Map of the network

1200 km motorways + 600 km main roads

mostly 2X2 lanes,
hence ±7200 km of lanes,
of which ±1500 km were inspected.

Wallonia = southern part of Belgium
Context of presented work

- **Primary roads (managed by “SOFICO”):**
 - Motorways and main roads.

- **Available: surface characteristics**
 - Roughness, skid resistance, rutting.

- **Missing: bearing capacity, residual life**
 - Priorities of maintenance based on surface characteristics only,
 - Need for structural analysis of those roads.
Why do we use indicators?

- Road structure details unknown:
 - Back-calculation for the network is unreliable.
- Easy to compute:
 - Direct from “raw measurement data”.
- Only needs: classification and prioritization.
- Note:
 - Measurement data are available for detailed analysis (when preparing a call for tender).
What the indicators express?

- A **global indicator**
 - expressing residual service life, and
 - allowing a classification of road sections.

- Based upon indicators for:
 1. Bearing capacity.
 2. Bonding between (upper) layers.
 3. Cohesion of (whole) road structure.
 4. Traffic volume (number of vehicles).
 5. Aggressiveness of heavy traffic.
Deflection measurements

• On concrete roads (rigid roads)
 ▪ Falling Weight Deflectometer (FWD)
 ▪ Force: 100kN
 ▪ 1 measurement point every 100m
 ▪ 9 geophones (0, 300mm,...,2400mm)
Deflection measurements

- On bituminous surfaces (semi-rigid roads)
 - Curviameter
 - 13T axle
 - (65kN wheel load)
 - 1 point every 5m
Deflection and Curvature Radius

Curviameter
- maximum deflection
- measured radius
- 100 points on curve

FWD
- maximum deflection
- computed radius
- “hysteresis” data
Step 1: “homogeneous sections”

- **Curviameter**
 statistical analysis of the maximal deflections (D_{max}) (as in a French standard)

Also delivers characteristic deflection (D_c) in the homogeneous section: $D_c = D_{max,\text{average}} + 2\sigma$

- **FWD**
 dynamic segmentation by the cumulative sum method (cf. COST 336 of FWD)
Step 2: compute indicators

- Details/definitions: see paper.
- Philosophy:
 - Exploit available knowledge on data interpretation,
 - Extend carefully where necessary: “same” indicator for FWD (rigid) and Curviameter (semi-rigid),
 - Combine “structural indicators” into “reasonable global indicator”, weighing by “traffic indicators”,
 - Check that categorization by global indicator is as good as categorization by back-calculation.
KPI1: bearing capacity

- **FWD**: $T_z = \left(\frac{R_c}{D_{\text{max}}}\right)^{0.5}$
 - R_c to be computed for FWD data
 - T_z low \sim bad bearing capacity
- **Curviometer**: D_c
 - $D_c \sim$ life-time
- $T_z \propto D_c$
- Hence: T_z should express bearing capacity of road in reasonable shape.
KPI1: bearing capacity

- **Product “Dmax . Rc”**
 - Large variation in homogeneous section means very bad structural shape of the section.
 - Very high value means critical structural shape.

- **KPI1:**
 - first a selection on \((Dmax \cdot Rc)\)
 - otherwise: \(KPI1 = f(\text{average } Tz)\)
KPI2: layer bonding

- Bad bonding in upper layers may give:
 - Small R_c (Curvimeter), big $D(0)-D(300)$ (FWD)
 - Noise on raw Curvimeter signal:

- KPI2:
 - If large variation in R_c then high KPI2 (bad bonding, R_c both with FWD and Curvimeter)
 - Otherwise compute KPI2 from:
 - difference between $D(0)$ and $D(300)$ (in case of FWD)
 - indicator for noise on raw signal (in case of Curvimeter)
KPI3: cohesion (FWD)

- Load-displacement plot: surface and slope

- KPI3:
 - Use $D(0), D(900)$ for “upper part” and $D(900), D(2100)$ for “lower part”
 - Surfaces: all small (KPI3 is good) or all large (KPI3 is bad)
 - Otherwise: count “jumps” for surfaces & slopes, upper & lower part
KPI3: cohesion (Curviameter)

- **E(0)** = difference of these areas under the curve:

 (inspired by “energy” surface of FWD)

- **KPI3:**

 - Compute in homogeneous section:

 - Average Em of E(0), standard deviation σ_M

 - 1st criterion: Em very small (good) or very large (bad)

 - Else, 2nd criterion: σ_M small (rather good)

 or σ_M large (rather bad)
KPI4 and KPI5: traffic

- **KPI4**: any type of vehicles
 - daily average *number of vehicles*, as counted
 - rescaled on interval $[0;5]$

- **KPI5**: heavy vehicles only
 - different for rigid and semi-rigid road
 - *aggressiveness* factor w.r.t. standard axle load
 - transfer from % of heavy vehicles to average spectrum of the province (since we don’t have traffic spectrum on each location)
 - rescaled on interval $[0;5]$
Global indicator residual service life

- KPI1 (bearing capacity) is transformed using KPI4 and KPI5 (traffic): $KPI1m$

- Combined indicator

$$CSI = \frac{KPI1m + KPI2 + KPI3}{3}$$

- Global indicator:
 - $CSI > 3$: road is “end of life”, $GI > 4$
 - **Otherwise**: GI gets “cubic effect” of characteristic deflection on expected life time.
GI versus back-calculation

• Back-calculation (as on “project level”):
 ▪ linear-elastic model,
 ▪ on 53 homogeneous sections, 8 road structures.

• Observations:
 ▪ similar categorization of structural health,
 ▪ this back-calculation also has its limits,
 ▪ useful to compare life-time expectance not only with GI but also with Tz, KPI1, KPI2, KPI3.
Conclusions

• these indicators:
 ▪ down to earth, pragmatic approach.

• imperfections but:
 ▪ GI gives a good categorization,
 ▪ checked by back-calculation.

• network level indicators:
 ▪ easy to compute from raw measurement data only,
 ▪ global indicator is used for priority setting.

• detailed data are still available:
 ▪ KPI1 (Tz), KPI2, KPI3: first indication of cause of distress,
 ▪ deflection data for tender preparations for road works.
The Use of Deflection Measurements in Pavement Management of the Primary Road Network of Wallonia, Belgium.

Carl VAN GEEM (BRRC) – c.vangeem@brrc.be
Pierre NIGRO (SPW) - pierre.nigro@spw.wallonie.be
Bruno BERLEMONT (BRRC) – b.berlemont@brrc.be