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ABSTRACT 

 The focus of this thesis is to implement factor graphs into the problem of detection, 

classification, and localization (DCL) of underwater objects using active SOund Navigation And 

Ranging (SONAR).  A factor graph is a bipartite graphical representation of the decomposition 

of a particular function.  Messages are passed along the edges connecting factor and variable 

nodes, on which, a message passing algorithm is applied to compute the posterior probabilities at 

a particular node. 

This thesis addresses two issues.  In the first section, the formulation of factor graphs for 

each section of the DCL chain required followed by their closed-form solutions.  For the 

detector, the factor graph determines if the signal is a detection or simply noise.  In the classifier, 

it outputs the probability for the elements in the class.  Last, when using a factor graph for the 

tracker, it gives the estimated state of the object being tracked. 

The second part concentrates on the application to Continuous Active SONAR (CAS).  

When using CAS, a bistatic configuration is used allowing for a more rapid update rate where 

two unmanned underwater vehicles (UUVs) are used as the receiver and transmitter.  The goal is 

to evaluate CAS’s effectiveness to determine if the tracking accuracy improves as the transmit 

interval decreases.  If CAS proves to be more efficient in target tracking, the next objective is to 

determine which messages sent between the two UUVs are most beneficial.  To test this, a 

particle filter simulation is used. 
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Chapter 1: INTRODUCTION 

1.1 Motivation 

SOund Navigation And Ranging (SONAR) is a technology used in naval applications to 

detect undersea objects.  A signal is transmitted from a source and is then reflected from 

different undersea entities.  This includes rocks, sea creatures, the ocean floor, the ocean surface, 

and targets of interest.  The received echoes are analyzed to determine the identity of, and track 

the objects that created them. It is important to extract as much information as possible from the 

reflection of the signal while using minimal resources.  This information is vital for knowing 

whether to stop or continue tracking an entity, or determine if other action is required to be 

taken.  For this process to be optimal, the detector, classifier, and tracker need to utilize models 

and parameters that accurately match the environment in order to minimize false or missed 

detections.  

In pulsed active SONAR (PAS), a source transmits a short pulse of sound, or ping, and 

then listens for the echo from the signal.  A configuration in which the transmitter and the 

receiver are co-located is known as a monostatic situation (Yakubovskiy).  If an echo arrives at 

the same time a transmission is taking place, the data from the reflection is not received, leading 

to a loss of data.  To avoid this loss, long listen intervals between transmissions are used, leading 

to lower update rates, which can cause difficulties for the tracker (Grimmett & Wakayama, 

2013). As opposed to PAS, continuous active SONAR (CAS) transmits a continuous signal. This 

requires a bistatic configuration, i.e., the use of a separate, non-co-located, transmitter and 

receiver (Yakubovskiy). This configuration permits a higher update rate, and in practice will 

allow the use of a lower transmit source level to achieve the same total echo energy.  
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1.2 Problem Statement 

1.2.1 Detection Classification and Localization 

The Detection, Classification, and Localization (DCL) process begins by an unmanned 

underwater vehicle (UUV) receiving the reflection of the signal previously transmitted.   If the 

received signal level is above a set threshold, set by the detector, the signal is deemed as a 

possible object to identify and possibly track.  The detector sends the data to the classifier to be 

analyzed by identifying specific features characterized within the signal.  Once the echo has been 

identified as an object of interest, the data is sent to the tracker.  The tracker attempts to 

determine if the data is from an object that is currently being tracked, in which case the data is 

used to update the track, or if it is from a new object and a new track needs to be created.  The 

tracker can perform further classification, based on the object’s movement.   

The objective of this thesis is to develop graph-based algorithms for improved detection, 

classification, localization, and tracking of underwater objects using continuous active sources.  

Next, is to apply these newly developed factor graph approaches to the detection, classification, 

and localization chain and if possible, use the output information to feed back into the process 

for more accurate data.  

1.2.2 Continuous Active SONAR 

Continuous active SONAR uses a bistatic configuration.  In such a configuration, the 

transmitter and receiver are separate vehicles, allowing the transmitter to send a continuous 

signal without the threat of information loss.  Without this limit of time between signal 

transmissions, the detector, classifier, and tracker can receive a constant flow of data.  A goal of 

this thesis is to evaluate the performance of CAS to determine if the accuracy of the location 

determined by the tracker improves as the update rate is increased.   
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In order to localize the object in relation to the receiver using bistatic SONAR, the relative 

location of the transmitter to the receiver needs to be known along with the time the signal is 

transmitted.  Position information is easy to obtain if both the transmitter and receiver are 

immobile, or if Global Positioning System (GPS) is available.  Likewise, time synchronization is 

easy if radio communications are available for use.  However, in an unmanned underwater 

vehicle (UUV) scenario, both the transmitter and receiver are in motion, GPS is generally not 

available, and there is typically no radio link. However, different pieces of information exist 

which can be used to help deduce the relative geometry.  For example, the direct blast from the 

transmitter, and the bearing measurements in relation to the receiver.  Also, acoustic 

communications (of low bandwidth) can be used via an acoustic modem, or by embedding 

messages within the source transmit signal.  Messages could also be received by measurements 

taken from a SONAR sensing mechanism.  The goal of the thesis is to determine which 

messages will be the most beneficial to better localize the object being tracked. 

 

1.3 Original Contributions 

 Even though the implementation of the detector, classifier, and tracker into factor graphs 

had been found previously, one of the original contributions of this thesis is the computation of 

closed form solutions for the factor graph tracker.  The closed form solutions were also found to 

be equivalent to the equations of the standard Kalman filter.  MATLAB codes of the two trackers 

were constructed and ran against each other to track a noisy object, and both were found to 

identically track the object.  A key difference found is the factor graph tracker has the capability 

to track objects with biased measurements. 
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 Another contribution was proving the effectiveness of CAS versus PAS since it was 

proven that the smaller the transmit interval, the lower the tracking error.  Because of this result, 

further research was conducted to determine the value of different messages that could be known 

when tracking an object.  The utility of each message combination given different scenarios were 

found and are valuable contributions to target tracking.   
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Chapter 2: BACKGROUND 

2.1 Factor Graph 

A factor graph is the graphical representation of the decomposition of a particular function.  

It consists of two types of nodes, variable and factor nodes, connected to each other through 

edges, classifying a factor graph as a bipartite graph.  For every variable xi, there is a variable 

node, and there is a factor node for every function fj.  Nodes, xi and fj, are connected via an edge, 

if and only if xi is an argument of fj.  A function g(x1,…,xn) that is equal to the product of multiple 

“local functions”, all having arguments from a subset of {x1,...,xn} is shown below in Equation 1. 

𝑔(𝑥1, … , 𝑥𝑛) =  ∏𝑓𝑗(𝑋𝑗)

𝑗∈𝐽

 

1 

where J is a discrete index set.  Xj is a subset of {x1,...,xn}, whose elements are arguments of the 

sub-function fj(Xj).  Equation 1 can easily be represented as a factor graph relating the arguments 

and their local functions. 

As an example, presented in several sources, suppose a function, g, consisting of five 

variables, x1, …, x5, is represented as the product of five functions, fA, fB, fC, fD, and fE, such that 

XA = {x1}, XB = {x2}, XC = {x1,x2,x3}, XD = {x3,x4}, and XE= {x3,x5}, where {A, B, C, D, E} are 

elements of the discrete set J.  The factorization of the function g, shown in Equation 2,  

𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)  =  𝑓𝐴(𝑥1)𝑓𝐵(𝑥2)𝑓𝐶(𝑥1, 𝑥2, 𝑥3)𝑓𝐷(𝑥3, 𝑥4)𝑓𝐸(𝑥3, 𝑥5) 

2 

can be expressed via the factor graph in Figure 1. (Frank R. Kschischang, 2001). 
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Figure 1:  The factorization of g(x1,x2,x3,x4,x5) expressed as a factor graph.  The squares represent the factor nodes, 

fj, and the circles are the variable nodes, xn. Image based on  (Frank R. Kschischang, 2001).  This image has been 

used in several papers as a general representation of a factor graph. 

 

 Another form of a factor graph is described by Forney in (Forney, 2005) in which 

Equation 2 would be represented by Figure 2.  

 

Figure 2:  Forney's factor graph of Equation 2. 

Forney’s version of a factor graph will be used later in the paper, but for further description of 

how a factor graph may be marginalized; the first factor graph will be used as reference. 
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Marginal computations at gi(xi)  may be desired when using factor graphs (i.e. if 

g(x1,x2,x3,x4,x5) is a joint probability mass function) and can be done by using the distributive 

property.  This will be demonstrated by solving for the marginalization of g3(x3).  To get a better 

visual of how this property is used, the factor graph in Figure 1 can be rearranged to more clearly 

identify the edges connecting to g3(x3) and is shown in Figure 3.  This is known as a rooted tree 

with x3 as the root.  However, note that only the visual display is changing, while the connections 

will remain the same as in Figure 1. 

 

Figure 3:  The function g(x1,x2,x3,x4,x5) rearranged to focus on the marginalization at g3(x3). Image based on  (Frank 

R. Kschischang, 2001).  This image has been used in several papers as a general representation of a factor graph. 

 

The marginalization of g3(x3) can be written as 

𝑔3(𝑥3) = ( ∑ 𝑓𝐴(𝑥1)𝑓𝐵(𝑥2)𝑓𝐶(𝑥1, 𝑥2, 𝑥3)

~{𝑥3}

) × ( ∑ 𝑓𝐷(𝑥3, 𝑥4)

~{𝑥3}

) × ( ∑ 𝑓𝐸(𝑥3, 𝑥5)

~{𝑥3}

). 
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Since typically, more than one marginalization will need to be computed, it is more efficient to 

use the sum-product algorithm, which is explained in section 2.1.1. 

 

2.1.1 Belief Propagation 

Belief Propagation (BP) can be used for problems in artificial intelligence, digital 

communications, statistical physics, and error-correcting coding theory, among other areas 

(Frank R. Kschischang, 2001), (Jonathan S. Yedidia, 2001).  Belief Propagation, also known as 

the sum-product algorithm, is used when trying to calculate the marginals for an inference 

problem that is using message passing.  If a graph doesn’t contain any loops, then the BP 

converges to an exact solution, otherwise, it provides an estimation of the solution (Coughlan, 

2009).   

Messages are passed and updated between the nodes and once the messages converge, the 

posterior probabilities, also called marginal probabilities or beliefs, are calculated (Coughlan, 

2009).  Given a variable node xi and a factor node fj, the message passed from fj to xi can be 

denoted 𝜇𝑓𝑗→𝑥𝑖
(𝑥𝑖).  The message determines the appropriate state that xi should be in (Jonathan 

S. Yedidia, 2001).  Messages are passed along the edges between nodes and can travel in both 

directions.  Messages 𝜇𝑓𝑗→𝑥𝑖
(𝑥𝑖) are vectors with the same dimensions as xi (Jonathan S. 

Yedidia, 2001).  Nodes connected to a node xi, through an edge are called neighbors and can be 

denoted as 𝑛(𝑥𝑖).  A section of a factor graph, along with its messages, is illustrated in Figure 4.  

The messages between nodes are calculated using the sum-product update rule.  This rule states 

that the message sent from a node v on an edge e to another node q, is the product of the local 

function at v and all messages received at v on different edges than e.  The product is then 
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summarized for the variable associated with e.  If v is a variable node, then the unit function is 

multiplied (Frank R. Kschischang, 2001).  Referring to Figure 4 for notation, the message 

calculated from a variable node to a function node is given by Equation 3. 

𝜇𝑥→𝑓(𝑥) =   ∏ 𝜇ℎ→𝑥(𝑥)

ℎ∈𝑛(𝑥){𝑓}

 

3 

𝜇𝑓→𝑥(𝑥) = (∑ 𝑓(𝑋) ∏ 𝜇𝑦→𝑓(𝑦)

𝑦∈𝑛(𝑓)\{𝑥}~{𝑥}

) 

4 

Equation 4 is used if a message is passed from a local function to a variable, where X = 𝑛(𝑓) is 

the vector of neighboring variable nodes to the function f and the expression 𝑛(𝑓)\{𝑥} indicates 

all neighboring variable nodes to the function node f excluding the variable node x.  The dashed 

ovals in Figure 4 indicate the neighbors of x and f excluding f and x, respectively.  If a node is 

only connected to one other node, it is considered a leaf node.  If a leaf node is a variable node, 

such as y1 in Figure 4, then the message is computed using Equation 5 and if a leaf node is a 

factor node, like h2 in Figure 4, Equation 6 is used. 

𝜇𝑥→𝑓(𝑥) = 1 

5 

𝜇𝑓→𝑥(𝑥) = 𝑓(𝑥) 

6 

 



10 

 

 

Figure 4:  A section of a factor graph illustrating the sum-product update rule.  Image based on (Frank R. 

Kschischang, 2001).  This image has been used in several papers as a general representation of a factor graph. 

 

In order to begin using the sum-product algorithm, message passing begins at the leaves 

of the factor graph.  An example from (Frank R. Kschischang, 2001) of the sum-product 

algorithm will be broken down for Equation 2.  The factor graph for Equation 2 is re-arranged in 

Figure 5 to clearly visualize the messages being passed.   
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Figure 5:  Re-arranged factor graph of Equation 2.  Each step of the sum-product algorithm is labeled in red.  

Image based on (Frank R. Kschischang, 2001).  This image has been used in several papers as a general 

representation of a factor graph. 

 

For this factor graph, only 5 steps are needed to compute the messages, which are labeled 

in red above in Figure 5. 

Step 1:   

𝜇𝑓𝐴→𝑥1
(𝑥1) = ∑ 𝑓𝐴(𝑥1) = 𝑓𝐴(𝑥1)

~{𝑥1}

 

𝜇𝑓𝐵→𝑥2
(𝑥2) = ∑ 𝑓𝐵(𝑥2) = 𝑓𝐵(𝑥2)

~{𝑥2}

 

𝜇𝑥4→𝑓𝐷
(𝑥4) = 1 

𝜇𝑥5→𝑓𝐸
(𝑥5) = 1 

Step 2:  
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𝜇𝑥1→𝑓𝐶
(𝑥1) =  𝜇𝑓𝐴→𝑥1

(𝑥1) 

𝜇𝑥2→𝑓𝐶
(𝑥2) = 𝜇𝑓𝐵→𝑥2

(𝑥2) 

𝜇𝑓𝐷→𝑥3
(𝑥3) = ∑ 𝜇𝑥4→𝑓𝐷

(𝑥4)𝑓𝐷(𝑥3, 𝑥4)

~{𝑥3}

 

𝜇𝑓𝐸→𝑥3
(𝑥3) = ∑ 𝜇𝑥5→𝑓𝐸

(𝑥5)𝑓𝐸(𝑥3, 𝑥5)

~{𝑥3}

 

Step 3: 

𝜇𝑓𝐶→𝑥3
(𝑥3) = ∑ 𝜇𝑥1→𝑓𝐶

(𝑥1)𝜇𝑥2→𝑓𝐶
(𝑥2)𝑓𝐶(𝑥1, 𝑥2, 𝑥3)

~{𝑥3}

 

𝜇𝑥3→𝑓𝐶
(𝑥3) = 𝜇𝑓𝐷→𝑥3

(𝑥3)𝜇𝑓𝐸→𝑥3
(𝑥3) 

Step 4: 

𝜇𝑓𝐶→𝑥1
(𝑥1) = ∑ 𝜇𝑥3→𝑓𝐶

(𝑥3)𝜇𝑥2→𝑓𝐶
(𝑥2)𝑓𝐶(𝑥1, 𝑥2, 𝑥3)

~{𝑥1}

 

𝜇𝑓𝐶→𝑥2
(𝑥2) = ∑ 𝜇𝑥3→𝑓𝐶

(𝑥3)𝜇𝑥1→𝑓𝐶
(𝑥1)𝑓𝐶(𝑥1, 𝑥2, 𝑥3)

~{𝑥2}

 

𝜇𝑥3→𝑓𝐷
(𝑥3) = 𝜇𝑓𝐶→𝑥3

(𝑥3)𝜇𝑓𝐸→𝑥3
(𝑥3) 

𝜇𝑥3→𝑓𝐸
(𝑥3) = 𝜇𝑓𝐶→𝑥3

(𝑥3)𝜇𝑓𝐷→𝑥3
(𝑥3) 

Step 5: 

𝜇𝑥1→𝑓𝐴
(𝑥1) =  𝜇𝑓𝐶→𝑥1

(𝑥1) 

𝜇𝑥2→𝑓𝐵
(𝑥2) = 𝜇𝑓𝐶→𝑥2

(𝑥2) 
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𝜇𝑓𝐷→𝑥4
(𝑥4) = ∑ 𝜇𝑥3→𝑓𝐷

(𝑥3)𝑓𝐷(𝑥3, 𝑥4)

~{𝑥4}

 

𝜇𝑓𝐸→𝑥5
(𝑥5) = ∑ 𝜇𝑥3→𝑓𝐸

(𝑥3)𝑓𝐸(𝑥3, 𝑥5)

~{𝑥5}

 

The function can be calculated at any one of the variable nodes by multiplying all messages 

heading toward the specific variable node.  The functions at each variable are written below. 

𝑔1(𝑥1) = 𝜇𝑓𝐴→𝑥1
(𝑥1) 𝜇𝑓𝐶→𝑥1

(𝑥1) 

𝑔2(𝑥2) = 𝜇𝑓𝐵→𝑥2
(𝑥2) 𝜇𝑓𝐶→𝑥2

(𝑥2) 

𝑔3(𝑥3) = 𝜇𝑓𝐶→𝑥3
(𝑥3) 𝜇𝑓𝐷→𝑥3

(𝑥3)𝜇𝑓𝐸→𝑥3
(𝑥3) 

𝑔4(𝑥4) = 𝜇𝑓𝐷→𝑥4
(𝑥4) 

𝑔5(𝑥5) = 𝜇𝑓𝐸→𝑥5
(𝑥5) 

At this stage, the marginal distribution of each variable node is proportional to the 

product of all the messages from neighboring nodes directed toward the variable node after being 

normalized.  Equation 7 shows the belief of a variable node before normalization.  The belief 

converging at a factor node is proportional to the product of the function and the messages from 

the neighboring variable nodes after normalization as shown in Equation 8 (before 

normalization) (Coughlan, 2009).   

𝑏𝑖(𝑥𝑖) ∝ ∏ 𝜇𝑓𝑗→𝑥𝑖
(𝑥𝑖)

𝑓𝑗∈𝑛(𝑥𝑖)

 

7 
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𝑏𝑋𝑗
(𝑋𝑗) ∝ 𝑓𝑗(𝑋𝑗) ∏ 𝜇𝑥𝑖→𝑓𝑗

(𝑥𝑗)

𝑥𝑖∈𝑛(𝑓𝑗)

 

8 

If the factor graph is open and does not contain a closed chain or loop, i.e. a tree, then the 

exact marginals can be established. 

 

2.1.2 Gaussian Belief Propagation 

 Undirected Graphs 

The Gaussian Belief Propagation (GaBP) algorithm is used when the joint probability 

distributions are Gaussian. When using GaBP, the messages and beliefs are also all Gaussian and 

the means and inverse covariance matrices can be used for the update equations.  Weiss and 

Freeman (Weiss & Freeman, Oct., 2001) describe the different equations used to determine the 

beliefs for the GaBP algorithm in an undirected graph, which, when compared to regular belief 

propagation, are not as difficult. 

The information matrix Jij is given by the equation 

𝐽𝑖𝑗 = [
𝑎 𝑏
𝑏𝑇 𝑐

]. 

9 

In GaBP, the update equations can be the means and inverse covariance matrices due to the 

messages between neighboring nodes also being a mean and inverse covariance matrix.  The 

message update equations are given by 

𝑉𝑖𝑗 = 𝑐 − 𝑏(𝑎 + 𝑉0)
−1𝑏𝑇 

10 
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𝑚𝑖𝑗 = −𝑉𝑖𝑗
−1𝑏(𝑎 + 𝑉0)

−1𝑉0𝑚0 

11 

where 𝑉𝑖𝑗 and 𝑚𝑖𝑗 is the precision or inverse covariance matrix and mean vector, respectfully, 

sent from the node xi to the node xj.  The initials are described in the equations below. 

𝑉0 = 𝑉𝑖𝑖 + ∑ 𝑉𝑘𝑖

𝑥𝑘∈𝑁(𝑥𝑖)\𝑥𝑗

 

12 

𝑚0 = 𝑉0
−1 (𝑉𝑖𝑖𝑚𝑖𝑖 + ∑ 𝑉𝑘𝑖𝑚𝑘𝑖

𝑥𝑘∈𝑁(𝑥𝑖)

) 

13 

In the above equations, 𝑉𝑖𝑖 and 𝑚𝑖𝑖 are the inverse covariance matrix and mean vector, 

respectively of the function 𝑓𝑖𝑖(𝑥𝑖 , 𝑦𝑖).  The mean of the posterior probability at node xi is 

represented by mi.  Likewise, Vi is the inverse covariance matrix of the belief at node xi.  Lastly, 

the expression 𝑁(𝑥𝑖)\𝑥𝑗 denotes all neighboring nodes of xi, with the exception of xj.  Finally, 

the beliefs, or posterior probabilities in an undirected graph are declared as Equations 14 and 15.   

𝑉𝑖 = 𝑉𝑖𝑖 + ∑ 𝑉𝑘𝑖

𝑥𝑘∈𝑁(𝑥𝑖)

 

14 

𝑚𝑖 = 𝑉𝑖
−1 (𝑉𝑖𝑖𝑚𝑖𝑖 + ∑ 𝑉𝑘𝑖𝑚𝑘𝑖

𝑥𝑘∈𝑁(𝑥𝑖)

). 

15 

If the information matrix Jij is diagonally dominant, then the Gaussian belief propagation will 

converge, resulting in precise means (Loeliger, et al., 2007).  (Weiss & Freeman, Oct., 2001). 
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 Directed Graphs 

 Unfortunately, a factor graph is a directed graph, which causes the Gaussian messages to 

become a little more complex to compute.  Linear factor graph models contain nodes of 

multiplication, addition, and equality, resulting in different forks to be formed in the graph.  

Because of this characteristic, the messages for a directed Gaussian linear factor graph are also 

Gaussian and remain so throughout computation using the sum-product algorithm.  The 

technique about to be described can be used in many signal processing situations, as referred to 

by Loeliger.  (Loeliger, et al., 2007). 

 The mean and covariance will still be represented by m and V, however, since this is a 

directed graph, the notation needs to reflect direction.  If x is a variable signified by a directed 

edge, then the message containing x following the direction of the edge is represented by 𝜇𝑥⃗⃗⃗⃗ , 

whereas 𝜇𝑥⃖⃗ ⃗⃗⃗  is the notation of the message passing in the opposite direction of the edge.  

Likewise, the mean and covariance of x in the direction of the edge is denoted as 𝑚⃗⃗ 𝑥 and 𝑉𝑥⃗⃗  ⃗, 

respectively and by 𝑚⃗⃗⃖𝑥 and 𝑉𝑥⃖⃗ ⃗⃗  when traveling in the opposite direction.  The marginals of the 

messages are denoted as 𝑚𝑥 and 𝑉𝑥.  The following update rules defined by Loeliger (Loeliger, et 

al., 2007) will be described using Forney’s factor graph with arrows.  The arrows are not 

necessary but make the direction of the factor graph more evident.   

 When two branches, X and Y, are directed toward an equality node, the resulting message 

of edge Z has an equivalent marginal as the two individual incoming messages.  This is 

demonstrated below in Figure 6.  The same setup is shown in Figure 7 but with an addition node 

instead of the equality node.  The equations are basic addition and mean subtraction for 

computation of the distributions at edge Z and the edge X in the opposing direction. 
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𝑚𝑋 = 𝑚𝑌 = 𝑚𝑍 

𝑉𝑋 = 𝑉𝑌 = 𝑉𝑍 

Figure 6: Gaussian messages for basic equality node. Image based on (Loeliger, et al., 2007). 

 

 

𝑉𝑍
⃗⃗⃗⃗ = 𝑉𝑋

⃗⃗⃗⃗ + 𝑉𝑌
⃗⃗⃗⃗    𝑉𝑋

⃖⃗ ⃗⃗⃗ = 𝑉𝑍
⃖⃗⃗⃗⃗ + 𝑉𝑌

⃗⃗⃗⃗  

𝑚⃗⃗ 𝑍 = 𝑚⃗⃗ 𝑋 + 𝑚⃗⃗ 𝑌  𝑚⃗⃗⃖𝑋 = 𝑚⃗⃗⃖𝑍 − 𝑚⃗⃗ 𝑌 

𝑚𝑋 + 𝑚𝑌 = 𝑚𝑍 

Figure 7: Gaussian messages for basic addition node. Image based on (Loeliger, et al., 2007). 

 

Figure 8 illustrates the computation of the covariance, mean, and marginals for forward matrix 

multiplication in a factor graph where A is a matrix.   
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𝑉𝑌
⃗⃗⃗⃗ = 𝐴𝑉𝑋

⃗⃗⃗⃗ 𝐴𝐻 

𝑚⃗⃗ 𝑌 = 𝐴𝑚⃗⃗ 𝑋 

𝑉𝑌 = 𝐴𝑉𝑋𝐴𝐻 

𝑚𝑌 = 𝐴𝑚𝑋 

Figure 8:  Gaussian messages for matrix multiplication. Image based on (Loeliger, et al., 2007). 

Last, when combining a branch of matrix multiplication with the equality node, a more complex 

calculation is formed and shown in Figure 9. 

 

𝑉𝑍
⃗⃗⃗⃗ = 𝑉𝑋

⃗⃗⃗⃗ − 𝑉𝑋
⃗⃗⃗⃗ 𝐴𝐻𝐺𝐴𝑉𝑋

⃗⃗⃗⃗  

𝑚⃗⃗ 𝑍 = 𝑚⃗⃗ 𝑋 + 𝑉𝑋
⃗⃗⃗⃗ 𝐴𝐻𝐺(𝑚⃗⃗⃖𝑌 − 𝐴𝑚⃗⃗ 𝑋) 

        where 𝐺 ≜ (𝑉𝑌
⃖⃗⃗⃗⃗ +  𝐴𝑉𝑋

⃗⃗⃗⃗ 𝐴𝐻)−1   

Figure 9:  Gaussian messages for combined matrix multiplication and an equality node. Image based on (Loeliger, 

et al., 2007). 

For backwards Gaussian distribution involving matrix multiplication, different steps are required, 

but are not utilized in this thesis and therefore, will not be covered.  The reader may refer to 

(Loeliger, et al., 2007) for more information regarding this topic.  (Loeliger, et al., 2007). 
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2.2 Signal Processing for Undersea Systems 

2.2.1 Signal Detection Theory 

Signal Detection Theory is used in various areas of study, such as medical, psychology, 

legal, digital communication systems, RADAR and SONAR systems, and speaker classification 

just to name a few (Van Trees, 2001), (Heeger, 2003-2007).  In a general signal detection 

problem, a source produces an output of all possible scenarios, called hypotheses.  These are 

labeled as H0, H1,…, HN for N possible scenarios.  In the case of digital communication, these 

could be H1 and H0 to represent a “one” or “zero” being transmitted, respectively.  For the 

medical scenario if a radiologist is attempting to locate a tumor, H1 would represent a tumor is 

present and H0 would represent no tumor.  In a SONAR or RADAR scenario, H1 would represent 

the reflected signal is present and H0 would mean that just noise is present.  However, the 

observer does not know which one is the correct hypothesis.  The probabilistic transition 

mechanism knows which of the hypotheses are correct and using the known conditional 

probabilities densities for each hypothesis, it projects a value into the observation space.  The 

observation space is made up of a set of M observed variables, r1, r2,…,rM, which are elements in 

the vector R.  These elements are the assigned values from the source output added to random 

noise n.  A diagram demonstrating the basic structure of signal detection theory is given in 

Figure 10.  (Van Trees, 2001). 
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Figure 10:  Basic operation of a signal detection theory example.  Image based on (Van Trees, 2001). 

When assuming a simple binary scenario, such as in SONAR, where H1 and H0 are the 

two hypotheses, the two known conditional probability densities sent by the transition 

mechanism would be p(R⃒H1) and p(R⃒H0), respectively.  Given that either H1 or H0 must be 

true, there are four possible decisions that can be made.  Two of which are the correct decisions:  

if H0 is true and the decision were to select H0, and if H1 is true and selected.  The first would be 

considered a rejection, and the later would be termed a detection.  A miss would be made if H1 

were true but H0 was selected.  Last, if H1 was selected when H0 were true, then this would be 

considered a false alarm.  A decision rule is required for the observer to determine which to 

choose.  This decision can be made by setting a threshold λ, in which everything above the 

threshold, the observer chooses H1 and for everything below, H0 is chosen (Macmillan, 2002).  

Figure 11 illustrates the use of this threshold on the distribution curves for the noise and the 

signal plus noise. 



21 

 

 

Figure 11:  The noise and signal distribution curves with means MNoise and MSignal respectively, with a threshold, λ. 

Image based on (Macmillan, 2002). 

 Since every value above the threshold is chosen to be the signal, then that area under the 

noise curve would all be false alarms, where that same area under the signal curve would be 

correct detections.  The area below the threshold for the noise distribution would be correct 

rejections, and missed detections when under the signal probability distribution curve. 

 The goal is to maximize the probability of detection, PD, while minimizing the 

probability of a false alarm, PF.  By either using Bayes Criterion or Neyman-Pearson Criterion, 

both lead to the likelihood ratio, Λ(R), which is given in the equation below. 

Λ(𝐑) ≜
𝑝(𝑹⃒H1)

𝑝(𝑹⃒H0)
 

16 

In order to perform a likelihood ratio test, the threshold, λ, needs to be calculated.  If 

using Bayes Criterion, the threshold is formed based on the a priori probabilities of the original 
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source outputs for H1 and H0, given by P1 and P0, respectively.  It is also determined by the cost, 

Cij of each decision, where i denotes the hypothesis that was selected, and j is the hypothesis that 

is true.  The assumption is made that the cost of a wrong decision is greater than the cost of a 

correct decision, as is shown below. 

𝐶10 > 𝐶00 

𝐶01 > 𝐶11 

Using the costs and the a priori probabilities, the threshold can be computed as the given 

equation. 

𝜆 ≜
𝑃0(𝐶10 − 𝐶00)

𝑃1(𝐶01 − 𝐶11)
 

17 

 When using the Neyman-Pearson criterion, a desired PF is selected and set equal to the 

equation below.  In order to find the threshold, the equation is solved for 𝜆. 

𝑃𝐹 = ∫ 𝑝 (𝛬⃒𝐻0)𝑑𝛬

∞

𝜆

 

18 

For both criterions, the likelihood ratio test is given as  

Λ(𝐑) 

𝐻1

>
<
𝐻0

 𝜆 

19 

The likelihood ratio test explains that if the likelihood ratio is greater than the threshold, the 

selection of 𝐻1 should be made.  If the ratio is less than the threshold, the selection should be 𝐻0.  
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A final illustration of the signal detection theory using the threshold is given in the following 

figure.  (Van Trees, 2001). 

 

Figure 12:  The possible results using signal detection theory.  Image based on (Van Trees, 2001). 

In the above figure, the two overlapping curves are the conditional probability densities 

for H1 and H0.  The threshold is marked in red in the center.  The cyan shaded area represents the 

PD, while the yellow shaded area is the PF.  The figure displays how the use of the threshold is 

reducing the probability of false alarms while increasing the probability of detection. 

 

2.2.2 Classification 

 A classifier is a model predicting a class label for an object given the vector of features 

supplied by a feature extractor.  They are used heavily in the medical field, for instance when 

classifying a disease, and also in text and language, such as detecting spam within emails.  In 

naval applications, classification is used to identify the class of the undersea object being 

detected and/or tracked.  Within a classifier, the probabilities for the different possible classes are 

calculated since it is highly improbable to always achieve perfect classification (Duda, Hart, & 

Stork, 2001).  One of the most common forms of a classifier is a Bayesian network.   
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 Bayesian Network 

 A Bayesian network, or Bayesian belief network, is a directed graphical model of a 

directed graph G = (V, E) where V and E are vertices and edges of the graph, respectively.  The 

probability distributions of these directed graphs factorize as the product of the local functions, 

given by  

𝑝(𝒚, 𝒙) =  ∏𝑝(𝑣|𝑣𝜋)

𝑣∈𝑉

 

20 

where y is an element of the output variables, x is an element of the input variables, and vπ are the 

parents of v.  The set of nodes that come before node v are known as the parents of v, likewise, 

the nodes that come after v are the children of v.  To understand the notation of a Bayesian belief 

net, Figure 13 will be used as a source of referral.  In the belief net, the bold capital letters are 

nodes with their associated variables, or states, given by the respective lowercase letters.  For 

example, node A has variables a1, a2, …, labeled as the feature a.  The edges between each node 

are directional and represent the conditional probabilities.  For instance, the edge connecting A 

and C signifies the conditional probabilities P(ci|aj) given by the matrix P(c|a).  The nodes that 

are not connected by an edge are considered to be conditionally independent.  
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Figure 13:  A Bayesian belief net where the bold capital letters are nodes with their associated variables, or states, 

given by the respective lowercase letters.  The edges between each node are directional and represent the 

conditional probabilities.  Image based on (Duda, Hart, & Stork, 2001). 

 

 A belief net operates by calculating the state of a node based on the states of the 

connected nodes.  Figure 14 illustrates a section of a Bayesian belief net having nodes π1, π2,…, 

πn, X, and C1, C2, …, Cm where π1, π2,…, πn are X’s parents, π, and nodes C1, C2, …, Cm are 

X’s children, C.  If the variable values of all nodes besides X are known, a.k.a. the evidence, then 

the relative probabilities of the set of variables in x on node X, given the collected evidence e, at 

all other nodes, is known as the belief of x, denoted as P(x|e).  Equation 21 shows how P(x|e) is 

reliant on both, the parents and children. 

𝑃(𝒙|𝒆) ∝ 𝑃(𝒆𝐶|𝒙)𝑃(𝒙|𝒆𝜋) 

21 
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The evidence of the parent and children nodes is given by 𝒆𝜋 and 𝒆𝐶, respectively.  To find the 

final belief of x, Equation 21 will be normalized over the states at X.  (Duda, Hart, & Stork, 

2001). 

 

Figure 14:  A section of a Bayesian belief net having nodes π1, π2,…, πn, X, and C1, C2, …, Cm where π1, π2,…, πn 

are X’s parents,  and nodes C1, C2, …, Cm are X’s children. Image based on (Duda, Hart, & Stork, 2001). 

 

 The first factor of Equation 21 is the product of the children’s independent likelihoods.  

Equation 22 gives the expansion of the first factor from Equation 21. 

𝑃(𝒆𝐶|𝒙) = ∏𝑃(𝒆𝐶𝑗
|𝒙)

|𝐶|

𝑗=1

 

22 

In the equation above, 𝐶𝑗 denotes the jth child node, while the values of the probabilities of its 

variables is given by 𝒆𝐶𝑗
.  The number of elements in set C is given by |𝐶|, and |𝜋| is likewise, 
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the number of elements in set π, which will be seen in the equation below for the second factor of 

Equation 21. 

𝑃(𝒙|𝒆𝜋) = ∑ 𝑃(𝒙|𝜋𝑚𝑛)

𝑎𝑙𝑙 𝜋𝑚𝑛

∏𝑃(𝜋𝑖|𝒆𝜋𝑖
)

|𝜋|

𝑖=1
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Equation 23 shows the reliance the belief has on the parent nodes where 𝜋𝑚𝑛 represents the 

specific value for variable n on parent node 𝜋𝑚.  Comparable to Equation 22, 𝜋𝑖 denotes the ith 

parent node, while the values of the probabilities of its variables is given by 𝐞πi
.  Equation 24 

shows the proportionality of the belief of x to the combination of the two previously defined 

equations.   

𝑃(𝒙|𝒆) ∝  ∏𝑃(𝒆𝐶𝑗
|𝒙)

|𝐶|

𝑗=1

∑ 𝑃(𝒙|𝜋𝑚𝑛)

𝑎𝑙𝑙 𝜋𝑚𝑛

∏𝑃(𝜋𝑖|𝒆𝜋𝑖
)

|𝜋|

𝑖=1
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The final belief is found when Equation 24 is normalized over the variables at node X.  (Duda, 

Hart, & Stork, 2001). 

 

 Naïve Bayes Classifier 

 The naïve Bayes classifier can be illustrated as a simple Bayesian belief net, where the 

features are conditionally independent.  It has shown to be a very efficient, and in certain cases, 

an optimal classifier, even though the assumption of complete conditional independence of 

features is very unlikely to be true in real-world scenarios (Zhang, 2004).  Equation 25 gives the 

joint probability formula of which the naïve Bayes classifier is founded.   
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𝑝(𝑦, 𝒙) = 𝑝(𝑦)∏𝑝(𝑥𝑘|𝑦)

𝐾

𝑘=1
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In the above equation, y is the class variable and x = (x1, x2,…, xK) are features for the object 

(Sutton & McCallum). Figure 15 illustrates an example of a naïve Bayes classifier.  

 

Figure 15:  An example of a naïve Bayes classifier with class variable y and features x = (x1, x2, . . . , xK). 

 

2.2.3 Tracking 

 Kalman Filtering 

 The Kalman Filter was first introduced by Rudolf E. Kalman in 1960 when he published 

his paper describing a recursive solution to the linear filtering and prediction problems (Kalman, 

March 1960).  It is a data fusion algorithm most commonly used for data smoothing and 

providing the best mathematical estimate for the state parameters.  The Kalman Filter is applied 

to many devices used today such as satellite navigation and control devices in vehicles, smart 

phones, and certain computer games.  (Faragher, 2012).  According to (Maybeck, 1979), the job 
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of a filter is to find the best possible estimate with the least amount of error of the state given the 

noisy data collected.  To reach this goal, the filter uses the measurements being collected in the 

data to portray the conditional probability density of the state.  The word conditional is used due 

to the measurements being the deterministic factor of the shape and location along the x-axis.  

The shape of the conditional probability density graph determines the confidence in the 

information at the specific x-value.  From this function the best estimate can be determined 

using, most commonly, the mean estimate, which is the “center of probability mass”, the mode 

estimate, which is the x-value at the highest density point, or the median estimate, which is the x-

value dividing the density in half.  The Kalman filter is determined to be the best filter under the 

circumstances where the system model is linear and the process and measurement noises are both 

white and Gaussian which causes the mean, mode, and median of the estimate to all lie on the 

same x-value. (Maybeck, 1979). 

 Suppose a signal sn, needs to be projected, given real measurement data (z0, z1, …, zn), 

and the signal and measurement data are categorized by the autocorrelation and cross-correlation 

functions (Sorenson, 1970).  Using the reference (Welch & Bishop, 2006), the procedure for 

estimating the real state x, of a discrete-time controlled process, will be discussed.  The state x at 

time step k, is defined by the linear stochastic differential equation  

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘 

26 

where w is zero-mean, white, Gaussian process noise, and A is an n x n matrix relating the state 

at the prior time step k – 1, to its current time step k.  For this demonstration A will remain 

constant, however, it is possible that A may change with each iteration in real life applications.  
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The variable u, is a real control input that is optional and related to the state x, by the n x l matrix 

B.  The measurement for time step k, is given by  

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 

27 

where v is zero-mean, white, Gaussian measurement noise independent from the process noise w, 

and H is an m x n matrix that describes the relationship between the measurement and state, 

which will remain constant for this demonstration but is subject to change in a real life 

application.  The covariances of the process noise and measurement noise, Q and R respectively, 

are assumed to also be constant here, but could change with each time step or measurement. 

 Let 𝑥̂𝑘
− be real and the a priori estimate of the state at time k given xk – 1 and let 𝑥̂𝑘 be the 

a posteriori real state estimate at time k given the measurement, zk.  The errors of both state 

estimates, a priori and a posteriori, can now respectively be given as 

𝑒𝑘
− = 𝑥𝑘 − 𝑥̂𝑘

−   

and  𝑒𝑘 = 𝑥𝑘 − 𝑥̂𝑘.  

From these errors, we can determine the covariances of the two a priori and a posteriori error 

estimates to be 

𝑃𝑘
− = 𝐸[𝑒𝑘

−𝑒𝑘
−𝑇] 

and  𝑃𝑘 = 𝐸[𝑒𝑘𝑒𝑘
𝑇].   

In order to reduce the a posteriori error covariance, the n x m matrix K is introduced, also known 

as the Kalman gain, and is defined as 



31 

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1. 

28 

The weight of the gain affects the level of confidence put on the measurement, zk, and the 

predicted measurement, H𝑥̂𝑘
−.  For instance, as the R, the error covariance of the measurement, 

approaches zero, the confidence in the measurement, zk, increases and decreases in the predicted 

measurement, H𝑥̂𝑘
−.  However, as the covariance of the a priori estimate error, 𝑃𝑘

−,  approaches 

zero, the opposite occurs.  The confidence in the measurement, zk, decreases and the confidence 

in the predicted measurement, H𝑥̂𝑘
−, increases. 

 The Kalman filter process is a cycle between forming estimates of current states, then 

updating those estimates from measurements received, and finally, using those updates to predict 

the next a priori estimate.  The cycle works by first estimating the “process state” at a time, k, 

and then acquires data consisting of measurements taken in a noisy atmosphere.  Equations that 

are used to predict the estimates of the state and error covariance in order to form the a priori 

estimate will be called “time update equations”.  Using A and B from Equation 26, these 

equations are defined by 

𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 + 𝐵𝑢𝑘−1 

29 

and  𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄.   

30 

Once the measurement data is applied and the estimate is adjusted, or corrected, then the a 

posteriori estimate is formed and then used to predict the a priori estimate at the next state.  The 

equations used to apply the information from the measurements are to be called the 

“measurement update equations” and are given by the Kalman gain (Equation 28), along with the 
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a posteriori state estimate equation, and the a posteriori error covariance estimate, all of which 

are given below, respectively, as 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘

−) 

31 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
−. 

32 

From here, the process begins again using the recently found a posteriori estimates to calculate 

the next a priori estimates, as is demonstrated in the figure below. 

 

Figure 16:  An image of the recursive process of the Kalman filter using the time and measurement update 

Equations, 28-32.  Image based on (Welch & Bishop, 2006). 
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 When performing the Kalman filter, typically R, the covariance of the measurement 

noise, is measured ahead of time.  However, Q, the covariance of the process noise, is not so 

easily found and may need to be adjusted in order to achieve the best execution of the Kalman 

filter.  Since we assumed that Q and R would remain constant, the Kalman gain and estimated 

error covariance, Kk and Pk respectively, will also reach a steady-state and remain there. 

 

 Particle Filtering 

Particle filtering, also known as bootstrap filtering, was first introduced in 1993 and is 

another filter whose goal is to estimate the state of an active system given its noisy 

measurements (Gordon, Salmond, & Smith, 1993).  Where the Kalman filter provides the 

solution to a linear problem with Gaussian noise, the particle filter has the benefit of being a 

nonlinear filter solving non-Gaussian scenarios.  Built on point mass characterizations, or 

particles, of the required state probability densities, the particle filter executes a sequential Monte 

Carlo approximation (Ristic, Arulampalam, & Gordon, 2004).  A Monte Carlo model illustrates 

the outcomes of all the possible decisions one can make along with the risk assessment 

associated with each choice (Palisade Corporation, 2015).  The particle filter results in a 

probability distribution represented as a cloud of particles in contrast to giving closed form 

density expressions as with the Kalman filter.  The surrounding particle cloud consists of a 

collection of random samples and their supplementary weights which are used to calculate future 

estimates of the state (Ristic, Arulampalam, & Gordon, 2004). 

To initialize the particle filter, an original set of particles is generated {(x, w)} where x is 

the current state vector and w is a weight.  Just like in the Kalman filter, a future state, x’, is 

estimated based on the prior time step of the state with associated process noise, U, and the 
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measurement taken, z, with its associated measurement noise, V.  Unlike the Kalman filter, the 

predicted state equation does not need to be linear, nor is the noise required to be Gaussian, 

therefore, the predicted state and measurement equations will take the general form shown 

below, respectively. 

𝒙′ = 𝐹(𝒙,𝑼) 
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𝒛 = 𝐺(𝒙, 𝑽) 

34 

 

Each particle is designated a specific weight generated given the measurement vector, z.  The 

updated weight, w’, is given by Equation 35. 

𝑤′ = 𝑃(𝒙′|𝐳)w 

35 

For particles whose predicted states are inconsistent with measurements or violate any a priori 

conditions, for instance breach a maximum velocity boundary, their weights are assigned as a 

zero, thus abolishing those particles.   

A common problem that comes into play with particle filters is the problem of 

degeneracy.  After repeating these steps a certain amount of times, the number of particles 

remaining to estimate future state possibilities, will reduce to a single particle.  To prevent this 

problem, an effective sample size Ne f f is estimated by the following equation. 

𝑁̂𝑒𝑓𝑓 =
1

∑ (𝑤𝑖)2𝑁
𝑖=1
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In Equation 36, 𝑤𝑖 is the weight for each sample, i, where 𝑖 = 1, … , 𝑁 samples.  Once the 

effective sample size drops to reach a predetermined minimum, resampling becomes necessary.  

Resampling corrects the degeneracy problem by removing the low weighted samples and 

replacing them with multiples of the high weighted samples creating all uniform weights.  The 

higher the sample weight is, the better chance that particle has of being selected to be multiplied.  

Figure 17 is a pseudocode illustrating the process of a typical particle filter.  (Ristic, 

Arulampalam, & Gordon, 2004).   

 

 

 

The downfall, compared to the Kalman filter, is the particle filter requires a high 

computational cost.  The more particles that are used yield a more closely converged probability 

Figure 17:  Particle filter pseudocode illustrating the typical process of a particle filter. (Sacha & Shaffer, 2010) 
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density but result in a more expensive cost.  However, due to the speed of current technology, 

particle filters are still able to be implemented in the field nonetheless.  Particle filtering is 

already being implemented in the field of interest addressed in this thesis: target tracking, as well 

as other areas, such as chemical engineering, computer vision, robotics, and financial 

econometrics (Doucet & Johansen, 2008).   

2.2.3.1.1 Other Particle Filter Research Efforts 

Goldhahn and Braca have recently performed research in this field of tracking undersea 

objects with a particle filter.  Their research focuses on the use of autonomous underwater 

vehicles (AUVs) for a multi-static tracking configuration with multiple sensor and receiver pairs 

for anti-submarine warfare (ASW).  They are simulating the use of horizontal line arrays as the 

receivers which suffer from port-starboard (left-right) ambiguity resulting in complications for 

different detection and tracking algorithms.  The variation of the probability of detection due to 

the environment, in which the tracking is taking place, is also being applied to their simulation. 

They are using a particle filter to restructure the Bayesian posterior distribution of the state of the 

target given the collected information taken from the sensors.  (Goldhahn, et al., 4-9 May 2014). 

 

2.3 Continuous Active SONAR 

2.3.1 Pulsed Active and Continuous Active SONAR 

 When trying to locate an underwater object, SONAR is used and can either be passive or 

active.  Passive SONAR only listens for acoustic activity as opposed to active SONAR which 

transmits a signal and then listens for an echo.  Conventionally, when using mobile active 

SONAR, a single vehicle transmits a signal which is then reflected from an object and received 
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by the original transmitting vehicle.  Once the echo, or ping, is received, the vehicle transmits 

another signal.  This configuration, using a single transmitter/receiver, is known as monostatic 

SONAR (Yakubovskiy), and the mode of operation consisting of transmitting a short pulse 

followed by a long listen interval is referred to as Pulsed Active Sonar (PAS).    

 The vehicles referred to in this thesis will be assumed to be unmanned underwater 

vehicles (UUVs).  Two types of UUVs exist:  a UUV with a remote human operator, known as a 

remotely operated underwater vehicles (ROVs), and autonomous underwater vehicles (AUVs) 

which do not require any direct human operation (Dobbins, 2014).  UUVs, such as the 

biologically inspired “Robo-lobster”, can perform underwater tasks in shallow, rough waters 

(Singer, 2009).  Other UUVs, such as a modified torpedo, like the Remote Environmental 

Monitoring Unit (REMUS), or a small submarine are able to operate in deeper waters (Singer, 

2009).  Currently UUVs are used as SONAR platforms to search for objects but future 

applications that have been identified include being able to position and recover devices, take 

action on all forms of information, and to be able to engage all types of targets (Department of 

the Navy, 2004). 

  PAS traditionally uses a monostatic configuration, in which it transmits a short signal 

burst, or chirp, via a frequency modulated waveform (FM) or by a short narrowband pulsed 

sinusoid.  Even though these types of signals provide information regarding the range of the 

object being tracked, they may not offer much insight on Doppler.  This will be discussed in 

more detail later.  To avoid any loss of data, PAS must wait to hear the ping before transmitting 

another pulse (Grimmett & Wakayama, 2013).  Since the speed of sound in water is only about 

1500 m/s, the ping repetition interval (PRI) tends to be large relative to the transmit pulse length, 

giving a very low duty cycle as small as 1%.  This high PRI makes tracking and classifying an 
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object much more difficult since the rate of information recurrence is not high enough to 

accurately identify the signal echo versus noise, leading to the detection of more false alarms.  

(Hickman & Krolik, 2012). 

 To increase the transmission and reception rate, continuous active SONAR (CAS) can 

now be used.  CAS uses a bistatic configuration, in which the transmitter and receiver are two 

different UUVs with a large enough separation analogous to the transmitter-to-object and object-

to-receiver distances (Yakubovskiy).  When using a bistatic configuration, the transmitter does 

not need to wait to hear the ping before sending another transmission, which allows CAS to have 

a transmit duty-cycle of theoretically 100%.  This high duty-cycle allows for a much higher rate 

of information recurrence leading to more accurate detection, classification, localization and 

tracking of an object with a potentially lower number of false alarms (Grimmett & Wakayama, 

2013).  The downfall with having such a high duty-cycle is a decreased signal-to-noise ratio 

(SNR), also known as a signal-to-clutter-plus-noise ratio (SCNR), due to the continuous 

interference, referred to as the direct blast from the transmitter.   

 

2.3.2 CAS Transmission Waveforms 

 There are different types of waveforms that can be used by CAS that result in different 

obtained information.  One of these is a repeating linear frequency modulated waveform (LFM).  

An LFM allows for the opportunity to find the estimated range of the object being tracked based 

on the time delays for when echo is received.  If using spectral processing to determine the time 

delay Δτ, the following equation may be used  
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∆𝜏 = ∆𝑓
𝑇𝑃𝑅𝐼

𝐵
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where Δf is the frequency shift obtained by using the Short Time Fourier Transform, TPRI is the 

time duration of the ping repetition interval, and B is the total bandwidth of the LFM (Grimmett 

& Wakayama, 2013).   

 To demonstrate the information that can be found when using a LFM waveform, a 

continuous active SONAR scenario was constructed in MATLAB to transmit a LFM signal.  The 

code simulated the interaction of an acoustic transmitter, a separately located receiver, and two 

targets and was designed based on the ray cone formulation in Figure 18.  If the position of the 

transmitter is given at time t1, along with the description of the receiver’s motion path, the code 

uses the forward ray cone formulation to calculate the time the signal reaches the receiver, thus, 

allowing for the position of the receiver to be found.  A backward ray cone can map the energy 

backwards in time to the moment of transmit.  (Ricker, 2003). 
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Figure 18:  Forward Ray Cone.  Image from NURP annual report. 

 The ray-cone code simulates the CAS signal received after being reflected form two 

different targets, and outputs the resulting spectrogram shown in Figure 19.  The simulation 

confirmed that not only can the time delay of each of the targets be found when transmitting a 

LFM signal, but the time delay of the direct blast can also be detected.  Learning the time delay 

for each target allows for the computation of range.  However, there is very little information that 

can be observed about the frequency which means the Doppler of the targets cannot be 

determined unambiguously. 
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Figure 19:  Spectrogram from the MATLAB simulation of the received data from the transmitted LFM signal 

 Different from a LFM signal, a continuous waveform (CW) can be continuously 

transmitted instead.  When using a continuous CW signal, the Doppler shift of the target can be 

found and used to calculate the approximated continual bistatic range rate of change (Grimmett 

& Wakayama, 2013).   The same MATLAB code as used previously, was run again, but 

simulating the transmission of a continuous CW signal. Its resulting spectrogram is shown in 

Figure 20.  The figure shows the opposite result as when transmitting the LFM signal.  The 

Doppler shift can now easily be observed, but the time delay can no longer be calculated.  These 

results alone do not promote close state approximations for the detected object.  
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Figure 20:  Spectrogram from the MATLAB simulation of the received data from the transmitted continuous CW 

signal 

 

2.3.3 Other Signal Design Research Efforts 

 Much research is being done with different CAS waveforms and geometry configurations 

to try and achieve a closer estimate of the desired target state.  There are refined broadband 

waveforms that try to combine both CWs and FMs in order to find both range and Doppler 

measurements of the detected object.  Hickman and Krolik discuss the use of a “non-recurrent 

wideband linear FM signal with circular Costas frequency-staggering across chirp repetition 

intervals”, referred to as a slow-time Costas-coded waveform.  The waveform has been 

formulated to allow for high transmit rates while receiving both range and velocity estimates for 

each transmission, and also having a high SCNR (Hickman & Krolik, 2012).   
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 Grimmett and Wakayama, on the other hand, have looked at simply using a continuous 

CW transmitted signal, but with using multiple transmitter-receiver pairs.  They apply a 

Gaussian Mixture Probability Hypothesis Density filter using the Doppler-bearing measurements 

taken from the transmitted continuous CW signals.  When they used the measurements from 

multiple source-receiver pairs, tracking the state of an object proved to be much more successful, 

as opposed to using a single source-receiver pair.  (Grimmett & Wakayama, 2013). 
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Chapter 3: FACTOR GRAPHING FOR DCL 

3.1 Detection 

3.1.1 Detector Model 

In a SONAR detection problem, the receiver must be able to detect the existence of the 

transmitted signal amongst noisy data to determine whether to pass the data along to the 

classifier.  This section will set up a detector in the form of a loop-free factor graph.  Since there 

are no loops, belief propagation can be used to understand the incoming data.  From this data, the 

likelihood ratio can be found.  For the SONAR problem, the detector is a binary problem 

producing a hard-decision between the hypotheses H1 and H0.  If the transmitted signal is 

present, H1 is the hypothesis, and H0 denotes when the transmitted signal is not present.  The 

received signal, R, is given by  

𝑅 = ℎ𝑠 + 𝑤 

38 

where s is the original transmitted signal, h  is the channel gain, and w ~ N(0, 𝜎𝑤
2) is zero-mean, 

white, Gaussian noise.  It is assumed that s, h, and w are all independent from each other.  This 

detector model can be inserted into the factor graph given in Figure 21 where 𝜃 denotes the 

decision made by the Neyman-Pearson decision theory (NP) discussed in the next section. 

(Zarrin & Lim, 2008). 
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Figure 21:  The detector factor graph outputting the decision, 𝜃̂. 

 

3.1.2 Neyman-Pearson Decision Theory 

The decision, 𝜃, is a binary decision of either H0 or H1, represented by the indices 𝜃 =

{0,1}  respectively.  The Neyman-Pearson theory makes this decision by maximizing the 

probability of detection, PD, while minimizing the probability of a false alarm, PF.  This method 

uses the likelihood ratio, Λ(𝐑) given by Equation 16.  A threshold of which to test the ratio 

against is determined by selecting the wanted PF and then solving Equation 18 for the threshold, 

λ.  The likelihood ratio test is conducted by comparing the likelihood ratio to the threshold as in 

Equation 19 and shown again below. 

Λ(𝐑) 

𝐻1

>
<
𝐻0

 𝜆 

If the likelihood ratio is greater than the threshold, the factor graph will output 𝜃 = 1, and it will 

output 𝜃 = 0 if the likelihood ratio is less than the threshold. 
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3.2 Classification 

3.2.1 Naïve Bayes Classifier 

 The naïve Bayes classifier has been established as an efficient classifier in real-world 

scenarios with little training time (Zhang, 2004).  This being the case, it is logical to utilize this 

form and transform it into a factor graph.  The transformation is quite simple.  Figure 22 

illustrates the factor graph of the naïve Bayes classifier with class node, y, and features x = (x1, 

x2,…, xK).  The solid blue squares represent the edge factor nodes 𝜓𝑘(𝑦, 𝑥𝑘).  To determine the 

closed form solutions of this factor graph, all that is required is the defining of a factor node 

𝜓(𝑦) as the input, and the edge factors 𝜓𝑘(𝑦, 𝑥𝑘).   The factor node 𝜓(𝑦) is equal to the a priori 

probability of class node y, 𝑝(𝑦), and the edge factors 𝜓𝑘(𝑦, 𝑥𝑘) equal the conditional 

probability for each feature xk, 𝑝(𝑥𝑘|𝑦).  These functions are directed through belief propagation 

to produce the closed form solution given in Equation 39. 

𝑝(𝑦, 𝒙) = 𝜓(𝑦)∏𝜓𝑘(𝑦, 𝑥𝑘)

𝐾

𝑘=1

 

39 

After substituting the probabilities into the appropriate factor nodes, the resulting equation is 

equivalent to the joint probability formula for the naïve Bayes classifier given in Equation 25.  

(Sutton & McCallum).   
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Figure 22:  The factor graph form of the naïve Bayes classifier with class variable y and features x = (x1, x2, …, 

xK).  The blue squares represent the edge factors 𝜓𝑘(𝑦, 𝑥𝑘).  Image based on (Sutton & McCallum). 

 

3.3 Tracking 

3.3.1 Kalman Filter 

The Kalman filter requires measurement updates from the reflected signal in the form of 

an update equation, along with a process update equation in order to locate the current state of 

the object being tracked.  The state x at time step k will be defined by the linear stochastic 

differential equation 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝑤𝑘, 

40 

where wk is white Gaussian process noise, such that wk ~ N(0, σw
2), and  A is an n x n matrix 

relating the state at the prior time step k – 1, to its current time step k.    For this demonstration, A 

will remain constant and there will be no real control input.  The measurement z at time step k is 

defined by  
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𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘, 

 

where v is white Gaussian measurement noise, represented by vk ~ N(0, σv
2), and H is an m x n 

matrix that describes the relationship between the measurement and state, and will remain 

constant for this setting.  Q and R will represent the covariances for the process and measurement 

noise, respectively, and will also remain constant for this demonstration. 

 For the scope of this research, the Kalman filter will use Equations 41 and 30 (both 

shown below) to predict the estimates of the state and error covariance to form the a priori 

estimate.   

𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 

41 

and  𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄,       

where 𝑥̂𝑘
−  is the real a priori estimate of the state at time k given xk – 1 and 𝑥̂𝑘−1 is the a 

posteriori real state estimate at time k – 1 given zk – 1.  The variable 𝑃𝑘
− is the covariance of the a 

priori estimate error and 𝑃𝑘−1 is the covariance of the a posteriori error at time step k – 1.   

 The a posteriori estimate is fashioned after the previous estimate has been adjusted from 

the application of the measurement data.  It is then used to predict the a priori estimate at the 

next state.  Three equations are used to apply the measurement updates.  These equations are the 

Kalman gain 𝐾𝑘, the a posteriori state estimate 𝑥̂𝑘, and the a posteriori error covariance estimate 

𝑃𝑘, and are shown below.  

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘

−) 
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𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
− 

 The goal is to fit a tracker into a factor graph model and have it track with a similar 

efficiency as the Kalman filter equations.  Some variables will appear different to avoid 

conflicting with similar variables but will be addressed.   

To set up the factor graph, the two state-space equations need to be found.  If the 

assumption is made that the probability densities are Gaussian and the propagation is linear then 

the process state-space equation for the state of an object at time k is given by Equation 42. 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝑤𝑘 

42 

The measurement taken of the object at time k is given by Equation 43 

𝑧𝑘 = 𝑐𝑘
𝑇𝑥𝑘 + 𝑣𝑘, 

43 

where c is defined by an n x m transposed matrix of ones and zeros describing the relationship 

between the measurement and the state.  In this problem, unlike the Kalman filter, the noise 𝑤𝑘 

and 𝑣𝑘 are not assumed to have zero-mean, while xk and zk are still the state and measurement at 

time step k, respectively.  As before, A is still an n x n matrix relating the state at the previous 

time step k – 1 to the state at the current step k.  As described in (Loeliger, Jan, 2004), Figure 23 

shows how these two state-space equations fit into a factor graph. 
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Figure 23:  Factor graph of the Kalman filter with its two state-space equations 

 

 From this factor graph, Gaussian messages can be computed, resulting in the means m, 

and covariances V, of the state x and measurement z at time step k.  By using the update rules for 

mean and covariance message computation outlined in (Loeliger, et al., 2007) and explained in 

section 2.1.2.2 of this thesis, the Gaussian messages were computed for both the state and 

measurement at time k, resulting in the following equations: 

𝑉⃗ 𝑥𝑘
= 𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
− (𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
) × (𝑐𝑘

𝑇)𝐻

× [𝑉⃗⃖𝑧𝑘
+ 𝑉⃗ 𝑣𝑘

+ 𝑐𝑘
𝑇(𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
)(𝑐𝑘

𝑇)𝐻]
−1

× 𝑐𝑘
𝑇(𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
), 

44 

𝑚⃗⃗ 𝑥𝑘
= 𝐴𝑚⃗⃗ 𝑥𝑘−1

+ 𝑚⃗⃗ 𝑤𝑘
+ (𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
) × (𝑐𝑘

𝑇)𝐻

× [𝑉⃗⃖𝑧𝑘
+ 𝑉⃗ 𝑣𝑘

+ 𝑐𝑘
𝑇(𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
)(𝑐𝑘

𝑇)𝐻]
−1

× [𝑚⃗⃗⃖𝑧𝑘
− 𝑚⃗⃗ 𝑣𝑘

− 𝑐𝑘
𝑇(𝐴𝑚⃗⃗ 𝑥𝑘−1

+ 𝑚⃗⃗ 𝑤𝑘
)], 

45 
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𝑉⃗ 𝑧𝑘
= 𝑉⃗ 𝑣𝑘

+ 𝑐𝑘
𝑇𝑉⃗ 𝑥𝑘

(𝑐𝑘
𝑇)𝐻, 

46 

and  𝑚⃗⃗ 𝑧𝑘
= 𝑚⃗⃗ 𝑣𝑘

+ 𝑐𝑘
𝑇𝑚⃗⃗ 𝑥𝑘

   

47 

where 𝑉⃗ 𝑥𝑘
 and 𝑉⃗ 𝑧𝑘

 are the covariances of the state x and the measurement z at time step k, 

respectively.  The means of the state x and the measurement z at time step k are represented by 

𝑚⃗⃗ 𝑥𝑘
 and 𝑚⃗⃗ 𝑧𝑘

, respectively.  Throughout these equations, the arrows above the covariances V, 

and means m, indicate the direction the messages are traveling within the factor graph.   

In order to demonstrate the relevance between the Kalman filter equations and these 

Gaussian messages from the factor graph, the derivation for the covariance of the state x at time 

k, 𝑉⃗ 𝑥𝑘
, will be explained and compared to the a posteriori equations and Kalman gain from the 

Kalman filter, that are used to predict the next a priori.  First, to make the derivation clearer, 

certain edges of the previous factor graph will be labeled and marked by circled numbers in order 

to break down each step of the derivation.  The edited factor graph is shown in Figure 24 below.  
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Figure 24:  Factor graph of the Kalman filter with certain edges numbered and circled for derivation. 

 Beginning from the leaf at 𝑥𝑘−1 to the circled number 1, the covariance can be written as 

𝑉⃗ 1 = 𝐴𝑉⃗ 𝑥𝑘−1
𝐴𝐻 . 

To find the covariance at the circled number 2, the covariances of the first two branches are 

simply added together resulting in Equation 48. 

𝑉⃗ 2 = 𝑉⃗ 1 + 𝑉⃗ 𝑤𝑘
= 𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
 

48 

Before the covariance of 𝑥𝑘 can be found, the branch beneath the “=” node must be addressed.  

As before, the derivation must begin at the leaves and calculate the covariance at the circled 

number 3.  Since the goal is to find the covariance of 𝑥𝑘, the covariance at 3 must be calculated 

for the opposite direction the arrow is pointing, which Equation 49 shows us.  

zk    

vk    

xk    xk – 1   

wk    

A + = 

ck
T 

+ 
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𝑉⃗⃖3 = 𝑉⃗⃖𝑧𝑘
+ 𝑉⃗ 𝑣𝑘

 

49 

Finally, all the pieces are known to complete the derivation of the covariance of the state x at 

time step k.  Since the node connected to 𝑥𝑘 is an equal sign, the last step is more complex than 

simply adding the two branches.  Equation 50 gives the final step before substituting the 

previously found covariances.   

𝑉⃗ 𝑥𝑘
= 𝑉⃗ 2 − 𝑉⃗ 2(𝑐

𝑇)𝐻𝐺𝑐𝑘
𝑇𝑉⃗ 2     

50 

where  𝐺 ≜ (𝑉⃗⃖3 + 𝑐𝑘
𝑇𝑉⃗ 2(𝑐𝑘

𝑇)𝐻)
−1

  

Equation 44 yields the results after substituting in Equations 48, 49, and G into Equation 50 and 

is shown again below. 

𝑉⃗ 𝑥𝑘
= 𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
− (𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
) × (𝑐𝑘

𝑇)𝐻

× [𝑉⃗⃖𝑧𝑘
+ 𝑉⃗ 𝑣𝑘

+ 𝑐𝑘
𝑇(𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
)(𝑐𝑘

𝑇)𝐻]
−1

× 𝑐𝑘
𝑇(𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
). 

 Once the covariance of 𝑥𝑘 has been found the covariance of 𝑧𝑘 can also be found by first 

finding the covariance of the circled number 3 for the direction it is now traveling and is given 

by Equation 51. 

𝑉⃗ 3 = 𝑐𝑘
𝑇𝑉⃗ 𝑥𝑘

(𝑐𝑘
𝑇)𝐻 

51 

Equation 51 is then used to compute the covariance of  𝑧𝑘 shown in Equation 52. 

𝑉⃗ 𝑧𝑘
= 𝑉⃗ 𝑣𝑘

+ 𝑉⃗ 3 

52 
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Once 𝑉⃗ 3 is substituted, the resulting equation yields Equation 46, shown below. 

𝑉⃗ 𝑧𝑘
= 𝑉⃗ 𝑣𝑘

+ 𝑐𝑘
𝑇𝑉⃗ 𝑥𝑘

(𝑐𝑘
𝑇)𝐻 

The full derivation of the mean of the state and measurement, x and z, at time step k can be 

viewed in Appendix A:  Mean Derivation. 

 The resulting covariance 𝑉⃗ 𝑥𝑘
 in Equation 44 from the factor graph can be compared to the 

a posteriori error covariance estimate 𝑃𝑘 in Equation 32 from the Kalman filter.  This will be 

broken down one step at a time beginning with the comparison of the Kalman filter’s 𝑃𝑘
− to the 

factor graph’s 𝑉⃗ 2.  In the Kalman filter, 𝑃𝑘−1 represents the covariance of the state x at the 

previous time step k – 1, which is represented as 𝑉⃗ 𝑥𝑘−1
 in the factor graph.  Q represents the 

covariance of the process noise in the Kalman filter and can be related to 𝑉⃗ 𝑤𝑘
, which is the 

covariance of the process noise in the factor graph.  Since A is the same n x n matrix in both 

models, then the Kalman filter’s a priori covariance estimate in Equation 30, 𝑃𝑘
− , can be related 

to the covariance 𝑉⃗ 2 from the factor graph’s Equation 48 and is illustrated below as 

𝑃𝑘
− = 𝑉⃗ 2 

𝐴𝑃𝑘−1𝐴
𝑇 + 𝑄 = 𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
. 

 Referring to the Kalman gain in Equation 28, H can be compared to c since they both are 

matrices relating the measurement to the state.  The variable R in the Kalman filter is the 

covariance of the measurement noise, where 𝑉⃗⃖3 is the covariance of the measurement noise and a 

measurement covariance summed together.  Since the covariance of the ideal position 

measurement values is zero, then R is equal to 𝑉⃗⃖3.  Since it has already been shown above that 𝑉⃗ 2 
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is relative to 𝑃𝑘
−, then it can be said that the Kalman gain 𝐾𝑘 is equivalent to the expression 

below: 

𝐾𝑘 = 𝑉⃗ 2(𝑐𝑘
𝑇)𝐻𝐺 

The expression is shown below in Equation 53 with the substitutions made. 

𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1

= (𝐴𝑉⃗ 𝑥𝑘−1
𝐴𝐻 + 𝑉⃗ 𝑤𝑘

) × (𝑐𝑘
𝑇)𝐻 × [𝑉⃗⃖𝑧𝑘

+ 𝑉⃗ 𝑣𝑘
+ 𝑐𝑘

𝑇(𝐴𝑉⃗ 𝑥𝑘−1
𝐴𝐻 + 𝑉⃗ 𝑤𝑘

)(𝑐𝑘
𝑇)𝐻]

−1
 

53 

By distributing 𝑃𝑘
− in Equation 32, the following equation results: 

𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝐻𝑃𝑘

−. 

54 

After analyzing all the pieces to the above equation and relating them to their corresponding 

sections from the factor graph model, the following assumption stating that Equations 32 and 44 

are equal can be made: 

𝑃𝑘 = 𝑉⃗ 𝑥𝑘
 

𝑃𝑘
− − 𝐾𝑘𝐻𝑃𝑘

− = 𝑉⃗ 2 − (𝑉⃗ 2(𝑐𝑘
𝑇)𝐻𝐺)(𝑐𝑘

𝑇)𝑉⃗ 2 

55 

By analyzing the derivation of the mean of state x at time step k, 𝑚⃗⃗ 𝑥𝑘
 in appendix A, in a 

similar way, the a posteriori state estimate 𝑥̂𝑘 from Equation 32 can be shown to be similar to 

𝑚⃗⃗ 𝑥𝑘
 from Equation 45 of the factor graph model.  The derivation of this comparison is shown in  

Appendix B: Mean and A Posteriori State Estimate Correlation.  These comparisons 

demonstrate that when utilizing a factor graph as a tracker, the resulting equations can reduce to 
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the a posteriori estimate equations in the standard Kalman filter under the assumption of zero-

mean.  However, it is important to note that unlike the standard Kalman filter, the factor graph 

does not require the noise to be zero-mean.  Instead, it is able to compute a track for biased 

measurements if needed. 

 

 Simulations 

To verify these equations derived in the previous section, some simulations in MATLAB 

were conducted.  First, a common process path needed to be plotted for both the Kalman filter 

and the factor graph to track.  An ideal process path was created, along with a realistic process.  

The realistic path is simply the ideal process with added noise.  Figure 25 is the plot of these two 

paths. 
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Figure 25: The ideal process path with the realistic path to be tracked by the Kalman filter and the factor graph 

   Once the realistic process path is graphed, both the Kalman filter and the factor graph are 

required to track the location of each point on the path.  Figure 26 illustrates both the Kalman 

filter and factor graph tracking the process path. 
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Figure 26: Plot of the Kalman filter and factor graph tracking the process path.  The factor graph tracker plots the 

exact same path as the Kalman filter. 

 

 As seen in the graph, not only do both the factor graph and the Kalman filter successfully 

track the process path, but the two tracks align perfectly together.  To further analyze the results 

of the factor graph and the Kalman filter, they were plotted against each other and then the 

deviations between the two were also plotted as seen in Figure 27 and Figure 28, respectively. 
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Figure 27:  Plot of the x- and y-values of the Kalman filter against the x- and y-values of the factor graph. 

 The goal when plotting these two trackers against each other is to see a forty-five degree 

line across the graph showing the linear relationship of y = x for both the x-values and the y-

values.  As demonstrated above, the result of the factor graph and Kalman filter plotted against 

each other is linear relationship y = x, where the x-values are plotted in blue and the y-values are 

in green.  Figure 28 shows the exact differences between the values of the Kalman filter and 

factor graph. 
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Figure 28:  Plots the difference between the x- and y-values of the factor graph and the x- and y-values of the 

Kalman filter. 

 

 The above plot shows how different the values of the factor graph are to the Kalman 

filter.  Since there is no deviation between the two tracks, they are identical.    

 These plots have proven that the factor graph tracker is capable of tracking the process 

path successfully.  They have also confirmed that there is no difference between the standard 

Kalman filter and the factor graph tracker, which suggests that the factor graph tracker is an 

appropriate alternative to the standard Kalman filter. 

 Next, it is necessary to verify if the factor graph tracker is able to track the object when 

there is bias in the data.  A MATLAB simulation was conducted in which a bias of 0.4 m/s was 

applied to the velocity of the object in the x-direction.  Figure 29 demonstrates the speed of the 
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object with the applied bias and the Kalman filter’s and factor graph tracker’s ability to track that 

object’s speed.  The figure displays the speed of the object in blue, the track from the Kalman 

filter in red, and the track from the factor graph tracker in orange.  Figure 30 illustrates the 

velocity deviation of the tracks of the Kalman filter and factor graph tracker from the velocity of 

the object and Figure 31 shows the location deviation.   In these figures, the deviation of the 

Kalman filter is in blue while the deviation of the factor graph tracker is in green.  Last, the 

velocity and location root mean squared (RMS) errors were calculated for both the Kalman filter 

and factor graph tracker and are displayed in Table 1.  The below figures and table verify the 

factor graph tracker’s ability to track an object with bias much more efficiently than the standard 

Kalman filter.   

 

Figure 29:  Plot of the Kalman filter and factor graph tracker tracking the object with a bias of 0.4 m/s in the x-

direction. 
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Figure 30:  Plot of the difference of the velocity of the object being tracked from the velocities of both the tracks of 

the Kalman filter and factor graph tracker.  The deviation of the Kalman filter is in blue and the deviation of the 

factor graph tracker is in green. 
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Figure 31  Plot of the difference of the location of the object being tracked from the locations of both the tracks of 

the Kalman filter and factor graph tracker.  The deviation of the Kalman filter is in blue and the deviation of the 

factor graph tracker is in green. 

 

Table 1:  Location and velocity RMS errors for the Kalman filter and factor graph tracker when tracking an object 

with a bias of 0.4 m/s in the x-direction of the velocity 

Root Mean Squared Errors 

 Location RMS Error (m) Velocity RMS Error (m/s) 

Kalman Filter 129.6882 10.4902 

Factor Graph Tracker 36.6864 2.1496 
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Chapter 4: GRAPHICAL MODEL BASED CONTINUOUS ACTIVE 

SONAR 

4.1 Particle Filter Simulation  

In order to test the hypothesis that continuous active SONAR (CAS) will yield more 

accurate results when tracking an object verses pulsed active SONAR (PAS), a simulation of a 

particle filter in MATLAB was performed.  The simulation would test different scenarios 

modeling CAS and PAS to track an object and would output the error of each.  The error 

collected would be the total area of the particle cloud surrounding the target with its own 

standard deviation.  The other two pieces of error collected would be the root mean square 

(RMS) error for the position of the target and the velocity of the target.  Each of these statistics 

also had their own standard deviations. 

 

4.1.1 Expected Results 

The expected result should show that the error decreases with each decrease in the time 

step interval and should be lower when compared to the monostatic scenario.  If this is the 

outcome, then a bistatic situation must be used to continue.  Since the receiver would no longer 

be used as the transmitter, the next step would be to determine the appropriate messages 

concerning the transmitter that should be embedded within the signal or measured for a closer 

estimate of the object.  Depending on the number of messages that could be embedded or used, 

the expected results should show less error when knowing the transmit time, thus being able to 

calculate the range from the receiver to the source of the signal.  The error should also decrease 
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when knowing the Doppler between each element, the transmitter, receiver, and object, and 

when knowing the velocity of the source. 

 

4.1.2 Setup 

 Omnidirectional vs Forward-Directional 

Receive-arrays can be either omni-directional or directional with each having a benefit 

over the other. If the direction of the echo is known, the directional receiver can be used and help 

to offer information concerning the bearing uncertainty toward the object (Siurna, Crawford, 

Theriault, & Armstrong).  If the receiver is between the signal source and the echo from the 

object, and is oriented toward the object, masking by the receiver vehicle body may mitigate the 

interference from the direct blast of the transmitter.   However, if the direction of the object is 

unknown, having a directional receiver could result in missing the echo if it is oriented in the 

wrong direction.   

For these reasons, both an omni-directional receive-array and a forward-directional receive-array 

were tested in the particle filter at each scenario.  The forward-directional receiver can receive 

data from anywhere within the hemisphere of the direction it is traveling; a total of 180 degrees.  

This will be referred to as the receiver “seeing” the item.  Within the particle filter code, a 

specific bearing standard deviation was used when determining if the receiver could see the 

source and is given in Another fact that is always known is the bearings of the source and target 

in relation to the receiver, for which a standard deviation for relative geometry bearing, also in 

Table 4Error! Not a valid bookmark self-reference., is applied.  The one exception is if the 

receiver is forward-directional and cannot see the transmitter, as in geometry one.   



66 

 

in the Basic Operation section. 
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 Vehicle Geometries and Velocities 

It was important to test the simulation using different spatial scenarios/configurations to 

observe if the results varied based on relative geometry, especially in the case of the forward-

directional receiver.  Three spatial configurations were tested to attempt to capture extremes of 

all possible scenarios.  These geometries with each vehicle travel path are illustrated below.  The 

transmitter is demonstrated by a green square, the receiver is a blue circle, and the target is given 

as a red asterisk.  The arrows at the ends of each path indicate the direction the vehicle is 

traveling.  The first two geometries use a bistatic configuration.  Geometry 1 has the transmitter 

traveling behind the receiver, while the receiver is traveling toward the general area of the target 

and is shown in Figure 32.  Figure 33 illustrates the second geometry, in which the source is now 

traveling so that it is in the view of the receiver.  Geometry 3 is the monostatic case; meaning the 

transmission and reception of the transmission are performed by the same vehicle.  This vehicle 

is traveling towards the target as presented in Figure 34.   
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At this time, the velocities of the vehicles were not of interest to be tested and therefore 

remained fixed.  Table 2 describes the velocities for each vehicle. 

Figure 32:  Geometry 1:  The source's path of travel 

remains behind the path of the receiver while the 

target remains in view of the receiver's path. 

Figure 33:  Geometry 2:  The source's travel path 

remains in view of the receiver's path and is 

traveling between the receiver and target. 
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Figure 34:  Geometry 3:  The monostatic case.  The source and receiver is one vehicle traveling toward the target. 
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Table 2:  The velocities of the vehicles used in the particle filter simulation 

Vehicle Speed m/s

Angle from Plot 

Origin (degrees)

Bistatic Cases

Receiver 3 45

Source 2 -30

Target 2.5 -45

Monostatic Case

Receiver/Source 3 45

Target 2.5 -45

 Vehicle Velocities

 

 

 Transmit Rate 

The transmit rate was varied to test if the ping repetition rate impacted the accuracy in 

tracking the object.  For each scenario four different time steps were tried: one at three seconds, 

another at two seconds, one at one second, and the last one at half a second.  Geometry 3 is the 

one exception to these trials.  Since geometry 3 is the monostatic case, the transmitter has to wait 

to receive the echo before it can transmit again, as opposed to a bistatic case, where the source 

can continuously transmit without any risk of losing data.  For this reason, only the three second 

time-step will be tested on the monostatic case. 

 

 Known Messages  

In order to localize the object in relation to the receiver, several pieces of information are 

needed.  First, the location of the transmitter in relation to the receiver must be known, and 

second, the time the signal was transmitted must also be known.  Finally, the angle of arrival of 

the echo is needed. This information might be easy to obtain if the transmitter and receiver are 

stationary or if radio communications and GPS are readily available.  Unfortunately, vehicles are 
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typically in motion, and when working with undersea vehicles, GPS and radio frequencies are 

typically not accessible or available.  

A few resources are available that can be used to infer the relative geometry between the 

transmitter, receiver, and object.  Such as using the direct blast from the transmitter, taking 

bearing measurements, or taking advantage of acoustic communications in which, a message or 

messages can be embedded within the transmitted signal to be intercepted by the receiver.   

 Several message possibilities were tested, to determine which would be the most useful 

towards more precisely tracking an object.  A message can either be an acoustic communication 

message embedded in the signal or it can also be a measurement provided by a SONAR sensing 

mechanism.  Among the messages being tested was the time of transmit, thus allowing for the 

computation of the range between the source and receiver.  Another possible message could 

consist of either sending the velocity of the source or just simply the speed of travel of the 

source.  A message that can be measured is the complete bistatic Doppler from the source to the 

target to the receiver, and from the source to the receiver.  A different standard deviation was 

used within the MATLAB code for each specific piece of information, which is given in Table 4.  

When the velocity of the source was known, two standard deviations were applied:  speed and a 

separate bearing for velocity. 

Because there is limited bandwidth for communication, it is unknown how many 

messages can be embedded within the SONAR signal or sent by a side channel.  An example of 

an acoustic transceiver that could be used for underwater acoustic communication is the WHOI 

Micro-Modem.  It can operate at 10 kHz, 15 kHz, or 25 kHz, the same as the REMUS 

transponders used on some UUVs, using 4 kHz of bandwidth.  The WHOI Micro-Modem has the 

ability to use frequency-shift keying with frequency hopping which allows it to operate in 
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shallow water with bistatic UUV configurations.  After implementing error-correction, the 

WHOI Micro-Modem has a data rate of 80 bps.  It is beyond the scope of this thesis to determine 

the size of the messages being sent, the encoding details, or how many messages can be sent in a 

given time interval.  For this reason, different quantities of messages were ran and compared.  

(Freitag, et al., 17-23 Sept. 2005) 

As it is possible for vehicles to lose clock synchronization, scenarios were also run 

assuming the transmit times are unknown.  Finally, the type of signal being transmitted does not 

always allow for an accurate Doppler measurement to be taken, so different situations were run 

with Doppler being unknown to determine how beneficial each combination of known messages 

were.  All possible combinations of the messages were assumed to be sent and measured in the 

program and all were assumed to be received.  This resulted in a total of twelve combinations, 

which are given in Table 3.  When executing the program, the source velocity message and 

source speed message were never both turned on at the same time since the velocity includes the 

speed. 
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Table 3:  All possible message combinations tested in the particle filter simulation.  The ones and zeros denote a 

message being used or not in that test, respectively.  The source velocity and source speed were never run at the 

same time since velocity includes speed. 

Combinations Transmit Time Source Velocity Source Speed Doppler

Zero Messages

1 0 0 0 0

One Message

2 1 0 0 0

3 0 1 0 0

4 0 0 1 0

5 0 0 0 1

Two Messages

6 1 1 0 0

7 1 0 1 0

8 1 0 0 1

9 0 1 0 1

10 0 0 1 1

Three Messages

11 1 1 0 1

12 1 0 1 1

Message Combinations

Messages

 

 

 Basic Operation 

 It is assumed that the bistatic time-difference of arrival, i.e., the difference between the 

echo time of arrival and direct blast, is always known for each acoustic processing cycle.  

Dividing by the speed of sound (assumed to be a constant 1500 meters per second) yields range 

between the source and target added to the range between the object and receiver and minus the 

range between the receiver and source.  This is referred to as the delta range and is always 

known even though the individual component ranges may not be.  When computing the delta 

range within the MATLAB particle filter code, the standard deviation for range, given below in 

Table 4, is applied.  This range standard deviation is also used when computing the range for the 
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source when given the transmit time.  When the delta range is known, the problem of localizing 

the target is now narrowed down to an ellipse surrounding the source and receiver.  The solution 

is located anywhere on the ellipse.  Figure 35 illustrates this geometry where, as before, the blue 

circle is the receiver, the green square represents the source, and the red star is the target.  The 

black lines represent the ranges between each connecting vehicle.   

 

Figure 35:  An ellipse representing the solution to the target location when delta range is known. The blue circle is 

the receiver, the green square is the source, and the red star is the target.  The black lines represent the ranges 

between each connecting vehicle.   

 

Another fact that is always known is the bearings of the source and target in relation to 

the receiver, for which a standard deviation for relative geometry bearing, also in Table 4Error! 

Not a valid bookmark self-reference., is applied.  The one exception is if the receiver is 

forward-directional and cannot see the transmitter, as in geometry one.   

Table 4:  The standard deviations used in the particle filter simulation 

Application Sigma value

Range 40 m

Relative Geometry Bearing 2°

Doppler 1 m/s

Source Speed 1 m/s

Source Velocity Bearing 30°

Standard Deviations

 

Tgt 

Rcv 

Src 
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The simulation gives a joint estimation of the source state and then the object state, which 

consist of their geometries and velocities.  In order for this to be done, each particle in the 

simulation has its own target and source state.  The state of the source is predicted from the 

information obtained by the receiver from the direct blast and the target echo.  Each particle in 

the cloud surrounding the transmitter is then used to estimate the state of its corresponding 

particle component in the cloud surrounding the target.  Last, the program cleans out any 

particles whose paired states show inconsistency with the measurements being observed.  This 

simulation is done at the contact level and is not modeling actual time series.  Figure 36 

demonstrates a screen shot of the simulation while running.  The yellow cloud is the particle 

cloud surrounding the transmitter and the pink cloud is the particle cloud surrounding the target. 

 

Figure 36: Screen shot during the particle filter simulation.  The yellow particle cloud is surrounding the 

transmitter (green square), the pink cloud is surrounding the object (red asterisk), and the blue circle is the receiver. 

  

The particle filter code uses 10,000 particles for each simulation and is performed using the 

computer specifications given in Table 5.  It did not make use of any graphics card acceleration.  
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The program completes ten runs at each of the mentioned scenarios allowing for the estimation 

of random error affecting the results.  At the end of each run, the program calculates the area of 

the particle cloud surrounding the target, the RMS error for the target position, and the RMS 

error for the target velocity.  For each of these statistics, a standard deviation over the ensemble 

was also computed.   

Table 5:  Computer specifications used for the particle filter simulation. 

Computer Specifications 

Processor Intel® CoreTM 

Processor Number i5-2400 

Processor Base Frequency 3.1 GHz 

Memory 4 GB 

 

 

4.1.3 Statistics and Results 

For each scenario, the area of the particle cloud ellipse surrounding the target was calculated 

using Equation 56. 

𝐴 = 𝜋𝑎𝑏 

56 

In the equation above, a is the radius of the major axis of the surrounding ellipse, while b is the 

radius of the minor axis.  The root mean squared (RMS) error (RMSE) for both the predicted 

target location and velocity were also found for each situation.  Equation 57 gives the formula 

for calculating RMS error where 𝑦̂𝑖 is the predicted value at time i for n observations, and 𝑦𝑖 is 

the actual value at time i. 
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𝑅𝑀𝑆 𝐸𝑟𝑟𝑜𝑟 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

57 

Since the RMS error of the location and velocity need to be found, as opposed to an arbitrary 

value, the distances between the x and y RMS error values for both location and velocity were 

calculated.   

 Once the statistics for each scenario were found, the results for each specific situation 

where only the transmit intervals were changed, were analyzed for comparison.  In every case, 

significantly less error was found for every decrease in the transmit interval.  The following three 

figures demonstrate one case of the yielded target cloud area, and position and velocity RMS 

errors for an omni-directional receiver at geometry 1 with message configuration 11. 
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Figure 37:  The area of the target particle cloud for each transmit rate for an omni-directional receiver at geometry 

1 with message combination 11. 

 

Figure 38:  The RMS Error of the predicted target location for each transmit rate for an omni-directional receiver 

at geometry 1 with message combination 11. 
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Figure 39:  The RMS Error of the predicted target velocity for each transmit rate for an omni-directional receiver at 

geometry 1 with message combination 11. 

 

 For every scenario tried in the simulation, the same trend of results shown in Figure 37, 

Figure 38, and Figure 39 were imitated.  Since the location and speed of the target is found with 

significantly less error as the update rate increases, it can be concluded that CAS will be more 

effective in target localization with minimum error than PAS, being that CAS has a much higher 

update rate.  To further verify this result, two paired t-tests were run to compare the scenario 

with the least error for the monostatic case against bistatic cases.   The monostatic case involved 

knowing Doppler, since it resulted in the least error.  The two geometric configurations were 

tested against knowing zero messages for the same setup, then the means for the two t-tests were 

calculated and used to compare the monostatic case verses the bistatic case.  In every 

comparison, the bistatic configuration yielded the least error across all three statistics. 
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 Now that the effectiveness of CAS verses PAS has been proven to lead to more accurate 

results when locating the target, the messages and their combinations that will yield a more 

precise solution need to be found.  Since it is unknown how many messages can be found or sent, 

the results will be calculated for the case of knowing zero messages, one message, two, and 

finally all three messages.  To find these results, paired t-tests were utilized after combining both 

bistatic geometries together for each of the three statistics and for all message combinations with 

both directional receivers (forward-directional and omni-directional).   

The paired t-tests were first completed comparing each single message against zero 

messages.  Second, the single messages were compared against each other to determine which 

message provided a more accurate estimate of the target location.  Next, each combination of 

two messages was compared to each other and finally, the two cases of knowing three messages 

were compared for each statistic over the two directional receivers.  An example of a t-test plot 

result for a two message comparison is shown in Figure 40.  Once the message combination that 

produced the most accurate solution was found for each limited message amount, paired t-tests 

were conducted to find the overall message combination for each statistic at both directional 

receiver types that resulted in the least error.  And finally the overall message combinations 

yielding the least error at each directional receiver type were compared against each other for 

each statistic.    
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Figure 40:  A paired t-test plot comparing the location RMS error for a known transmit time and source velocity 

message combination against a transmit time and Doppler message combination using an omni-directional receiver.  

The Transmit Time and Doppler combination yielded the least error. 

 

 When conducting the t-tests, the significance level, or alpha level, was chosen to be 0.05.  

The p-value is the probability of obtaining a test statistic equal to the observed value or more 

extreme when the null hypothesis H0, is true.  If the p-value is greater than the alpha level, then 

the null hypothesis is accepted.  Otherwise it is rejected and the alternative hypothesis Ha, is 

assumed true.  A left-tailed t-test was performed where the null hypothesis states that a 

combination x is greater than or equal to a combination y verses the alternative hypothesis that 

the combination x is less than the combination y.  Since t-tests are designed to compare the 

means to zero, combination y is subtracted in the hypotheses to compare the expressions to zero.  

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Location RMSE for        

Transmit Time and Doppler

L
o
c
a
ti
o
n
 R

M
S

E
 f

o
r 

  
  

  
  

  
  

  
 

T
ra

n
s
m

it
 T

im
e
 a

n
d
 S

o
u
rc

e
 V

e
lo

c
it
y

Double Message Paired T-Test for Omni-directional



81 

 

 Once a combination is found to have less error than the one to which it is being 

compared, then that combination is then used for comparison to the other combinations when 

continuing.  The hypotheses for each t-test and their resulting p-values are given in Table 6 along 

with the decision made for each test.  For more information regarding t-tests, chapter 208 of the 

NCSS Statistical Software documentation clearly explains the operation and meaning of the test 

(NCSS Statistical Software, 2015).  
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Table 6:  The paired t-test hypotheses, resulting p-values, and the decisions made. 

Directional 

Receiver 

Type Statistic

Number of 

Messages

H 0 : x - y ≥ 0 

(com x ≥ com y)

H a : x - y < 0 

(com x < com y)

P-value  

(α=0.05)

Accept/ 

Reject 

H 0

2 ≥ 3 2 < 3 0 Reject

2 ≥ 4 2 < 4 0 Reject

2 ≥ 5 2 < 5 0 Reject

6 ≥ 7 6 < 7 0 Reject

6 ≥ 8 6 < 8 0 Reject

6 ≥ 9 6 < 9 0.0138 Reject

6 ≥ 10 6 < 10 0 Reject

Three 11 ≥ 12 11 < 12 0 Reject

2 ≥ 6 2 < 6 1 Accept

6 ≥ 11 6 < 11 1 Accept

2 ≥ 3 2 < 3 0.1572 Reject

2 ≥ 4 2 < 4 0 Reject

2 ≥ 5 2 < 5 0 Reject

6 ≥ 7 6 < 7 0.0008 Reject

6 ≥ 8 6 < 8 1 Accept

8 ≥ 9 8 < 9 1 Accept

9 ≥ 10 9 < 10 0.0036 Reject

Three 11 ≥ 12 11 < 12 0 Reject

2 ≥ 9 2 < 9 1 Accept

9 ≥ 11 9 < 11 0.9224 Accept

2 ≥ 3 2 < 3 0 Reject

2 ≥ 4 2 < 4 0 Reject

2 ≥ 5 2 < 5 0 Reject

6 ≥ 7 6 < 7 0 Reject

6 ≥ 8 6 < 8 0 Reject

6 ≥ 9 6 < 9 0.9946 Accept

9 ≥ 10 9 < 10 0 Reject

Three 11 ≥ 12 11 < 12 0 Reject

2 ≥ 9 2 < 9 1 Accept

9 ≥ 11 9 < 11 1 Accept

Paired T-Tests

Two

One

Area

Forward

Two

Velocity 

RMS Error

Location 

RMS Error

One

Two

Overall

One

Overall

Overall
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Table 6:  The paired t-test hypotheses, resulting p-values, and the decisions made. 

Directional 

Receiver 

Type Statistic

Number of 

Messages

H 0 : x - y ≥ 0 

(com x ≥ com y)

H a : x - y < 0 

(com x < com y)

P-value  

(α=0.05)

Accept/ 

Reject 

H 0

2 ≥ 3 2 < 3 0 Reject

2 ≥ 4 2 < 4 0 Reject

2 ≥ 5 2 < 5 0 Reject

6 ≥ 7 6 < 7 0.0338 Reject

6 ≥ 8 6 < 8 1 Accept

8 ≥ 9 8 < 9 0 Reject

8 ≥ 10 8 < 10 0.0002 Reject

Three 11 ≥ 12 11 < 12 0.3025 Accept

2 ≥ 8 2 < 8 1 Accept

8 ≥ 12 8 < 12 0.1255 Accept

2 ≥ 3 2 < 3 0.0002 Reject

2 ≥ 4 2 < 4 0 Reject

2 ≥ 5 2 < 5 0 Reject

6 ≥ 7 6 < 7 0.2714 Accept

7 ≥ 8 7 < 8 1 Accept

8 ≥ 9 8 < 9 0.592 Accept

9 ≥ 10 9 < 10 0.3224 Accept

Three 11 ≥ 12 11 < 12 0.0037 Reject

2 ≥ 10 2 < 10 1 Accept

10 ≥ 11 10 < 11 0.9993 Accept

2 ≥ 3 2 < 3 0.0001 Reject

2 ≥ 4 2 < 4 0 Reject

2 ≥ 5 2 < 5 0 Reject

6 ≥ 7 6 < 7 0.0049 Reject

6 ≥ 8 6 < 8 1 Accept

8 ≥ 9 8 < 9 0.0002 Reject

8 ≥ 10 8 < 10 0.0001 Reject

Three 11 ≥ 12 11 < 12 0.0119 Reject

2 ≥ 8 2 < 8 1 Accept

8 ≥ 11 8 < 11 1 Accept

Paired T-Tests

One

Two

Overall

Omni

Area

Overall

Two

One

Overall

Two

One

Velocity 

RMS 

Error

Location 

RMS 

Error

  

 As predicted, when comparing each message combination to zero messages known, every 

combination yielded less error over knowing zero messages.  When only one message could be 

known, each statistic over every scenario unanimously resulted in the known transmit time 
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yielding a more accurate solution.  If all three messages could be known, knowing the velocity 

over the speed also resulted in less error across the board with the exception of one scenario.  

This exception is for the location RMS error when the receiver is omni-directional, in which 

case, it was more beneficial to use combination 12 (knowing the transmit time, the speed of the 

source, and the Doppler) Some varying results were found for cases limiting the number of 

messages to two and for statistical overall decisions.   

 The first set of cases to be discussed for knowing two messages and the overall message 

combination will be when the receiver is forward-directional.  When analyzing the location RMS 

error, message combination 6 (knowing the transmit time and source velocity) resulted in the 

least error.  However, combination 9 (knowing the source velocity and Doppler) had the least 

velocity RMS error and the smallest target particle cloud area.  For all three statistics, 

combination 11 (knowing the transmit time, source velocity, and Doppler) yielded the least error 

overall, as was expected.  

Next, the cases having an omni-directional receiver will be analyzed for the same two 

message limits.  Contrary to the previous scenario with the forward-directional receiver, 

combination 10 (knowing the speed of the source and the Doppler) resulted in a lower velocity 

RMS error.  Though, the smallest particle cloud area and lowest location RMS error were 

achieved by combination 8 (knowing the transmit time and Doppler).  Overall for the omni-

directional receiver, combination 11 had the smallest area and velocity RMS error but 

combination 12 had the lowest location RMS error.  The summary of the paired t-test results are 

shown in Table 7 below. 
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Table 7:  The paired t-test results for each statistic and directional receiver type show the message combinations 

that resulted in the least error. 

Directional 

Receiver 
Statistic

Number of 

Messages

Comb. #

Transmit 

Time

Source 

Velocity

Source 

Speed Doppler

One 2 X

Two 6 X X

Three 11 X X X

Overall 11 X X X

One 2 X

Two 9 X X

Three 11 X X X

Overall 9 X X

One 2 X

Two 9 X X

Three 11 X X X

Overall 11 X X X

One 2 X

Two 8 X X

Three 12 X X X

Overall 12 X X X

One 2 X

Two 10 X X

Three 11 X X X

Overall 11 X X X

One 2 X

Two 8 X X

Three 11 X X X

Overall 11 X X X

Forward

Omni

Location 

RMS Error

Velocity 

RMS Error

Area

Location 

RMS Error

Velocity 

RMS Error

Area

Message Combination with Least 

Error

Paired T-Test Results

 

Last, the population means of the forward-directional and omni-directional receivers were 

compared against each other for each of their overall least error statistics.  For each statistic, the 

omni-directional receiver resulted in the most accurate solution. 
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Chapter 5: RESULTS, CONCLUSIONS, AND THE FUTURE 

5.1 Results and Conclusions 

5.1.1 Factor Graphing for DCL 

 The first goal of this thesis was to implement a factor graph for each component of the 

detection, classification, and localization (DCL) chain.  This was achieved and explained for 

each section.   

 A factor graph was found for the detector using the model equation for a received signal.  

The Neyman-Pearson hypothesis test is then applied to the signal in the next stage of the factor 

graph leading to an output of identifying the data as either a signal detection or noise.   If the 

received data is found to be a detection of the transmitted signal, it is sent on to the classifier for 

the next stage in the DCL chain. 

 The naïve Bayes classifier was easily transformed into a factor graph by simply 

identifying the equations and placements of the factor nodes.  The class, y, requires an a priori 

probability, 𝑝(𝑦), which is given by the factor node 𝜓(𝑦).  For each feature, x= (x1, x2,…, xK), 

connected to the class, y, a conditional probability, 𝑝(𝒙|𝑦), is required and is given by the edge 

factor node 𝜓(𝑦, 𝑥𝑘).  When finding the closed-form solution of the factor graph through belief 

propagation, the resulting equation is equivalent to the joint probability formula for the naïve 

Bayes classifier. 

 Once the class is determined, the tracker proceeds to track the object.  Implementing a 

factor graph into a tracker proved to be slightly more difficult.  Two Gaussian state-space 

equations with assumed linear propagation are used, describing the predicted state at a time k of 

the object being tracked and the actual measurement taken of the object at time k.  These state 
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equations were implemented into a factor graph and through belief propagation, closed-form 

solutions were determined.  The solutions showed that the factor graph tracker reduces to the 

Kalman filter if the noises are zero-mean.  However, unlike the standard Kalman filter, the factor 

graph has the capability of inputting biased data to track the object. 

5.1.2 Graphical Model Based Continuous Active Sonar  

 The second goal of this thesis was to evaluate the performance of CAS to determine if the 

accuracy of the target location, determined by the tracker, improved as the update rate was 

increased.  This was done through a particle filter simulation consisting of two bistatic 

configurations and a monostatic configuration.  The monostatic configuration was limited to a 

transmit interval of three seconds since a monostatic system requires the unmanned underwater 

vehicle (UUV) to listen for the echo between transmissions.  The bistatic configurations were 

tested with transmission intervals of three seconds, two seconds, one second, and half of a 

second.  Also, because every receiver may not always be omni-directional, a forward-directional 

receive array was tested as well to compare the results.  For each scenario, the area of the target 

particle cloud and the root mean square (RMS) errors for the location and velocity of the target 

were calculated.  In every case, significantly less error was found for every decrease in the 

transmit interval.  Since the location and speed of the target is found with significantly less error 

as the update rate increases, it was concluded that CAS will be more effective in localizing a 

target with minimum error than PAS, being that CAS has a much higher update rate.   

 As CAS was proven to be more beneficial in target tracking for the various 

scenarios studied, the next objective was to determine which messages sent between the two 

UUVs (receiver and transmitter) were most beneficial for tracking an underwater object. A 

message can either be an acoustic communication message embedded in the signal or it can also 
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be a measurement provided by a SONAR sensing mechanism. The messages tested were:  the 

time of transmission, either the velocity of the source or just simply the speed of travel of the 

source, and the complete bistatic Doppler from the source to the object to the receiver, and from 

the source to the receiver.  Because it may not be possible or beneficial for all messages to be 

received, all possible combinations of knowing one message, two messages, or all three 

messages were tested, using a particle filter simulation, for each configuration, transmit interval, 

and receiver type scenario.  To identify the message combination with the least error, paired t-

tests were conducted comparing all scenarios for the specific number of messages. 

For every scenario, if only one message could be known, knowing the transmit time 

resulted in the least error.  If two messages could be known, the results varied for different 

scenarios.  If the receiver was forward-directional, knowing the transmit time and the source 

velocity resulted in the least location RMS error, but knowing the source velocity and Doppler 

had the least velocity RMS error and smallest target particle cloud area.  If the receiver was 

omni-directional, knowing the transmit time and Doppler gave the least location RMS error and 

the smallest particle cloud area.  The least velocity RMS error was found by knowing the source 

speed and Doppler.  If all three message categories could be known, it was best to know the 

transmit time, source velocity (as opposed to just its speed), and Doppler, for all but one 

scenario.  That is, when the receiver is omni-directional, knowing the transmit time, source 

speed, and Doppler gave the least location RMS error.   

The different message combinations resulting in least error for each number of messages 

allowed were also tested against each other via paired t-tests.  These overall message 

combinations resulting in the least error were found to be the combinations where all three 

messages could be known with the exception of one scenario.  Knowing the source velocity and 
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Doppler when the receiver is forward-directional resulted in the least overall velocity RMS error.  

Of the other overall message combinations, it was more beneficial to know the transmit time, 

source velocity, and Doppler.  This also has one exception.  When the receiver is omni-

directional, knowing the source speed as opposed to the velocity gave the least location RMS 

error.   

Last, for each statistic, the omni-directional receiver resulted in the most overall accurate 

solution.  With the exception of a couple surprises, most of the results found were as predicted. 

 

5.2 Significance of Results 

 Implementing factor graphs into the sections of the DCL chain allows for the potential 

opportunity to feedback information obtained from the results of one section into a particular 

node of another section.  However, the application of a tracker into a factor graph yielded the 

most significant result of this section of the thesis.  The factor graph tracker was proven to be 

exactly as efficient as the standard Kalman filter, which is commonly used in tracking, but with 

the added bonus of the noise not requiring a zero-mean, allowing for the tracker to be able to 

handle the input of biased data.   

 In the second section of the thesis, since it was proven that as the transmit interval 

decreased, the tracking error also decreased, the effectiveness of CAS versus PAS was also 

proven.  This conclusion resulted in further research to determine the value of different messages 

that could be known when tracking an object.  The utility of each of these message combinations 

given different scenarios were found and compared.  Knowing which message combination to 
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use for each scenario, could be found to be very useful in naval applications involving the 

tracking of different objects. 

 

5.3 Future Work 

 One possible extension of the present work would be to use the results from the factor 

graph tracker to determine information regarding the object being tracked, for instance length of 

the object, and feed that information back into a classifier.  The classifier in question may not 

necessarily be a factor graph but the goal of supplying feedback could still be achieved. 

 Another extension would be to run tests with stronger bias in the input data within the 

factor graph tracker.  The availability of this closed-form bias expression may allow easier 

construction of practical trackers.   

 Another line of investigation would be to run more detailed simulations to study the 

implementation of actual signals such as M-sequences, or combinations of FM and CW 

waveforms, with respect to direct blast cancellation and localization ability.   Another aspect of 

this simulation would be to expand the number of geometries to address more application 

specific configurations.  Finally, it is necessary to determine the specifics regarding message 

encoding for the transfer of information between the receiver and source, for example, to learn 

how many bits each type of message would require, and therefore, how many messages can be 

sent. 
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APPENDICES 

Appendix A:  Mean Derivation  

The derivation of the mean of state x at time step k will be shown in this appendix and 

refers to Figure 1 below. 

 

Figure 1:  Factor graph of the Kalman filter with certain edges numbered and circled for derivation. 

First, the mean at the circled number 1 is found and shown below. 

𝑚⃗⃗ 1 = 𝐴𝑚⃗⃗ 𝑥𝑘−1
 

1 

The mean at the circled number 2 is found by taking the sum of Equation 1 and the mean of the 

process noise, and is shown in Equation 2. 

𝑚⃗⃗ 2 = 𝑚⃗⃗ 1 + 𝑚⃗⃗ 𝑤𝑘
= 𝐴𝑚⃗⃗ 𝑥𝑘−1

+ 𝑚⃗⃗ 𝑤𝑘
 

2 

zk    

vk    
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The next step is to calculate the mean of the lower branch beginning at the leaves.  This is given 

by the equation below. 

𝑚⃗⃗⃖3 = 𝑚⃗⃗⃖𝑧𝑘
− 𝑚⃗⃗ 𝑣𝑘

 

Lastly, these equations are combined to derive the mean for the state x at time step k, given 

below in Equation 3. 

𝑚⃗⃗ 𝑥𝑘
= 𝑚⃗⃗ 2 + 𝑉⃗ 2(𝑐𝑘

𝑇)𝐻𝐺(𝑚⃗⃗⃖3 − 𝑐𝑘
𝑇𝑚⃗⃗ 2) 

3 

After substituting the known equations into Equation 3, the derived mean of the state x at time 

step k yields the equation shown below. 

𝑚⃗⃗ 𝑥𝑘
= 𝐴𝑚⃗⃗ 𝑥𝑘−1

+ 𝑚⃗⃗ 𝑤𝑘
+ (𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
) × (𝑐𝑘

𝑇)𝐻

× [𝑉⃗⃖𝑧𝑘
+ 𝑉⃗ 𝑣𝑘

+ 𝑐𝑘
𝑇(𝐴𝑉⃗ 𝑥𝑘−1

𝐴𝐻 + 𝑉⃗ 𝑤𝑘
)(𝑐𝑘

𝑇)𝐻]
−1

× [𝑚⃗⃗⃖𝑧𝑘
− 𝑚⃗⃗ 𝑣𝑘

− 𝑐𝑘
𝑇(𝐴𝑚⃗⃗ 𝑥𝑘−1

+ 𝑚⃗⃗ 𝑤𝑘
)] 

 To continue further and find the mean for the measurement in the direction of flow 𝑚⃗⃗ 𝑧𝑘
, 

the mean at the circled number 3 needs to be computed for the given arrow direction.  This yields 

the following equation: 

𝑚⃗⃗ 3 = 𝑐𝑘
𝑇𝑚⃗⃗ 𝑥𝑘

 

4 

At this point, 𝑚⃗⃗ 𝑧𝑘
 can now be found by summing Equation 4 with the mean of the measurement 

noise and is given in the equation below. 

𝑚⃗⃗ 𝑧𝑘
= 𝑚⃗⃗ 𝑣𝑘

+ 𝑐𝑘
𝑇𝑚⃗⃗ 𝑥𝑘
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Appendix B: Mean and A Posteriori State Estimate Correlation 

This appendix will illustrate how the mean of the state x at time step k, 𝑚⃗⃗ 𝑥𝑘
, from the 

factor graph tracker, correlates to the a posteriori state estimate 𝑥̂𝑘, in the Kalman filter.  As 

reference, Equation 31 is placed below for the comparison. 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘

−) 

 The relationship between the Kalman gain and the factor graph model is given by 

Equation 53 in section 3.3.1 of this paper.  The measurement 𝑧𝑘 corresponds to the mean of the 

measurement 𝑚⃗⃗⃖𝑧𝑘
 in the factor graph.  Also, H has already been related to the matrix c in the 

previously mentioned section. 

The last piece to align with the mean from the factor graph, is the a priori state estimate 

𝑥̂𝑘
−.  This Equation 41 relates to the mean 𝑚⃗⃗ 2, found in Appendix A:  Mean Derivation, and 

below, both equations are given. 

𝑥̂𝑘
− = 𝐴𝑥̂𝑘−1 

𝑚⃗⃗ 2 = 𝐴𝑚⃗⃗ 𝑥𝑘−1
+ 𝑚⃗⃗ 𝑤𝑘

 

As explained in section 3.3.1, A is the same n x n matrix in both models.  Since the 

objective is to prove that the a posteriori state estimate at time k, 𝑥̂𝑘 from the Kalman filter 

relates to the mean of the state x at time step k, 𝑚⃗⃗ 𝑥𝑘
 from the factor graph tracker, then it must be 

assumed that the a posteriori state estimate at time step k – 1, 𝑥̂𝑘−1, also relates to the mean of 

the state at the same time step, 𝑚⃗⃗ 𝑥𝑘−1
.  However, the mean has an extra expression, 𝑚⃗⃗ 𝑤𝑘

, the 

mean of the process noise.  Since the Kalman filter assumes that noise has a zero-mean, this 

expression can be eliminated, leaving the two equations equivalent.   
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𝑥̂𝑘
− = 𝑚⃗⃗ 2 

𝐴𝑥̂𝑘−1 = 𝐴𝑚⃗⃗ 𝑥𝑘−1
 

For the same reason, the mean of the measurement noise 𝑚⃗⃗ 𝑣𝑘
, is also eliminated from the 

equation for 𝑚⃗⃗ 𝑥𝑘
. 

Since all the essential parts of both the Kalman filter equation and the factor graph mean 

equation have been correlated when the means of the process and measurement noise are zero, it 

is necessary to say that the mean of the state x at time step k, 𝑚⃗⃗ 𝑥𝑘
, from the factor graph, 

correlates to the a posteriori state estimate 𝑥̂𝑘, in the Kalman filter resulting in the following 

equations: 

𝑥̂𝑘 = 𝑚⃗⃗ 𝑥𝑘
 

𝑥̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥̂𝑘

−) =  𝑚⃗⃗ 2 + 𝑉⃗ 2(𝑐𝑘
𝑇)𝐻𝐺(𝑚⃗⃗⃖𝑧𝑘

− 𝑐𝑘
𝑇𝑚⃗⃗ 2) 
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