Accelerated Testing and Instrumentation: A Canadian Case Study

Susan Tighe, PhD, PEng
Norman W. McLeod Professor in Sustainable Pavement
Director, Centre for Pavement and Transportation Technology
University of Waterloo
Visiting Professor University of the Sunshine Coast
Outline of Presentation

• Introduction
• Research Methodology
• Experimental Analysis
• Analysis of Results
• Findings and Impact
• Closing Thoughts
Introduction

- 1,000,000+ km ; $200 Billion Investment
- Roads and Airfield Pavements
- Massive Investment: Requires Repair
- Dramatic Gap in Funding and Needs
- Vital to Economy, Quality of Life
- Many Factors Impact Performance
- Flexible, Rigid, Composite, Surface Treatments, Gravel

[TAC 2013]
Introduction

• Climate Change Impacts on Infrastructure
• Sustainability Incorporated into Design, Construction, Maintenance, Management
• Multi Criteria Decision Making: Technical, Economic, Environmental, Social, Political
• Negative impacts to the population
• Balance Needs

https://www.youtube.com/channel/UCLbomPwqCgvwr3hPm4oeyfwIntro
Research Methodology

• Experimental Design
• Demonstrating differences between materials
• Using innovative tools to measure Key Performance Indicators
• Calibrating design models
• Technical/economic/sustainable designs
• Moving laboratory to field
Research Methodology

• Several Partnerships Across Canada
• Factor Analysis:
 ▪ Pavement Thickness
 ▪ Traffic
 ▪ Climatic Zone
 ▪ Materials*
 ▪ Maintenance and Management Techniques

* Emphasis on sustainable materials
Research Methodology

<table>
<thead>
<tr>
<th>Planning and Programming</th>
<th>Design</th>
<th>Construction</th>
<th>Maintenance, Preservation and Rehabilitation</th>
<th>In-Service Evaluation</th>
<th>End of Service Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic and Environmental data information</td>
<td>Information on materials, traffic, costs, environment, etc.</td>
<td>Environment during construction</td>
<td>Standards</td>
<td>Periodic monitoring of structural adequacy, roughness, surface distress, and surface friction</td>
<td>Recycling and reuse of materials for reconstruction</td>
</tr>
<tr>
<td>Assess network deficiencies</td>
<td>Design alternatives</td>
<td>Specifications</td>
<td>Treatments</td>
<td>Salvage Value</td>
<td></td>
</tr>
<tr>
<td>Budgets</td>
<td>Analysis</td>
<td>Contracts</td>
<td>Schedules</td>
<td>Records</td>
<td></td>
</tr>
<tr>
<td>Establish priorities</td>
<td>Optimization</td>
<td>Schedules</td>
<td>Operations</td>
<td>Records</td>
<td></td>
</tr>
<tr>
<td>Schedule projects</td>
<td>Sustainability</td>
<td>Construction operations</td>
<td>Budget control</td>
<td>Impact on performance</td>
<td></td>
</tr>
<tr>
<td>Priorities</td>
<td>User costs</td>
<td>Quality control/quality assurance</td>
<td>User costs</td>
<td>Assess performance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Records</td>
<td></td>
<td>Prioritize</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Working” Management

![Diagram](image-url)
Research Methodology

<table>
<thead>
<tr>
<th>Planning and Programming</th>
<th>Design</th>
<th>Construction</th>
<th>Maintenance, Preservation and Rehabilitation</th>
<th>In-Service Evaluation</th>
<th>End of Service Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Traffic and Environmental data information • Assess network deficiencies • Budgets • Establish priorities • Schedule projects • Priorities</td>
<td>• Information on materials, traffic, costs, environment, etc. • Design alternatives • Analysis • Optimization • Sustainability • User costs</td>
<td>• Environment during construction • Specification • Contracts • Schedules • Construction operations • Quality control/quality assurance • Records</td>
<td>• Standards • Treatments • Schedules • Operations • Budget control • Records</td>
<td>• Periodic monitoring of structural adequacy, toughness, surface distress, and surface friction • Impact on performance • User costs</td>
<td>• Recycling and reuse of materials for reconstruction • Salvage Value • Records • Restoration • Zero Waste Management</td>
</tr>
</tbody>
</table>

"Working" Management

- Database
- Information

Research Loop

Research Loop
Experimental Analysis

- Asphalt Mix Designs
- Asphalt Pavement Thickness
- Jointed Plain Concrete Pavement
- Pervious Concrete Pavement
- Concrete Overlay
- Structural Dome Pavements
Experimental Analysis

• Technical
• Economic
• Sustainable
• Costs/Benefits
Analysis of Results: Asphalt

- Asphalt Mix Designs
- Asphalt Pavement Thickness
- Warm Mix
- Recycled Asphalt Pavement Performance
- Recycled Crumb Rubber
Analysis of Results: Asphalt Mix Designs, Asphalt Pavement Thickness, Warm Mix, Recycled Asphalt Pavement Performance, Recycled Crumb Rubber

Engineering Analysis:
- Quality Control
- Geogrid Design
- Structural Analyses
- Laboratory Tests
- Field Tests
- Quality Assurance
Analysis of Results: Asphalt
First truly controlled study
Integrated CPX and PBM

Leung et al
Analysis of Results: Asphalt

- Cost-Effective Usage of Innovative Materials
- Recycled Asphalt Shingles, Recycled Asphalt Pavement, Recycled Crumb Rubber
- Pavement Thickness
- Strategic Design
Analysis of Results: Concrete

- Jointed Plain Concrete Pavement
- Pervious Concrete Pavement
- Fast Track Concrete Repairs
- Concrete Overlay
- Structural Dome Pavements
Analysis of Results: Concrete
Analysis of Results : Concrete
Analysis of Results: Concrete

- Cost-Effective Usage of Innovative Materials
- Fast Track Repairs
- Concrete Overlays
- Structural Dome Designs
- Pervious Concrete
Analysis of Results: Performance

- Impact of Maintenance Treatments
- Noise Measurements
- Evaluation of Distress
- Safety Analysis
- Development of New Measures
Analysis of Results: Performance
Analysis of Results: Performance
Analysis of Results: Performance

- Climate
 - Dry
 - Mediterranean
 - Humid

- Hierarchy

<table>
<thead>
<tr>
<th>Hierarchy</th>
<th>Functional Classification</th>
<th>Traffic</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Express</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Troncal</td>
<td>Different traffic volume and equivalent axles ranges defined</td>
<td>Different structural strengths (MPa) to be defined (Structure and subgrade)</td>
</tr>
<tr>
<td>3</td>
<td>Colector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Local</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Available data and field evaluation
Analysis of Results : Performance
Findings and Impact

• Use Lab or Software Tools to examine mix designs and pavement designs
• Tools for Long Term Management
• Provide a design and management guides, specifications
• Technology Transfer
Findings and Impact

- Making information available in a variety of formats
- Working with stakeholders
- Promoting Best Practices
Closing Thoughts

• Strategic Partnering
• Opportunity to Highlight Canadian Expertise
• Provides National and International Business Opportunities
• Impact on Research and Education of Future Leaders
Acknowledgements

- Norman McLeod Chair
- CPATT Partners, Faculty, Students, Staff
- Transportation Association of Canada: Pavement Asset Design and Management Guide
- Queensland Pavement Centre
Accelerated Testing and Instrumentation: A Canadian Case Study

Susan Tighe, PhD, PEng
Norman W. McLeod Professor in Sustainable Pavement
Director, Centre for Pavement and Transportation Technology
University of Waterloo
Visiting Professor University of the Sunshine Coast