Comprehensive LCC of a Pavement Recycling Project in Virginia

James Bryce, PhD
Joao Santos
Gerardo Flintsch, PhD, PE
Adelino Ferreira, PhD
Outline

• Review of the Project
 ▪ Methods Used
 ▪ Results of Comprehensive LCA

• LCC and LCCA

• Analysis of the Project

• Conclusions
I-81 Project

Virginia Department of Transportation (VDOT) used novel recycling methods to reconstruct a project on I-81:

- Apparent structural problems
- Prior to reconstruction, pavement required maintenance every 4-6 years
- AADT = 23,000 (28 percent trucks)
- 7.2 lane miles

Table:

<table>
<thead>
<tr>
<th>Left Lane</th>
<th>Right Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-inch New AC</td>
<td>4-inch New AC</td>
</tr>
<tr>
<td>5-inch CIR</td>
<td>8-inch CCPR</td>
</tr>
<tr>
<td>Existing AC</td>
<td>6-inch New AC</td>
</tr>
<tr>
<td>Existing Aggregate</td>
<td>6-inch CCPR</td>
</tr>
<tr>
<td>Existing Aggregate</td>
<td>12-inch FDR</td>
</tr>
<tr>
<td>Subgrade</td>
<td>Subgrade</td>
</tr>
</tbody>
</table>
Cold Central-Plant Recycling
Full-Depth Reclamation
Performance of Project

I-81 In-Place Pavement Recycling Project

BRIAN K. DIEFENDERFER, Ph.D., P.E.
Senior Research Scientist
Virginia Center for Transportation Innovation and Research

ALEX K. APEAGYEI, Ph.D., P.E.
Research Fellow
Nottingham Transportation Engineering Centre

Final Report VCTIR 15-R1

VIRGINIA CENTER FOR TRANSPORTATION INNOVATION AND RESEARCH
550 Edgemont Road, Charlottesville, VA 22903-2454
www.VTRC.net
Comprehensive LCA

- 50 year time horizon
- Included all phases minus EOL
 - Use phase evaluated using Chatti and Zaabar’s NCHRP models and MOVES
 - Traffic congestion effects considered using MOVES
 - Impact Assessment using TRACI
- Each Alt had different rehab schedules
Description of Alternatives

• Corrective Maintenance
 ▪ 2 inch mill and OL on a 4 to 6 year basis
 ▪ Limited patching based on VDOT schedule

• Recycling
 ▪ What was implemented
 ▪ Maintenance Schedule based on VDOT guide

• Reconstruction
 ▪ All virgin materials and traditional practices
 ▪ Same maintenance as recycling
Comprehensive LCA

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>AC</th>
<th>EU</th>
<th>HH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recycling-based</td>
<td>(-22%)</td>
<td>(-19%)</td>
<td>(-28%)</td>
<td>(-29%)</td>
</tr>
<tr>
<td></td>
<td>121,398</td>
<td>20,305</td>
<td>20,867</td>
<td>47,618</td>
</tr>
<tr>
<td>Reconstruct</td>
<td>(-21%)</td>
<td>(-19%)</td>
<td>(-28%)</td>
<td>(-28%)</td>
</tr>
<tr>
<td></td>
<td>123,727</td>
<td>20,471</td>
<td>20,813</td>
<td>48,213</td>
</tr>
<tr>
<td>Corrective Maintenance</td>
<td>173,898</td>
<td>29,176,659</td>
<td>28,245</td>
<td>67,368</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PS</th>
<th>ARD MR</th>
<th>ARD FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recycling-based</td>
<td>(-29%)</td>
<td>(-40%)</td>
<td>(-31%)</td>
</tr>
<tr>
<td></td>
<td>284,244</td>
<td>0.0022727</td>
<td>2,466,662,453</td>
</tr>
<tr>
<td>Reconstruct</td>
<td>(-28%)</td>
<td>(8%)</td>
<td>(-30%)</td>
</tr>
<tr>
<td></td>
<td>288,991</td>
<td>0.0041290</td>
<td>2,498,445,378</td>
</tr>
<tr>
<td>Corrective Maintenance</td>
<td>400,392</td>
<td>0.0038097</td>
<td>3,564,507,198</td>
</tr>
</tbody>
</table>
Comprehensive LCC

• LCC links processes with cash flows
 ▪ More detailed than LCCA
 ▪ Splits variable and fixed costs
 ▪ Designed to be used with LCA results

• LCCA can be ‘black box’
 ▪ LCC can be more transparent
Cost Data

- Costs were disaggregated as much as possible
 - VDOT data was requested
 - Literature data used where more local data not available
 - Equipment relative value was accounted for

- NPV was calculated
 - 2.3% discount rate per OMB (2013)
User Costs

• **Work Zone**
 - Costs due to time lost in queueing
 - Values from USDOT OST (2003), adjusted accordingly
 - VOC were also accounted for

• **Use Phase**
 - VOC models: HDM calibrated models by Chatti and Zaabar
End of Life

- Residual value based on terminal IRI
 - 200 inches/mile as terminal
 - Very poor on VDOT Dashboard
Results

<table>
<thead>
<tr>
<th>Recycling-based</th>
<th>Traditional Reconstruction</th>
<th>Corrective Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV (M$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>$2.4386</td>
<td>$4.5387</td>
</tr>
<tr>
<td>Construction</td>
<td>$0.3582</td>
<td>$0.7261</td>
</tr>
<tr>
<td>Transportation</td>
<td>$0.2332</td>
<td>$0.6856</td>
</tr>
<tr>
<td>WZ Traffic</td>
<td>$9.1215</td>
<td>$10.1087</td>
</tr>
<tr>
<td>Usage</td>
<td>$2.4651</td>
<td>$2.4651</td>
</tr>
<tr>
<td>Total</td>
<td>$14.4648</td>
<td>$18.3723</td>
</tr>
</tbody>
</table>

Pavement life cycle phase

6/4/2015
Conclusions

• Recycling based strategy better in LCA and LCC terms

• For each alternative
 ▪ Materials phase and WZ traffic management most expensive

• Linking LCC and LCA guides to better understanding of sustainable management
Acknowledgments

- Portuguese Foundation for Science and Technology under Grant [SFRH/BD/79982/2011], by European Regional Developing Funding [CENTRO-07-0224-FEDER-002004- EMSURE - Energy and Mobility for Sustainable Regions] and by the

Thank You

Sustainable Transport...