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Practical Analysis of the Dynamic Characteristics of JavaScript

Shiyi Wei

ABSTRACT

JavaScript is a dynamic object-oriented programming language, which is designed with flexi-
ble programming mechanisms. JavaScript is widely used in developing sophisticated software
systems, especially web applications. Despite of its popularity, there is a lack of software
tools that support JavaScript for software engineering clients. Dataflow analysis approxi-
mates software behavior by analyzing the program code; it is the foundation for many soft-
ware tools. However, several unique features of JavaScript render existing dataflow analysis
techniques ineffective.

Reflective constructs, generating code at runtime, make it difficult to acquire the complete
program at compile time. Dynamic typing, resulting in changes in object behavior, poses a
challenge for building accurate models of objects. Different functionalities can be observed
when a function is variadic; the variance of the function behavior may be caused by the
arguments whose values can only be known at runtime. Object constructors may be poly-
morphic such that objects created by the same constructor may contain different properties.
In addition to object-oriented programming, JavaScript supports paradigms of functional
and procedural programming; this feature renders dataflow analysis techniques ineffective
when a JavaScript application uses multiple paradigms. Dataflow analysis needs to handle
these challenges.

In this work, we present an analysis framework and several dataflow analyses that can
handle dynamic features in JavaScript. The first contribution of our work is the design
and instantiation of the JavaScript Blended Analysis Framework (JSBAF). This general-
purpose and flexible framework judiciously combines dynamic and static analyses. We have
implemented an instance of JSBAF, blended taint analysis, to demonstrate the practicality
of the framework.

Our second contribution is an novel context-sensitive points-to analysis for JavaScript that
accurately models object property changes. This algorithm uses a new program representa-
tion that enables partial flow-sensitive analysis, a more accurate object representation, and
an expanded points-to graph. We have defined parameterized state sensitivity (i.e., k-state
sensitivity) and evaluated the effectiveness of 1-state-sensitive analysis as the static phase of
JSBAF.

The third contribution of our work is an adaptive context-sensitive analysis that selectively
applies context-sensitive analysis on the function level. This two-staged adaptive analysis
extracts function characteristics from an inexpensive points-to analysis and uses learning-
based heuristics to decide on an appropriate context-sensitive analysis per function. The



experimental results show that the adaptive analysis is more precise than any single context-
sensitive analysis for several programs in the benchmarks, especially for those multi-paradigm
programs.

The research in this thesis was supported by National Science Foundation CCF-0811518 and
IBM Open Collaborative Research Program.
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Chapter 1

Introduction

A family of object-oriented programming languages shares characteristics that render their
run-time behavior unpredictable. These languages are usually designed with flexible mecha-
nisms for loading/generating new code, dynamic typing, etc. The term dynamic programming
language is used for such languages as JavaScript, PHP, Perl and Ruby. They are widely
used in developing sophisticated software systems, especially web and mobile applications.
Specifically, JavaScript is the lingua franca of client-side web applications, used by 89% of
all website software [75] and according to a recent study, JavaScript is becoming the most
popular programming language overall [73]. Its dynamic language features enable flexible
and interactive website design. In addition, JavaScript is supported by almost all modern
browsers.

Despite of its popularity, JavaScript applications present various software engineering chal-
lenges such as security and program understanding. For example, the program constructs
supporting dynamic code generation provide opportunities for cross-site scripting security
exploits. Given the ubiquity of JavaScript, it is crucial to build automated software analysis
tools that can handle these problems. Dataflow analysis approximates the software behavior
by analyzing program code. The results of dataflow analysis may enable code optimization,
assist program understanding and/or detect security vulnerabilities. It has been demon-
strated that static program analysis is useful in analyzing other languages such as Java and
C++. Unfortunately, the dynamic nature of JavaScript is a double-edged sword, rendering
static analysis techniques ineffective in many cases.

Static analysis inspects program source code that is visible at compile time. Invocations of
reflective constructs1 (e.g., the eval function in JavaScript) at runtime generate new code.
The generated code is difficult to model statically because the parameters can be arbitrary
values set at runtime. If static analysis ignores the dynamic code generation mechanisms
in JavaScript applications, the solution of static analysis is unsound. Function variadic-

1Reflection is the ability of a program to observe program state or change program code at runtime [44].
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ity occurs when a function can be called with indefinite number of arguments, regardless
of its declared arity. Function behavior usually varies based on the arguments provided.
Static analysis cannot model a variadic function accurately because sometimes the actual
arguments provided can only be known at runtime. JavaScript is also dynamically typed,
lacking a static type system. This suggests that it is difficult for static analysis to build
accurate models of objects in JavaScript, and that objects can exhibit different behavior at
different times during execution due to the use of the delegation feature in prototype-based
programming [41, 76]. Moreover, object constructors may be polymorphic so that objects
created by the same constructor may have different properties. Static analysis usually builds
conservative models for a polymorphic constructor approximating all possible behaviors. Fi-
nally, JavaScript supports multiple programming paradigms. In addition to object-oriented
programming, it also supports features of functional (e.g., first-class functions) and procedu-
ral programming. A static analysis technique often is designed to be effective on a specific
programming paradigm; the flexible programming paradigm of JavaScript renders static
analysis more complicated.

Despite the fact that various program analysis approaches have been proposed specifically
for JavaScript applications (e.g., [30, 72, 33]), the above language features still lead to the
ineffectiveness of static analysis. In this thesis we present new dataflow analyses that accu-
rately handle the dynamic characteristics of JavaScript and we also evaluate their practicality
on software engineering problems (e.g., security). We have proposed blended analysis that
combines dynamic and static analyses as a general-purpose dataflow analysis framework
for JavaScript. Blended analysis collects run-time information such as dynamically gener-
ated code and variadic functions to expand the capability of static analysis to analyze these
dynamic features. We also have presented a new context-sensitive analysis (i.e., state sen-
sitivity) that accurately models the dynamic behavior of JavaScript objects. Finally, we
have proposed a two-staged adaptive analysis that selects the appropriate context sensitiv-
ity on the function level based on heuristics. The adaptive analysis aims to handle the
multi-programming paradigm nature of JavaScript.

The new dataflow analysis framework and algorithms presented in this thesis seek to improve
the state-of-the-art program analysis for JavaScript and to build better software engineering
tools. The proposed approaches may also be applicable to other programming languages
with dynamic characteristics similar to JavaScript.

1.1 Contributions

The major contributions of the work presented in this thesis are (i) JavaScript blended
analysis framework, (ii) state-sensitive points-to analysis, and (iii) adaptive context-sensitive
analysis.
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1.1.1 JavaScript Blended Analysis Framework

The first contribution of our work is the design of JavaScript Blended Analysis Framework
(JSBAF), a general-purpose framework for analyzing JavaScript applications. The frame-
work is designed to judiciously combine dynamic and static analyses in a practical but un-
sound analysis of JavaScript, to account for the effects of dynamic features not seen by static
analysis, while providing sufficient accuracy to be useful. The analysis dynamically collects
executions and performs static analysis on their calling structures. JavaScript blended anal-
ysis captures rich information about dynamic language features. These include dynamically
generated (or loaded) JavaScript code (e.g., through eval functions or interpreted urls) and
variadic function usage. JSBAF is general-purpose in that the dynamic phase may collect
run-time information in different levels of detail and the static phase may apply various
analysis clients to serve different requirements and goals of JavaScript analysis.

We implemented an instance of JSBAF or blended taint analysis2 for JavaScript, to demon-
strate the accuracy and practicality of the framework. In the dynamic phase, we used an
instrumented browser to record execution traces of JavaScript websites; in the static phase,
we implemented a taint analysis based on the points-to analysis3 solution. We present an
empirical comparison of our blended results with two different static analysis approaches
(i.e., one static analysis analyzes libraries and one does not). The experimental results
demonstrate the practicality of our approach, and its scalability and precision with respect
to static analysis on 12 popular websites. Less than half of the 13 true security exploits
found by blended analysis were identified by either of the static analyses. Moreover, blended
analysis reported only one false positive vulnerability (i.e., false alarm). Additionally, the
static phase of our blended analysis ran to completion under a limited time budget of 10
minutes, whereas one static analysis that analyzes JavaScript libraries used by the websites
failed to complete on 41% of the webpages analyzed.

1.1.2 State-sensitive Points-to Analysis

Instead of class-based inheritance, JavaScript supports prototype-based inheritance [41, 76]
that results in a JavaScript object inheriting properties from a chain of (at least one) pro-
totype objects. The model also allows the properties of a JavaScript object to be added,
updated, or deleted at runtime. We have performed an in-depth empirical study to observe
the run-time behavior of JavaScript objects.

The second contribution of our work is a novel points-to algorithm that can accurately
model JavaScript objects. In our approach, changes to object properties are tracked more
accurately to reflect object run-time behavior at different program points. A new graph
decomposition for control flow graphs is used to better track object property changes. The

2Taint analysis detects flows of data that violate program integrity.
3Points-to analysis calculates the set of values a reference property or variable may have during execution.
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analysis identifies objects by their creation site as well as their local property names upon
construction, more accurately than the per-creation-site representation. To distinguish poly-
morphic constructors, this analysis incorporates dynamic information collected at runtime.
Technically, the analysis is partially flow-sensitive (on our new control flow graph structure)
and context-sensitive, using a new form of object sensitivity [47]4. We defined a parameter-
ized model of k-state sensitivity. Rather than using the receiver object name as a calling
context in the analysis, we use an approximation of the receiver object and its properties at
the call site (i.e., obj-ref state).

In order to compare this algorithm with previous techniques, we instantiated the state-
sensitive points-to analysis as the static component of the JSBAF. We measured performance
and accuracy of our new analysis on a statement-level points-to client (REF analysis) that
calculates how many objects are returned by a property lookup, for example, a read of
property p on variable x. The experimental results showed a significant improvement in
precision from the new analysis. On average over all 12 website benchmarks, 48% of the
property lookup statements were resolved to a single abstract object by the state-sensitive
analysis, while the blended implementation of an existing JavaScript analysis [72] uniquely
resolved only 37% of these statements. Furthermore, although it incurred a 127% overhead,
our new analysis was able to analyze each of the webpage in under 5 minutes, attesting to
its scalability in practice.

1.1.3 Adaptive Context-sensitive Analysis

The third contribution of our work is an adaptive context-sensitive analysis that accurately
analyzes multi-paradigm JavaScript applications by selecting specific context sensitivity on
the function level. A recent empirical study on context-sensitive analyses for JavaScript
revealed that there was no clear winner context-sensitive analysis for JavaScript across all
benchmarks [33]. Because JavaScript features flexible programming paradigms and no single
context-sensitive analysis seems best for analyzing JavaScript programs, there are opportu-
nities for an adaptive (i.e., multi-choice) analysis to improve precision. We have performed
a fine-grained study that compares the precision of four JavaScript analyses on the function
level. We observed that JavaScript functions in the same program may benefit from use of
different context-sensitive analyses depending on specific characteristics of the function.

The results of our empirical study guided us to design the novel adaptive analysis that
selectively applies a specialized context-sensitive analysis per function chosen from call-site,
object and parameter sensitivity. This two-staged analysis first applies an inexpensive points-

4Informally, a flow-sensitive analysis follows the execution order of statements in a program; flow-sensitive
analysis can perform strong updates, but flow-insensitive cannot. Context-sensitive analysis distinguishes
between different calling contexts (i.e., identification of the execution context from which the call is made) of
a method, producing different analysis results for each context [60]. Context-insensitive analysis calculates
one dataflow solution per method.
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to analysis to a JavaScript program to extract function characteristics. We have designed
heuristics according to our observations on the relationship between function characteristics
and the precision of a specific analysis using the empirical results on the benchmark programs.
Finally, an adaptive analysis based on the heuristic-based selection of a context-sensitive
analysis per function is performed.

We have performed an evaluation of the adaptive context-sensitive analysis on two sets of
benchmark programs. The experimental results show that our adaptive analysis was more
precise than any single context-sensitive analysis for several applications in the benchmarks,
especially for those using multiple programming paradigms. Our results also show that the
heuristics were accurate for selecting appropriate context-sensitive analysis on the function
level.

1.2 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents the background and general
terminology used in this work. Chapter 3 discusses JSBAF and its instantiation. Chapter
4 describes our state-sensitive points-to algorithm. Chapter 5 discusses adaptive context-
sensitive analysis. Chapter 6 presents the review of the related work. Finally, Chapter 7
summarizes the thesis and presents possible directions for future work.



Chapter 2

Background and Terminology

In this chapter, we first introduce the related background (i.e., the dynamic features of
JavaScript and points-to analysis). We then present the terminology (i.e., blended analysis)
and define the key concepts (i.e., JavaScript object-reference state) in this work.

2.1 Background

2.1.1 JavaScript Dynamic Features

JavaScript is a dynamic programming language. Its dynamic features render the run-time
behavior of JavaScript applications unpredictable, posing significant challenges for static
dataflow analysis. We discuss several JavaScript features that may render static program
analysis ineffective, as follows:

Reflective constructs and dynamic code generation. Reflection is a powerful mech-
anism of programming languages to observe the program behavior (e.g., object properties)
and modify its execution at runtime. Although it is a useful programming feature, it is chal-
lenging for static analysis to accurately model reflective constructs because reflection often
involves unpredictable program behavior. In particular, due to the popularity of JavaScript
for developing event-driven client-side web applications, dynamic code generation via re-
flective constructs is frequently observed in JavaScript websites [58]. JavaScript supports
several mechanisms that can generate executable code at runtime. For example, an eval

function takes a string expression, generates the code, and then executes the result. The eval
function is often difficult to understand and may result in a large piece of JavaScript code
generated at runtime. Other forms of dynamic code generation mechanisms in JavaScript in-
clude setTimeout and setInterval functions that take string parameters. If static analysis
models the reflective constructs inaccurately, the solution is imprecise and/or unsound.

6
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Dynamic object behavior. JavaScript is a dynamically-typed object-oriented program-
ming language, whose variables may be bound to different types at different program points.
Instead of class-based inheritance, it supports prototype-based inheritance [41, 76] that re-
sults in a JavaScript object inheriting properties from a chain of prototype objects. Lacking
the notion of class, it is difficult to summarize the type of a JavaScript object at a particular
program point. In addition, a JavaScript object property can be added or updated via an in-
direct assignment statement (e.g., x.p = y) and deleted via a delete statement (e.g., delete
x.p). This means a JavaScript object may exhibit different behaviors at different times
during execution because the behavior of an object is defined by its properties. Moreover,
object constructors may be polymorphic so that objects created by the same constructor
may have distinct properties. These features make it difficult to accurately reason about the
behavior of JavaScript objects via static analysis.

JavaScript functions. JavaScript supports first-class functions, which means that func-
tions can be assigned to variables, stored in properties of objects or the elements of arrays,
passed as arguments to functions, etc [16]. Also, a JavaScript function can be called without
respecting the declared number of arguments; that is, functions may have any degree of
variadicity that may exhibit different functionalities at runtime. It is hard to model variadic
functions well statically. Furthermore, the call and apply methods of JavaScript func-
tions may reflectively invoke the represented function. For example, fun.apply(thisArg,
[argsArray]) calls a function with a given this value and arguments provided as an array,
which provides a flexible mechanism to invoke a variadic function. Reflective function invo-
cations pose challenges for static analysis to accurately analyze the targets of these function
calls.

Multi-paradigm programming. We have observed various programming paradigms are
often used across JavaScript applications and within a JavaScript application (see Chapter
5), including object-oriented, functional and procedural programming. This multi-paradigm
feature of JavaScript renders existing static analysis ineffective because static analysis algo-
rithms are usually designed for accommodating programs exhibiting a specific programming
paradigm.

2.1.2 Points-to Analysis

Dataflow analysis techniques are frequently used to build automated software tools. Among
them, points-to analysis has been the fundamental and enabling analysis for most other
inter-procedural dataflow analyses (e.g., taint analysis). Points-to analysis calculates the
set of values a reference property or variable may have during execution. Its solution (i.e.,
points-to graph) represents a model of a program’s heap. In a traditional points-to graph,
there are two kinds of nodes (i.e., variable node v and abstract object node o) and two kinds
of edges (i.e., points-to edge (v, o) and property reference edge (< oi, p>, oj)).

Points-to analysis is interdependent on the inter-procedural program representation (i.e.,
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call graph). A call graph represents the calling structure of a program. Specifically, a call
graph node represents a function and a call graph edge represents the calling relationship
between two functions. For modern object-oriented programming languages (e.g., Java and
JavaScript), the call graph construction is often interleaved with points-to analysis because
call graph construction affects the points-to solution and vice versa.

There are multiple dimensions that affect the precision and performance of points-to analysis
and call graph construction. There have been thorough literature reviews on this topic
[26, 60, 71, 67]. Here we discuss the subset of analysis aspects closely related to this work:

Object representation. There are two common object representation choices for points-to
analysis [60]: (i) an analysis uses an abstract object to represent all possible instantiations of
a class for a class-based language, and (ii) all objects created by the same allocation site are
represented by an abstract object. Due to the lack of notion of class in JavaScript, the latter
is a more popular choice for analyzing JavaScript applications (e.g., [30, 72]). Nevertheless,
because a JavaScript object constructor may be polymorphic, creating objects with different
possible behaviors, a more accurate object representation accommodating the JavaScript
object model needs to be explored.

Flow sensitivity. A flow-sensitive analysis follows the execution order of statements in a
program; a flow-sensitive analysis can perform strong updates, but a flow-insensitive one
cannot. An intra-procedural program representation (e.g., control flow graph [2]) enables
flow-sensitive analysis. In a control flow graph (CFG), each node represents a basic block
(i.e., straight-line piece of code without branch). The header (i.e., first instruction) of a
basic block can be (i) entry point of a function, (ii) target instruction of a branch, and (iii)
instruction that immediately follows branch.

Although a flow-sensitive analysis is more precise than a flow-insensitive analysis, the scala-
bility problem has resulted in several JavaScript analyses abandoning the use of flow sensi-
tivity (e.g., [72]). However, the nature of JavaScript objects (i.e., property addition, update
and deletion) suggests the favor of flow sensitivity. Some recent JavaScript analyses are
flow-sensitive (e.g., [30, 4, 53]). It remains an open question to find the balance between
performance and precision for JavaScript flow-sensitive analysis.

Context sensitivity. Context sensitivity is a general technique to achieve more precise
program analysis by distinguishing between calls to a specific function. Historically, call-
strings and functional are the two approaches to enable context sensitivity in an analysis
[65].

A call-strings approach distinguishes function calls using information on the call stack. The
most widely known call-strings approach is call-site-sensitive (k-CFA) analysis [66]. A k-
call-site sensitive analysis uses a sequence of the top k call sites on the call stack as the
context element. k is a parameter that determines the maximum length of the call string
maintained to adjust the precision and performance of call-site-sensitive analysis. 1-call-site-
sensitive analysis separately analyzes each different call site of a function. Intuitively in the
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code example below, 1-call-site-sensitive analysis will analyze function foo in two calling
contexts L1 and L2, such that local variables (including parameters) of foo will be analyzed
independently for each context element.

L1: x.foo(p1, p3);

L2: y.foo(p2, p4);

A functional approach distinguishes function calls using information about the computation
state at the call. Object sensitivity analyzes a function separately for each of the abstract
object names on which this function may be invoked [47]. Milanova et al. presented object
sensitivity as a parameterized k-object-sensitive analysis, where k denotes the maximum se-
quence of allocation sites to represent an object name. 1-object-sensitive analysis separately
analyzes a function for each of its receiver objects with a different allocation site. Intuitively
in the code example above, 1-object-sensitive analysis will analyze function foo separately
if x and/or y may point to different abstract objects. If x points to objects O1 and O2, while
y points to object O3, 1-object-sensitive analysis will analyze function foo for three context
elements differentiated as O1, O2 and O3.

Other functional approaches presented use the computation state of the parameter instead
of the receiver object as a context element. The Cartesian Product Algorithm (CPA) uses
tuples of parameter types as a context element for Self [1]. The context-sensitive analy-
sis presented by Sridharan et al., designed specifically for JavaScript programs, analyzes a
function separately using the values of a parameter p if p is used as the property name in
a dynamic property access (e.g., v[p]) [72]. Andreasen and Møller also designed a context-
sensitive analysis for JavaScript using the parameter whose abstract value is a concrete string
or a single object address as a context element [4]. To capture these approaches, we define
a simplified, parameterized ith-parameter-sensitive analysis, where i means we use the ab-
stract object corresponding to the ith parameter as a context element. Intuitively in the
code example above, 1st-parameter-sensitive analysis will analyze function foo separately if
p1 and/or p2 may point to different abstract objects. If p1 points to object O4, while p2

points to object O4 and O5, 1st-parameter-sensitive analysis will analyze function foo for two
context elements distinguished as O4 and O5.

Although context sensitivity is a topic that has been thoroughly studied, an accurate context-
sensitive analysis for JavaScript still remains to be investigated.
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2.2 Terminology

2.2.1 Blended Analysis

Dufour et al. presented the blended analysis paradigm for performance diagnosis of framework-
intensive Java programs [13, 14]. In the blended analysis paradigm, dynamic analysis is used
to obtain the calling structure of a particular execution of interest and then a static analysis
is performed in that calling structure to obtain more detailed semantic information rele-
vant for performance understanding. Specifically, this analysis dynamically collected one
problematic Java execution and performed a static escape analysis1 on its call graph. Java
features such as reflective calls and dynamically loaded classes were recorded by the dynamic
analysis, allowing more precise modeling than by pure static analysis.2

Pruning was an optimization technique applied in Java blended analysis to each executed
method’s control flow graph in order to approximate a specialized version of the code exe-
cuted during a particular call. Pruning was very effective in removing approximately 30%
of the statements from Java functions [14]. Essentially, unexecuted statements in functions
were removed using run-time information. The analysis noticed which function calls and
object creation sites were not recorded and used control dependence information to prune
other unexecuted statements.

Overall, blended analysis is a tightly coupled dynamic and static analysis paradigm. It
focuses a static analysis on a dynamic calling structure collected at runtime, and further
refines the static analysis using additional information collected by a lightweight dynamic
analysis.

2.2.2 JavaScript Object-Reference State

Recall that JavaScript is a dynamically typed programming language whose object behavior
can change as object properties are added or deleted at runtime. In strongly typed program-
ming languages, the notion of type is used to abstract the possible behavior of an object
(e.g., the class of an object in Java) [64]; however, in dynamically typed languages, the type
of an object can change during execution. In order to avoid confusion, we call the type of a
JavaScript object its obj-ref state.3

Definition 1. The obj-ref state at a program point denotes all of its accessible

1Escape analysis is a static analysis that determines whether the lifetime of data exceeds its static scope
[8].

2When discussing in the context of blended analysis, we use the term pure static analysis referring to an
analysis based on monotone dataflow frameworks [45].

3This general notion can be used for other dynamic languages and is related to structured typing for
strongly typed languages [64].
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properties and their non-primitive values.

The accessible properties of an object conform to the property lookup mechanism imple-
mented in JavaScript. Every JavaScript object includes an internal reference to its prototype
object from which it inherits non-local properties. A JavaScript object may have a sequence
of prototype objects (i.e., a prototype chain) whose properties it can inherit. When reading
a property p of an object o, the JavaScript runtime checks the local properties of o to see if o
has a property named p. If not, the JavaScript runtime checks to see if the prototype object
of o has a property named p, continuing to check along the prototype chain from object to
object until the property is found (or not) [16].

Definition 2. State-update statements are: (i) property write statement (i.e.,
x.p = y or x[p] = y), (ii) property delete statement (i.e., delete x.p or delete
x[p]), and (iii) an invocation that directly or indirectly results in execution of
(1) and/or (2).

The state-update statements are the set of statements in JavaScript that may affect the
obj-ref state. In Figure 2.1, we illustrate the obj-ref state with an example that shows the
objects connected to O1 at a program point. The local properties of object O1 are named p1
and p2 and O4 is its prototype object. O7 is visible from O1 by accessing O1.p4 while O6 is not
visible from O1 by accessing O1.p2 because a local property named p2 exists for O1. To sum
up, the shaded nodes (i.e., O6 and O9) are not accessible from O1 and the unshaded nodes
constitute O1’s reference state.

O2 

O1 

O3  O4 

p1 
p2 

_proto_ 

O5 

O6 

O7 

p2 

p4 _proto_ 

O8 

_proto_ 

p4 
O9 

Figure 2.1: obj-ref state example



Chapter 3

JavaScript Blended Analysis
Framework

Recall that blended analysis paradigm was designed by Dufour et al. [13, 14] for performance
diagnosis of framework-intensive Java programs, capturing dynamic aspects of Java such
as reflective calls and dynamically loaded classes. Because JavaScript applications exhibit
more dynamic behavior than Java programs, it is natural to apply a dynamic analysis to
accommodate its dynamic features. We have designed the JavaScript Blended Analysis
Framework (JSBAF), a flexible and general-purpose analysis framework that tightly couples
dynamic and static analyses. We analyze multiple executions rather than a single one, but the
overall algorithm workflow and pruning are both utilized, albeit to handle a more general set
of dynamic language features in JavaScript. In this chapter, we propose the detailed design
of JSBAF. We then present the first instantiation of JSBAF (i.e., blended taint analysis) for
finding security vulnerabilities in JavaScript websites and discuss the experimental results.1

3.1 JSBAF Design

3.1.1 Framework Overview

JSBAF was designed to judiciously combine dynamic and static analyses, accounting for
the effects of dynamic features not seen by pure static analysis. It aims to offer an efficient
methodology to obtain practical and accurate analysis solution of JavaScript applications.

Figure 3.1 illustrates an overview of JSBAF that can be applied in the following software
testing scenario for a JavaScript program. We assume the presence of a test suite of the
JavaScript program as input. Such a test suite may be obtained in the following ways: (i)

1Part of the contents presented in this chapter was published in [77].

12
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existing tests of JavaScript programs (e.g., the unit and integration test suite of jQuery
library), (ii) tests created by automated test generation tools of JavaScript (e.g., JSEFT [48]
and Artemis [5]), and (iii) manually explored tests of JavaScript applications (see Section
3.2). The Test Selector chooses a subset of the tests that offer good coverage of the program
to obtain an accurate analysis solution at lower cost than using all the tests. Note that
despite that fact that each test is likely to cover a different program path, this difference
may not be distinguishable depending on the dynamic information collected by JSBAF. The
Execution Collector then gathers run-time information (e.g., function calls and dynamically
generated code) by executing each selected test. The Static Infrastructure performs static
dataflow analysis on the program represented by the observed calling structure and takes
into account other run-time information from the dynamic trace. The Solution Integrator
combines dataflow solutions from different dynamic traces into a program solution, and
decides if there are more traces to analyze.

 

JavaScript 
Test Suite 

dynamic phase 

 
 
 

Test 
Selector 

 

Selected 
Test Execution 

Collector 

 

Dynamic 
Trace 

Static 
Infrastructure 

static phase 

 
 
 

Solution 
Integrator 

Result 

 

JSBAF 
Solution 

Figure 3.1: JavaScript Blended Analysis Framework

By design, JSBAF in Figure 3.1 performs static analysis on each dynamic trace and combines
the results. An alternative design of the static phase would be to combine the dynamic in-
formation from all the executions (i.e., Trace Integrator) and then apply static analysis once
to the combined executions (Figure 3.2). Intuitively, this alternative approach is straight-
forward and may save the cost of multiple static analyses. It also may lose precision by
introducing possibly infeasible inter-procedural paths when multiple calling structures are
combined. In our instantiations of JSBAF (Section 3.2 and Chapter 4), we have chosen the
design of JSBAF shown in Figure 3.1.

 

Dynamic 
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Trace 
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Figure 3.2: An alternative design of JSBAF static phase

In addition, JSBAF is a flexible framework in that techniques and heuristics applied to
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individual components can be substituted. For example, Figure 3.3 shows various instru-
mentation choices for the Execution Collector. Gathering more dynamic information (e.g.,
sequence of all executed instructions) enables a more accurate representation of an execution,
but it also results in additional cost for the Execution Collector. The Execution Collector
is designed to flexibly apply instrumentation heuristics depending on the requirements and
budget of the analysis. In our implementations, we have adapted a relatively lightweight
Execution Collector that collects the dynamically generated code, function calls and object
allocations. Similarly for the Static Infrastructure, different static analysis choices (e.g., flow
and context sensitivity) that affect the precision and performance can be applied. JSBAF is
also general-purpose in that by replacing the Static Infrastructure, we can change the specific
analysis applied to the JavaScript program. We will demonstrate the flexibility and gener-
ality of JSBAF by showing its instantiations that apply different flow- and context-sensitive
policies as well as different analysis clients (Section 3.2 and Chapter 4).

code 
generation 

function 
calls object 

allocations 

property 
accesses conditional 

predicates 

all 
instructions 

cost 

Figure 3.3: Instrumentation heuristics and cost model of Execution Collector

3.1.2 JSBAF for Dynamic Features

We now discuss the benefits of JSBAF on handling several dynamic features of JavaScript.

Eval. Pure static analysis can analyze JavaScript source code that is statically visible;
however at runtime, invocations of reflective constructs such as eval may result in new
JavaScript code being generated and executed. This generated code is difficult to model
accurately via static analysis because eval parameters may contain complicated string val-
ues being set at runtime. Because inaccurate models of reflective constructs often result
in intractable (i.e., unscalable and/or overly approximate) analyses, most JavaScript static
analyses (e.g., [30, 21, 72]) give up analysis soundness by ignoring the dynamic code gen-
eration mechanisms. Nevertheless, there have been efforts on transforming eval functions
to other JavaScript constructs and thus enabling static analysis on the transformed code.
Jensen et al. presented a static analysis to eliminate specific calls to eval [28] and Meawad
et al. proposed a semi-automated approach via classification techniques to replace eval

call sites with safer JavaScript idioms [46]. However, there still are inevitable cases where
these approaches cannot transform some calls to eval (e.g., Jensen et al. reported that 11
out of 44 eval call sites in their experiments could not be successfully transformed by their
approach [28]).

Figure 3.4 shows an example of eval functions from xing.com. Jensen et al. reported that
this piece of code containing multiple eval calls not resolvable by their approach [28]. In
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1 for (n = 1; n < 20; n++) {

2 xe = "s.prop" + n + "=myUe(s.prop" + n + ")";

3 ex = "s.eVar" + n

4 + "=myCp(s.prop" + n + ",’D=c” + n + ”’)";
5 to = "typeof(s.prop" + n + ")";

6 if (eval(to) != "undefined") {

7 eval(xe);

8 eval(ex)

9 }

10 }

Figure 3.4: JavaScript eval example

JSBAF, eval calls can be monitored by the Execution Collector which gathers any code
generated thusly, making it available during analysis of the dynamic calling structure. For
the code example in Figure 3.4, the Execution Collector observed 19 calls to eval(to) (line
6) with the actual code recorded as

typeof(s.propX) where X ∈ {1, 2, ..., 19}.

The Execution Collector also observed 2 calls to eval(xe) (line 7) and eval(ex) (line 8)
with the actual code

s.propY=myUe(s.propY) and s.eVarY=myCp(s.propY,‘D=cY’) where Y ∈ {1, 2}.

The Static Infrastructure then analyzes the code including the effects of eval calls because
the above generated code is visible for the Static Infrastructure and the dynamic calling
structure contains calls to functions myUe and myCp.

In addition to eval, other JavaScript mechanisms that generate code at runtime such as
setTimeout and setInterval functions can also be collected and analyzed by JSBAF.

Function Variadicity. Function variadicity occurs when a function can be called with
an arbitrary number of arguments, regardless of its declaration. If fewer arguments are
provided than in the declaration, the values of the rest of the declared arguments are set to
be undefined. If more arguments are provided than in the declaration, the arguments can
be accessed through an associated arguments object. Sometimes, branch conditions within
a function can be differentiated by its number of arguments; thus, the function may exhibit
different behaviors.

Figure 3.5 shows a shortened version of the important extend function of jQuery v1.11.2.
Overall, this function is designed to extend the properties of the target object, whose refer-
ence is dependent on the number as well as the types of arguments passed to the function. If



Shiyi Wei Chapter 3. JSBAF 16

1 jQuery.extend = function() {

2 var target = arguments[0] || {},

3 i = 1;

4 if ( typeof target === "boolean" ) {

5 target = arguments[ i ] || {};

6 i++;

7 }

8 if ( i === arguments.length ) {

9 target = this;

10 i--;

11 }

12 for ( ; i < arguments.length; i++ ) {

13 if ( (options = arguments[ i ]) != null ) {

14 for ( name in options ) {

15 target[ name ] = options[ name ];

16 }

17 }

18 }

19 }

Figure 3.5: Simplified jQuery extend function

one argument is passed, the this object is assigned to target at line 9; thus, the functionali-
ties of jQuery are extended in lines 12 to 18. Otherwise, the values of the target object may
also be arguments[0] (line 2) and arguments[1] (line 5). Static analysis needed model func-
tion variadicity to accurately reason about the references of the target object so that it can
produce precise results on this function. Unfortunately, pure static analyses for JavaScript
normally ignore this feature because (i) the actual number of arguments provided during the
call may only be known at runtime (e.g., calling a variadic function using the reflective apply
function may result in the length and values of the arguments not knowable statically), and
(ii) specific techniques need to be applied to separate the behaviors of a variadic function.
In contrast, the Execution Collector can capture the actual number of arguments for each
call so that the dynamic calling structure can contain separate nodes for instances of the
same function called with different numbers of arguments, introducing context sensitivity.
Executing a simple program that loads jQuery library, we observed 29, 2 and 4 calls to the
extend function with 1, 2 and 3 arguments, respectively. In addition, when branches of a
variadic function are determined by its number of arguments, using the concrete value of
arguments.length as a context element, the Static Infrastructure can prune the unexecuted
branches from the analysis and result in a more accurate approximation of the code in the
function variant.

Constructor Polymorphism. JavaScript object constructors may be polymorphic so that
objects created by the same constructor may have distinct properties. For the example shown
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in Figure 3.6, JavaScript objects created by this constructor X may have a local property p

or q depending on the value of the parameter passed. In an empirical study, Richards et al.
reported the existence of polymorphic constructors in JavaScript web applications [59]. Re-
call that a static analysis usually represents all objects created by the same allocation site by
an abstract object and assumes all possible properties created by the constructor (e.g., both
p and q by the constructor X in Figure 3.6). This approximation is inaccurate to summarize
JavaScript objects because objects with different properties often exhibit different behaviors.
The Execution Collector can collect the run-time information of properties associated with
a created object by (i) instrumenting the property write statements, or (ii) instrumenting
the object allocations and pruning unexecuted statements. The Static Infrastructure then
uses this dynamic information to distinguish objects created by the same constructor with
distinct properties (see Chapter 4).

1 function X(b) {

2 if(b) { this.p = new Y(); }

3 else this.q = new Z();

4 }

Figure 3.6: JavaScript polymorphic constructor example

Dynamic Property Accesses. JavaScript object properties can be accessed as associative
arrays, where the names of the properties are expressed as strings. In addition, object
properties are not declared and can be changed at any program point. Dynamic property
accesses have been identified by Sridharan et al. [72] and Park et al. [53] as an important issue
that causes the inaccuracy of JavaScript static analyses. Line 15 in Figure 3.5 demonstrates
a use case of dynamic property accesses. For each iteration of the embedded loops, the
property name of target is written as the value of the property name of options. It is
difficult for static analyze to resolve and distinguish the property names for the dynamic
property accesses because the values are associated with function arguments and loops. The
Execution Collector can instrument the concrete names of property accesses as well as the
loop conditions and the Static Infrastructure can then perform specialized static analysis on
these concrete values.

Other Features. In addition to the above important dynamic features, there are other
features in JavaScript that require special treatment. Although some features can be modeled
by a static analysis (e.g., lexical scoping and type-based dynamic dispatch), JSBAF may
further improve the precision of these static models.

For example, Figure 3.7 illustrates an example of dynamic dispatch based on the object
constructor. Because of the nature of dynamic typing, the variable v can refer to objects
whose constructors are unrelated by inheritance (e.g., the objects created by constructors A
and B). The actual function being called in line 6 depends on the constructors of v, which
is determined by the predicate in line 1. Pure static analysis normally assumes that either
branch in this code can be taken, and makes a conservative approximation that v can be
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1 if (b) {

2 v = new A();

3 else

4 v = new B();

5 }

6 v.bar();

Figure 3.7: JavaScript type-based dynamic dispatch example

created by either A or B, making the target in line 6 ambiguous. In JSBAF, the Execution
Collector can collect the functions that are called and constructors that are used to create
JavaScript objects. The Static Infrastructure can use pruning to eliminate the code that was
not executed to preserve the dynamic information. In case of Figure 3.7, one of the branches
(e.g., line 4) will be pruned if v is created only by A so that the Static Infrastructure knows
the actual type of v in line 6. Thus JSBAF performs static analysis on accurate presentations
of the executions.

3.1.3 Soundness of JSBAF

Overall, JSBAF presents an unsound [45] analysis framework for JavaScript. In blended
analysis, the program input to the Static Infrastructure is an over-approximation of the
actually executed code and the Static Infrastructure, instead of reasoning over all possible
behavior of the program, analyzes the program representations collected by the Execution
Collector. Specifically, JSBAF produces overly-approximated results (i.e., solution of the
Static Infrastructure) on under approximations of the whole program behavior (i.e., traces
collected by the Execution Collector). In this section, we discuss the theoretical relationship
between the solutions of blended and pure static analyses, in terms of soundness.

A sound pure static analysis is expected to approximate all possible behavior of a program,
including all language constructs. Due to the conservative approximations, a pure static
analysis solution may also contain the behavior that cannot be exhibited in any execution.
The precision of an analysis measures if it produces many of these spurious results. In
addition, a pure static analysis is often performed under limited time and memory resources.
The performance of an analysis measures if it produces results under reasonable resources.
An analysis is practical if it achieves good precision as well as performance analyzing the
target programs. For example, the green rectangle in Figure 3.8 represents the solution
of a sound pure static analysis and the region in the dashed circle represents all possible
behavior of the program (i.e., true positives). As shown in Figure 3.8, a practical sound
analysis should cover all the true positives and produce small number of false positives (i.e.,
the green region outside the dashed circle).

Despite the fact that pure static analysis is often expected to produce whole-program sound
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Sound analysis Soundy analysis 

Blended analysis True positives 

Figure 3.8: Soundness of blended analysis

results, there is no pure static analysis tool that is actually sound [42]. Specific language
features (e.g., dynamic code generation) are difficult to model statically and handling these
features statically often results in very imprecise solution, rendering the analysis impracti-
cal. Thus, pure static analysis makes unsound assumptions over these language constructs.
Livshits et al. presented a new terminology, soundy, for such pure static analysis [42]. For
JavaScript, pure static analysis makes unsound choices over multiple language constructs.
To the best of our knowledge, none of the existing pure static analyses fully handles the
feature of dynamic code generation in JavaScript. Some other language constructs such as
call and apply functions have also been omitted from some pure static analyses. Therefore,
all state-of-the-art pure static analyses for JavaScript are soundy analyses. We now reason
about how the solutions of soundy pure static analysis and blended analysis of JavaScript
compare in theory.

We first consider the call graphs constructed and used by both analyses. A soundy pure
static analysis of JavaScript uses a call graph CGsoundy, a representation of a set of functions
Fsoundy and their possible calling relations recognized from the statically accessible code.
CGsoundy, representing a set of possible executions, ignores specific language features. If the
eval construct was omitted by the analysis, there may exist additional functions and/or
calling relations not represented by CGsoundy. JSBAF, on the other hand, captures profiling
information needed to model dynamic features, but may not explore all executable paths in a
JavaScript program. JSBAF analyzes multiple executions of a program. For each execution
e, the set of functions observed is Fe. Fe may consist of two subsets: (i) Fe(soundy), a set
of functions visible from the soundy pure static analysis, Fe(soundy)⊆Fsoundy, and (ii) Fe(dyn),
a set of functions profiled during execution of e, whose existence is due to the language
features not handled by the soundy analysis. The Static Infrastructure then constructed the
call graph, CGe, of the execution e collected by the Execution Collector. Therefore, CGe is a
conservative approximation of all the inter-procedural invocations among Fe that occur when
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e is executed. Both CGsoundy and CGe may possibly introduce unexecutable inter- and intra-
procedural paths in the JavaScript program. Note that CGe is not necessarily a subgraph
of CGsoundy because of the nodes (i.e., Fe(dyn)) and/or calling relations introduced by features
not handled by the soundy analysis. Also, JSBAF may not explore all nodes and/or edges
in CGsoundy.

The pure static analysis is sound with respect to the program except for the language con-
structs not handled. For blended analysis, the Static Infrastructure treats each execution
as an entire program, building a conservative approximation of the calling structure and
applying a sound static analysis to this representation. Therefore, blended analysis of a
single execution is sound, producing no false negatives for the portion of the program it
analyzes. Since JSBAF integrates the solutions on multiple executions to form the entire
analysis solution and the solution of each execution is sound, therefore JSBAF is sound with
respect to the observed executions.

In Figure 3.8, we describe the general relationship between a soundy analysis solution (i.e.,
the pink rectangle) and a blended analysis solution (i.e., the blue rectangle) for the same
JavaScript program. Their intersection includes the part of the solution due to program
constructs modeled by the soundy analysis and within those executions observed by JSBAF.
There may be a set of results reported by soundy analysis that blended analysis does not
calculate because (i) it does not explore every executable path in the program, and (ii)
false positives introduced by the over-approximation of soundy analysis may be avoided
by the more precise dynamic call graphs used by JSBAF. The blended analysis solution
may also contain results missed by a soundy analysis because of the language constructs
not modeled by soundy analysis, but observed and therefore modeled by blended analysis.
Blended analysis may contain additional false positives because of the approximation in
analysis of dynamic constructs. The goal of JSBAF is to retain most of the true positives
found by a soundy pure static analysis while eliminating some false positives, and to discover
more true positives by analyzing the dynamic features of JavaScript.2

3.2 An Instantiation: Blended Taint Analysis

Security is one of the critical issues associated with JavaScript web applications. Given the
ubiquity of JavaScript, it is crucial to discover security vulnerabilities possibly introduced by
use of its dynamic features. Many security problems can be formalized as information flow
problems [12] which seek to preserve the integrity of data (i.e., not allow untrusted values to
affect a sensitive value or operation) and confidentiality of data (i.e., keep sensitive values
from being observed from outside the computation). Taint analysis detects flows of data that
violate program integrity. To demonstrate the practicality of JSBAF, we have instantiated
a blended taint analysis and performed empirical evaluation of its results.

2In Section 3.2, we use an instantiation of JSBAF, blended taint analysis, to demonstrate its practicality.
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3.2.1 Blended Taint Analysis
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Figure 3.9: Blended taint analysis for JavaScript web applications

Figure 3.9 presents the workflow of our blended taint analysis. The work of the dynamic and
static phases of blended taint analysis is patterned directly after the work of these phases
in JSBAF. In the dynamic phase, a user interacts with a website manually exploring its
functionalities, using a browser that instruments JavaScript operations. Traces of each web-
page consisting of recorded function calls, constructors of created objects, and dynamically
generated/loaded code that is not statically visible, are gathered by the Execution Collector.
The Trace Selector selects a subset of the page traces that cover the behavior of the executed
program well. In the static phase, the Code Collector identifies the JavaScript code that
was executed, including both statically visible and invisible code. The Call Graph Builder
creates a call graph from the recorded function calls and other collected function-specific in-
formation as node annotations. Static Taint Analysis is applied to the program represented
by the call graph. The Solution Integrator combines solutions from different page traces into
a single solution for that webpage. The final solution of a blended taint analysis is a set
of souce-sink pairs; these represent untrusted data (i.e., sources) which can reach sensitive
operations (i.e., sinks).

Dynamic phase. Our Execution Collector relies on a specialized version of TracingSa-
fari, an instrumented version of WebKit3 JavaScript engine developed for characterizing the
dynamic behavior of JavaScript programs [59]. TracingSafari records operations including
function calls, property adds and deletes, etc. It also collects events such as source file loads.
Heavyweight instrumentation (e.g., property accesses and conditional predicates) of web ap-
plications often result in performance degradation of the browser. In the scenario of blended
taint analysis, a user interacts with the websites to collect the page traces and avoiding sig-
nificant performance overhead is desirable. We have designed a lightweight instrumentation
by modifying TracingSafari.

Specifically, to assure the security of a website, the user explores webpages from the same do-
main. Execution of a website may involve code on several different webpages. The sequence
of JavaScript instructions collected during an execution is decomposed into page traces; each
trace is a consecutive sequence of Javascript instructions from the same webpage. A page

3http://www.webkit.org
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trace consists of a dynamic call tree, recorded object creations, loaded program including the
dynamically generated code. The only instructions recorded are function calls and object
allocations.4 The Execution Collector also captures the actual number of arguments for each
call to precisely model variadic functions. The Trace Extractor builds the set of page traces
corresponding to each webpage collected from a set of executions.

There may be traces of the same page that are redundant on a large portion of their behavior.
Therefore, performing static analysis on these page traces may result in similar solutions,
while greatly increase the analysis cost. To avoid this situation, Trace Selector is designed
to minimize the number of traces analyzed, while covering most of the observed program
behavior. The trace selection algorithm takes all traces from one webpage collected by the
Execution Collector and a threshold (i.e., a value between 0 and 1 that can be adjusted
by the user of JSBAF) as input and works as follows. It starts with randomly selecting a
trace from all the traces and then uses the criterion dist to iteratively select from the rest
of the traces. Specifically, the dist score of each candidate trace is calculated against the
selected traces. The candidate trace with the highest dist score is selected. This algorithm
terminates when no more candidate traces reach the threshold or there are no longer any
traces to select.

The core of the trace selection algorithm is to calculate the dist criteria of the candidate
trace. This value is comprised of three factors: (i) function coverage (i.e., distfunc), (ii)
object constructor coverage (i.e., distobj), and (iii) dynamically generated code coverage
(i.e., distdyn). Covering more functions and observed object constructors explores more code
and program paths, while covering the dynamically generated code expands the capability
of blended analysis to analyze the program constructs that are normally omitted by a pure
static analysis. Each factor is normalized to fall between 0 and 1. The value of dist is
calculated via a linear combination of these factors to emphasize using traces that cover
more functions, explore different object allocations and contain as much as possible of the
dynamically generated code encountered, as follows:

dist = 0.5 × distdyn + 0.4 × distfunc + 0.1 × distobj

These weights can be adjusted based on analysis requirements and budget to maintain the
balance between performance and accuracy. We demonstrate the above choice of weights has
produced reasonable analysis results in Section 3.2.2. Note that this heuristic is not specific
to JavaScript but can be used for other dynamic languages with similar characteristics.

Static phase. The Static Infrastructure of our blended taint analysis for JavaScript was
built on the IBM T. J. Watson Libraries for Analysis (WALA) static analysis framework5

that includes a JavaScript front-end. WALA parses JavaScript source code from a webpage

4In Sections 3.1.1 and 3.1.2, we discussed that other instructions (e.g., property accesses) may be collected.
5http://wala.sourceforge.net
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producing an abstract syntax tree (AST) and translates the AST into the WALA intermedi-
ate form. This infrastructure statically models several language features of JavaScript such
as lexical scoping and reflective property accesses [21].

Our Call Graph Builder generates the context-sensitive call graph of each page trace. As
discussed in Section 3.1.2, we use the number of arguments (i.e., argument.length) as a
context element in the call graph. Therefore, variadic functions have multiple nodes in our
call graph with different contexts. The Call Graph Builder applies pruning to the code of all
functions by annotating the unexecuted statements. In addition to the pruning technique
presented by Dufour et al. [14], when branches of functions are determined by the value
of arguments.length, we use that value to prune the statements on unexecuted branches to
provide a more accurate approximation of variadic functions. The Code Collector deals with
the dynamically generated code that is omitted by WALA, but collected in the page trace.
Synthetic functions are generated for these dynamic features (e.g., eval) and the targets are
the distinct dynamically generated code in the trace.

We have implemented a static taint algorithm to detect integrity violations in four steps:

(i) A points-to analysis for JavaScript [72] is performed to obtain aliases of objects in the
program. We modified the implementation in that when the analysis looks for the targets
a function invocation, it seeks the the dynamic call graph built by our Call Graph Builder
instead of constructing the call graph on-the-fly with the static algorithm in WALA.

(ii) Sources and sinks are predefined and automatically identified in the program. A data
source is called tainted when an untrusted third party has control of its value. JavaScript
functions from untrusted third party code are considered to be sources; the variables created
in these functions or whose values are returned by calling these functions are marked as
tainted.

We consider two sets of objects to be sensitive. Properties of objects that hold impor-
tant browser/user information are sensitive. In the implementation, we reused the same
set of properties by Nentwich et al. [49]. Every variable in a statement that writes those
properties is marked as a sink (e.g., the URL property of the document object). A persis-
tent security vulnerability can happen if untrusted data is saved by the server. Therefore,
parameters of functions which are sent to the server are sensitive (e.g., the parameter of
xmlhttprequest.send()). These parameters are marked as sinks.

(iii) A call graph reachability analysis is executed to filter out any node that is not on a
direct call path from a function containing tainted souce(s) to a function containing sink(s);
the remaining nodes are candidates for taint propagation.

(iv) Taint propagation. An inter-procedural traversal of the call graph is performed from
each source through candidate nodes to any reachable sink. At each encountered candi-
date function, an intra-procedural data dependence analysis is applied to track the tainted
variables into candidate calls. The possible effects of calls to non-candidate functions are
approximated: if one argument of the call is tainted, we assume all the arguments are tainted



Shiyi Wei Chapter 3. JSBAF 24

as an optimization to avoid analysis of these functions. Call cycles are handled by fixed point
iteration (i.e., when the variables of the recursive functions achieve fixed tainted states).

3.2.2 Evaluation

We conducted experiments comparing the practicality of blended taint analysis to two pure
static taint analyses on popular JavaScript websites.

Pure static taint analyses. We implemented a pure static analysis on top of WALA that
performs the four step algorithm presented in Section 3.2.1. Instead of using the dynamic call
graph, the pure static taint analysis performs the standard on-the-fly call graph construction
during points-to analysis [72].

The static infrastructure in WALA omits the semantics of eval. To increase the capability
of pure static taint analysis, we added a naive model of eval. JavaScript variables that
serve as the eval function parameters are considered as accessible in the eval calls. In pure
static analysis, the eval functions are conservatively marked as additional sinks because the
generated code is not visible without a complicated analysis of the eval functions.

In the experiment, we ran pure static taint analysis in two configurations. JavaScript li-
braries are frequently used in websites. The first configuration, Static Taint+, analyzes the
code directly extracted from the webpages and any reachable library functions. The second
configuration, Static Taint− analyzes only the JavaScript code extracted from the webpages.
We designed these two configurations in our experiments because some JavaScript libraries
(e.g., jQuery) have posed significant challenges to pure static analysis in terms of scalabil-
ity and precision. Static Taint− ignores the JavaScript libraries and may still detect taint
violations originating from the application code.

Hypotheses. Our experiments explore the following hypotheses: (i) blended taint analysis
can scale to real-world JavaScript programs, and (ii) blended taint analysis is more accurate
than pure static taint analysis, capable of discovering more security violations and eliminating
some false alarms.

Benchmarks. The experiments were conducted with benchmarks consisting of 12 websites
that are among the top 25 most popular sites on www.alexa.com at the time of evaluation
(i.e., December 2012). A user of our Execution Collector, who had no knowledge of JSBAF
and blended taint analysis, was instructed to explore different functionalities on webpages.
Table 3.1 shows the statistics of the collected benchmarks. Each benchmark is formed from
the user’s interaction with a website. A profiled interaction consists of individual traces,
each containing a sequence of JavaScript instructions from a single webpage. The set of
traces corresponding to the same webpage comprises a JavaScript program for blended taint
analysis. The second column in Table 3.1 shows the number of webpages executed at each
website and then analyzed. The third column represents the total number of page traces
collected for each website.
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Website No. of pages No. of traces
facebook 27 62
google 22 55

youtube 15 30
yahoo 30 69

wikipedia 27 65
amazon 9 13
twitter 32 53

blogspot 9 17
linkedin 32 54

msn 13 21
ebay 40 72
bing 7 14

totals 263 525

Table 3.1: Benchmarks

The experimental results were obtained on a 2.53 GHz Intel Core 2 Duo MacBook Pro with
4 GB memory running the Mac OS X 10.5 operating system.

Blended taint analysis results. Table 3.2 presents the time performance of the static
phase of blended taint analysis, Static Taint+ and Static Taint−, each run under a limited
time budget of 10 minutes. Columns 2 and 4 present the number of webpages that could
not be analyzed within the time budget by Static Taint+ and Static Taint−, respectively.
Static Taint+ was able to fully analyze two websites (i.e., linkedin and bing). For some sites,
Static Taint+ did not scale on all/most webpages (e.g., yahoo and amazon). Static Taint−,
which does not analyze library code, was capable of analyzing most application code from
JavaScript webpages. To sum up, Static Taint+ timed out on 108 out of 263 webpages and
Static Taint− timed out on 12 out of 263 webpages. Blended taint analysis, on the other
hand, was able to finish analyzing all selected page traces within the time budget.

Columns 3, 5 and 6 show the analysis time of each website averaged over those webpages that
were not timed out for Static Taint+, Static Taint− and blended taint analysis, respectively.
The time cost of the static phase of blended taint analysis on a webpage is the total time
of multiple static taint algorithms applied to each trace. In Table 3.2 the average analysis
time of blended taint analysis exceeds that of Static Taint− on all websites but google. This
is mainly caused by the fact that (i) Static Taint− ignores JavaScript libraries, and (ii) the
same portion of JavaScript code may be analyzed duplicately in multiple traces.

The time cost of blended taint analysis is dominated by its static phase. Nevertheless,
performance of the Execution Collector is still critical to the experience of the user of our
blended taint analysis. We compared the performance of our modified TracingSafari and an
original Safari running JSBench [57], a JavaScript benchmark generated from real websites,



Shiyi Wei Chapter 3. JSBAF 26

Website Static Taint+ Static Taint− Static phase
of blended taint

No. of pages Average time No. of pages Average time Average time
timed out (sec.) timed out (sec.) (sec.)

facebook 14 28.5 0 19.2 29.4
google 13 39.2 1 22.4 14.2

youtube 10 57.3 2 13.9 37.4
yahoo 24 33.0 3 12.1 48.3

wikipedia 2 18.1 2 18.1 23.0
amazon 9 - 0 7.7 32.9
twitter 5 42.8 1 14.0 62.3

blogspot 6 27.3 0 14.8 18.8
linkedin 0 28.8 0 21.7 39.4

msn 10 38.0 1 25.3 42.4
ebay 15 21.1 2 12.7 18.5
bing 0 16.5 0 16.5 27.4

Table 3.2: Taint analysis time

to observe the instrumentation overhead. Our instrumented Safari ran 42.7% slower than
the original. The user should experience observable slowdown of the browser but still be
able to run JavaScript websites for the testing scenario. Furthermore, TracingSafari is a
dependent on a specific version of the browser because it modifies the JavaScript core engine.
A browser-independent Execution Collector (e.g., Jalangi [63]) may be used to generalize our
experiments to test websites on different browsers.

Overall, Static Taint+, analyzing code including JavaScript libraries (e.g., jQuery), could
not complete analysis of 41% of the webpages we examined. Static Taint−, only analyzing
application code, could not complete analysis on 4.6% of the webpages. Blended analysis, on
the other hand, used dynamic information to focus the static analysis and ran to completion
on all websites. Thus, given our timings for these analyses, we have support for our first
hypothesis that blended taint analysis is scalable on real-world JavaScript websites.

Table 3.3 shows the results of the blended and the pure static taint analyses. Six of the
12 websites we experimented with contained reports from these analyses. We report the
number of unique alarms for each website because duplicate alarms may originate from the
same code in different webpages. Each alarm was checked manually to determine if it was a
true positive (i.e., there actually exists at least one flow from a source to a sink) or not (i.e.,
false positive). For the sink-source pairs that flowed into an eval invocation reported for
Static Taint+ or Static Taint−, we manually checked if there actually was a taint violation.
In Table 3.3, columns 2, 4 and 6 present the number of true positives reported by Static
Taint+, Static Taint− and blended taint analysis, respectively. Columns 3, 5 and 7 show
the number of false positives. Note that the results in Static Taint− columns marked ∗
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Website Static Taint+ Static Taint− Blended Taint
TP FP TP FP TP FP

youtube 1 1 1 - 4 -
twitter 1 - 1∗ - 3 -
linkedin 1 1 1∗ 1∗ 1 1

msn - - - - 2 -
ebay 2 - - - 3 -
bing - 1 - 1∗ - -

totals 5 3 3 2 13 1

Table 3.3: Taint analysis results

mean the same alarms were reported by Static Taint+. Blended taint analysis reported 14
unique source-sink pairs from 5 websites; only one of them was a false positive. Static Taint+

reported 8 unique source-sink pairs from 5 websites; 3 of them were false positives. Static
Taint− reported 5 unique source-sink pairs from 4 websites; 2 of them were false positives.

Although Static Taint+ timed out on many webpages, it was able to discover 5 true positives,
3 of which were not discovered by Static Taint−. The suggests that it is crucial to model
JavaScript libraries in the analysis in terms of detecting taint violations. Static Taint− was
able to locate only one different true positive from Static Taint+ on youtube, although it
analyzed more webpages.

The blended taint analysis results in columns 6 and 7 in Table 3.3 support our second
hypothesis that blended taint analysis is more accurate than pure static taint analysis:

(i) Blended taint analysis discovered all the true positives that Static Taint+ or Static Taint−

reported.

(ii) Blended taint analysis found 8 additional true positives that Static Taint+ did not report
and 10 additional true positives that Static Taint− did not report.

(iii) For the 7 true positives detected by blended analysis, but not by either static analysis,
4 of them came from dynamic constructs the pure static analyses could not handle, while 3
of them were due to the scalability issue with Static Taint+.

(iv) Blended analysis eliminated 2 false positives reported by Static Taint+ and 1 false
positive reported by Static Taint−, leaving only one false positive reported in common with
the two static analyses.

Threats to validity. There are several aspects of our experiments which might threaten
the validity of our conclusions: (i) Because the traces of websites were manually collected by
one user of the Execution Collector, the webpages explored may not be representative of all
behaviors of web applications. The use of an automated tool to collect the traces may increase
the ability to test for more general website usage. (ii) The accuracy of our implemented
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framework is determined by limitations of the WALA interpretation of JavaScript. We
found that there were parsing problems with some JavaScript websites, and some language
constructs of JavaScript (e.g., the with construct) were ignored.



Chapter 4

State-sensitive Points-to Analysis

The unique object model of JavaScript including prototype-based inheritance and object
property changes is one of the most important features that allow JavaScript applications to
exhibit dynamic behavior. Software tools that analyze JavaScript programs need to take into
account the dynamic behavior object model to be practical. In this chapter, we propose a
novel flow- and context-sensitive points-to analysis that accurately handles dynamic changes
in the behavior of JavaScript objects. We first present a code example that illustrates
the imprecision of current points-to analysis. We have performed an empirical study on
JavaScript objects that motivated and guided us to the design of the new analysis. We then
present the state-sensitive points-to analysis for JavaScript and our experimental results.1

4.1 Imprecision of Points-to Analysis

Three important dimensions of design choices for points-to analysis are flow sensitivity, con-
text sensitivity and object representation. Some effective techniques for other programming
languages may be insufficient due to the unique object model of JavaScript. A flow-insensitive
analysis may produce imprecise results when obj-ref state changes, because it cannot per-
form strong updates. Context-sensitive analyses may produce imprecise results because they
lack the power to distinguish between different obj-ref states for the same JavaScript ob-
ject. In Figure 4.1, we present a JavaScript example to illustrate the sources of imprecision
of a flow- and context-insensitive points-to analysis resulting from the dynamic behavior of
JavaScript objects. We also demonstrate that object-sensitive analysis using the same object
representation as Milanova et al. [47] is ineffective at distinguishing the function calls in the
example.

Lines 2-6 show a polymorphic constructor function X, similar to the example in Figure 3.6.

1Part of the contents presented in this chapter was published in [78] and [80].

29
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1 function P(){ this.p = new Y1(); }

2 function X(b){

3 this.__proto__ = new P();

4 if(b) { this.p = new Y2(); }

5 else this.q = new Y3();

6 }

7 var x = new X(true);

8 x.bar = function(v, z){ v.f = z; }

9 var z1 = new Z();

10 x.bar(x.p, z1);

11 ...

12 x.p = new A();

13 ...

14 var z2 = new Z();

15 x.bar(x.p,z2);

Figure 4.1: JavaScript example of dynamic object behavior

Objects created by X may or may not have the local property named p or q (lines 4 and
5) depending on the value of its argument. The statement in line 12 updates the value of
local property p of an object pointed to by x if p exists; otherwise, the statement adds the
local property named p to the object. Figures 4.2 and 4.3 show the points-to graphs that
reflect the run-time behavior of this code. We use the line number to represent the object
created (e.g., the object created by X at line 7 is O7). We focus on two program points in
the execution, lines 10 and 15. The nodes O7, O4, and O3 and O9 constitute the obj-ref state
of O7 at line 10 and the nodes O7, O12, O3 and O14 constitute the obj-ref state of O7 at line
15. Note that O1 is not visible from O7 at lines 10 or 15 because of the existence of the local
property named p. The obj-ref state of object O7 is different at these two program points.

x	  

O7	   O3	  _proto_ 
O1	  p 

z1	  

O9	  
f 

v	   z	  

O4	  

p 

Figure 4.2: Run-time points-to graph at line 10

Constructor polymorphism (lines 2-6), object property change (line 12) and function invoca-
tions (lines 10 and 15) in this example make precise static points-to analysis hard to achieve
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Figure 4.3: Run-time points-to graph at line 15

with current techniques. Figure 4.4 shows a static points-to graph for the example built
by a flow- and context-insensitive points-to analysis. Dashed nodes and edges are imprecise
points-to relations that cannot exist at runtime.

There are several sources of imprecision. Line 7 assigns variable x to an object created by the
polymorphic constructor X. Not knowing the value of b, static analysis conservatively builds
all the points-to relations possible from execution of X; thus, results in the imprecise edge
(< O7, q >, O5). When reading the property p of x (line 10), static analysis returns objects O4
and O1 because a conservative analysis cannot distinguish whether or not O4 actually exists.
However, O1 is never accessible via x.p because there always exists a local property named p

of x in the example at runtime. Furthermore, because of the imprecise result of the read of
x.p, invoking the bar function results in imprecise property reference from O1 to O9. Flow-
insensitive points-to analysis simply adds O12 to O7.p (line 12) because it cannot perform
strong updates. Finally, because the context-insensitive analysis does not distinguish which
objects v and z point to on different calls of bar, line 15 results in additional imprecision
with respect to O4.f and O12.f (i.e., the points-to set of each local variable of bar is merged
with the values at both call sites and then points-to algorithm calculates the solution based
on the merged values).

We now discuss if existing techniques of flow and context sensitivity may avoid the im-
precision from the flow- and context-insensitive analysis. First, a flow-sensitive analysis in
general cannot strongly update indirect assignment statements because an abstract object
may represent multiple instance variables. For example at line 12, if there is another variable
x’ that also refers to O7, strongly updating O7.p (i.e., adding O12 to O7.p and removing all
other points-to relations of O7.p) would result in the analysis not soundly approximating
the program behavior because x’.p should not be updated to point to O12. All state-update
statements that affect the object behavior are indirect assignment statements; therefore, flow
sensitivity in general cannot improve the the analysis precision due to the dynamic behavior
of JavaScript objects. Second, assuming there is a sound technique to strongly update the
state-update statements, there still is need for an appropriate context-sensitive analysis to
remove the imprecise edges (< O4, f >, O14) and (< O12, f >, O9), distinguishing calls to bar
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Figure 4.4: Flow- and context-insensitive points-to graph

(lines 10 and 15) by their calling contexts. Object-sensitive analysis, the popular choice of
context sensitivity for object-oriented languages, is not able to differentiate these two call
sites because they have the same receiver object O7, which has two different obj-ref state at
these call sites. Our new points-to analysis is designed to handle these constructs more ac-
curately and to address the challenges raised by obj-ref state updating and prototype-based
inheritance.

4.2 Empirical Study of JavaScript Object Behavior

We have discussed in Section 4.1 that several design features of JavaScript objects render
static points-to analysis imprecise. Nevertheless, because our goal is to design a dataflow
analysis that is practical for analyzing real-world JavaScript applications, it is crucial to
learn if and how these features of the JavaScript dynamic object model have been applied in
JavaScript websites to guide our choices in the new points-to algorithm. Therefore, we have
conducted an in-depth empirical study focusing on understanding the run-time behavior of
JavaScript objects. We designed specific metrics for measuring JavaScript object behavior
and summarized the behavioral patterns suggesting common practices.
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4.2.1 Experimental Design

Benchmarks and tools. We chose to conduct the experiments on JavaScript websites to
reflect the behavior of real JavaScript applications. In our study, we used the benchmarks
collected by Richards et al. [59]. The benchmarks, collected by TracingSafari, consist of
114 dynamic traces (i.e., origin-traces2) extracted from 70 popular websites. Our study was
implemented as an augmented version of an offline analysis tool, TraceAnalyzer [59].

Object categories. Different kinds of objects are allocated during the execution of JavaScript
websites. We categorize these objects into the following kinds: (i) basic datatypes (i.e., the
built-in objects including Date, Array, String, etc.), (ii) anonymous objects (i.e., the objects
created via a pair of braces {...}), (iii) DOM objects (i.e., the HTML document objects),
(iv) functions (i.e., the objects created by the Function constructor), (v) native objects (i.e.,
the objects created through execution of native code), and (vi) user objects (i.e., the objects
created via the new constructor expression).
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Figure 4.5: Percentage of object instances in each object category

Figure 4.5 shows the distribution of the object instances in these categories over all origin-
traces. More than 50% of the instances are basic datatypes among which arrays are the most
frequently created. The number of user objects are relatively small (5.9%). Figure 4.6 shows

2To distinguish from the notion of trace we discussed in Chapter 3, we use the term origin-trace to
represent the traces we use for this empirical study, which were collected by Richards et al. using the
original TracingSafari.
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Figure 4.6: Percentage of operations associated with each object category

the distribution of the number of operations for each object category over all origin-traces.
Most operations occurred on anonymous objects (36.5%) and user object (29.0%), while
only 4.4% of the operations occurred on DOM objects. Comparing the results in Figure
4.5 and Figure 4.6, we observe that user objects are among the most active categories (i.e.,
on average 26 operations were associated with each user object). Because the precision of
points-to analysis is affected by the choices on analyzing user objects and this object category
exhibited active behavior, we focus on user objects in this study.

Experimental setup. An origin-trace is a compressed file containing source code and
a sequence of statements that are recorded at runtime [59]. We focused on the following
statements that are related to JavaScript object behavior: (i) property writes, (ii) property
reads, (iii) property deletes and (iv) constructor returns. In the experiments, we analyzed
the statements in sequence and assigned a unique operation kind for each statement. Table
4.1 shows the relation of statements to operation kinds. Note that the same statement may
result in different operation kinds under different circumstances. In JavaScript, a property
write statement can only change a local property; thus, a property write may result in one
of the three operation kinds (i.e., add, override, and update) for better understanding of its
effect on object properties and inheritance. The property lookup mechanism in JavaScript,
on the other hand, may use the prototype chain to read an inherited property; hence, we
assign one of the two operation kinds (i.e., read-inherit and read-local) to a property read
statement. We use the constructed operation for a user object to distinguish its construction
stage from the rest of its object lifetime.
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Statements Operation kind Preconditions

property write
add

The property does not exist locally or on
the prototype chain.

override
The property does not exist locally but
exists on the prototype chain.

update The property exists locally.

property read
read-inherit The property does not exist locally.
read-local The property exists locally.

property delete delete
constructor

return
constructed

Table 4.1: The relationship between statements and operation kinds

We modified TraceAnalyzer to produce the operation kinds in Table 4.1. Our implementation
produced both aggregated results and detailed information for individual objects. Figure 4.7
shows an example of the history information (i.e., sequence of operations) associated with
an object. For each operation, we output the operation kind, property name, the ID and
category of the property as well as other information (e.g., the property access chain from a
read-inherit operation). The empirical study was conducted in a 2.66GHz Intel Core 2 Duo
MacBook Pro with 4GB memory running the Mac OS X 10.6.8 operating system.

=======================Object Information=======================

609. Object ID: 15796

Category: user object

Operations: 24

Prototype: 8054

-----------History-----------

1. OpKind: add Property: fn PropID: 9697(function)

2. OpKind: add Property: overrideContext

PropID: 15104(constructed by 9807(function))

3. OpKind: constructed

......

21. OpKind: read-inherit Property: contains PropID: 8057(function)

Chain: 15796-8054

22. OpKind: read-local Property: fn PropID: 9697(function)

23. OpKind: delete Property: fn

24. OpKind: delete Property: obj

Figure 4.7: Sample history information of an individual object from yahoo
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4.2.2 Metrics

Operation kind distribution. The behavior of a user object is defined by its associated
operations. An object is more dynamic when its properties change (e.g., override, add or
delete) frequently. The percentage of read-inherit operations suggest the importance of
precisely knowing the prototype mechanism. Figure 4.8 presents the distribution of read
(i.e., read-local and read-inherit) vs. write and delete (i.e., add, update, override and delete)
operations. For user objects, read operations comprised 81% of all operations, indicating a
relatively small fraction of operations may possibly change object properties.
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read write and delete 

Figure 4.8: Read vs. write and delete operation distribution
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Figure 4.9: Read-local and read-inherit operation distribution

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

add update override delete 

Figure 4.10: Write and delete operation distribution
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Figures 4.9 and 4.10 present additional details on the information in Figure 4.8. Figure
4.9 shows that more than 30% read operations of user objects were read-inherit operations,
suggesting user objects actively use their prototype chains to lookup properties. Figure
4.10 illustrates the distribution among write and delete operations. Delete operations were
infrequently observed. About 3% of all write and delete operations of user objects were delete
operations, which means properties of user objects are sometimes removed at some point
during execution. Override and update operations occurred more often; specifically, 14%
and 25% of write and delete operations of user objects were override and update operations,
respectively. Add operations were most frequently observed, comprising 58% of write and
delete operations of user objects.
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Figure 4.11: Local sizes of user objects at their constructed and last operations

Object size. We define the size of a JavaScript object as its number of accessible proper-
ties (including local and inherited properties) at a program point during execution. Since
the property list of a JavaScript object is not fixed at runtime, object size may change.
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We calculate JavaScript user object sizes at two crucial stages in object lifetime: at its
constructed operation and its last observed operation (i.e., an approximation of the end of
object lifetime). On average over all the user objects, the object size was 28 at the con-
structed operation. Figure 4.11 shows the local sizes of user object (i.e., counting only local
properties) at their constructed and last operations. There were user objects whose local
sizes were the same at both operations in their lifetime (i.e., the points on the x = y line).
However, we observed that the local sizes of many user objects grew significantly by the end
of their lifetime compared to local sizes at their constructed operations. This result gives
evidence that the local size of a JavaScript user object is usually not consistent at different
stages of its lifetime and in most cases increases.
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Inherited properties Local properties 

Figure 4.12: Inherited vs. local properties in user objects
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Figure 4.13: Accessible vs. inaccessible properties from prototype objects

Property inheritance. Inherited properties serve as the goal for code reuse, while overrid-
den properties allow more specific behavior of objects. Figure 4.12 shows the percentage of
inherited and local properties of all the accessible properties in user objects at their construc-
tion stage. For each user object at its constructed operation, we collected the local property
list as well as the property lists of its prototype objects. All properties in the local prop-
erty list were counted as local properties and a subset of the properties in the property list
of its prototype objects were counted as inherited properties conforming to the JavaScript
property lookup mechanism. We found that 13% of the properties were implemented for spe-
cific user objects, while most of the properties (87%) were inherited from prototype objects.
Over all the properties in the prototypes of user objects, Figure 4.13 shows the percentage of
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properties accessible from user objects. For the prototype objects of each user object at its
constructed operation, properties that were overridden were counted as inaccessible proper-
ties; others were accessible properties. In Figure 4.13, 5% of the properties were overridden
so that they were inaccessible and the rest (95%) were accessible.

4.2.3 Object Behavioral Patterns

In addition to the above overall metrics on JavaScript user objects, we present a study on
the object behavioral patterns across the benchmarks and discuss some representative cases.
An operation occurrence pattern illustrates a representative sequence of operations occurring
on a specific object or property. A property change pattern presents frequently occurring
changes from one object category to another on specific properties. We studied those object
behavioral patterns that may affect the design choices of dataflow analysis from more than
1 million user objects and more than 9 million of their properties in the origin-traces.

Operation occurrence patterns. The recurring sequence of operations on objects or
properties may suggest a common coding style and/or user interactions of JavaScript appli-
cations. Knowing the operation occurrence patterns, we can better design a dataflow analysis
that accommodates the frequently observed patterns of object behavior. Table 4.2 shows
the operation occurrence patterns we studied. We designed these patterns based on: (i)
operation sequences frequently observed in the experiments and (ii) the usage of delegation
in JavaScript. Patterns 1-5 reflect the sequences of operations on a specific property p and
patterns 6-9 show the relationship between a constructed operation and other operations on
a user object. We use two quantifiers to express the number of times an operation occurs
(i.e., + for operations occurring 1 or more times and {n} for operations occurring n times
exactly). We discuss each pattern and our empirical observations in detail below.

Operation occurrence pattern Notes
1 (add p | override p | update p)+ → delete p regular and abnormal
2 (add p | override p | update p){0} → delete p delete practices
3 read-local p+ → delete p → read-inherit p+ local&inherited property
4 read-inherit p+ → override p → read-local p+ lookups for same p

5 read-local p+ → update p “temporary” property
6 delete+ → constructed delete(s) before/after
7 constructed → delete+ constructed operations
8 update+ → constructed interesting writes
9 constructed → (add | override)+ before/after constructed

Table 4.2: Operation occurrence patterns of user objects

Because delete is not supported by most popular programming languages, its semantics have
not been widely studied; therefore, there are few specific program analysis techniques that
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handle deletes. In addition to property deletions that remove local properties, property
write operations (i.e., add, override and update) may also add/change the values of local
properties. We first study the relationship between write operations and delete operations.

• Pattern 1: (add p | override p | update p)+ → delete p. This pattern occurred
on 106,137 properties of the user objects in 56 out of 114 origin-traces in the bench-
marks. The average percentage of properties of user objects exhibiting Pattern 1 in
the 56 origin-traces was 0.9% with standard deviation of 1.8% across the origin-traces.
With this relatively high standard deviation, we observed the origin-traces that con-
tributed most to this pattern were from google, especially gmail (i.e., 9% of properties
of user objects in gmail, 62,055 in total). The scenarios of Pattern 1 can be interpreted
as follows: (i) if the pattern occurs only a few times, the specific property is accessible
only between the property write operation and the delete; (ii) if the pattern occurs
on the same property many times, the property is most likely used as a temporary
variable. The majority (99.8%) of properties that exhibit Pattern 1 only contain one
iteration of the pattern. This suggests that most uses of delete are to end the lifetime
of a specific property; after the local property is deleted, an inherited property (if it
exists) will be accessible. Nevertheless, there are some properties exhibiting multiple
occurrences of Pattern 1. For example, Pattern 1 occurred 149 times on one property
of a user object in mozilla; this property lastAction is used to check if a function may
be called and then it is deleted. In this scenario, the developer creates the property
when needed and uses a delete statement to ensure that specific property only exists
in a certain part of the program. This usage is considered as a legitimate use of delete.

• Pattern 2: (add p | override p | update p){0} → delete p. This pattern oc-
curred on 70,143 properties of the user objects in 37 out of 114 origin-traces in the
benchmarks. The average percentage of properties of user objects exhibiting Pattern
2 in the 37 origin-traces was 0.9% with standard deviation of 1.6%. The distribution
of Pattern 2 is similar to Pattern 1 in that google dominates the uses of the delete
operation with 7% of the properties of user objects (i.e., 45,440 in total) in gmail ex-
hibiting Pattern 2. This pattern occurs more frequently than expected because Pattern
2 describes that a property p is deleted when it never had been added, overridden or
updated. In JavaScript semantics, a delete operation on a non-existing local property
does not alter the object. The developers of JavaScript websites are likely using the
delete statement to ensure that a local property does not exist at some program point.
Although the occurrence of Pattern 2 during execution will not produce a run-time
error, it reflects the difficulty of controlling properties of a JavaScript object.

After a local property p is deleted from the object o, reading o.p uses the prototype chain of
o. The following pattern shows that at different points of the execution, a delete operation
may result in accessing local vs. inherited properties.
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• Pattern 3: read-local p+ → delete p → read-inherit p+. This pattern occurred
on 311 (0.03‰) properties of the user objects in the benchmarks. Although this
pattern does not occur as frequently as the others, it is the most straightforward
pattern showing the influence of delete operation on the uses of an object property.
The occurrences of Pattern 3 are limited to fewer than 10 websites (e.g., npr.org) and
the deleted properties are all function properties. This implies specialization of the
function properties; a read operation on the object results in use of a different property
lookup mechanism at different program points (i.e., local property vs. prototype chain
lookup).

The override operations also affect the local property list of an object such that reading a
property of an object may result in read-inherit vs. read-local operations before and after
the override operations, respectively. In addition, because an update operation changes the
value of a local property, the read-local operations at different program points may return
different results if an update operation occurs between them.

• Pattern 4: read-inherit p+ → override p → read-local p+. This pattern oc-
curred on 281,160 properties of the user objects in 73 out of 114 origin-traces in the
benchmarks. The average percentage of properties of user objects exhibiting Pattern
4 in the 73 origin-traces was 1.6% with standard deviation of 3.2%. The two websites
that experienced significant number of Pattern 4 were me.com and npr.org. This pat-
tern directly shows the impact of an override operation on the uses of the property
and it occurs more frequently than Pattern 3. Pattern 4, similar to Pattern 3, indi-
cates that understanding JavaScript property accesses can be difficult, requiring more
accurate program analysis techniques to address this issue.

• Pattern 5: read-local p+ → update p. This pattern occurred on 616,825 properties
of the user objects in 106 out of 114 origin-traces in the benchmarks. The average
percentage of properties of user objects exhibiting Pattern 5 in the 106 origin-traces
was 7% with standard deviation of 5.5%. As the most frequently observed pattern on a
specific property in the benchmarks, Pattern 5 exists in almost all the websites. go.com,
facebook and yahoo are the three websites with the highest percentage of properties of
user objects experiencing this pattern (i.e., 41%, 23% and 21%, respectively). We
observed there were 127,052 properties in the benchmarks that were read and updated
more than once. If update happens frequently on a property, then this property may be
regarded as a temporary variable. Frequently updating a property value is a common
object-oriented practice for building data structures (e.g., list) and control structures
(e.g., loop) in the program, while updating the object category of a property is unusual;
thus, we have performed an in-depth study on frequently occurred patterns of property
changes from one object category to another.

We divide the lifetime of a user object into two stages: before and after construction. Differ-
ent object behavior is expected at these two stages: (i) before a user object is constructed,
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properties should be frequently added/overriden and (ii) after a user object is constructed,
its properties often may be used and updated. We first investigated the stage of a user object
at which delete operations happen.

• Pattern 6: delete+ → constructed. This pattern illustrates that property deletion
occurs in the construction stage of an object (i.e., the deleted property may not be
accessed after the object is constructed). It occurred on 34,725 user objects in 23 out of
114 origin-traces in the benchmarks. The average percentage of user objects exhibiting
Pattern 6 in the 23 origin-traces was 9% with standard deviation of 12%. Origin-traces
from google (including gmail and google docs) all contained objects that experienced
many occurrences of this pattern, from 18% to 51% of user objects in each origin-
trace. Other websites that frequently exhibit Pattern 6 (more than 5% of user objects)
are virtualsecrets.com and npr.org. There is a strong correlation between Pattern 6
and Pattern 2. Most of the deleted properties within the construction stage do not
exist locally at the time of deletion. For example, an object from myspace exhibits
7 deletions of the same property q in its constructor, although the property never
exists locally. After inspecting the code, we found that in a constructor where several
function properties of the object are defined, there is a delete statement (i.e., delete
this.q) that will always execute without checking the existence of the property q.

• Pattern 7: constructed → delete+. The occurrence of the delete operation after the
construction stage is considered normal if the property is used before the deletion (e.g.,
Pattern 1). Pattern 7 occurred on 42,372 user objects in 56 out of 114 origin-traces in
the benchmarks. The average percentage of user objects exhibiting Pattern 7 in the
23 origin-traces was 4.3% with standard deviation of 9%. Pattern 7 was observed in
a larger set of websites than Pattern 6. In addition to google, many user objects from
facebook also exhibited Pattern 7. We observed that deletions happen frequently in
some objects; more than 500 objects are associated with at least 50 delete operations
after the construction stage. Potentially, these objects exhibit very different behaviors
in between these delete operations.

Property addition and overriding are common for an object within the construction stage.
We conducted further study on the update operations in the construction stage and on the
add/override operations that happen after an object is constructed.

• Pattern 8: update+ → constructed. This pattern occurred on 60,742 user objects
in 90 out of 114 origin-traces in the benchmarks, much more widely observed than
the delete operation related patterns (i.e., Patterns 6 and 7). The average percentage
of user objects exhibiting Pattern 8 in the 90 origin-traces was 5.5% with standard
deviation of 6.7%. Websites that most frequently experienced Pattern 8 were yahoo,
go.com and me.com. Updating properties in the construction stage suggests that some
JavaScript object constructor functions do not just create properties.
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• Pattern 9: constructed → (add | override)+. This pattern occurred on 265,224
(20.56%) user objects in 106 out of 114 origin-traces in the benchmarks. The average
percentage of user objects exhibiting Pattern 9 in the 106 origin-traces was 28% with
standard deviation of 23%. For some websites (i.e., easychair.org, raphaeljs.com and
me.com), most user objects (more than 90%) experienced Pattern 9. Thus, the local
property lists of many user objects are expanded by adding a new property or over-
riding an inherited property. This result conforms to our observations in Figure 4.11
and indicates that the behavior of a JavaScript object may not be represented by its
properties at the point of its construction.

Property change patterns. An object property that changes from one object category
to another may indicate significant change of behavior. Table 4.3 shows property change
patterns for user objects. The function → user object, anonymous → basic datatype

and basic datatype → user object patterns all occurred frequently (more than 1000
times) in the benchmarks. These property changes suggest many properties are used for
unrelated purposes at different program points, another coding practice that poses challenges
for program analysis to reason about the object behavior. As for individual websites, google,
facebook and flapjax-lang.org are among the websites we observed the most property change
patterns. function → user patterns occurred most frequently on ebay, while anonymous

→ basic patterns were from flapjax-lang.org. For the less frequently observed patterns,
flapjax-lang.org, me.com and google.com dominated the occurrences of basic→ anonymous,
basic → function and user → function patterns, respectively.

Pattern Occurrences Pattern Occurrences
function → user 6384 basic → anonymous 260

anonymous → basic 3138 basic → function 144
basic → user 1320 user → function 46

Table 4.3: Property change patterns of user objects

4.2.4 Summary

We have performed an empirical study on websites to understand the run-time behavior of
JavaScript objects. We evaluated several dynamic metrics on user objects and investigated
frequently occurring behavioral patterns. Based on our observations, the dynamic designs
of JavaScript objects are widely used in real-world applications and thus, it is necessary
for program analysis algorithms to include an accurate model to reason about JavaScript
objects.
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4.3 State-sensitive Points-to Analysis

Based on the motivating example and empirical study, we have designed a new points-to
analysis for JavaScript. In this section, we will present our state-sensitive points-to analysis.
We will explain the key ideas used in the analysis, including the intra-procedural program
representation (i.e., the block-sensitive decomposition of control flow graphs), the solution
space (i.e., the annotated points-to graph with access path edges and in-construction nodes),
the transfer functions of state-update statements as well as the state-preserving statements,
state sensitivity (i.e., a form of context sensitivity based on object sensitivity that captures
changes in object behavior during execution) and block sensitivity (i.e., a partial flow sensi-
tivity performed on the transformed CFG). Finally, we will discuss the implementation facts
of our algorithm.

4.3.1 State-Preserving Block Graph

A flow-insensitive analysis ignores the control flow of a program while a flow-sensitive analysis
typically uses an intra-procedural control flow graph. Our analysis aims to provide a better
model of a JavaScript object whose reference state exhibits a flow-sensitive nature (e.g.,
allowing addition and deletion of object properties at any program point). Cognizant of
the possible overhead introduced by a fully flow-sensitive analysis, we designed a partially
flow-sensitive analysis that only performs strong updates when possible on state-update
statements using a transformed CFG, called the State-Preserving Block Graph (SPBG).
Recall that the state-update statements, including the property write (i.e., add or update a
property) and delete (i.e., remove a property), directly change the obj-ref state in JavaScript;
all other statements (e.g., property read) are state-preserving statements.
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Figure 4.14: CFG
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Figure 4.15: SPBG

Figure 4.15 shows an example SPBG compared to its original CFG (Figure 4.14). An SPBG
is a transformed control flow graph whose basic blocks are aggregated into region nodes
according to whether or not they contain a state-update statement. The SPBG also contains
state-update statements as special singleton statement nodes (i.e., state-update nodes). An
example of a region node (i.e., state-preserving node) is 2-4-5-7 in Figure 4.15 whereas node
x.p = y is an example of a state-update node. Note that by creating singleton nodes, the
algorithm breaks apart former basic blocks (e.g., 1 → {1’, x.p = y, 1”}).

We first split any basic blocks in the CFG that contain at least one state-update statement,
obtaining a split-CFG. State-update statements that are property write and delete state-
ments can be detected syntactically. In addition, because our analysis requires a call graph
as input (Section 4.3.6), invocations that may result in an obj-ref state change are found by
a call graph traversal. We then use a variant of the standard CFG construction algorithm
[2] to build the split-CFG. The header nodes used include the standard headers (Section
2.1.2) plus (i) any state-update statement is a region header of a state-update node contain-
ing only that statement, and (ii) any state-preserving statement that immediately follows a
state-update statement is a region header of a state-preserving node.

In an SPBG, state-preserving region nodes are formed based on grouping nodes in the split-
CFG that share the same control flow relations with respect to state-update nodes. The
possible control flow relations of node n1 and n2 in a split-CFG include: (1) n1 is a successor
of n2, (2) n1 is a predecessor of n2, (3) n1 is both a successor and a predecessor of n2 (i.e.,
n1 and n2 exist in a loop) and (4) n1 and n2 have no control flow relation (e.g., n1 and n2
are present in different branches). We label each node in a split-CFG with its relations to
each state-update node via depth-first searches. The set of labels form a signature for that
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node. If nodes share the same signature it means that they have the same control flow
relationship(s) to a (set of) state-update statement(s) so that they can be collapsed to a
state-preserving node in the SPBG. Figure 4.15 shows the signatures of the state-preserving
regions in the generated SPBG; a and b represent the state-update statements x.p = y and
delete x.p, respectively. Basic blocks 2, 4, 5 and 7 are aggregated because they only appear
as successors of x.p = y and have no control flow relation to delete x.p. The region node
2-4-5-7 is not further aggregated with basic block 9 because 9 is a successor of delete x.p

but 2-4-5-7 is not.

4.3.2 Points-to Graph Representation

Our points-to graph representation includes novel components that facilitate the handling
of strong updates for state-update statements. Recall that most flow-sensitive analysis algo-
rithms cannot perform strong updates for indirect assignment statements (e.g., x.p = y) and
few analyses consider property delete statements, which are uncommon in object-oriented
languages. Two existing techniques help to enable strong updates for such statements in
JavaScript: recency abstraction and access path maps.

Recency abstraction [6, 24] associates two memory-regions with each allocation site. The
most-recently-allocated block, a concrete memory-region, allows strong updates and the not-
most-recently-allocated block is a summary memory-region. We adapt the idea of recency
abstraction to enable strong updates during analysis of constructor functions.

De et al. [11] performed strong updates at indirect assignments by computing the map from
access paths (i.e., a variable followed a sequence of property accesses) to sets of abstract
objects. This work demonstrated the validity of using access path maps to perform strong
updates for indirect write statements in Java. We adapt this approach to points-to analysis
for JavaScript by expanding the points-to graph representation instead of using separate
maps.

Table 4.4 lists the nodes, edges and annotations in our points-to graph. In addition to the
variable nodes v and abstract object nodes o, our points-to graph contains in-construction
object nodes @o. Similar to the recency abstraction, an in-construction object always de-
scribes exactly one concrete object, which exists only during analysis of a constructor.

There are three kinds of edges. Variable reference and property reference edges exist in a
traditional points-to graph. An access path edge, (< v, p >, φo), denotes that the property
p of variable v refers to object φo. < v, p > represents an access path with length of 2 (i.e.,
a variable followed by one field access v.p).3

Our analysis calculates may pointer information, meaning that a points-to edge in the graph
may or may not exist at runtime. To better approximate the obj-ref state of JavaScript

3The length of an access path is one more than the number of field accesses [11].
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Table 4.4: Expanded points-to graph with annotations

objects, we introduce annotations on property reference edges as well as access path edges.
The annotations help to calculate must exist information for object property names. In our
analysis, the d annotation on a property name p (i.e., pd) denotes that the local property
named p must not exist. This annotation only applies to access path edges in our points-
to graph. The other annotation, *, applies to both property reference edges and access
path edges. p∗ denotes that the local property named p may not exist. Thus, property
reference edges without annotation or access path edges without annotation represent must
exist information for the property names in the expanded points-to graph. We use pα to
represent any kind of pd, p∗ or p edge. These annotated edges help us perform a more
accurate property lookup.

Pt(x) denotes the points-to set of x and Pt(< φo, p >) denotes the points-to set of the
property p of φo. Pt(< v, p >) denotes the points-to set of access path v.p. We also define
the operation Alias(v) which returns the set of variables W such that v and w ∈ W point to
the same object. apset(v) denotes the set of all access path edges of v (i.e., apset(v) =

∀q : {(< v, qα >, φo)}).

In addition to the points-to graph, we use a mapping data structure to store intermediate
information in the analysis. The map M is used to record the list of property names when an
object is constructed. An abstract object (e.g., o) is the key in M whose value is the set of
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local property names that exist when the constructor function of the abstract object returns
(e.g., {p1, p2, p3}).

4.3.3 Transfer Functions

Now we describe the dataflow transfer functions for the statements shown in Tables 4.5 and
4.6.

Object creation si : x = newX(a1, a2, ..., an). In our analysis, an object creation statement
(i.e., new statement) is modeled in three steps. x = new X creates an in-construction object
@oi. Then the invocation of the constructor newX(a1, a2, ..., an) is modeled as a function
call on @oi. Upon the return of the constructor (i.e., retX), the analysis removes the in-
construction object from the points-to graph and redirects all points-to relations from @oi
to an abstract object (i.e., remove(G,@oi)). If the local property set of the in-construction
object matches that of an existing abstract object with the same allocation site, the in-
construction object is merged into the abstract object; otherwise, a new abstract object is
created to replace the in-construction object.

In our analysis, there is at most one in-construction object for each creation site to allow
strong updates. Thus, specific handling is required for recursive constructor calls. If an in-
construction object is to be created when there already is an existing in-construction object
for the same allocation site, our analysis resolves the existing in-construction object into a
special abstract object whose set of properties upon construction is unknown. During the
fixed point iteration, this special abstract object aggregates property reference edges due to
the recursive constructor.4

The transfer function of the object creation statement ensures that abstract objects are based
on their allocation site as well as their constructed local properties (i.e., an approximation
of actual obj-ref state); in other words, the objects created at the same allocation site that
contain the same set of local property names share the same abstract object in our analysis.
This object representation is more precise than using one abstract object per creation site.

Direct write x = y. The effects of direct variable assignment on the points-to graph are
relatively straightforward. x = y creates points-to edges from x to all objects pointed to by y.
Note that we perform weak updates on direct assignments. Although the analysis removes all
the access paths edges of x from the points-to graph (i.e., G− apset(x)), soundness is ensured
because lookups through the abstract objects reflect less precise, yet over approximations
(see Figure 4.18). Also, the access path edges of y cannot be copied to x because access path
edges can only be added via strong updates.

Property write x.p = y. In general, strong updates cannot be performed on the prop-

4Our analysis uses a finite set of abstract objects and calling contexts, ensuring that a fixed point solution
will be reached, in this case.



Shiyi Wei Chapter 4. State-sensitive Points-to Analysis 49

O
b

je
ct

cr
ea

ti
on

:
s
i

:
x

=
n
e
w
X
(a

1
,a

2
,.
..
,a

n
)

T
ra

n
sf

er
fu

n
ct

io
n
:

(1
)
x

=
n
e
w
X

:
(G
−
a
p
s
e
t
(x

))
⋃ (x

,@
o
i
)

(2
)
n
e
w
X
((
a
1
,a

2
,.
..
,a

n
))

:
G

⋃ {i
n
v
o
k
e
(G
,X
,@

o
i
,a

1
,a

2
,.
..
,a

n
)}

(3
)
r
e
t
X

:
r
e
m
o
v
e
(G
,@

o
i
)

D
ir

ec
t

w
ri

te
:

x
=

y

T
ra

n
sf

er
fu

n
ct

io
n
:

(G
−
a
p
s
e
t
(x

))
⋃ {(

x
,φ
o
i
)
|φ

o
i
∈
P
t
(y

)}

P
ro

p
er

ty
w

ri
te

:
x
.p

=
y

T
ra

n
sf

er
fu

n
ct

io
n
:

(1
)
i
f
|P
t
(x

)|
=

1
a
n
d
{φ

o
i
∈

@
O
|φ

o
i
∈
P
t
(x

)}
:

(G
−
{(
<

@
o
i
,p

α
>
,φ
o
j
)
|@

o
i
∈
P
t
(x

)
∧
φ
o
j
∈
P
t
(<

@
o
i
,p

α
>

)}
)

⋃ {(
<

@
o
i
,p
>
,φ
o
j
)
|@

o
i
∈
P
t
(x

)
∧
φ
o
j
∈
P
t
(y

)}

(2
)
o
t
h
e
r
w
i
s
e

:

(2
.1

)
(G
−
{(
<

x
,p

α
>
,φ
o
i
)
|φ

o
i
∈
P
t
(<

x
,p

α
>

)}
)
⋃ {(

<
x
,p
>
,φ
o
j
)
|φ

o
j
∈
P
t
(y

)}

(2
.2

)
G

⋃ {(
<
φ
o
i
,p
∗
>
,φ
o
j
)
|φ

o
i
∈
P
t
(x

)
∧
φ
o
j
∈
P
t
(y

)}

(2
.3

)
G

⋃ {(
<

z
,p
∗
>
,φ
o
i
)
|z
∈
A
l
i
a
s
(x

)
∧

P
t
(z
,p

α
)
6=
∅
∧
φ
o
i
∈
P
t
(y

)}

T
a
b
le

4
.5
:

T
ra

n
sf

er
fu

n
ct

io
n

s
of

ob
je

ct
cr

ea
ti

on
,

d
ir

ec
t

w
ri

te
an

d
p

ro
p

er
ty

w
ri

te
st

at
em

en
ts



Shiyi Wei Chapter 4. State-sensitive Points-to Analysis 50

P
ro

p
er

ty
d
el

et
e:

d
e
l
e
t
e
x
.p

T
ra

n
sf

er
fu

n
ct

io
n
:

(1
)
i
f
|P
t
(x

)|
=

1
a
n
d
{φ

o
i
∈

@
O
|φ

o
i
∈
P
t
(x

)}
:

G
−
{(
<

@
o
i
,p

α
>
,φ
o
j
)
|@

o
i
∈
P
t
(x

)
∧
φ
o
j
∈
P
t
(<

@
o
i
,p

α
>

)}

(2
)
o
t
h
e
r
w
i
s
e

:

(2
.1

)
(G
−
{(
<

x
,p

α
>
,φ
o
i
)
|φ

o
i
∈
P
t
(<

x
,p

α
>

)}
)
⋃ {(

<
x
,p

d
>
,n
u
l
l
)}

(2
.2

)
G

⋃ {(
<
φ
o
i
,p
∗
>
,φ
o
j
)
|φ

o
i
∈
P
t
(x

)
∧
φ
o
j
∈
P
t
(<

φ
o
i
,p
>

)}
−
{(
<
φ
o
i
,p
>
,φ
o
j
)
|φ

o
i
∈
P
t
(x

)
∧
φ
o
j
∈
P
t
(<

φ
o
i
,p
>

)}

(2
.3

)
G

⋃ {(
<

z
,p
∗
>
,φ
o
i
)
|z
∈
A
l
i
a
s
(x

)
∧

P
t
(z
,p

)
6=
∅
∧
φ
o
i
∈
P
t
(<

z
,p
>

)}
−
{(
<

z
,p
>
,φ
o
i
)
|z
∈
A
l
i
a
s
(x

)
∧

P
t
(z
,p

)
6=
∅
∧
φ
o
i
∈
P
t
(<

z
,p
>

)}

P
ro

p
er

ty
re

ad
:

x
=

y
.p

T
ra

n
sf

er
fu

n
ct

io
n
:

(G
−
a
p
s
e
t
(x

))
⋃ {(

<
x
,φ
o
i
>

)
|o

i
∈
l
o
o
k
u
p
(y
,p

)}

F
u
n
ct

io
n

in
vo

ca
ti

on
:

x
=

y
.f

(a
1
,a

2
,.
..
,a

n
)

T
ra

n
sf

er
fu

n
ct

io
n
:

(G
−
a
p
s
e
t
(x

))
⋃ {i

n
v
o
k
e
(G
,F
,φ
o
i
,a

1
,a

2
,.
..
,a

n
)
|φ

o
i
∈
P
t
(y

)
∧

F
∈
l
o
o
k
u
p
(y
,f

)}

T
a
b
le

4
.6
:

T
ra

n
sf

er
fu

n
ct

io
n

s
of

p
ro

p
er

ty
d

el
et

e,
p

ro
p

er
ty

re
ad

an
d

fu
n

ct
io

n
in

vo
ca

ti
on

st
at

em
en

ts



Shiyi Wei Chapter 4. State-sensitive Points-to Analysis 51

erty write statement because an abstract object may summarize multiple run-time objects;
however, use of in-construction objects and access path edges enable strong updates in our
analysis. In the points-to graph G, if x only refers to one object and the object is an in-
construction object, we know that x refers to a specific concrete object. The analysis then
performs strong updates on the property reference edges by removing the points-to edges in
G denoting @oi.p (if they exist) and adding the new edges implied by Pt(y). In other cases
(i.e., the cardinality of Pt(x) is more than 1 or x refers to an abstract object), we use access
path edges to enable strong updates on property write statements. First, the access path of
x.p can be strongly updated by removing the access path edges in G denoting x.p (if they
exist) and adding the new edges (e.g., (< x, p >, oj) where oj is referred to by y). Second,
the object(s) x points to are weakly updated (e.g., the edge (< oi, p

∗ >, oj) is inserted if
x points to oi and y points to oj). The property reference edges are inserted with the *

annotation because the property write statement may not affect all variables pointing to the
updated object. Last, the access path edges of the variables that have a may alias relation
to x need to be weakly updated. For example, (< z, p∗ >, oi) is inserted to G if z may be an
alias of x, and there exists at least an edge denoting z.p (with or without annotation).

O1 

x 

z 

y 

O2 

O4 

O5 

p* 

p 

p O3 

Figure 4.16: Property write example: input points-to graph

O1 

x 

z 

y 

O2 

O4 

O5 

p* 

p 

O3 
p* 

p* 

p 

p 

Figure 4.17: Property write example: updated points-to graph

Figures 4.16 and 4.17 show an example of the effects of a property write statement on the
points-to graph. Figure 4.16 illustrates the input points-to graph for the property write
statement x.p = y. In Figure 4.17, our analysis performs a strong update on the access
path x.p (i.e., delete (< x, p >, O4) and add (< x, p >, O2), (< x, p >, O3)) and inserts the
edges (< O1, p

∗ >, O2), (< O1, p
∗ >, O3) (i.e., weak updates).
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Property delete delete x.p. The transfer function of the delete statement is similar
to the property write statement. Our analysis strongly updates the access path edges by
removing the existing edges and adding a new edge (i.e., (< x, pd >, null)) that denotes
x must not have a local access path x.p. When performing weak updates on the property
reference edges of an object oi that is referred to by x, all existing edges denoting oi.p should
be annotated by * because the property named p may not exist locally for oi. The same
rule applies when updating the access path edges of the aliases of x.

Property read x = y.p. JavaScript may seek the prototype-based inheritance when an
object property is read, which is asymmetric to writing and deleting properties. Inaccurate
model of property lookups may result in significant reduction of overall analysis practicality
(e.g., when reading property p of an object, an analysis may report all properties named
p in the prototype chain of the object to ensure analysis soundness); thus, we have de-
signed a more precise property lookup mechanism enabled by our expanded points-to graph
information.

Input: : v and p

Output: P (accessible properties v.p)
1: if Pt(< v, p >) 6= ∅ then
2: P ∪ Pt(< v, p >) ∪ Pt(< v, p∗ >)
3: return
4: else if Pt(< v, p∗ >) 6= ∅ or Pt(< v, pd >) 6= ∅ then
5: P ∪ Pt(< v, p∗ >)
6: for each object φo in lookup(v, proto ) do
7: S.push(φo)
8: end for
9: else

10: for each object φo in Pt(v) do
11: S.push(φo)
12: end for
13: end if
14: while S is not empty do
15: φoi ← S.pop()
16: P ∪ Pt(< φoi, p >) ∪ Pt(< φoi, p

∗ >)
17: if |Pt(< φoi, p >)| = 0 and (Pt(< φoi, proto >) 6= null or

Pt(< φoi, proto ∗ >) 6= null) then
18: for each object φoj in Pt(< φoi, proto >) ∪ Pt(< φoi, proto ∗ >) do
19: S.push(φoj)
20: end for
21: end if
22: end while

Figure 4.18: Optimized object property lookup algorithm: lookup(v, p)
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Figure 4.18 presents the details of our property lookup algorithm. This worklist algorithm
iterates through all the accessible properties in the points-to graph when property p of
variable v is read. It uses the access path in priority when looking up properties because these
edges reflect the results of strong updates; property reference edges are used when access
path edges are not available. Lines 1 to 12 initialize the algorithm upon three conditions.
(1) If there exist access path edges for v.p without annotation (i.e., property p must exist
locally), the objects in the Pt(< v, p >) and Pt(< v, p∗ >) are considered to be accessible
properties (line 2) and the algorithm returns (line 3). (2) If there exist access path edges for
v.p with either annotation, the algorithm needs to lookup objects in the prototype chain.
In this case, the objects in the Pt(< v, p∗ >) (if v.p∗ exists) are considered to be accessible
properties (line 5) and the algorithm pushes all the immediate prototype objects of v onto
the worklist (lines 6 to 8). (3) Otherwise (i.e., no access path edge for v.p exists), only
the abstract objects are used for looking up so that all the objects in the Pt(v) are pushed
onto the worklist (lines 10 to 12). Lines 14 to 22 iterate the worklist. All the objects in
Pt(< φo, p >) and Pt(< φo, p∗ >) are considered to be accessible properties by our analysis
(Line 16). Since an edge annotated with * means that the property may not exist locally, the
algorithm will continue looking up the prototype chain, until it reaches at least one points-to
edge named p without annotation or the end of the prototype chain (Line 17 to 21). Thus,
instead of finding all the properties named p in the prototype chain (i.e., lookup all(v,

p)), our algorithm can stop when it finds an existing property p (i.e., a property named p

without annotation).5

This new property lookup algorithm lookup(v, p) mimics the run-time property lookup
mechanism of JavaScript while still assuring the soundness of our analysis. For the example
in Figure 4.17, lookup(x, p) results in O2 and O3 through the access path while lookup(z,

p) results in O2, O3, O4 and O5 through the abstract object O1. In Table 4.6, the transfer
function of the property read statements refers to this optimized object property lookup
algorithm. Because we perform weak updates on the property read statements, similar to
direct writes, the analysis removes all the access path edges of x from the points-to graph to
ensure soundness.

Function invocation x = y.f(a1, a2, ..., an). The function invocation (e.g., x =

y.f(a1, a2, ..., an)) resolves for every receiver object pointed to by y. The invoked
methods are determined by reading the property y.f through our optimized lookup algo-
rithm. Upon the return of function invocation, x is weakly updated by removing all its access
path edges from G.

5The precision improvement of our property lookup algorithm is demonstrated via the experimental
results on an analysis client in Section 4.4.
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4.3.4 State Sensitivity

State sensitivity for JavaScript is a new form of context sensitivity derived from the notion of
object sensitivity for languages such as Java. In object sensitivity, each function is analyzed
separately for each object on which it may be invoked. For strongly typed languages like Java,
often object sensitivity identifies objects by their creation sites. Calls of a function using
two receiver objects (i.e., created at different sites) will result in two separate analyses of the
function, even if the calls originated from the same call site. However, this is insufficient for
JavaScript analysis, because object behavior may change dynamically at any program point
during execution.

Obj-ref state, representing the notion of type for JavaScript objects, provides a more accurate
approximation of JavaScript object behavior than object creation site. We present state
sensitivity that uses obj-ref state as the context element. State-sensitive analysis analyzes
each function separately for each obj-ref state on which it may be invoked. We define the
following parameterized model for state sensitivity (i.e., k-state sensitivity).

• (i) 0-state sensitivity uses the receiver abstract object as a context element.

• (ii) 1-state sensitivity uses the receiver abstract object and its local properties as well
as its prototype chain as a context element.

• (iii) k-state sensitivity uses all abstract objects in the context element of (k-1)-state
sensitivity and their local properties as well as their prototype chains as a context
element.

O1 

O3 

O2 

O4 

O5 

_proto_ 

O6 

p1 

p1
* 

p2
* 

p3 

O7 _proto_ 
O9 

p6 

O8 

p5 

_proto_ 

p7 

Figure 4.19: obj-ref state of O1

By increasing the context depth of k, state-sensitive analysis, using a more expensive graph
representation of obj-ref state as a context element, may result in more precise results.
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O1 
O4 

O5 

_proto_ 

p1 

p2
* 

O7 _proto_ 

O2 O3 

Figure 4.20: context element of 1-state sensitivity

0-state sensitivity is identical to 1-object sensitivity assuming they use the same object rep-
resentation, while the context element of k-state sensitivity covers the longest access path
of O.p1.p2...pk when each pn (n ∈ [1, k]) is a local property. For example, Figure 4.19 shows
the obj-ref state of object O1. If a function is invoked on O1, 1-object-sensitive and 0-state-
sensitive analyses use the abstract object O1 as the context element. The context element of
1-state-sensitive analysis includes O1, its local properties (i.e., O2, O3 and O4) and its chain
of prototype objects (i.e., O5 and O7) shown in Figure 4.20, an approximation of the obj-ref
state of O1. Note that the edges with the same local property name (annotated or not an-
notated) in the points-to graph are merged in the context element (e.g., (< O1, p1 >, O2) and
(< O1, p

∗
1 >, O3)). In the example of Figure 4.19, 3-state sensitivity is capable of covering

the complete graph representation of obj-ref state of O1, including the longest access path
O1.p2.p3.p7. For more precise analysis results, state sensitivity would analyze each function
separately for each complete obj-ref state on which it may be invoked. However, the graph
representation of obj-ref state may contain many edges and nodes both locally and along
prototype chains, which would be prohibitively expensive to use as a context element. There-
fore, we use 1-state sensitivity in the current implementation of state-sensitive analysis. In
our evaluation in Section 4.4, the term state-sensitive analysis refers to our implementation
of 1-state-sensitive analysis.

4.3.5 Block Sensitivity

Our new points-to analysis algorithm is a fixed point calculation on the call graph, initialized
with an empty points-to graph on entry to the JavaScript program, in which every SPBG is
traversed in a flow-sensitive manner. Essentially, we have designed the points-to algorithm
to emphasize precision for the obj-ref state information in the points-to graph and the SPBG
to hide control flow not relevant to reference state updates.

More specifically, our analysis solves for the points-to graph on exit of each SPBG node. The
transfer function for a node in the SPBG is one of two kinds: (i) for a state-update node
perform strong update of the changed property, if possible (as in Tables 4.5 and 4.6), or
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⋃
∅ v.pd v.p∗ v.p

∅ ∅ ∅ ∅ ∅

v.pd ∅ v.pd v.p∗ v.p∗

v.p∗ ∅ v.p∗ v.p∗ v.p∗

v.p ∅ v.p∗ v.p∗ v.p

Table 4.7: Access path edges union rules

⋃
∅ o.p∗ o.p

∅ ∅ o.p∗ o.p∗

o.p∗ o.p∗ o.p∗ o.p∗

o.p o.p∗ o.p∗ o.p

Table 4.8: Property reference edges union rules

(ii) for a state-preserving node perform a flow-insensitive analysis of the statements in that
node, using an initial points-to graph (IN) and storing the fixed point reached in points-to
graph OUT.

In a flow-sensitive points-to analysis, the points-to graph IN is formed as a union of the OUT

points-to graphs of predecessor nodes. Due to the existence of annotations in our points-to
graph, we apply specific union rules for the access path edges and property reference edges
when two points-to graphs are unioned. For the access path edges (Table 4.7): (i) if access
path v.pα does not exist in at least one predecessor, then v.pα does not exist after union;
(ii) if v.pd or v.p exists in both predecessors, then v.pd or v.p respectively exists after union;
(iii) otherwise, v.p∗ exists after union. For the property reference edges (Table 4.8): (i) if o.p
exists in both predecessors, then o.p exists after union; (ii) otherwise, if o.p or o.p∗ exists in
at least one predecessor, then o.p∗ exists after union. These rules ensure analysis soundness
when property lookup is performed.

4.3.6 State-sensitive Analysis as an Instantiation of JSBAF

We implemented our new points-to analysis with a client as the static component of JSBAF.
This implementation choice enables more accurate object representation on polymorphic
constructors. Specifically, the code pruning based on observed function calls and object
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creations removes unexecuted statements in the constructors. Constructor polymorphism
was handled by our improved object representation with specialized function bodies (i.e.,
objects created at the same allocation site with different sets of property names are repre-
sented as separate abstract objects). In addition, implementing state-sensitive analysis as an
instantiation of JSBAF enabled us to perform evaluation on real-world JavaScript websites.

x 

O7 O3 _proto_ 
O1 p 

z1 

O9 
f* 

zC1 

O4 

p vC1 f 

Figure 4.21: Blended state-sensitive points-to graph at line 10
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O12 
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O14 

f* 

p* 
zC2 

vC2 

f 

f 

Figure 4.22: Blended state-sensitive points-to graph at line 15

Example. In comparison to the inaccurate points-to solution of a flow- and context-
insensitive analysis for the JavaScript code in Figure 4.1, we now demonstrate the results
of our state-sensitive points-to analysis in the context of blended analysis. Figures 4.21 and
4.22 show the points-to graphs obtained at lines 10 and 15, respectively. Because blended
analysis executes the program and does not observe an object created by the constructor Y3,
the code at line 5 is pruned so that our analysis does not generate the inaccurate node O5 nor
the edge (< O7, q >, O5). For the call statement at line 10, our 1-state-sensitive points-to anal-
ysis calculates the obj-ref state approximation of O7, namely C1: {O7, p:O4, proto :O3}.
Also, when looking up x.p at line 10, our algorithm returns O4 because there is no annotation
on the property reference edge so that further lookup through the prototype chain is not
necessary. Note that the points-to graph in Figure 4.22 is as precise as the run-time points-to
graph (Figure 4.2).
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At line 12, x.p is strongly updated via the access path edge (< x, p >, O12). For the call
statement at line 15, our points-to analysis calculates the obj-ref state approximation of O7,
C2: {O7, p:[O4, O12], proto :O3}. Our points-to algorithm distinguishes this call site
from line 10 because O7 has a different obj-ref state here. The lookup of x.p at line 15 follows
the access path edge so that the node O12 is returned. Thus, in this example our analysis
results in none of the inaccurate edges in the flow- and context-insensitive analysis (Figure
4.4) and reflects the run-time behavior of JavaScript objects (Figure 4.3).

4.4 Evaluation

In this section, we present experiments using JSBAF with our state-sensitive points-to anal-
ysis compared to an existing good points-to analysis [72], evaluating both with a REF client.

4.4.1 Experimental Design

REF Analysis. To evaluate the precision and performance of our points-to analysis, we
implemented a JavaScript reference analysis (REF). The REF client calculates the set of
objects returned by property lookup at a property read statement (i.e., x = y.p) or call
statement (i.e., x = y.p(...)). For each of these statements s in a function being analyzed
in calling context c, we compute REF(s, c), the set of objects returned by a property
lookup for each o.p where o is pointed to by y. The cardinality of the REF set depends on
the precision of the points-to graph and the property lookup operation; the smaller the set
returned, the more useful for program understanding, for example.

In Figure 4.1, assume we add the function property

x.foo = function(){var a = this.p; return a;}

Effectively, foo returns the property lookup result for this.p. If x.foo() is called at line
11 before the state-update statement x.p=new A(), it will return O4. If x.foo() is called
at line 13 after x.p=new A(), it will return O12. For an analysis that is flow-insensitive or
that cannot distinguish these call sites by calling context, the return value of each of these
function calls will contain at least two objects (i.e., O4 and O12).

Comparison with points-to analysis in [72]. We use the term CORR to refer to a blended
version of correlation-tracking points-to analysis [72] and its REF client, the same points-to
algorithm we used for blended taint analysis (Section 3.2.1). To demonstrate the additional
precision of our analysis over CORR, we applied the correlation extraction transformation
to our JavaScript benchmarks before performing our points-to analysis. We use the term
CORRBSSS to refer to a blended version of this augmented new points-to analysis and its REF
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Website CORR CORRBSSS

1 2-4 ≥ 5 1 2-4 ≥5
facebook 38% 52% 10% 50% 47% 3%
google 32% 51% 17% 53% 42% 5%

youtube 41% 47% 12% 54% 41% 5%
yahoo 48% 46% 6% 52% 45% 3%

wikipedia 29% 45% 26% 43% 39% 18%
amazon 45% 52% 3% 46% 51% 3%
twitter 32% 53% 15% 39% 49% 12%

blogspot 35% 34% 31% 53% 36% 11%
linkedin 34% 49% 17% 44% 50% 6%

msn 40% 36% 24% 48% 37% 15%
ebay 30% 40% 30% 46% 40% 14%
bing 41% 34% 25% 54% 37% 9%

Average 37% 45% 18% 48% 43% 9%

Table 4.9: REF analysis precision

client. For each algorithm, an object property lookup returns a REF set whose cardinality
|REF(s, c)| is calculated. For CORR, the lookup all approximate algorithm described in
Section 4.3.3 is used. For CORRBSSS, we use our optimized lookup algorithm lookup in Figure
4.18.

Benchmarks. We conducted the experiments with the same set of benchmarks described
in Section 3.2.2 (i.e., traces collected from 12 popular websites) and the experimental results
were obtained on a 2.53GHz Intel Core 2 Duo MacBook Pro with 4GB memory running the
Mac OS X 10.5 operating system.

4.4.2 Experimental Results

Improved REF Precision. Table 4.9 shows the REF client results for the 012 websites.
Columns 2-4 present the results for CORR and columns 5-7 present the results for CORRBSSS.
For each website, columns 2 & 5, 3 & 6, and 4 & 7 in Table 4.9 correspond to the percentage
of property lookup statements that return 1 object, 2-4 objects, and more than 4 objects,
respectively. The result shown for each website is averaged over the corresponding percentage
numbers for all of the webpages in that domain. For example, the 38% entry for facebook in
column 2 is the average for CORR over the 27 webpages analyzed returning only 1 object.

Comparing columns 2-4 with 5-7 in Table 4.9 for each website, we see the relative precision
improvement of CORRBSSS over CORR. For REF analysis, the best result is that the lookup
returns only one object and the property lookup is more precise if the number of objects re-
turned is smaller. On average over all the websites, CORR reported 37% of the property lookup
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Website CORR CORRBSSS Overhead
facebook 17.4 45.9 163%
google 13.0 30.4 134%

youtube 31.2 75.3 141%
yahoo 28.5 54.1 90%
wiki 16.0 40.1 151%

amazon 15.1 24.2 61%
twitter 38.1 94.5 148%

blog 15.9 42.4 137%
linkedin 27.8 62.0 167%

msn 34.4 57.9 68%
ebay 8.3 27.2 227%
bing 22.1 50.4 128%

Average 22.3 50.3 135%

Table 4.10: REF analysis cost (in seconds) on average per webpage

statements were resolved to a single object, while CORRBSSS improved this metric to 48%, a
significant improvement. In addition, REF analysis results may become too approximate to
be useful if too many objects are returned. Although 18% of the statements returned more
than 4 objects for CORR, CORRBSSS reduced that number to 9%. These improved precision
results indicate the potential for greater practical use of state-sensitive points-to information
by client analyses.

We also investigated the average number of objects returned by a property lookup statement.
For each website, we calculated the number of objects per statement on average over all its
webpages. Over all the benchmarks, CORR produced on average 2.8 objects and CORRBSSS

only reported on average 2.3 objects. Intuitively, this means that on average fewer objects
at each property lookup statement must be examined to gain better understanding of the
code.

REF Performance. An JavaScript analysis is practical if it scales to real-world websites.
Because CORRBSSS is partially flow-sensitive and context-sensitive, it is important to demon-
strate that this analysis is scalable. Table 4.10 shows the time performance of CORR versus
CORRBSSS.6 Columns 2 and 3 present the average webpage analysis time for each website,
averaging over all of its webpages. Both CORR and CORRBSSS completely analyzed all the
benchmark programs. On average over all the websites, CORR completely analyzed a web-
page in 22.3 seconds, while CORRBSIS did so in 50.3 seconds, incurring 135% average time
overhead per webpage.

Discussion. We collected data characterizing benchmark program structure and complexity

6The time cost in Table 4.10 reflects the performance of the static phase of blended analysis. In the
experiments, the dynamic phase of CORR and CORRBSIS is the same for both analyses.
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Website No. of % of functions % of state- No. of
functions w/ update(s) update stmt contexts

facebook 2123 9% 8% 4.0

google 1002 17% 6% 6.7

youtube 1329 7% 6% 3.9

yahoo 3810 4% 4% 2.4

wiki 270 10% 19% 4.8

amazon 729 6% 6% 1.9

twitter 618 15% 5% 3.4

blog 583 14% 14% 6.1

linkedin 920 8% 11% 3.6

msn 1537 8% 8% 2.8

ebay 581 18% 13% 7.5

bing 1131 7% 11% 4.9

Average 1219 10% 9% 4.3

Table 4.11: Benchmark and context statistics

to relate these characteristics to observed analysis precision and performance. The entries
in Table 4.11 all represent averages per webpage that are averaged over an entire website.
Column 2 shows the average number of functions in a JavaScript program. Column 3 shows
the percentage of functions containing at least one state-update statement. Column 4 shows
the percentage of statements that are state-update statements. Column 5 shows the number
of contexts produced by CORRBSSS as a multiplier for column 2. On average over all the
websites, 10% of the functions contained local state-update statement(s); these averages
ranged from 4% for yahoo to 18% for msn. This suggests that the state-update statements
are localized in a relatively small portion of the JavaScript program (e.g., in constructor
functions). On average over all the websites, 9% of the statements were identified as state-
update statements. The relatively small number of state-update statements means that our
SPBG contained many fewer nodes than the corresponding CFGs; therefore the flow-sensitive
analysis was more practical in cost on the SPBGs.

Now we compare the analysis precision observed in Table 4.9 with the number of contexts
generated on average per function per page (column 5 in Table 4.11) to observe the effect
of state sensitivity. google, blog, and ebay were the websites for which CORRBSSS improved
precision the most, whereas amazon, yahooo, twitter, and msn were the websites for which
CORRBSSS produced similar results to CORR. For the former websites, CORRBSSS generated the
greatest number of contexts per function per webpage. For the latter websites, CORRBSSS
generated the fewest. We observe strong correlation between the precision gain and the
number of contexts generated by CORRBSSS, demonstrating that state sensitivity significantly
increased analysis precision on these benchmarks, and suggesting that state sensitivity is an
effective form of context sensitivity for JavaScript analysis.

As shown in Table 4.10, the CORRBSSS time overhead differed significantly for different web-



Shiyi Wei Chapter 4. State-sensitive Points-to Analysis 62

sites, from 61% (amazon) to 227% (ebay.com). We investigate several program characteris-
tics to reason about such differences. First, the SPBGs created by CORRBSSS determine the
efficiency of the flow-sensitive analysis. On average over all the websites, an SPBG was com-
prised of about 6 nodes, explaining why CORRBSSS scaled on real websites. Functions with
large numbers of nodes in their SPBG usually contained multiple state-update statements
and complex control flow. The largest number of nodes for an SPBG was 23 in linkedin.
Second, the websites with the least performance overhead from CORRBSSS were amazon, msn
and yahoo. These websites contained a relatively small percentage of state-update state-
ments (i.e., all below average) and CORRBSSS generated the lowest number of contexts for
them. The website that incurred the most overhead (i.e., ebay) contained 13% update state-
ments, (i.e., the third highest percentage in our benchmarks), and the greatest number of
contexts per function (i.e., 7.5) generated by CORRBSSS. These results support the reasoning
that more complex block structure and more context comparisons contribute to the higher
overhead for CORRBSSS.



Chapter 5

Adaptive Context-sensitive Analysis

In addition to object-oriented features such as prototype-based inheritance, JavaScript appli-
cations exhibit other programming paradigms such as functional (e.g., first-class functions)
and procedural programming. The multi-paradigm feature of JavaScript poses challenges for
designing effective program analysis techniques, because each technique (e.g., context sensi-
tivity) often works well for a specific programming paradigm. In this chapter, we present a
novel analysis that selectively applies a context-sensitive analysis depending on programming
paradigms of a function. We first perform an empirical study on JavaScript benchmarks to
compare the precision of different whole-program context-sensitive analyses and conclude
that a specific context-sensitive analysis is often effective only on a portion of a JavaScript
program. We then present our two-staged adaptive context-sensitive analysis for JavaScript
using heuristics to select from various context-sensitive approaches for a function and discuss
the experimental results.1

5.1 Empirical Study of JavaScript Context Sensitivity

There is no theoretical comparison between the functional and call-strings approaches to
context sensitivity that proves one better than the other. Therefore, we study the precision
of different context-sensitive analyses in practice based on experimental observations. Such
comparisons have been conducted for call-site and object sensitivity on Java [39, 68] as well
as JavaScript [33] applications. Object sensitivity produced more precise results for Java
benchmarks, while there was no clear winner across all benchmarks for JavaScript. The
latter observation motivated us to perform an in-depth, fine-grained, function-level study
which led to our design of a new context-sensitive analysis for JavaScript.

1Part of the contents presented in this chapter was published in [79].
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5.1.1 Experimental Design

Hypothesis. Our hypothesis is that a specific context-sensitive analysis may be more
effective on a portion of a JavaScript program (i.e., some functions), while another kind
of context sensitivity may produce better results for other portions of the same program.
To test this hypothesis, we compared the precision of different context-sensitive analyses at
the function level (i.e., we collect the results of different analyses for a specific function and
compare their precision). In contrast, all previous work [39, 68, 33] reported overall precision
results per benchmark program.

Analyses for comparisons. We compared across four different flow-insensitive analyses to
study their precision. The baseline analysis is an analysis that applies the default context-
sensitive analysis for JavaScript in WALA (i.e., only uses 1-call-site-sensitive analysis for
the constructors to name abstract objects by their allocation sites and for nested functions
to property access variables accessible through lexical scoping). In the implementation,
the other three analyses (i.e., 1-call-site, 1-object and 1st-parameter) all apply the default
analysis. In principle, these analyses are at least as precise as the baseline analysis for all
functions.

Analysis clients and precision metrics. We compare precision results on two clients of
points-to analysis. The first client, Pts-Size, is a points-to query returning the cardinality
of the set of all values of all local variables in a function (i.e., the total number of abstract
objects pointed to by local variables). The second client, REF that we also used for evaluating
our state-sensitive analysis in Section 4.4, is a points-to query returning the cardinality of
the set of all property values in all property reads (e.g., x = y.p) or call statements (e.g.,
x = y.p(...)) in a function (i.e., the total number of abstract objects returned by all the
property lookups). For both clients, if analysis A1 produces a smaller result than another
analysis A2 for a function foo, we say that A1 is more precise than A2 for foo.

Benchmarks. We conduct our comparisons on the same set of benchmarks used for the
study performed by Kashyap et al. [33]. There are in total 28 JavaScript programs divided
into four categories: standard (i.e., from SunSpider2 and V83), addon (i.e., Firefox browser
plugins), generated (i.e., from the Emscripten LLVM test suite4) and opensrc (i.e., open
source JavaScript frameworks). There are seven programs in each benchmark category.
Details of the benchmark programs were provided in Kashyap et al. [33].

The results of our empirical study were obtained on a 2.4 GHz Intel Core i5 MacBook Pro
with 8GB memory running the Mac OS X 10.10 operating system.

2http://www.webkit.org/perf/sunspider/sunspider.html
3https://v8.googlecode.com/svn/data/benchmarks/v7/run.html
4http://kripken.github.io/emscripten-site/
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5.1.2 Results

We ran each analysis of a benchmark program under a time limit of 10 minutes. The baseline
and 1-call-site-sensitive analyses finished analyzing all 28 programs under the time limit. 1-
object-sensitive analysis timed out on 4 programs (i.e., linq aggregate, linq enumerable and
linq functional in the opensrc benchmarks and fourinarow in the generated benchmarks),
while 1st-parameter-sensitive analysis timed out on 2 programs (i.e., fasta and fourinarow
in the generated benchmarks).

Figures 5.1 and 5.2 show the relative precision results for Pts-Size and REF, respectively. In
both figures, the horizontal axis represents the results from four benchmark categories (i.e.,
standard, addon, generated and opensrc) and the vertical axis represents the percentages of
functions in each benchmark category on which an analysis produces the best results (i.e.,
more precise results than those from all other three analyses) or equally precise results. We
consider the results of an analysis as equally precise as follows. (i) Baseline analysis is equally
precise on a function if its results are as precise as each of the other three context-sensitive
analyses. (ii) 1-call-site-sensitive, 1-object-sensitive or 1st-parameter-sensitive analysis is
equally precise on a function if the results are more precise results than the baseline analysis,
and if the analysis does not produce the best results but the results are at least as precise
as the other two context-sensitive analyses. This definition indicates that multiple context-
sensitive analyses (e.g., 1-call-site-sensitive and 1-object-sensitive analyses) may produce
equally precise results on a function.

For example, the left four bars in Figure 5.1 present the precision results for the addon
benchmarks for the Pts-Size client. The baseline equal bar (i.e., the leftmost) shows that
baseline analysis achieved as precise results as those from all three other analyses for 64%
of the functions in the addon benchmarks, indicating context sensitivity does not make
much difference for more than two thirds of the functions in these programs for the Pts-Size
client. The 1-call-site best and 1st-parameter best bars (i.e., the parts of the second and
fourth bars from left filled with patterns) show that 1-call-site-sensitive and 1st-parameter-
sensitive analyses produced more precise results than all other analyses for 9% and 1.5% of the
functions in the addon benchmarks, respectively. The 1-object best result missing from the
third bar from left indicates that 1-object-sensitive analysis failed to produce the most precise
results for any function in addon benchmarks. Nevertheless, the 1-object equal bar shows 1-
object-sensitive analysis achieved equally precise results with 1-call-site-sensitive and/or 1st-
parameter-sensitive analyses for 25% of the functions in the addon benchmarks. Comparing
with the 1-call-site equal (26%) and 1st-parameter equal (1%) bars, we can predict that 1-
call-site-sensitive and 1-object-sensitive analyses had similar precision on a quarter of the
functions in the addon benchmarks.

The baseline equal bars in Figure 5.1 show that analysis of a large percentage of functions
in the benchmarks does not benefit from context sensitivity in terms of the Pts-Size results
(i.e., from 32% for the generated benchmarks to 64% for the addon benchmarks). Also,
1-call-site-sensitive analysis had relatively consistent impact in the benchmarks, achieving
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Figure 5.1: Precision results for the Pts-Size client

best or equally precise results for around 30% functions across all benchmark categories. In
contrast, the precision of 1-object-sensitive analysis results seems dependent on the bench-
mark. Having little impact on the precision of the opensrc benchmarks, 1-object-sensitive
analysis produced best results for 29% of the functions in the generated benchmarks with
an additional 11% of the functions achieving equally best results. 1st-parameter-sensitive
analysis, less studied in previous work, produced best results for about 10% functions in the
opensrc, standard and generated benchmarks, a reasonable technique to improve precision for
these programs. It is also interesting to learn from Figure 5.1 that different context-sensitive
analyses may produce equally precise results on many functions in some benchmark cat-
egories. 1-call-site-sensitive and 1-object-sensitive analyses produced equally best results
for 25% functions in the addon benchmarks. 1-call-site-sensitive, 1-object-sensitive and 1st-
parameter-sensitive analyses produced equally best results for 3% functions in the generated
benchmarks.

Recall that the REF client uses data from different parts of the points-to results than the
Pts-Size client; in addition, the REF client may query the points-to results (i.e., all the
property lookup statements in a function) less frequently than the Pts-Size client (i.e., all
local variables in a function). Overall in Figure 5.2, context sensitivity improves precision less
over baseline analysis for the REF than for the Pts-Size client. Baseline analysis produced as
precise results as all other three analysis for more than 50% of the functions in all benchmark
categories. About 96% of the functions in the addon benchmarks did not benefit from any
context-sensitive analysis over the baseline analysis. 1-call-site-sensitive analysis achieved
dramatically better results for the Pts-Size client than REF client in addon, opensrc and
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Figure 5.2: Precision results for the REF client

standard benchmarks. 1-object-sensitive analysis also achieved much better results for the
Pts-Size client than the REF client in the generated benchmarks. On the other hand, 1st-
parameter-sensitive analysis still remains effective in the opensrc, standard and generated
benchmarks.

Summary. First, the effectiveness of specific context-sensitive analysis for JavaScript func-
tions is sensitive to the programming paradigms. For example, 1-call-site-sensitive, 1-object-
sensitive and 1st-parameter-senstive analyses each produced best results on a large percent-
age of functions in the programs from the generated benchmarks. Second, the precision of
context-sensitive analysis also depends on the analysis client.

Based on these observations, we believe JavaScript programs can benefit from an adaptive
context-sensitive analysis that chooses an appropriate context-sensitive analysis for a specific
function. We used these observations as guidance to design our new analysis.

5.2 Adaptive Context-sensitive Analysis

A context-sensitive analysis is designed to be useful for a specific programming paradigm. For
example, object-sensitive analysis target the class-based model of object-oriented languages.
The results from Section 5.1 indicate that JavaScript functions in one program may benefit
from different context-sensitive analyses depending on the coding style of the functions. In
this section, we present our adaptive context-sensitive points-to analysis. Starting with an
overview of the adaptive analysis workflow, we will then discuss each major component of
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this two-staged analysis including function characteristics and context selection heuristics.

5.2.1 Overview
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Figure 5.3: Workflow of two-staged adaptive context-sensitive analysis

To enable function-level context-sensitive analysis, we have designed an adaptive context-
sensitive analysis that selectively applies specific context sensitivity per function. Figure
5.3 shows the workflow of our two-staged adaptive analysis. The first stage of our analysis
performs a baseline points-to analysis for the target JavaScript program. Recall that the
baseline points-to analysis is a mostly context-insensitive analysis so that despite of the
imprecise results it may produce, it is often inexpensive in terms of performance for analyzing
many JavaScript applications. Given the results of the baseline points-to analysis (i.e.,
call graph and points-to solution), we extract several characteristics of each function in the
program. Each function characteristic is relevant to the precision of context-sensitive analysis
for a specific client (e.g., the number of call sites that invoke foo). Having used machine
learning to develop the heuristics to select a specific context-sensitive analysis for a function
based on the its function characteristics, the context selector chooses an appropriate context-
sensitive analysis for each function in the program. Last, the second stage of our analysis
performs an adaptive context-sensitive analysis based on the context sensitivity selection to
produce precise results for the target program.

Adaptive context-sensitive analysis is the first analysis for JavaScript that selectively uses
multiple context-sensitive analyses to analyze a program when context sensitivity may help
improve precision. In our implementation, we have explored the context sensitivity se-
lection between 1-call-site-sensitive, 1-object-sensitive and 1st-parameter-sensitive analyses.
However, this workflow of adaptive analysis can generally be applied to select from other
context-sensitive analyses as needed. The function characteristics also can be customized to
accommodate the need of applying new context sensitivity and/or analysis client.
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5.2.2 Function Characteristics

For a JavaScript function, we extracted characteristics from the baseline analysis results that
are relevant to the precision of context-sensitive analyses for a specific client. The goal is to
extract function characteristics that (i) intuitively are relevant to the precision of a specific
analysis for a particular client, and (ii) do not require more costly analysis than a baseline
points-to analysis. Table 5.1 shows that for a JavaScript function foo, we extract eight
function characteristics (i.e., FC1, FC2, ..., FC8). Each function characteristic is related to
the precision of a specific context-sensitive analysis (i.e., FC1-FC3, FC4-FC5, and FC6-FC8
are related to the precision of 1-call-site, 1-object and 1st-parameter, respectively).

1-call-site 1-object 1st-parameter

context element
FC1-CSNum

FC4-RCNum FC6-1ParNum
approximations FC2-EquivCSNum

client-related FC3-AllUse FC5-ThisUse
FC7-1ParName

metrics FC8-1ParOther

Table 5.1: Function characteristics

For a specific context-sensitive analysis, we extracted two kinds of function characteristics:
context element approximations and client-related metrics. A context element approximation
predicts the number of distinct context elements generated for a function by a context-
sensitive analysis, which determines its ability to distinguish between function calls. A
client-related metric predicts the effectiveness of a context-sensitive analysis on a JavaScript
function for a particular client. FC1-FC2, FC4 and FC6 in Table 5.1 are the context element
approximations we designed for 1-call-site-sensitive, 1-object-sensitive and 1st-parameter-
sensitive analyses, respectively. For example, FC4-RCNum presents an approximation of
the number of receiver objects on which a function is called, computed from the baseline
points-to results. FC3, FC5 and FC7-FC8 are the client-related metrics we designed for
the Pts-Size client5 for 1-call-site, 1-object and 1st-parameter sensitivity, respectively. For
example, FC5-ThisUse measures the usage frequency of the this object in the function body,
because frequent use of the this object indicates that the precision of the Pts-Size client
on the function depends on how accurately the this object is analyzed. Because 1-object-
sensitive analysis potentially analyzes the this object more precisely, we use FC5-ThisUse
to predict the effectiveness of 1-object-sensitive analysis on a function for the Pts-Size client.
We now will define each function characteristic.

5We use the Pts-Size client to demonstrate the effectiveness of our approach because the empirical results
in Section 5.1 suggest that the Pts-Size client is relatively more sensitive to the choice of context-sensitive
analyses.
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Function characteristics for 1-call-site-sensitive analysis. Recall that a 1-call-site-
sensitive analysis uses the immediate call site of a function as the context element. We
define FC1, the CSNum metric, as follows:

• FC1-CSNum: for function foo, the number of call sites that invoke foo in the baseline
call graph G.

Although FC1 approximates the number of context elements that a 1-call-site-sensitive anal-
ysis would generate for foo, this metric may not be directly relevant to the precision of 1-
call-site-sensitive analysis. Intuitively, if function foo is invoked from two call sites CS1 and
CS2, the analysis precision on foo is not likely to benefit from distinguishing between these
two call sites if the parameters of CS1 and CS2 have the same values because these parameters
are used in foo as local variables. More precisely, we define two call sites, CS1:p0.foo(p1,
p2, ... , pn) and CS2:p′0.foo(p

′
1, p′2, ... , p′n), to be equivalent if for each pair of

receiver objects and parameters (i.e., pi and p′i) in CS1 and CS2, the points-to sets of pi
and p′i are the same. We then define FC2, the EquivCSNum metric using this definition of
equivalent call sites, as follows:

• FC2-EquivCSNum: for function foo, the number of equivalence classes of call sites
that invoke foo in the baseline call graph G.

Recall that the Pts-Size client calculates the cardinality of the set of abstract objects to which
a local variable of foo may point. Intuitively, the precision of the Pts-Size client depends on
the receiver object or parameters that are frequently used as local variables in the function
body. For example, if a parameter p is never used in foo, even if 1-call-site-sensitive analysis
distinguishes call sites that pass different values of p, the results of the Pts-Size client may
not be different because p is never used locally. Theoretically, 1-call-site sensitivity may
distinguish objects passed through any parameter as well as receiver objects via call sites.
We define FC3, the AllUse metric, as follows:

• FC3-AllUse: for function foo, the total number of uses of the this object and all
parameters.

Function characteristics for 1-object-sensitive analysis. 1-object-sensitive analysis
distinguishes calls to a function if they correspond to different receiver objects. To approx-
imate the number of context elements generated by 1-object-sensitive analysis for function
foo, we define FC4, the RCNum metric, as follows:

• FC4-RCNum: for function foo, the total number of abstract receiver objects from all
call sites that invoke foo in the baseline call graph G.
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Naturally, 1-object-sensitive analysis would be effective on functions implemented with the
object-oriented programming paradigm. The behavior of these functions is dependent on
the objects on which they are called. Uses of the this object in a function is common in
the object-oriented programming paradigm and 1-object-sensitive analysis should produce
relatively precise results. We define FC5, the ThisUse metric, as follows:

• FC5-ThisUse: for function foo, the total number of uses of the this object.

Function characteristics for 1st-parameter-sensitive analysis. The ith-parameter
sensitivity is designed to be effective when a specific parameter (e.g., the first parameter
for 1st-parameter-sensitive analysis) has large impact on analysis precision. 1st-parameter-
sensitive analysis uses the objects that the 1st parameter points to as context elements. We
define FC6, the 1ParNum metric, as follows:

• FC6-1ParNum: for function foo, the total number of abstract objects to which the 1st
parameter may point from all call sites that invoke foo in the baseline call graph G.

If a parameter p is frequently used in a function, it may be more important to apply context-
sensitive analysis on p than on the receiver object. Also, if p is used as a property name
in dynamic property accesses, using context sensitivity to distinguish the values of p signifi-
cantly improves analysis precision [72]. We define FC7, the 1ParName metric, and FC8, the
1ParOther metric, as follows:

• FC7-1ParName: for function foo, the total number of uses of the 1st parameter as a
property name in dynamic property accesses.

• FC8-1ParOther: for function foo, the total number of uses of the 1st parameter not
as a property name.

Function characteristics extraction. For a function foo with n parameters, we extract
three characteristics for 1-call-site sensitivity (i.e., CSNum, EquivCSNum and AllUse), two
characteristics for 1-object sensitivity (i.e., RCNum and ThisUse). In our adaptive context-
sensitive analysis, we actually apply ith-parameter-sensitive analysis for a function whose
precision relies on how accurately the ith parameter is analyzed. Therefore, for each param-
eter of foo, we extract three function characteristics: iParNum, iParName and iParOther.
In total, there are 6+3n function characteristics for foo.

5.2.3 Heuristics

The function characteristics defined in Section 5.2.2 are intuitive and easy to calculate from
the baseline points-to graph and call graph. Nevertheless, it is still not clear how these
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function characteristics are related to the precision of a context-sensitive analysis. In this
section, we use empirical data to design the heuristics that define the relations between
function characteristics and analysis precision.

Our goal is to select an appropriate analysis for a function given the set of its function char-
acteristics. The heuristics are not obvious given that there are multiple context-sensitive
analysis choices. To design useful heuristics, we first compared the precision of a pair of
analyses on the function level and observed the impact of a subset of function characteristics
on these two analyses. We then applied these heuristics to adaptively choose an appro-
priate context-sensitive analysis using the function characteristics (Section 5.2.4). More
specifically, for the Pts-Size results from the benchmarks (Section 5.1), we compared the
precision between all 2-combinations of baseline, 1-call-site-sensitive, 1-object-sensitive and
1st-parameter-sensitive analyses and derived the heuristics to select an analysis from each
of the combinations.

For example, to choose between the baseline analysis and 1-call-site-sensitive analysis, we
obtained the relevant subset of function characteristics (i.e., FC1-FC3) and the Pts-Size re-
sults of baseline and 1-call-site-sensitive analyses for each function foo in the benchmarks. If
the Pts-Size result from 1-call-site-sensitive analysis is more precise than baseline analysis, 1-
call-site sensitivity should be chosen when analyzing foo; otherwise, baseline analysis should
be chosen. Given the list of function characteristics and corresponding analysis choices on
the benchmark functions, we first used a machine learning algorithm6 to get the relationship
(i.e., presented as a decision tree) between the function characteristics and analysis choice.
We then manually adjusted the initial decision tree based on domain knowledge to decide
on the heuristic. Specifically, we collapsed the branches of the decision tree produced by
the machine learning algorithm, in order to ensure that the heuristic is intuitive and easy to
interpret while the classifications still maintain good accuracy.

We report the accuracy of an analysis choice (e.g., 1-call-site-sensitive analysis) using the
standard information retrieval metrics of precision and recall. Assuming S1 is the set of all
functions in the benchmarks where 1-call-site-sensitive analysis produces more precise results
than baseline analysis and S2 is the set of functions where 1-call-site-sensitive analysis is
chosen by the heuristic. The precision of 1-call-site sensitivity classification is computed as

P1−call−site = |S1
⋂

S2|
|S2|

and the recall is computed as

R1−call−site = |S1
⋂

S2|
|S1| .

The balanced F-score, the harmonic mean of the precision and recall, is computed as

6We used the C4.5 classifier [55] implemented in Weka data mining software
(http://www.cs.waikato.ac.nz/ml/weka/) to derive the initial decision tree.
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F1−call−site = 2× P1−call−site×R1−call−site

P1−call−site+R1−call−site
,

where F1−call−site has its best value at 1 and worst score at 0 for choosing 1-call-site-sensitive
analysis by this heuristic.

Figures 5.4 to 5.10 show the derived heuristics to make a choice between each pair of the
analyses using function characteristic values. We discuss each pair of the analyses in turn:

FC2-EquivCSNum = 1: baseline

FC2-EquivCSNum > 1: 1-call-site

Figure 5.4: Heuristic: baseline vs. 1-call-site

Baseline vs. 1-call-site. Three function characteristics (i.e., FC1-FC3) are relevant to
the precision of 1-call-site-sensitive analysis for the Pts-Size client. For 1-call-site-sensitive
analysis to produce more precise results than baseline analysis, the prerequisite is that there
is more than one distinct 1-call-site-sensitive context element (i.e., FC1 > 1). Figure 5.4
shows the heuristic to choose between baseline and 1-call-site-sensitive analyses. 1-call-site-
sensitive analysis is chosen over baseline analysis for a function foo if there is more than
one equivalence class of call sites that invoke foo (i.e., FC2 > 1). This result indicates that
the effectiveness of 1-call-site sensitivity depends on its ability to distinguish call sites with
different receiver objects or different corresponding parameters. The balanced F-scores for
baseline and 1-call-site-sensitive analyses in this heuristic are 0.46 and 0.8, respectively.

FC5-ThisUse = 0: baseline

FC5-ThisUse > 0: 1-object

Figure 5.5: Heuristic: baseline vs. 1-object

Baseline vs. 1-object. FC4 and FC5 are relevant to the precision of 1-object-sensitive
analysis for the Pts-Size client. For 1-object-sensitive analysis to produce more precise results
than baseline analysis, the prerequisite is that there is more than one 1-object-sensitive
context element (i.e., FC4 > 1). Figure 5.5 shows the heuristic to choose between baseline
and 1-object-sensitive analyses. 1-object-sensitive analysis is chosen over baseline analysis
for a function foo if the this object is used at least once in the function body of foo (i.e.,
FC5 > 0). This result suggests that 1-object-sensitive analysis is useful in terms of Pts-Size
client for a function foo whose behavior relies on the values of the this object, even for
a small number of 1-object-sensitive context elements for foo. The balanced F-scores for
baseline and 1-object-sensitive analyses in this heuristic are 0.65 and 0.79, respectively.

Baseline vs. 1st-parameter. Three function characteristics (i.e., FC6-FC8) are relevant
to the precision of 1st-parameter-sensitive analysis for the Pts-Size client. For 1st-parameter-
sensitive analysis to produce more precise results than baseline analysis, the prerequisite is
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FC7-1ParName = 0 AND FC8-1ParOther = 0: baseline

FC7-1ParName > 0 OR FC8-1ParOther > 0: 1st-parameter

Figure 5.6: Heuristic: baseline vs. 1st-parameter

that there is more than one 1st-parameter-sensitive context element (i.e., FC6 > 1). Figure
5.6 shows the heuristic to choose between baseline and 1st-parameter-sensitive analyses.
1st-parameter-sensitive analysis is chosen over baseline analysis for a function foo if the
first parameter of foo is used (i.e., as the property name in dynamic property accesses or
otherwise) at least once in the function body of foo (i.e., FC7 > 0 or FC8 > 0). Similar to 1-
object sensitivity, 1st-parameter sensitivity is another functional approach that distinguishes
calls based on the computation states of a parameter. It is expected for 1-object-sensitive or
1st-parameter-sensitive analysis to be effective on the function foo if the values of the this

object or the first parameter affect the behavior of foo. The balanced F-scores for baseline
and 1st-parameter-sensitive analyses in this heuristic are 0.49 and 0.83, respectively.

FC4-RCNum / FC2-EquivCSNum <= 0.8: 1-call-site

FC4-RCNum / FC2-EquivCSNum > 0.8

| FC5-ThisUse / FC3-AllUse <= 0.375: 1-call-site

| FC5-ThisUse / FC3-AllUse > 0.375: 1-object

Figure 5.7: Heuristic: 1-call-site vs. 1-object

1-call-site vs. 1-object. To select between 1-call-site-sensitive and 1-object-sensitive
analyses, function characteristics related to both are considered (i.e., FC1-FC5). In our
adaptive analysis, two context-sensitive analyses are compared for a function when both
of them would be chosen over baseline analysis (see Section 5.2.4). As a consequence, the
prerequisite for the heuristic in this case is the number of equivalence classes of call sites
is larger than 1 (i.e., FC2 > 1) and the this object is used at least once (i.e., FC5 > 0).
Figure 5.7 shows the heuristic to choose between 1-call-site-sensitive and 1-object-sensitive
analyses. The heuristic consists of the relationship between the metrics of both analyses. 1-
call-site-sensitive analysis is selected if it generates a greater number of context elements than
1-object-sensitive analysis (i.e., FC4 / FC2 <= 0.8) for a function. This result suggests that
1-call-site-sensitive and 1-object-sensitive analyses in this case are empirically comparable
in terms of precision. The relationship between the numbers of context elements generated
by each analysis on foo indicates which context-sensitive analysis may be more precise for
that function. When the number of receiver objects that invoke foo is close to or larger
than the number of equivalence classes of call sites (i.e., FC4 / FC2 > 0.8), if the this

object is used quite frequently (i.e., FC5 / FC3 > 0.375) in foo, 1-object-sensitive analysis
is more precise for foo; otherwise (i.e., FC5 / FC3 <= 0.375), 1-call-site-sensitive analysis
is selected. This result is intuitive in that 1-object-sensitive analysis produces more precise
results than 1-call-site-sensitive analysis for the Pts-Size client when (i) 1-object-sensitive
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analysis generates a number of context elements and (ii) the behavior of a function is heavily
dependent on the values of the receiver object. The balanced F-scores for 1-call-site-sensitive
and 1-object-sensitive analyses in this heuristic are 0.67 and 0.8, respectively.

FC7-1ParName = 0

| FC8-1ParOther / FC3-AllUse <= 0.19: 1-call-site

| FC8-1ParOther / FC3-AllUse > 0.19

| | FC6-1ParNum / FC2-EquivCSNum <= 3.8

| | | FC8-1ParOther / FC3-AllUse <= 0.35: 1-call-site

| | | FC8-1ParOther / FC3-AllUse > 0.35: 1st-parameter

| | FC6-1ParNum / FC2-EquivCSNum > 3.8: 1st-parameter

FC7-1ParName > 0: 1st-parameter

Figure 5.8: Heuristic: 1-call-site vs. 1st-parameter

1-call-site vs. 1st-parameter. Function characteristics FC1-FC3 and FC6-FC8 are con-
sidered to select between 1-call-site-sensitive and 1st-parameter-sensitive analyses. The pre-
requisite for this comparison is FC2 > 1 and the first parameter of the function is used at
least once (i.e., FC7 > 0 or FC8 > 0). Figure 5.8 shows the heuristic to choose between
1-call-site-sensitive and 1st-parameter-sensitive analyses. 1st-parameter-sensitive analysis is
always selected if the first parameter is ever used as a property name in dynamic prop-
erty accesses because the dynamic property accesses in JavaScript make analysis results
very imprecise [72] and 1st-parameter sensitivity is a technique that significantly improves
the analysis precision in this situation. In other cases, 1-call-site sensitive analysis is pre-
ferred if uses of the first parameter are not important to the function behavior (i.e., FC8 /
FC3 <= 0.19). Also, similar to the heuristic that selects between 1-call-site-sensitive and
1-object-sensitive analyses (Figure 5.7), the heuristic between 1-call-site-sensitive and 1st-
parameter-sensitive analyses is dependent on the relationship between the context elements
generated by both analyses. If 1st-parameter-sensitive analysis potentially generates many
more context elements than 1-call-site sensitive analysis (i.e., FC6 / FC2 > 3.8), we expect
the 1st-parameter-sensitive analysis to be more precise. Otherwise (i.e., FC6 / FC2 <=
3.8), depending on the importance of the first parameter to the function behavior, 1-call-
site-sensitive analysis (when 0.19 < FC8 / FC3 <= 0.35) or 1st-parameter-sensitive analysis
(when FC8 / FC3 > 0.35) is selected. The balanced F-scores for 1-call-site-sensitive and
1st-parameter-sensitive analyses in this heuristic are 0.73 and 0.66, respectively.

1-object vs. 1st-parameter. Finally, Figure 5.9 presents the heuristic that selects between
1-object-sensitive and 1st-parameter-sensitive analyses. Function characteristics FC4-FC8
are considered and the prerequisite is FC5 > 0 as well as FC7 > 0 or FC8 > 0. It is not
surprising that 1-object-sensitive analysis is selected by the heuristic when the this object
is more frequently used (i.e., FC5 / FC8 > 1.34) and 1st-parameter-sensitive analysis is
selected when the condition is opposite (i.e., FC5 / FC8 <= 0.8). When uses of the this

object and the first parameter are similar (i.e., 0.8 < FC5 / FC8 < 1.34), the number



Shiyi Wei Chapter 5. Adaptive Context-sensitive Analysis 76

FC7-1ParName = 0

| FC5-ThisUse / FC8-1ParOther <= 0.8: 1st-parameter

| FC5-ThisUse / FC8-1ParOther > 0.8

| | FC5-ThisUse / FC8-1ParOther <= 1.34

| | | FC4-RCNum / FC6-1ParNum < 0.5: 1st-parameter

| | | FC4-RCNum / FC6-1ParNum >= 0.5

| | | | FC4-RCNum / FC6-1ParNum <= 1: unknown

| | | | FC4-RCNum / FC6-1ParNum > 1: 1-object

| | FC5-ThisUse / FC8-1ParOther > 1.34: 1-object

FC7-1ParName > 0: 1st-parameter

Figure 5.9: Heuristic: 1-object vs. 1st-parameter

of context elements generated by these two analyses decides the selection: (i) if 1-object-
sensitive analysis potentially generates more context elements than 1st-parameter-sensitive
analysis (i.e., FC5 / FC 8 > 1), we expect 1-object sensitive analysis to be more precise;
(ii) if 1st-parameter-sensitive analysis generates more than twice the number of context
elements than 1-object-sensitive analysis (i.e., FC5 / FC 8 < 0.5), 1st-parameter-sensitive
analysis is selected; (iii) otherwise (i.e., 0.5 <= FC5 / FC 8 <= 1), it is not clear from the
data in the benchmarks which analysis produces more precise results because the function
characteristics indicate that they have similar capability to analyze the function. In this case,
we randomly select between 1-object-sensitive and 1st-parameter-sensitive analyses for the
function whose characteristics fall in this region. The balanced F-scores for 1-object-sensitive
and 1st-parameter-sensitive analyses in this heuristic are 0.79 and 0.86, respectively.

iParName < jParName: jth-parameter

iParName = jParName

| iParOther < jParOther: jth-parameter

| iParOther = jParOther

| | iParNum < jParNum: jth-parameter

| | iParNum >= jParNum: ith-parameter

| iParOther > jParOther: ith-parameter

iParName > jParName: ith-parameter

Figure 5.10: Heuristic: ith-parameter vs. jth-parameter

ith-parameter sensitivity heuristics. We now have discussed the function characteris-
tics used in the heuristics to select from baseline, 1-call-site-sensitive, 1-object-sensitive and
1st-parameter-sensitive analyses. Various other context-sensitive analyses exist for improv-
ing analysis precision. For example, ith-parameter-sensitive analysis provides variations to
distinguish function calls based on the computation states of parameters, decided by the
parameter i.
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To enable the selection of ith-parameter sensitivity, we apply the heuristics of 1st-parameter-
sensitive analysis to select between ith-parameter-sensitive analysis and baseline (Figure 5.6),
1-call-site-sensitive (Figure 5.8) or 1-object-sensitive (Figure 5.9) analysis. To select between
ith-parameter-sensitive and jth-parameter-sensitive analyses, we apply the heuristic shown
in Figure 5.10. We designed this heuristic based on the observation that for parameter
sensitivity, a functional approach, the uses of the parameter whose computation states are
used to distinguish function calls usually are more closely related to the analysis precision.
In Figure 5.10, because the uses of a parameter as a property name in the dynamic property
accesses is the most important characteristic, if one parameter is used as a property name
more often than the other, distinguishing function calls based on its values may produce
more precise results. If the ParName characteristics are the same for parameters i and
j, the uses of the parameters in other situations are compared to decide if ith-parameter-
sensitive analysis is more/less precise than jth-parameter-sensitive analysis. Finally, if both
client-related metrics (i.e., ParName and ParOther) cannot distinguish the parameters, the
heuristic selects the parameter that points to more objects.

Summary. These heuristics are intuitive for making a choice between each pair of analyses.
More importantly, the heuristics for the call-strings approach and the functional approaches
(i.e., Figures 5.7 and 5.8) allow us to make a decision between two incomparable analyses.
Finally, the heuristics in Figures 5.4 to 5.9 are accurate (i.e., good balanced F-scores) in
terms of their effectiveness on the benchmark programs.

5.2.4 Selection Workflow

baseline 

Function 
Characteristics 

=1 analysis 

>1 analyses 

Proc 
1 

1-call-site 

1-object 

ith-par 

Proc 
2 >1 

par-sens 

ith-par 

Proc 
3 

1-call-site 

1-object 

ith-par 

=1 analysis 

> 1 analyses 

<=1 par-sens 

Figure 5.11: Workflow to select a context-sensitive analysis for a JavaScript function

The overall algorithm to select the context-sensitive analysis for a function is described in
Figure 5.11. Given the function characteristics of function foo, Procedure 1 performs all
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pairwise comparisons between baseline analysis and 1-call-site-sensitive, 1-object-sensitive
and ith-parameter-sensitive analyses for all the parameters of foo. If Procedure 1 returns a
single analysis, this analysis is selected for foo. Returning baseline analysis means none of
the context-sensitive analyses makes much difference to improve precision for foo.

In case more than one choice is returned by Procedure 1, further comparisons are conducted
to decide the specific context-sensitive analysis to use for foo. If the analysis precision of
foo may benefit from applying parameter-sensitive analyses on multiple parameter choices
returned by Procedure 1, Procedure 2 selects from among them to find the parameter i that
may produce the most precise results when ith-parameter-sensitive analysis is applied. If
the choices from Procedure 1 are now narrowed down to only the ith-parameter-sensitive
analysis, this analysis is selected by our algorithm to analyze foo.

When necessary, Procedure 3 chooses from the remaining context-sensitive analyses that
are returned by Procedures 1 and 2. If there are two remaining context-sensitive analyses
to choose from, Procedure 3 applies the heuristic in Figure 5.7, 5.8 or 5.9 to decide on the
context-sensitive analysis for analyzing foo. Otherwise (i.e., to choose from all three context-
sensitive analyses), Procedure 3 compares each pair of 1-call-site-sensitive, 1-object-sensitive
and ith-parameter-sensitive analyses and tries to find a best context-sensitive analysis for a
majority of the pairs using heuristics in Figures 5.7, 5.8 and 5.9. For example, the adaptive
analysis selects 1-call-site-sensitive analysis to analyze foo if it is chosen by both heuristics
comparisons with 1-object-sensitive and ith-parameter-sensitive analyses. Finally, if Proce-
dure 3 cannot decide on a specific accurate context-sensitive analysis (i.e, when each of the
three heuristics returns a different analysis choice), the adaptive analysis randomly chooses
an analysis for foo.

5.3 Evaluation

In this section, we first present the details of our experimental setup. We then evaluate our
adaptive context-sensitive analysis using two sets of benchmarks. We compared the precision
of adaptive analysis to other context-sensitive analyses applied to the entire program.

5.3.1 Experimental Setup

Our implementation of adaptive context-sensitive analysis was built on top WALA. The
baseline points-to analysis, ZERO ONE CFA analysis in WALA that uses the default context
sensitivity for JavaScript analysis, produced a call graph and a points-to solution from which
we extracted the function characteristics. For the adaptive context-sensitive analysis, we
implemented a new context selector7 that applies the context-sensitive analysis chosen by

7In WALA, the context element at a call site is decided by a context selector.
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the heuristics for each function. Note that the default context-sensitive analysis is always
used as well to ensure that the results of adaptive analysis are comparable to the baseline
analysis.

The goals of the experiments included: (i) comparing the precision of adaptive context-
sensitive analysis with each of the other context-sensitive analyses to learn if the adaptive
analysis improves JavaScript analysis precision and (ii) studying the accuracy of selecting a
specific context-sensitive analysis for each function to validate the quality of the heuristics
presented in Section 5.2.3.

To achieve these goals, we evaluated our analysis on two sets of benchmarks: (i) the same
benchmark programs on which we performed the empirical study in Section 5.1 (i.e., Bench-
marks I including the 28 JavaScript programs collected by Kashyap et al. [33], divided into
four categories) and (ii) four open-source JavaScript applications or libraries (i.e., Bench-
marks II). The programs in Benchmarks II are (i) Box2DWeb, collected in the Octane bench-
marks8, (ii) minified.js library9 version 1.0, (iii) mootools library10 version 1.5.1, and bench-
mark.js library11 version 1.0.0. Because the heuristics were designed based on machine learn-
ing results using Benchmarks I, Benchmarks II serve to test if these heuristics can be applied
by the adaptive context-sensitive analysis to arbitrary JavaScript programs to produce fairly
accurate analysis results for the Pts-Size client.

5.3.2 Experimental Results

Results for Benchmarks I. Figure 5.12 shows the analysis precision results for Bench-
marks I. We compared the results of our adaptive analysis with the context-sensitive analy-
sis (i.e., 1-call-site-sensitive, 1-object-sensitive or 1st-parameter-sensitive analysis) that pro-
duced most accurate results for each program for these benchmarks. We define a context-
sensitive analysis to be the winner analysis for a program if it was at least as precise as
the other two context-sensitive analyses on the largest number of functions. For all 14 pro-
grams in the addon and opensrc benchmarks, 1-call-site-sensitive analysis was the winner
among the 1-call-site-sensitive, 1-object-sensitive and 1st-parameter-sensitive analyses. For
the standard benchmarks, 1st-parameter-sensitive analysis was winner on three programs
and 1-call-site-sensitive analysis was winner on the other four programs. For all but one
program in the generated benchmarks, 1-object-sensitive analysis was the winner analysis
and 1-call-site-sensitive analysis was winner for fourinarow. In Figure 5.12, the winner anal-
ysis bar shows the percentage of the total number of functions in each benchmark category
on which the winner analysis produced most accurate results. For example, the leftmost
winner analysis bar represents that 1-call-site analysis (i.e., the winner analysis for all the

8https://developers.google.com/octane/
9http://minifiedjs.com

10http://mootools.net
11http://benchmarkjs.com
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programs in the addon benchmarks) produced at least as precise results as 1-object-sensitive
and 1st-parameter-sensitive analyses for 98.8% of the functions in the addon benchmarks.
The adaptive analysis bar shows the percentage of functions in each benchmark category
for which our adaptive analysis produced at least as precise results as 1-call-site-sensitive,
1-object-sensitive and 1st-parameter-sensitive analyses.
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Figure 5.12: Analysis precision on Benchmarks I

The most important aspect of adaptive analysis is its ability to select an appropriate context-
sensitive analysis for a specific function. Table 5.2 shows the accuracy of the analysis selection
process for a function using the heuristics presented in Section 5.2.3 with the Pts-Size client.
The first column in Table 5.2 lists the (set of) analyses that are best or equally precise (i.e.,
rows 4-7 in the first column) for a function (see Section 5.1). The second column shows the
total number of functions in all programs from Benchmarks I on which the corresponding
analyses were observed to produced the best or equally precise results. There were in total
1817 functions analyzed in Benchmarks I and the precision results of 977 functions were
improved over baseline analysis by at least one context-sensitive analysis for the Pts-Size
client. The last column presents the the number of functions on which the adaptive analysis
matched the observed results (i.e., true positives for our heuristics). For those functions
on which 1-call-site-sensitive and 1-object-sensitive analyses produced the best results, the
selection heuristics resulted in good precision (i.e., 73.5% and 68%, respectively). However,
the selection on 1st-parameter-sensitive analysis only achieved 48.8% precision. This is
because our adaptive analysis chooses the appropriate ith-parameter-sensitive analysis to
analyze a function using the parameter sensitivity. Here we are only checking the selection
precision with respect to 1st-parameter-sensitive analysis; whereas ith-parameter-sensitive
analysis (i > 1) was applied to analyze 51 functions in the programs of Benchmarks I.

1-call-site-sensitive and 1-object-sensitive analyses produced equally precise results in terms
on Pts-Size client on 153 functions. The adaptive analysis correctly selected 1-call-site-
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best / equally precise
analysis

# of
observed
functions

# of selected
functions (true

positives)

true
positive

rate

1-call-site 351 258 73.5%

1-object 241 164 68.0%

1st-parameter 162 79 48.8%

1-call-site = 1-object 153
1-call-site: 39

94.1%
1-object: 105

1-call-site
39

1-call-site: 23
74.4%

= 1st-parameter 1st-parameter: 6

1-object
6

1-object: 4
83.3%

= 1st-parameter 1st-parameter: 1

1-call-site

25

1-call-site: 2

100%= 1-object 1-object: 13

= 1st-pararameter 1st-parameter: 10

total 977 704 72.1%

Table 5.2: Selection precision for Benchmarks I

sensitive or 1-object-sensitive analysis to analyze 144 of those 153 functions, and inter-
estingly, the choice was leaning towards 1-object-sensitive analysis (i.e., 1-object-sensitive
analysis for 105 functions comparing to 1-call-site-sensitive analysis for 39 functions). For
the functions on which equally precise results were produced by 1-call-site-sensitive and
1st-parameter-sensitive analyses, adaptive analysis selects more functions to be analyzed by
1-call-site-sensitive analysis. The overall precision of selecting a context-sensitive analysis by
our heuristics is very good (i.e., 72.1%); this is a measure of when adaptive analysis made
the best choice possible. The above observations may help us to improve the heuristics in
the future.

The time cost of our adaptive analysis is the sum of its two stages (i.e., the baseline points-
to analysis to gather function characteristics and the subsequent adaptive context-sensitive
analysis). We compare the performance of our adaptive analysis with the winner analysis
for each program in Benchmarks I. On average over all the programs in Benchmarks I, our
two-staged analysis introduced a 67% overhead. Nevertheless, the second stage (i.e., the
adaptive context-sensitive analysis) is on average 19% faster than the winner analysis over
the Benchmarks I programs. This result suggests that an appropriate choice of context
sensitivity per function yields better performance and precision.

Results for Benchmarks II. Figure 5.13 shows initial analysis precision results using
four programs from Benchmarks II. The sizes of these programs, in terms of the number
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Figure 5.13: Analysis precision on Benchmarks II

of functions analyzed, are 126, 119, 80 and 64, respectively. The 1-call-site, 1-object and
1st-parameter bars represent the percentage of functions on which each context-sensitive
analysis produced at least as precise results as the other two. The adaptive bar (rightmost)
represents the percentage of functions on which the adaptive analysis produced at least as
precise results as 1-call-site-sensitive, 1-object-sensitive and 1st-parameter-sensitive analyses.
We picked these four programs in Benchmarks II because their analysis results for different
context-sensitive analyses were varied. For example, 1-object-sensitive analysis was more
precise than 1-call-site-sensitive and 1st-parameter sensitive analyses for box2d, while 1st-
parameter-sensitive analysis was the most precise for mootools.

The results in Figure 5.13 show that our adaptive analysis achieved better results than any
single context-sensitive analysis for box-2d and minified.js. For example, 1-object-sensitive
analysis was at least as precise for 92.8% of the functions in box-2d; adaptive analysis im-
proved these results to 98.4% of the functions. 1-call-site-sensitive analysis produced at least
precise results for 88.2% of the functions in minified.js; adaptive analysis improved the results
by 5.9% more functions. 1st-parameter-sensitive and 1-call-site-sensitive analyses were the
most precise context-sensitive analyses for mootools and benchmark.js, respectively. While
adaptive analysis produced results lower than these analyses, the results of adaptive analysis
were close, only different for 6.2% and 4.7% of the functions in mootools and benchmark.js,
respectively. Overall, our adaptive context-sensitive analysis was fairly accurate for analyz-
ing these programs from Benchmarks II. This promising result indicates that the heuristics
presented in Section 5.2.3 may be applicable in general to JavaScript programs.
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5.3.3 Discussion

We have demonstrated the ability of our adaptive analysis that chooses a specific context-
sensitive analysis for each function in order to significantly improve analysis precision. Nev-
ertheless, this initial work has inspired us with more research ideas for further improvements
of context-sensitive analyses for JavaScript. First, since we evaluated the adaptive analysis
on a simple client of points-to analysis (i.e., Pts-Size), it would be interesting to know if
adaptive analysis is effective to improve precision for other clients (e.g., security analysis).
Second, context-sensitive analysis for JavaScript are not limited to 1-call-site, 1-object and
ith-parameter. A deeper object-sensitive analysis (i.e., k-object) or another context-sensitive
analysis (e.g., using the length of the parameter list at a call site as context element to dis-
tinguish JavaScript variadic functions as presented in Chapter 3) could be used by adaptive
analysis. New heuristics need to be designed for selecting these analyses. Third, we would
like to explore if analysis precision may benefit from applying multiple-sensitive analyses on
a specific JavaScript function. The idea of hybrid context-sensitive analysis has been tried
for analyzing Java programs [34]. Fourth, scalability is an important issue for JavaScript
analyses, especially for analyzing JavaScript websites that use libraries heavily (e.g., jQuery).
In this work, we do not address this problem, that is, when a baseline points-to analysis is
not scalable for a large JavaScript application, typically a website.12 In the future, we plan
to focus on improving the performance of analysis of JavaScript websites using an adaptive
approach.

Threats to validity. Although we used benchmarks collected by Kashyap et al. [33] as well
as other JavaScript programs to evaluate adaptive context-sensitive analysis, these programs
may not be representative of non-website JavaScript applications, which might threaten the
validity of our conclusions as applicable to all JavaScript programs.

12We therefore have used different benchmarks for evaluating adaptive context-sensitive analysis in this
chapter from those in Chapters 3 and 4.



Chapter 6

Related Work

In this chapter, we discuss the work related to our JavaScript dataflow analyses. We classify
the related work into two categories: (i) related analyses of dynamic languages, and (ii)
context-sensitive analysis.

6.1 Related Analyses of Dynamic Languages

Various analyses have been presented to study and/or handle the dynamic features of
JavaScript. These empirical studies serve as the motivation for designing new JavaScript
analyses, including ours. Most JavaScript analyses are static and some of them use a com-
bination of dynamic and static analyses. We then discuss security analyses for JavaScript
related to our blended taint analysis. Finally, we will present empirical studies and analyses
on other dynamic programming languages.

6.1.1 Empirical Studies of JavaScript Applications

Richards et al. performed experiments on real-world JavaScript websites to study several
aspects of dynamic behavior [59]. Popular websites were studied resulting in several con-
clusive observations: (i) properties are not just added at object initialization, (ii) variadic
functions are not rare, (iii) the prototype hierarchy often changes within libraries, and (iv)
property deletions are common in some websites. These observations suggested that com-
mon assumptions about the behavior of JavaScript applications were not valid and thus,
motivated us to design new analyses that accommodate the dynamic behavior of JavaScript.
We also have reused the dynamic traces and modified the analysis infrastructure in Richards
et al. to perform the in-depth study of JavaScript object behavior (Chapter 4).

Ratanaworabhan et al. presented a study on comparing the behavior of JavaScript bench-
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marks (e.g., SundSpider and V8) with real web applications [56]. The authors evaluated
differences in behavior between the benchmarks and websites, including program size, com-
plexity and behavior. Their results suggested that these benchmarks were not representative
of real JavaScript usage. This study motivated us to evaluate JSBAF on JavaScript code
extracted from websites.

Richards et al. investigated the uses of eval in real JavaScript applications [58]. This study
categorized common patterns in the use of eval, revealing a majority of eval uses are not
necessary, while complex pieces of code can also be generated. The results motivated us to
design JSBAF with handling eval and other dynamic code generation mechanisms as one
of its most important features.

Other studies have been focusing on specialized characteristics of JavaScript applications
(e.g., security [81, 82] and errors [51, 50]). The results of these studies suggested the cor-
relation between dynamic features and the errors in JavaScript applications. For example,
Yue and Wang reported insecure JavaScript practices related to dynamic code generation
[81]. These studies demonstrated that JavaScript program analysis needs to handle dynamic
features to be useful in real clients.

6.1.2 JavaScript Analyses of Dynamic Features

We use WALA as the implementation platform of our static analysis algorithms for JavaScript.
There have been multiple other works on JavaScript analysis built on top of WALA, shar-
ing the same static analysis infrastructure as ours. Sridharan et al. presented a points-to
analysis for JavaScript that focused on handling correlated dynamic property accesses [72].
Correlated property accesses (i.e., dynamic property reads and writes that use the same
property name) were identified and then extracted into a function. Using the property name
as the calling context, points-to analysis tracking correlation was shown to be more precise
and efficient than a field-sensitive Andersen’s points-to analysis. We augmented the corre-
lation tracking points-to analysis with state sensitivity. Our experiments demonstrated a
significant improvement in the analysis precision.

Feldthaus et al. presented a scalable static analysis to construct unsound but accurate
call graphs for JavaScript applications [15]. The field-based flow analysis only tracks func-
tion objects and ignores dynamic property reads and writes. Two call graph construc-
tion algorithms were designed: (i) pessimistic approach that only tracks calls of the form
(function(x){...})(e) where an anonymous function is directly applied to some argu-
ments (i.e., one-shot calls), and (ii) optimistic approach that performs fixpoint iteration.
The comparison between static and dynamic call graphs showed that the field-based anal-
ysis, while in principle unsound, produced an accurate call graph in practice. The authors
have also demonstrated the generated call graphs may be useful for JavaScript IDE services.
JSBAF uses dynamic analysis to generate call graphs for JavaScript applications and also
collects the dynamically generated code as well as function variadicity information. Call
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graphs generated by both approaches are unsound. Our state-sensitive points-to analysis
may use either a dynamic call graph or a static call graph built by the field-sensitive flow
analysis as the input.

Schäfer et al. proposed a dynamic analysis to identify determinate (i.e., always having the
same value at a given program point) variables and expressions in JavaScript programs [62].
The approach soundly infers the determinacy facts that hold for any execution. It tracks the
indeterminacy using techniques similar to dynamic information flow analysis. To ensure the
soundness of the results, counterfactual execution is performed for unexecuted conditional
branches. The authors performed case studies and suggested the results might be helpful
to improve static points-to analysis. Determinacy information for JavaScript variables may
further improve our points-to analysis algorithms.

Alimadadi et al. presented a hybrid change impact analysis for JavaScript [3]. Their analysis
focuses on the interplay between the JavaScript code and the Document Object Model.
The tool, TOCHAL, builds a hybrid system dependence graph, by combining static and
dynamic call graphs. It uses WALA to construct static call graphs. TOCHAL’s models of
handling DOM interactions and asynchronous JavaScript mechanisms may further improve
the accuracy of our analyses.

TAJS is another analysis framework for JavaScript, including various static analysis algo-
rithms. Jensen et al. presented a flow-sensitive static analysis that can precisely model
prototype chains [30, 31]. In their analysis, the absent set indicated potentially missing
properties. The property edges annotated with * play a similar role in our state-sensitive
analysis. The authors also used recency abstraction to perform strong updates of property
writes. Jensen’s analysis is context-sensitive similar to 1-object sensitivity used in Java.
Lazy propagation was introduced to improve the performance of flow- and context-sensitive
analysis for JavaScript [31]. Jensen et al. extended TAJS providing abstract object mod-
els for HTML objects and event handlers in JavaScript web applications [29]. Dynamically
generated code was recognized statically. Because some property names were unknown due
to abstraction, this analysis sacrificed soundness by skipping the modeling for the particular
property writes. Applications with libraries were excluded in the experiments.

Jensen et al. presented a static analysis to automatically transform common uses of eval
into other language constructs [28]. The framework, Unevalizer, incorporates the eval trans-
formation in the whole-program dataflow analysis. The analysis was designed to eliminate
calls to eval with constant arguments and several cases with non-constant arguments. In
their experiments, Unevalizer successfully eliminated many nontrivial eval calls in program
slices and medium size web applications. JSBAF uses dynamic analysis to collect the code
generated from eval calls. Both approaches expand the applicability of static analysis for
JavaScript. Unevalizer, a sound technique, cannot always successfully eliminate the eval

calls in complicated cases; JSBAF, on the other hand, collects all executed eval calls.

Following Schäfer et al.’s work on dynamic determinacy analysis [62], Esben et al. presented
a static analysis that infers determinacy information and optimizes the analysis in TAJS
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with multiple techniques [4]. Specifically, the analysis uses parameter sensitivity, loop spe-
cialization, context-sensitive heap abstraction and strengthened models of standard library
functions. In their experiments, the combination of these techniques resulted in significant
improvement of analysis precision and performance, scalable on analyzing small programs
that use jQuery. Our adaptive analysis uses parameter sensitivity as one of the context-
sensitive analysis choices.

Park and Ryu presented another scalable static analysis of JavaScript via loop sensitivity [53].
The authors identified the scalability problem with JavaScript analysis as the combination of
imprecise analysis results in loops and the dynamic nature of object property names. Their
analysis improves precision in loops by by distinguishing each iteration of a loop as much
as needed during analysis with different loop contexts for each iteration depending on the
analysis results of loop conditional expressions, similar to loop unrolling. Park’s analysis
was implemented as an extension of SAFE analysis framework [36]. Their experimental
results showed that the loop-sensitive analysis was scalable in analyzing some real JavaScript
webpages. The introduction of loop sensitivity in this work may expand the choices of context
sensitivity in our adaptive context-sensitive analysis in the future.

Kashyap et al. presented JSAI, an abstract interpreter for JavaScript [33]. JSAI was designed
to be configurable for analysis sensitivity (i.e., path, context, and heap sensitivity). The
authors evaluated the analysis precision and performance on JavaScript benchmarks with
different configurations and made the observation that there was no clear winner across all
benchmarks, in terms of JavaScript context sensitivity. This result motivated us to perform
an in-depth study on JavaScript context sensitivity and design an adaptive context-sensitive
analysis. We also reused the benchmarks by Kashyap et al. [33] for the study and evaluation
of our adaptive analysis.

Madsen et al. presented a static analysis of JavaScript focusing on frameworks and libraries
[43]. The authors designed a use analysis combined with a points-to analysis to recover
information about the structure of objects and to infer the missing inter-procedural flow
introduced by the unavailable native code. The analysis assumes (i) the object properties
are not dynamically added or removed after the object has been fully initialized, (ii) the
presence of a property does not rely on program control flow, and (iii) property names
should not be computed dynamically, etc. Our analyses hold assumptions of JavaScript
applications based on observed dynamic behavior [59]. Our work is complementary to this
technique, in that more precise points-to results would make it more practical.

Several type-based approaches were proposed for JavaScript that support dynamic features
such as prototype-based inheritance (e.g., [9, 37]). It is difficult to compare our analyses
with them as to practicality, because no empirical evidence on large JavaScript programs
was presented.

Jalangi is a dynamic analysis framework for JavaScript [63]. It has been used for various
dynamic analyses (e.g., [18, 54]). We may use Jalangi as the dynamic analysis component
of JSBAF in the future.
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6.1.3 JavaScript Security Analyses

Tripp et al. presented JSA, a hybrid security analysis for JavaScript web applications [74].
This hybrid approach uses a web crawler to obtain concrete DOM values which enable a
string analysis as a refinement of the taint analysis. Their algorithm takes a static call
graph as input. JSBAF uses a dynamic call graph that is unsound but more accurate than
a static call graph. Blended analysis also collects other dynamic information (e.g., variadic
functions) to specialize the static phase. It is future work to investigate the accuracy of the
static call graph used by JSA.

Guarnieri et al. presented ACTARUS, a static taint analysis for JavaScript built on top of
WALA [21]. Language constructs, including object creations, reflective property accesses,
and property lookups were modeled, but reflective calls like eval were not modeled. Our
state-sensitive analysis improved the models of prototype-based inheritance and property
lookups via flow and context sensitivity.

Guarnieri and Livshits presented another static points-to analysis to detect security and
reliability issues and experimented with JavaScript widgets [19]. JavaScriptSAFE is a sub-
set of JavaScript that static analysis can soundly approximate, even with reflective calls
such as call and apply. A conservative model of prototyping was used with a flow- and
context-insensitive analysis. Other dynamic constructs such as eval were not handled. This
JavaScript static analysis cannot model all of the language’s dynamic features, whereas JS-
BAF handles the more common dynamic features used by real websites.

Chugh et al. presented an information flow analysis for JavaScript [10]. The staged approach
analyzes the statically visible code first and then incrementally analyzes the dynamically
generated code. A similar approach was proposed by Guarnieri and Livshits [20]. JSBAF
differs from these approaches in two ways: (i) blended analysis collects dynamically generated
code during profiling rather than doing this incrementally, and (ii) blended analysis also
facilitates potentially more precise modeling of other dynamic features whose semantics
depend on run-time information.

Other security analyses were presented to detect cross-site scripting [49], cross-origin capa-
bility leaks [7], and code injections [61] of JavaScript applications. We present JSBAF as a
general-purpose analysis framework that can be instantiated with different security analysis
clients.

6.1.4 Studies and Analyses of Other Dynamic Languages

Other programming languages such as PHP and Ruby share similar dynamic features with
JavaScript (e.g., run-time code generation). Findings and analyses of these dynamic pro-
gramming languages may be applicable to JavaScript. We discuss some work that is mostly
related to ours.
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Furr et al. presented a profile-guided static typing via program transformation for Ruby
programs [17]. The run-time instrumentation gathered profiles of dynamic feature usage
and these features were then replaced with statically analyzable alternatives. The idea
of specializing difficult to analyze program constructs via dynamic information was also
explored by our blended analysis and Tripp et al. [74] for JavaScript analysis. The usage
reported by Furr et al. [17] shows that dynamic features are pervasive throughout the Ruby
benchmark suite, especially the eval construct; similar findings on eval usage were also
reported for JavaScript websites [58].

Honker and Harland conducted experiments on Python programs studying their dynamic
behavior [27]. The authors observed frequent uses of reflective features and investigated
dynamic object modifications. Our state-sensitive analysis is designed for objects whose
behavior changes at runtime. If objects of other programming languages exhibit similar
behavior as JavaScript objects [80], state sensitivity may also be applicable to analyze these
programs.

PHP is a popular dynamic programming language for designing server-side web applications.
Various techniques have been developed to study and analyze PHP applications. Hills et
al. presented an empirical study on PHP feature usage [25]. The authors proposed several
dynamic metrics similar to those in Richards et al. [59] and provided guidance for developing
program analysis tools for PHP.

PHANTM, a hybrid static and dynamic analyzer for PHP, was presented by Kneuss et al.
[35]. This hybrid approach records the configuration data of the program and performs static
analysis on concretized program state; thus many configuration variables become constant.
JSBAF is a tightly coupled hybrid approach in that static analysis focuses on the dynamic
calling structure, handling several dynamic features of JavaScript.

Hauler and Kofroň presented a static analysis framework of PHP applications [23]. It consists
of two phases: (i) the first phase resolves the dynamic constructs in the program via heap,
value and declaration analyses, and (ii) the second phase proceeds in a way similar to a
one for a language without dynamic features. The authors implemented a taint analysis of
PHP applications based on their analysis framework and compared it to other PHP taint
analyses (i.e., PIXY [32] and PHANTM [35]). Their results showed the proposed PHP
analysis was more accurate than existing tools. This analysis handles several PHP features
(e.g., dynamic accesses to associative arrays); similar features were handled by our work and
other JavaScript analyses (e.g., [72]).

6.2 Context-sensitive Analysis

We have covered several whole-program context-sensitive analysis techniques (e.g., call-site
and parameter sensitivity) in Chapter 2. In this section, we first discuss the context-sensitive
analysis mostly related to our state-sensitive analysis (i.e., object sensitivity) and then
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present the work related to our adaptive context-sensitive analysis.

6.2.1 Object-sensitive Analysis

State-sensitive analysis is inspired by object sensitivity. Milanova et al. first introduced
object sensitivity and implemented an object-sensitive points-to analysis for Java using a
receiver object represented by its creation site as a context element [47]. The experiments
performed by Lhoták and Hendren showed object sensitivity is the better choice as a calling
context when analyzing Java programs [38]. Changes to object properties in JavaScript
render object creation sites insufficient to represent object behavior, whereas state sensitivity
captures object behavior changes better.

Smaragdakis et al. formalized object sensitivity, summarizing its variations [68]. They intro-
duced type sensitivity where object type was used as the context element. For dynamically-
typed languages like Javascript, type is a run-time notion, encapsulated in the idea of obj-ref
state used as a context element.

6.2.2 Selective Context-sensitive Analysis

To the best of our knowledge, adaptive context-sensitive analysis is the first analysis for
JavaScript that selectively uses multiple context-sensitive analyses to analyze a program
when context sensitivity may help improve precision. Our work is related to approaches that
apply context-sensitive analysis selectively for other programming languages.

Context-sensitive analysis has been deeply investigated for other object-oriented languages
such as Java. However, these object-oriented languages do not seem as amenable to our
approach of using different context-sensitive analyses on different functions. Castries and
Smaragdakis presented hybrid context-sensitive points-to analysis for Java [34]. Several com-
binations of call-site and object-sensitive analyses were explored and evaluated for precision.
Their results showed that selectively adding call-site-sensitive analysis to specific places in
the program (e.g., static calls) significantly improved the precision of object-sensitive points-
to analysis for Java. Our adaptive analysis automatically chooses an appropriate context-
sensitive analysis for each function in JavaScript program.

Several works were proposed to tune the context sensitivity of an analysis based on pre-
analysis results. Smaragdakis et al. presented introspective analysis that aims to improve
the performance of a context-sensitive analysis for Java [69]. Introspective analysis selectively
refines allocation sites or call sites based on the heuristics consisting of metrics computed
from context-insensitive points-to results. The heuristics are tunable via constant parame-
ters. In our adaptive analysis, we designed the heuristics based on the results learnt from
JavaScript benchmarks, and function characteristics extracted from baseline analysis and
syntactic analysis. The heuristics in our analysis focus on “which” context-sensitive analysis
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may improve precision instead of “if” context sensitivity would be of benefit.

Sridharan and Bod́ık presented a refinement-based points-to analysis for Java [70] that refines
sensitivity for heap accesses and method calls. It also is demand-driven in that it skips
irrelevant code in the analysis. Our adaptive context-sensitive analysis aims to improve
precision for the whole program.

Guyer and Lin presented a client-driven analysis for C that automatically adjusts its precision
in response to the needs of client analyses [22]. This client-driven analysis monitors polluting
assignments (i.e., the program points that result inaccuracy in the analysis) and tunes context
as well as flow sensitivity to improve precision. Liang and Naik presented another client-
driven algorithm for Java that prunes away analysis results irrelevant to refinement for more
precision [40]. For these techniques, a pre-analysis is used to determine the program points
for refinement. Baseline points-to results of adaptive analysis is used to derive the function
characteristics for our heuristics. Furthermore, our adaptive analysis involves more than one
context-sensitive analysis.

Oh et al. presented a selective context-sensitive analysis for C guided by an impact pre-
analysis [52]. The impact pre-analysis applies full context sensitivity (i.e.,∞-CFA) but with
simplified abstract domain and transfer functions to infer the impacts of context sensitivity
in the main analysis. The heuristics in our adaptive analysis focus on the characteristics of
a function to indicate whether analysis precision for a function would benefit from a specific
context-sensitive analysis. Our pre-analysis, the baseline analysis, is comparable with the
adaptive analysis in terms of abstract domain and transfer functions.



Chapter 7

Conclusions and Future Work

JavaScript is the lingua franca of client-side of web applications and it is also becoming
one of the most popular programming languages. Nevertheless, it lacks effective software
tools that can automatically analyze JavaScript applications. The dynamic language fea-
tures of JavaScript pose great challenges for designing practical dataflow analysis techniques.
Existing static analyses often are ineffective analyzing JavaScript applications that exhibit
dynamic features such as run-time code generation and prototype-based inheritance. We aim
to design new program analysis techniques that handle the dynamic features of JavaScript
and thus produce practical analysis results. To achieve this goal, we have designed a general-
purpose blended analysis framework for JavaScript (i.e., JSBAF) as well as two novel context-
sensitive analysis algorithms.

7.1 JavaScript Blended Analysis Framework

JSBAF is a general-purpose analysis framework that tightly couples dynamic and static
analyses to address analysis challenges raised by several JavaScript features. Specifically,
the dynamic phase of JSBAF collects the run-time information of a JavaScript application
including function calls and dynamically generated code and the static phase of JSBAF
takes advantage of this dynamic information by focusing the static dataflow analysis on the
dynamic calling structures. Therefore, based on the dynamic information, specific optimiza-
tions such as pruning and context sensitivity can be applied to handle JavaScript dynamic
features such as function variadicity and constructor polymorphism. The components of
JSBAF are flexibly replaceable depending on the analysis resource and clients. We also have
discussed the soundness of the analysis results produced by JSBAF.

We instantiated JSBAF to perform blended taint analysis for JavaScript and experimented
with our implementation on popular JavaScript websites. Comparisons to two pure static
taint analyses showed that blended taint analysis had significantly better performance and
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accuracy than the static techniques, attesting the practicality of JSBAF.

7.2 State-sensitive Points-to Analysis

We have performed an in-depth study of the behavior of JavaScript objects in web appli-
cations, finding that the properties associated with a JavaScript object often changes at
different program points during execution. This characteristic of JavaScript objects makes it
difficult to design an effective analysis for JavaScript. Based on the observations, we intro-
duced state-sensitive points-to analysis that models object behavior changes accurately by
using a hierarchical program representation emphasizing state-update statements, by defin-
ing state sensitivity, a better context sensitivity mechanism for a dynamic language, and
by enhancing the points-to graph representation for improved object property lookups. We
implemented state-sensitive points-to analysis as the static phase of JSBAF. Experimental
results on the REF client showed our analysis significantly improved the precision of a good
JavaScript points-to analysis [72].

7.3 Adaptive Context-sensitive Analysis

The effectiveness of context-sensitive analysis on a JavaScript program depends on its cod-
ing style because JavaScript features object-oriented, functional as well as procedural pro-
gramming paradigms. The fact that there was no winner context-sensitive analysis for the
JavaScript benchmarks we examined motivated us to design an adaptive analysis . Our
adaptive points-to analysis applies a specialized context-sensitive analysis per function, using
heuristics based on function characteristics derived from an inexpensive points-to analysis.
Our experimental results show that adaptive analysis is more precise than any single context-
sensitive analysis for several programs in the benchmarks, especially for those multi-paradigm
programs whose analysis precision can benefit from multiple context-sensitive techniques.
Our adaptive analysis is the first for JavaScript that selectively chooses multiple context-
sensitive techniques during the analysis of a program.

7.4 Future Work

There are several possible directions of future work to further explore adaptive analysis. The
results presented in Chapter 5 suggest that the adaptive analysis is a promising technique
towards increasing the precision of JavaScript analysis. As discussed in Section 5.3.3, we
have been inspired with more ideas for further improvements of context-sensitive analyses
for JavaScript. We are interested in exploring the effects of applying multiple context-
sensitive analyses per function and also investigating the impact of applying deeper context
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sensitivity. Multi-sensitive analyses often are prohibitively expensive to be practical when
performing whole-program analysis; thus, the benefits of multi-sensitive analyses in terms of
precision have not been explored. Our adaptive analysis allows uses of multi-sensitive anal-
ysis on a small portion of functions whose precision may significantly benefit from multiple
context sensitivity; thus, the adaptive analysis that applies multiple context sensitivity per
function may result in more precise results without significant performance overhead. Sim-
ilarly, adaptive analysis may achieve the balance between precision and performance when
applying deeper context sensitivity. In addition, a deeper context-sensitive analysis in the
context of adaptive analysis may expose new concept of context sensitivity. Specifically,
the parametrized models of context sensitivity (i.e., k-object sensitivity) defined and exper-
imented in the literature are for whole-program single-context-sensitive analysis. To explore
deeper context sensitivity in the context of adaptive analysis, different levels of context sen-
sitivity may use different context-sensitive techniques. For example, a 2-context-sensitive
analysis for function foo may use call-site sensitivity in the first level and object sensitiv-
ity in the second level of context sensitivity. This notion of mixed context sensitivity in a
k-context-sensitive analysis was not explored before and may become a new direction for
research in the area of context-sensitive analysis.

Another possible direction of future work is to perform a more thorough investigation of
state-sensitive analysis. We presented k-state sensitivity, a parameterized model of context
sensitivity. We have evaluated the effectiveness of 1-state-sensitive analysis on the REF
client. It remains unknown if deeper state sensitivity may further improve analysis precision
and if the extra context sensitivity will result in a significant performance overhead. It also
is interesting to know if state sensitivity works well for other analysis clients.

Another possible direction of future work is to explore an alternate design of JSBAF and/or
a new paradigm to combine dynamic and static analyses. The current design of JSBAF
focuses static analysis on dynamic call structures and each trace is analyzed separately; thus,
multiple static analyses may be performed for the same program and the analysis solution is
an over-approximation of the behavior of observed executions. An alternate design of JSBAF
(e.g., Figure 3.2) may exhibit different precision and performance results; this is worthwhile
to evaluate. More significantly, for some analysis clients, there is a need for soundness over
most program behavior; therefore, a new combination of dynamic and static analyses may be
designed to accommodate the requirements of such a client. For example, a static analysis
might be performed to obtain the over-approximation of program behavior, while dynamic
information might be used on-the-fly to replace the part of static analysis solution that is
too imprecise.

Despite of the fact that new static analysis algorithms are being developed towards practi-
cal analysis of JavaScript, the state-of-the-art static analysis of JavaScript still suffers from
scalability issues on real JavaScript applications, especially JavaScript libraries. As a more
general direction of future work, being aware of the difficulty of understanding why an anal-
ysis technique is ineffective on a specific program, we aim to design an automated approach
to diagnose the root causes of analysis impracticality (i.e., imprecision and unscalability).
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For example, the uses of complicated JavaScript libraries such as jQuery pose challenges
for precise and scalable analysis of JavaScript web applications. It is crucial to identify
the causes of imprecision of static analysis when analyzing these libraries. It often takes
a huge amount manual effort to locate these root causes and it is difficult to be complete;
therefore, an automated tool may help to exhaustively locate the causes of imprecision and
push forward the state-of-the-art of analyses. Also a user of such a tool can decide on the
appropriate analysis for certain requirements.
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