 controls the 

driver for the DONE bit. If the USERDONETS signal is driven active-high, then the value 

of DONE is controlled through the configuration logic. If the value of USERDONETS is 

set to active-low, then the value of DONE is controlled through the user logic. To write 

the test result into the DONE, the value of USERDONETS is kept active-low, and the test 

result is written through the USERDONEO signal. The value of DONE bit is visible in the 

FPGA status configuration register. This register can be read through the configuration 

interface as shown in Figure 3.1. 

3.1.1 Host 

The host is responsible for administrating the entire test. The host can be an external 

agent such as a PC with JTAG cable or it can also be an internal agent such as the ARM 

core (running Linux) in Zync-7000 series. 

The host should have following capabilities: 

• Need access to external storage of enough capacity to store BIST configuration 

bitstreams for each FPGA (the configuration bitstreams are pre-computed off-line, 

so the host does not need to be capable of executing any significant EDA 

software). The current storage requirement is in the range of mega-bytes, 

depending on the size of the target FPGA. 

• Have access to an API controlling the FPGA configuration port.  The following 

are the minimum requirements: 
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o bool DownloadBitstream(filename): this should be able to 

download a bitstream and indicate when the bitstream has started up.  

o word ReadStatusRegister(): this should be able to read (poll) the 

STATUS configuration register (register 0x7). Only the DONE bit is 

actually needed.  

o ReadBack(): this capability is required for fault isolation. This is 

discussed in detail in Chapter 5. 

3.1.2 Test Procedure 

The host initiates the test and it performs the following sequence of steps on each BIST 

configuration bitstream. 

1) The host programs the FPGA with the BIST configuration bitstream using the 

configuration interface and DownloadBitstream(filename)API.  

2) The test runs for a short duration and the test result is written into the FPGA status 

register. 

3) The host uses ReadStatusRegister()API to read back the test result through 

the configuration interface. 

4) If a fault is found in Step-3, then the host performs fault isolation. The host reads 

back the state of the FPGA configuration memory using ReadBack() API, and 

further analyzes the captured state to narrow down the fault location. 

All of the BIST configurations are pre-computed using a script, and are stored in 

external memory. The script takes the FPGA part name and the rectangular coordinates as 

the input parameters, and then generates all of the required BIST configurations to test all 
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of the CLBs within the specified rectangular area. Chapter 4 discusses the details of each 

BIST configuration, and Chapter 6 discusses the script that generates the BIST 

configurations.  

3.2 BIST Architecture 

The primary objective of the project is to create the BIST environment for Xilinx 7-Series 

devices. However, the BIST architecture has been selected in such a way that it can be 

easily extended to any other Xilinx device. The term BIST architecture in abstract terms 

refers to the arrangement and the interaction between TPGs, BUTs and ORAs. The 

selection of the BIST architecture is an important aspect of the design because it 

determines the number of test sessions to test the entire FPGA and the scalability of the 

test. If the BIST architecture is designed such that only some fraction of the CLBs can be 

tested simultaneously [3], then the FPGA has to be tested in multiple test sessions, in 

which each test session tests the different subset of the CLBs. As a result of this, both the 

test time and the external memory to store the BIST configuration bitstreams are 

multiplied by the number of test sessions, and, hence, one factor that affected the 

selection of the BIST architecture was to minimize the number of test sessions.  

Different Xilinx devices contain different number of CLBs; therefore, the 

scalability of the BIST architecture is an important factor in order to ensure the versatility 

of the test. Scalability is largely dependent on the routing complexity of the BIST 

configurations; therefore, the BIST architecture should be designed in such a way that the 

routing complexity is reduced as much as possible. Another desired property for the 

FPGA BIST is to test the maximum possible number of the CLBs simultaneously. This 
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means that the usage of the CLBs in a typical BIST configuration should be maximum, if 

possible 100%. Routing of such a resource rich design is a significantly difficult task. 

Moreover, in order to leverage the capabilities of the router provided by the Xilinx in 

their PAR tool, the behavior of PAR was studied [20]. While discussing the routing 

resources in Section 2.1.2, it was highlighted that the single, double, quad and hex wires 

increase in proportion to the number of CLBs in the device. It was found that the 

numbers of single, double, quad and hex wires that originate from a switch matrix are 36, 

32, 8 and 24 respectively. A simple experiment was carried out to understand how the 

length of the wire impacts the routability. In the first phase of the experiment, a large 

number of nets were created between every two successive CLBs in the FPGA. By doing 

so, the usage of single wires can be maximized during the routing. Similarly in the 

second phase of the experiment, the nets were created between the pair of CLBs, which 

are at a distance of two CLBs, to study the impact of the double wires on the routing. In 

this way, the impact of using the different wires of different lengths on the routability was 

studied. It was observed that while routing the design with longer nets the router takes 

more time when compared to routing the design with shorter nets. By this study, it was 

found that by maximizing the usage of the single and the double wires, the routing 

complexity could be reduced considerably.  

Another aspect that affects the routing complexity is the average fan-out in the 

design. It was shown[3][21] that high fan-out requirement on a single TPG affects the 

routability of the design. In order to simplify the routing problem, the average fan-out in 

the design should be reduced as much as possible [20]. 
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3.2.2 Phases of Test  

As discussed in Chapter 2, the CLBs in Xilinx FPGA consist of basic logic elements 

namely LUTs, multiplexers and flip-flops. Different logic elements are tested in different 

phases of the test as follows: 

 

Figure 3.2: Different phases of testing 

 
1) LUT testing: All memory locations, input address pins, and output pin O6 of the 

LUTs are tested for a stuck-at-1 and a stuck-at-0 fault during this phase. Any fault 

in the address decoder logic of the LUT is also covered during this phase. No 

other component in the CLB is used while testing the LUTs, i.e. the output of the 

LUT is not propagated through any other component in the CLB. 

2) Testing of multiplexers, flip-flops and XOR gate: All inputs, outputs, and 

selection channels of various multiplexers are tested in this phase. All of the gate-

level faults in the multiplexers are also covered during this phase. During this 

phase, the LUTs that have been found to be fault free are used to test the 

multiplexers, flip-flops, and XOR gate. 
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3) RAM testing: A subset of SLICEs, typically one-third of the total SLICEs [6], has 

capability to use their LUTs as distributed RAM. These SLICEs are known as 

SLICEMs. The RAMs are tested using MARCH test sequences [22]. The logic 

resources that are found to be fault free in the previous two phases are used as the 

complementary resources while testing the RAMs. 

4) Shift-register testing: The shift-register functionality of the SLICEMs is tested in 

this phase. 

 Phase 1 and Phase 2 use the ILA architecture in order to test all of the SLICEs in 

the device in a single test session. The ILA architecture is not suitable for error 

propagation while testing the RAMs; therefore, the RAMs are tested using another 

architecture, referred to as Distributed TPG Architecture. The following sections provide 

the details of each of the architectures. 

3.2.3 ILA Architecture 

The primary reason behind selecting the ILA architecture is to reduce the problem of 

routing congestion. It was discussed in Chapter 2 that the BIST architecture using the 

global TPG cannot test all of the CLBs in the device in a single test session due to the 

routing congestion problem. The regular arrangement of the CLBs and the switching 

matrices in the FPGA provides an excellent opportunity to make the maximum use of the 

local routing resources present between the two adjacent CLBs rather then relying on the 

global routing resources. All of the CLBs within the device are cascaded as shown in 

Figure 3.3 to form the Iterative Logic Array (ILA). The TPG provides the input to only 

the first CLB in the ILA, and the output of each CLB is provided as the input to its 



Harmish	
  Rajeshkumar	
  Modi	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Chapter	
  3.	
  System	
  Overview	
  and	
  BIST	
  Architecture	
  

 27 

adjacent CLB. The adjacency between the CLBs is measured by the connectivity between 

them. The study of the routing resources reveals that the two successive CLBs in the 

same column have the maximum connectivity, and, hence, the successive BUTs in the 

ILA are always placed in the column first order. 

 

Figure 3.3: 2-D ILA architecture 

 

 In order to cascade the CLBs, the output bus width of one CLB should match the 

input bus width of its successor CLB. However, each CLB has a different number of 

output pins as compared to the number of input pins [6]. To combat this problem, in each 

configuration, a subset of input lines and a subset of output lines are selected such that 

the output bus width of the CLB matches the input bus width of its successor CLB. The 

rest of the inputs of the CLB are tied to either a local GND or to a local VCC. It is found 

that each switching matrix contains a TIEOFF site that can provide both the GND and the 

VCC connections to the adjacent CLB. By selecting the different subset of inputs in each 

configuration, the different subsets of logic nodes within the CLB are tested in each 

configuration. A set of BIST configurations cumulatively tests all of the logic nodes 

within the CLB. The inputs, which are propagated from the predecessor CLB, are 
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referred to as non-controlled inputs. The rest of the inputs, which are statically tied to a 

logic-1 or a logic-0, are referred to as controlled inputs. This is explained by an example 

in Figure 3.4. By selecting the subset of inputs (AX, BX, CX and DX) and the subset of 

outputs (AO, BO, CO and DO), the input bus-width is kept same as the output bus-width. 

By doing so, the ILA can be formed by connecting the outputs AO, BO, CO and DO of 

one SLICE to the inputs AX, BX, CX and DX respectively of its successor SLICE. In 

this way, the AX, BX, CX and DX inputs of the SLICE (abstract view of Figure 2.3) are 

the non-controlled input, and all other inputs A[5:0], B[5:0], C[5:0] and D[5:0] are the 

controlled inputs.  

 

Figure 3.4: Example of controlling and non-controlling inputs 

 
Another important challenge with the ILA architecture is to propagate a fault to 

the ORA without masking it. The non-controlled and the controlled inputs are selected 

such that the possibility of masking a fault that is propagated from the predecessor CLBs 

is eliminated. Once the CLBs are cascaded, then the final output response of the ILA is a 

cumulative function of all of the individual functions that are implemented in each of the 

CLBs. To simplify the design of the ORA, each CLB in the ILA is constrained to 

implement the identity function. The implementation of the identity function in each CLB 

is discussed in detail in Chapter 4 while discussing the BIST configurations. In the above 
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example, the multiplexers are configured to pass the inputs AX, BX, CX and DX to the 

outputs AO, BO, CO and DO respectively, and, hence, the SLICE implements the 

identity function. In order to eliminate the masking of a fault in the multiplexers, the 

inputs A[5:0], B[5:0], C[5:0] and D[5:0] are tied to a VCC or a GND in such a way that 

the inactive input of the multiplexers is set to a logic-1. By keeping the inactive inputs of 

the multiplexer to a logic-1, the masking of a fault in the multiplexer can be eliminated. 

This is also shown in Chapter 4 (Section 4.2.1). 

Once all of the CLBs are configured to implement the identity function, the final 

response of the ILA should be same as the input applied to the first CLB in the ILA. In 

such cases, the presence of a fault can be identified by comparing the final ILA output to 

the input provided by the TPG. This means that the ORA can simply be implemented as a 

comparator. The input vectors required in each BIST configuration are generated using 

an up counter. The TPG and the ORA are implemented in embedded DSP resources, and, 

hence, no CLBs are used to implement the TPG and the ORA. This way, all of the CLBs 

in the device can be tested in a single test session. The ILA architecture brings the 

following improvements as compared to the previous approaches: 

• Eliminate the helper CLBs for the ILA formation. This way, the separate test 

session required for testing the helper CLBs is completely eliminated. 

• Enables fault isolation in the ILA architecture. 

• Provide the ILA formation for the state of the art Xilinx FPGAs.  

• The previous ILA approaches used multiple 1-D ILAs, each implemented in the 

separate row of the FPGA. As a result of this, the architecture required multiple 

TPGs to provide inputs to each of the ILA and multiple ORAs to validate the 
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output of each row. As a significant amount of logic resources has been used as 

the TPGs and the ORAs, a separate test session was required to test the TPGs and 

the ORAs in previous ILA based approaches. The ILA presented in this thesis 

builds a single 2-D ILA. This means that only a single TPG and ORA are 

required, and, hence, the logic resources required to implement the TPG and the 

ORA are minimized. Moreover, the input vectors in all of the BIST configurations 

can be derived using an up counter. Each of the TPG and the ORA is 

implemented in a single DSP resource, thereby eliminating the separate test 

session to test the CLBs occupied by the TPG and ORA. 

• Although this project doesn’t use any of the user I/O pins, by implementing a 

single ILA, the total I/O pin count of an ILA can also be minimized. If multiple 1-

D ILAs are created, then the total pin count multiples by the number of ILAs 

when compared to the pin count in the case of a single ILA. Minimizing the pin 

count can be useful in situations, where the TPG and the ORA are implemented in 

the embedded processor such as the one available in Zync-7000 series FPGAs.  

3.2.4 Distributed TPG Architecture 

The distributed TPG architecture is used to test RAMs that are present in a subset of 

SLICEs, known as SLICEMs. Xilinx specifies that the RAM functionality is usually 

available in only one-third of the total SLICEs. It was also found that these RAMs are 

distributed in the FPGA, and are not clustered over the particular area of the FPGA. That 

is the reason these RAMs are sometimes referred to as distributed RAMs in FPGA 

literature.  
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Figure 3.5: BIST architecture to test distributed RAMs 

 

The SLICEs that don’t have the capability to configure their LUTs as the RAM, 

and have already been tested by the ILA architecture are used to build multiple 

distributed instances of the TPGs as shown in Figure 3.5.  Each TPG provides the 

required vectors to test the distributed RAMs. Each TPG is used to provide inputs to only 

the RAMs in the adjacent column as shown in Figure 3.5. The outputs of two RAMs, 

which are provided the input vectors by the same TPG, are compared with each other in 

an adjacent SLICEL in the same CLB. Such a comparator can easily be implemented in 

the adjacent SLICEL in the same CLB as shown in Figure 3.6.  Multiple configurations 

are used in order to test each mode of the RAM in a separate configuration.  

 

Figure 3.6: Arrangement of TPG, RAMs and local ORAs in FPGA columns 
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3.2.5 BIST Architecture for Shift-registers 

The LUTs in the SLICEMs can be configured as a shift-register in addition to distributed 

RAM. All of the shift-registers can be cascaded in order to implement a longer chain of 

shift-registers. To verify the shift-register mode, the FPGA is divided into two regions. 

All of the shift-registers in each region are cascaded to form a long circular chain of the 

shift-registers, and this way, two long circular chains of the shift-registers are created. 

Each chain is initialized with the alternate 1s and 0s bit-pattern (1010…) in the 

configuration bitstream. During the test, both of the chains are provided same clock 

signal, and the 0th bit of both of the chains is compared with each other as shown in 

Figure 3.7. If the test runs for enough time, then any fault present in the chain should 

eventually be observed at the bit-0. If the ORA finds unequal values in the 0th bit of both 

of the chains in any clock cycle, then it is identified as the presence of a fault. 

 

Figure 3.7: BIST architecture to test shift-registers 
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Chapter 4  

BIST Configurations 

This chapter provides the details of the BIST configurations that are used to test the 

FPGA. The necessary conditions to test all of the logic nodes within the CLB are 

illustrated, and the necessary input vectors in order to meet those conditions are also 

discussed.  

4.1 LUT Testing 

LUTs are used to implement the combinational logic functions in the FPGA SLICEs. 

Each LUT in Xilinx 7-Series FPGAs has six inputs. Internally, the 6-input LUT is 

implemented as two different 5-input LUTs, and, hence, each LUT can implement either 

a combinational function of six variables or two independent combinational functions of 

five variables.  

Figure 4.1 shows the gate-level logic diagram of the 4-input LUT. The example of 

the 4-input LUT is discussed for illustration purpose, and later, the reasoning can be 
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extended for the LUTs with any number of inputs. The LUT contains memory cells and 

address decoder logic, and accordingly, the faults in the LUT can be classified into the 

faults in the memory cells and the faults in the address decoder logic. 

 

Figure 4.1: Gate-level logic diagram of the 4-input LUT 

4.1.1 Faults in Memory Cells 

In order to test a memory cell, the memory cell is programmed to a logic-0 or a logic-1, 

and then, the memory cell is readback to check if it contains the correct value or not. In 

order to test all of the LUTs in the FPGA simultaneously, the LUTs are cascaded to form 

an ILA. However, the cascading of the LUTs in an ILA is not straightforward because the 

LUT has different number of input pins as compared to the number of output pins. For 

example, the 4-input LUT has four inputs and one output. In order to cascade the multiple 

LUTs in an ILA, four LUTs are grouped together to form a BUT. The output of each 

LUT in the BUT is used to form an output bus of width four, which can be connected as 



Harmish	
  Rajeshkumar	
  Modi	
   	
   Chapter	
  4.	
  BIST	
  Configurations	
  

 35 

the input to its successor BUT as shown in Figure 4.2(b). The input of the BUT is shared 

across all of the LUTs in the BUT.  

  

(a) Individual LUT in a BUT          (b) Cascading of the LUT in an ILA 

Figure 4.2: ILA formation for LUTs 

 
The LUTs in a BUT are programmed in such a way that the BUT implements the 

identity function. In the example of the 4-input LUT, four LUTs can be programmed as 

follows such that the output of the BUT is similar to the input applied to the BUT.  

O(i) = A[i], 0 <= i <= 4 

where, O(i) refers to the output of ith LUT in a BUT 

 A[i] refers to the ith input to the BUT 

These functions can be interpreted like this: If the input 4’b0000 is applied to the 

LUT, then the 0th memory location in each LUT is selected. In order to get the output of 

the LUT as 4’b0000, the 0th address location of each LUT should be programmed to a 

logic-0. This reasoning can be applied for each memory location in the LUTs, and the 

value of each memory location in the LUTs can be found. The LUT content for the above 

functions is specified in Table 4.1. 
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Table 4.1: Content of the LUTs in a BUT to implement the identity function 
LUT 
address 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

LUT-0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
LUT-1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
LUT-2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
LUT-3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
 

The identity function covers either a stuck-at-0 or a stuck-at-1 fault in each 

memory location of the LUT, but it doesn’t cover both the faults. For example, the 

identity function can activate only a stuck-at-1 fault in the 0th memory location of each 

LUT, but it can’t activate the other fault in the 0th memory location. To test the alternate 

fault in each memory location of the LUT, the LUTs are programmed in such a way that 

each BUT implements the complement function. After implementing the complement 

function, if the input address 4’b0000 is applied to the LUTs, then the 0th memory 

location of each LUT is selected. In order to get the output of the BUT as 4’b1111 

(complement of the 4’b0000), the 0th memory location of each LUT should be 

programmed as a logic-1. Table 4.2 specifies the contents of the LUTs in a BUT to 

implement the complement function. 

Table 4.2:  Content of the LUTs in a BUT to implement the complement function 
LUT 
Address 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

LUT-0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
LUT-1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 
LUT-2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
LUT-3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
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4.1.2 Faults in Address Decoder Logic 

If there exists any fault on the output of the NOT gate in the address decoder, then it can 

be thought as the presence of a fault on the input of the AND gate. On the other hand, if 

there exists a fault on the input of the NOT gate, then it can be thought of as an opposite 

fault on the input of the AND gate. The faults in the AND gate and OR gate are discussed 

below. 

Stuck-at-0 fault: 

If there exists a stuck-at-0 fault in the address decoder logic (AND gates or OR 

gate), then the output of the LUT will be a logic-0 even when a memory location with 

data as a logic-1 is selected. Referring to Figure 4.3, consider the LUT-0 in a BUT that is 

configured to implement the identity function. If the gate-1 has a stuck-at-0 fault on any 

of its selection line, then it will be observed when the input vector 4’b0001 is applied to 

the LUT. In this case, the gate-1 will never be enabled, and, hence, the output of the LUT 

will be at a logic-0 even the data input of the gate-1 is set to a logic-1.  

 

Figure 4.3: Stuck-at-0 fault in the address decoder logic of the LUT 
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Stuck-at-1 fault: 

If there exists a stuck-at-1 fault in the OR gate, then the output of the LUT will be 

a logic-1 for all input vectors even when the memory location with the data as a logic-0 is 

selected by the input vector; therefore, a stuck-at-1 fault on the inputs and the output of 

the OR gate becomes observable.  

Observing a stuck-at-1 faults on the selection lines of the AND gates is slightly 

complicated. This becomes clearer with the following example. Figure 4.4(a) shows the 

logic diagram of the LUT-0 in a BUT that is configured to implement the identity 

function. In this case, an ideal output of the LUT should be a logic-0 when the input 

address 4’b0000 is applied to the LUT-0. Assume that there exists a stuck-at-1 fault on 

the selection line-1 of the gate-2 as shown in Figure 4.4(b). If the input 4’b0000 is 

applied to the LUT, then both the gate-0 and the gate-2 will be enabled. The output of the 

LUT has to deviate from an ideal value (logic-0) in order to observe the effect of fault 

that is present on the gate-2. However, as the data inputs of both the gate-0 and the gate-2 

are configured as a logic-0, the output of the LUT will not deviate; therefore, the fault is 

not observed. 

The important thing to notice here is that if there exists a stuck-at-1 fault on the ith 

selection line of any AND gate, then it would result in enabling another gate, which is at 

the distance of 2i from the selected gate, simultaneously. This is because in the input 

vector designated as {bit-3, bit-2, bit-1, bit-0}, if there exists a fault in ith position, then it 

will result in another input vector, which should be at the distance of 2i from the original 

input vector. In the above example, the selection line-1 (i = 1, bit-1 in the input vector) of 

the gate-2 has a stuck-at-1 fault, and, hence, the gate-2, which is at a distance of 2 (2i = 
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21) from the gate-0, is also enabled when the input vector 4’b0000 is applied. In order to 

observe the effect of the fault in this case, the gate selected by the input vector (gate-0) 

should have the data input as a logic-0, whereas the gate enabled because of the fault 

(gate-2) should have the data input as a logic-1.  

 

 

(a) Fault free LUT  (b) stuck-at-1 fault on the selection line-1 of gate-2 

Figure 4.4: Detection of a stuck-at-1 fault in the address decoder logic 

 

If the pattern in the data inputs of the LUT-0 is observed in both of the 

configurations that implements the identity and the complement function, then it will be 

found that the data inputs of the alternate AND gates (distance of 1) have opposite values. 

This means that any stuck-at-1 fault on the selection line-0 (2i =1 à i=0) of any AND 

gate in the LUT-0 will be visible. Similarly, in the LUT-1, the data inputs of the AND 

gates, which are at distance of 2, have opposite values. As a result, any stuck-at-1 fault 

present on the selection line-1 of any AND gate would be visible in the LUT-1. The same 

reasoning can be extended to all of the four LUTs. In order to test a stuck-at-1 fault on all 
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of the selection lines of all of the AND gates in all of the LUTs, the LUT functions are 

swapped among themselves as shown in Table 4.3.  

Table 4.3: Swapping of the LUTs in a BUT to cover the faults in address decoder logic 
Configuration LUT-0 LUT-1 LUT-2 LUT-3 
1 Distance-1 Distance-2 Distance-4 Distance-8 
2 Distance-2 Distance-4 Distance-8 Distance-1 
3 Distance-4 Distance-8 Distance-1 Distance-2 
4 Distance-8 Distance-1 Distance-2 Distance-4 
 

A total of 8 configurations (4 for identity functions and 4 for complement 

function) are needed in order to test all of the faults in the gate-level circuit of the LUT. 

For the LUT with n-inputs, a total of 2n configurations are needed to test all of the gate-

level faults in the LUT.  

4.2 Testing of Multiplexers, Flip-Flops and XOR gate 

Testing of the multiplexer, flip-flops and XOR gate is carried out by creating a data path 

through these components, and then by exciting the data path to a logic-0, and then to a 

logic-1. The data paths of one SLICE are cascaded to the other SLICE in order to form an 

ILA.  

4.2.1 Necessary Conditions to Test Multiplexer 

Usually, the multiplexer is thought of as a switch that can connect any of its input to the 

output depending on the values of the selection lines. Testing a multiplexer by enabling 

one data path through the multiplexer at a time, and then by toggling the data path 

between a logic-0 and a logic-1 is incomplete for testing the gate-level model of the 

multiplexer. Consider a gate-level model of the multiplexer, as shown in Figure 4.5(a). 
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Assume that there exists a stuck-at-1 fault on the selection line of the multiplexer as 

shown in the figure. In the presence of this fault, both the data paths will be enabled 

simultaneously, however, if the input I1 is kept to a logic-0, then the fault on the selection 

line is not visible to the output of the multiplexer. In order to detect the fault on the 

selection line, the active input I0 has to be kept to a logic-0, and the inactive input I1 has 

to be kept to a logic-1. By dong so, the output Y of the multiplexer would be at a logic-1, 

whereas in an ideal case, the output Y should be a logic-0, and, hence, the fault becomes 

visible in the multiplexer output. A stuck-at-0 fault on the input line or any of the 

selection line of any AND gate will be observable when the AND gate is selected by the 

selection lines and the input line is set to a logic-1 as shown in Figure 4.5(b). In general, 

while testing a data path through the multiplexer, all inactive inputs of the multiplexer 

should be kept to a logic-1 in order to cover the faults on the selection lines of the 

multiplexer. By testing all data paths through the multiplexer one after one, and by 

keeping the inactive inputs to a logic-1, all of the faults in the gate-level model of the 

multiplexer can be tested.  

   

 (a) Stuck-at-1 fault     (b) Stuck-at-0 fault 

Figure 4.5: Detection of a fault on the selection line of the multiplexer 
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4.2.2 ILA Formation for Data paths 

Each SLICE is used to form a BUT in an ILA. As discussed in Chapter 3, in each BIST 

configuration, a subset of inputs, a subset of outputs and a subset of logic nodes are 

selected from the SLICE to form the ILA. Consider one of the configurations as shown in 

Figure 4.6. The outputs {DO, CO, BO, AO} forms the output bus, which is connected as 

the common input address (A[3:0]) to all of the LUTs in the successive BUT. These 

connections are symbolically represented as follows. 

S0(AO) à S1(A/B/C/D[0])  

S0(BO) à S1(A/B/C/D[1]) 

S0(CO) à S1(A/B/C/D[2]) 

S0(DO) à S1(A/B/C/D[3]) 

The first line can be interpreted as: AO pin of SLICE S0 is connected to the 

address pin-0 of all of the LUTs in successor SLICE S1. 

 

Figure 4.6: ILA formation for data path testing. Xilinx Inc., “7 Series FPGAs 

Configurable Logic Block User Guide, UG474 (v1.7),” November 17, 2014. 

Used under fair use, 2015. 



Harmish	
  Rajeshkumar	
  Modi	
   	
   Chapter	
  4.	
  BIST	
  Configurations	
  

 43 

Each BUT in an ILA is constrained to implement the identity function in a fault 

free condition. The data paths in the SLICE originate either from the DX, CX, BX and 

AX lines or from the LUT outputs. If the data paths are originating from the DX, CX, BX 

and AX lines, then implementing the identity function is straightforward. In this case, the 

inputs can simply be propagated to the output pins by just enabling the appropriate inputs 

of the multiplexers as shown by the highlighted path (in thick black) in Figure 4.7. 

 

Figure 4.7: Testing of the data path that doesn’t involve the LUT. Xilinx Inc., 

“7 Series FPGAs Configurable Logic Block User Guide, UG474 (v1.7),” 

November 17, 2014. Used under fair use, 2015. 

 

If the data paths are originating from the LUT outputs, then the output of the 

predecessor SLICE can be connected as the LUT inputs in its successor SLICE, and then 

the LUTs can be constrained such that the SLICE implements the identity function. It 

should be noted that the LUTs have already been independently tested in the Phase-1, 

and, hence, the LUTs can be used to implement any functions. One such example is 

shown in Figure 4.6. The LUT functions that implement the identity function in the 

SLICE are as follows. 
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LUT-A: O6 = A[0] //A[0] is the address pin-0 of the LUT-A 

LUT-B: O6 = B[1] //B[1] is the address pin-1 of the LUT-B 

LUT-C: O6 = C[2] //C[2] is the address pin-2 of the LUT-C 

LUT-D: O6 = D[3] //D[3] is the address pin-3 of the LUT-D 

Here, the LUTs are simply configured as a pass-through. As there are only four 

propagated outputs and there are four LUTs in the successor SLICE, each LUT can act as 

a pass-through for one of the propagated outputs from its predecessor SLICE. By doing 

this, only one data path in the SLICE is tested at a time, and, hence, the total number of 

configurations required to test the SLICE is equal to the total number of data paths in the 

SLICE.  

4.2.3 Input Vectors 

To test a data path, the data path has to be toggled between a logic-0 and a logic-1. As 

circuits A, B, C and D are configured identical and are tested in parallel, all of them can 

be applied the similar input vectors simultaneously, i.e. all of the configured data paths 

can be excited by a logic-0, or a logic-1 at a time. That means that the input vectors 

4’b0000 and 4’b1111 should be used to test the data paths. However, these vectors are 

not sufficient to test the vertical multiplexers, in which one of the inputs comes from the 

other circuit. One such example is shown in Figure 4.8. Consider the highlighted 

multiplexer in the figure. It was earlier discussed in Section 4.2.1 that in order to test a 

particular data path for a logic-0 through the multiplexer, the inactive inputs of the 

multiplexer should be kept to a logic-1. The inactive input of the vertical multiplexer in 

any circuit comes from the circuit below it. In this example, the inactive input for the 

multiplexer in the circuit B comes from the circuit A (indicated by green line), and, 
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hence, the circuit A and the circuit B should be tested by the input vectors which have 

opposite values. In other words, while testing the circuit B with a logic-0, the circuit A 

has to be tested by a logic-1. By this reasoning, the alternate circuits in a SLICE should 

be tested with the input vectors of opposite values, and, hence, the input vectors 4’b0101 

and 4’b1010 are selected for testing the horizontal and vertical multiplexers. While 

testing the data paths that originate from the LUTs, the alternate LUTs in the SLICE 

should output the opposite values for the given input to the LUTs. 

 

Figure 4.8: Testing of the vertical multiplexer. Xilinx Inc., “7 Series FPGAs 

Configurable Logic Block User Guide, UG474 (v1.7),” November 17, 2014. 

Used under fair use, 2015. 

4.2.4 Merging Two Configurations 

In order to reduce the total number of configurations, two data paths are tested 

simultaneously. If only a single data path is tested at a time, then only one output from 

the circuits A, B, C and D is propagated to the next SLICE. However, each circuit has 
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two independent outputs that can be propagated to the next SLICE; therefore at most two 

data paths from each circuit can be tested simultaneously. Consider an example as shown 

in Figure 4.9. Instead of testing the output O6 from AOUTMUX and AFFMUX 

separately in two configurations, both of them can be tested simultaneously. The new 

connections between the two successive SLICEs can be described as follows. 

S0(AO, AF) à S1(A/B[0], C/D[0]) 

S0(BO, BF) à S1(A/B[1], C/D[1]) 

S0(CO, CF) à S1(A/B[2], C/D[2]) 

S0(DO, DF) à S1(A/B[3], C/D[3]) 

 

 

Figure 4.9: Testing of two data paths in a single configuration. Xilinx Inc., 

“7 Series FPGAs Configurable Logic Block User Guide, UG474 (v1.7),” 

November 17, 2014. Used under fair use, 2015. 

 
These connections can be interpreted like this. The output AO of the SLICE S0 is 

connected as the common input to the 0th address pin of the LUT-A and the LUT-B 

(A/B[0]) in the successor SLICE S1, and the output AF of the SLICE S0 is connected as 
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the common input to the 0th address pin of the LUT-C and the LUT-D (C/D/[0]) in the 

successor SLICE S1. The required LUT functions are discussed in the next section. 

4.2.5 LUT Functions for Testing Data paths 

If eight outputs from the SLICE are propagated to the next SLICE, then each successor 

SLICE will have eight inputs. However, as there are only four LUTs in the SLICE, the 

LUTs cannot be configured as the pass-through functions as implemented earlier. A 

different function has to be configured into the LUT such that it meets the following 

requirements. 

• Controllability and identity condition: If there doesn’t exist a fault in the 

predecessor SLICE, then the LUTs should provide the same vector from the test 

vector set that the LUTs in its predecessor SLICE used. For example, test vector 

set while testing a configuration as shown in Figure 4.8 is {1010, 0101}. If the 

LUTs in the S0 used the input vector 1010, and if there was no fault, then the 

LUTs in the S1 should also provide the input vector 1010. 

• Observability condition: If there exist a fault in the predecessor SLICE, then the 

LUTs should detect it, and then accordingly should provide the output such that 

the fault is not masked. 

It can be noticed that there are only two input vectors that are needed to test all of the 

data paths, however, each LUT has 64 memory locations. This means that, each LUT can 

implement the conditional functions to meet the above two requirements. In the example, 

as shown in Figure 4.9, the LUTs are configured to implement the comparator as follows. 

The LUT function can be specified as,  
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if (input belongs to the test vector set {0101, 1010}) then 

 the output of the LUT-i should be the ith bit of the input vector 

   else  

 the output of the LUT-i should be a logic-1 

These conditions can be satisfied using the below truth table.  

Table 4.4: Truth table to implement the conditional LUT output 
LUT input Output of each LUT 

A[3] A[2] A[1] A[0] A B C D 
0 0 0 0 1 1 1 1 
0 0 0 1 1 1 1 1 
0 0 1 0 1 1 1 1 
0 0 1 1 1 1 1 1 
0 1 0 0 1 1 1 1 
0 1 0 1 0 1 0 1 
0 1 1 0 1 1 1 1 
0 1 1 1 1 1 1 1 
1 0 0 0 1 1 1 1 
1 0 0 1 1 1 1 1 
1 0 1 0 1 0 1 0 
1 0 1 1 1 1 1 1 
1 1 0 0 1 1 1 1 
1 1 0 1 1 1 1 1 
1 1 1 0 1 1 1 1 
1 1 1 1 1 1 1 1 

  

The idea behind these functions is to pull all of the outputs of the SLICE into all 

1s state once the fault is detected. Ideally, the outputs of the alternate circuits in the 

SLICE should have the opposite values (alternate 1s and 0s bit pattern). At any time a 

fault causes the output of the SLICE to deviate from the ideal bit pattern (alternate 1s and 

0s), then the LUTs in the successor SLICE detects it, and then tries to pull the output of 

the SLICE to all 1s state.  
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Figure 4.10: Configuration with conditional input O6. Xilinx Inc., “7 Series 

FPGAs Configurable Logic Block User Guide, UG474 (v1.7),” November 17, 

2014. Used under fair use, 2015. 

 
Another example is shown in Figure 4.10. In this configuration, the output O6 of 

each LUT is kept to a logic-0, and, hence, the highlighted path is selected. Once the 

highlighted path is selected, the output O5 of the LUT is configured to implement the 

functions that were discussed in the earlier configuration. The outputs O5 and O6 can be 

implemented as the different functions by keeping the A6 pin of the LUT to a logic-1. 

This can be done by connecting the A6 pin of each LUT to the local VCC that is 

available in the TIEOFF site adjacent to the CLB. 

Consider another data path as shown in Figure 4.11. In this configuration, none of 

the LUT outputs is propagated to the SLICE output. However, the LUTs can still be used 

to implement the conditional constraints on the SLICE outputs as follows. 

O5 = 1 (opposite value to the value selected in the PREMUX) 

AX = 1 (opposite value to the value selected in the PREMUX) 

if (input to the LUT is all 0s, i.e. the predecessor output is all 0s) 

 O6 = 1 

else 
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 O6 = 0 

By applying the input to the ILA as all 0s, the highlighted path should be selected, 

and the output of all of the SLICEs should be a logic-0. If there exists a stuck-at-1 fault 

(this configuration can only activate stuck-at-1 fault, because PREMUX is selected to 

output a logic-0, a stuck-at-1 fault is detected by another configuration) in the highlighted 

data path, then it will be observed in the SLICE output. This SLICE output will cause the 

output O6 of the LUTs in the successor SLICE to be a logic-0; therefore, the data path 

with the inactive input of the multiplexer is selected. This data path is set to a logic-1 

because both the O5 and the AX are kept to a logic-1. As a result of this, the outputs of 

all successor SLICEs will be a logic-1, and, hence, the fault can be detected. 

 

Figure 4.11: Testing of data path using conditional LUT functions. Xilinx 

Inc., “7 Series FPGAs Configurable Logic Block User Guide, UG474 (v1.7),” 

November 17, 2014. Used under fair use, 2015. 
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Different configurations have been created, each of which covers a subset of logic 

nodes in the SLICE, to test all of the logic nodes in the SLICE. These configurations can 

be summarized by the MUX settings as shown in Table 4.5. An example of a data path in 

Circuit A of a SLICE using these MUX settings is shown in Figure 4.12. The diagram of 

entire SLICE can be found in [6]. The LUT functions that are implemented in each of 

these configurations are discussed in Appendix A. The input vectors that are required in 

each of these configurations are also specified in Appendix A. 

Table 4.5: Different configurations to test the data paths 
# MUX Settings Connectivity Between Successive SLICEs/ 

Comments C
L
K 

O 
U 
T 

F 
F 

M 
1 

M 
2 

M 
5 

C 
I 
N 

P 
R 
E 

1 0 0 0 X X X X X* S0(AO, AF) à S1(A/B[0], C/D[0])** 
S0(BO, BF) à S1(A/B[1], C/D[1]) 
S0(CO, CF) à S1(A/B[2], C/D[2]) 
S0(DO, DF) à S1(A/B[3], C/D[3]) 

2 1 1 1 X X X X X Same as 1 
3 0 4 4 1 0 X X X Same as 1 
4 1 4 4 X 1 X 0 2* Same as 1 
5 0 4 4 X 1 X 0 1 Same as 1 
6 1 5 2 X X 1 X X S0(AO, BO, CO, DO)à S1(AX, BX, CX, DX) 
7 0 2 3 0 0 X 0 0 Same as 6 
8 1 2 3 0 0 X 0 0 S0(AF, BF, CF, DF)àS1(AX, BX, CX, DX) 
9 0 5 X X X 0 X X S0(AO) à S1(A/B/C/D[0]) 

S0(BO) à S1(A/B/C/D[1]) 
S0(CO) à S1(A/B/C/D[2]) 
S0(DO) à S1(A/B/C/D[3]) 

10 1 5 2 X X 1 X X Same as 8 
11 0 3 5 X X X X X - Same as 1 and AX/BX/CX/DX are tied to 0 

- DOUTMUX and DFFMUX are configured to select input 0 and 
not the one that is specified in MUX settings 

12 1 3 5 X X X X X - Same as 1 and AX/BX/CX/DX are tied to 1 
- DOUTMUX and DFFMUX are configured to select input 0 and 
not the one that is specified in MUX settings 

13 X X X 1 1 X 1 X S0(COUT) à S1(CIN) 
 

*X means MUX is configured to be OFF, any other number means the particular MUX input line of the MUX is selected. 
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** S0(AMUX, AQ) à S1(A/B[0], C/D[0]) can be interpreted as: The output net AO of SLICE S0 is connected to the 0th address bit of 

the A and B LUTs in the successive SLICE S1, whereas the output net AF of SLICE S0 is connected to the 0th address bit of the C and 

D LUTs in the successive SLICE S1. 

*** Shared net is indicated by the symbol ‘/’. For example, C/D[1] means that C[1] and D[1] shares the common net. 

 

 

Figure 4.12: Logic circuit to demonstrate Configuration 3 of Table 4.5. 

Xilinx Inc., “7 Series FPGAs Configurable Logic Block User Guide, UG474 

(v1.7),” November 17, 2014. Used under fair use, 2015. 

4.3 MATS Test Vector Generation for RAM Testing 

The RAMs are tested by multiple distributed TPGs as discussed in Chapter 3. For each 

column of the SLICEMs, there is an adjacent column of the SLICELs available, and this 

column is used to implement the instance of the TPG, which provides the inputs to the 

limited number of the SLICEMs. 

A total of three configurations are required to test different modes of the RAM. In 

each configuration, all of the RAMs are configured in one of the three possible RAM 

modes(32x2 single port RAM, 64x1 single port RAM, 64x1 RAM with one read-write 

port and another read port). For testing the single port functionality of the RAM logic, 
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MARCH X test sequence is used, and for testing the dual port functionality of the RAM 

logic, the dual-port RAM test algorithm [22] is used.  

The outputs of all of the RAMs in the same SLICEM are compared with each 

other in the adjacent SLICE, referred to as a local ORA. As all of the RAMs are 

configured identically, and are provided the identical test vectors, the outputs of RAMs 

should be identical. At any time, if the outputs of the RAM are not equal, it is registered 

as a logic-1 into the local ORA. The outputs of all of the local ORAs is OR together to 

indicate the final result of the test. 
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Chapter 5  

Fault Isolation 

The fault detection process just gives the information about if there exists a fault in the 

system or not, but it doesn’t give any information about the location of the fault. If the 

fault location can be identified, then the proper steps can be taken to avoid the fault. This 

motivation has led to the development of fault isolation process. The modern FPGAs are 

so large in terms of the number of CLBs that the typical designs usually don’t use 100% 

of the CLBs. In such scenarios, if any of the CLBs can be identified to have a fault within 

it, then it can be bypassed in future designs by applying location constraints. As a result 

of this, the FPGA can still work in the presence of a fault. Such systems are known as 

fault tolerant systems. Fault tolerance is an important property for the systems that are 

used in space, aviation, nuclear, and military applications because it is very difficult to 

replace the faulty FPGA in such systems.  

This chapter provides the details of the fault isolation process. The initial sections 

give brief details about some of the hardware primitives, and the procedures that are used 
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to implement fault isolation. The later sections discuss about various ways to identify the 

fault location. 

5.1 System-level Overview 

The fault isolation process that is discussed in this thesis relies on the partial readback 

capability of the FPGA [19], which enables an outside entity to readback the 

configuration memory of the FPGA. The state of all of the flip-flops within the device 

can be analyzed by reading back the configuration memory. If a fault is detected, then the 

signal indicating the presence of the fault (the write signal to the DONE pin) is used to 

de-assert the Clock Enable (CE) signal of the TPG. Once the TPG is shutdown, no new 

input vectors are applied to the BUTs, and, hence, the FPGA remains in the faulty state. 

At this time the state of all of the flip-flops is captured into the configuration memory. 

The state of the flip-flops can be analyzed by reading back the configuration memory, 

and this data are used to determine the location of the fault in the FPGA. Figure 5.1 

shows the system-level diagram of the fault isolation process. 

 

Figure 5.1: System-level diagram for fault isolation 
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5.2 Capturing the State of Flip-flops 

Xilinx provides two ways to capture the state of the flip-flops. These two ways are briefly 

discussed here. The detailed information about these methods can be found in Xilinx 

User’s Guide [19]. 

5.2.1 Using Configuration port Commands 

The state of all of the flip-flops within the device can be readback by applying 

GCAPTURE command to the configuration port of the FPGA. Xilinx FPGA has a CMD 

register (address = 5’b0100) in their configuration port, which can be written using the 

configuration interface such as SelectMAP or JTAG. In order to issue the GCAPTURE 

command, the CMD register is written with the value 5’b01100. In order to execute the 

command that is written into the CMD register, the value in the FAR register (address = 

5’b00001) has to be changed. Once the GCAPTURE command is executed, the state of 

all of the flip-flops will be captured into the configuration memory on the next 

configuration clock cycle. The following sequence summarizes the steps to capture the 

state of the flip-flops. 

1) Write the GCAPTURE command into the CMD register using the 

configuration interface. 

2) Write some dummy address into the FAR register. 

3) FPGA captures the value of all of the flip-flops into the capture cells on the 

next configuration clock cycle. 
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5.2.2 CAPTUREE2 Primitive 

The procedure described in the previous section can also be performed internally within 

the FPGA. The CFG_CENTER_MID tile of each SLR (Super Logic Region) in the 

FPGA contains a CAPTUREE2 hardware primitive. This primitive has two inputs - CLK 

and CAP. An active-high value on the CAP signal indicates that the values of all of the 

flip-flops have to be captured on the next positive edge of the CLK signal. The 

CAPTUREE2 primitive performs essentially the same operations that were described in 

the previous section, but it does it internally within the FPGA without using the 

configuration interface. The capture operation is synchronous to the CLK signal and not 

to the configuration clock. By default, the capture operation is performed on each 

positive edge of the CLK signal until the CAP is asserted. In order to restrict the capture 

operation to a single capture, the ONESHOT attribute of the CAPTUREE2 primitive has 

to be set to TRUE. 

5.3 Extracting Flip-flop Values 

After the flip-flop values have been sampled into the configuration memory, the 

configuration memory has to be read back in order to analyze the values of the flip-flops. 

The actual readback operation involves a specific command sequence as specified in 

Xilinx User’s Guide [19]. Another easy way to readback the configuration memory is to 

use iMPACT utility provided by Xilinx. The following environment variables have to be 

modified in order to perform the readback operation. 

 

XIL_IMPACT_VIRTEX_DUMPBIN=1 

XIL_IMPACT_IGNORE_MASK_FILE=1  
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The readback data from the FPGA has the format as specified in Figure 5.2. The 

bit offset of each flip-flop value from the starting of the readback data has to be known in 

order to determine the flip-flop values. Xilinx specifies the offset of the flip-flop bits 

from the first bit of the configuration data. However, the readback data contains a 

padding frame at the beginning. In order to determine the starting point of the 

configuration data, the length of the padding frame has to be known. Xilinx stopped 

providing the length of the frame starting from 6-Series FPGAs. This information is 

extracted using the following procedure. 

 

Figure 5.2: Format of readback data 

 

The information about the bit-offsets from the first bit of the configuration data is 

present in the .ll file, which can be generated along with the configuration bitstream by 

using –l switch in bitgen utility [23]. One example line from the .ll file is shown below. 

 

Bit 70997347 0x004a011f      3 Block=SLICE_X0Y0 Latch=AQ 

 

This line can be interpreted as: the value of the flip-flop AQ in the SLICE_X0Y0 

is present in a bit, which is at the offset of 70997347 bits from the starting of the 
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configuration data. This bit is part of a frame addressed by 0x004a011f and the offset of 

the bit in the frame is 3.  

If the length of the padding frame is L, then the above bit should be at the offset 

of (L + 70997347) bits from the first bit in the readback data. Two separate experimental 

configurations are created, in which one has the value of the AQ flip-flop in the 

SLICE_X0Y0 set to a logic-1, and in another the value of the same flip-flop is set to a 

logic-0. Each of these configurations is programmed into the FPGA, followed by the 

readback operation. The difference between both the readback data is taken. Ideally only 

one bit should change in both of the configurations, and, hence, the difference should 

indicate the location of the bit from the starting of the readback data. This bit location, 

which differed in both the data, was found to be 71000579th bit in the readback data. This 

means that L + 70997347 = 71000579 bits, and the value of the L is determined to be 

3232 bits. 

5.4 Fault Isolation in ILA Architecture 

All of the BIST configurations in the ILA architecture are designed such that a fault 

always propagates through the flip-flops. Because of the regularity present into the ILA 

architecture, all of the flip-flops should always form a regular pattern in the absence of a 

fault. For example, assume that Configuration 3 from Table 4.5 is in operation. If the 

input vector {1010} is applied to the ILA, then the alternate flip-flops in the ILA should 

have the alternate 1s and 0s bit pattern in the steady state. The term steady state refers to 

the condition reached after waiting long enough so that the effect of the input vector 
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propagates through all of the BUTs in the ILA. The other kind of regular pattern will be 

observed when the other input vector {0101} is applied to the ILA.  

However, if there exists any fault in the ILA, then some flip-flops would deviate 

from the regular pattern. This irregularity in the pattern can be used to narrow down the 

fault location. If there exists a fault at any point and is excited by the input vector, then all 

of the successive flip-flops, to which the fault is propagated, will deviate from the regular 

pattern that their predecessor flip-flops have followed. Moreover, the order of the BUTs 

in the ILA is known; therefore, the first BUT in the ILA order, in which the flip-flop 

values deviated from the regular pattern, can be narrowed down.  

  

  (a) Fault in SLICE S0    (b) Fault in SLICE S1 

Figure 5.3: Similar flip-flop values for different faults 

 
One example is shown in Figure5.3(a). In this configuration, if the LUTs detect a 

fault in their inputs, then the LUTs try to pull the circuit to all 1s state (LUT function as 

specified in Section 4.2.5). Consider that there doesn’t exist any fault in the SLICEs prior 

to the SLICE S0 when the input {D, C, B, A} = 0101 is applied. All of the flip-flops in 

the predecessor SLICEs to the SLICE S0 will have the alternate 1s and 0s bit pattern. 

Next, consider that there exists a stuck-at-1 fault on the BO line of the SLICE S0, then 

this fault will cause the LUT-A and the LUT-B in the successor SLICE S1 to drive a 

logic-1, and, hence, both the A-FF and the B-FF in the SLICE S1 will have a logic-1 
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value. However, there is another possibility that can cause the similar flip-flop signature. 

In the other situation, as shown in Figure 5.3(b), a stuck-at-1 fault on the output of the 

LUT-B in the SLICE S1 can also cause the flip-flops in the FPGA to have the similar 

flip-flop signature. From this example, it can be seen that the location of the fault within 

the FPGA can be narrowed down to the pair of two successive SLICEs, but it cannot be 

narrowed down to a particular SLICE. The modern FPGAs have thousands of SLICEs, 

and, usually not all of the SLICEs are used in the typical FPGA application; therefore, the 

diagnostic resolution of two SLICEs is considered practical enough in the modern 

FPGAs. However, if the finer diagnostic resolution is needed, then the LUTs can be 

configured with other functions. One such function is discussed below. 

In the above example, the fault location cannot be narrowed down to a single 

SLICE because the fault changed the output of only a single flip-flop in the successor 

SLICE. However, if a single fault from the SLICE can cause two flip-flops in the 

successor SLICE to change their values, then the fault can be narrowed down to a single 

SLICE. This can be done using the following LUT functions. The outputs of the LUTs 

are designated as A, B, C and D. Also, the LUTs A, B, C and D are referenced by index-

0, 1, 2 and 3 respectively. 

D = F3 (DF, CF, BF, AF)  C = F2 (DF, CF, BF, AF) 

B = F1 (DO, CO, BO, AO) A = F0 (DO, CO, BO, AO) 

Then the following conditions are imposed on the LUT functions. 

Fi(inputs) = ith bit in the input vector, if there is no error or 2-bit error in the input vector 

     = flip the ith bit in the ideal test vector, if there is 1-bit error in the input vector 

       where, 0 <= i <= 3 
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The functions can be explained as follows by an example. Consider that the input 

vector that is applied to the ILA is 1010. The complete test vector set is  {0101, 1010}. 

Table 5.1: Example of the LUT functions for fault isolation 
Input seen by  
LUT-0 and 
LUT-1 

Number 
of 
errors 

Output  
LUT-1 

Output 
LUT-0 

Comments 

1010 0 1 0 Output of LUT-i = ith bit in the input vector 
0010 1 0 1 Ideal vector = 1010,  

Output of LUT-i = complement of ith bit in the ideal 
vector 

0000 2 0 0 Output of LUT-i = ith bit in the input vector 
1101 3 1 0 It will be seen as 1-bit error with respect to ideal vector 

= 0101 
Output of LUT-i = complement of ith bit in the ideal 
vector 

0101 4 0 1 It will be seen as 0-bit error with respect to ideal vector 
= 0101 
Output of LUT-i = ith bit in the input vector 

 

The idea here is if there exists a single bit error in any SLICE, then it should 

change the values of either two (if a fault exists on the branch) or four flip-flops (if a fault 

exists on the stem) in its successor SLICE. Once two or four bits are in error, then the 

faulty output will propagate to the successive SLICEs as shown in Figure 5.4. It can be 

seen that the flip-flop signature is different in all three cases, and, hence, the fault can be 

isolated to a stem or a branch in the particular SLICE. 

 

 (a) Fault on the branch BF in S0  (b) Fault in the branch BO in S0 
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   (c) Fault on stem B in S0 

Figure 5.4: Different flip-flop values for different faults 

 
The LUT functions described above are good enough to detect all single stuck-at-

fault in the FPGA. However, the problem with these functions is that it may not detect the 

presence of multiple simultaneous stuck-at-faults in a SLICE. One such example is 

shown in Figure 5.5. As a 3-bit error in the input vector is treated as a 1-bit error with 

respect to the other vector in the test vector set, one fault masks the effect of the other 

fault when it is propagated to the next SLICE. The previous LUT functions (pulling 

circuit to all 1s), provided the better tolerance to fault masking, i.e. it can detect the 

simultaneous faults that are present into a single SLICE. However, this configuration had 

lesser diagnostic resolution as compared to the later configuration. Whereas, the later 

configuration has better diagnostic resolution, but it has lesser tolerance to the fault 

masking. The reason behind the loss in the diagnostic resolution or the loss in the fault 

detection is that the eight inputs to a SLICE are transformed to only four independent 

outputs by the LUTs in the SLICE.  
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Figure 5.5: Fault masking when propagating eight outputs to successor 

SLICE 

 

The configurations that propagate only four outputs (number of outputs equal to 

number of LUTs) to its successor SLICE have better tolerance to the fault masking and 

have better fault diagnostic resolution. In this case, as there are only four LUTs in the 

circuit, and there are four outputs propagated from the predecessor SLICE, each LUT can 

be configured as the pass through. This way, the entire BIST configuration can be 

thought of as four parallel scan chains as shown in Figure 5.6. Moreover, as all four 

circuits are tested independently, the fault can be isolated to a particular circuit within the 

SLICE. However, as discussed in Chapter 4, by propagating only a subset of the SLICE 

outputs at a time, two separate BIST configurations are needed to test the paths through 

{DO, CO, BO, AO} and the paths through {DF, CF, BF, AF} separately as shown in 

Figure 5.6. As the number of BIST configurations increases, the time for the fault 

detection also increases. This configuration, which has better fault diagnosis resolution 

and better tolerance to the fault masking, requires more time to complete the testing. In 

order to achieve the best results, the combination of two approaches can be used. For the 

fault detection, the configurations, which test multiple data paths simultaneously, can be 
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used. Only if a fault is detected, but cannot be isolated, then the configurations, which 

propagate only a subset of the outputs to the successor SLICE, can be used. 

 

(a) Testing of data paths through {DO, CO, BO, AO} 

 

(b) Testing of data paths through {DF, CF, BF, AF} 

Figure 5.6: Testing of a single data path at a time 

 

5.5 Fault Isolation in SelectRAM 

While testing the SelectRAM, the outputs of two adjacent RAMs are compared in the 

adjacent SLICE, referred to as a local ORA. The output of the local ORA is also 

registered into the flip-flop, and the registered output is provided back to the local ORA 

as shown in Figure 5.7. The register that stores the output of the local ORA is initialized 

to a logic-0. At any time, if the outputs of two RAMs are not equal, then it will be latched 

as a logic-1 in the local ORA register. The location of the fault can be narrowed down to 

a SLICE by reading back all of the local ORA registers, and by finding out the local 

ORAs with the registered value as a logic-1. 
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Figure 5.7: Registering a fault in local ORA during RAM testing 

5.6 Fault Isolation in Shift-register 

The shift registers are initialized with the alternate 1s and 0s bit pattern at the beginning 

of the test. If there exists any stuck-at fault in the shift register, then it will result in all of 

the successive bits after the fault location to have the same value. The fault in the shift 

register can be narrowed down by reading back the shift register content, and then by 

finding the location, from where the deviation in the bit pattern occurs. 
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Chapter 6  

Implementation and Results 

Test generation for BIST configurations is one of the difficulties that is usually 

encountered in the development of FPGA BIST [8]. This is because there is no way to 

specify some high level description to FPGA CAD tools to generate the BIST 

configurations. The CAD tools usually optimize the logic, and, hence, the redundant logic 

for testing, such as keeping the inactive input of the multiplexer to a logic-1 in order to 

test the gate-level model of multiplexer (Section 4.2.1), is trimmed by the CAD tool. 

Moreover, the CAD tools have the choice of implementing the specified logic in different 

ways in the CLB, and, hence, users don’t have the tight control over selecting the desired 

data path in the CLB.  This chapter discusses about the scripts that are developed for the 

generation of BIST configurations. The later sections in the chapter discuss about the 

fault coverage and the sources of overhead that are associated with the FPGA BIST. 
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6.1 Scripts for Test Generation 

The generation of the BIST configurations is automated using a script. This script takes 

the FPGA part name and the rectangular coordinates of the test area as the input 

parameters, and generates all of the BIST configurations to test all of the CLBs within the 

specified test area. Two alternative approaches are developed to generate the BIST 

configurations. In the first phase of the project, the script generated HDL code using 

Xilinx HDL primitives, and then the code is compiled by Xilinx tool chain. The 

intermediate files in the compilation process are modified in order to meet the required 

conditions of the BIST configurations. Another approach was designed later to bypass the 

HDL synthesis, MAP, and placement operations involved during the generation of the 

configuration bitstream. The placed design is generated directly using XDL (Xilinx 

Design Language) [24], and it is further modified to generate the final configuration 

bitstream. The next sections provide the overview of both of these approaches. 

6.1.1 Test Generation using HDL 

In this approach, the script generates the HDL code for the design, which is then 

synthesized, mapped, placed and routed. Once the placed and routed design (NCD file) is 

available, then the design is converted into the XDL file, which is a human readable 

equivalent of the NCD file. Various scripts are run on the XDL file to make necessary 

changes in the CLB configurations, and then the modified XDL file is converted back to 

the NCD file. This NCD file is converted into the configuration bitstream using Xilinx 

bitgen tool. Figure 6.1 summarizes all of the steps involved in the generation of the 

bitstreams. 
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!

HDL!generation!

User!input!
1!FPGA!part!name!
1!Test!area! TORC!

Xilinx!tool!chain1!Synthesis,!MAP,!PAR!

XDL!processing!scripts!

XDL2NCD!and!bitgen!

HDL!libraries!

 

Figure 6.1: Test generation using HDL 

 

Components of the HDL 

The HDL code contains the following components. 

1. Controller.v: This file implements the BIST controller logic. The controller drives 

the necessary signals to the DUT, observes the response from the DUT, and then 

accordingly indicates the PASS/FAIL status of the test into the DONE bit of the 

status register. 

2. Cells: Various cells, such as slicel, srl32, srl16, s_ram32, and s_ram64, are 

created. Each of these cells exercises the different logic nodes and the 

functionalities of the CLB, and all of them together cover all of the logic nodes 

and the functionalities of the CLB. 

3. DUT: These files, beginning with “testgen_” prefix, implements the top-level 

device-under-test (DUT). This design instantiates the appropriate cells and 



Harmish	
  Rajeshkumar	
  Modi	
   	
   Chapter	
  6.	
  Implementation	
  and	
  Results	
  

 70 

specifies the connectivity between them. This file is generated using a C++ 

program, which relies on TORC APIs. TORC [27] is an open source CAD tool for 

Xilinx FPGAs. This tool provides the necessary APIs to extract the tile map of the 

FPGA. Once the tile map is extracted, then the instantiated cells are associated 

with the location constraints [26] that direct the placer to place the cell to the site 

specified by the constraint. By associating various constraints to the cells, the 

template of placed and routed design is generated, which can further be modified 

in the later stages using XDL. 

XDL processing scripts 

Using the above HDL files and the Xilinx tool chain, an initial XDL file is first 

generated. Various scripts are then run to modify it. A brief summary of each script is 

given below. 

1. extract_dut.sh:  This script extracts the various components of the design, such as 

an instance of the controller, instances of the DUT, nets of the controller, nets of 

the DUT, clock nets, and so on, from the XDL file. 

2. swap_outpin.sh <config>: Once the instances and the nets of the DUTs are 

extracted, then this script modifies the data paths within the SLICEs. For 

example, in the initial XDL file, the O5 input in the AOUTMUX is enabled. 

However, to test the O6 path through the AOUTMUX, the setting of the 

AOUTMUX has to be modified. This script can be used to switch the O5 path to 

the O6 path in the SLICE. This script takes the Id of the BIST configuration as the 

input, and makes necessary changes in the configuration of the SLICEs for the 

specified BIST configuration. 
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3. combine_xdl.sh: Once the extracted XDL parts are modified, then this script 

merges back all of the modified XDL parts, and generates a new XDL file. 

4. config_lut.sh <config>: This file is used to modify the LUT content in the DUT 

SLICEs. While generating the HDL file, a dummy LUT content is specified in the 

HDL so that the Xilinx tool chain doesn’t optimize the logic. Later (post routing), 

the LUT content is changed in the XDL file using this script. This script takes the 

Id of the BIST configuration bitstream, and then programs the LUT equations that 

are derived for the specified BIST configuration. 

5. compile.sh <config>: This script is a top-level script, which compiles the HDL 

files using standard Xilinx tool chain and applies the required scripts to generate 

the final bitstream file. For example, if “compile.sh 1” command is executed in 

the lut directory, then the configuration-1 of the LUT configurations is generated 

into the lut directory. 

The final NCD file, which is converted to bitstream, was opened in the FPGA Editor 

[28], and it was verified that the NCD file is generated correctly. 

6.1.2 Test Generation using XDL 

The primary motivation behind the test generation using the XDL is to bypass the 

synthesis, map and place operations. The typical BIST configuration uses all of the 

SLICEs in the FPGA. If the FPGA size is larger, then the synthesis of the design alone 

takes hours. Sometimes, even 32 GB of the system memory is not sufficient for the 

Xilinx Synthesizer, and it crashes arbitrarily. In order to mitigate all these issues, the 

different approach was required to generate the BIST configurations.  
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The XDL based approach directly generates the placed design by bypassing the 

synthesis, map, and placement phases of the design. Figure 6.2 shows the various steps 

involved in the test generation using XDL. First, the XDL template libraries for the BIST 

controller and the DUT are created. The libraries for the BIST controller include the XDL 

templates for the TPG, the ORA, the CAPTURE2 primitive, and the STARTUPE2 

primitive. The DUT libraries include the XDL templates for the SLICEL and the 

SLICEM. 

 In order to generate the XDL template libraries, a HDL design is created to test a 

small area within the FPGA. As only the small area of the FPGA is instantiated, the 

design can be compiled quickly using the Xilinx tool chain. The intermediate XDL file 

generated during the compilation process contains the XDL instances of various 

components such as the TPG, the ORA, and other primitives. These components are 

extracted and stored as the XDL template library.  
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Figure 6.2: Test generation using XDL 

 
XDL generation 

The generation of the BIST configurations is automated using a script, which takes the 

FPGA part name and rectangular coordinates of the test area as the input parameters. A 

C++ program is created, which uses the TORC APIs to determine the tile map of the 

design. The locations of various components of the BIST controller and the SLICEs 

within the specified test area are determined using the extracted tile map, and the XDL 

template libraries for various components are modified to create the placed instance list 

of all of the components. The program also generates the net list, which specifies the 

connectivity between all of the components. The instance list and the net list are put 
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together to create an initial XDL file. This XDL file is converted to the NCD file, and 

then the Xilinx router is invoked to route the net list that was specified in the XDL file.  

Compensate net list 

The Xilinx router swaps the pins of the LUTs in the net list to simplify the routing as 

shown in Figure 6.3. While using the HDL flow, “LOCK_PINS” constraint [26] is 

associated with the instantiated cells, and, hence, the Xilinx tool chain doesn’t modify the 

nets during the entire flow. However, if the direct XDL is generated, then specifying such 

constraint is not possible. As a result of this, all of the nets that were specified in the 

initial XDL file are disturbed. The routed NCD file is converted into the XDL file to read 

back the modified net list. The modified net list is traced using a C++ program, and the 

LUT pins that were swapped during the routing are determined. Once the information 

about the swapped pins is extracted, then the program modifies the LUT equations to 

compensate for the swapped LUT pins as shown in Figure 6.3. After the LUT equations 

are modified, the modified XDL is converted back to the NCD file, and is converted into 

the configuration bitstream using Xilinx bitgen tool. 

 

Figure 6.3: Example of pin swapping 
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6.2 Fault Coverage 

A total of 30 BIST configurations have been created in order to test the logic resources in 

any of the 7-Series FPGAs. The FPGA that was used for the experiment is Xilinx Zync 

XC7Z020 FPGA. These 30 configurations are grouped according to the functionality that 

they cover in the CLB. Out of these 30 configurations, 12 configurations test the LUTs, 

13 configurations test the data paths, 3 configurations test the SelectRAM logic, and 2 

configurations test the shift register logic. The faults in the FPGA can be emulated using 

configuration memory bit fault injection. During the generation of the configuration 

bitstream, the intermediate files can intentionally be modified in order to emulate some 

faults in the FPGA. For example, a particular memory location in the LUT can be forced 

to a logic-0 to emulate a stuck-at 0 fault in the particular memory location of the LUT. 

The necessary conditions to cover the internal faults in the logic nodes (LUTs and 

Multiplexers) are discussed while discussing about the BIST configurations to test the 

particular logic nodes. By applying the input vectors that are specified in Appendix A, it 

can be verified that this conditions are also satisfied. 

A gate-level model of all components in the CLB is considered, and fault 

coverage was calculated. The graph in Figure 6.4 shows the fault coverage in the CLB by 

the BIST configurations. The left Y-axis shows the number of single stuck-at-faults faults 

in each CLB covered by these configurations. The right Y-axis shows the percentage 

fault coverage for the single stuck-at faults. 



Harmish	
  Rajeshkumar	
  Modi	
   	
   Chapter	
  6.	
  Implementation	
  and	
  Results	
  

 76 

 

Figure 6.4: Fault coverage in a CLB by BIST configuration group 

6.3 Sources of Overhead 

The primary sources of overhead associated with the offline BIST are the test time and 

the external memory required to store the BIST configurations. During the test, the 

application on the FPGA cannot run, and, hence, it is desired that the test should take 

minimum possible time. The graph in Figure 6.5 shows the breakdown of the time 

involved in different operations of the test for a BIST configuration. The bitstreams were 

downloaded using xc3sprog [29], which is an open source software tool to download 

bitstreams on FPGAs. The status register was readback using Xilinx iMPACT utility. 

Figure 6.5 shows that downloading the BIST configuration to the FPGA takes the 

majority of the test time, and running the test takes only a small fraction of the total test 

time; therefore, the number of test vectors and the test frequency is not of primary 

concern, but reducing the download time of the BIST configurations to the FPGA has 

more impact on the test time. Download time is directly proportional to the size of the 

BIST configurations and the speed of the configuration interface. In order to reduce the 

test time, the total size of the BIST configurations should be reduced.  
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Figure 6.5: Time involved in different operation while testing an FPGA using 

a BIST configuration (configuration interface used is JTAG) 

 

The total size of the BIST configurations can be reduced by reducing the number 

of BIST configurations and the average size of the BIST configurations. Partial 

reconfiguration of the FPGA is used in order to reduce the average size of the BIST 

configurations. The majority of the frames in a BIST configuration contain the routing 

information. If the routing is kept constant across multiple configurations, then only one 

configuration has to be stored as full bitstream, and other bitstreams can be stored as 

partial bitstreams. For example, the first five configurations in Table 4.5, has similar 

routing. The size of a BIST configuration for Xilinx XC7Z020 device is 3.9 MB. If all of 

the five configurations are stored as full bitstreams, then the total size of the five BIST 

configurations will be 18 MB. However, by using the partial reconfiguration, the total 

size of all of the five configurations is reduced to 5.85 MB. Out of the 30 configurations, 

only 12 configurations have unique routing, and only those configurations need to be 

stored as full bitstreams.  

If all of the CLBs in the FPGA cannot be tested simultaneously, then the FPGA 

has to be tested in multiple test sessions, each of which tests a subset of the CLBs at a 
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time. As a result of this, the total test time increases by the factor of the number of test 

sessions. For example, the BIST architecture that uses the helper cells to form an ILA 

(discussed in Section 2.2.2) can test only half of the CLBs in a single test session. In this 

case, a minimum of two test sessions are required to test the entire FPGA. The BIST 

configurations that are discussed in this thesis can test all of the CLBs simultaneously, 

and, hence, it is possible to test all of the CLBs in a single test session. Sometimes, the 

routing congestion puts the upper bound on the number of CLBs that can be routed in a 

single test session, as highlighted in [3][21]. If all of the CLBs couldn’t be routed in a 

single configuration, then the FPGA has to be divided into partitions, and then each 

partition has to be tested separately in a different test session. By increasing the usage of 

the local routing resources, and reducing the average fan-out in the design, the routing 

complexity is reduced in all of the BIST configurations that are discussed in this thesis; 

therefore, the probability of successfully routing all of the CLBs in a single configuration 

increases. As a result of this, the total number of test sessions reduces, which results in 

reduction in the total test time. It was determined that all of the BIST configurations 

could be routed on different Xilinx devices of Zync family, such as the XC7Z010, 

XC7Z020 (the device in which these experiments were confirmed upon), XC7Z030, and 

XC7Z045, without creating the partitions. 

The external memory requirement is dependent on the size of the BIST 

configurations. By reducing the average size of the BIST configurations and the total 

number of BIST configurations, the total size of the BIST configurations can be reduced, 

and, hence, the external memory required to store the BIST configurations also reduces. 
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Chapter 7  

Conclusion and Future Scope 

This work provided the complete test to detect and isolate a single stuck-at-fault in the 

CLBs of the Xilinx 7-Seireis FPGAs. This test is suitable for any level of testing starting 

from the manufacturing test to the in-system testing. All of the test administration tasks 

can be performed through the configuration interface of the FPGA, and the need for user 

I/O pins to perform the test is eliminated. As a result of this, the test can be immediately 

deployed on any in-use systems without making any system-level changes.  

An Iterative Logic Array (ILA) based BIST architecture enables the testing of all 

of the CLBs in the device in a single test session. By finishing the testing in a single test 

session, the total test time to perform the test and the external memory required to store 

the BIST configurations are reduced. Also, the BIST architecture discussed in this thesis 

reduces the routing complexity of the BIST configurations, and, hence, the architecture is 

scalable to the different sizes of the FPGA devices. The ILA architecture minimizes the 

other sources of overheads such as the resources used by TPGs and ORAs, and the 

number of I/O pins of the circuit under test. 
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The necessary conditions to test various logic nodes within the FPGA at gate-

level are discussed in detail, and different BIST configurations are implemented to satisfy 

those conditions. The test also provides the capability to isolate a single stuck-at-fault in 

the FPGA device. Fault isolation is the primary step towards building the fault tolerant 

FPGA systems. The use of partial reconfiguration capability of the FPGA is used in order 

to minimize the test time and the external memory required to store the BIST 

configurations. 

7.1 Future Scope 

The area of FPGA BIST has many opportunities for the future developments. This work 

was developed for Xilinx FPGAs because a lot of the resources and the information 

regarding the Xilinx FPGAs are available in public. If the similar information is provided 

for other FPGA vendors, such as Altera, then the similar kind of test can also be created 

for other FPGAs.  

The majority of the FPGA BISTs are performed offline. This means that the 

application on the FPGA cannot run during the testing process. In future, the online test 

can be created, which detects the unused sites in the FPGA during the operation of the 

FPGA, and tests those sites while the application is still running. Once the unused sites 

are tested, then the application can dynamically be migrated over these tested sites, and 

the testing of the previously used sites can be carried out. A BIST architecture that can 

dynamically be reshaped has to be developed to build this kind of test environment. 
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Appendix A 

Details of Configurations 

LUT functions for the configurations in Table 4.5 are discussed here. Using the following 

functions, the truth table for the LUT can be derived. Based on the truth table, the LUT 

can be configured with Boolean equation.  

 

Configuration 1 
 
LUT functions: 
 

- For all LUTs, O5 = 1 
 

- LUT-A: 
if (A[3:0]  == 1010 || A[3:0] == 0101) then 

O6 = bit[0] of input vector  
  else 
   O6 = 1 

  
- LUT-B: 

if (B[3:0]  == 1010 || B[3:0] == 0101) then 
O6 = bit[1] of input vector  

  else 
   O6 = 1 
 

- LUT-C: 
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if (C[3:0]  == 1010 || C[3:0] == 0101) then 
O6 = bit[2] of input vector  

  else 
   O6 = 1 
 

- LUT-D: 
if (D[3:0]  == 1010 || D[3:0] == 0101) then 

O6 = bit[3] of input vector  
  else 
   O6 = 1 
 
 
Input vector set:  

A/B[3:0] = {1010, 0101} 
C/D[3:0] = {1010, 0101} 

 
Configuration 2 
 
LUT functions: 
 

- For all LUTs, O6 = 1 
 

- LUT-A:  
  if( A[3:0] == 1010 || A[3:0] == 0101) then 
   O5 = bit[0] of input vector 
  else 
   O5 = 1 
  

- LUT-B: 
  if( B[3:0] == 1010 || B[3:0] == 0101) then 
   O5 = bit[1] of input vector  
  else 
   O5 = 1 
 

- LUT-C: 
  if( C[3:0] == 1010 || C[3:0] == 0101) then 
   O5 = bit[2] of input vector  
  else 
   O5 = 1 
 

- LUT-D: 
  if( D[3:0] == 1010 || D[3:0] == 0101) then 
   O5 = bit[3] of input vector  
  else 
   O5 = 1 
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Input vector set:  
A/B[3:0] = {1010, 0101} 
C/D[3:0] = {1010, 0101} 

 
 
Configuration 3 
 
LUT functions: 

- For all LUTs, O6 = 0 
- For all LUTs, O5 is same as Configuration 2 

 
Input vector set:  

A/B[3:0] = {1010, 0101} 
C/D[3:0] = {1010, 0101} 

 
Configuration 4 
 
LUT functions: 
  

- For all LUTs, O5 = 0 
- For all LUTs, if ADDRESS[3:0] == 4’b1111 then O6 = 1, else O6 = 0 

 
Input vector set:  

A/B[3:0] = 4’b1111 
C/D[3:0] = 4’b1111 

 
Configuration 5 
 
LUT functions: 
 

- For all LUTs, O5 = 1 
- For all LUTs, If ADDRESS[3:0] == 4’b0000 then O6 = 1, else O6 = 0 

 
Input vector set:  

A/B[3:0] = 4’b0000 
C/D[3:0] = 4’b0000 

 
Configuration 6 
  
LUT functions: 
  

- For all LUTs, O6 = 1, O5 = 1 
 
Input vector set:  
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{DX, CX, BX, AX} = {1010, 0101} 
 
Configuration 7 
  
LUT functions: 
 

- For all LUTs, O6 = 0, O5 = 1 
  
Input vector set:  

{DX, CX, BX, AX} = {1010, 0101} 
 
 
Configuration 8 
  
LUT functions: 
  

- For all LUTs, O6 = 0, O5 = 1 
  
 
Input vector set:  

{DX, CX, BX, AX} = {1010, 0101} 
 
 
Configuration 9 
 
LUT functions: 
  

- LUT-A: O6 = 1, O5 = A[0] 
- LUT-B: O6 = 1, O5 = B[1] 
- LUT-C: O6 = 1, O5 = C[2] 
- LUT-D: O6 = 1, O5 = D[3] 

 
Input vector set:  

A/B/C/D[3:0] = {1010, 0101} 
  
 
Configuration 10 
  
LUT functions: 
 

- For all LUTs, O6 = 1, O5 = 1 
  
Input vector set:  

{DX, CX, BX, AX} = {1010, 0101} 
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Configuration 11 
  
LUT functions: 
 

- For all LUTs, O5 = 1 
 

- LUT-A: 
  if (A[3:0] == 4’b0100 || A[3:0] == 4’b1011) then 
   O6 = bit[0] of input vector  
  else 
   O6 = 0 

 
- LUT-B: 

  if(A[3:0] == 4’b0100 || A[3:0] == 4’b1011) then 
   O6 = complement of bit[0] of input vector  
  else 
   O6 = 0 
 

- LUT-C: 
  if(A[3:0] == 4’b0100 || A[3:0] == 4’b1011) then 
   O6 = complement of bit[0] of input vector 
  else 
   O6 = 0 
 

- LUT-D: 
  if(A[3:0] == 4’b0100 || A[3:0] == 4’b1011) then 
   O6 = bit[0] of input vector 
  else 
   O6 = 0 
 
Input vector set:  

A/B[3:0] = {0100, 1011} 
C/D[3:0] = {0100, 1011} 

 
Configuration 12 
 
LUT functions: 
 

- For all LUTs, O5 = 1 
 

- LUT-A: 
  if(A[3:0] == 4’b1110 || A[3:0] == 4’b0001) then 
   O6 = bit[3] of input vector 
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  else 
   O6 = 0 
 

- LUT-B: 
  if(A[3:0] == 4’b1110 || A[3:0] == 4’b0001) then 
   O6 = complement of bit[3] of input vector   
  else 
   O6 = 0 
 

- LUT-C: 
  if(A[3:0] == 4’b1110 || A[3:0] == 4’b0001) then 
   O6 = complement of bit[3] of input vector   
  else 
   O6 = 0 
 
 

- LUT-D: 
  if(A[3:0] == 4’b1110 || A[3:0] == 4’b0001) then 
   O6 = bit[3] of input vector 
  else 
   O6 = 0 
 
Input vector set:  

A/B[3:0] = {1110, 0001} 
C/D[3:0] = {1110, 0001} 
 

 
Configuration 13 
  
LUT functions: 
  

- For all LUTs, O6 = 1, O5 = 1 
  
Input vector set:  

{CIN} = {1, 0} 
 

 


