On the Fault-tolerance and High Performance of Replicated Transactional Systems

Sachin Hirve

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Engineering

Binoy Ravindran, Chair
Robert P. Broadwater
Roberto Palmieri
Eli Tilevich
Chao Wang

September 10, 2015
Blacksburg, Virginia

Keywords: Distributed Transaction Memory, Fault-tolerance, Active Replication, Distributed Systems, On-line Transaction Processing
Copyright © 2015, Sachin Hirve
On the Fault-tolerance and High Performance of Replicated Transactional Systems

Sachin Hirve

(ABSTRACT)

With the recent technological developments in last few decades, there is a notable shift in the way business/consumer transactions are conducted. These transactions are usually triggered over the internet and transactional systems working in the background ensure that these transactions are processed. The majority of these transactions nowadays fall in Online Transaction Processing (OLTP) category, where low latency is preferred characteristic. In addition to low latency, OLTP transaction systems also require high service continuity and dependability.

Replication is a common technique that makes the services dependable and therefore helps in providing reliability, availability and fault-tolerance. Deferred Update Replication (DUR) and Deferred Execution Replication (DER) represent the two well known transaction execution models for replicated transactional systems. Under DUR, a transaction is executed locally at one node before a global certification is invoked to resolve conflicts against other transactions running on remote nodes. On the other hand, DER postpones the transaction execution until the agreement on a common order of transaction requests is reached. Both DUR and DER require a distributed ordering layer, which ensures a total order of transactions even in case of faults.

In today’s distributed transactional systems, performance is of paramount importance. Any loss in performance, e.g., increased latency due to slow processing of client requests, may entail loss of revenue for businesses. On one hand, the DUR model is a good candidate for transaction processing in those systems in case the conflicts among transactions are rare, while it can be detrimental for high conflict workload profiles. On the other hand, the DER model is an attractive choice because of its ability to behave as independent of the characteristics of the workload, but trivial realizations of the model ultimately do not offer a good performance increase margin. Indeed transactions are executed sequentially and the total order layer can be a serious bottleneck for latency and scalability.

This dissertation proposes novel solutions and system optimizations to enhance the overall performance of replicated transactional systems. The first presented result is HiperTM, a DER-based transaction replication solution that is able to alleviate the costs of the total order layer via speculative execution techniques. HiperTM exploits the time that is between the broadcast of a client request and the finalization of the order for that request to speculatively execute the request, so to achieve an overlapping between replicas coordination and transactions execution. HiperTM proposes two main components: OS-Paxos, a novel total order layer that is able to early deliver requests optimistically according to a tentative order, which is then either confirmed or rejected by a final total order; SCC, a lightweight speculative concurrency control protocol that is able to exploit the optimistic delivery of OS-Paxos.
and execute transactions in a speculative fashion. SCC still processes write transactions serially in order to minimize the code instrumentation overheads, but it is able to parallelize the execution of read-only transactions thanks to its built-in object multiversion scheme.

The second contribution in this dissertation is X-DUR, a novel transaction replication system that addressed the high cost of local and remote aborts in case of high contention on shared objects in DUR based approaches, due to which the performance is adversely affected. Exploiting the knowledge of client’s transaction locality, X-DUR incorporates the benefits of state machine approach to scale-up the distributed performance of DUR systems.

As third contribution, this dissertation proposes Archie, a DER-based replicated transactional system that improves HiperTM in two aspects. First, Archie includes a highly optimized total order layer that combines optimistic-delivery and batching thus allowing the anticipation of a big amount of work before the total order is finalized. Then the concurrency control is able to process transactions speculatively and with a higher degree of parallelism, although the order of the speculative commits still follows the order defined by the optimistic delivery.

Both HiperTM and Archie perform well up to a certain number of nodes in the system, beyond which their performance is impacted by limitations of single leader-based total-order layer. This motivates the design of Caesar, the forth contribution of this dissertation, which is a transactional system based on a novel multi-leader partial order protocol. Caesar enforces a partial order on the execution of transactions according to their conflicts, by letting non-conflicting transactions to proceed in parallel and without enforcing any synchronization during the execution (e.g., no locks).

As the last contribution, this dissertation presents Dexter, a replication framework that exploits the commonly observed phenomenon such that not all read-only workloads require up-to-date data. It harnesses the application specific freshness and content-based constraints of read-only transactions to achieve high scalability. Dexter services the read-only requests according to the freshness guarantees specified by the application and routes the read-only workload accordingly in the system to achieve high performance and low latency. As a result, Dexter framework also alleviates the interference between read-only requests and read-write requests thereby helping to improve the performance of read-write requests execution as well.

This work is supported in part by US National Science Foundation under grants CNS 0915895, CNS 1116190, CNS 1130180, and CNS 1217385.
Dedication

To my parents, wife and family.
Acknowledgement

I would like to extend my deepest regards towards my advisor, Dr. Binoy Ravindran, for his effective guidance, inspiration and for keeping me motivated during my progress through the PhD program. He supported me specially at the time when I was reconsidering about continuing the PhD. I could not have reached this milestone without his help. I would also like to thank my committee members: Dr. Robert P. Broadwater, Dr. Roberto Palmieri, Dr. Eli Tilevich and Dr. Chao Wang, for their guidance and advice during my preliminary and defense examinations. It is a great honor for me to have them serving in my committee.

I am especially grateful to Dr. Roberto Palmieri and Dr. Sebastiano Peluso for the amazing support and guidance they provided throughout my research. Their contributions helped shape the direction of my work and the technical discussions with them have helped significantly strengthen the quality of my contributions. Looking at the hindsight, all espresso breaks provided a great opportunity to discuss research ideas with these two exceptional researchers in a relaxed setting.

I would like to thank all the previous professors I worked with during different phases of my academic life. They helped and prepared me along the way, to solve the challenging research problems. They include but are not limited to, Dr. Manjari Pandit, Dr. Lakshmi Shrivastava, Dr. Kishore Chatterjee, Dr. B. G. Fernandes and Dr. Chan-su Yu.

Moreover, many thanks to all my peers in the Systems Software Research Group for their support and many technical/non-technical discussions. They include, in no particular order, Aditya Dhoke, Sudhanshu Mishra, Dr. Antonio Barbalace, Marina Sadini, Dr. Alexandru Turcu, Dr. Mohamed Mohamedin, Robert Lyerly, Duane Niles, Christopher Jelesnianski, Dr. Vincent Legout, Saif Ansari, Akshay Ravichandran, Dr. Ahmed Hassan, and many others.

As both of my parents were teachers by profession, they naturally supported, encouraged and motivated me throughout my education. My father, being an exceptionally hard-working researcher, has always been my role model and was one of the major reasons that I chose this path. If my father is my role model to pursue the research, my mother is and will always be my role model for caring and having selfless love for others. Aai (mother in marathi language), this PhD is dedicated to you. My elder siblings Swati and Makarand were always instrumental in helping me make right choices in life. I am also grateful to my aunt, Pratibha
Belwalkar and my cousin, Himali Belwalkar who encouraged me to pursue doctoral research and supported all along the way.

Last but not the least, my wife Mayuri, who has devoted her love and endured all my difficulties over the past years. During the ups and downs of my PhD student life, she stood like a pillar and supported me in all difficult times. I could not have completed my dissertation without her love and never ending support. This dissertation is dedicated to all the people that helped me and are helping me in different ways to reach this milestone.
Contents

1 Introduction 1
 1.1 Replication Model 2
 1.2 Motivation .. 4
 1.3 Summary of Research Contributions 6
 1.4 Thesis Organization 10

2 Related Work 11
 2.1 Transactional Replication Systems 11
 2.2 Optimistic Atomic Broadcast 13
 2.3 Scalable Read Processing 13

3 Background 15
 3.1 Paxos ... 16
 3.1.1 The Paxos Algorithm 16
 3.1.2 Multi-Paxos .. 17
 3.1.3 Generalized Paxos 18
 3.2 Atomic Broadcast .. 19
 3.3 Optimistic Atomic Broadcast 19
 3.4 Transaction Memory 20
 3.5 Software Transaction Memory 21
 3.5.1 Concurrency Control Mechanisms 22
 3.5.2 Version Management Systems 22
7 Archie: A Speculative Replicated Transactional System

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>MiMoX</td>
<td>64</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Ordering Process</td>
<td>65</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Handling Faults and Re-transmissions</td>
<td>66</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Evaluation</td>
<td>67</td>
</tr>
<tr>
<td>7.2</td>
<td>PARSPEC</td>
<td>69</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Transactional Read Operation</td>
<td>71</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Transactional Write Operation</td>
<td>71</td>
</tr>
<tr>
<td>7.2.3</td>
<td>X-Commit</td>
<td>72</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Commit</td>
<td>73</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Abort</td>
<td>74</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Read-Only Transactions</td>
<td>74</td>
</tr>
<tr>
<td>7.3</td>
<td>Consistency Guarantees</td>
<td>75</td>
</tr>
<tr>
<td>7.4</td>
<td>Implementation and Evaluation</td>
<td>77</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Bank Benchmark</td>
<td>78</td>
</tr>
<tr>
<td>7.4.2</td>
<td>TPC-C Benchmark</td>
<td>79</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Vacation Benchmark</td>
<td>81</td>
</tr>
<tr>
<td>7.5</td>
<td>Summary</td>
<td>82</td>
</tr>
</tbody>
</table>

8 Regulating Consensus under the Authority of Caesar

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Consensus Specification</td>
<td>85</td>
</tr>
<tr>
<td>8.2</td>
<td>Overview of Caesar</td>
<td>85</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Looking at the Future before Retrying</td>
<td>89</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Looking at the Past to Limit the Retries</td>
<td>90</td>
</tr>
<tr>
<td>8.3</td>
<td>Protocol Details</td>
<td>93</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Proposal Phase</td>
<td>93</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Stable Phase</td>
<td>94</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Retry Phase</td>
<td>95</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Size of the Quorums and Handling of Failures</td>
<td>95</td>
</tr>
</tbody>
</table>
List of Figures

3.1 Consensus mechanism with classic Paxos ballot .. 17
3.2 Consensus mechanism in Multi-Paxos ... 18

5.1 OS-Paxos performance. ... 31
5.2 Example of committing transactions \(\{T_1,T_2,T_3,T_4\} \) varying the conflict of accessed objects, in case the final order contradicts the optimistic order. 33
5.3 Throughput and abort percentage of HiperTM and PaxosSTM for Bank benchmark. ... 46
5.4 Latency of HiperTM and PaxosSTM for Bank benchmark. 47
5.5 Throughput and abort percentage of HiperTM and PaxosSTM for TPC-C benchmark. ... 49
5.6 Latency of HiperTM and PaxosSTM for TPC-C benchmark. 50

6.1 % of aborted transactions on 11 nodes varying the contention level and different benchmarks using PaxosSTM. .. 57
6.2 Throughput of PaxosSTM and X-DUR using Bank benchmark. 58
6.3 Client perceived latency of PaxosSTM and X-DUR using Bank benchmark. 58
6.4 Throughput of PaxosSTM and X-DUR varying the number of clients using 7 nodes running Bank benchmark. .. 59
6.5 Throughput of PaxosSTM and X-DUR using TPC-C benchmark. 59
6.6 Client perceived latency of PaxosSTM and X-DUR using TPC-C benchmark. 60
6.7 Throughput of PaxosSTM and X-DUR using Vacation benchmark. 60

7.1 MiMoX’s message throughput. ... 67
7.2 Time between optimistic/final delivery. .. 68
7.3 Performance of Bank benchmark varying nodes, contention and percentage of write transactions. .. 78
7.4 Performance of TPC-C benchmark varying nodes and number of warehouses. 80
7.5 % of x-committed transactions before the notification of the total order. . . . 80
7.6 Abort % of PaxosSTM and Archie. .. 81
7.7 Throughput of Vacation benchmark. 82

8.1 Conflicting commands C_A and C_B. Comparison between a scenario where a consistent order is not enforced, and the one where a consistent order is enforced. ... 86
8.2 Waiting predicate W_1. The reception on node N_2 in the intersection between C_A’s and C_B’s quorum does not follow the order $TS_B > TS_A$. ... 88
8.3 Waiting predicate W_2 on rejected timestamps. 92
8.4 Potential deadlock scenarios. ... 97
8.5 Ordering layer performance with varying number of nodes. 101
8.6 Ordering layer performance under conflicts with varying number of nodes. 102
8.7 Ordering layer performance on 11 node system. 103
8.8 Ordering layer performance for TPC-C commands. 103
8.9 TPC-C transaction processing performance under high conflict (200 Warehouses). .. 104
8.10 TPC-C transaction processing performance under low conflict (1000 Warehouses). .. 104
8.11 Vacation transaction processing performance. 105

9.1 Dexter’s architecture. ... 111
9.2 Throughput with Bank and different % of read-only transactions at synchronous node. .. 122
9.3 Throughput with TPC-C and different % of read-only transactions at synchronous node. .. 123
9.4 Throughput of read-only transactions with Bank, varying the update size at asynchronous node. .. 123
9.5 Throughput of read-only transactions with TPC-C, varying the update size at asynchronous node. .. 124
9.6 Throughout of read transactions at asynchronous node, pushing updates every 12 seconds. ... 124
9.7 Throughput of Dexter with 48 nodes and 3 levels in the chain using Bank. . 125
9.8 Throughput of Dexter with 48 nodes and 3 levels in the chain using TPC-C. 125
List of Tables

6.1 The details of the Low/Medium/High contention configurations used per benchmark. ... 56

7.1 Size of requests, batches, and % reorders. 68
Chapter 1

Introduction

With the technological developments in last few decades, a notable transformation has been seen in the way business transactions are conducted. For an example, no matter which country are you in, with the internet access and few computer clicks you can buy a merchandise from any part of the world within a few seconds. While customer only observes his/her purchase, there are a lot more activities that happen in background, such as updating the inventory of available items, charging the credit card of customer etc. This all is made possible by transactional processing systems which work in the background without the knowledge of regular customer.

Transactions are defined as a logical unit of work, which could be composed of multiple actions on some data, but appears to be indivisible and instantaneous for other transactions. When transactions successfully complete, they commit i.e. they change the data state and make it visible for other transactions. If they fail, they roll-back i.e. undo the changes made to data by different actions contained in transaction. From a long time, Database management systems (DBMS) have been seen as default model for processing transactions. Database systems have effectively exploited the hardware for concurrency for decades. Databases execute multiple queries simultaneously and possibly on several available processors to achieve good performance.

A database transaction supports atomicity, consistency, isolation and durability properties, also known as ACID properties. Atomicity property ensures that either the transaction completes successfully or none of its actions appear to execute. Consistency is application specific property which guarantees that transaction moves from one consistent state to another according to invariants on underlying data storage system. Isolation property requires that transactions do not observe changes made to shared data by other concurrent transactions, not yet completed. Lastly durability requires that once the transaction completes successfully, changes made by it are permanent (i.e. stored on stable storage).

Satisfying these properties has an associated cost to pay and even after meeting these re-
quirements, services provided by these systems are prone to disruption from faults. Even though durability property promises that data changes are permanent, crash of the processing element (node) makes the system unavailable which is undesirable, specially in today’s time when there are large scale transaction processing systems which have service level agreements (SLAs) to satisfy and any deviation from SLAs leads to revenue loss. Replication promises to address this problem by providing availability without any compromise on performance. Using replication, in case of a process failure, other processes can still deliver the request without service interruption and without the knowledge of clients.

1.1 Replication Model

Replication makes the data or services redundant and therefore helps in improving reliability, accessibility or fault-tolerance. Replication could be classified as: data replication, where identical data is stored at multiple storage locations; or computation replication, where same task is executed multiple times. A computational task is typically replicated in space, i.e. executed on separate devices, or it could be replicated in time, if it is executed repeatedly on a single device. Application and platform requirements play a part in selection of a particular approach for the distributed system under consideration. This work focuses on data replication as it also provides high availability. Objects are treated as the quantum of data in the view of transactional systems.

Replication could be categorized depending on the degree of data replication provided in the system i.e. no-replication, partial replication, and full replication. Degree of replication denotes the number of object copies in the system and it impacts overall performance and data availability. No-replication model contains only one copy of data object in a system of multiple nodes, thereby has a replication degree 1. On the other hand, full replication model places each object at all nodes (replicas), resulting in a replication degree of N in a system consisting of n replicas. Partial replication model lies between these two extremes and could have degree of replication between 1 and N, which is selected by considering the system’s requirements. As no-replication model does not provide better availability in presence of faults, the focus lies on partial replication and full replication models in following discussion.

Partial replication paradigm allows transaction processing in the presence of node failures, but as data objects copies are hosted on a subset of replicas, the overhead paid by transactions for looking-up latest object copies at encounter time limits the achievable performance. Current partial replication protocols [86, 97] report performance in the range of hundreds to tens of thousands transactions committed per second, while centralized STM systems have throughput in the range of tens of millions [24, 25]. Full replication approach annuls the cost of object look-up and benefits from local execution since each data object is available at all replicas, but to ensure replica consistency, it requires a common serialization order (CSO) over transactions which itself involves network interactions with other replicas.
Both partial- and full replication mechanisms have their own pros and cons. Though full replication gives the benefit of local execution on replicated objects, while building the large scale systems, increased storage for hosting all data objects rules-out it as a viable option. In this case, partial replication not only becomes the viable option with better availability, but it also provides added computing power due to sheer number of nodes processing only a subset of transactions. In a typical large scale system, both partial- and full replication models could co-exist. For example, in geo-replicated system, different data centres work under partial replication approach for fault-tolerance, whereas nodes within individual data centre follow full replication model to ensure high availability and exploit the higher bandwidth of local area network for arriving at CSO to achieve high performance.

Orthogonal to the above classification, depending on how and when the updates are applied at different replicas, replication techniques could be classified as: active and passive replication. In active replication [99], client requests are ordered by an ordering protocol and each replica individually executes requests. Consistency is guaranteed since replicas deterministically process each request in the same order given the same initial state. In passive replication, also known as primary-backup replication, a replica (called primary) receives client requests and executes them. Subsequently primary updates the state of other (backup) replicas and sends back the response to client. If the primary replica fails (crashes), one of the backup replicas takes the role of primary and helps the system to make progress. Primary-backup approach with single primary suffers from limited performance since only one replica processes transactions. Multi-primary replication addresses this problem in a setting where data access could be partitioned and using this inherent data partitioning, different replicas can process some share of workload and backup the others. In case data accesses are not completely disjoint accesses, replicas slow down and give degraded performance due to need of increased coordination.

Both of these mechanisms i.e. active- and passive replication, have different trade-off. While passive replication could be a better choice for compute intensive workloads thereby saving computational resources, active replication has distinct advantage when the state updates are large enough to reach network bandwidth limit. In case of crash, passive replication could have detection and recovery delay, whereas active replication provides failure masking without noticeable performance degradation.

Active replication can be classified according to the time when transactions are ordered globally. On the one hand, transactions can be executed by clients before a global certification is invoked to resolve conflicts against other transactions running on remote nodes (approach also known as Deferred Update Replication or DUR) [112, 97, 6, 54]). Global certification phase requires exchange of network messages containing the object updates. On the other hand, clients can postpone the transaction execution after the agreement on a common order is reached. This way, they do not process transactions but they simply broadcast transaction requests to all nodes and wait until the fastest replica replies (we name it Deferred Execution Replication or DER) [68, 78, 46].
DUR approach gives high throughput (requests processed per second) when the conflicts among distributed transactions are rare and messages containing data updates are not big. In case the conflicts among distributed transactions are high, DUR severely suffers due to increase in remote aborts. Also if messages encapsulating data updates become very large, performance of DUR goes down due to limited network bandwidth. On the flip side, in case of DER, size of message containing the transaction request (and input parameters) is usually much smaller and is independent of object size, which helps to achieve a high throughput for defining the serialization order among requests. On top of that, harnessing the local execution, DER achieves moderately high throughput even for high conflict scenarios compared to DUR execution model.

Both DUR and DER approaches require a message ordering layer for defining the order of transactions so that each replica observes a consistent and unique order of transactional updates. While DUR approach requires the unique order of all object updates proposed by distributed concurrent transactions to ensure that each replica reaches same decision during certification phase, DER approach requires global order of all client requests so that each replica reaches an identical state after processing client requests following it.

Global order for transactions could be defined in two ways i.e., total order or partial order. Total order blindly defines the order of the transactions i.e., without taking into account the dependencies (or conflicts) among different transactional requests. Paxos [58] and S-Paxos [6] are widely known examples of total-order protocols. Partial order, on the other hand, only defines the global order for the conflicting transactions. Generalized Paxos [57] and Egalitarian-Paxos [76] are examples of such partial order protocols.

1.2 Motivation

In today’s distributed transaction processing systems, performance is of paramount importance. Any loss in performance results e.g. latency resulting from slow processing of a client request or slow page load [37, 39], results in loss of revenue for businesses. As an example, google loses 0.44% of search sessions for each 400ms of increased page load time [37]. In another estimate, a 1-millisecond advantage in trading applications can add $100 million per year to a major brokerage firm [72]. In order to scale the request processing, usually transaction processing systems increase the system size i.e. add more processing elements. As majority of transaction request fall in the category of query transactions, therefore solutions which can ensure performance scaling for read-only workloads with the increase in system size are preferred. Another key insight is that not all read-only workloads need to access the latest data. With these goals in mind, transaction processing systems are designed in this dissertation which can leverage local execution of read requests and different freshness guarantees, thereby giving high performance with low latencies for read workloads.

While high-performance for processing query transaction is preferred, ensuring the progress
of write transactions with high throughput is equally important. This specially becomes
significant in case transactions experience high conflict scenario when they access same pool
of shared data. Conflicts are resolved by letting one transaction proceed and aborting others
which contend for same set of data objects, resulting in aborts for such transactions. When
conflicts are rare, DUR model is preferred as it facilitates higher parallelism for transaction
processing. In case of partitioned access, DUR benefits from absence of remote aborts i.e.,
aborts generated due to clients on other nodes. But the inherent parallelism of DUR also
results in conflicts among local clients thereby leading to local aborts. In addition to it,
the implicit local order of transaction processing may not be compliant with the total order
agreed by the replicas during certification phase. This could lead to additional aborts thereby
impacting the performance. This thesis seeks to solve these two problems.

DER, on the other hand serializes all the update transactions before processing them serially.
Immunity from percentage of conflicts within transactions, make DER an attractive choice
of transaction execution model, but its serial execution results in limited performance and
moderately high latencies for write requests. This limitation can be addressed by designing
parallel execution mechanisms for DER model, but honouring the order defined by request
ordering layer along with parallel execution of request, makes it a challenging and interesting
problem. This dissertation attempts to solve this problem.

DER requires a total order layer to serialize all the update transactions, which introduces a
delay before a request could be processed resulting in longer latencies perceived by clients.
This delay could be eliminated by anticipating the work and processing requests specula-
tively, but without an oracle, requests would be required to execute speculatively in multiple
serialization orders. This could not only make it difficult to manage all those possible execu-
tions, but it could also result in wastage of computing resources as a lot of work is discarded
if it does not match with output of total order i.e. final order. The early message deliv-
ery from total order, also known as optimistic delivery is exploited to guess the final order
of request for speculative execution, so that when final order arrives, majority of work is
already accomplished and if optimistic delivery order matches the final order, response to
clients could be sent earlier.

Total order layer poses scalability challenges i.e. it does not scale with increase in system
size. As the number of nodes in the system increase, single leader becomes the bottleneck
of total order layer and its performance suffers. Also single leader total order protocols may
fail to give high performance if the elected leader gets overloaded and starts to show de-
graded performance. Lastly, total order protocols, though provide a simpler implementation
solution, they make request processing inefficient since transactions are forced to follow the
order even if they are independent of each other i.e. non-conflicting.

Multi-leader partial order protocols [57, 76] address the challenges of single-leader total order
protocols. On one hand existence of multiple leaders alleviates the problem of bottleneck cre-
tated by single leader and degraded performance of overloaded leader as other nodes help the
system to make progress. On the other hand, partial order protocol examines conflicts among
different transaction prior to defining the order and as a result they enable non-conflicting transactions to execute concurrently whereas conflicting transactions are serialized. This dissertation attempts to design a multi-leader partial order messaging layer which could be exploited to build high performance transactional systems.

To summarize, in this research proposal, the main aim is to design high performance fault-tolerant distributed transactional systems. Observing the collective benefits of active replication e.g., full-failure masking, local computation, and high performance, it is selected as the default replication model. By exploiting the properties of partitioned access model, this work attempts to eliminate the local aborts by designing a new DUR protocol. Further, as the focus is to design systems which can give high performance even under high conflict scenarios, therefore DER model of request execution is selected. Optimistic delivery is used to process requests in parallel, while their order is being finalized, to help reduce the request latency. Next a novel multi-leader partial order protocol is designed and a transactional system is built that exploits the benefits of partial order. Lastly, this work exploits the highly multi-core architectures to service transactional queries locally at each replica (as replica consistency is assured by active replication) using a multi-version concurrency control. This scheme reduces the contention among read and write accesses to objects, thereby scaling the performance of queries with the system size.

1.3 Summary of Research Contributions

Total-order can be formed by solving the consensus (or atomic broadcast [23]) problem. In this area, one of the most studied algorithm is Paxos [58]. Though Paxos’s initial design was expensive (e.g., it required three communication steps), significant research efforts have focused on alternative designs for enhancing performance. A recent example is JPaxos [54, 95, 96], built on top of MultiPaxos [58], which extends Paxos to allow processes to agree on a sequence of values, instead of a single value. JPaxos incorporates optimizations such as batching and pipelining, which significantly boost message throughput [95]. S-Paxos [6] is another example that seeks to improve performance by balancing the load of the network protocol over all the nodes, instead of concentrating that on the leader. Total-order is used both in DER and DUR model of transaction processing.

We extend S-Paxos with optimistic-delivery and call it OS-Paxos. OS-Paxos optimizes the S-Paxos architecture for efficiently supporting optimistic deliveries, with the aim of minimizing the likelihood of mismatches between the optimistic order and the final delivery order. Based on OS-Paxos, we designed HiperTM, a high performance active replication protocol based on DER model. This protocol wraps write transactions in transactional request messages and executes them on all the replicas in the same order.

HiperTM uses a novel, speculative concurrency control protocol called SCC, which processes write transactions serially, minimizing code instrumentation (i.e., locks or CAS operations).
When a transaction is optimistically delivered by OS-Paxos, its execution speculatively starts, assuming the optimistic order as the processing order. Avoiding atomic operations allows transactions to reach maximum performance in the time available between the optimistic and the corresponding final delivery. Conflict detection and any other more complex mechanisms hamper the protocol’s ability to completely execute a sequence of transactions within their final notifications – so those are avoided.

For read-only transaction processing we use Multi-Version objects, which helps to execute write transactions in parallel, while eliminating the possible conflicts between read and write transactions. Additionally read-only transactions are directly delivered to individual replicas and processed locally, without going through total-order layer since replica consistency is guaranteed by total-order layer.

An experimentation evaluation of HiperTM on a public cluster\(^1\), revealed that serially processing optimistically delivered transactions guarantees a throughput (transactions per second) that is higher than atomic broadcast service’s throughput (messages per second), confirming optimistic delivery’s effectiveness for concurrency control in actively replicated transactional systems. Additionally, the reduced number of CAS operations allows greater concurrency, which is exploited by read-only transactions for executing faster.

During the benchmarking of HiperTM against PaxosSTM (DUR system) for TPC-C [19] workload, we realised that even though TPC-C benchmark defines a majority (90-95%) of partitioned accesses over the warehouses, PaxosSTM was failing to exploit it to give higher performance. After investigating the root cause, we figured out that inherent parallelism of deferred update replication is resulting in aborts among clients from the same node. We designed X-DUR, a DUR based system that exploits the properties of partitioned access to eliminate aborts due to local conflicts among clients.

X-DUR enforces two high-level guidelines to eliminate local aborts. X-DUR enforces a local order among all local transactions. This order on transactions is not necessarily known a priori, rather it could be determined at runtime learning from their actual conflicts. In addition to this, X-DUR enforces the same order on the speculatively (locally) processed transaction updates it proposes to certification layer so that the global ordering layer does not change this (partial) order. This way, the local transaction ordering is always compliant with the final commit order, thus making the speculative execution effective.

We implemented X-DUR’s prototype in Java and evaluated it using three well-known transactional benchmarks such as Bank (a monetary application), TPC-C [19], and Vacation [11]. Results reveal X-DUR’s benefits, especially when the contention in the system is high, thus saving local aborts. As an example of our findings, the maximum speed-up observed when running TPC-C is higher than one order of magnitude against the original PaxosSTM.

From the experience with HiperTM, we learned about some possible improvements in our system. Firstly, assuming that optimistic-order matches final-order, any processing hap-

\(^{1}\)We evaluate all our works on \textit{PRObE} [30], a high performance public cluster.
pening after arrival of final-order could be avoided, resulting in a lower latency and better performance. Second was to enhance the serial transaction execution to a high-performance concurrent one. Last one was to improve the optimistic-delivery mechanism to keep pace with the enhanced transaction processing.

Keeping these goals in sight, we designed Archie, an transactional framework based on state machine replication (SMR) that incorporates a set of protocol and system innovations that extensively use speculation for removing any non-trivial task after the delivery of the transaction’s order. The main purpose of Archie is to avoid the time-consuming operations (e.g., the entire transaction execution or iterations over transaction’s read and written objects) performed after this notification, such that a transaction can be immediately committed in case of no failure or node suspicion.

Archie incorporates MiMoX, a highly optimized total order layer, which proposes an architecture that mixes optimistic-delivery and batching [95] thus allowing the anticipation (thanks to the reliable optimistic notification) of a big amount of work (thanks to the batching) before the total order is finalized. Nodes take advantage of the time needed for assembling a batch to compute a significant amount of work before the delivery of the order is issued. This anticipation is mandatory in order to minimize (possibly remove) the transaction’s serial phase.

At the core of Archie there is a novel speculative parallel concurrency control, named ParSpec, that processes transactions speculatively and concurrently, upon their optimistic notification, enforcing the same order as the sequence of optimistic notifications. ParSpec does it by executing transactions speculatively in parallel, but allowing them to speculative commit only in-order, thus reducing the cost of possible out-of-order executions. ParSpec makes modifications visible to the following speculative transactions and ready-to-commit snapshot of transaction’s modifications are pre-installed into the shared data-set, but only publishes these modified object versions to non-speculative transactions post– final-delivery and validation step.

We implemented Archie in Java and our comprehensive experimental study with TPC-C [19], Bank and a distributed version of Vacation [11] benchmarks revealed that Archie outperforms all competitors including PaxosSTM [112], the classical state-machine replication [82] implementation and HiperTM [46], in most of the tested scenarios. On the other hand, when the contention is very low, PaxosSTM performs better than Archie.

Looking back at the experience with building HiperTM and Archie, we learned that when the systems size increases and thus the load of the system is high, total order based transactional system exhibits two well-known drawbacks which may limit its effectiveness: poor parallelism in the transaction execution and the existence of a single node (a.k.a. leader), which defines the order on behalf of all nodes. Processing transactions in accordance with a total order means effectively processing them serially, whereas total order can be seen as an unnecessary overestimation because the outcome of the commits of two non-conflicting transactions is independent from their commit order.
These two drawbacks are already addressed in literature. On one hand, more complex ordering techniques have been proposed, which allow the coexistence of multiple leaders at a time so that the system load is balanced among them, and the presence of a slow leader does not hamper the overall performance (as in the case of single leader) [67, 76]. On the other hand, the problem of ordering transactions according to their actual conflicts has been originally formalized by the Generalized Consensus [57] and Generic Broadcast [84] problems. The core idea consists of avoiding a “blind” total order of all submitted transactions whereas only those transactions that depend upon each other are totally ordered.

As current leaderless Generalized Paxos-based protocols suffer from serious performance penalties when deployed in systems where general purpose transactions (i.e., transactions that perform both read and write operations) are assumed, we designed a novel protocol that inherits the benefits from existing solutions while achieving high performance for transactional systems. We built Caesar, a replicated transactional system that takes advantage of an innovative multi-leader protocol implementing generalized consensus to enable high parallelism when processing transactions. The core idea is enforcing a partial order on the execution of transactions according to their conflicts, by leaving non-conflicting transactions to proceed in parallel and without enforcing any synchronization during the execution (e.g., no locks). The novelty of Caesar is in the way it is able to efficiently find a partial order among transactions without relying on any designated single point of decision, i.e., leaderless, and overcoming the limitations of recent contributions in the field of distributed consensus (e.g., [76]) when applied to transactional processing.

We implemented Caesar’s prototype in Java and conducted an extensive evaluation involving three well-known transactional benchmarks like Bank, TPC-C [19], and distributed version of Vacation from the STAMP suite [11]. In order to cover a wide range of competitors, we compared Caesar against EPaxos [76], Mencius [67], and a transactional system using MultiPaxos [58] for ordering transactions before the execution. The results reveal that Caesar is able to outperform competitors in almost all cases.

While incorporating the system optimizations in HiperTM and Archie, we stumbled upon the idea that not all read-only workloads require up-to-date data and application specific freshness and content-based constraints could be exploited to service read-only transactions to achieve high scalability. As a result, we designed Dexter which is built upon HiperTM which is a state machine based transactional system. Since HiperTM is just a transaction processing abstraction, Dexter can very well be based on other alternative transactional systems [112].

Dexter’s architecture divides nodes into one synchronous group and a set of asynchronous groups. Nodes in the synchronous group process write-transactions according to the classical active replication paradigm. Nodes in the asynchronous groups are lazily updated, and only serve read-only transactions with different constraints on data freshness or content. The asynchronous groups are logically organized as a set of levels and with each increasing level the expected freshness of objects decreases (staleness increases). The synchronous group
stores the latest versions of the objects, and thereby serves those read-only requests that need access to the latest object versions. The main advantage of this architecture is that write transactions yield AR’s traditional high performance, while at the same time, nodes can scale up for serving additional read-only workloads, exploiting the various levels of freshness that is available or expected.

For exploiting the aforementioned architecture, obviously, the application must specify the needed level of freshness guarantees. For this reason, Dexter provides a framework for inferring rules that are used for characterizing the freshness of a read-only transaction when it starts in the system. Using this framework, the programmer can describe the application’s requirements. Rules can be defined based on the elapsed time since the last update on an object was triggered, as well as based on the content of the object (or the type of the object).

We implemented Dexter in Java and used HiperTM [46] for implementing the synchronous group. The rest of the infrastructure was built with classical state machine replication implementation. An extensive evaluation study aimed at testing the scalability of the system, revealed that Dexter outperform competitors by as much as 2x.

1.4 Thesis Organization

This thesis proposal is organized as follows. In Chapter 2 we summarize the relevant and related previous work. Chapter 3 and 4 describe the background and system model for this dissertation. In Chapter 5, we introduce and discuss HiperTM, a distributed transactional system built on top of OS-Paxos. Chapter 6 presents X-DUR, a DUR based system that eliminates local aborts when clients have partitioned access. Next, we present a highly concurrent transactional system Archie in 7, which incorporates optimizations to total-order layer and local concurrency control to achieve high performance. In chapter 8, we introduce Caesar, a high performance distributed transactional system based on multi-leader partial order protocol. In Chapter 9, we present Dexter, a transactional framework where we exploit application specific staleness and content-based constraints to scale the performance with the system size. Chapter 10 summarizes the thesis proposal and proposes future work.
Chapter 2

Related Work

2.1 Transactional Replication Systems

Replication in transactional systems has been widely explored in the context of DBMS, including protocol specifications [49] and infrastructural solutions [100, 80, 81]. These proposals span from the usage of distributed locking to atomic commit protocols. [111] implements and evaluates various replication techniques, and those based on active replication are found to be the most promising.

Transactional replication based on atomic primitives had been widely studied in the last several years [50, 53, 112, 97]. Some of them focus on partial replication [97], while others target full replication [53, 112]. Partial replication protocols are affected by application locality: when transactions mostly access remote objects instead of local, the performance of the local concurrency control becomes negligible as compared to network delays. Full replication systems have been investigated in certification-based transaction processing [52, 12, 85]. In this model, transactions are first processed locally, and a total order service is invoked in the commit phase for globally certifying transaction execution (by broadcasting their read and write-sets).

Granola [20] is a replication protocol based on a single round of communication. Granola’s concurrency control technique uses single-thread processing for avoiding synchronization overhead, and has a structure for scheduling jobs similar to speculative concurrency control.

Transactional systems can be categorized according to the scheme adopted for ordering transactions, i.e., total order or partial order. Total order finds its basis in Paxos [58], the original algorithm for establishing agreement among nodes in the presence of failures. A number of solutions can be listed here [68, 108, 48] but all of them suffer from a scalability bottleneck due to the presence of a single leader in the system. Recently, a redesign of the state-machine approach, called P-SMR, has been proposed in [68]. P-SMR is geared towards
increasing the parallelism of transaction processing for total order-based distributed systems. P-SMR pursues this goal by creating a total order and then defining a set of worker threads per node, each processing a particular transaction conflict class. This way, transactions are pre-classified according to their conflicts and executed in parallel. Another approach, which extensively uses partitioned accesses and total ordered transactions is [69].

Calvin [108] assumes a partitioned repository of data (i.e., partial replication) and, on top of it, it builds a replication protocol. However, even though its partial replication model can be a way to enable scalability in case the mapping of data to nodes follows the distribution of the application’s locality, it still requires the total order of all transactions. This is achieved via a logical entity, named sequencer, that is responsible for defining the total order by associating transactions with monotonically increasing sequencer numbers. To alleviate the pressure on a single point of processing, Calvin implements the logical sequencer as a set of distributed sequencers, and it defines a deterministic total order among messages from different sequencers via epoch numbers and sequencers’ ids.

Eve [48] is another replicated transactional system that proposes the execution-verify approach. Roughly, Eve inherits the benefits from the DUR model, while falling back to the DER approach when the result of the optimistic execution is not compliant with other remote executions. This entails retrying the executions and committing them serially, after having established a total order for them. This approach reduces the load on the ordering layer because not all transactions necessarily undergo the ordering process. But in high contention scenarios, most speculative executions could be irreconcilable and Eve does not provide a specific solution to preserve high performance.

Mencius [67] is an ordering protocol that is able to establish a partial order on transactions on the basis of their dependencies. It is very close to the ordering scheme proposed by Caesar, even though it has a strong requirement that Caesar relaxes: it pre-assigns sending slots to nodes, and a sender can decide the order of a message at a certain slot s only after having heard from all nodes about the status of slots that precede s. This approach results in poor performance in case there is a slow or suspected node.

Alvin [110] is a recent transactional system that proposes an optimized version of the EPaxos’s ordering protocol. Like Caesar, it only enforces an order among conflicting transactions, and it is able to avoid the expensive computation on the dependency graph enforced by EPaxos to find out the final execution order for a transaction. However, unlike Caesar and EPaxos, a transaction’s leader in Alvin needs to re-collect dependencies from the other replicas in case it is not able to decide after the first round of communication. And this happens, in accordance with the scheme also adopted by EPaxos, in case the dependencies collected in the first round are discordant. This is not the case of Caesar, which forces an autonomously chosen decision only if it receives an explicit rejection in the first round of votes.

Rex [38] is a fault-tolerant replication system where all transactions are executed on a single node, thus retaining the advantages of pure local execution, while traces are collected
reflecting the transaction’s execution order. Then, Rex uses consensus to make traces stable across all replicas for fault-tolerance (without requiring a total order).

2.2 Optimistic Atomic Broadcast

The original Paxos algorithm for establishing agreement among nodes in the presence of failures was presented in [58], and later optimized in several works, e.g., [95, 54, 6]. These efforts do not provide any optimistic delivery. S-Paxos [6] introduced the idea of offloading the work for creating batches from the leader and distributing it across all nodes.

Optimistic delivery has been firstly presented in [50], and later investigated in [77, 78, 69]. [77] presents AGGRO, a speculative concurrency control protocol, which processes transactions in-order, in actively replicated transactional systems. In AGGRO, for each read operation, the transaction identifies the following transactions according to the opt-order, and for each one, it traverses the transactions’ write-set to retrieve the correct version to read. The authors only present the protocol in [77]; no actual implementation is presented, and therefore overheads are not revealed. The work in [78] exploits optimistic delivery and proposes an adaptive approach to different networks models. The ordering protocol proposed in [69] is the first that ensures no-reordering between optimistic and final delivery in case of stable leader by relying on a network with a ring topology.

2.3 Scalable Read Processing

As read-only workloads form the majority of requests, considerable research efforts had been invested in improving the response time (latency) of query transactions. One of the ways to improve read-only workload performance is to service the query transactions using multi-version object storage. [65] presents a word-based Multi-version STM implementation in ”C”. Motivation for multi-version concurrency control is invisibility of read transactions to write transaction and long running read transactions may starve (abort and retry repetitively) in case there are a lot updates on the objects used by read transaction. [91], [90] and [8] are object-based multi-version STM implementations for centralized STMs and authors use multi-versions to improve the performance of read transactions.

Improvement over read-only workloads has been also studied in content-based caching techniques. In [63] a freshness-driven adaptive caching protocol is presented. They consider a model containing edge servers that cache data, web servers, application servers and backend DBMS. They propose changing the cache capacity for improving the cache hits and thereby reducing request response time. In [16] is presented the idea of updating cached objects (or validate them) when a predefined Time-To-Live (TTL) expires. It improves the performance as seen by the user, since getting a fresh data from main server is done offline and user only
receives the fresh data from caching server. They also present policies to update/re-validate the objects after that their TTL is expired. The work in [10] considers search results caches used in Yahoo! search engine and introduces the concept of refreshing cache entries with expired TTL, leveraging idle cycles of engine. It prioritizes refreshing cache entries based on the access frequency and the duration of the cached entry. However, those techniques are not suited for transactional application with isolation and atomicity guarantees.

One of the observation over usual transaction workloads reveals that not all read-only workloads need to access the latest data. Some of the approaches proposed by database community [79, 29] tries to exploit this insight. Both [79, 29] use full replication with local databases ensuring local consistency and introduce a routing layer which enforces global consistency. Refresco [79] is based on single Master replication where the master node processes all the update (write) transactions and query (read-only) transactions are served by slave nodes. Slave nodes are updated asynchronously by master node through refresh transactions (single-primary lazy-backup). Leganet [29] uses full replication (lazy master replication) with local database ensuring local consistency and introduces a routing layer which enforces global consistency. Leganet runs all conflicting update (write) transactions in the same relative order at each node.

Pileus [106, 107] is a cloud storage based system which defines service level agreements (SLA) and gives the programmer the flexibility of selecting the consistency level for each read request. In Pileus, programmer could specify an SLA for read request and system translates the SLA for appropriate consistency guarantees which can be provided within desired latency bounds.
Chapter 3

Background

Replication has been studied extensively as a solution to provide improved availability for distributed systems. Replica consistency can be ensured if each replica observes the same sequence of updates on replicated data. This is made feasible by atomic broadcast layer, a variant of reliable broadcast. Atomic broadcast is a broadcast messaging protocol that ensures that messages are received reliably and in the same order by all participant replicas [23]. Solution to atomic broadcast problem has been shown to reduce to consensus on messages [26]. Although many consensus algorithms [58, 13, 47, 61, 71, 70] have been studied till now, Paxos [58] is still one of the most widely studied consensus algorithm.

Usually in local area networks, under moderate loads, with high probability two messages m and m' would be received in the same order by all processes (replicas). Optimistic atomic broadcast was introduced by Pedone and Schiper [83], which exploits this knowledge to reduce the average delay for message delivery. Optimistic atomic broadcast helps to execute the request speculatively by earlier delivery of request i.e. optimistic-delivery, thereby reducing the cost of execution after the consensus.

While consensus and optimistic atomic broadcast forms the reliable messaging layer, transactional systems require a concurrency control mechanism at each processes which can provide concurrent request execution with high performance. These requests could access the same data and to ensure that data consistency is maintained, traditionally lock-based synchronization mechanisms have been used. Lock-based approaches are usually hard to maintain and have programmability, scalability and composability challenges. Transactional memory (TM) is an alternative synchronization solution which promises to address these challenges.

We use these different building blocks to design high-performance replicated transactional systems in this dissertation. In this chapter, we provide a brief discussion over these building blocks.
3.1 Paxos

In a distributed system, where multiple processes coordinate among themselves to achieve their individual goals using common shared resources, the need to incorporate consensus becomes implicit. In other words, any algorithm that helps to maintain a common order among multiple processes, in a model where some processes may fail, involves solving a consensus problem. Within a rich set of consensus algorithms [58, 13, 47, 61, 71, 70], Paxos [58] is one of the most widely studied consensus algorithm. Paxos was introduced by Leslie Lamport as a solution to finding an agreement among a group of participants even under failures.

After the initial design [58], there have been many variants of Paxos [62, 61, 57, 71] studied by research community. The Paxos family of protocols includes a spectrum of trade-offs between the number of processors, number of message delays before learning the agreed value, the activity level of individual participants, number of messages sent, and types of failures. Although no deterministic fault-tolerant consensus protocol can guarantee progress in an asynchronous network [27], Paxos guarantees safety (consistency), and the conditions that could prevent it from making progress are difficult to provoke.

3.1.1 The Paxos Algorithm

Paxos categorises processes by their roles in the protocol: proposer, acceptor, and learner. In a typical implementation a process may assume one or more roles. This does not affect the correctness of the protocol, but could improve the latency and throughput due to reduced number of messages by coalescing roles.

Client issues a request to the distributed system, and waits for a response. Proposer receives request and attempt to convince acceptors to agree on it by sending proposals, acting like a coordinator of client request, to move protocol forward. Acceptors act at the fault-tolerant memory of the protocol and responds to proposer’s proposals to arrive on an agreement. Consensus over a proposal can only arrive if a quorum of acceptors agree to that proposal. Learner act as the replication factor for the protocol. Once consensus over a client request is formed, learner may process the request and respond to clients. Additional learners could be added to improve the system availability. Paxos requires a distinguished proposer, also known as leader, to make the protocol progress. Multiple proposers could believe that they are leaders, but it results in stalling of protocol due to continuous conflicting proposals.

In Paxos, consensus for each request constitutes a new ballot (Fig. 3.1) and processes could execute a series of ballots to agree on different requests. In each ballot one of the proposers, also called leader of the ballot, tries to convince other processes to agree on a value proposed by it. If ballot succeeds the value proposed is decided, otherwise other processes may start a new ballot. Each ballot is composed of two phases of communication:

Phase1: Proposer initiates a ballot by sending a Prepare message for a proposal to a quorum
of acceptors. Each proposal is assigned a number, also called view or Epoch, which is higher than any previous proposal number used by this proposer.

Acceptors responds to the proposal and promises to ignore any later proposal lesser than current proposal’s number N, if N is higher than any previous proposal number received by the Acceptor. Though responding to proposer is optional in case this condition is not met, as an optimization sending a Nack helps proposer to stop the attempt to create consensus on proposal number N.

Phase2: Proposer enters the second phase of ballot when it receives a quorum of responses from acceptors. If a response from some Acceptor contains a value, then proposer selects that value to its proposal. Otherwise if none of the Acceptors accepted a proposal up to this point, then the Proposer can choose any new value for its proposal. Proposer sends an Accept message to the quorum of Acceptors with the chosen value for the proposal.

Acceptors, on receiving Accept message with a proposal number N, accept the proposal iff they have not promised to participate in proposal higher than N. In this case, each acceptor sends Accepted message to proposers and learners informing them that it has accepted the proposal. Proposal is decided once learners receive a majority of Accepted messages for a proposal.

![Figure 3.1: Consensus mechanism with classic Paxos ballot](image)

3.1.2 Multi-Paxos

Paxos protocol requires phase-1 of ballot to select a leader (distinguished proposer), which then tries to get a consensus over a client request. Since it does not assume that leader could be stable, it suffers from significant amount of overhead when each request is agreed through a separate ballot. In case, leader process is relatively stable, phase-1 become redundant.

Multi-Paxos is an optimization over Paxos, where processes try to agree on a sequence
of client requests rather than single request with the same leader (Fig. 3.2). Multi-Paxos
executes prepare phase (phase-1) for selecting a new leader for arbitrary number of future
consensus instances. Afterwards, it only executes phase-2 for each instance, till this leader
is suspected to have crashed by failure detector. This optimization reduces the number of
communication steps for an instance, thereby improves the overall performance and latency.

3.1.3 Generalized Paxos

Paxos (as well as Multi-Paxos) “blindly” defines a total order for client requests in a single
leader environment. Establishing a total order relying on one leader is widely accepted solu-
tion since it guarantees the delivery of a decision with the optimal number of communication
steps [60], though existence of an overloaded or slow leader could become a bottleneck and
limits its effectiveness. Fast Paxos [61] extends Classic Paxos by allowing fast rounds, in
which a decision can be learned in two communication steps without relying on a leader but
requires bigger quorums.

Additionally, defining a total order can be seen as an unnecessary overestimation of conflicts
among client requests, because the outcome of two non-conflicting requests is independent
from their commit order. As a consequence total order limits the parallelism with request
execution, as all requests have to execute serially. The problem of ordering transactions
according to their actual conflicts has been originally formalized by Generalized Paxos [57]
which defines a total order on only those transactions that depend upon each other.

Generalized Paxos allows all processes (proposers) to send proposal for their client requests,
thereby becoming the coordinator for their respective proposal. At the start, a request
coordinator sends its proposal to other processes using Propose message. On receiving the
proposal from an individual coordinator, acceptors evaluate proposal’s conflict with the other
concurrent proposals and broadcast their evaluated dependencies to others in the form of *Accepted* message. Each acceptor waits for fast quorum \(Q_F \) of *Accepted* messages for a given proposal. If the dependencies observed by fast quorum of *Accepted* messages are identical, proposed request is committed, thereby defining the order using the fast round similar to Fast Paxos. Otherwise if dependencies observed by different processes are non-identical, a dedicated leader resolves the conflict and defines the order for the proposed request. Leader then informs all other processes about the order by sending a *Stable* message. As a result, only those requests that depend upon each other are totally ordered, whereas each process is allowed to deliver an order that differs from the one delivered by another process, while all of them have in common the way conflicting requests are ordered.

3.2 Atomic Broadcast

Different reliable broadcast protocols support different properties. *FIFO-order broadcast* ensures that messages from the same process are delivered in the same order that the sender has broadcast them. But it does not guarantee any order for messages from different senders. On the other hand, *causal-order broadcast* ensures the global order for all causally dependent messages, but it does not guarantee order among unrelated messages. *Total-order broadcast*, also known as *atomic broadcast*, addresses the drawbacks of both of these broadcast protocols and orders all messages, even those that are from different senders and causally unrelated. Therefore, *atomic broadcast* provides much stronger ordering properties for all processes and without any knowledge about messages’ causal dependency.

Total-order broadcast is called *atomic broadcast* because the message delivery occurs as if the broadcast were an indivisible “atomic” action: the message is delivered to all or to none of the processes and, if the message is delivered, every other message is ordered either before or after this message. *Atomic broadcast* defines two primitives: \(ABcast(m) \), used by clients to broadcast a message \(m \) to all the processes; \(ADeliver(m) \), event notified to each process for delivering message \(m \). These primitives satisfy the following properties: *Validity*, if a correct process \(ABcast \) a message \(m \), then it eventually \(ADeliver \) \(m \); *Agreement*, if a process \(ADelivers \) message \(m \), then all correct processes eventually \(ADeliver \) \(m \); *Uniform integrity*, for any message \(m \), every process \(ADelivers \) \(m \) at most once, and only if \(m \) was previously \(ABcasted \); *Total order*, if some process \(ADelivers \) \(m \) before \(m' \), then every process \(ADelivers \) \(m \) and \(m' \) in the same order.

3.3 Optimistic Atomic Broadcast

Optimistic atomic broadcast [83] was proposed as an optimization over *atomic broadcast*, which exploits the spontaneous total-order property: if processes \(p \) and \(q \) sends messages \(m \) and \(m' \) respectively to all processes, then both messages might be received in the same
order by all processes. This property usually holds in local-area networks under moderate load conditions.

Apart from $ABcast(m)$ and $ADeliver(m)$, optimistic atomic broadcast defines an additional primitive, called $ODeliver(m)$, which is used for early delivering a previously broadcast message m before the $ADeliver$ for m is issued. Earlier delivery of message helps to reduce the latency as request (wrapped within message) is processed optimistically before the consensus decision arrives, but updates by the request are buffered. When message m is $Adelivered$, if the message order of $ODeliver(m)$ matches $ADeliver(m)$ then the buffered changes from request execution are applied to main memory (or the stable storage whatever the case may be).

In addition to the properties of atomic broadcast, optimistic atomic broadcast supports following properties: 1) If a process $Odeliver(m)$, then every correct process eventually $Odeliver(m)$; 2) If a correct process $Odeliver(m)$, then it eventually $Adeliver(m)$; 3) A process $Adeliver(m)$ only after $Odeliver(m)$.

3.4 Transaction Memory

Taking the inspiration from database transactions, need for a similar abstraction in programming language semantic was felt for ensuring consistency of shared data among several processes. The usual way for managing concurrency in a system is using locks, which inherently suffers from programmability, scalability, and composability challenges [43]. Additionally, the implementation of complex algorithms based on manually implemented mutual exclusion supports becomes hard to debug, resulting in high software development time.

Herlihy and Moss [44] proposed hardware supported transactional memory which was followed by proposal on atomic multi-word operation known as “Oklahoma update” by Stone et al. [105]. These works became the starting point for research in hardware and software systems for implementing transactional memory. TM has been proposed in hardware(HTM) [87, 88, 15, 102], software (STM) [73, 24, 103, 8, 7, 104, 92] and hybrid approaches [22, 56, 21].

TM [40] provides the synchronization abstraction that promises to alleviate programmability, scalability and composability issues with lock-based approaches. In fact, leveraging the proven concept of atomic and isolated transactions, TM spares programmers from the pitfalls of conventional manual lock-based synchronization, significantly simplifying the development of parallel and concurrent applications. TM transactions are characterized by only in-memory operations, thus their performance is orders of magnitude better than that of non in-memory processing systems (e.g., database systems), where interactions with stable storage often degrade performance.

In software, STM libraries offer APIs to programmers for reading and writing shared ob-
objects, ensuring atomicity, isolation, and consistency in a completely transparent manner. STM transactions optimistically execute, logging object changes in a private space. Two transactions conflict if they access the same object and one access is a write. When that happens, a contention manager resolves the conflict by aborting one and committing the other, yielding (the illusion of) atomicity. Aborted transactions are re-started, after rolling-back the changes.

In hardware, similar objective is achieved by best-effort execution enabled by underlying hardware. In cache extension based HTMs, conflict is detected when cache line of read-set/writeset of one transaction is written by another transaction, thereby invalidating the cache line. In addition to cache extension, HTM could be implemented either by extending the functionality of the memory ordering buffer (MOB) and re-order buffer (ROB) in modern x86 microprocessors, or modifications to the pipeline of an x86 microprocessors. In the pursuit of benefiting from HTM’s performance, IBM and Intel [9, 89] have recently launched new processors with HTM support. Even though transaction execution is usually much faster in HTM as compared to STM, all transaction profiles are not suitable for HTM, resulting in keeping STM research alive. HTM transactions which are either very long or accesses many objects become prone to aborts due to timer interrupts and cache capacity miss respectively.

The challenges of lock-based concurrency control are exacerbated in distributed systems, due to the additional complexity of multi-computer concurrency (e.g., debugging efforts, distributed deadlocks, and composability challenges). Distributed TM (or DTM) [86, 78, 18] has been similarly motivated as an alternative to distributed locks. In addition to multi-computer synchronization primitive, DTM also adds extra computing power due to increased number of nodes. DTM can be classified based on the mobility of objects and transactions, with concomitant tradeoffs, including a) control flow [3], where objects are immobile and transactions invoke object operations through RMIs/RPCS and b) dataflow [109], where transactions are immobile, and objects are migrated to invoking transactions.

In this thesis, our focus is on software enabled DTM solutions i.e. we employ STM solutions to process transactions locally at a processing node (replica) in a distributed transaction processing system. Therefore for completeness we overview STM and its basic building blocks.

3.5 Software Transaction Memory

Conventional trend for handling shared objects during concurrent accesses is employing lock-based solutions [2], where shared object accesses are protected by locks. Lock-based approaches suffer from many drawbacks including deadlocks, livelocks, lock-convoying, priority inversion, and non-composability etc. Software transaction memory (STM) [101], a TM’s software variant, has been seen as an alternative software based solution for accessing
shared memory objects, without exposing locks in the programming interface. STM provides the synchronization abstraction that promises to addresses programmability, scalability and composability challenges associated with lock-based approaches. In the following sections, we provide an overview of different building blocks of a TM system.

3.5.1 Concurrency Control Mechanisms

In a TM system concurrent accesses to shared objects generates conflicts. A conflict could occur when two transactions perform conflicting operations on same data object i.e. either both write or one transaction reads and another writes concurrently. TM system detects the conflict and resolves it by delaying or aborting one of the two conflicting transactions. Based on how the conflicts are detected or resolved, TM concurrency control could be broadly divided into two approaches: pessimistic concurrency control, where the conflict occurrence, detection and resolution all happen simultaneously; and optimistic concurrency control, where the conflict detection and resolution happens later than conflict occurrence.

Pessimistic concurrency control allows a transaction to exclusively claim a data prior to modifying the data, preventing other transactions from accessing it. If conflicts are frequent, then pessimistic concurrency control pays off i.e. once a transaction has locks over its objects, it could run to completion without any hurdle. However in case conflicts are rare, then pessimistic concurrency control results in low throughput.

On the other hand, optimistic concurrency control allows multiple transactions to access data concurrently and let them continue to run even if they conflict, till these conflicts are caught and resolved by TM. In case conflicts are rare, optimistic concurrency control gives better throughput, as it allows higher concurrency among transactions as compared to Pessimistic concurrency control.

3.5.2 Version Management Systems

Depending upon the concurrency control being used, TM systems require mechanisms to manage the tentative writes of concurrent transactions i.e. version management. The first approach is eager version management, also known as direct update where transactions directly update the data in memory. Transactions maintain an undo log which holds all the values transaction has overwritten. If the transaction aborts, it roll-backs all the changes it has performed in memory by writing back the undo log. Eager version management requires Pessimistic concurrency control because the transaction requires exclusive access to the objects if it is going to overwrite them directly.

Second approach is lazy version management, also known as deferred update because the updates are delayed till the transaction doesn’t commit. Transaction maintains a private redo log to write the tentative writes. Transaction’s updates are buffered in this log and
transaction reads from this log if a modified object is read again within the same transaction context. If a transaction commits, it updates the objects in main memory with these private logs. On abort, transaction’s *redo log* is simply discarded.

3.5.3 Conflict Detection

With *pessimistic concurrency control*, conflict detection is trivial since lock over an object could only be acquired if it is not already held by another thread in conflicting mode. For *optimistic concurrency control*, transaction uses validation operation to check whether or not it has experienced a conflict. Successful validation implies that transaction could be serialized in history of transactions executed so far.

Conflicts could be detected at different times during transaction execution. Firstly, a transaction could be detected when it declares its intent to access a new object. This approach is also known as *eager conflict detection* [75]. Next, conflicts could be detected by executing validation operation any time, or even multiple times, during transaction’s execution to examine the collection of locations it previously read or updated. Lastly, a conflict could be detected when a transaction attempts to commit by validating the complete set of read/-modified locations one final time. This last approach is also called *lazy conflict detection* [75].
Chapter 4

Common System Model

4.1 Assumptions

We consider a classical distributed system model [35] where a set of nodes/processes \(\Pi = \{N_1, N_2, \ldots, N_{|\Pi|}\} \) communicate using message passing links. A node can be correct (or non-faulty), i.e., working properly; or faulty, i.e., crashed; or suspected, i.e., some node experienced interrupted interaction with it but it is still not marked as crashed.

Processes running distributed algorithms are subject to failures of different components. It could range from a process crash or message link failure to malicious malfunctioning of a process. Accordingly faults could be broadly classified as: 1) Crash faults, where process stops executing; 2) Omission faults, where a process doesn’t send or receive a message; or 3) Arbitrary faults also known as Byzantine faults, where process deviates from the assigned algorithm leading to unpredictable behaviour.

For our systems, we assume that nodes may fail according to the fail-stop (crash) model [5]. We assume a partially synchronous system [58], where every message may experience an arbitrarily large, although finite, delay. We assume a maximum number of faulty nodes to be equal to \(f \), and the number of nodes \(|\Pi| \) equal to \(2f + 1 \). We consider only non-byzantine faults, i.e., nodes cannot perform actions that are not compliant with the replication algorithm.

Decisions about the final order of a transaction are made by collecting information from other nodes in the system. Depending upon the communication steps involved and consensus protocol, we leverage different quorums. When the leader, under single-leader consensus protocol such as multi-paxos, decides the final order of a transaction, it waits for a quorum \(Q_C = f + 1 \) of replies. Similarly for leaderless protocols (e.g., Caesar), when a leader decides the final order of a transaction after two communication delays, it waits for a quorum
$Q_F = f + \left\lfloor \frac{f+1}{2} \right\rfloor$ of replies1. On the other hand, if a decision cannot be accomplished after two communication delays, then a quorum $Q_C = f + 1$ is used, as in [58]. This way any two quorums always intersect, thus ensuring that, even though f failures happen, there is always at least one site with the last updated information that we can use for recovering the system.

To eventually reach an agreement on the order of transactions when nodes are faulty, we assume that the system can be enhanced with the weakest type of unreliable failure detector [36] that is necessary to implement a leader election [35].

Caesar assumes that processes executing on a node have access to the local system clock whose values increase monotonically. A process can also force a value to the local clock, with the constraint that the clock’s value after the reset is greater than the one before the reset. Clocks could be synchronized via a NTP service [74] although the synchronization is not required for the correctness of the proposed protocol.

4.2 Transaction Model and Processing

For the sake of generality and following the trend of [53, 46, 68], we adopt the programming model of software transactional memory (STM) [101] and its natural extension to distributed systems (i.e., DTM). DTM allows the programmer to simply mark a set of operations with transactional requirements as an “atomic block”. The DTM framework transparently ensures the atomic block’s transactional properties (i.e., atomicity, isolation, consistency), while executing it concurrently with other atomic blocks.

A transaction is a sequence of operations, each of which is either a read or a write on a shared object, wrapped in a clearly marked procedure that starts with the begin operation and ends with the commit (or abort) operation. This procedure is available at the system side and may or may not be available at the client side. We name a transaction as write transaction in case it performs at least one write operation on some shared object, otherwise the transaction is called read-only transaction.

We consider a full replication model, where the application’s entire shared data-set is replicated across all nodes. Transactions are not executed on application threads. Instead, application threads, referred to as clients, inject transactional requests into the replicated system and service threads process transactions. These two groups of threads do not necessarily run on the same physical machine. Our transaction processing model is similar to the multi-tiered architecture that is popular in relational databases and other modern storage systems, where dedicated threads (different from threads that invoke transactions) process transactions.

1The size of the quorum is the same adopted in [76] for fast quorums.
Each request is composed of a key, identifying the transaction to execute, and the values of all the parameters needed for running the transaction’s logic (if any). Threads submit the transaction request to a node, and wait until the node successfully commits that transaction.

Specifically for Caesar, which orders transactions according to their conflicts, we broadcast the objects expected to be accessed together with the transaction key and input parameters. This additional information, although mandatory for avoiding overestimation of actual conflicts, does not represent a limitation especially if the business logic of the transaction is snapshot-deterministic (i.e., the sequence of performed operations depend only on the returned value of previous read operations). In fact, in this case usually once the values of the input parameters of the stored-procedure are known, then the set of objects accessed, which could conflict with other, is likely known.

We use a multi-versioned memory model, wherein an object version has two fields: \textit{timestamp}, which defines the logical time when the transaction that wrote the version committed; and \textit{value}, which is the value of the object (either primitive value or set of fields).
State-machine replication (or active replication) [99] is a paradigm that exploits full replication to avoid service interruption in case of node failures. In this approach, whenever the application executes a transaction T, it is not directly processed in the same application thread. Instead, a group communication system (GCS), which is responsible for ensuring the CSO, creates a transaction request from T and issues it to all the nodes in the system. The CSO defines a total order among all transactional requests. Therefore, when a sequence of messages is delivered by the GCS to one node, it guarantees that other nodes also receive the same sequence, ensuring replica consistency.

A CSO can be determined using a solution to the consensus (or atomic broadcast [23]) problem: i.e., how a group of processes can agree on a value in the presence of faults in partially synchronous systems. Paxos [58] is one of the most widely studied consensus algorithms. Though Paxos’s initial design was expensive (e.g., it required three communication steps), significant research efforts have focused on alternative designs for enhancing performance. A recent example is JPaxos [54, 95, 96], built on top of MultiPaxos [58], which extends Paxos to allow processes to agree on a sequence of values, instead of a single value. JPaxos incorporates optimizations such as batching and pipelining, which significantly boost message throughput [95]. S-Paxos [6] is another example that seeks to improve performance by balancing the load of the network protocol over all the nodes, instead of concentrating that on the leader.

A deterministic concurrency control protocol is needed for processing transactions according to the CSO. When transactions are delivered by the GCS, their commit order must coincide with the CSO; otherwise replicas will end up in different states. With deterministic concurrency control, each replica is aware of the existence of a new transaction to execute only after its delivery, significantly increasing transaction execution time. An optimistic solution to this problem has been proposed in [50], where an additional delivery, called optimistic
delivery, is sent by the GCS to the replicas prior to the final CSO. This new delivery is used to start transaction execution speculatively, while guessing the final commit order. If the guessed order matches the CSO, then the transaction, which is already executed (totally or partially), is ready to commit [77, 78, 69]. However, guessing alternative serialization orders [94, 93] – i.e., activate multiple speculative instances of the same transactions starting from different memory snapshots – has non-trivial overheads, which, sometimes, do not pay off.

In this chapter, we present HiperTM, a high performance active replication protocol. HiperTM is based on an extension of S-Paxos, called OS-Paxos that we propose. OS-Paxos optimizes the S-Paxos architecture for efficiently supporting optimistic deliveries, with the aim of minimizing the likelihood of mismatches between the optimistic order and the final delivery order. The protocol wraps write transactions in transactional request messages and executes them on all the replicas in the same order. HiperTM uses a novel, speculative concurrency control protocol called SCC, which processes write transactions serially, minimizing code instrumentation (i.e., locks or CAS operations). When a transaction is optimistically delivered by OS-Paxos, its execution speculatively starts, assuming the optimistic order as the processing order. Avoiding atomic operations allows transactions to reach maximum performance in the time available between the optimistic and the corresponding final delivery. Conflict detection and any other more complex mechanisms hamper the protocol’s ability to completely execute a sequence of transactions within their final notifications – so those are avoided.

For each shared object, the SCC protocol stores a list of committed versions, which is exploited by read-only transactions to execute in parallel to write transactions. As a consequence, write transactions are broadcast using OS-Paxos. Read-only transactions are directly delivered to one replica, without a CSO, because each replica has the same state, and are processed locally.

We implemented HiperTM and experimentally evaluated on PRObE [30], a high performance public cluster with 19 nodes\(^1\) using benchmarks including TPC-C [19] and Bank. Our results reveal three important trends:

A) OS-Paxos provides a very limited number of out-of-order optimistic deliveries (0% when no failures happen and <5% in case of failures), allowing transactions processed – according to the optimistic order – to more likely commit.

B) Serially processing optimistically delivered transactions guarantees a throughput (transactions per second) that is higher than atomic broadcast service’s throughput (messages per second), confirming optimistic delivery’s effectiveness for concurrency control in actively replicated transactional systems. Additionally, the reduced number of CAS

\(^1\)We selected 19 because, according to Paxos’s rules, this is the minimum number of nodes to tolerate 9 simultaneous faults.
operations allows greater concurrency, which is exploited by read-only transactions for executing faster.

C) HiperTM’s transactional throughput is up to $3.5 \times$ better than PaxosSTM [112], a state-of-the-art atomic broadcast-based competitor, using the classical configuration of TPC-C.

With HiperTM, we highlight the importance of making the right design choices for fault-tolerant DTM systems. To the best of our knowledge, HiperTM is the first fully implemented transaction processing system based on speculative processing, built in the context of active replication.

5.1 Optimistic S-Paxos

Optimistic S-Paxos (or OS-Paxos) is an implementation of optimistic atomic broadcast [83] built on top of S-Paxos [6]. S-Paxos can be defined in terms of two primitives (compliant with the atomic broadcast specification):

- $\text{ABcast}(m)$: used by clients to broadcast a message m to all the nodes
- $\text{Adeliver}(m)$: event notified to each replica for delivering message m

These primitives satisfy the following properties:

- **Validity.** If a correct process ABcast a message m, then it eventually $\text{Adeliver} m$.
- **Uniform agreement.** If a process Adelivers a message m, then all correct processes eventually $\text{Adeliver} m$.
- **Uniform integrity.** For any message m, every process $\text{Adelivers} m$ at most once, and only if m was previously ABcasted.
- **Total order.** If some process $\text{Adelivers} m$ before m', then every process $\text{Adelivers} m$ and m' in the same order.

OS-Paxos provides an additional primitive, called $\text{Odeliver}(m)$, which is used for delivering a previously broadcast message m before the Adeliver for m is issued. OS-Paxos ensures that:

- If a process $\text{Odeliver}(m)$, then every correct process eventually $\text{Odeliver}(m)$.
- If a correct process $\text{Odeliver}(m)$, then it eventually $\text{Adeliver}(m)$.
- A process $Adeliver(m)$ only after $Odeliver(m)$.

OS-Paxos’s properties and primitives are compliant with the definition of optimistic atomic broadcast [83]. The sequence of $Odeliver$ notifications defines the so called optimistic order (or opt-order). The sequence of $Adeliver$ defines the so called final order. We now describe the architecture of S-Paxos to elaborate the design choices we made for implementing $Odeliver$ and $Adeliver$.

S-Paxos improves upon JPaxos with optimizations such as distributing the leader’s load across all replicas. Unlike JPaxos, where clients only connect to the leader, in S-Paxos each replica accepts client requests and sends replies to connected clients after the execution of the requests. S-Paxos extensively uses the batching technique [95, 96] for increasing throughput. A replica creates a batch of client requests and distributes it to other replicas. The receiver replicas forward this batch to all other replicas. When the replicas observe a majority of delivery for a batch, it is considered as stable batch. The leader then proposes an order (containing only batch IDs) for non-proposed stable batches, for which, the other replicas reply with their agreement i.e., accept messages. When a majority of agreements for a proposed order is reached (i.e., a consensus instance), each replica considers it as decided.

S-Paxos is based on the MultiPaxos protocol where, if the leader remains stable (i.e., does not crash), its proposed order is likely to be accepted by the other replicas. Also, there exists a non-negligible delay between the time when an order is proposed and its consensus is reached. As the number of replicas taking part in the consensus agreement increases, the time required to reach consensus becomes substantial. Since the likelihood of a proposed order to get accepted is high with a stable leader, we exploit the time to reach consensus and execute client requests speculatively without commit. When the leader sends the proposed order for a batch, replicas use it for triggering $Odeliver$. On reaching consensus agreement, replicas fire the $Adeliver$ event, which commits all speculatively executed transactions corresponding to the agreed consensus.

Network non-determinism presents some challenges for the implementation of $Odeliver$ and $Adeliver$ in S-Paxos. First, S-Paxos can be configured to run multiple consensus instances (i.e., pipelining) to increase throughput. This can cause out-of-order consensus agreement e.g., though an instance a precedes instance b, b may be agreed before a. Second, the client’s request batch is distributed by the replicas before the leader could propose the order for them. However, a replica may receive a request batch after the delivery of a proposal that contains it (due to network non-determinism). Lastly, a proposal message may be delivered after the instance is decided.

We made the following design choices to overcome these challenges. We trigger an $Odeliver$ event for a proposal only when the following conditions are met: 1) the replica receives a propose message; 2) all request batches of the propose message have been received; and 3) $Odeliver$ for all previous instances have been triggered i.e., there is no “gap” for $Odeliver$ed instances. A proposal can be $Odeliver$ed either when a missing batch from another replica is
received for a previously proposed instance, or when a proposal is received for the previously received batches. We delay the \textit{Odeliver} until we receive the proposal for previously received batches to avoid out-of-order speculative execution and to minimize the cost of aborts and retries.

The triggering of the \textit{Adeliver} event also depends on the arrival of request batches and the majority of accept messages from other replicas. An instance may be decided either after the receipt of all request batches or before the receipt of a delayed batch corresponding to the instance. It is also possible that the arrival of the propose message and reaching consensus is the same event (e.g., for a system of 2 replicas). In such cases, \textit{Adeliver} events immediately follow \textit{Odeliver}. Due to these possibilities, we fire the \textit{Adeliver} event when: 1) consensus is reached for a proposed message; and 2) a missing request batch for a decided instance is received; and 3) the corresponding instance has been \textit{Odelivered}. If there is any out-of-order instance agreement, \textit{Adeliver} is delayed until all previous instances are \textit{Adelivered}.

In order to assess the effectiveness of our design choices, we conducted experiments measuring the percentage of reordering between OS-Paxos’s optimistic and final deliveries, and the average time between an \textit{Odeliver} and its subsequent \textit{Adeliver}. We balanced the clients injecting requests on all the nodes and we reproduced executions without failures (Failure-free) and manually crashing the actual leader (Faulty). Figure 5.1 shows the results. The experimental test-bed is the same used for the evaluation of HiperTM in Section 5.5 (briefly, we used 19 nodes interconnected via 40 Gbits network on PRObE [30] public cluster).

Reordering (Figure 5.1(a)) is absent for failure-free experiments (Therefore the bar is not visible in the plot). This is because, if the leader does not fail, then the proposing order is always confirmed by the final order in OS-Paxos. Inducing leader to crash, some reorder appears starting from 7 nodes. However, the impact on the overall performance is limited because the maximum number of reordering observed is lower than 5% with 19 replicas. This
confirms that the optimistic delivery order is an effective candidate for the final execution order. Figure 5.1(b) shows the average delay between Odeliver and Adeliver. It is in the range of ≈300 microseconds to ≈500 microseconds in case of failure-free runs and it increases up to ≈550 microseconds when leader crashes. The reason is related to the possibility that the process of sending the proposal message is interrupted by a fault, forcing the next elected leader to start a new agreement on previous messages.

The results highlight the trade-off between a more reliable optimistic delivery order and the time available for speculation. On one hand, anticipating the optimistic delivery results in additional time available for speculative processing transactions, at the cost of having an optimistic delivery less reliable. On the other hand, postponing the optimistic delivery brings an optimistic order that likely matches the final order, restricting the time for processing. In HiperTM we preferred this last configuration and we designed a lightweight protocol for maximizing the exploitation of the time between Odeliver and Adeliver.

5.2 The Protocol

Application threads (clients), after invoking a transaction using the invoke API, wait until the transaction is successfully processed by the replicated system and its outcome becomes available. Each client has a reference replica for issuing requests. When that replica becomes unreachable or a timeout expires after the request’s submission, the reference replica is changed and the request is submitted to another replica. Duplication of requests is handled by tagging messages with unique keys composed of client ID and local sequence number.

Replicas know about the existence of a new transaction to process only after the transaction’s Odeliver. The opt-order represents a possible, non definitive, serialization order for transactions. Only the sequence of Adelivers determines the final commit order. HiperTM overlaps the execution of optimistically delivered transactions with their coordination phase (i.e., defining the total order among all replicas) to avoid processing those transactions from scratch after their Adeliver. Clearly, the effectiveness of this approach depends on the likelihood that the opt-order is consistent with the final order. In the positive case, transactions are probably executed and there is no need for further execution. Conversely, if the final order contradicts the optimistic one, then the executed transactions can be in one of the following two scenarios: i) their serialization order is “equivalent” to the serialization order defined by the final order, or ii) the two serialization orders are not “equivalent”. The notion of equivalence here is related to transactional conflicts: when two transactions are non-conflicting, their processing order is equivalent.

Consider four transactions. Suppose \(\{T_1,T_2,T_3,T_4\} \) is their opt-order and \(\{T_1,T_4,T_3,T_2\} \) is their final order. Assume that the transactions are completely executed when the respective Adelivers are issued. When Adeliver\((T_4)\) is triggered, \(T_4 \)'s optimistic order is different from its final order. However, if \(T_4 \) does not conflict with \(T_3 \) and \(T_2 \), then its serialization
order, realized during execution, is equivalent to the final order, and the transaction can be committed without re-execution (case \(i\)). On the contrary, if \(T_4\) conflicts with \(T_3\) and/or \(T_2\), then \(T_4\) must be aborted and restarted in order to ensure replica consistency (case \(ii\)). If conflicting transactions are not committed in the same order on all replicas, then replicas could end up with different states of the shared data-set, violating correctness (i.e., the return value of a read operation can be different if it is executed on different replicas).

\[
T_1: [R(A1); W(A1)] \quad T_2: [R(A2); W(A2)] \quad T_3: [R(A3); W(A3)] \quad T_4: [R(A4); W(A4)]
\]

<table>
<thead>
<tr>
<th>Opt-order: T1 -> T2 -> T3 -> T4</th>
<th>Final-order: T1 -> T4 -> T3 -> T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case (i)</td>
<td>Case (ii)</td>
</tr>
<tr>
<td>T4 conflicts with T2 and/or T3</td>
<td>T4 does not conflict with T2 and/or T3</td>
</tr>
<tr>
<td>(A_2 \cap A_4 \neq \emptyset) and/or (A_3 \cap A_4 \neq \emptyset)</td>
<td>(A_2 \cap A_4 = \emptyset) and/or (A_3 \cap A_4 = \emptyset)</td>
</tr>
<tr>
<td>Commit order</td>
<td>Commit order</td>
</tr>
<tr>
<td>T1 -> T4 -> T3 -> T2 is NOT equivalent to T1 -> T2 -> T3 -> T4</td>
<td>T1 -> T4 -> T3 -> T2 is equivalent to T1 -> T2 -> T3 -> T4</td>
</tr>
</tbody>
</table>

Figure 5.2: Example of committing transactions \(\{T_1,T_2,T_3,T_4\}\) varying the conflict of accessed objects, in case the final order contradicts the optimistic order.

Figure 5.2 pictures the previous two cases. For the sake of clarity, we assume each transaction performing one read operation and one write operation on the same object. We distinguish between case \(i\) and case \(ii\) by, respectively, assigning different values to accessed objects (left column in the figure) or same values (right column in the figure). However, in both the cases, transaction \(T_4\) reads and writes the same object managed by \(T_1\), thus \(A_1\) is equals to \(A_4\) (due to the compact representation of the example, each object’s name is different but it can refer to same object). In case \(i\), where object \(A_2\) (or \(A_3\)) is the same as \(A_4\), the validation of \(T_4\) after \(T_1\) cannot complete successfully because the value of \(A_2\) (or \(A_3\)) read by \(T_4\) does not correspond to the actual committed value in memory, namely the one written by \(T_1\). On the contrary, the right column shows the case \(ii\) where object \(A_2\) (or \(A_3\)) is different from \(A_4\). This way, \(T_4\) can successfully validate and commit even if its speculative execution order was different. This is because the actual dependencies with other transactions of \(T_4\) are the same as those in the final order (i.e., \(T_1\) has to commit before \(T_4\)). As a result, \(T_1\) is still committed before \(T_4\), allowing \(T_4\) to commit too.

5.2.1 Write Transaction Processing

We use the speculative processing technique for executing optimistically (but not yet finally) delivered write transactions. (We recall that only write transactions are totally ordered through OS-Paxos). This approach has been proposed in [50] in the context of traditional DBMS. In addition to [50], we do not limit the number of speculative transactions executed in parallel with their coordination phase, and we do not assume a-priori knowledge
on transactions' access patterns. Write transactions are processed serially, without parallel activation (see Section 5.3 for complete discussion). Even though this approach appears inconsistent with the nature of speculative processing, it has several benefits for in-order processing, which increase the likelihood that a transaction will reach its final stage before its Adeliver is issued.

In order to allow next conflicting transaction to process speculatively, we define a complete buffer for each shared object. In addition to the last committed version, shared objects also maintain a single memory slot (i.e., the complete buffer), which stores the version of the object written by the last completely executed optimistic transaction. The complete buffer could be empty if no transactions wrote a new version of that object after the previous version became committed. We do not store multiple completed versions because, executing transactions serially needs only one uncommitted version per object. When an Odelivered transaction performs a read operation, it checks the complete buffer for the presence of a version. If the buffer is empty, the last committed version is considered; otherwise, the version in the complete buffer is accessed. When a write operation is executed, the complete buffer is immediately overwritten with the new version. This early publication of written data in memory is safe because of serial execution. In fact, there are no other write transactions that can access this version before the current transaction completes.

After executing all its operations, an optimistically delivered transaction waits until Adeliver is received. In the meanwhile, the next Odelivered transaction starts to execute. When an Adeliver is notified by OS-Paxos, a handler is executed by the same thread that is responsible for speculatively processing transactions. This approach avoids interleaving with transaction execution (which causes additional synchronization overhead). When a transaction is Adelivered, if it is completely executed, then it is validated for detecting the equivalence between its actual serialization order and the final order. The validation consists of comparing the versions read during the execution. If they correspond with the actual committed version of the objects accessed, then the transaction is valid, certifying that the serialization order is equivalent to the final order. If the versions do not match, the transaction is aborted and restarted. A transaction Adelivered and aborted during its validation can re-execute and commit without validation due to the advantage of having only one thread executing write transactions.

The commit of write transactions involves moving the written objects from transaction local buffer to the objects’ last committed version. In addition, each object maintains also a list of previously committed versions, which is exploited by read-only transactions to execute independently from the write transactions. In terms of synchronization required, the complete buffer can be managed without it because only one write transaction is active at a time. On the other hand, installing a new version as committed requires synchronization because of the presence of multiple readers (i.e., read-only transactions) while the write transaction could (possibly) update the list.
5.2.2 Read-Only Transaction Processing

Read-only transactions are marked by programmers and they are not broadcast using OS-Paxos, because they do not need to be totally ordered. When a client invokes a read-only transaction, it is locally delivered and executed in parallel to write transactions by a separate pool of threads. In order to support this parallel processing, we define a timestamp for each replica, called replica-timestamp, which represents a monotonically increasing integer, incremented each time a write transaction commits. When a write transaction enters its commit phase, it assigns the replica-timestamp to a local variable, called c-timestamp, representing the committing timestamp, increases the c-timestamp, and tags the newly committed versions with this number. Finally, it updates the replica-timestamp with the c-timestamp.

When a read-only transaction performs its first operation, the replica-timestamp becomes the transaction’s timestamp (or r-timestamp). Subsequent operations are processed according to the r-timestamp: when an object is accessed, its list of committed versions is traversed in order to find the most recent version with a timestamp lower or equal to the r-timestamp. After completing execution, a read-only transaction is committed without validation. The rationale for doing so is as follows. Suppose TR is the committing read-only transaction and TW is the parallel write transaction. TR’s r-timestamp allows TR to be serialized a) after all the write transactions with a c-timestamp lower or equal to TR’s r-timestamp; and b) before TW’s c-timestamp and all the write transactions committed after TW. TR’s operations access versions consistent with TR’s r-timestamp. This subset of versions cannot change during TR’s execution, and therefore TR can commit safely without validation.

Whenever a transaction commits, the thread managing the commit wakes-up the client that previously submitted the request and provides the appropriate response.

5.3 Speculative Concurrency Control

In HiperTM, each replica is equipped with a local speculative concurrency control, called SCC, for executing and committing transactions enforcing the order notified by OS-Paxos. In order to overlap the transaction coordination phase with transaction execution, write transactions are processed speculatively as soon as they are optimistically delivered. The main purpose of the SCC is to completely execute a transaction, according to the opt-order, before its Adeliver is issued. As shown in Figure 5.2, the time available for this execution is limited.

Motivated by this observation, we designed SCC. SCC exploits multi-versioned memory for activating read-only transactions in parallel to write transactions that are, on the contrary, executed on a single thread. The reason for single-thread processing is to avoid the overhead for detecting and resolving conflicts according to the opt-order while transactions are executing. During experiments on the standalone version of SCC, we found it to be capable
of processing ≈95K write transactions per second, while ≈250K read-only transactions in parallel on different cores (we collected these results using Bank benchmark on experimental test-bed’s machine). This throughput is higher than HiperTM’s total number of optimistically delivered transactions speculatively processed per second, illustrating the effectiveness of single-thread processing.

Single-thread processing ensures that when a transaction completes its execution, all the previous transactions are executed in a known order. Additionally, no atomic operations are needed for managing locks or critical sections. As a result, write transactions are processed faster and read-only transactions (executed in parallel) do not suffer from otherwise overloaded hardware bus (due to CAS operations and cache invalidations caused by spinning on locks) and they are also never stopped.

Transactions log the return values of their read operations and written versions in private read- and write-set, respectively. The write-set is used when a transaction is Adelivered for committing its written versions in memory. However, for each object, there is only one uncommitted version available in memory at a time, and it corresponds to the version written by the last optimistically delivered and executed transaction. If more than one speculative transaction wrote to the same object, both are logged in their write-sets, but only the last one is stored in memory in the object’s complete buffer. We do not need to record a list of speculative versions, because transactions are processed serially and only the last can be accessed by the current executing transaction.

Algorithm 1 Read Operation of Transaction \(T_i \) on Object \(X \).

1: if \(T_i.readOnly = \text{FALSE} \) then
2: if \(\exists \) version \(\in X.completeBuffer \) then
3: \(T_i.ReadSet.add(X.completeBuffer) \)
4: return \(X.completeBuffer.value \)
5: else
6: \(T_i.ReadSet.add(X.lastCommittedVersion) \)
7: return \(X.lastCommittedVersion.value \)
8: end if
9: if \(r\text{-timestamp} = 0 \) then
10: \(r\text{-timestamp} \leftarrow X.lastCommittedVersion.timestamp \)
11: return \(X.lastCommittedVersion.value \)
12: end if
13: \(P \leftarrow \{ \text{set of versions } V \in X.committedVersions \text{ s.t. } V\text{.timestamp} \leq r\text{-timestamp} \)
14: if \(P \neq \emptyset \) then
15: \(V_{cx} \leftarrow \exists \text{ version } V_k \in P \text{ s.t. } \forall V_q \in P \Rightarrow V_k\text{.timestamp} \geq V_q\text{.timestamp} \)
16: return \(V_{cx}.value \)
17: else
18: return \(X.lastCommittedVersion.value \)
19: end if
20: end if

Algorithm 2 Write Operation of Transaction \(T_i \) on Object \(X \) writing the Value \(v \).

1: \(\text{Version } V_x \leftarrow \text{createNewVersion}(X,v) \)
2: \(X.completeBuffer \leftarrow V_x \)
3: \(T_i.WriteSet.add(V_x) \)
The read-set is used for validation. Validation is performed by simply verifying that all
the objects accessed correspond to the last committed versions in memory. When the opti-
mistic order matches the final order, validation is redundant, because serially executing write
transactions ensures that all the objects accessed are the last committed versions in memory.
Conversely, if an out-of-order occurs, validation detects the wrong speculative serialization
order.

Consider three transactions, and let \(\{T_1, T_2, T_3\} \) be their opt-order and \(\{T_2, T_1, T_3\} \) be their
final order. Let \(T_1 \) and \(T_2 \) write a new version of object \(X \) and let \(T_3 \) reads \(X \). When
\(T_3 \) is speculatively executed, it accesses the version generated by \(T_2 \). But this version does
not correspond to the last committed version of \(X \) when \(T_3 \) is Adelivered. Even though
\(T_3 \)’s optimistic and final orders are the same, it must be validated to detect the wrong
read version. When a transaction \(T_A \) is aborted, we do not abort transactions that read
from \(T_A \) (cascading abort), because doing so will entail tracking transaction dependencies,
which has a non-trivial overhead. Moreover, a restarted transaction is still executed on the
same processing thread. That is equivalent to SCC’s behavior, which aborts and restarts a
transaction when its commit validation fails.

Algorithm 3 Validation Operation of Transaction \(T_i \).

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>for all (V_x \in T_i.\text{ReadSet}) do</td>
</tr>
<tr>
<td>2</td>
<td>if (V_x \neq X.\text{lastCommittedVersion}) then</td>
</tr>
<tr>
<td>3</td>
<td>return FALSE</td>
</tr>
<tr>
<td>4</td>
<td>end if</td>
</tr>
<tr>
<td>5</td>
<td>end for</td>
</tr>
<tr>
<td>6</td>
<td>return TRUE</td>
</tr>
</tbody>
</table>

Algorithm 4 Commit Operation of Transaction \(T_i \).

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>if Validation((T_i)) = FALSE then</td>
</tr>
<tr>
<td>2</td>
<td>return (T_i.\text{abort&restart})</td>
</tr>
<tr>
<td>3</td>
<td>end if</td>
</tr>
<tr>
<td>4</td>
<td>c-timesamp (\leftarrow) replica-timestamp</td>
</tr>
<tr>
<td>5</td>
<td>c-timesamp gets c-timesamp + 1</td>
</tr>
<tr>
<td>6</td>
<td>for all (V_x \in T_i.\text{WriteSet}) do</td>
</tr>
<tr>
<td>7</td>
<td>(V_x.\text{timestamp} \leftarrow) c-timesamp</td>
</tr>
<tr>
<td>8</td>
<td>(X.\text{lastCommittedVersion} \leftarrow V_x)</td>
</tr>
<tr>
<td>9</td>
<td>end for</td>
</tr>
<tr>
<td>10</td>
<td>replica-timestamp = c-timesamp</td>
</tr>
</tbody>
</table>

A task queue is responsible for scheduling jobs executed by the main thread (processing
write transactions). Whenever an event such as \(O\text{deliver} \) or \(A\text{deliver} \) occurs, a new task is
appended to the queue and is executed by the thread after the completion of the previous
tasks. This allows the events’ handlers to execute in parallel without slowing down the
executor thread, which is the SCC’s performance-critical path.

As mentioned, read-only transactions are processed in parallel to write transactions, exploi-
ting the list of committed versions available for each object to build a consistent serialization
order. The growing core count of current and emerging multicore architectures allows such
transactions to execute on different cores, without interfering with the write transactions.
One synchronization point is present between write and read transactions, i.e., the list of committed versions is updated when a transaction commits. In order to minimize its impact on performance, we use a concurrent sorted Skip-List for storing the committed versions.

The pseudo code of SCC is shown in Algorithms 1-4. We show the core steps of the concurrency control protocol such as reading a shared object (Algorithm 1), writing a shared object (Algorithm 2), validating a write transaction (Algorithm 3) and committing a write transaction (Algorithm 4).

5.4 Properties

HiperTM satisfies a set of properties that can be classified as local to each replica and global to the replicated system as a whole. For what concern the former, each replica has a concurrency control that operates isolated, without interactions with other nodes. For this reason, we can infer properties that hold for non distributed interactions. On the other side, a client of HiperTM system does not see specific properties local to each replica because the system is hidden by the semantic of API exposed (i.e., invoke).

We name a property as global if it holds for the distributed system as a whole. Specifically, a property is global if there is no execution involving distributed events such that the property is not ensured. In other words, the property should work for transactions executing within the bounds of single node, as well as involving transactions (concurrent or not) executing or executed on other nodes.

5.4.1 Formalism

We now introduce the formalism that will be used for proving HiperTM’s correctness properties.

According to the definition in [1], an history H is a partial order on the sequence of operations Op executed by the transactions, where Op’s values are in the set $\{begin, read, write, commit, abort\}$. When a transaction T_i performs the above operations, we name them as b_i, c_i, a_i respectively. In addition, a write operation of T_i on a the version k of the shared object x is denoted as $w_i(x_k)$; and we refer a read operation the corresponding read operation as $r_i(x_k)$. In addition H implicitly induces a total order \ll on committed object versions [1].

We now use a direct graph as a representation of an history H where committed transaction in H are the graph’s vertexes and there exists a directed edge between two vertexes if the respective transactions are conflicting. We name this graph as Direct Serialization Graph (or $DSG(H)$). More formally, a vertex in DSG is denoted as V_{T_i} and represents the committed transaction T_i in H. Two vertexes V_{T_i} and V_{T_j} are connected with an edge if T_i and T_j are conflicting transactions, namely there are two operations Op_i and Op_j in H, performed by
We distinguish three types of edges depending on the type of conflicts between T_i and T_j:

- **Direct read-dependency** edge if there exists an object x such that both $w_i(x_i)$ and $r_j(x_i)$ are in H. We say that T_j directly read-depends on T_i and we use the notation $V_{T_i} \xrightarrow{wr} V_{T_j}$.

- **Direct write-dependency** edge if there exists an object x such that both $w_i(x_i)$ and $w_j(x_j)$ are in H and x_j immediately follows x_i in the total order defined by \ll. We say that T_j directly write-depends on T_i and we use the notation $V_{T_i} \xrightarrow{ww} V_{T_j}$.

- **Direct anti-dependency** edge if there exists an object x and a committed transaction T_k in H, with $k \neq i$ and $k \neq j$, such that both $r_i(x_k)$ and $w_j(x_j)$ are in H and x_j immediately follows x_k in the total order defined by \ll. We say that T_j directly anti-depends on T_i and we use the notation $V_{T_i} \xrightarrow{ru} V_{T_j}$.

Finally, it is worth to recall two important aspects of HiperTM that will be used in the proof.

- **(SeqEx)**. HiperTM processes write transactions serially, without interleaving their executions. This means that for any pair of operations Op_1^i and Op_2^i performed by a transaction T_i such that Op_1^i is executed before Op_2^i, there is no operation Op_j, invoked by a write transaction T_j, that can be executed in between Op_1^i and Op_2^i by the HiperTM’s local concurrency control.

- **(ParRO)**. The second aspect is related to the read-only transactions. When such a transaction starts, it cannot observe objects written by write transactions committed after the starting time of the read-only transaction. Intuitively, the read-only transaction, thanks to the multi-versioning, could read in the past. This mechanism allows read-only transactions to fix the set of available versions to read at the beginning of their execution, without taking into account concurrent commits.

5.4.2 Global Properties

For the purpose of the following proofs, we scope out the speculative execution when the transactions are optimistically delivered. In fact, this execution is only an anticipation of the execution that happens when a transaction is final delivered. For the sake of clarity, we assume that a transaction T is activated as soon as the final delivery for T is received. This assumption does not limit the generality of the proofs because any transaction speculative executed is validated when the relative final delivery is received (Algorithm 4, Line 1). If the speculative order does not match the final order, then the transaction is re-executed.
(Algorithm 4, Line 2). Thus the speculative execution can be seen only for improving performance, but in terms of correctness, only the execution after the final delivery matters. In fact, speculative transactions are not committed. The validation (Algorithm 3) performs a comparison between the read versions of the speculative execution with actual committed versions in memory. Due to (SeqEx), there are no concurrent transactions validating at the same time, thus if, the validation succeeds, then the transaction does not need the re-execution, otherwise it is re-executed from the very beginning.

Theorem 1. *HiperTM guarantees 1-copy serializability (1CS)* [5], *namely for each run of the protocol the set of committed transactions appear as they are executed sequentially, i.e. whichever pair of committed transactions* T_i, T_j, *serialized in this order, every operation of* T_i *precedes in time all the operations of* T_j *as executed on a single copy of the shared state.*

Proof. We conduct this proof relying on the DSG. In particular, as also stated in [5], a history H with a version order \ll is 1-copy serializable if the $DSG(H)$ on H does not contain any oriented cycle.

To show the acyclicity of the $DSG(H)$ graph, we first prove that for each history H, every transaction committed by the protocol appears as instantaneously executed in a unique point in time t (Part1); subsequently we rely on those t values to show a mathematical absurd confirming that $DSG(H)$ cannot contain any cycle (Part2).

In order to prove Part1 of the proof, we assign to each transaction T committed in H a commit timestamp, called $CommitOrd(T,H)$. $CommitOrd(T,H)$ defines the time when T commits its execution in H and no other write transaction executes concurrently.

- If T is a write transaction, $CommitOrd(T,H)$ is the commit timestamp of T in H (Algorithm 4 Line 4), which matches also the final order that OS-Paxos assigned to T. This is because:

i) OS-Paxos defines a total order among all write transactions and,

ii), (SeqEx) does not allow interleaving of operations’ executions. This way, given a history H, $CommitOrd(T,H)$ is the time when T commits its execution in H and no other write transaction executes concurrently.

- If T is a read-only transaction, $CommitOrd(T,H)$ is the node’s timestamp (Algorithm 1 Line 11) when T starts in H (read-only transactions are delivered and executed locally to one node, without remote interactions). In fact, (ParRO) prevents the read-only transaction to interfere with executing write transaction, implicitly serializing the transaction before those write transactions. In this case, $CommitOrd(T,H)$ is the timestamp that precedes any other commit made by write transactions after T started.

According to the definition of $DSG(H)$, there is an edge between two vertexes V_{T_i} and V_{T_j} when T_i and T_j are conflicting transaction in H. We now show that, if such an edge exists,
then $\text{CommitOrd}(T_i, H) \leq \text{CommitOrd}(T_j, H)$. We do this considering the scenarios where H is only composed of write transactions (WOnly), then we extend it integrating read-only transaction (RW).

(WOnly).

- If there is a direct read-dependency between T_i and T_j (i.e., $V_{T_i} \xrightarrow{wr} V_{T_j}$), then it means that there exists an object version x_i that has been written by T_i and read by T_j via $r_j(x_i)$. Since (SeqEx), T_i and T_j cannot interleave their executions thus all the object versions accessed by T_j have been already committed by T_i before T_j starts its execution. If T_j starts after T_i means also that $\text{CommitOrd}(T_i, H) < \text{CommitOrd}(T_j, H)$.

- Similar argument can be made if T_j directly write-depends on T_i ($V_{T_i} \xrightarrow{w} V_{T_j}$). Here both T_i and T_j write a version of object x, following the order T_i, T_j (i.e., T_j overwrites the version written by T_i). As before, through (SeqEx) we can infer that $\text{CommitOrd}(T_i, H) < \text{CommitOrd}(T_j, H)$.

- If T_j directly anti-depends on T_i ($V_{T_i} \xrightarrow{ra} V_{T_j}$), it means that there exists an object x such that T_i reads some object version x_i and T_j writes a new version of x, namely x_j, after T_i. By the definition of directly anti-dependency and given that the transaction execution is serial (SeqEx), it follows that, if T_j creates a new version of x after T_i read x, then T_i committed its execution before activating T_j, thus $\text{CommitOrd}(T_i, H) < \text{CommitOrd}(T_j, H)$.

(RW).

If we enrich a history H with read-only transactions, the resulting $\text{DSG}(H)$ contains at least a vertex V_{T_r}, corresponding to the read-only transaction T_r, such that, due to (ParRO), the only type of outgoing edge that is allowed to connect V_{T_r} to any other vertex, namely an edge where V_{T_r} is the source vertex, is a directly anti-dependency edge. In fact, no other transaction can have any direct read-dependency or direct write-dependency with T_r, because T_r does not create new object versions. In this case, say T_r the transaction reading the object version x_r and T_w the transaction writing a new version of x, called x_w. Due to (ParRO), any concurrent write transaction (such as T_w), that commits after T_r’s begin, acquires a timestamp that is greater than T_r’s timestamp, thus also the new versions committed by T_w (such as x_w) are tagged with a higher timestamp. This prevents read-only transactions to access those new versions. In other words, T_r cannot see the modifications made by T_w after its commit. This serializes T_w’s commit operation after T_r’s execution, thus $\text{CommitOrd}(T_r, H) < \text{CommitOrd}(T_w, H)$.

Nevertheless, V_{T_r} is clearly connected with edges from other vertexes corresponding to write transactions (T_w) previously committed. In this case, due to (ParRO), $\text{CommitOrd}(T_r, H)$ is not strictly greater than $\text{CommitOrd}(T_w, H)$ but $\text{CommitOrd}(T_w, H) \leq \text{CommitOrd}(T_r, H)$ because otherwise T_r is always forced to read in the past even having fresher object versions committed before T_r’s starting. However this does not represent a limitation because, if a cycle on DSG involves a vertex that represents a read-only transaction (V_{T_r}), then all
its outgoing edges will connect to vertexes with a \textit{CommitOrd} strictly greater than the \textit{CommitOrd}(T_i, H).

We have proved that for each \(DSG(H) \) on \(H \) and for each \(V_{T_i} \rightarrow V_{T_j} \) edge in \(DSG(H) \), \(CommitOrd(T_i, H) \leq \text{CommitOrd}(T_j, H) \) holds. In order to prove Part2, we now show that \(DSG(H) \) cannot contain any oriented cycle. To do that, we observe that, if \(DSG(H) \) is composed of only write transactions, then \(CommitOrd(T_i, H) < CommitOrd(T_j, H) \). In addition, if there is a path in \(DSG(H) \) that is: \(T_{W_0}, T_{W_1}, \ldots, T_{W_i}, T_R, T_{W_{i+1}}, \ldots, T_{W_n} \), where \(T_{W_i} \) is the \(i \)-th write transaction and \(T_R \) is the read-only transaction, then \(CommitOrd(T_R, H) < CommitOrd(T_{W_{i+1}}, H) \). Having said that, we can now show why \(DSG(H) \) cannot have cycles involving only write transactions or read-only transactions. This is because, if such a cycle existed it would lead to the following absurd: for each \(V_{T_i} \) in the cycle we have \(CommitOrd(T_i, H) < CommitOrd(T_i, H) \).

\textbf{Theorem 2.} \textit{HiperTM guarantees wait freedom of read-only transactions} [41], namely that any process can complete a read-only transaction in a finite number of steps, regardless of the execution speeds of the other processes.

\textit{Proof.} Due to (ParRO) and the (SeqEx), the proof is straightforward. In fact, with (SeqEx) there are no locks on shared objects [33] (one transaction processes and commits at a time). The only synchronization point between a read-only transaction and a write transaction is the access to the version list of objects. However, those lists are implemented as wait-free [42], thus concurrent operations on the shared list always complete. This prevents the thread executing write transactions to possibly stop (or slow-down) the execution of a read-only transaction.

In addition, read-only transactions cannot abort. Before issuing the first operation, a read-only transaction saves the replica-timestamp in its local \(r \)-timestamp and use it for selecting the proper committed versions to read. The acquisition of the replica-timestamp always completes despite any behavior of other threads because the increment of the replica-timestamp does not involve any lock acquisition, rather we use atomic-increment operations. The subset of all the versions that the read-only transaction can access during its execution is fixed when the transaction defines its \(r \)-timestamp. Only one write transaction, \(T_{W_i} \), is executing when a read-only transaction, \(T_{RO} \), acquires the \(r \)-timestamp. Due to the atomicity of replica-timestamp’s update, the acquisition of the \(r \)-timestamp can only happen before or after the atomic increment.

i) If \(T_{W} \) updates the replica-timestamp before \(T_{RO} \) acquires the \(r \)-timestamp, \(T_{RO} \) is serialized after \(T_{W} \), but before the next write transaction that will commit.

ii) On the contrary, if the replica-timestamp’s update happens after, \(T_{RO} \) is serialized before \(T_{W} \) and cannot access the new versions that \(T_{W} \) just committed.
In both cases, the subset of versions that T_{RO} can access is defined and cannot change due to future commits. For this reason, when a read-only transaction completes its execution, it returns the values to its client without validation.

5.4.3 Local Properties

HiperTM guarantees a variant of opacity [32] locally to each replica. It cannot ensure Opacity as defined in [32] because of the speculative execution.

In fact, even if such execution is serial, data written by a committed transaction are made available to the next speculative execution. This usually happens before the actual commit of the transaction, which occurs only after its final order is notified. Opacity can be summarized as follow: a protocol ensures opacity if it guarantees three properties: (Op.1) committed and aborted transactions appear as if they are executed serially, in an order equivalent to their real-time order; (Op.2) no transaction accesses a snapshot generated by a live (i.e., still executing) or aborted transaction.

As an example, say H an history of transactions $\{T_1, T_2, T_3\}$ reading and writing the same shared objects (i.e., $T_1=T_2=T_3=[\text{read}(x); \text{write}(x)]$). The optimistic order defines the following execution: T_1, T_2, T_3. We now assume that the final order for those transactions is not yet defined.

T_1 starts as soon as it is optimistic delivered. It completes its two operations and, according to the serial speculative execution, T_2 starts. Clearly T_2 accesses to the version of object x written by T_1 before T_1 actually commits (that will happen when the final order of T_1 will be delivered), breaking (Op.2).

However, we can still say that HiperTM guarantees a variant of opacity if we assume one of these two scenarios.

a) The speculative execution is just an anticipation of the real execution that happens when a transaction is final delivered. The validation procedure is responsible for decoupling speculative and non-speculative execution. This way, we can scope out the speculative execution and analyze only the execution after the final delivery of transactions.

b) We can enrich the type of operations admitted by opacity with the speculative commit. Given that, when a transaction completes its speculative execution, it does the speculative commit, exposing new versions to only other speculative transactions.

We show this by addressing all the above clauses of opacity and, considering that this is a local property (i.e., valid within the bound of a replica), we will refer to HiperTM as SCC.
SCC satisfies (Op.1) because each write transaction is validated before commit, in order to certify that its serialization order is equivalent to the optimistic atomic broadcast order, which reflects the order of the client’s requests. When a transaction is aborted, it is only because its serialization order is not equivalent to the final delivery order (due to network reordering). However that serialization order has been realized by a serial execution. Therefore, the transaction’s observed state is always consistent. Read-only transactions perform their operations according to the \(r \)-timestamp recorded from the replica-timestamp before their first read. They access only the committed versions written by transactions with the highest \(c \)-timestamp lower or equal to the \(r \)-timestamp. Read-only transactions with the same \(r \)-timestamp have the same serialization order with respect to write transactions. Conversely, if they have different \(r \)-timestamps, then they access only objects committed by transactions serialized before.

(Op.2) is guaranteed for write transactions because they are executed serially in the same thread. Therefore, a transaction cannot start if the previous one has not completed, preventing it from accessing modifications made by non-completed transactions. Under SCC, optimistically delivered transactions can access objects written by previous optimistically (and not yet finally) delivered transactions. However, due to serial execution, transactions cannot access objects written by non-completed transactions. (Op.2) is also ensured for read-only transactions because they only access committed versions.

5.5 Implementation and Evaluation

HiperTM’s architecture consists of two layers: network layer (OS-Paxos) and replica speculative concurrency control (SCC). We implemented both in Java: OS-Paxos as an extension of S-Paxos, and SCC from scratch. To evaluate performance, we used two benchmarks: Bank and TPC-C [19]. Bank emulates a monetary application and is typically used in TM works for benchmarking performance [112, 86, 20]. TPC-C [19] is a well known benchmark that is representative of on-line transaction processing workloads.

We used PaxosSTM [112, 53] as a competitor. PaxosSTM implements the deferred update replication scheme and relies on a non-blocking transaction certification protocol, which is based on atomic broadcast (provided by JPaxos).

We used the PRObE testbed [30], a public cluster that is available for evaluating systems research. Our experiments were conducted using 19 nodes in the cluster. Each node is a physical machine equipped with a quad socket, where each socket hosts an AMD Opteron 6272, 64-bit, 16-core, 2.1 GHz CPU (total 64-cores). The memory available is 128GB, and the network connection is a 40 Gigabits Ethernet.

HiperTM is configured with a pool of 20 threads serving read-only transactions while a single thread is reserved for processing write transactions delivered by OS-Paxos. Clients are balanced on all the replicas. They inject transactions for the benchmark and wait for
the reply. We configured PaxosSTM for working with the same configuration used in [53]: 160 parallel threads per nodes are responsible to execute transactions while JPaxos (i.e., the total order layer) leads their global certification. Data points plotted are the average of 6 repeated experiments.

5.5.1 Bank Benchmark

Bank benchmark is characterized by short transactions with few objects accessed (i.e., in the range of 2-4 objects), resulting in small transactions’ read-set and write-set. A sanity check is implemented to test the correctness of the execution. The nature of this benchmark causes very high performance.

In order to conduct an exhaustive evaluation, we changed the application workload such that strengths and weaknesses of HiperTM are highlighted. Specifically, we varied the percentage of read-only transactions in the range of 10%, 50%, 90% and the contention level in the system by decreasing the total number of shared objects (i.e., accounts in Bank benchmark) available. This way we defined three contention level: low, with 5000 objects, medium, with 2000 objects, and high, with 500 objects. During the experiments we collected transactional throughput (Figure 5.3) and latency (Figure 5.4). In addition, for what concerns PaxosSTM, we gathered also the percentage of remote aborts. This information is available only for PaxosSTM because HiperTM does not certify transactions globally thus it cannot end up in aborting transactions. Only if the optimistic order does not match the final order and the transaction’s read-set is not valid, then a transaction can be aborted in HiperTM. However, each transaction is aborted only once (at most) because it immediately restarts and commits without any possible further invalidation.

Figure 5.3 shows the throughput of Bank benchmark. For each workload configuration (i.e., low, medium, high conflict) we reported the observed abort percentage of PaxosSTM. The trend is clear from the analysis of the plots, PaxosSTM has a great performance compared with HiperTM because it is able to exploit the massive multi threading (i.e., 160 threads) for the transaction processing when the system is characterized by few conflicts. When contention becomes greater, namely when number of nodes increases or the amount of shared objects decreases, the certification phase of PaxosSTM hampers its scalability. On the contrary, HiperTM suffers from the single thread processing when the system has low contention, but outperforms PaxosSTM when the contention starts to increase. As a result, HiperTM scales better than PaxosSTM when the number of nodes increases.
Figure 5.3: Throughput and abort percentage of HiperTM and PaxosSTM for Bank benchmark.
In all plots, even where the absolute performance is better than HiperTM, the PaxosSTM’s trend highlights its lack of scalability. This is mainly because, when a huge number of threads flood the system with transactional requests (where each request is the transaction’s read-set and write-set), the certification phase is not able to commit transactions as fast as clients would inject requests. In addition, with higher contention, remote aborts play an important role as scalability bottleneck. As an example, with 11 nodes and high conflict scenario, PaxosSTM aborts 80% of transactions when configured with 50% of read-only workload.

Increasing the percentage of read-only workload increases performance of both competitors due to local multi-versioning concurrency control. However, HiperTM always scales when the size of the system increases. This is because HiperTM does not saturate the total order layer since messages are very small (i.e., the id of the transaction to invoke and parameters) and it does not require any certification phase. After an initial ordering phase, transactions are always committed suffering from at most one abort which, anyway, is not propagated through the network but it is handled locally by the concurrency control.

It is worth to notice the trend of PaxosSTM for low node count in the plot in Figure 5.3(a). Here, even though the number of shared objects is low, with such few replicas, the overall contention is not high, thus PaxosSTM behaves as in medium contention scenario (see Figure 5.3(c) when the percentage of abort is around 20% and with 90% of read-only transactions). However, after 9 nodes, HiperTM starts outperforming PaxosSTM and keeps scaling, reaching its peak performance improvement, that is $2.35 \times$ at 19 nodes.

Figure 5.4: Latency of HiperTM and PaxosSTM for Bank benchmark.

Figure 5.4 shows the latency measured in the same experiments reported in Figure 5.3. As expected, it follows the inverse trend of the throughput and for this reason we decided not to show the case of medium contention but the two extreme cases with high and low contention.
Both PaxosSTM and HiperTM rely on batching as a way to improve performance of the total order layer. Waiting for the creation of a batch consumes the most part of the reported latency. In addition for PaxosSTM, when a transaction aborts, client has to reprocess the transaction and issue a new certification phase through the total order layer. For this reason, PaxosSTM’s latency starts increasing for high conflict scenarios.

5.5.2 TPC-C Benchmark

TPC-C [19] is a real application benchmark composed of five transaction profiles, each either read-only (i.e., Order Status, Stock Level) or read-write (i.e., Delivery, Payment, New Order). Transactions are longer than Bank benchmark, with high computation and several objects accessed. The specification of the benchmark suggests a mix of those transaction profiles (i.e., 4% Order Status, 4% Stock Level, 4% Delivery, 43% Payment, 45% New Order), resulting in a write intensive scenario. In order to widen the space of tested configurations, we measured the performance with a read intensive workload (i.e., 90% read-only) by changing the above mix (i.e., 45% Order Status, 45% Stock Level, 3.3% Delivery, 3.3% Payment, 3.3% New Order).

In terms of application contention, TPC-C defines a hierarchy of dependencies among defined objects, however the base object that controls the overall contention is the warehouse. Increasing the number of shared warehouses results in lower contention. The suggested configuration of TPC-C is to use as warehouses as the total number of nodes in the system. Therefore for the purpose of this test, we ran the benchmark with 19 warehouses and also with 50 warehouses in order to generate a low conflict scenario. We collected the same information as in Bank benchmark.

Figure 5.5 reports the throughput of HiperTM and PaxosSTM, together with the abort rate observed for PaxosSTM. PaxosSTM’s abort rate results confirm that the contention in the system is much higher than in Bank benchmark. In addition, the certification phase of PaxosSTM now represents the protocol’s bottleneck because read-set and write-set of transactions are large, thus each batch of network messages does not record many transactions and this limits the throughput of the certification phase. Both these factors hamper PaxosSTM’s scalability and high performance. On the other hand, HiperTM orders transactions before their execution and it leverages OS-Paxos just for broadcasting transactional requests, thus it is independent from the application and from the contention in the system. This allows HiperTM to scale while increasing nodes and resulting in performance by as much as 3.5× better in case of standard configuration of TPC-C, and by more than one order of magnitude for the 10% read-only scenario. HiperTM’s performance in Figures 5.5(a) and 5.5(c) are almost the same, this confirms how HiperTM, and the active replication paradigm, is independent from application’s contention. Unfortunately, with long transactions as in TPC-C, HiperTM cannot match the performance of Bank benchmark because of the single thread processing.
Figure 5.5: Throughput and abort percentage of HiperTM and PaxosSTM for TPC-C benchmark.

The Figure 5.6 shows the latency measured in the above experiments. Clearly, lower throughput and longer transactions caused higher latency.

5.6 Summary

At its core, our work shows that optimism pays off: speculative transaction execution, started as soon as transactions are optimistically delivered, allows hiding the total ordering latency, and yields performance gain. Single-communication step is mandatory for fine-grain transactions. Complex concurrency control algorithms are sometimes not feasible when the available
processing time is limited.

Implementation matters. Avoiding atomic operations, batching messages, and optimizations to counter network non-determinism are important for high performance.
Chapter 6

Speculative Client Execution in Deferred Update Replication

The deferred update replication (DUR) [82] is a well-known scheme where transactions execute locally and their commit phase (including the transaction validation procedure) is deferred until a total order [58] among all nodes is established. This total order is required because it imposes a common serialization order among all transactions in the system, which is used to verify the global correctness of transactions’ execution. In fact before commit, each transaction has to undergo a certification phase where the transaction validates the consistency of its read operations, performed during the execution, against write operations done by other concurrent transactions in the system. To accomplish this task, a total order is leveraged so that all nodes know a unique order to follow while performing the certification. If the snapshot observed is still consistent, then the transaction can safely commit by updating the shared state with its written objects. The sequence of commit necessarily matches the global total order.

DUR-based protocols find their best scenario in terms of performance when transactions running on different nodes (remote transactions) rarely conflict with each other (e.g., well-partitioned accesses across nodes). This way an executed transaction, which is waiting for its global certification, is likely to commit because all its read operations cannot be invalidated by remote transactions due to the well-partitioned accesses. In such an execution environment, the DUR scheme allows the (massive) parallelization of application threads running locally at each node, therefore ensuring high performance. However, even if the application exposes well-partitioned accesses across different nodes, the local parallelism is effectively exploited only in case local concurrent transactions hardly request same objects.

As an example, consider TPC-C [19], the classical transactional benchmark widely used for evaluating distributed synchronization protocols. Most TPC-C transactions access a warehouse before performing other operations. The usual deployment of TPC-C is to pin one (or a set of) warehouse to each node and let transactions generated on that node to likely
request that warehouse. This configuration, which is representative of several applications with well-partitioned accesses, matches DUR’s needs in terms of few remote aborts, but it also reduces the parallelism of local application threads due to conflicts.

A generally adopted technique for preventing a local transaction T_2 from invoking a certification phase if it conflicts with another local transaction T_1, which is already completed, is to validate T_2 locally after its completion. This way, T_2 is able to detect the conflict with T_1 and thus it can abort immediately without burdening the global certification layer (i.e., the distributed software component that provides the total order and validates/commits transactions) with additional (and futile) work. In fact, T_2 is already doomed even if no remote transaction conflicts with it. Here a different approach is proposed to solve the above problem. Rather than aborting T_2 it is allowed to speculatively read [46, 78, 69] from the snapshot generated by the execution of T_1. Clearly the whole execution of T_2 depends on the eventual commit of T_1 before T_2 itself, however, in case of well-partitioned accesses, this will likely be the case.

In other words, an execution order is defined (called ex-order) of local transactions and the state changes made by one execution to another along the chain of subsequent conflicting transactions are propagated according to the ex-order. In addition, transactions from one node are submitted to the global certification layer in the same order as ex-order and we do not allow the final agreed total order to subvert ex-order. According to the aforementioned example, T_2 will be successfully certified and thus committed because the T_1’s snapshot, which T_2 speculatively accessed, will be committed before T_2’s certification.

Our approach can be summarized in two high-level guidelines, which can be successfully applied to existing DUR-based protocol for increasing their performance further:

- **Local Transaction Ordering.** All transactions executing on one node should be processed according to a local order. It is worth to note that this order is not necessarily known (or pre-determined) before starting the transaction execution, rather it could be determined while transactions are executing taking into account their actual conflicts.

- **Local Certification Ordering.** Each node should submit completed transactions to the certification layer in the same order as they are speculatively (locally) processed and it should not allow the global ordering layer to change this (partial) order. This way, the local transaction ordering is always compliant with the final commit order, thus making the speculative execution effective.

In this work, speculative approach is applied to PaxosSTM [112], a state-of-the-art, high performance and open-source DUR protocol, presenting X-DUR. X-DUR embeds a set of design choices for simplifying its implementation, while still showing significant and promising gains with respect to the original, non-speculative version.

X-DUR is evaluated using three well-known transactional benchmarks such as Bank (a monetary application), TPC-C [19] (popular on-line transaction processing benchmark), and Vacation (a distributed version of the famous application included in the STAMP suite [11]).
Testbed uses up to 23 nodes available on PRObE [30], a state-of-the-art public cluster. Results reveal X-DUR’s benefits, especially when the contention in the system is high, thus saving local aborts. As an example of our findings, the maximum speed-up observed when running TPC-C is higher than one order of magnitude against the original PaxosSTM.

X-DUR is the first protocol that applies speculation to clients’ transactions for handling local contention in a DUR-based scheme.

6.1 Execution Model

The transactional application executing on top of our system is composed of multiple threads balanced on all nodes. According to the certification-based replication scheme [82], each thread activates and executes transactions at the same node where it is running, recording objects read from and written to in private spaces called the read-set and the write-set, respectively. When a transaction reaches the stage where all of its operations have been executed, the executing thread simply waits until the transaction is globally validated and then is either committed or aborted. This decision is deterministic on all the nodes, including the node where the transaction started and executed, due to the total order enforced by the certification layer. Once the node recognizes the transaction’s result, it informs the relative application thread. If the outcome is commit, then the thread can go ahead and perform subsequent work. On the other hand, if the outcome is abort, then the application thread has to re-issue the transaction from its very beginning.

6.2 Protocol Details

In this section we detail X-DUR, our speculative DUR protocol, which allows client transactions to speculatively read from uncommitted (but completed) snapshots\(^1\) generated by other local transaction executions already submitted to the certification layer. This way, concurrent transactions running on a single node are already serialized with the same order they are certified, thus canceling any possible abort due to local contention. This approach becomes particularly effective in case of well-partitioned accesses, where transactions submitted by different nodes are unlikely to conflict with each other.

\(^1\)We name uncommitted snapshot the whole shared state including uncommitted modifications made by the commit of a speculative transaction.
6.2.1 Speculative Execution

X-DUR implements the local transaction ordering by forcing a predefined order of client transactions. A number of application threads execute in parallel on each node and their issued transactions are scheduled by a single-threaded X-DUR executor. Its role is twofold:

i) it assigns the speculative serialization order to new transactions according to their arrival order;
ii) it executes them enforcing the local transaction order.

When a transaction completes its speculative execution, it makes its written objects available as speculative committed versions to other subsequent (according to the local transaction ordering) local speculative transactions. In order to accomplish this task, each shared object includes the last speculatively written value besides the last committed one. We do not need to keep more than one speculative value per object because the execution is single threaded thus only the value written by the last speculative execution needs to be visible. Other speculatively modified objects are kept in the write-set of those already completed transactions that are waiting for their global certification phase.

X-DUR’s speculative execution is effective if the certification layer does not subvert the local transaction order used for the speculative execution. In case this happens, then transactions will be serialized by the certification layer in a different way, thus the speculative execution will likely not be committed and an abort signal will be issued to the application thread. In order to prevent this scenario, each node enqueues certification requests in a batch such that the order in which they appear in the batch matches the local transaction execution order. This batch is then sent to all nodes through the global certification layer. This way, the total order layer cannot arbitrarily decide to re-order certification requests coming from a node because the batch becomes the ordering unit, rather than a single message. Batches sent from different nodes are ordered enforcing no specific rule because X-DUR relies on the assumption that accesses are well-partitioned across nodes.

6.2.2 Handling Certification Phase

The global certification layer is the distributed component in charge of total ordering certification requests and validating/committing transactions locally. X-DUR inherits the technique for certifying transactions from the DUR model. Specifically, when a batch is delivered, each transaction’s read-set and write-set is extracted and certified. The certification consists of validating the read-set against the current (non-speculative) committed versions available and, in case of a successful validation, all speculative written objects are made available to all non-speculative transactions (including the next certification requests).

If on the one hand the speculative execution allows to move forward the transactions’ progress in case of partitioned accesses, then on the other hand a remote conflict could inevitably force a possible long chain of speculative conflicting transactions to abort. X-DUR solves this problem by stopping the speculative execution of incoming transactions as soon as a
remote abort is detected during the certification phase. In practice, when an abort happens the speculative execution handler forces all new transactions to read from the committed values and start over with a new speculative snapshot.

6.2.3 Example

In the following we provide an example of how X-DUR works. Consider a replicated system composed of five nodes N_1, \ldots, N_5. On top of each node there are three threads deployed for running one transaction each. Say node N_i generate T^i_1, T^i_2, and T^i_3. Assume now that all transactions coming from one node are conflicting with each other and they are speculatively processed following the above order. We can now distinguish between two cases: (A) one that implements the fully partitioned accesses, thus no transaction conflicts across different nodes; the other, (B), where there are at least two transactions started on different nodes that conflict (let us call them T^i_2 and T^k_3).

The case (A) is the sweet spot for X-DUR because each node N_i submits a batch $B_i = \{T^i_1, T^i_2, T^i_3\}$ where any possible order among B_1, B_2 and B_3 is acceptable. In fact, independently from the batches’ order, the order of transactions T^i_1, T^i_2, and T^i_3 (which are conflicting) will be always preserved. Exploiting this fact, once a batch is received, the validation certainly will succeed and the speculative transaction can be committed. In (B), the batches’ order matters because if B_i is ordered before B_k, then T^k_3 cannot pass the certification phase and will be aborted. On the contrary, if B_k is serialized before B_i, then the designated victim is T^i_2 and, as a consequence, also T^i_3. This is because they conflict with each other and T^i_3 speculatively executed a read operation from the modifications made by T^i_2, which is now aborted. In the latter case, on node N_i other conflicting transactions could possibly have already been speculatively committed. If so, T^i_2 and T^i_3’s abort could have already made their read-set invalid. To prevent new transactions from reading a possible invalid speculative snapshot, the abort of T^i_2 forces all new transactions to read from the committed snapshot.

6.2.4 Correctness

X-DUR ensures 1-Copy Serializability (1CS) [5] as global property. The proof is straightforward because each transaction is deterministically certified in the same order on all nodes. This means that all transaction executions are validated and committed in the same order on all nodes, even in presence of failures. The speculative execution of X-DUR does not hamper 1CS because during the certification phase all speculative transactions are validated before being committed. If their execution is not consistent (e.g., due to remote conflicts), they are aborted and restarted by reading from the last committed shared state.
6.3 Evaluation

We implemented X-DUR in Java, inheriting the PaxosSTM’s software architecture [112]. PaxosSTM [112] processes transactions locally, and relies on JPaxos [54] as a total order layer for their global certification across all nodes.

We used the PRObE testbed [30], a public cluster that is available for evaluating systems research. Our experiments were conducted using 23 nodes (tolerating up to 11 failures) in the cluster. Each node is equipped with a quad socket, where each socket hosts an AMD Opteron, 16-core, 2.1 GHz CPU. The memory available is 128GB, and the network connection is a high performance 40 Gigabit Ethernet.

As transactional application we leverage Bank, a common benchmark that emulates bank operations, TPC-C [19], a popular on-line transaction processing benchmark, and Vacation, a distributed version of the famous application included in the STAMP suite [11]. Each application is configured for avoiding transactions that remotely conflict with each other (well-partitioned accesses across nodes). On the other hand, within each node we define three configurations, which reflect three different local contention levels: low, medium, high. Each of them differs from others for the total number of shared objects available. Table 6.1 summarizes all the configurations used. We enforce the well-partitioned accesses by equally dividing the total number of shared objects per node (e.g., with Bank, medium contention and 10 nodes, application threads on one node are allowed to access 200 accounts). Within a node, local accesses are uniformly distributed (not skewed).

<table>
<thead>
<tr>
<th>Application</th>
<th>Low contention</th>
<th>Medium contention</th>
<th>High contention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank (accounts)</td>
<td>5000</td>
<td>2000</td>
<td>500</td>
</tr>
<tr>
<td>TPC-C (warehouses)</td>
<td>230</td>
<td>115</td>
<td>23</td>
</tr>
<tr>
<td>Vacation (relations)</td>
<td>1000</td>
<td>500</td>
<td>250</td>
</tr>
</tbody>
</table>

Table 6.1: The details of the Low/Medium/High contention configurations used per benchmark.

Read-only profiles are excluded from the evaluation because those transactions can be run locally exploiting a multiversioned repository and concurrency control, as in [112, 46, 53, 78]. As a result they never abort thus in this case the speculative execution of X-DUR is not required.

All clients (i.e., application threads) in the system are balanced among deployed nodes. In order to avoid changing the load of the system as we increase the number of nodes, we keep the number of clients fixed throughout all experiments. This explains the common shape of lines in the plots. Increasing the size of the system does not change the overall
load, thus the performance of all tested configurations degrade due to the higher overhead of the certification layer (e.g., longer broadcast phase, higher number of messages). The best throughput is often reached in the range of 7-15 nodes deployed, where the system is not so large and clients are properly balanced so that local nodes’ resources are not saturated (as for the case of 3 nodes). In all experiments (except for Figure 6.4) the following total numbers of clients are used: 920 for Bank and 550 for TPC-C and Vacation.

For each benchmark we compared the performance of X-DUR and PaxosSTM. Given the well-partitioned accesses, both the systems show high-performance. However, the impact of X-DUR’s speculative execution becomes clear when the number of shared objects decreases (i.e., medium/high contention). In these cases, even with the simple speculative single-threaded execution, local transactions are prevented from aborting thus substantially increasing performance.

![Graph showing % of aborted transactions on 11 nodes varying the contention level and different benchmarks using PaxosSTM.](image)

Figure 6.1: % of aborted transactions on 11 nodes varying the contention level and different benchmarks using PaxosSTM.

In Figure 6.1 we provide an evidence of how the local conflicts can impact the overall system progress even in case of well-partitioned accesses across nodes. Here we report the percentage of aborted transactions measured using PaxosSTM for different benchmarks and local contention levels. Nodes are fixed to 11. We recall that accesses are well-partitioned thus aborts cannot be due to remote conflicts, rather they only count as local aborts. Among all the benchmarks, TPC-C reveals a higher number of aborted transactions in the high contention scenario (i.e., total of 23 shared warehouses, thus the clients of each node are allowed to access 2 (local) warehouses).

Figure 6.2 shows the results using Bank benchmark. As expected under the low contention scenario X-DUR behaves generally worse than PaxosSTM because the number of PaxosSTM’s aborted transactions is low thus its parallelism is more effective than X-DUR’s single-threaded execution. However, due to the nature of Bank’s small transactions, the gap between them is limited to 43%. On the other hand, when we move on the medium and high
contention experiments, then X-DUR effectively exploits its speculative execution preventing local transactions from conflicting with each other, showing better performance up to 44% and 2.1× in the medium and high contention, respectively (if we exclude the case of 3 nodes where PaxosSTM’s is penalized due to many clients deployed on few nodes). Performance of X-DUR does not significantly vary when we change the number of shared objects due to the serial execution.

Figure 6.2: Throughput of PaxosSTM and X-DUR using Bank benchmark.

Figure 6.3 shows the average latency perceived by clients measured during the experiments in Figure 6.2. While the performance of all configurations almost reflect the same (inverse) trend as the throughput reported in Figure 6.2, PaxosSTM with high contention behaves the worst. Interestingly, the average latency with 3 nodes for PaxosSTM is much higher.
Figure 6.4: Throughput of PaxosSTM and X-DUR varying the number of clients using 7 nodes running Bank benchmark.

than X-DUR. This is because the number of clients are fixed thus with a small system size there are too many clients operating per node and this causes repeated conflicts and (local) aborts. X-DUR does not suffer from such a case because clients cannot conflict with each other.

Figure 6.5: Throughout of PaxosSTM and X-DUR using TPC-C benchmark.

We further leveraged Bank for showing the throughput of PaxosSTM and X-DUR when we fix the number of nodes and we vary the number of application threads (Figure 6.4). We selected 7 nodes because it represents the highest data-point in Figure 6.2. Clients are set in the range of 600 to 1200 (steps of 150). The plot confirms how PaxosSTM’s behavior changes when different number of clients are deployed. X-DUR is less affected than its competitor
due to the single-threaded handler for executing incoming transactions. We observe 900 as configuration where all configurations provide the best performance. This is the reason that motivated us to use 900 as total number of clients for Bank.

Figure 6.6: Client perceived latency of PaxosSTM and X-DUR using TPC-C benchmark.

Throughput and latency of competitors running TPC-C benchmark in all the configurations are shown in Figures 6.5 and 6.6, respectively. TPC-C is an application with longer transactions than Bank and with an average higher contention level. This is because the usual deployment of TPC-C suggests to let clients running on a node to likely access only one warehouse\(^2\) (in our experiments this happens when we deploy 23 nodes in the high-contention case). In this scenario, the speculation becomes particularly effective because

\(^2\)The most important object in TPC-C.
almost all transactions access to the same warehouse (or few of them when the size of the system is less than 23). With medium and high contention we allowed clients to access at least five and ten warehouses respectively, but still this is not enough for sensibly reducing conflicts among local threads, thus X-DUR gains up to more than one order of magnitude against PaxosSTM in the high conflict scenario.

The last application we used for evaluating our proposal is Vacation. The collected throughput is shown in Figure 6.7. Vacation is more similar to TPC-C than Bank in terms of composition of transactions, but the overall contention is lower (as in Bank). In fact, as in Bank, the number of shared objects (i.e., relations\(^3\)) accessed per node in the well-partitioned accesses configuration is higher than the number of warehouses in TPC-C. X-DUR consistently beats the competitor throughout all the tested cases. When the system is more loaded and the network overhead has still a limited impact on performance (e.g., nodes less than 15), we observe the maximum gain of X-DUR against PaxosSTM (i.e., 3.36×) when we configure the benchmark with high contention. With medium and low contention we still gain up to 2.9× and 2.1× respectively.

6.4 Summary

X-DUR presents an approach to use speculation for sparing DUR-based protocols from aborts due to local contention. According to the DUR model, if transactional accesses are partitioned across nodes, then only local contention can cause a transaction to abort. X-DUR proposes the usage of speculation for allowing transactions to execute starting from uncommitted snapshots produced by completed transactions waiting for their global certification. In addition, it also ensures that the total order established by the certification layer does not contradict the local speculative order. The peculiarity of this approach is that it is general and fits in several existing DUR-based protocols, thus contributing to further enhance their performance.

\(^3\)The most important object in Vacation.
Chapter 7

Archie: A Speculative Replicated Transactional System

From the experience with HiperTM, we identified few possible improvements in our system. Firstly, assuming that optimistic-order matches final-order, any transactional processing happening after arrival of final-order could be avoided, which could result in a lower latency and better performance. Second one was overcoming the limitation of serial execution of transactions by a high-performance concurrent one. Last improvement was to enhance the optimistic-delivery mechanism to keep pace with the improved transaction processing.

We present Archie, a State Machine Approach (SMA) based transactional scheme that incorporates these protocol and system innovations that extensively use speculation for removing any non-trivial task after the delivery of the transaction’s order. The main goal of Archie is to avoid the time-consuming operations (e.g., the entire transaction’s execution or iterations over transaction’s read and written objects) performed after this notification, such that a transaction can be immediately committed.

In order to accomplish the above goal, we designed MiMoX, an optimized sequencer-based total order layer which inherits the advantages of two well-known mechanisms: the optimistic notification [50, 69], issued to nodes prior to the establishment of the total order; and batching [95, 28], as a means for improving the throughput of the global ordering process. MiMoX proposes an architecture that mixes these two mechanisms, thus allowing the anticipation (thanks to the optimistic notification) of a big amount of work (thanks to batching) before the total order is finalized. Nodes take advantage of the time needed for assembling a batch to compute a significant amount of work before the delivery of the order is issued. This anticipation is mandatory in order to minimize (and possibly eliminate the need for) the transaction’s serial phase. As originally proposed in [69], MiMoX guarantees that if the sequencer node (leader) is not replaced during the ordering process (i.e., either suspected or crashed), the sequence of optimistic notifications matches the sequence of final notifications. As a distinguishing point, the solution in [69] relies on a ring topology as a means for deliv-
erring transactions optimistically, whereas MiMoX does not assume any specific topology.

At the core of Archie there is a novel speculative parallel concurrency control, named ParSpec, that processes/certifies transactions upon their optimistic notification and enforces the same order as the sequence of optimistic notifications. The key enabling point for guaranteeing the effectiveness of ParSpec is that the majority of transactions speculatively commit before the total order is delivered. This goal is reached by minimizing the overhead caused by the enforcement of a predefined order on the speculative executions. ParSpec achieves this goal by the following steps:

- Executing speculative transactions in parallel, but allowing them to speculative commit only in-order, thus reducing the cost of detecting possible out-of-order executions;
- Dividing the speculative transaction execution into two stages: the first, where the transaction is entirely speculatively executed and its modifications are made visible to the following speculative transactions; the second, where a ready-to-commit snapshot of the transaction’s modifications is pre-installed into the shared data-set, but not yet made available to non-speculative transactions.

A transaction starts its speculative commit phase only when its previous transaction, according to the optimistic order, becomes speculatively-committed and its modifications are visible to other successive speculative transactions. The purpose of the second stage concerns only the non-speculative commit, thus it can be removed from the speculative transaction’s critical path and executed in parallel. This approach increases the probability of speculatively committing a transaction before the total order is notified. The final commit of an already speculatively-committed transaction consists of making the pre-installed snapshot available to all. In case the MiMoX’s leader is stable during the execution, ParSpec realizes this task without iterating over all transaction’s written objects but, rather, it just increases one local timestamp. Clients are informed about their transactions’ outcome while other speculative transactions execute. As a result, transaction latency is minimized and ParSpec’s high throughput allows more clients to submit requests.

The principles at the base of Archie can be applied in both DUR- and DER-based systems. For the purpose of this work, we optimized Archie to cope with the DER model. This is because DER has three main benefits over DUR. First, it makes application behavior independent of failures. When a node in the system crashes or stops serving incoming requests, other nodes are able to transparently service the same request, process the transaction, and respond back to the application. Second, it does not suffer from aborts due to contention on shared remote objects because a common serialization order is defined prior to starting transaction (local) execution, thus yielding high performance and better scalability in medium/high contention scenarios [53]. Third, with DER, the size of network messages exchanged for establishing the common order does not depend on the transaction’s logic (i.e., the number of objects accessed). Rather, it is limited to the name of the transaction and, possibly, its input parameters, which reduces network usage and increases the ordering protocol’s performance.
As commonly adopted in several SMA-based transactional systems [53, 46, 78] and thanks to the full replication model, Archie does not broadcast read-only workloads through MiMoX; read-only requests are handled locally, in parallel with the speculative execution. Processing write transactions (both conflicting and not conflicting) in the same order on all nodes allows Archie to guarantee 1-copy-serializability [5].

We implemented Archie in Java and we conducted a comprehensive experimental study using benchmarks including TPC-C [19], Bank and a distributed version of Vacation [11]. As competitors, we selected one DUR-based: PaxosSTM [112] – a high-performance open source transactional system; and two DER-based: one non-speculative (SM-DER [98]) and one speculative (HiperTM [46]) transactional system.

Our experiments on PRObE [30], a state-of-the-art public cluster, reveal Archie’s high-performance and scalability. On up to 19 nodes, Archie outperforms all competitors in most of the tested scenarios. As expected, when the contention is very low, PaxosSTM behaves better than Archie.

The work makes the following contributions:
- Archie is the first fully-implemented DER-based transactional system that eliminates costly operations during the serial phase by anticipating the work through speculative parallel execution.
- MiMoX is the first total order layer that guarantees a reliable optimistic delivery order (i.e., the optimistic order matches the total order) without any assumption on the network topology, and maximizes the overlapping time (i.e., the time between the optimistic and relative total order notifications) when the sequencer node is not replaced (e.g., due to a crash).
- ParSpec is the first parallel speculative concurrency control that removes from the transaction’s critical path the task to install written objects and implements a lightweight commit procedure to make them visible.

7.1 MiMoX

MiMoX is a network system that ensures total order of messages across remote nodes. It relies on Multi-Paxos [58], an algorithm of the Paxos family, which guarantees agreement on a sequence of values in the presence of faults (i.e., total order). MiMoX is sequencer-based – i.e., one elected node in the system, called the leader, is responsible for defining the order of the messages.

MiMoX provides the APIs of Optimistic Atomic Broadcast [50]: broadcast(m), which is used by clients to broadcast a message m to all nodes; final-delivery(m), which is used for notifying each replica on the delivery of a message m (or a batch of them); and opt-delivery(m), which is used for early-delivering a previously broadcast message m (or a batch of them)
before the final-delivery(m) is issued.

Each MiMoX message that is delivered is a container of either a single transaction request or a batch of transaction requests (when batching is used). The sequence of final-delivery(m) events, called final order, defines the transaction serialization order, which is the same for all the nodes in the system. The sequence of opt-delivery(m) events, called optimistic order, defines the optimistic transaction serialization order. Since only the final order is the result of a distributed agreement, the optimistic order may differ from the final order and may also differ among nodes (i.e., each node may have its own optimistic order). As we will show later, MiMox guarantees the match between the optimistic and final order when the leader is not replaced (i.e., stable) during the ordering phase.

7.1.1 Ordering Process

MiMoX defines two types of batches: opt-batch, which groups messages from the clients, and final-batch, which stores the identification of multiple opt-batches. Each final-batch is identified by an unique instance ID. Each opt-batch is identified by a pair \(<\text{instance ID}, \#\text{Seq}>\).

When a client broadcasts a request using MiMoX, this request is delivered to the leader which aggregates it into a batch (the opt-batch). In order to preserve the order of these steps, and for avoiding synchronization points that may degrade performance, we rely on single-thread processing for the following tasks. For each opt-batch, MiMoX creates the pair \(<\text{instance ID}, \#\text{Seq}>\), where instance ID is the identifier of the current final-batch that will wrap the opt-batch, and \#\text{Seq} is the position of the opt-batch in the final-batch. When the pair is defined, it is appended to the final-batch. At this stage, instead of waiting for the completion of the final-batch and before creating the next opt-batch, MiMoX sends the current opt-batch to all the nodes, waiting for the relative acknowledgments. Using this mechanism, the leader informs nodes about the existence of a new batch while the final-batch is still accumulating requests. This way, MiMox maximizes the overlap between the time needed for creating the final-batch with the local processing of opt-batches; and enables nodes to effectively process messages, thanks to the reliable optimistic order.

Each node, upon receiving the opt-batch, immediately triggers the optimistic delivery for it. As in [69], we believe that within a data-center the scenarios where the leader crashes or becomes suspected are rare. If the leader is stable for at least the duration of the final-batch’s agreement, then even if the opt-batch is received out-of-order with respect to other opt-batches sent by the leader, this possible reordering is still nullified by the ordering information (i.e., \#\text{Seq}) stored within each opt-batch.

After sending the opt-batch, MiMoX loops again serving the next opt-batch, until the completion of the final-batch. When ready, MiMoX uses the Multi-Paxos algorithm for establishing an agreement among nodes on the final-batch. The leader proposes an order for the
final-batches, to which the other replicas reply with their agreement – i.e., accept messages. When a majority of agreement for a proposed order is reached, each replica considers it as decided.

The message size of the final-batch is very limited because it contains only the identifiers of opt-batches that have already been delivered to nodes. This makes the agreement process fast and includes a high number of client messages.

7.1.2 Handling Faults and Re-transmissions

MiMoX ensures that, on each node, an accept is triggered for a proposed message (or batch) m only if all the opt-batches belonging to m have been received. Enforcing this property prevents loss of messages belonging to already decided messages (or batches).

As an example, consider three nodes $\{N_1, N_2, N_3\}$, where N_1 is the leader. The final-batch (FB) is composed of three opt-batches: OB_1, OB_2, OB_3. N_1 sends OB_1 to N_2 and N_3. Then it does the same for OB_2 and OB_3. But N_2 and N_3 do not receive both messages. After sending OB_3, the FB is complete, and N_1 sends the propose message for FB. Nodes N_2 and N_3 send the accept message to the other nodes, recognizing that there are unknown opt-batches (i.e., OB_2 and OB_3). The only node having all the batches is N_1. Therefore, N_2 and N_3 request N_1 for the re-transmission of the missing batches. In the meanwhile, each node receives the majority of accept messages from other nodes and triggers the decide for FB. At this stage, if N_1 crashes, even though FB has been agreed, OB_2 and OB_3 are lost, and both N_2 and N_3 cannot retrieve their content anymore.

We solve this problem using a dedicated service at each node, which is responsible for re-transmitting lost messages (or batches). Each node, before sending the accept for an FB, must receive all the opt-batches. The FB is composed of the identification of all the expected opt-batches. Thus, each node is easily able to recognize the missing batches. Assuming that the majority of nodes are non-faulty, the re-transmission request for one or multiple opt-batches is broadcast to all the nodes such that, eventually the entire sequence of opt-batches belonging to FB is rebuilt and the accept message is sent.

Nodes can detect a missing batch before the propose message for the FB is issued. Exploiting the sequence number and the FB’s ID used for identifying opt-batches, each node can easily find a gap in the sequence of the opt-batches received, that belong to the same FB (e.g., if OB_1 and OB_3 are received, then, clearly, OB_2 is missing). Thus, the re-transmission can be executed in parallel with the ordering, without additional delay. The worst case happens when the missing opt-batch is the last in the sequence. In this case, the propose message of FB is needed to detect the gap.
7.1.3 Evaluation

We evaluated MiMoX’s performance by an experimental study. We focused on MiMoX’s scalability in terms of the system size, the average time between optimistic and final delivery, the number of requests in opt-batch and final-batch, and the size of client requests. We used the PRObE testbed [30], a public cluster that is available for evaluating systems research. Our experiments were conducted using 19 nodes (tolerating up to 9 failures) in the cluster. Each node is equipped with a quad socket, where each socket hosts an AMD Opteron 6272, 64-bit, 16-core, 2.1 GHz CPU (total 64-cores). The memory available is 128GB, and the network connection is a high performance 40 Gigabit Ethernet.

For the purpose of the study, we decided to finalize an opt-batch when it reaches the maximum size of 12K bytes and a final-batch when it reaches 5 opt-batches, or when the time needed for building them exceeds 10 msec, whichever occurs first. All data points reported are the average of six repeated measurements.

![Figure 7.1: MiMoX’s message throughput.](image)

Figure 7.1 shows MiMoX’s throughput in requests ordered per second. For this experiment, we varied the number of nodes participating in the agreement and the size of each request. Clearly, the maximum throughput (122K requests ordered per second) is reached when the node count is low (3 nodes). However, the percentage of degradation in performance is limited when the system size is increased: with 19 nodes and request size of 10 bytes, the performance decreases by only 11%.

Figure 7.1 shows also the results for request sizes of 20 and 50 bytes. Recall that Archie’s transaction execution process leverages the ordering layer only for broadcasting the transaction ID (e.g., method or store-procedure name), along with its parameters (if any), and not the entire transaction business logic. Other solutions, such as the DUR scheme, use the total order layer for broadcasting the transaction read- and write-set after a transaction’s completion, resulting in larger request size than Archie’s. In fact, our evaluations with Bank and TPC-C benchmarks revealed that almost all the transaction requests can be compacted between 8 and 14 bytes. MiMoX’s performance for a request size of 20 bytes is quite close to
that for 10 byte request size. We observe a slightly larger gap with 19 nodes and 50 byte request size, where the throughput obtained is 104K. This is a performance degradation lesser than 15% with respect to the maximum throughput. This is because, with smaller requests (10 or 20 bytes), opt-batches do not get filled to the maximum size allowed, resulting in smaller network messages. On the other hand, larger requests (50 bytes) tend to fill batches sooner, but these bigger network messages take more time to traverse.

Figure 7.2: Time between optimistic/final delivery.

Figure 7.2 shows MiMoX’s delay between the optimistic and the relative final delivery, named overlapping time. This experiment is the same as that reported in Figure 7.1. MiMoX achieves a stable overlapping time, especially for a request size of 10 bytes, of \(\approx 8 \) msec. This delay is non-negligible if we consider that Archie processes transactions locally. Using bigger requests, the final-batch becomes ready sooner because less requests fit in one final-batch. As a result, the time between optimistic and final delivery decreases. This is particularly evident with a request size of 50 bytes, where we observe an overlapping time that is, on average, 4.6 msec.

The last results motivate our design choice to adopt DER as a replication scheme instead of DUR.

<table>
<thead>
<tr>
<th>Request size (bytes)</th>
<th>Final-batch size</th>
<th>Opt-batch size</th>
<th>% Re NF</th>
<th>% Re F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.91</td>
<td>230.59</td>
<td>0%</td>
<td>1.7%</td>
</tr>
<tr>
<td>20</td>
<td>4.98</td>
<td>166.45</td>
<td>0%</td>
<td>3.4%</td>
</tr>
<tr>
<td>50</td>
<td>5.12</td>
<td>90.11</td>
<td>0%</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

Table 7.1: Size of requests, batches, and % reorders.

Table 7.1 shows other information collected from the previous experiments. It is interesting to observe the number of opt-batches that makes up a final-batch (5 on average) and the number of client requests in each opt-batch (varies from 90 to 230 depending on the request size). This last information confirms the reason for the slight performance drop using requests of
50 bytes. In fact, in this case each opt-batch transfers ≈ 4500 bytes in payload, as compared to ≈ 2300 bytes for request size of 10 bytes.

In these experiments, we used TCP connections for sending opt-batches. Since MiMoX uses a single thread for sending opt-batches and for managing the final-batch, reorders between optimistic and final deliveries cannot happen except when the leader crashes or is suspected. Table 7.1 supports this. It reports the maximum reordering percentages observed when leader is stable (column Re NF) and when the leader is intentionally terminated after a period of stable execution (column Re F), using 19 nodes.

7.2 PARSPEC

ParSpec is the concurrency control protocol that runs locally at each node. MiMoX delivers each message or a batch of messages twice: once optimistically and once finally. These two events are the triggers for activating ParSpec’s activities. Without loss of generality, hereafter, we will refer to a message of MiMoX as a batch of messages.

Transactions are classified as speculative: i.e., those that are only optimistically delivered, but their final order has not been defined yet; and non-speculative: i.e., those whose final order has been established. Among speculative transactions, we can distinguish between speculatively-committed (or x-committed hereafter): i.e., those that have completely executed all their operations and cannot be aborted anymore by other speculative transactions; and active: i.e., those that are still executing operations or that are not allowed to speculatively commit yet. Moreover, each transaction T records its optimistic order in a field called $T.OO$. T’s optimistic order is the position of T within its opt-batch, along with the position of the opt-batch in the (possible) final-batch.

ParSpec’s main goal is to activate in parallel a set of speculative transactions, as soon as they are optimistically delivered, and to entirely complete their execution before their final order is notified.

As a support for the speculative execution, the following meta-data are used: abort-array, which is a bit-array that signals when a transaction must abort; LastX-committedTx, which stores the ID of the last x-committed transaction; and SCTS, the speculative commit timestamp, which is a monotonically increasing integer that is incremented each time a transaction x-commits. Also, each node is equipped with an additional timestamp, called CTS, which is an integer incremented each time a non-speculative transaction commits.

For each shared object, a set of additional information is also maintained for supporting ParSpec’s operations: (1) the list of committed and x-committed versions; (2) the version written by the last x-committed transaction, called spec-version; (3) the boolean flag called wait-flag, which indicates that a speculative active transaction wrote a new version of the object, and wait-flag.OO, the optimistic order of that transaction; and (4) a bit-array
called `readers-array`, which tracks active transactions that already read the object during their execution. Committed (or x-committed) versions contain VCTS, which is the CTS (or the SCTS) of the transaction that committed (or x-committed) that version.

The size of the `abort-array` and `readers-array` is bounded by `MaxSpec`, which is an integer defining the maximum number of speculative transactions that can run concurrently. `MaxSpec` is fixed and set a priori at system start-up. It can be tuned according to the underlying hardware.

When an opt-batch is optimistically delivered, ParSpec extracts the transactions from the opt-batch and processes them, activating `MaxSpec` transactions at a time. Once all these speculative transactions finish their execution, the next set of `MaxSpec` transactions is activated. As it will be clear later, this approach allows a quick identification of those transactions whose history is not compliant anymore with the optimistic order, thus they must be aborted and restarted.

In the `abort-array` and `readers-array`, each transaction has its information stored in a specific location such that, if two transactions `T_a` and `T_b` are optimistically ordered, say in the order `T_a > T_b`, then they will be stored in these arrays respecting the invariant `T_a > T_b`.

Since the optimistic order is a monotonically increasing integer, for a transaction `T`, the position \(i = T.OO \mod MaxSpec \) stores `T`'s information. When `abort-array[i]=1`, `T` must abort because its execution order is not compliant anymore with the optimistic order. Similarly, when an object `obj` has `readers-array[i]=1`, it means that the transaction `T` performed a read operation on `obj` during its execution.

Speculative active transactions make available new versions of written objects only when they x-commit. This way, other speculative transactions cannot access intermediate snapshots of active transactions. However, when `MaxSpec` transactions are activated in parallel, multiple concurrent writes on the same object could happen. When those transactions reach their x-commit phase, different speculative versions of the same object could be available for readers. As an example, consider four transactions \{`T_1`,`T_2`,`T_3`,`T_4`\} that are optimistically delivered in this order. `T_1` and `T_3` write to the same object \(O_a \), and `T_2` and `T_4` read from \(O_a \). When `T_1` and `T_3` reach the speculative commit phase, they make two speculative versions of \(O_a \) available: \(O_a^{T_1} \) and \(O_a^{T_3} \). According to the optimistic order, `T_2`'s read should return \(O_a^{T_1} \) and `T_3`'s read should return \(O_a^{T_3} \). Even though this approach maximizes concurrency, its implementation requires traversing the shared lists of transactional meta-data, resulting in high transaction execution time and low performance [4].

ParSpec finds an effective trade-off between performance and overhead for managing meta-data. In order to avoid maintaining a list of speculative versions, ParSpec allows an active transaction to x-commit only when the speculative transaction optimistically ordered just before it is already x-committed. Formally, given two speculative transactions `T_x` and `T_y` such that `T_y.OO = \{T_x.OO\} + 1`, `T_y` is allowed to x-commit only when `T_x` is x-committed. Otherwise, `T_y` keeps spinning even when it has executed all of its operations. `T_y` easily
recognizes T_x’s status change by reading the shared field LastX-committedTx. We refer to this property as rule-comp. By rule-comp, read and write operations become efficient. In fact, when a transaction T reads an object, only one speculative version of the object is available. Therefore, T’s execution time is not significantly affected by the overhead of selecting the appropriate version according to T’s history. In addition, due to rule-comp, even though two transactions may write to the same object, they can x-commit and make available their new versions only in-order, one after another. This policy prevents any x-committed transaction to abort due to other speculative transactions.

In the following, ParSpec’s operations are detailed.

7.2.1 Transactional Read Operation

When a write transaction T_i performs a read operation on an object X, it checks whether another active transaction T_j is writing a new version of X and T_j’s optimistic order is prior to T_i’s. In this case, it is useless for T_i to access the spec-version of X because, eventually, T_j will x-commit, and T_i will be aborted and restarted in order to access T_j’s version of X. Aborting T_i ensures that its serialization order is compliant with the optimistic order. T_i is made aware about the existence of another transaction that is currently writing X through X.wait-flag, and about its order through X.wait-flag.OO. If X.wait-flag=1 and X.wait-flag.OO < T_i.OO, then T_i waits until the previous condition is no longer satisfied. For the other cases, namely when X.wait-flag=0 or X.wait-flag.OO > T_i.OO, T_i proceeds with the read operation without waiting, accessing the spec-version. Specifically, if X.wait-flag.OO > T_i.OO, then it means that another active transaction T_k is writing to X. But, according to the optimistic order, T_k is serialized after T_i. Thus, T_i can simply ignore T_k’s concurrent write.

After successfully retrieving X’s value, T_i stores it in its read-set, signals that a read operation on X has been completed, and sets the flag corresponding to its entry in X.readers-array. This notification is used by writing transactions to abort inconsistent read operations that are performed before a previous write takes place.

7.2.2 Transactional Write Operation

The rule-comp prevents two or more speculative transactions from x-committing in parallel and in any order. Rather, they progressively x-commit, according to the optimistic order. In ParSpec, transactional write operations are buffered locally in a transaction’s write-set. Therefore, they are not available for concurrent reads before the writing transaction x-commits. The write procedure has the main goal of aborting those speculative active transactions that are serialized after (in the optimistic order) and a) wrote the same object, and/or b) previously read the same object (but clearly a different version).
When a transaction T_i performs a write operation on an object X and finds that X.wait-flag = 1, ParSpec checks the optimistic order of the speculative transaction T_j that wrote X. If X.wait-flag.OO > T_i.OO, then it means that T_j is serialized after T_i. So, an abort for T_j is triggered because T_j is a concurrent writer on X and only one X.spec-version is allowed for X. On the contrary, if X.wait-flag.OO < T_i.OO (i.e., T_j is serialized before T_i according to the optimistic order) then T_i, before proceeding, loops until T_j x-commits.

Since a new version of X written by T_i will eventually become available, all speculative active transactions optimistically delivered after T_i that read X must be aborted and restarted so that they can obtain X’s new version. Identifying those speculative transactions that must be aborted is a lightweight operation in ParSpec. When a speculative transaction x-commits, its history is fixed and cannot change because all the speculative transactions serialized before it have already x-committed. Thus, only active transactions can be aborted. Object X keeps track of readers using the readers-array and ParSpec uses it for triggering an abort: all active transactions that appear in the readers-array after T_i’s index and having an entry of 1 are aborted. Finally, before including the new object version in T_i’s write-set, ParSpec sets X.wait-flag = 1 and X.wait-flag.OO = T_i.OO.

Finally, if a write operation is executed on an object already written by the transaction, its value is simply updated.

7.2.3 X-Commit

A speculative active transaction that finishes all of its operations enters the speculative commit (x-commit) phase. This phase has three purposes: the first (A) is to allow next speculative active transactions to access the new speculative versions of the written objects; the second (B) is to allow subsequent speculative transactions to x-commit; the third (C) is to prepare “future” committed versions (not yet visible) of the written objects such that, when the transaction is eventually final delivered, those versions will be already available and its commit will be straightforward. However, in order to accomplish (B), only (A) must be completed while (C) can be executed later. This way, ParSpec anticipates the event that triggers the x-commit of the next speculative active transactions, while executing (C) in parallel with that.

Step (A). All the versions written by transaction T_i are moved from T_i’s write-set to the spec-version field of the respective objects and the respective wait-flags are cleared. This way, the new speculative versions can be accessed from other speculative active transactions. At this time, a transaction T_j that accessed any object conflicting with T_i’s write-set objects and is waiting on wait-flags can proceed.

In addition, due to rule-comp, an x-committed transaction cannot be aborted by any speculative active transaction. Therefore, all the meta-data assigned to T_i must be cleaned up for allowing the next MaxSpec speculative transactions to execute from a clean state.
Step (B). This step is straightforward because it only consists of increasing $SCTS$, the speculative commit timestamp, which is incremented each time a transaction x-commits, as well as increasing $LastX$-committedTx.

Step (C). This step is critical for avoiding the iteration on the transaction’s write-set to install the new committed versions during the serial phase. However, this step does not need to be in the critical path of subsequent active transactions. For this reason (C) is executed in parallel to subsequent active transactions after updating $LastX$-committedTx, such that the chain of speculative transactions waiting for x-commit can evolve.

For each written object, a new committed, but not yet visible, version is added to the object’s version list. The visibility of this version is implemented leveraging $SCTS$. Specifically, $SCTS$ is assigned to the $VCTS$ of the version. $SCTS$ is always greater than CTS because the speculative execution always precedes the final commit. This way (as we will show in Section 7.2.6) no non-speculative transaction can access that version until CTS is equal to $SCTS$. If the MiMox’s leader is stable in the system (i.e., the optimistic order is reliable), then when CTS reaches the value of $SCTS$, then the speculative transaction has already been executed, validated and all of its versions are already available to non-speculative transactions.

7.2.4 Commit

The commit event is invoked when a final-batch is delivered. At this stage, two scenarios can happen: (A) the final-batch contains the same set of opt-batches already received in the same order, or (B) the optimistic order is contradicted by the content of the final-batch.

Scenario (A) is the case when the MiMox’s leader is not replaced while the ordering process is running. This represents the normal case within a data-center, and the best case for Archie because the speculative execution can be actually leveraged for committing transactions without performing additional validation or re-execution. In fact, ParSpec’s rule-comp guarantees that the speculative order always matches the optimistic order, thus if the latter is also confirmed by the total order, it means that the speculative execution does not need to be validated anymore.

In this scenario, the only duty of the commit phase is to increase CTS. Given that, when $CTS=Y$, it means that the x-committed transaction with $SCTS=Y$ has been finally committed. Non-speculative transactions that start after this increment of CTS will be able to observe the new versions written during the step (C) of the x-commit of the transaction with $SCTS=Y$.

Using this approach, ParSpec eliminates any complex operation during the commit phase and, if most of the transactions x-commit before their notification of the total order, then they are committed right away, paying only the delay of the total order. If the transaction does not contain massive non-transactional computation, then the iteration on the write-set
for installing the new committed versions, and the iteration on the read-set for validating the transaction, have almost the same cost as running the transaction from scratch after the final delivery. This is because, once the total order is defined, transactions can execute without any overhead, such as logging in the read-set or write-set.

In scenarios like (B), transactions cannot be committed without being validated because the optimistic order is not reliable anymore. For this reason, the commit is executed using a single thread. Transaction validation consists of checking if all the versions of the read objects during the speculative execution correspond to the last committed versions of the respective objects. If the validation succeeds, then the commit phase is equivalent to the one in scenario (A). When the validation fails, the transaction is aborted and restarted for at most once. The re-execution happens on the same committing thread and accesses all the last committed versions of the read objects.

In both the above scenarios, clients must be informed about transaction’s outcome. ParSpec accomplishes this task asynchronously and in parallel, rather than burdening the commit phase with expensive remote communications.

7.2.5 Abort

Only speculative active transactions and x-committed transactions whose total order has already been notified can be aborted. In the first case, ParSpec uses the abort mechanism for restarting speculative transactions with an execution history that is non-compliant with the optimistic order. Forcing a transaction T to abort means simply to set the T's index of the abort-array. However, the real work for annulling the transaction context and restarting from the beginning is executed by T itself by checking the abort-array. This check is made after executing any read or write operation and when T_i is waiting to enter the x-commit phase. The abort of a speculative active transaction consists of clearing all of its meta-data before restarting.

In the second case, the abort is needed because the speculative transaction x-committed with a serialization order different from the total order. In this case, before restarting the transaction as non-speculative, all the versions written by the x-committed transaction must be deleted from the objects’ version lists. In fact, due to the snapshot-deterministic execution, the new set of written versions can differ from the x-committed set, thus some version could become incorrectly available after the increment of CTS.

7.2.6 Read-Only Transactions

When a read-only transaction is delivered to a node, it is immediately processed, accessing only the committed versions of the read objects. This way, read-only workloads do not interfere with the write workloads, thus limiting the synchronization points between them. A
pool of threads is reserved for executing read-only transactions. Before a read-only transaction T_i performs its first read operation on an object, it retrieves the CTS of the local node and assigns this value to its own timestamp ($T_i.TS$). After that, the set of versions available to T_i is fixed and composed of all versions with $VCTS \leq T_i.TS$ - i.e., T_i cannot access new versions committed by any T_j ordered after T_i. Some object could have, inside its version list, versions with a $VCTS > T_i.TS$. These versions are added from x-committed transactions, but not yet finally committed, thus their access is prohibited to any non-speculative transaction.

7.3 Consistency Guarantees

Archie ensures 1-Copy Serializability [5] as a global property, and it ensures also that any speculative transaction (active, x-committed and aborted) always observes a serializable history, as a local property.

1-Copy Serializability. Archie ensures 1-Copy Serializability. The main argument that supports this claim is that transactions are validated and committed serially. We can distinguish two cases according to the reliability of the optimistic delivery order with respect to the final delivery order: i) when the two orders match, and the final commit procedure does not accomplish any validation procedure; ii) when the two orders do not match, thus the validation and a possible re-execution are performed.

The case ii) is straightforward to prove because, even though transactions are activated and executed speculatively, they are validated before being committed. The validation, as well as the commit, process is sequential. This rule holds even for non-conflicting transactions. Combining serial validation with the total order of transactions guarantees that all nodes eventually validate and commit the same sequence of write transactions. The ordering layer ensures the same sequence of delivery even in the presence of failures, therefore, all nodes eventually reach the same state.

The case i) is more complicated because transactions are not validated after the notification of the final order; rather, they directly commit after increasing the commit timestamp. For this case we rely on MiMoX, which ensures that all final delivered transactions are always optimistically delivered before. Given that, we can consider the speculative commit as the final commit because, after that, the transaction is ensured to not abort anymore and eventually commit. The execution of a speculative transaction is necessarily serializable because all of its read operations are done according to a predefined order. In case a read operation accesses a version such that its execution becomes not compliant with the optimistic order anymore, the reader transaction is aborted and restart. In addition, transactions cannot speculatively commit in any order or concurrently. They are allowed to do so only serially, thus reproducing the same behavior as the commit phase in case ii).

Read-only transactions are processed locally without a global order. They access only com-
mitted versions of objects, and their serialization point is defined when they start. At this stage, if we consider the history composed of all the committed transactions, when a read-only transaction starts, it defines a prefix of that history such that it cannot change over time. Versions committed by transactions serialized after this prefix are not visible by the read-only transaction. Consider a history of committed write transactions, \(H = \{T_1, \ldots, T_i, \ldots, T_n\} \). Without loss of generality, assume that \(T_1 \) committed with timestamp 1; \(T_i \) committed with timestamp \(i \); and \(T_n \) committed with timestamp \(n \). All nodes in the system eventually commit \(H \). Different commit orders for these transactions are not allowed due to the total order enforced by MiMoX. Suppose that two read-only transactions \(T_a \) and \(T_b \), executing on node \(N_a \) and \(N_b \), respectively, access the same shared objects. Let \(T_a \) perform its first read operation on \(X \) accessing the last version of \(X \) committed at timestamp \(k \), and \(T_b \) at timestamp \(j \). Let \(P_a \) and \(P_b \) be the prefixes of \(H \) defined by \(T_a \) and \(T_b \), respectively. \(P_a(H) = \{T_1, \ldots, T_k\} \) such that \(k \leq i \) and \(P_b(H) = \{T_1, \ldots, T_j\} \) such that \(j \leq i \). \(P_a \) and \(P_b \) can be either coincident, or one is a prefix of the other because both are prefixes of \(H \); i.e., if \(k < j \), then \(P_a \) is a prefix of \(P_b \); if \(k > j \), then \(P_b \) is a prefix of \(P_a \); if \(k = j \), then \(P_a \) and \(P_b \) coincide.

Let \(P_a \) be a prefix of \(P_b \). Now, \(\forall T_u, T_v \in P_a, T_a \) and \(T_b \) will observe \(T_u \) and \(T_v \) in the same order (and for the same reason, it is true also for the other cases). In other words, due to the total order of write transactions, there are no two read-only transactions, running on the same node or different nodes, that can observe the same two write transactions serialized differently.

Serializable history. In ParSpec, all speculative transactions (including those that will abort) always observe a history that is *serializable*. This is because new speculative versions are exposed only at the end of the transaction, when it cannot abort anymore; and because each speculative transaction checks its abort bit after any operation. Assume three transactions \(T_1 \), \(T_2 \) and \(T_3 \), optimistically ordered in this way. \(T_1 \) x-commits a new version of object \(A \), called \(A_1 \) and \(T_2 \) overwrites \(A \) producing \(A_2 \). It also writes object \(B \), creating \(B_2 \). Both \(T_2 \) and \(T_3 \) run in parallel while \(T_1 \) already x-committed. Now \(T_3 \) reads \(A \) from \(T_1 \) (i.e., \(A_1 \)) and subsequently \(T_2 \) starts to x-commit. \(T_2 \) publishes the \(A_2 \)'s speculative version and flags \(T_3 \) to abort because its execution is not compliant with the optimistic order anymore. Then \(T_2 \) continues its x-commit phase exposing \(B_2 \)'s speculative version. In the meanwhile, \(T_3 \) starts a read operation on \(B \) before being flagged by \(T_2 \), and it finds \(B_2 \). Even though \(T_3 \) is marked as aborted, it already started the read operation on \(B \) before checking the abort-bit. For this reason, this check is done after the read operation. In the example, when \(T_3 \) finishes the read operation on \(B \), but before returning \(B_2 \) to the executing thread, it checks the abort-bit and it aborts due to the previous read on \(A \). As a result, the history of a speculative transaction is always (and at any point in time) compliant with the optimistic order, thus preventing the violation of serializability.
7.4 Implementation and Evaluation

We implemented Archie in Java: MiMoX’s implementation inherited JPaxos’s [95, 54] software architecture, while ParSpec has been built from scratch. As a testbed, we used PRObE [30] as presented in Section 7.1. ParSpec does not commit versions on any stable storage. The transaction processing is entirely executed in-memory while fault-tolerance is ensured through replication.

We selected three competitors to compare against Archie. Two are state-of-the-art, open-source, transactional systems based on state-machine replication. One, PaxosSTM [112] implements the DUR model, while the other, HiperTM [46], complies with the DER model. As the third competitor, we implemented the classical DER scheme (called SM-DER) [98], where transactions are ordered through JPaxos [54] and processed in a single thread after the total order is established.

PaxosSTM [112] processes transactions locally, and relies on JPaxos [54] as a total order layer for their global certification across all nodes. On the other hand, HiperTM [46], as Archie, exploits the optimistic delivery for anticipating the work before the notification of the final order, but it processes transactions on single thread. In addition, HiperTM’s ordering layer is not optimized for maximizing the time between optimistic and final delivery.

Each competitor provides its best performance under different workloads, thus they represent a comprehensive selection to evaluate Archie. Summarizing, PaxosSTM ensures high-performance in workloads with very low contention, such that remote aborts do not kick-in. HiperTM, as well as SM-DER, are independent from the contention because they process transactions using a single thread but their performance is significantly affected by the length of transactions (any operation is on the transaction’s critical path). This way, workloads composed of short transactions represent their sweet spot. In addition, SM-DER excels for workloads where contention is very high. Here the intuition is that, if only few objects are shared, then executing transactions serially without any overhead is the best solution.

We provided two versions of Archie: one that exploits the optimistic delivery and one that postpones the parallel execution until the transactions are final delivered. This way, we can show the impact of the anticipation of the work, with respect to the parallel execution. The version of Archie that does not use the optimistic delivery, called Archie-FD, replaces the x-commit with the normal commit. In contrast with Archie, Archie-FD installs the written objects during the commit. For the purpose of the study, we configured MaxSpec and the size of the thread pool that serves read-only transactions as 12. This configuration resulted in an effective trade-off between performance and scalability on our testbed. However, these parameters can be tuned for exploring different trade-offs for the hardware and application workload at hand.

The benchmarks adopted in this evaluation include Bank, a common benchmark that emulates bank operations, TPC-C [19], a popular on-line transaction processing benchmark, and
Vacation, a distributed version of the famous application included in the STAMP suite [11]. We scaled the size of the system in the range of 3-19 nodes and we also changed the system’s contention level by varying the total number of shared objects available. All the competitors benefit from the execution of local read-only transactions. For this reason we scope out read-only intensive workloads. Each node has a number of clients running on it. When we increase the nodes in the system, we also slightly increase the number of clients accordingly. This also means that the concurrency and (possibly) the contention in the system moderately increase. This is also why the throughput tends to increase for those competitors that scale along with the size of the system. In practice, we used on average the following total number of application threads balanced on all nodes: 1000 for TPC-C, 3000 for Bank, and 550 for Vacation.

7.4.1 Bank Benchmark

We configured the Bank benchmark for executing 10% and 50% of read-only transactions, and we identified the high, medium and low contention scenarios by setting 500, 2000, and 5000 total bank accounts, respectively. We report only the results for high and medium contention (Figure 7.3) because the trend in low contention scenario is very similar to the medium contention though with higher throughput.

(a) Throughput - High - 90%.

(b) Throughput - Medium - 90%.

(c) Latency - High - 90%.

(d) Throughput - High - 50%.

(e) Throughput - Medium - 50%.

(f) Latency - High - 50%.

Figure 7.3: Performance of Bank benchmark varying nodes, contention and percentage of write transactions.
Figure 7.3(a) plots the results of the high contention scenario. PaxosSTM suffers from a massive amount of remote aborts (≈85%), thus its performance is worse than others and it is not able to scale along with the size of the system. Interestingly, SM-DER behaves better than HiperTM because HiperTM’s transaction execution time is higher than SM-DER’s due to the overhead of operations’ instrumentation. This is particularly evident in Bank, where transactions are short and SM-DER’s execution without any overhead provides better performance. In fact, even if HiperTM anticipates the execution leveraging the optimistic delivery, its validation and commit after the total order nullify any previous gain. We observed also the time between the optimistic and final delivery in HiperTM to be less than 1 msec, which limits the effectiveness of its optimistic execution.

The two versions of Archie perform better than others but still Archie-FD, without the speculative execution, pays a penalty in performance around 14% against Archie. This is due to the effective exploitation of the optimistic delivery. Consistently with the results reported in Section 7.1, we observed an average time between optimistic and final delivery of 8.6 msec, almost 9× longer than HiperTM. However, as showed in Figure 7.3(c), Archie’s average transaction latency is still much lower than others. The peak throughput improvement over the best competitor (i.e., SM-DER) is 54% for Archie and 41% for Archie-FD.

Figure 7.3(b) shows the results with an increased number of shared objects in the system. In these experiments the contention is lower than before, thus PaxosSTM performs better. With 3 nodes, its performance is comparable with Archie but, by increasing the nodes and thus the contention, it degrades. Here Archie’s parallel execution has a significant benefit, reaching a speed-up by as much as 95% over SM-DER. Due to the lower contention, also the gap between Archie and Archie-FD increased up to 25%.

Figures 7.3(d), 7.3(e), 7.3(f) show the results with higher percentage of read-only transactions (50%). Recall that all protocols exploit the advantage of local processing of read-only transactions but absolute numbers are higher than before, as well as latency is reduced, but the trends are still similar.

7.4.2 TPC-C Benchmark

TPC-C is characterized by transactions accessing several objects and the workload has a contention level usually higher than other benchmarks (e.g., Bank). The mix of TPC-C profiles is the same as the default configuration, thus generating 92% of write transactions. We evaluated three scenarios, varying the total number of shared warehouses (the most contented object in TPC-C) in the range of \{1, 19, 100\}. With only one warehouse, all transactions conflict each other (Figure 7.4(a)) thus SM-DER behaves better than other competitors. In this case, the parallel execution of Archie is not exploited because transactions are always waiting for the previous speculative transaction to x-commit and then start almost the entire speculative execution from scratch. Increasing the number of nodes, HiperTM behaves better than Archie because of minimal synchronization required due to the single thread
processing. However, when the contention decreases (Figure 7.4(b)), Archie becomes better than SM-DER by as much as 44%. Further improvements can be seen in Figure 7.4(c) where contention is much lower (96% of gain).

Figure 7.4: Performance of TPC-C benchmark varying nodes and number of warehouses.

Archie is able to outperform SM-DER when 19 warehouses are deployed, because it bounds the maximum number of speculative transactions that can conflict each other (i.e., MaxSpec). We used 12 as MaxSpec, thus the number of possible transactions that can conflict with each other is less than the total number of shared objects, thus reducing the abort percentage from 98% (1 warehouse) to 36% (19 warehouses) (see also Figure 7.6). Performance of SM-DER worsens from Figure 7.4(a) to Figure 7.4(b). Although it seems counterintuitive, it is because, with more objects, the cost of looking up a single object is less than with 19 objects.

Figure 7.5: % of x-committed transactions before the notification of the total order.

Figure 7.5 shows an interesting parameter that helps to understand the source of Archie’s gain: the percentage of speculative transactions x-committed before their total order is notified. It is clear from the plot that, due to the high contention with only one warehouse, Archie cannot exploit its parallelism thus almost all transactions x-commit after their final delivery is issued. The trend changes by increasing the number of warehouses. In the configuration with 100 warehouses, the percentage of x-committed transactions before their
final delivery is in the range of 75%-95%. The performance related to this data-point is shown in Figure 7.4(c) where Archie is indeed the best, and the gap with respect to Archie-FD increased up to 41%.

![Figure 7.6: Abort % of PaxosSTM and Archie.](image)

Figure 7.6 reports the percentage of aborted transactions of the only two competitors that can abort: PaxosSTM and Archie. PaxosSTM invokes an abort when a transaction does not pass the certification phase, while Archie aborts a transaction during the speculative execution. Recall that, in PaxosSTM, the abort notification is delivered to the client, which has to re-execute the transaction and start again a new global certification phase. On the other hand, Archie’s abort is locally managed and the re-execution of the speculative transaction does not involve any client operation, thus saving time and network load. In this plot, we vary the number of nodes in the system and, for each node, we show the observed abort percentage changing with the number of warehouses as before. The write intensive workload generates a massive amount of aborted transactions in PaxosSTM while in Archie, thanks to the speculative processing of MaxSpec transactions at a time, the contention does not increase significantly. The only case where Archie reaches 98% is with only one shared warehouse.

7.4.3 Vacation Benchmark

The Vacation Benchmark is an application originally proposed in the STAMP suite [11] for testing centralized synchronization schemes and often adopted in distributed settings (e.g., [112]). It reproduces the behavior of clients that submit booking requests for vacation related items.

Vacation generates longer transactions than the other considered benchmarks, thus also its total throughput is lower. Length of the vacation transactions depend on the number of query requests. In this experiment each transaction contains 10 query requests. Figure 7.7 shows the results. In this experiment we varied the total number of relations (object used for defining the contention in the system) and we fixed the number of nodes to 11. Vacation’s clients do not perform any read-only transaction, however those transactions can still
occur as a result of unsuccessful booking requests. However, the actual number of read-only transactions counted is less than 3%, thus their impact on performance is very limited.

With only 100 relations, SM-DER performs slightly better than the others, while increasing objects, and thus decreasing contention, Archie is the best until 750 relations. After that, the contention is so low that the certification-based approach of PaxosSTM prevails. From the results it is clear how competitors based on single thread processing (SM-DER and HiperTM) suffer in low contention scenarios because they cannot take advantage of any parallelism.

7.5 Summary

Most replicated transactional systems based on total order primitives suffer from the problem of single thread processing but they still represents one of the best solutions in scenarios in which majority of transactions access few shared objects. Archie’s main goal is to alleviate the transaction’s critical path by eliminating non-trivial operations performed after the notification of the final order. In fact, if the sequencer node is stable in the system, Archie’s commit procedure consists of just a timestamp increment. Results confirmed that Archie outperformed competitors in write intensive workloads with medium/high contention.
Chapter 8

Regulating Consensus under the Authority of Caesar

Enterprise-level distributed concurrent applications are mostly written assuming underlying synchronization mechanisms that provide strong correctness guarantees. Such strong guarantees clearly simplify the process of developing complex programs where different actors operate on the same dataset. Paxos [58, 59] is a very popular algorithm for solving Consensus [14] among participants interconnected by asynchronous networks, even in presence of faults, and it can be leveraged for building robust and strongly consistent services, easily [17, 45, 55, 66, 31]. A great example of Paxos used in a production system is Google Spanner [17].

Despite its widespread use, Paxos suffers from performance bottlenecks when deployed under medium/high load. As an example, the version of Paxos most deployed for its progress guarantees is Multi-Paxos [59], where there is a designated node (i.e., the leader) that is elected and is responsible for deciding the order of all proposed commands (i.e., client requests). Multi-Paxos is proved to solve Consensus in three communication delays, which is theoretically optimal since that cost matches the lower bound for the Consensus problem in asynchronous systems, if conflicting commands are proposed [60]. However, in practice its performance is great until the leader saturates its resources; then the whole system slows down due to the overloaded leader.

To overcome this limitation, recently a number of proposals aimed at eliminating the need for a single leader by allowing multiple nodes to operate as a leader at-a-time [76, 67, 110]. If on the one hand their approaches avoid the bottleneck of the single leader, on the other hand they can suffer from other types of costs caused by not having a single point of decision in the system at any one time. Thus, multiple leaders may compete for the decision of their concurrent proposals (or commands).

Therefore, typically, to really exploit the benefit of having multiple leaders at a time, some of
those protocols relax the requirement to provide a “blind” agreement on all proposed commands, and instead they build a set of partial orders where only conflicting commands (i.e., those that do not commute) are totally ordered. Such solutions provide implementations of Generalized Consensus [57], the variant of the Consensus problem generalized from agreeing on a single command to agreeing on an increasing sequence of commands for less than a permutation of non-conflicting commands. They leverage the fact that defining a total order only among non-commutative, i.e., conflicting, commands or operations is enough to provide strong consistency on top of replicated storage and transactional systems.

However, current implementations of Generalized Consensus come with advantages as well as limitations. If on one hand they reduce the minimum number of communication delays required to reach an agreement from three to two in case a proposed command does not encounter any contention; on the other hand they fail in the following aspects: they are not able to minimize the latency as soon as some contention on submitted commands appears, and they adopt complex conflict resolution mechanisms to find sequences to execute commands, which become expensive in case of complex dependency relations among commands.

This dissertation presents Caesar, a novel implementation of Generalized Consensus which is able to overcome all the limitations of the current implementations of (Generalized) Consensus thanks to an innovative multi-leader ordering scheme. Caesar is *sui generis* since it proposes a novel clock-based ordering scheme that is able to maximize the probability of deciding the order of commands in two communication delays, thus reducing the overall execution latency also in presence of conflicts. The main idea is the following: a command is timestamped with the clock’s value on the sender and, if a quorum of nodes confirms that the timestamp is still valid, then the command is automatically ordered after all the conflicting commands having a valid past timestamp. Intuitively a timestamp is valid for a command C if there is no any command associated with a future timestamp and that could be executed before C; on the contrary, the timestamp is obsolete and rejected, and the associated command requires more communication delays to be decided.

Clearly, if clocks of nodes are even loosely synchronized, the scheme naturally increases the chance of deciding and executing a command in just two communication delays. However this is not required and the correctness of Caesar does not depend on any auxiliary protocol to maintain clocks synchronized. On the contrary, Caesar itself is able to adjust the value of clocks according to the timestamps associated with the exchanged commands, and it employs a set of core rules that are able to maximize the probability of processing valid timestamps also in presence of contention.

Nonetheless the simplicity of the approach also implying a much simpler execution phase if compared to the one of state-of-the-art recent approaches (which require an analysis of the dependency graphs [76]), Caesar also does not give up the ability to use quorums, unlike Mencius, and requires the same size of quorums adopted by EPaxos, all without relying on a single designated leader, unlike (Multi-)Paxos.

We implemented Caesar’s prototype in Java and conducted an evaluation using a bench-
mark generating single-operation commands. With it, we can inject different workloads by varying the percentage of conflicting commands and measure performance parameters such as throughput, latency, and contrast the number of fast and slow path obtained.

To cover the evaluation of the improvements that Caesar provides when compared to a wide range of Consensus mechanisms existing in literature, we contrasted Caesar against: EPaxos [76], as representative of a multi-leader quorum-based generalized Consensus implementation; Mencius [67], as representative of a multi-leader Consensus implementation that does not adopt quorums; Multi-Paxos [58], as representative of a single-leader Consensus implementation. As a testbed, we used the PRObE [30] infrastructure and we deployed up to 15 nodes in the system. The results reveal that Caesar is able to outperform competitors in almost all cases, by providing an average percentage of deliveries using the fast path always greater than 90%.

8.1 Consensus Specification

Caesar follows a variant of the definition of Generalized Consensus as provided in [57], where each node can propose commands Cmd via $\text{PROPOSE}(Cmd \ c)$ interface, and nodes decide command structures to be executed C-structures via $\text{DECIDE}(C$-struct $cs)$ interface. The specification is such that: commands that are included in the decided C-structures must have been proposed (Nontriviality); if a node decided a C-struct v at any time, then at all later times it can only decides $v \bullet \sigma$, where σ is a sequence of commands (Stability); if a command c has been proposed by a correct node, then c will be eventually decided in some C-struct if there is no command c' such that c and c' are conflicting, and c' was not decided yet at the time c was proposed (Liveness); two C-structures decided by two different nodes are prefixes of the same C-struct (Consistency).

Two commands c and c' are said to be conflicting (or equivalently c conflicts with c'), if their executions access at least a common datum x, and the execution of at least one of them may modify the value of x. It is worth to notice that the definition of C-struct as provided in [57] takes into account conflicts among commands, and two C-structures are still the same if they only differ due to a permutation of non-conflicting commands.

8.2 Overview of Caesar

For the sake of clarity, Caesar is introduced incrementally, by starting from a base protocol, which is only able to provide a reliable execution of commands, to the final protocol, which implements Generalized Consensus. The first protocol is considered as a reference point to show the minimal costs that are required to implement our specification of Consensus, and we explain how Caesar is able to maximize the probability to run like the reference protocol.
(a) The conflicting commands C_A and C_B are executed only when a quorum of nodes receive them. A consistent order is not enforced.

(b) The conflicting commands C_A and C_B are executed only when a quorum of nodes receive them. N_2 is in C_A’s and C_B’s quorum. C_B is executed after C_A on all nodes because the order $T_S_B > T_S_A$ is correctly observed by N_2.

Figure 8.1: Conflicting commands C_A and C_B. Comparison between a scenario where a consistent order is not enforced, and the one where a consistent order is enforced.

The first step is to guarantee that if a command is executed by a (either correct or faulty) node, then it is eventually executed by any other correct node. This is the minimum requirement for the reliability, which is implied by the Consistency property, since the protocol has to ensure that as soon as the result of the execution of a command is delivered to the external world, e.g., when the client requesting the execution is provided with the result, the execution is durable in the system. This basic protocol executes as showed in Figure 8.1(a). When a command C_A is proposed, i.e., $\text{PROPOSE}(C_A)$, the command’s leader (N_0 in this case) broadcasts a $\text{PROPOSE} C_A$ message with the command to all nodes, and it waits for acknowledgements ACK from a quorum of either Q_C or Q_F nodes; then the leader executes the command, returns the result to the client, and broadcasts a Stable message for allowing all nodes to execute the command. Therefore, as soon as a Stable message is received, the command can be executed (thick arrows in Figure 8.1(a)).
This base protocol is reliable because it guarantees that, if a command is executed by a node and a client knows the result of the execution, then any other correct node is able to execute the command eventually, even though \(f \) nodes (including the command’s leader) crash. The reason is simple: we assumed that a majority of nodes is always correct, and a command can be executed only after the command’s leader ensures that at least a quorum of nodes observes the command. Therefore assuming a command has been executed on some node, we have to distinguish two cases: if the command’s leader is not faulty, eventually any other correct node receives the stable message for the command; otherwise there always exists a correct node that knows the command and can take over the faulty leader by re-executing the protocol for that command.

The scheme adopted by the base protocol employs the minimum number of communication delays to reliably broadcast a message in an asynchronous system, i.e., 2, and this also matches the lower bound for solving Consensus in such a system [60]. Note that, here we are considering the communication delays as they are observed by a command’s leader, since a non-leader requires 3 communication delays to execute the command (it has to wait for the Stable message). Guaranteeing 2 communication delays on all nodes is simple because: acknowledgement messages are broadcast to all nodes, and a node executes a command right after it has received a quorum of acknowledgements for that command.

The base protocol guarantees reliability but it does not solve Consensus, therefore it does not enforce any order on the command executions. In fact, as depicted in Figure 8.1(a), two conflicting commands that are concurrently submitted to the system, i.e., \(C_A \) and \(C_B \) in the figure, can be executed in different orders on different nodes. Therefore, Caesar builds a novel timestamp-based mechanism on top of the base protocol in order to manage the command execution order. In particular, as depicted in Figure 8.1(b), a command \(C_A \) is associated with a timestamp \(T_S_A \) that is equal to the current physical clock’s value on the command’s leader; then the command can be executed only when a quorum of \(Q_F \) nodes confirms that no other command \(C_B \), conflicting with \(C_A \), is (or will be) executed with a timestamp \(T_S_B > T_S_A \) without waiting for \(C_A \)’s execution.

How to enforce this behavior is explained by the example in Figure 8.1(b). The node \(N_0 \) broadcasts the command \(C_A \) by proposing it with its clock’s current value 0. Then a quorum of \(Q_F \) nodes, i.e., \{\(N_0, N_1, N_2 \)\}, confirms the command because none of those nodes has already received another command conflicting with \(C_A \) and associated with a timestamp greater than 0. The confirmation is sent via Ack messages, as in the base protocol, but unlike the base scheme, an Ack message for \(C \) from a node \(N_i \) in Caesar also includes a predecessor set \(\text{pred}_C \) of the commands observed by \(N_i \) so far, and which should precede \(C \). Therefore, when \(N_4 \) broadcasts the command \(C_B \) at time 4 it receives a quorum of replies from \(N_2, N_3, N_4 \) that confirms \(C_B \) can be executed with timestamp 4, and only after \(C_A \) has been executed. This happens because \(N_2 \) already observed \(C_A \) at the time it received \(C_B \) (the circle in Figure 8.1(b)), and it inserts \(\text{pred}_{C_B} = \{C_A\} \) in the Ack message for \(C_B \).

As in the base protocol, in Caesar a command’s leader can send the Stable message as
soon as it receives a quorum of Q_F Ack messages for that command. However, unlike the base scheme, the Stable message for a command C also includes the timestamp associated with C and the set $pred_C$ of commands that have to be executed before C. Then, a node can execute C when it receives the Stable message for C and only after it has executed all the commands in $pred_C$. Therefore, in the example of Figure 8.1(b), C_A’s Stable message includes timestamp 0 and the set $pred_{C_A} = \emptyset$, while C_B’s Stable message includes timestamp 4 and the set $pred_{C_B} = \{C_A\}$. This way, the nodes solved the Consensus for commands C_A and C_B by executing them in the same order, i.e., C_A before C_B, or more formally by delivering the same C-struct $C_A \bullet C_B$.

Although so far we only presented the main idea behind Caesar, at this stage we can state some of the breakthroughs of our proposal. The novel timestamp-based scheme provides a way to enforce an order by minimizing the perturbations and maintaining the communication costs as the base protocol. On one hand, if the clocks on the nodes are (even loosely) synchronized, Caesar is able to naturally maintain high probability of executing a command in 2 communication delays (like the base protocol providing only reliability). Clearly the
protocol remains correct even though clocks are not synchronized. On the other hand, a command’s leader in Caesar, can still pay only 2 communication delays even if the quorum of replies for a command does not provide a coherent view on the initial proposal. This means that, as depicted in the scenario of Figure 8.1(b), C_B’s leader sends the *stable* message after having received a quorum of acknowledgement messages for C_B even though the nodes in the quorum did not observe the same set of commands conflicting with C_B (i.e., N_2 observed C_A while N_3 and N_4 did not). This is a significant difference between Caesar and other state-of-the-art Generalized Consensus protocols, e.g., EPaxos, which require at least 2 additional communication steps before executing C_B in that case.

However, at this stage two expected questions arise for Caesar: what does a node do in case it observes an out-of-order reception of messages? And, how does a command’s leader behave if one of the nodes in the replying quorum cannot acknowledge the proposed timestamp for the command? We answer to the former question in Section 8.2.1 by explaining the behavior of node N_2 in the scenario of Figure 8.1(b) in case it observes C_A only after the reception of C_B. The case of negative acknowledgement messages from nodes in the quorum is explained in Section 8.2.2, while in Section 8.3 we give all the details of Caesar.

8.2.1 Looking at the Future before Retrying

Intuitively, since a command C can be executed in Caesar only when all commands in pred_C have already been executed, the timestamps associated with the commands in pred_C have to be less than the timestamp decided for C. Therefore, let us consider the scenario as in Figure 8.2(a), where node N_2 receives the PROPOSE of the command C_A after having observed the command C_B, where C_B conflicts with C_A (circle on N_2). Since $T_{S_A} = 0$ is less than $T_{S_B} = 4$, N_2 cannot directly send a Ack message for C_A. The problem is that C_B could be finally decided at timestamp $T_{S_B} = 4$ without observing C_A, i.e., C_A could not be in pred_{C_B}, and therefore C_B could be executed before C_A although $T_{S_B} > T_{S_A}$.

On the other hand, sending a rejection of C_A by N_2 could require unnecessary additional communication delays because of this twofold reason: in case N_2 sends a rejection for C_A, C_A’s leader is forced to choose a new timestamp and retry the decision process for C_A; C_A can be observed before C_B on another node, which could be part of the quorum of replies collected by C_B’s leader.

Therefore, in this case N_2 waits for the final decision for C_B before taking any step for C_A (red bar labeled with W_1 along N_2’s timeline in Figure 8.2(a)). Afterwards, since C_B’s leader sends the STABLE message for C_B by containing C_A in pred_{C_B}, then N_2 can reply with a Ack message to C_A’s leader, as in the scenario depicted in Figure 8.1(b). This happens because N_3 observed C_A before receiving C_B and it was also part of the quorum replying to C_B’s leader. Note that, in this scenario we are considering the adverse case in which N_3 is not part of the quorum replying to C_A’s leader because it can be much closer to N_4 than to N_0.
Generally, what we observed here is that Caesar is able to increase the probability of deciding a command in 2 communication delays even in the case of an out-of-order reception of messages by means of the following waiting predicate computed by any node N_i on any received command C_A that has been proposed with timestamp TSC_A:

- $W1[N_i, TSC_A, C_A]$ is equal to true if there exists a command C_B received by N_i such that C_B conflicts with C_A, $TSC_A < TSC_B$, $C_A \notin pred_C$, and $status(C_B, N_i) \notin \{accepted, stable\}$; it is equal to false otherwise.

Therefore a node N_i receiving the proposal of a command C_A with timestamp TSC_A cannot reply to C_A’s leader until $W1[N_j, TSC_A, C_A]$ is equal to false. The status of the command on node N_i is denoted with $status(C_B, N_i)$, and it cannot be equal to accepted or stable if N_i did not receive yet a final decision for C_B from C_B’s leader.

8.2.2 Looking at the Past to Limit the Retries

In case a node cannot accept a timestamp TSC proposed for a command C, it sends a negative acknowledgement Nack to C’s leader by forcing the leader to retry the proposal with a greater timestamp for C. This is the case depicted in the scenario of Figure 8.2(b) where N_2 rejects C_A with timestamp $TSC_A = 0$ because it received the Stable message for C_B with timestamp $TSC_B > TSC_A$ and such that $C_A \notin pred_C$. N_2 also sends back the set of conflicting commands that caused the rejection as a suggestion on the next timestamp to be chosen for C_A.

In Caesar, if a command’s leader receives at least one Nack message for the proposed command C, it assigns a new value to TSC and it broadcasts a Retry message to ask for the acceptance of the new timestamp to a quorum of Q_C nodes. The Retry message also contains the set $pred_C$ that is computed as the union of conflicting commands received from the quorum of replies as the previous case of Section 8.2.1. Afterwards, it broadcasts a Stable message by using the same TSC and the same $pred_C$ of the Retry.

Therefore N_0 in Figure 8.2(b) sets TSC_A to 5, which is greater than all the timestamps observed so far, and it broadcasts the Retry with timestamp $TSC_A = 5$ and $pred_C = \{C_B\}$. Clearly, N_0 also adjusts its local clock’s value to be always greater than or equal to the new value chosen.

As we observed, retrying a new timestamp for a command in Caesar, does not mean restarting the decision process for that command from the beginning. In fact, unlike the initial Propose message, a Retry message never receives a Nack message as reply, meaning that a new timestamp for a command can never be rejected in Caesar. This can be achieved by either of the two ways i.e., (1) by introducing a waiting predicate $W2$ in addition to $W1$, or (2) by computing and reporting the dependencies again to the command’s leader after.
receiving RETRY message from it. We first explain the issue we can have without it and then we show how Caesar avoids this issue by adopting W2 or exchanging dependencies again.

Let us consider the scenario depicted in Figure 8.3(a), where we focus on the evolution of the status of a node N_i in terms of the observed commands and the sent/received messages that are related to those commands. N_i receives a proposal for command C_A at timestamp $\mathcal{T}S_{C_A} = 0$ (steps 1-2), and it sends a NACK message (step 3) because it has already accepted command C_B at timestamp $\mathcal{T}S_{C_B} = 1$, such that C_B conflicts with C_A and $C_A \not\in$ pred$_{C_B}$. In the meanwhile, N_i accepts another command C_C with timestamp $\mathcal{T}S_{C_C} = 2$ and such that C_C and C_A are conflicting (step 4). Let us also suppose that the decision process of C_C observed C_A, such that pred$_{C_C} = \{C_A\}$.

If that is the case, C_C could not be observed by the quorum replying to the proposal of C_A (because on the contrary the quorum for C_C observed C_A), and therefore N_i can receive a RETRY message for C_A where $C_C \not\in$ pred$_{C_A}$. If in the example N_i receives C_A with the new timestamp $\mathcal{T}S_{C_A} > \mathcal{T}S_{C_C}$, i.e., $\mathcal{T}S_{C_A} = 3$ (steps 5-6), then it should reply to the RETRY message with a new set of conflicting commands containing C_C, meaning that N_i cannot accept C_A where $C_C \not\in$ pred$_{C_A}$ (step 7). This would contradict the invariant such that a RETRY message cannot receive rejections.

Waiting for the Past: Additional waiting predicate W2, unlike the predicate W1 defined in Section 8.2.1, looks at the messages received with a past timestamp rather than the messages received with a future timestamp. The predicate is computed on the messages whose proposal has generated a NACK. Adopting the W2 predicate in the above example, we now show how retries can be limited.

As in Figure 8.3(b), a node in Caesar keeps track of the commands whose proposal was rejected, until they receive the RETRY message (steps 1-3). Then the PROPOSE for a command C_C with timestamp $\mathcal{T}S_{C_C}$ received by a node N_i cannot be processed by N_i until N_i stores no command C_A marked as rejected and such that C_A conflicts with C_C and $\mathcal{T}S_{C_C} > \mathcal{T}S_{C_A}$ (step 4). This is enough to solve the issue presented in the scenario of Figure 8.3(a) because such a command C_C is not allowed to proceed while C_A is marked as rejected (as showed in step 4 of Figure 8.3(b)), and the reply of the RETRY message for C_A can ignore C_C. We derive the waiting predicate W2 as follows:

- W2[N_j, $\mathcal{T}S_{C_A}$, C_A] is equal to true if there exists a command C_B received by N_i such that C_B conflicts with C_A, $\mathcal{T}S_{C_B} < \mathcal{T}S_{C_A}$ and status(C_B, N_i) = rejected; it is equal to false otherwise.

Therefore any node N_i do not take any step to process the reception of a proposal for command C_A with timestamp $\mathcal{T}S_{C_A}$ until W2[N_j, $\mathcal{T}S_{C_A}$, C_A] is equal to false.
(a) Wrong scenario where C_C does not wait for the retry of C_A. C_A has to recompute $pred_{C_A}$ by restarting a proposal phase.

(b) Correct scenario where C_C waits for the retry of (c) Correct scenario where C_A collects new set of dependencies.

Figure 8.3: Waiting predicate $W2$ on rejected timestamps.

Exchanging dependencies again Waiting predicate $W2$ along with waiting predicate $W1$ can lead to deadlock scenario (described in section 8.3.5). We avoid this deadlock and still guarantee commit of the retried command C_A with new timestamp $TS_{C_A} = 3$ by computing and reporting new set of conflicting commands to the command C_A’s leader. We now show how recomputing the conflicts limit the number of retries.

Figure 8.3(c) shows that command C_A with timestamp $TS_{C_A} = 0$ is rejected by a node N_i as it conflicts with already accepted command C_B with timestamp $TS_{C_B} = 1$ (step 1-3). Meanwhile command C_C is accepted with timestamp $TS_{C_C} = 2$ without observing C_A as its dependency such that C_A conflicts with C_C and $TS_{C_C} > TS_{C_A}$ (step 4). When C_A’s leader retries C_A with new timestamp $TS_{C_A} = 3$, node N_i recomputes the conflicts and reports updated dependencies C_B, C_C with an acknowledgement to the leader. After receiving updated dependencies, leader sends the Stable message for C_A with all the dependencies. At this time C_A contains C_C as its dependency and vice-a-versa which introduces cyclic dependency. N_i resolves it by adjusting the dependencies i.e., C_C removes C_A from its dependencies as it is committed with timestamp $TS_{C_A} = 3$. This way RETRY message for C_A does not receive rejections.
8.3 Protocol Details

In this section we provide all the details of the protocol. A command C in Caesar goes throughout two phases, named Proposal phase, and Stable phase, in case it can be decided in 2 communication delays; otherwise Caesar requires an additional intermediate Retry phase, which is executed after the Proposal and before the Stable.

Throughout the description we suppose that every node is able to change its local clock according to the observed messages. In particular, whenever a node receives a message for a command C that is associated with a timestamp τ_C, it advances its local clock to a value greater than τ_C. Obviously the value cannot be changed if it is already greater than τ_C, since the clocks’ value can only increase monotonically.

8.3.1 Proposal Phase

The Proposal phase starts when the command C is submitted by a client to a node N_i via Propose(C). N_i becomes C’s leader L_C and it is responsible for finding the order of C with respect to other concurrent commands that are conflicting with C. To do that, N_i computes τ_C as the value of its local clock, and it broadcasts a Propose message containing C, τ_C and $\text{pred}_i C$ to all nodes, where $\text{pred}_i C$ is the set of all commands conflicting with C and that have been observed by N_i with a timestamp less than τ_C.

By doing that, N_i tries to convince at least a quorum of Q_F nodes to accept the processing of C at position τ_C. Therefore, it waits for Q_F replies in order to decide whether τ_C is the final position for C or not. If all the replies in the quorum of size Q_F are Ack messages, N_i can confirm the processing order of C at τ_C; otherwise if the quorum contains at least a Nack message, C needs to undergo the additional Retry phase.

As we explained in Section 8.2, the execution of C relies on the set of conflicting commands that have to precede C. Therefore, in the case τ_C is confirmed, N_i needs to also determine the final set of conflicting commands that have to be executed at positions less than τ_C. In practice, an Ack message from a node N_j also contains the set of commands $\text{pred}_j C$ observed by N_j, conflicting with C, and that are going to be possibly executed at a time less than τ_C. In this case, N_i receives Q_F Ack messages for C and it broadcasts a Stable message with τ_C and pred_C computed as the union of the sets $\text{pred}_j C$, where $\text{pred}_j C$ is contained in the Ack message from N_j.

Before analyzing the case where N_i receives a Nack message in the quorum of replies, let us understand how a node N_j, receiving a Propose message from N_i, computes its reply. Depending on whether we use waiting predicate W2 or not, the following actions may follow

1 We always assume that the destinations of a broadcast are all nodes in the system, including the node broadcasting the message.
two possible paths. If waiting predicate W_2 is used processing of PROPOSE message starts with step 1, otherwise it only includes step 2.

1. As a precondition, N_j first needs to check that $W_2[N_j, TS_C, C]$ is false (see Section 8.2.2 for details on the waiting predicate W_2). If not, N_j does not execute any step for C until $W_2[N_j, TS_C, C]$ is false.

2. N_j sets $\text{status}(C,N_j)=\text{pending}$ and it evaluates the predicate W_1. As soon as $W_1[N_j, TS_C, C]$ is equal to false (see Section 8.2.1 for details on the waiting predicate W_1), N_j determines whether sending a ACK or a NACK message. In particular, N_j sends a ACK if for all commands C' conflicting with C and such that $TS_{C'} > TS_C$, $C \in \text{pred}_{C'}$; otherwise it N_j sends a NACK message, and it sets $\text{status}(C,N_j)=\text{rejected}$. In the former case $\text{pred}_{C'}$ contains all the transactions conflicting with C and having a timestamp less than TS_C; in the latter case $\text{pred}_{C'}$ contains all the transactions conflicting with C, independently of the value of their timestamp.

The intuition here is the following. If N_j confirms the TS_C, it informs L_C about the commands that it knows should be executed before C. Otherwise, if N_j rejects TS_C, L_C has to retry with a timestamp greater than the ones of all the conflicting commands that were observed so far.

8.3.2 Stable Phase

A node N_j receiving a STABLE message for C with timestamp TS_C and predecessors pred_{C} updates the status of C as stable, i.e., $\text{status}(C,N_j)=\text{stable}$. The execution phase of Caesar is really lightweight because any command C marked as stable can be executed as soon as all commands in pred_{C} executed. Right before the execution, C is appended to the current cstruct of type C-struct locally at N_i, i.e., $\text{cstruct} \leftarrow \text{cstruct} \bullet C$, and then cstruct is delivered to the upper layer via the interface Decide(cstruct). Clearly, this is only an abstraction adopted to implement the conventional generalized Consensus specification as reported in Section 8.1, and in the implemented Caesar system N_j only executes C without delivering the whole cstruct.

In order to support such an execution, STABLE commands should not create circular dependencies. This problem can be trivially solved by removing every command C' from pred_{C} if C' is stable and $TS_{C'} > TS_C$. It is worth to notice that this operation does not entail missing at all the precedence relation between C and C', because the protocol guarantees that in this scenario C is always contained in $\text{pred}_{C'}$, since C is ordered before C'.

Finally, the client requesting the execution of C receives a reply with the outcome as soon as the execution of C completes on C’s current leader.
8.3.3 Retry Phase

In case L_C receives at least a NACK message in the quorum of replies, it has to retry with a new timestamp for C, by resetting TS to the current local clock’s value. In addition, L_C also computes $pred_C$, as it does at the end of a successful proposal phase, i.e., by considering the union of all sets $pred^l_C$ contained in the ACK/NACK messages of the received quorum. Afterwards, L_C broadcasts a RETRY message with the pair TS and $pred_C$ in order to inform all the other nodes about its decision on C.

The decision, is the final one for C because of the twofold motivation:

(i) as it will be clarified in Section 8.4, at this stage there cannot exist a node N_j receiving C from L_C and such that it could reply with a NACK message;

(ii) as explained in Section 8.2.2, with waiting predicate W_2 there cannot exist a node N_j that would reply with an additional $pred^l_C$ in this phase.

To ensure that L_C’s final decision is durable, decision process for C cannot stop here. In this phase L_C waits for a quorum of Q_C ACK replies that acknowledge the reception of the RETRY message. Then, its decision can be confirmed to all nodes by broadcasting the Stable message along with the previously computed TS and $pred_C$, and it enters the Stable phase.

Retry phase can now take one of the two paths depending on if it uses waiting predicate W_2. We describe the protocol flow for both cases below.

With waiting predicate W_2 A node N_j receiving a RETRY message for C updates the status of T as accepted, i.e., $status(C,N_j)=accepted$, and sends an acknowledgement message back to L_C.

Without waiting predicate $W_2 Similar to the above case, a node N_j receiving a RETRY message for C updates the status of T as accepted, i.e., $status(C,N_j)=accepted$, recomputes the conflicts for C and collect dependencies again, and sends these dependencies with an acknowledgement message back to L_C. This step ensures that if any other command C' with a lower timestamp got accepted between the time command C was rejected with NACK and the time RETRY message for C was received, C observes C' as its dependency thereby holding the correctness of the partial order.

8.3.4 Size of the Quorums and Handling of Failures

The way we select the values of Q_F and Q_C, i.e., the size of the fast and classic quorums, affects the behavior of Caesar in the presence of failures. As a general scheme, if a node N_i suspects a node N_j, N_i tries to become the leader of any command C such that
status(C,N_i) \neq stable and whose leader is currently N_j. This way we have to guarantee that, if there exists at least one node that already decided to execute C at a certain position, N_i cannot choose to execute C at a different position. As a result, the size of the quorums should be such that when N_i decides to finalize the execution of C, it is able to gather enough information from the other correct nodes in order to avoid mistakes.

To accomplish this recovery, N_i gets information about C from a quorum of Q_C nodes, by implicitly receiving a promise from those nodes that they recognize N_i as C's new leader (roughly speaking N_i executes a classical Paxos prepare phase for C [58]); then it explores a set of cases to find out the final order of C. The trivial cases are the ones where there exists at least one node N_k in the quorum having status(C,N_k) ∈ \{accepted, stable\}, i.e., it received either a STABLE or a RETRY message for C. In those cases, in fact, N_i needs only to force that decision by re-executing a retry phase followed by a stable phase.

In the other cases, C was at most pending at all nodes in the quorum that replied to N_i. Thus these Q_C nodes only observed at most the PROPOSE message for C that was sent in the proposal phase from C’s old leader N_j. Therefore we choose the size of Q_F such that if N_j decided after having received Q_F Ack messages in the proposal phase, then the Q_C replies gathered by N_i would contain a majority of Ack messages for C. Equivalently, we say that the number of gathered NACK messages, which is at most equal to |Π| − Q_F, has to be less than Q_C^2.

Actually we can do better than that, because in case C is conflicting with another command C', and N_i received information from the leader of C' during the recovery, N_i can understand the relative position of C by looking at the decision for C', i.e., if C is not in pred_{C'} then C' has to be in pred_{C}; and, vice-versa, if C is in pred_{C'} then C' should not be inserted in pred_{C}. Therefore we enforce the number of gathered NACK messages to be less than Q_C^2, only in case we do not gather information from a leader of a command conflicting with C:

|Π| − Q_F − 1 < \frac{Q_C^2}{2} \tag{8.1}

The recovery of C proceeds by choosing the timestamp confirmed by a possible majority of Ack messages in the quorum of Q_C replies that are gathered before. If that majority does not exist, N_i can decide the position of C by looking at the decisions made by the leaders of all the commands reported by the Q_C replies as conflicting with C.

Since the number of nodes |Π| is known, we need an additional equation to obtain the values of Q_F and Q_C. In particular we have to avoid that two new leaders of two conflicting and concurrent commands C and C', here called opponents, both believe that the old leaders of C and C' respectively had both decided in the proposal phase (hence after having collected Q_F Ack messages) and such that C \notin pred_{C'} and C' \notin pred_{C} (which is clearly impossible). After f failures and ignoring the reply from the other opponent, each opponent cannot collect a sufficient number of replies (\frac{|Π|−f}{2}) in the recovery phase which totaled up to f is greater
than or equal to Q_F:

$$\frac{|\Pi| - f}{2} + f - 1 < Q_F$$ \hspace{1cm} (8.2)$$

If we minimize the ratio $\frac{|\Pi|}{f}$ by considering $|\Pi| = 2f + 1$, we obtain the following sizes for the classic and fast quorums, respectively:

$$Q_C = f + 1$$ \hspace{1cm} (8.3)$$

$$Q_F = f + \left\lceil \frac{f + 1}{2} \right\rceil$$ \hspace{1cm} (8.4)$$

Note that these are the same quorum sizes adopted by EPaxos [76] and the recovery phase we are applying follows the one in EPaxos.

8.3.5 Deadlock Detection

Due to the waiting predicates W1 and W2 defined in Sections 8.2.1 and 8.2.2, Caesar is prone to deadlock scenarios. We show the necessary and sufficient conditions to have a deadlock in Caesar, and how to solve it. The mechanism adopted is a conventional timeout-based detection of deadlocks, and in the experimental evaluation of Section 8.5 we show that the solution is sufficient to maintain as negligible the impact of the deadlocks.

The conditions to have a deadlock are explained by the scenarios in Figure 8.4. The necessary condition is a cycle of dependencies created by a sequence of waiting predicates W1 and one waiting predicate W2 equal to true. For instance, as in Figure 8.4(a), the command C_A
waits for the final decision of the command C_B on N_0 (because $W1[N_0, 4, C_A] = \text{true}$ and $\text{status}(C_B,N_0)=\text{pending}$), the command C_B waits for the final decision of the command C_C on N_2 (because $W1[N_2, 5, C_B] = \text{true}$ and $\text{status}(C_C,N_2) = \text{pending}$), and the command C_C waits for the final decision of the command C_A on N_4 (because $W2[N_4, 6, C_C] = \text{true}$ and $\text{status}(C_A,N_4)=\text{rejected}$). Nonetheless, the condition is necessary but not sufficient, because at any time one of the commands in the cycle could break the cycle by setting one of the waiting predicates to false. This happens if either N_0 (resp. N_2) receives a RETRY/STABLE message for C_B (resp. C_C), or N_4 receives a RETRY message for C_A.

On the other hand, Figure 8.4(b) shows how the necessary condition of Figure 8.4(a) becomes sufficient. That happens when the commands C in the cycle are also waiting on Q_F nodes (due to the waiting predicates), and all the commands that are causing the waiting for C are involved in other cycles of dependencies (like the one defined by the necessary condition). Therefore, in our example, the condition is sufficient if C_A is waiting on $Q_F = 3$ nodes due to C_B, C_D and C_E (the circle in Figure 8.4(b)), and if we suppose that C_B, C_D and C_E are involved in other cycles (which are not showed in the figure).

The deadlocks can be resolved by implementing a timeout-based mechanism that monitors the waiting predicate $W2$. As soon as it is detected that the value of $\text{status}(C,N_i)$ for a command C on a node N_i remains equal to rejected for an amount of time greater than a tunable parameter DEADLOCKWATCH, a deletion and re-execution of the protocol for C can be enforced. This means that, in the scenario of Figure 8.4(b), a deletion and a re-execution of the protocol for C_A is enforced, thus breaking the cycle presented in Figure 8.4(a).

8.4 Correctness Arguments

In Sections 8.2.1, 8.2.2 and 8.3.4 we provided explanations on how the main rules of the protocols have a role to guarantee the correctness. However in this section we provide informal arguments to explain why Caesar implements the Generalized Consensus specification, as defined in Section 8.1.

Nontriviality property is guaranteed because any node in Caesar appends only proposed commands to the local $cstruct$ used as input to $\text{Decide}(cstruct)$ (Section 8.3.2); while Stability property is trivially guaranteed because the $cstruct$ variables monotonically grow on any node, and nodes only decide $cstructs$ (Section 8.3.2). Liveness property is guaranteed because a correct node is always able to finalize the decision for a command C that is not concurrent to any decision of a command that conflicts with C: there always exists a replying quorum and C cannot block on any waiting predicate.

Proving that the Consistency property is guaranteed is more interesting because we have to show that: i) for any command C if a node N_i receives the STABLE message for C with timestamp $\mathcal{T}S_C$ and predecessors set pred_C, then any other correct node will eventually receive the STABLE message for C with the same timestamp $\mathcal{T}S_C$ and predecessors set
pred\(_C\); ii) if two commands \(C\) and \(C'\) are conflicting and they are decided with timestamps \(TS_C\) and \(TS_{C'}\) respectively, where \(TS_{C'} < TS_C\), then \(C' \in pred\(_C\). Note that these are sufficient to prove Consistency because they guarantee that if a node decides a command \(C\) in a C-struct then eventually any other correct node does the same; if some node decides command \(C'\) in a C-struct before deciding \(C\), then a node decides \(C\) in a C-struct only after it has decided \(C'\).

In a failure-free execution the former property is verified since the decision on the order of a command \(C\), i.e., timestamp \(TS_C\) and predecessors set \(pred\(_C\), is taken by a unique node, namely \(C\)'s leader \(L_C\), which broadcasts the decision to all the other nodes. Further, in a scenario with failures, even though \(C\)'s leader fails before all nodes have learnt its decision about \(C\), but after the decision has been learnt by at least one node in the system, Caesar guarantees that \(C\)'s new leader does not enforce any decision different from the one already taken by \(C\)'s old leader (see Section 8.3.4).

Concerning the latter property, we can show that if we suppose that the property is not guaranteed by contradiction, we can obtain an absurd. In particular we can suppose that there are two conflicting commands \(C\) and \(C'\) that are decided at timestamps \(TS_C\) and \(TS_{C'}\) respectively, where \(TS_{C'} < TS_C\), and such that \(C' \notin pred\(_C\). We have to distinguish two different scenarios depending on whether \(C\) undergoes a retry phase or not.

\(C\) undergoes a retry with waiting predicate \(W_2\). We suppose that \(C\) first selects a timestamp \(TS^\text{temp}_C < TS_{C'}\) (because \(C'\) is not in \(pred\(_C\)) and then it retries with timestamp \(TS_C\) due to a NACK received in the proposal phase. Thanks to the waiting predicate \(W_1\) (Section 8.2.1), if there is a node sending a NACK for \(C\), then there are at least \(Q_C\) nodes such that if they observe \(C\) then they reject \(C\). Therefore, there is at least a node \(N_j\) where the proposal phase for \(C'\) waits till the reception of \(C\) with a new timestamp \(TS_C\) due to the waiting predicate \(W_2\) (Section 8.2.2). Furthermore, since \(C\) is accepted without \(C'\) in \(pred\(_C\), then \(N_j\) forces \(C'\) to retry with a new timestamp \(TS_{C'} > TS_C\), due to the waiting predicate \(W_1\), by contradicting the hypothesis \(TS_{C'} < TS_C\).

\(C\) undergoes a retry without waiting predicate \(W_2\). We suppose that \(C\) first selects a timestamp \(TS^\text{temp}_C < TS_{C'}\) (because \(C'\) is not in \(pred\(_C\)) and then it retries with timestamp \(TS_C\) due to a NACK received in the proposal phase. Since \(C\) did not observe \(C'\) and thanks to the characteristics of quorums i.e., any two quorums have non-empty intersection, the quorum of nodes replying to the proposal of \(C'\) observe \(C\) as its dependency, thus having \(C \in pred\(_C\). Therefore when \(C\) is retried with the new timestamp \(TS_C\) such that \(TS_C > TS_{C'}\), \(C\) observes \(C'\) as its dependency such that \(C' \in pred\(_C\). That is because there exists at least one node that was in the quorum replying to the proposal of \(C'\) and is in the quorum replying to retry of \(C\). This contradicts the hypothesis \(C' \notin pred\(_C\). It should be noticed that this correctness property is independent of the waiting predicate \(W_1\).

\(C\) does not undergo a retry. We suppose that the first proposed timestamp \(TS_C\) for \(C\) is the final one. Since \(C\) has been accepted without \(C'\) in its \(pred\(_C\), then there exists at least one node \(N_j\) that forces a retry phase for \(C'\) at position \(TS_{C'} > TS_C\). And clearly
that contradicts the hypothesis $TSC' < TSC$.

As a last note we show that the retry phase for a command C cannot be executed multiple times in Caesar. In fact, there cannot exist a node N_j replying with a Nack in the retry phase of C due to a conflicting command C'. This is because the only two admissible cases are the following: (i) TSC is greater than the timestamp TSC' because C observed C' before the retry; (ii) $C \in \text{pred}_{C'}$, because C' observed C during its proposal phase.

8.5 Implementation and Evaluation

We implemented a prototype of Caesar in Java and we contrasted it with the three most related competitors in literature: EPaxos, Mencius and Multi-Paxos. This selection allows us to identify strengths and weaknesses of Caesar because each of these competitors performs well in a particular scenario and suffers in others. The main goal of this evaluation is showing how Caesar is able to maintain high the throughput and low the latency when the amount of conflicts increases. In addition, we also show that Caesar can also perform better than conflict-independent protocols in their unfavorable conditions, namely when the single designated leader is overloaded in Multi-Paxos, or when one of the nodes is slow or suspected as crashed in Mencius. We did not include Alvin in this evaluation because Alvin adopts the same mechanism of EPaxos to switch from a fast path of decision to a slow path of decision, hence exhibiting the same inability to improve the probability of decide in two communication delays.

In order to conduct a fair comparison, all competitors have been re-implemented using the same programming language and the same runtime framework developed for Caesar. This way, all take advantage of the same low level mechanisms applied to Caesar.

In order to pursue this goal, we used the PRObE [30] infrastructure reserving 15 nodes. Each machine has 64 AMD Opteron CPU cores and 128GB of memory. All nodes are located within the same datacenter and interconnected through a 40Gbps network. All results are the average of 20 samples. Benchmarks used in this evaluation include key-value store, a single object access synthetic benchmark, TPC-C [19], a popular on-line transaction processing benchmark and Vacation, a distributed version of the famous application included in the STAMP suite [11]. Whereas Key-value store helps us to evaluate the ordering layer performance, TPC-C and Vacation provides a real-world application that also evaluates transaction processing.

8.5.1 Key-Value Synthetic Benchmark

We ran key-value store, a synthetic benchmark generating client requests in closed loop by varying the number of nodes and the number of clients per nodes. Each request encloses a
command that uniformly accesses 1 object among a shared set containing at most 10000. We vary the size of the shared set to also change the possible number of conflicts. We enforce conflicts by making N number of clients to access the same object, and we explore $N = \{0, 2, 3, 4, 6\}$ conflict possibilities where $N = 0$ denotes partitioned accesses.

Figures 8.5 show the throughput (executed commands per second) and the latency (in milliseconds) for partitioned access ($N = 0$). We keep the number of clients per replica constant, therefore the client load increases as we increase the system size. We notice that Paxos has the best performance for low number of nodes as it doesn’t need to compute dependencies. Performance of Mencius improves as more replicas are added to the system but since it is a total order version, its performance is bound by serial execution. Mencius also pays the cost of waiting to hear about other replica’s progress. EPaxos performs poorly as it includes graph processing to resolve the order in case of cyclic dependencies. It should be noted that this graph processing sits in the critical path of command execution. To verify this claim, we also ran EPaxos without graph processing and the results of NG-EPaxos shows that graph processing indeed is the cause of poor performance for EPaxos. Lastly, Caesar’s performance improves initially as the system size increases and then it gracefully saturates the system size becomes a bottleneck.

We then evaluated the performance of ordering layer under the conflicts. Figures 8.6 show the performance of Caesar with a conflict setting of three clients concurrently accessing one object. Figure 8.6(a) shows the impact of conflicts on throughput of Caesar and EPaxos. Since Paxos and Mencius are oblivious to conflicts their performance remains unaffected by the conflicts. EPaxos shows degradation in throughput due to increasing cost of graph processing due to higher number of connected nodes in dependency graph. Caesar on the other hand shows a consistent performance even as the system size increases. Figure 8.6(b) shows the latency perceived by clients which shows trends in accordance with the corresponding throughput plots. Lastly, Figure 8.6(c) shows the percentage of fast-paths i.e., arrival of decision for a command in two communication delays, for EPaxos and Caesar. Experimental
results show that Caesar maintains the higher number of fast-paths since it only needs second round of communication for deciding a command if it receives a Nack. On the other hand, EPaxos shows decreasing number of fast-paths as it only needs a quorum to observe different set of dependencies for a command to initiate second round of communication to decide it.

Figure 8.7(a) shows the impact of conflicts on EPaxos and Caesar. As the conflicts increase, EPaxos pays higher cost specifically due to costly graph processing in the critical path of command execution. Caesar on the other hand degrades gracefully and maintains overall high throughput. Focusing on the evaluation on 11 nodes, in Figure 8.7(b), we also show one of the main cause of the difference between Caesar and EPaxos. As claimed previously, with this experiments we empirically prove that Caesar is able to maintain high probability of deciding a command in two communication delays, by varying the degree of conflict. In particular, the probability of deciding a command under such fast paths is not less than 96% in Caesar, while EPaxos degrades this probability to 70% in case of 6 concurrent commands per object.

(a) Throughput for varying conflict settings.
(b) Percentage of fast path decisions and slow path decisions using Caesar and EPaxos.

Figure 8.7: Ordering layer performance on 11 node system.

8.5.2 TPC-C Benchmark

TPC-C is a popular on-line transaction processing (OLTP) benchmark that performs a non trivial amount of work per transaction. TPC-C is characterized by transactions accessing several objects and the workload has a contention level usually higher than other benchmarks (e.g., Bank). Under the default profile, TPC-C generates 92% of write transactions. Two conflict scenarios (low, high) were evaluated, varying the total number of shared warehouses (the most contented object in TPC-C) in the range of \(\{200, 1000\} \) respectively.

(a) Throughput under high conflict (200 Warehouses).
(b) Throughput under low conflict (1000 Warehouses).

Figure 8.8: Ordering layer performance for TPC-C commands.

Figure 8.8 shows the performance of Caesar with different conflict levels i.e. low and high. It should be noticed that EPaxos performs better when the number of conflicts are lesser.
In case of high conflicts EPaxos performs poorly as the cost of graph processing increases with conflicts. As expected, Mencius performs better than Caesar for ordering layer as it does not compute dependencies. But Mencius’s performance depends on the slowest node in the system. If a node is overloaded and could not exchange messages with other nodes in the system, it can slowdown the progress of all nodes.

Figure 8.10: TPC-C transaction processing performance under low conflict (1000 Warehouses).

Figure 8.9 shows the performance plots for transaction processing with a high contention of 200 shared warehouses. Number of clients per replica were kept constant such that as the system size increased the conflict also increased since more clients ended up accessing same number of shared warehouses. It is interesting to observe that even with increasing conflicts Caesar is able to outperform all of the competitors since it is able to exploit partial order efficiently. Paxos and Mencius suffer from serial execution of transaction requests, whereas
EPaxos suffers heavily from graph processing due to high conflicts.

Evaluation for low conflict scenario with 1000 shared warehouses in Figure 8.10 reveals that performance of EPaxos improves as the graph is sparsely connected and more transactions can execute in parallel. Caesar also benefits from this reduced conflict but since it is able to efficiently execute transactions in parallel even in high conflict scenarios, the gain seems smaller as compared to EPaxos.

8.5.3 Vacation Benchmark

The Vacation Benchmark is an application originally proposed in the STAMP suite [11] for testing centralized synchronization schemes and often adopted in distributed settings (e.g., [112]). It mimics the behaviour of clients for making reservations of vacation related items. Conflicts in Vacation are defined by the number of relations available. Each relation represents four reservation items i.e., car, room, flight and customer. Vacation transaction length depends on number of query requests per transaction. This experiment evaluates Caesar with 4 queries per transaction and two conflict scenarios i.e., low with 1000 relations and high with 200 relations in the system.

![Throughput under high conflict (200 Relations).](image1)

![Throughput under low conflict (1000 Relations).](image2)

Figure 8.11: Vacation transaction processing performance.

Figure 8.11 shows the throughput performance of Caesar along with competitors. Specifically in high contention scenario, EPaxos suffers greatly as more dependencies are observed per transaction and as a result graph processing complexity increases. In low conflict scenario, EPaxos performs much better and it gracefully degrades on increasing the systems size. Considering the length of transaction is small but it has more dependencies as more objects are accessed per transaction, total order based approaches, especially mencius, perform better than Caesar.
8.6 Summary

Caesar shows that existing high-performance implementations of Generalized Consensus suffer from performance degradation when the percentage of conflicting commands increases. The reason is related to the way they establish a fast delivery. In Caesar an innovative technique was presented that provides a very high probability of fast delivery (e.g., always more than 95% in the experimented cases). Results confirmed the claim by outperforming competitors on almost all tested cases.
Chapter 9

Scaling Up Active Replication using Staleness

Past work has shown that AR-based solutions outperform competitor approaches [46, 78, 51], especially on high-contention workloads (i.e., where transactions are mostly conflicting) and those with a higher percentage of read-only requests. However, AR-based solutions suffer from poor scalability.

AR exploits the ordering layer for reproducing the same transactional state on multiple nodes such that read-only workloads can be executed quickly without remote interactions. This technique scales: with increasing number of nodes, more read-only requests can be locally served on those nodes, increasing the overall performance. However, the ordering layer is expensive in terms of the number of messages exchanged for reaching agreement among the nodes (number of messages exchanged typically increase quadratically with the number of participant nodes). Thus, when the system size increases, the overall performance increases up to a certain point, after which the ordering layer becomes the performance bottleneck, significantly hampering further scalability.

In this work, we overcome AR’s non-scalability. We present Dexter, an an AR-based transactional system that scales beyond the ordering layer’s performance bottleneck. Our key idea is to exploit application specifics to achieve high scalability.

AR solutions usually exploit local concurrency control protocols that rely on multi-versioned objects. In particular, when a read-only transaction is delivered on a node, the transaction uses the local timestamp to determine the set of shared objects that can be seen during the transaction’s execution, preserving serializability. As an example, when a write transaction T_w commits its writing on an object O_w, it appends a new version of O_w, called O_{w2}. This way, if a read-only transaction T_r that started before T_w’s commit wants to read O_w, then T_r will not access O_{w2}; otherwise, T_r’s transactional history could become non-serializable.

Instead, T_r will access a previous version of O_w that is compliant with its previously acquired
timestamp. As a result, read-only transactions are executed in parallel, without conflicting with on-going write transactions, and their execution cannot be aborted. Abort-freedom of read-only transactions is a highly desirable property, because it allows read-only workload – the common case – to be processed quickly even though the objects read are not always the latest copy available in the system.

Dexter leverages the abort-freedom property for serving those class of transactions that do not necessarily require access to the latest object versions. As an example, many online vendors (e.g., Amazon, Walmart, Ebay) keep inventory of various items at different locations. A customer who is planning to buy an item needs to know about the available inventory (in addition to price and other information) to make a timely decision. Sometimes, it is not necessary (from the vendor’s standpoint) to respond with the most up-to-date information if the item has a large inventory and is not sold that often. This is because, from the customer’s standpoint, it is irrelevant whether the inventory that is displayed about the item’s availability is up-to-date or stale if the inventory is significantly larger than the maximum amount that a single customer would usually buy.

Dexter’s architecture divides nodes into one synchronous group and a set of asynchronous groups. Nodes in the synchronous group process write-transactions according to the classical AR paradigm. Nodes in the asynchronous groups are lazily updated, and only serve read-only transactions with different requirements on data freshness. The asynchronous groups are logically organized as a set of levels, with each group maintaining objects with a certain degree of freshness. The synchronous group stores the latest versions of the objects, and thereby serves those read-only requests that need access to the latest object versions. The asynchronous group at the first level manages read-only requests on objects that are not the latest, but at the same time, are not too old as well. At the second level, as well as at further levels, the expected freshness of objects decreases accordingly. The main advantage of this architecture is that write transactions yield AR’s traditional high performance, while at the same time, nodes can scale up for serving additional read-only workloads, exploiting the various level of freshness that is available or expected.

For exploiting the aforementioned architecture, obviously, the application must specify the needed level of freshness guarantees. For this reason, Dexter provides a framework for inferring rules that are used for characterizing the freshness of a read-only transaction when it starts in the system. Using this framework, the programmer can describe the application’s requirements. Rules can be defined based on the elapsed time since the last update on an object was triggered, as well as based on the content of the object (as well as the type of the object). Using this framework, the programmer defines rules in content-based style, e.g., “when the field \(F_1 \) of an object \(O \) is in the range of \(\alpha \) and \(\beta \), then a read-only request can be handled at the level \(L \),” or in time-based style, e.g., “the version of object \(O \) that is \(\epsilon \) old is stored at the level \(M \).”

Dexter also provides a more explicit API to the application such that the programmer can directly force the desired level for read-only requests. If the application has a specific class
of queries that must access the latest versions of the objects, then the programmer can mark those requests with level 0, which corresponds to the synchronous group, and the request will be directly delivered and managed by the synchronous group.

Dexter processes transactions to match application rules. It distinguishes between the execution flows of read and write transactions. Write transactions submitted by application threads are delivered and processed in the synchronous group using a high-performance active replication protocol, without interfering with the asynchronous groups. In contrast, read-only transactions that are not tagged by the application to be handled at a specific level are not delivered to the synchronous group, but rather to the asynchronous group at the last level (i.e., with the greatest index according to the previous definition). Each asynchronous group accepts a transaction request and selects one node for its processing. If the node, during the transaction execution, recognizes that at least one rule is not satisfied, then the read-only request is propagated to one level up. This way, the asynchronous group that is able to satisfy all the rules will reply to the application, without consuming resources in the synchronous group, thereby allowing it to process write workloads without any slow-down.

The downside of this architecture is that, read-only transactions may not be processed completely locally, potentially increasing their latency. However, the number of expected levels in the system is limited, thus limiting the maximum number of hops that a read-only transaction has to perform. In addition, not all the read-only requests traverse all the levels (otherwise the application is not actually designed for exploiting Dexter’s architecture). Thus, the architecture is particularly effective when the majority of the requests can be served by asynchronous groups with the lower levels of data freshness.

As we argued before, in many e-commerce-like applications, most of the queries do not need to access the latest object versions; older versions are likely sufficient. In particular, the perception of time between the system and the user is different. When the number of items available in the stock for a needed purchase is very high, a refresh time of 10 seconds is negligible from the user’s perception. From the system’s perception, making asynchronous updates every 10 seconds could help offload a number of read-only transactions from the synchronous group to the asynchronous groups, which reduces interference to read-write transactions, improving write transactions’ throughput and, in general, overall performance.

We implemented Dexter in Java. We used HiperTM [46], an AR-based transactional protocol and system for implementing the synchronous group, directly leveraging its implementation. The rest of the infrastructure was built from scratch. We conducted an extensive evaluation study aimed at testing the scalability of the system. Our experiments on PRObE [30], an high-performance public cluster, reveal that Dexter improves throughput by as much as $2\times$ against HiperTM using Bank, and $2.1\times$ using TPC-C.
9.1 System Model and Assumptions

As the system setup demands of Dexter are different than the previous works, we need to refine the system model presented in Chapter 4. Since Dexter requires bounds on network communication delays a synchronous network [64], rather than a partially synchronous one.

Dexter’s architecture divides nodes into one synchronous group and a set of asynchronous groups. Nodes in the synchronous group process write-transactions according to the classical AR paradigm, thus they require a consensus algorithm for ordering incoming transactions. In this group, the usual assumption is having $2f + 1$ correct nodes, where at most f nodes are faulty.

Nodes in the asynchronous groups are lazily updated, and only serve read-only transactions with different requirements on data freshness. In the asynchronous groups, we do not globally order transactions, because updates from the synchronous group are already ordered. In these groups we assume a number of correct nodes and a \diamondS failure detector [13], sufficient for supporting the desired leader-election algorithm (Dexter’s solution is independent from the specific leader-election algorithm actually used).

Nodes share a synchronized clocks running a clock synchronization protocol, such as Network Time Protocol (NTP) [73]. In our dedicated test-bed we measured a maximum skew of 1 msec. We also assume that all the delays configured in Dexter are longer than this time.

9.2 Architecture Overview

Dexter groups nodes according to different levels of freshness guarantees. We define the freshness of a shared object based on two factors: time and number of updates received. Focusing only on time-based freshness can be misleading. For example, if the last update on an object was received Δ time units ago, we cannot say that the object is Δ time units old, because it is possible that no other updates could have happened during Δ and therefore the object is still fresh. In contrast, if several updates occur on the object during Δ, then it should be considered old, having a lower level of freshness.

As previously mentioned, Dexter defines two group types: the synchronous group and the asynchronous group. The synchronous group is defined as the set of nodes that serve both read-only and write transactions, and there is only one such group in the system. Overall system progress cannot be guaranteed without this group. Read-only transactions running on the synchronous group always operate on the most recent versions of the accessed objects.

The protocol for executing transactions in the synchronous group is based on active replication [99, 78, 46, 77]. This design choice is made not only for obtaining high-performance, but also because, in active replication, each node is aware of all the write transactions submitted by any client. This means that, each correct node can reproduce the same state of
the whole shared data-set independently from the others. This property is fundamental to Dexter, because one of the tasks of the synchronous group is to propagate recent updates to the asynchronous groups. In addition, by keeping the size of the synchronous group small, we also inherit AR’s key benefits including faster execution of write transactions and high-throughput of the ordering layer [6].

Recall that, in active replication, write transactions are executed in order. Therefore, the impact of transactions’ conflicts is also minimal. In addition, each node is equipped with a multi-versioned concurrency control protocol for serving read-only transactions without incurring abort costs due to logical contention with concurrently executing write transactions [46, 51].

Dexter defines multiple asynchronous groups. Each of them is responsible for serving read-only transactions issued by clients. Write transactions are never delivered to asynchronous groups; instead, they get deferred updates from the synchronous group. The process of disseminating updates across the asynchronous groups is optimized for the size of the updates. If the synchronous group is able to process $\approx 100K$ write transactions per second, then each node produces a large amount of data to be propagated per second 1. 2

The synchronous group contains two leaders: one for ordering the write transaction requests received from the clients, called the AR-leader, and another for transferring the updates to the asynchronous groups, called the update-leader. The AR-leader [6, 58] is elected (in the presence of failures) using a classical leader election algorithm [58]; the update-leader is similarly elected. Moreover, we transition the role of the update-leader among the different nodes during the evolution of the system, because the process of pushing updates to asynchronous

1Consider an integer object of 4 bytes. Let transactions access two such objects. If 50% of the transactions access different objects, then a node generates 400K bytes of new data each second.

2As an example, if the transfer unit per transaction is 4 bytes then each second a node generates 400K bytes of new data to transfer.
nodes requires computational resources that are also needed for executing the active replication protocol. If the same node ends up as both the update-leader and the AR-leader, then that node’s performance will likely decrease. If the AR-leader slows down, it degrades the ordering layer’s performance, and as a consequence, degrades the performance of write transactions. Any other correct node within the synchronous group is a good candidate for being an update-leader, because every node has the entire shared data-set consistent and updated (due to the active replication protocol). For this reason, we exclude the AR-leader from the set of possible new update-leaders.

The performance of the update-leader could be affected during the processing of the deferred updates. However, ordering layers usually base their decision on the majority of the replies collected. During the time needed for deferring all the updates, the update-leader will unlikely end up in this majority. As a result, this likely will not affect the performance of the ordering protocol.

Each asynchronous group also elects an update-leader using the same algorithm as the synchronous group. This node is responsible for managing incoming updates.

Groups are logically organized as a chain. Let SG denote the synchronous group and AG_n denote the asynchronous group located at position n of the chain. The whole system can be logically viewed as a chain of updates e.g., $SG \rightarrow AG_1 \rightarrow AG_2 \rightarrow \ldots \rightarrow AG_n$. The synchronous group, through the update-leader, forwards the updates to the first asynchronous group (i.e., AG_1). AG_1’s update-leader receives those updates and broadcasts them to other nodes in the same group. AG_1’s update-leader also propagates updates to AG_2. Generalizing, the asynchronous group AG_i elects an update-leader that receives updates from group AG_{i-1} and forwards new updates to AG_{i+1}. We name each position in the chain as level: level 0 corresponds to SG; level i represents AG_i.

We define three parameters (also called system parameters in the rest of the chapter) that can trigger the event of forwarding updates from level 0 to level 1:

- δ, which represents the time between two updates. When the update-leader finishes pushing updates to the next level, it triggers the next update forwarding process after time δ;
- λ, which is the number of object updates seen by a replica since the last forwarding. It corresponds to the sum of the size of the write-sets of committed transactions (i.e., $\sum |Tx.writeset|$);
- Λ, which is the maximum number of updates observed by a replica per object.

If one of these parameters exceed a predefined threshold, the update-leader starts forwarding updates to level 1 of the chain (i.e., AG_1). The δ parameter is useful when the workload is uniform, which means that objects are almost updated with the same probability. However, considering only this parameter for triggering updates could be misleading if the workload becomes more write-intensive. In fact, committing a significantly higher number of write transactions results in several object versions in the SG, which also makes the objects stored
in AG_1 much older (and less fresher) than expected. In this scenario, the λ parameter is fundamental. When λ becomes greater than a threshold, updates are computed and pushed to level 1 such that the desired freshness of objects stored at that level is still maintained. The Λ parameter is similar to λ but it is defined over each object. Λ is needed to cope with “hot spot” objects (i.e., objects with frequent updates). If the number of updates is less than λ, but the great majority of those affect few objects, a new forwarding process towards AG_1 is triggered (for the same reason as that with λ). All of these thresholds are application-specific and could be changed by the programmer according to application needs.

The update-leader of level 0 sends all the updates to the update-leader of level 1. It does not broadcast to all the nodes in level 1; otherwise, given the size of the data transfer, the increased network utilization could potentially degrade overall performance. The level 1’s update-leader disseminates the collected updates from level 0 among its group’s nodes and also propagates older updates to level 2.

This architecture is optimized for deployment scenarios where the network infrastructure between levels are configured such that sending an intra-level message does not interfere with other inter-level messages. However, the performance of our solution are equivalent to broadcasting updates from the update-leader to all the nodes in the next group with a completely shared network infrastructure.

When the level 0 pushes updates to level 1, it tags the message with the time elapsed, ϵ, since the previous transfer. This time is used by the update-leader of level 1 as a timeout for propagating those updates to level 2. This approach allows to reproduce the same schedule of updates triggered by SG. If the application workload is stable, then an update U_1, sent from SG to AG_1 at time T_1, will be propagated from AG_1 to AG_2 at time $T_2=T_1+\delta$. It will arrive at the third level at time $T_3=T_2+\delta$. In this scenario, $\epsilon = \delta$. However, if after sending U_1, SG’s update-leader receives a number of write transaction requests such that either the λ or Λ threshold is exceeded, then SG propagates a new update U_2 to the first level of the chain. In this case, the elapsed time ϵ between U_1 and U_2 is smaller than δ. In order to avoid significantly stale object versions at subsequent levels, the update-leader of level 1 will only wait for ϵ, rather than δ.

Due to the active replication paradigm, the synchronized clock among nodes, and the assumption that any of the update intervals are larger than the nodes’ clock synchronization skew, each node can calculate all the aforementioned parameters and end up with the same decision as the others (see Section 9.4.2). This is particularly important if the update-leader crashes; a new node is then easily elected as the next update-leader.

In order to exploit the proposed architecture, read-only transactions are delivered from application threads to the last level of the chain, and, according to the fulfillment of rules, they are either served from the outermost level, or sent to the previous level. Eventually, a read-only transaction is executed either at the level where all its applicable rules have been satisfied, or in the synchronous group. Within each level, read-only transactions are balanced on all the nodes of the group.
The proposed architecture allows fast execution of write transactions, minimizing their interference with read-only workloads, which are mostly processed externally at the other levels. Groups AG_1, \ldots, AG_n can be seen as an extension of SG, and they allow the system to scale up performance with size increases, exploiting application characteristics.

Clearly, this framework has limitations. For example, if the transactional application is mission-critical, then having only the synchronous group (and no asynchronous groups) is likely a better design choice. This is because, if the application is not able to exploit the asynchronous groups, then the overhead for checking the various rules and computing the additional parameters does not payoff.

9.3 Rule-based framework

Dexter provides a framework for defining application-specific rules such that the chain for executing read-only transactions, as described in Section 9.2, can be exploited. For easy programmability, Dexter minimizes programmer interventions and also provides specific APIs that enable specification of more complex requirements.

We define δ, λ, and Δ (described in Section 9.2) as system parameters.

A transaction can specify the desired execution level of the chain by using a version of the invoke API (described in Section 9.1 that explicitly provides the level (i.e., `invoke(type par1, type par2, ..., levelN)`). In addition, to be consistent with the classical active replication programming model [46, 78], the `invoke(type par1, type par2, ...)` API of a read-only transaction delivers the transaction request to the synchronous group. Therefore, if the programmer does not specify any system parameters, Dexter will default to classical active replication, processing all transactions (read and write) in the synchronous group. Otherwise, there are two execution configurations that the programmer can use for exploiting different levels of object freshness: exclusively time-based (TB) or time/content-based (CB).

With the TB configuration, the time between pushing updates between levels (i.e., δ) is the only mandatory system parameter. At the application side, the API for invoking a read-only transaction is extended with a new parameter, called δ_{App}, that describes the maximum time since the objects accessed by the transaction has been updated. This way, the previous `invoke` API becomes `invoke(type par1, type par2, ..., δ_{App})`. When a read-only transaction traverses the chain, δ_{App} is used for selecting the appropriate level (see Section 9.4.3 for complete discussion).

Dexter offers another execution configuration for inferring more complex rules based on both the content and the freshness of objects accessed. The framework allows to define groups of rules. Each group is identified by an ID such that a transaction can specify which group of rules should be applied while it is processed. To exploit this feature, the programmer should use another version of the invoke API that is overloaded with the corresponding group’s ID.
As an example, let RG_1 and RG_2 be two groups of rules. Let Tp_1 and Tp_2 be two application transaction profiles. When the programmer needs to invoke Tp_1, she\(^3\) can decide whether RG_1 or RG_2 or none of them can be applied. The same happens with Tp_2. In this case, the invoking command will change as $Tp_2(\text{type par1, type par2, ...}, RG_1)$ or $Tp_1(\text{type par1, type par2, ...}, RG_2)$ accordingly.

Each rule, named \mathcal{R}, is classified as:
- time-based, called \mathcal{R}_T; or
- content-based, called \mathcal{R}_C.

\mathcal{R} can be applied to an entity Ψ that can either be an object field (e.g., $\text{warehouse.zip.code}$) or an object type (e.g., warehouse). \mathcal{R} is logically defined as a triple $[\Psi, \text{expression}, \text{level}]$ where:
- Ψ is the entity (i.e., object field or type) accessed by the read-only transaction;
- expression is either an expression that can be evaluated using logical (and, or, not) and/or mathematical ($<,\leq,>,\geq,=)$ operators, if \mathcal{R}_C is the rule’s type; or it represents the maximum elapsed time since Ψ was refreshed, if \mathcal{R}_T is the rule’s type; and
- lev is the level in the chain that can serve the read-only transaction.

Let T_R be the read-only transaction currently processing at node N_R. The semantics of a rule \mathcal{R} depends on the rule’s type:
- Rule \mathcal{R}_C. If the entity Ψ has a value in N_R that satisfies expression, then T_R is executed at the level lev in the chain.
- Rule \mathcal{R}_T. If the last time that the entity Ψ has been refreshed is less than expression, then T_R is executed at the level level in the chain.

In other words, a rule represents a programmer’s hint. By exploiting rules, a programmer provides a hint to Dexter on how to recognize if a read-only transaction can be executed at a certain level in the chain, according to application needs.

Rules belonging to the same group are evaluated as or. When a read-only transaction is processed, if at least one rule is not satisfied, the transaction is not executed at the current level and is forwarded to the previous level.

For the sake of simplicity and for faster processing of rules, we scope out equations involving multiple entities.

Rules are known to all the nodes in the system, but they do not apply to nodes of the synchronous group. Here, read-only transactions access the freshest data available in the system, thus there is no fall back plan.

\(^3\)We assume the programmer is a woman.
9.4 Processing transactions in Dexter

We now describe the three main steps involved in transaction processing in Dexter. We first describe how transactions (read-only and write) are processed in the synchronous group. We then discuss the mechanisms for propagating updates from the synchronous to asynchronous levels. Finally, the execution flow of read-only transactions in the asynchronous groups, as well as the mechanism for checking rules, are detailed.

9.4.1 Handling Transactions In The Synchronous Level

Write transactions are executed in the synchronous group according to the active replication paradigm. This paradigm requires two main building blocks for handling a write transaction. The first is a total order protocol (e.g., Atomic Broadcast [50]) that defines a global order among write transactions issued by clients. The second is a local concurrency control protocol responsible for processing those transactions according to the already defined order. This determinism on transaction processing is mandatory. Otherwise, nodes will end up in different states, violating the nature of state-machine replication and preventing the local execution of read-only transactions without global synchronization. Another advantage of deterministic, in-order commit is that, it ensures one-copy-serializability [5].

Application threads (i.e., clients) use the appropriate invoke API for invoking a write transaction (i.e., tagged with a flag signaling that the transaction is write). After that, a thread waits until the transaction is successfully processed by the replicated system and its outcome becomes available. Each client has a reference node for issuing requests. When that node becomes unreachable, or a timeout expires after the request’s submission, the reference node is changed and the request is re-submitted to another node. Duplication of requests is handled by tagging messages with unique keys composed of the client ID and the local sequence number.

Dexter relies on the HiperTM [46] active replication system for processing transactions in the synchronous group. Within the AR paradigm, HiperTM speculatively processes transactions for maximizing the overlap between the global coordination of transactions and the local transaction execution. HiperTM uses Optimistic S-Paxos (or OS-Paxos), an implementation of optimistic atomic broadcast (OAB) [83, 50], built on top of S-Paxos [6], for defining the global order of write transactions. OAB enriches classical Atomic Broadcast with an additional delivery, called optimistic delivery, which is sent to nodes prior to the establishment of message’s global order. This new delivery is used by local concurrency control to start transaction execution speculatively, while guessing the final commit order. If the guessed order matches the final order, the transaction is already totally (or partially) executed and can be committed. OS-Paxos shows good scalability (for up to 20 nodes) and high-performance [46]. The HiperTM implementation is open-source.
In HiperTM, each replica is equipped with a local speculative concurrency control protocol for executing and committing write transactions, enforcing the order notified by OS-Paxos. In order to overlap the transaction coordination phase with transaction execution, write transactions are processed speculatively, as soon as they are optimistically delivered, on a single thread. The reason for single-thread processing is to avoid the overhead for detecting and resolving conflicts according to the optimistic delivery order while transactions are executing. Additionally, no atomic operations are needed for managing locks on critical sections.

The speculative concurrency control uses a multi-versioned model, wherein an object version has two fields: obj-timestamp, which defines the time when the transaction that wrote the version committed; and value, which is the value of the object. Each shared object includes the last committed version and a list of previously committed versions.

Read-only transactions are not broadcast using the ordering layer, because they do not need to be totally ordered. When a client invokes a read-only transaction, it is locally delivered and executed in parallel to write transactions by a separate pool of threads. In order to support this parallel processing, we define a logical timestamp for each node, called node-timestamp, which represents a monotonically increasing integer, incremented each time a write transaction commits. When a write transaction commits, it increases the node-timestamp and tags the newly committed versions with this the increased node-timestamp.

When a read-only transaction performs its first operation, the node-timestamp becomes the transaction timestamp, called transaction-timestamp. Subsequent operations are processed according to this value: when an object is accessed, its list of committed versions is traversed in order to find the most recent version with a obj-timestamp lower or equal to the transaction-timestamp.

One synchronization point is present between write and read-only transactions, i.e., the list of committed versions is updated when a transaction commits. On one hand, when the read-only workload is intensive, write transactions get delayed because of multiple threads traversing the same concurrent data-structure. On the other hand, with a write intensive workload where the contention level is not minimal, read-only transactions suffer from write load.

9.4.2 Propagating updates

The mechanism for propagating updates (forwarding hereafter) from level 0 to the first level of the chain is computed asynchronously by the update-leader. There are two modes of forwarding. In the first, the update-leader creates a batch of all the latest versions of written (shared) objects since the last forwarding. In the second, the update-leader prepares a batch of all the transactional requests, rather than objects, received since the last forwarding. The decision about adopting the first or the second solution is a trade-off.
On the one hand, with the first mode, there is no duplication of objects that were written multiple times since the last forwarding, but usually, the size of shared objects is large. On the other hand, batching requests means that, transferring a smaller batch, at the cost of re-executing transactions, including those that have write-write conflicts, results in overwritten objects. This trade-off can be explored depending on the application workload characteristics. If the write transactions are mostly conflicting on a restricted data-set, then forwarding objects is the best solution. On the contrary, workloads with very large data-sets and few conflicts are good candidates for forwarding transactions.

As already discussed in Section 9.2, the update-leader decides when updates are pushed according to the system’s execution configuration (i.e., TB or CB) and the setting of system parameters (i.e., δ, λ, Δ).

When the system works in exclusively time-based mode (i.e., TB), the only system parameter that determines when to begin pushing the updates from the synchronous group to level 1 is δ. When a time δ since the last forwarding is elapsed, the update-leader collects all the issued requests (or all the latest versions of written objects) and creates the forwarding batch. This batch is sent to the update-leader of level 1. Each batch is tagged with ϵ, which represents the time elapsed since the last forwarding. In the TB mode, ϵ always equals δ.

In the time/content-based mode, the forwarding mechanism is more complex. Here, two other system parameters are also taken into account. In this mode, δ represents the maximum time between two forwardings. If higher than λ number of objects has been written since the last forwarding, the update-leader will not wait δ, but it will immediately trigger a new forwarding. The same happens if the update-leader’s concurrency control protocol observes higher than Δ number of writes on the same type of object. As a consequence, when the system is in the CB mode, ϵ associated with each batch can differ from δ.

Whichever mode the system is configured, the local concurrency control protocol needs to be adapted for tracking object modifications. However, this overhead can seriously slow-down the execution of the committing thread of write transactions. This thread should avoid any overhead because it represents the concurrency control’s critical path. For this reason, we rely on an additional thread, the forwarding thread, for monitoring updated objects, which is not synchronized with the committing thread.

Three data structures are needed for implementing the monitoring system. One is a hash map, called objTrack, where key is the ID of the written object and value is the reference to the last written version of that object since the last forwarding. The second one is also a hash map, called tyTrack, where key is the type of the written object and value is a counter that tracks the number of writes occurred on that type of object since the last forwarding. The third is a counter that tracks the number of objects written since the last forwarding.

The concurrency control protocol reserves a thread for committing transactions in order.

4We avoid low-level mechanisms for recognizing and caching next level’s update-leader. Briefly, if the next level update-leader has changed since the last forwarding, the old update-leader notifies the change.
The transactions are maintained in a queue with the committing thread as the queue’s server. When a transaction is committed, it is inserted into another queue that is managed by the forwarding thread. As an example, let T be a committed transaction accessing two objects (x,y) of the same type (T) (i.e., $T = \{O_x^T, O_y^T\}$). The forwarding thread i updates two buckets of objTrack (keys=x,y) with references to O_x and O_y; ii increases the counter associated with the key T of tyTrack; and iii increases the counter for tracking new writes by 2. After that, the forwarding thread simply checks whether any of the system parameters’ threshold has been exceeded, and if so, creates the batch to forward.

The aforementioned process can be done only in a single thread because, otherwise, the sequence of updates is lost and the references to the last committed version of the objects can point to a wrong object.

The forwarding thread runs on all the nodes of the synchronous group, and not just on the update-leader. This is because, if the update-leader crashes, another node can take over (i.e., the new update-leader) and correctly complete the forwarding process. (Recall that node clocks are synchronized, and that we assume that δ is much higher than the maximum clock skew).

When the update-leader of level 2 receives the updates (either objects or transactions), it broadcasts them to other nodes at the same level. The update-leader also schedules a forwarding of updates to level 3 after the time ϵ specified in the batch just received from level 1 elapses. This way, batches are propagated to other asynchronous levels.

When a node receives a batch, it writes the new objects or executes the new requests. In the former case, all the objects are first made permanent on the shared-data. Only after all the objects are installed, the node timestamp is updated with the maximum timestamp associated with the new objects. In the latter case, transactions are executed in the order defined by the batch (that corresponds to the execution order in the synchronous group), and the node timestamp is updated only when the last transaction commits. As a result, only the read-only transactions that start after updating the node timestamp are allowed to access those versions.

9.4.3 Handling read-only transactions

Read-only transactions delivered directly to the synchronous group are processed as previously described in Section 9.4.1. They do not need to check rules while processing because the synchronous group already maintains the freshest data available. The asynchronous groups also execute read-only transactions in the same way, but, in addition, they pay the cost for checking rules.

Dexter also allows a read-only transaction to execute directly at a level specified by the programmer. In this case, the transaction’s behavior is similar to the previous case. The concurrency control protocol does not check any rules while processing the transaction; the
transaction simply accesses the most recent versions of the objects stored at that level.

In contrast, when a read-only transaction is not bound to a specific level, it is delivered to the last level in the chain of asynchronous groups. When a transaction arrives at a level, it is delivered to a node through a router, which implements the classical round-robin-based load-balancing approach. The core idea is to run the read-only transaction in the last level of the chain. If the transaction satisfies all the rules, then the node at that level replies to the client; otherwise, the transaction is forwarded back to the previous level. The process ends when the transaction detects that it cannot run at level 1, and is finally forwarded to the synchronous group where it will be successfully processed.

It is unlikely that a read-only transaction will traverse the entire chain. If it does, then it means that either the application is not designed for exploiting Dexter’s architecture, or the system parameters have been misconfigured for the workload at hand (e.g., δ is much smaller than what is necessary).

If the system is configured in exclusively time-based mode, then a read-only transaction starts at the latest level and traverses the chain, until it reaches the level whose time of last forwarding is lower than δ_{App}. That level has been last updated, which is prior to the maximum time required by the transaction (i.e., δ_{App}) and therefore can serve the transaction. Similar to the previous scenarios, this transaction also does not need to check for the satisfaction of all the rules, as it only needs to check for the last time when the node, and thus the level, has been updated.

When the specification and enforcement of rules is enabled in the system (i.e., time/content-based mode), then read-only transactions will incur some overhead for rule checking. Rules are stored on all the nodes as a hash map, called ruleMap, where key is the type of the object and value is the list of rules associated with that object type. As an example, if a programmer wants to infer a rule on the type warehouse in the TPC-C [19] benchmark, then the rule is stored at key=warehouse in the hash map. Similarly, if the programmer wants to infer a rule on the field zip code of a warehouse (i.e., warehouse.zip code), then the rule will be appended to the same entry of the hash map as before, because both affect the type of the object warehouse.

A read-only transaction that runs when the rules are enabled must check whether its rules are satisfied for each accessed object. When a read operation completes, the concurrency control protocol looks-up in ruleMap to check whether rules have been defined for the entry associated with the type of the accessed object. If rules exist, the protocol checks whether there exists at least one rule that is not satisfied. If a rule is not satisfied, the read-only transaction is aborted and forwarded to the previous level. The checking of rules is done at object encounter-time instead of at commit time, because, this way, part of the useless computation is saved – e.g., if one rule of the first accessed object is not satisfied, it is useless to continue to process the transaction.

The overhead of checking rules on the transaction’s critical path is not minimal when the
number of rules per object type significantly increases. This overhead can be mitigated by deploying more nodes at each level. However, the rules must be defined (by the programmer) with the goal of improving performance, and not degrading it.

9.5 Correctness

Dexter guarantees 1-copy serializability [5] and opacity [32]. This is simply because, all modifications made by Dexter do not violate these same properties of HyperTM, which is the underlying active replication protocol used by Dexter for processing read and write transactions. We demonstrate our claim by analyzing the behavior of read-only and write transactions executed at the synchronous level, as well as, at the asynchronous levels. (We skip a formal proof due to space constraints.)

In the synchronous group, read-only and write transactions follow the same protocol rules as HiperTM. 1-copy serializability is easily ensured because each node commits the same set of write transactions in the same order notified by the optimistic atomic broadcast layer. In addition, those transactions are also processed and committed in a single thread, without concurrency. Read-only transactions activated on different nodes cannot observe any two write transactions that are serialized differently on those nodes, because the ordering layer provides a total order among conflicting and non-conflicting transactions, without any discrimination.

HiperTM ensures opacity [32] because, in addition to single thread processing and using a predefined total order of write transactions, read-only transactions perform their operations according to the snapshot of the node-timestamp taken when the transactions begin. During their execution, they access only the committed versions written by transactions with the highest object-timestamp that is lower or equal to the transaction-timestamp.

In any asynchronous group, updates are applied while read-only transactions are being processed, but the node-timestamp is updated with the maximum value among all the new object-timestamps only at the end of the updates. This means that, those objects are invisible for ongoing and new read-only transactions started before the modification of the node-timestamp. Only when the updates are finally set, the newly activated read-only transactions will be able to observe these new objects.

The only difference between the processing of read-only transactions in the synchronous group and an asynchronous group is abort-freedom. When executed at level 0, read-only transactions cannot abort because the subset of all the accessible object versions is fixed when the transactions define their transaction-timestamp, and it cannot change. In contrast, in the asynchronous groups, they can be aborted due to rule checking. Such aborts are not due to contention, but can be seen as due to external factors. Thus, in the asynchronous levels, the abort-freedom property cannot be ensured.
However, we can provide an upper bound on the number of retries of read-only transactions. Since a read-only transaction aborts not because of contention but because of violation of rules, it can restart only as many times as the number of asynchronous groups. After that, the transaction will be successfully served in the synchronous group.

9.6 Evaluation

We implemented Dexter in java, extending the implementation of HiperTM [46], publicly available as open-source project. We used the PRObE testbed [30], a public cluster that is available for evaluating systems research. Our experiments were conducted using 48 nodes in the cluster. Each node is a physical machine equipped with 8 cores. The network connection is a dedicated InfiniBand 40Gbps. As benchmarks we use two typical applications for assessing performance of transactional systems such as Bank benchmark and TPC-C [19]. The former mimics the operations of a bank monetary application; the latter is a well known benchmark that is representative of on-line transaction processing workloads.

Our architecture is composed of the synchronous group with 20 nodes running HiperTM, and 3 asynchronous groups, each with 8 nodes, for serving read-only transactions with different levels of objects’ freshness. For the purpose of these experiments, we configured Dexter for forwarding transactions instead of objects.

All the results reported are the average of 5 samples.

![Figure 9.2: Throughput with Bank and different % of read-only transactions at synchronous node.](image)

The first part of our experimental study regards the impact of read-only workload on write workload in a node deployed at the synchronous level. In Figures 9.2 and 9.3 we report the performance of read-only and write transactions running Bank and TPC-C respectively. In these plots we vary the percentage of read-only transactions (stock-level and order-status) while write transactions are continuously injected in the system. In Bank, the performance
of write transactions drop from $\approx 120K$ to $\approx 60K$ when the read-only are 40%. This is because of contention on the shared lists for storing objects versions\(^5\). Similar trend is for TPC-C but this benchmark is much more processing-intensive than Bank, thus the general throughput of read-only transactions is lower than Bank. This is why the performance improvement of read-only transactions between having 50% of write transactions and 0% is around 35% while in Bank it is 77%. These results confirm the need for offloading the nodes of the synchronous group from the burden of processing all the read-only transactions in the system. The cost to pay is reducing the performance of write transactions.

![Figure 9.3: Throughput with TPC-C and different % of read-only transactions at synchronous node.](image)

![Figure 9.4: Throughput of read-only transactions with Bank, varying the update size at asynchronous node.](image)

We now test the performance of an asynchronous node deployed in a generic level of the chain, when updates are pushed from the previous level. The amount of work to perform depends on the write workload of the system. For this reason, in these experiments we measured the throughput of read-only transactions (the only type of transaction that such

\(^5\)HiperTM uses concurrent Skip-List for this purpose.
node is allowed to process) as a function of the size of update messages. This size is reported in terms of transactions per second. In case the update time since the last forwarding is δ, then the total number of transactions to apply will be δ times the throughput reported in the x-axes.

![Graph showing throughput of read-only transactions with TPC-C, varying the update size at asynchronous node.](image)

Figure 9.5: Throughput of read-only transactions with TPC-C, varying the update size at asynchronous node.

Figures 9.4 and 9.5 reports the results for Bank and TPC-C. Each plot shows 4 lines corresponding to the number of rules per object that the node checks while processing the read-only transaction. We tested with $\{0,10,20,50\}$ where 0 represents the execution in purely time-based and the others emulate different configurations. Clearly checking 50 rules per object degrades significantly the performance, especially in TPC-C where transactions are long. Interesting, using Bank, the performance of 0 rules and 10 rules are very similar. The reason is related to the amount of type of objects in the system. Bank has very few different types of object while TPC-C is more complex.

![Graph showing throughout of read transactions at asynchronous node, pushing updates every 12 seconds.](image)

Figure 9.6: Throughout of read transactions at asynchronous node, pushing updates every 12 seconds.

In Figure 9.6, we report the throughput (read-only transactions) of an asynchronous node
as function of time. We report only Bank benchmark because we found the same behavior in TPC-C. Updates are pushed every 12 seconds. For each benchmark we have two configurations: low and high. Low means that updates contain around 80K transaction per second, while for high is 200K. Each object type has 10 rules associated. The results clearly reveal how the performance of asynchronous nodes is affected by installing updates from previous levels. However, performance is still reasonably high even when updates arrive.

![Figure 9.7: Throughput of Dexter with 48 nodes and 3 levels in the chain using Bank.](image)

![Figure 9.8: Throughput of Dexter with 48 nodes and 3 levels in the chain using TPC-C.](image)

Finally we measure the performance of the entire system, and compare it with the performance of HiperTM. As already said, we ran HiperTM on our test-bed and its performance does not scale after 20 nodes. After that, the load of the ordering layer is so high that write transactions execution time is delayed significantly. In this scenario, read-only transactions could access very old versions of data because the progress of the whole system is hampered. Dexter, instead, exploiting application rules, can be configured for running with much higher number of nodes. In this experiments we deployed Dexter with a chain of 3 levels, each with 8 nodes, in addition to the synchronous level that is composed of 20 nodes. Read-only transactions are injected continuously in the system. The parameter δ is
set as 5 seconds and the system configuration model is time/content-based. For each object type we define 10 rules to check while processing the read-only transaction. These rules are logical expressions based on the values of the object fields. We designed the rules such that transactions can be balanced among levels of the chain. Figure 9.7 shows the results. As expected, the speed-up is reasonable high, up to 1.3 Million transactions per second served, with improvement up to $2 \times$ with respect to HiperTM. Clearly, the major contribution of this really high throughput is made by read-only transactions, while write transactions sustain their performance around 100K.

Figure 9.8 shows TPC-C performance under the same configuration as Bank. Here absolute numbers are lower than before but the speed-up of Dexter against HiperTM is still up to $2.1 \times$.

9.7 Summary

Active replication is a powerful technique for obtaining high transactional performance with full-failure masking. However, it suffers from poor scalability, as it relies on a consensus-based algorithm for ensuring global consistency of the replicated state.

Our work shows that, it is possible to overcome this scalability bottleneck by exploiting application characteristics. Our key insight is that, not all read-only transactions need to access the latest data; for many, “sufficiently fresh” data suffice. By enabling the application to specify the level of data freshness that it needs, the shared data-set can be maintained at different levels of freshness, avoiding costly global synchronization. Read-only transactions access progressively fresh data, scaling up performance. The cost of enforcing the application’s data freshness rules can be mitigated through careful design and implementation choices.

In some sense, our result can be viewed as a generalization of multi-version concurrency control (CC), where read-only transactions commit in “the past” by reading older versions. Multi-version CC does not specify data freshness (we do), but mostly guarantees abort-freedom for read-only workloads (we do not, though retries are bounded). Taken together, our work illustrates how scalability can be achieved by exploiting multi-version CC’s insight (of reading old data), with full-failure masking.
Chapter 10

Conclusions and Future Work

In this dissertation, several research contributions are made that are aimed at improving the performance of replicated transactional systems. This thesis analysed the different aspects of such systems e.g., ordering layer, transaction execution model, and application requirement characteristics etc., and tried to find the opportunities to optimize them in different ways. With HiperTM, it exploited the time between the client request is known to replicas and the time its order is finalized to process it speculatively. In X-DUR, it exploited the properties of partitioned access to eliminate aborts due to local conflicts among clients. In Archie, it further optimized this parameter and improved the concurrent execution of requests to get high performance. With Caesar, a new transaction ordering protocol was designed to benefit from relaxed lock-free execution for non-conflicting transactions. Lastly, in Dexter the application characteristics are exploited to scale the read-only loads, which usually comprise the majority of transactional load.

At its core, HiperTM shows that optimism pays off: speculative transaction execution, started as soon as transactions are optimistically delivered, allows hiding the total ordering latency, and yields performance gain. Experimental evaluation and comparison with PaxosSTM [51] revealed the performance benefits achieved from optimistic delivery and serial processing over DUR model, especially in high contention workloads. While DUR model of PaxosSTM suffers from remote aborts due to conflicting transactions, HiperTM achieves zero aborts when the leader is not faulty or not suspected.

We presented X-DUR, an approach that eliminates aborts due to local contention in DUR-based protocols if application allows partitioned access. X-DUR uses speculation to allow transactions to execute on uncommitted snapshots and ensures that total order established by certification layer does not contradict the local speculative order.

We presented Archie, which further optimizes the optimistic delivery, exploits parallelism for concurrent transactions and alleviates the transaction’s critical path by eliminating non-trivial operations performed after the notification of the final order. Exhaustive evaluation
against multiple competitors [51, 46] on well known benchmarks [19, 11] showed that Archie outperforms its competitors specially in medium to low conflict scenarios. Archie limits the number of visible conflicts by spawning a predefined number of worker threads and achieves higher throughput and lower abort rates for all benchmarks.

In Caesar, we tackle the problems associated with single sequencer based total order and propose a novel message ordering protocol which enables high performance and scalability of strongly consistent transactional systems. Caesar allows lock-free execution of non-conflicting transactions. Experimental study revealed that transactional systems based on competitors [58, 76] do not perform well as the number of replicas is increased beyond 7.

Active replication faces a scalability limit as it relies on a consensus-based algorithm for ensuring global consistency of the replicated state. In Dexter, we overcome this scalability bottleneck by exploiting application characteristics. Our key insight is that, not all read-only transactions need to access the latest data; for many, “sufficiently fresh” data suffice. We provide the application an ability to specify the level of data freshness that it needs, while shared data-set is maintained at different levels of freshness. Read-only transactions access progressively fresh data, scaling up performance. By evaluation study we show that exploiting staleness of shared data, system throughput could scale further together with increasing system size.

10.1 Future Work

In this thesis we have focused mainly on solving the problems in building high performance fault-tolerant SMR based transactional systems. We implemented optimizations in both DER and DUR systems to achieve efficient transaction execution. We list some of the possible future work in the following sections.

10.1.1 Multi-leader Partial Order Ring-based Transactional System

Reaching a fast decision in a consensus protocol is highly desirable, as it reduces the latency perceived by clients. The same thought was the motivation for designing Fast Paxos [61] which ensures two communication steps to order a client request if discordant states of the execution are not received by a quorum of nodes. Even though Fast Paxos gives an optimal number of communication steps for such cases, it is dependent on an elected leader to resolve the discordant states (if they happen). On the other hand, Generalized Paxos [57] orders transactions according to their actual conflicts but it also relies on an elected leader for resolving discordant states. With Caesar, we designed a multi-leader partial order solution which orders transactions according to their actual conflicts and solves the problem of
bottleneck created by a single leader. But even Caesar is prone to additional communication steps when at least a node in the quorum observes discordant state.

Reducing the number of communication steps even under possibility of discordant states observed by different nodes in a quorum is a challenging problem. As ring network topology is found to provide optimal performance [34], it becomes a natural choice for designing a high performance ordering protocol. For future work, we suggest to design a multi-leader partial order protocol that exploits ring network topology to ensure fast decision for every transaction for finalizing its order, thereby improving the performance of transactional systems.

10.1.2 Exploiting parallelism in DUR with Partial-Order

The *deferred update replication* (DUR) [82] is a well-known scheme where transactions execute locally and their commit phase (including the transaction validation procedure) is deferred until a total order [58] among all nodes is established. This total order is required because it imposes a common serialization order among all transactions in the system, which is used to verify the global correctness of transactions’ execution.

While transaction execution happens optimistically and exploits the inherent parallelism, the commit phase executes serially due to total-order for transaction serialization. There exists an opportunity to improve the transaction performance for DUR. As a future work, we propose to design a DUR based system that uses partial-order for serializing conflicting transactions in commit phase. We believe that such an ordering layer can improve performance of DUR based systems as they will be able to benefit from the parallelism in transaction execution as well as commit phase.

10.1.3 High concurrency in X-DUR with ability to handle remote aborts

X-DUR presents an approach to use speculation for sparing DUR-based protocols from aborts due to local contention for partitioned access workload model. X-DUR defines an order for local transactions and then they are speculatively executed according to the defined order on a single thread. We propose to incorporate ParSpec (concurrent execution technique in Archie) into X-DUR for higher concurrency among local transactions in future work.
Bibliography

[10] Berkant Barla Cambazoglu, Flavio P. Junqueira, Vassilis Plachouras, Scott Banachowski, Baoqiu Cui, Swee Lim, and Bill Bridge. A Refreshing Perspective of Search

[37] Nicolas Guillaume. For google, 400ms of increased page load time, results in 0.44% lost search sessions, February 2013. Available at http://www.cedexis.com/blog/for-google-400ms-of-increased-page-load-time-results-in-044-lost-search-sessions/.

[86] Sebastiano Peluso, Paolo Romano, and Francesco Quaglia. SCORe: A Scalable One-

[88] Ravi Rajwar and James R. Goodman. Transactional Lock-free Execution of Lock-
based Programs. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS, 2002.

transactional-synchronization-in-haswell/.

[90] Torvald Riegel, Pascal Felber, and Christof Fetzer. A Lazy Snapshot Algorithm with
Eager Validation. In Proceedings of the 20th International Conference on Distributed

Transactional Memory. In Proceedings of the First ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Hardware Support for Transactional Computing, TRANSACT,
2006.

[92] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based Transactional Memory
with Scalable Time Bases. In Proceedings of the Nineteenth Annual ACM Symposium

[93] Paolo Romano, Roberto Palmieri, Francesco Quaglia, Nuno Carvalho, and Luís Ro-
drigues. An Optimal Speculative Transactional Replication Protocol. In International
Symposium on Parallel and Distributed Processing with Applications, ISPA, 2010.

[94] Paolo Romano, Roberto Palmieri, Francesco Quaglia, Nuno Carvalho, and Luís Ro-
drigues. Brief Announcement: On Speculative Replication of Transactional Systems. In
Proceedings of the 22nd ACM symposium on Parallelism in algorithms and archi-
tectures, SPAA, 2010.

[95] Nuno Santos and André Schiper. Tuning Paxos for High-Throughput with Batching
and Pipelining. In Proceedings of the 13th International Conference on Distributed

