Development of a Sustainable Pavement Management Strategy for Resurfacing Low Volume Roads in New Brunswick

Shawn Landers MSc.Eng., P.Eng
Technical Principal – Asset Management
Acknowledgements

• Don Mason, MSc.Eng., P.Eng.
Assistant Director – Asset Management
New Brunswick Department of Transportation and Infrastructure
Outline

• Low Volume Roads in N.B.
• What Others Do
• Decision Making Inputs
• Surface Selection Framework
• Evaluation
• Summary
LOW VOLUME ROADS IN N.B.
Low Volume Roads in N.B.

- Total Paved – 16,500 km (9900 miles)
- 44% asphalt / 56% chipseals
- Arterial / Collector Hwys – 6050 km (3630 miles)
- Local Hwys – 3050 km (1825 miles)
- Local Roads – 6800 km (4080 miles)
Low Volume Roads in N.B.

- Key Stats
 - ½ population lives in rural areas
 - 60% network is Local Class
 - Road network among highest density in the country
 - Almost all Local Roads < 1000 vpd
 - 40% Local Hwys < 1000 vpd
 - 25% Collector Hwys < 1000 vpd
Low Volume Roads in N.B
Low Volume Roads in N.B.

• Challenges
 - Deteriorating condition
 - Escalating rehabilitation costs
 - Maintaining LOS
 - Significant investment
 - Economic / fiscal constraints
 - Other competing demands
Low Volume Roads in N.B.

• **Sustainable Pavement Management Strategy for Road Surfaces**
 - Move Asphalt to Chipseal
 - Clearly defined and transparent criteria
 - Study:
 - What are others doing?
 - Decision inputs need?
 - Develop a framework?
 - Evaluate the framework?
WHAT OTHERS DO...
What Others Do…

• Agency Practices Review
 ▪ Canadian DoT’s and Selected US DoT’s
 ▪ Focus:
 • Policies
 • Factors with defined criteria
 • Decision making framework
 ▪ Web-based & Consultations
What Others Do…

• Key Findings
 ▪ Most did not have comprehensive guidelines
 ▪ Decisions made on project basis
 ▪ Policies focused on only low volume roads
 ▪ Traffic volume predominant screening factor
 ▪ Other factors:
 • Costs
 • Functional purpose, rural / urban setting
 • Impact on local business and long distance travel
What Others Do…

- Nova Scotia
 - Network based
 - Factors / Criteria:
 - Traffic volume
 - Roadside development
 - Scored priority points
 - Treatment selection matrix
 - Spreadsheet tool
What Others Do…

- Northern Ontario
 - Project based
 - Factors / Criteria:
 - Traffic volume
 - Impact on residents
 - Impact on business
 - Impact on long travel
 - DoT costs
 - Weighting methodology
 - Scoring process
What Others Do…

- South Dakota
 - Project based
 - Factors / Criteria:
 - Treatment costs
 - Agency costs
 - User costs
 - Life cycle cost analysis
 - Assess alternative treatments
 - Spreadsheet tool
What Others Do…

• Outcome
 ▪ Existing frameworks + / -
 ▪ None were ideal
 ▪ Data intensive
DECISION MAKING INPUTS
Decision Making Inputs

- NBDTI Guiding Principles
 - Simple & easy to explain
 - Upfront evaluation
 - No significant data collection
 - Objective and quantifiable
 - Definitive, but some flexibility
 - Consider agency costs
 - Consider site specific requirements
Decision Making Inputs

- What others do...
Decision Making Inputs

• Conducted Assessment
 ▪ Benefits for inclusion?
 ▪ What measures exist?
 ▪ Data availability?
 ▪ Data coverage?
 ▪ Overlapping data?
 ▪ New data?
Decision Making Inputs

- Conducted Assessment
 - Benefits for inclusion?
 - What measures exist?
 - Data availability?
 - Data coverage?
 - Overlapping?
Decision Making Inputs

- NBDTI landed on:
 - Agency Costs
 - Road Class
 - Traffic volumes
 - Truck volumes
 - Road Grade
 - Tourism
SURFACE SELECTION FRAMEWORK
Surface Selection Framework

- 2 Stage LOS Screening Process

Initial Screening
- Preliminary recommendation
- Asphalt, chip seal, or gravel surface?

Site Specific
- Assess site specific characteristics
- Upgrade to higher surface standard?
Surface Selection Framework

- Stage 1 - Initial LOS Screening Factors
 - Functional Class – Arterial, Collector, Local
 - Higher functional purpose generally expected to have a higher standard of surface treatment
 - Daily Traffic – AADT
 - Highest usage should provide the better level of service to minimize road user costs
 - Truck Traffic – AADTT
 - Heavy vehicles require additional strength to prevent accelerated surface damage
Surface Selection Framework

- Agency Costs
 - Several approaches
 - Goal - minimize data inputs
 - Life cycle cost analysis to compare chip seal and asphalt treatments over a 30 year timeframe based on different scenarios
 - ~300 to 400 trucks per day $ chipseal > asphalt
Surface Selection Framework

- **Stage 1**
 Initial LOS Screening

![Flowchart]

- Arterial or AADT Greater than 1500
- 300 – 1500 AADT
- Collector Less than 300 AADT
- Local Less than 300 AADT

- YES
 - Asphalt
 - Asphalt
 - Chipseal
 - Chipseal
 - Gravel

- NO
 - Trucks/May Greater than 300 AADTT
 - Trucks/Day Less than 300 AADTT
Surface Selection Framework

• Stage 2 – Site Specific Upgrading Factors
 ▪ Collector Highways
 • > 7% road grade
 • Existing pavement structure results in lower life-cycle cost (e.g. pulverization)
 ▪ Local Highways and Roads
 • As above
 • Gravel surfaces upgraded to chipseal if road connect two designated highways or provides direct access to a significant tourist destination
EVALUATION
Evaluation

• Scope
 ▪ Estimate the potential reduction in future rehabilitation
 ▪ Applied the initial screening criteria over the existing road network
 ▪ Roads > 1km in length
 ▪ Sensitivity analysis of the traffic and truck volume thresholds also completed
Evaluation

- Identified Candidates
 - Asphalt to Chipseal
 - 880 km (530 miles)
 - 13% of asphalt inventory

<table>
<thead>
<tr>
<th>Road Class</th>
<th>Existing Asphalt km</th>
<th>Candidate for Conversion to Chip Seal</th>
<th>km</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Highways</td>
<td>2,900</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Highways</td>
<td>2,400</td>
<td>430</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>Local Numbered Highways</td>
<td>885</td>
<td>275</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>Local Named Roads</td>
<td>420</td>
<td>175</td>
<td>41%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6,605</td>
<td>880</td>
<td>13%</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation

- LCC Analysis
 - 20 year period
 - Treatment costs / timing
 - Reduce $4.6 million annually @ 1000 vpd
 - Increase to 1500 vpd + $1.7 million
SUMMARY
Summary

- Two-staged screening
- Incorporated both network and local conditions
- Relatively simple solution
- Objective and transparent
- Very easy to communicate
- Potential to reduce future rehabilitation costs and spending savings elsewhere
Thank you

• Simple sometimes works…