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Abstract 

Vehicle stops and speed variations account for a large percentage of vehicle fuel losses 

especially at signalized intersections. Recently, researchers have attempted to develop tools that 

reduce these losses by capitalizing on traffic signal information received via vehicle connectivity 

with traffic signal controllers. Existing state-of-the-art approaches, however, only consider 

surrogate measures (e.g. number of vehicle stops, time spent accelerating and decelerating, 

and/or acceleration or deceleration levels) in the objective function and fail to explicitly optimize 

vehicle fuel consumption levels. Furthermore, the majority of these models do not capture 

vehicle acceleration and deceleration limitations in addition to vehicle-to-vehicle interactions as 

constraints within the mathematical program.  

 

The connectivity between vehicles and infrastructure, as achieved through Connected Vehicles 

technology, can provide a vehicle with information that was not possible before. For example, 

information on traffic signal changes, traffic slow-downs and even headway and speed of lead 

vehicles can be shared. The research proposed in this dissertation uses this information and 

advanced computational models to develop fuel-efficient vehicle trajectories, which can either be 

used as guidance for drivers or can be attached to an electronic throttle controlled cruise control 

system. This fuel-efficient cruise control system is known as an Eco-Cooperative Adaptive 

Cruise Control (ECACC) system. In addition to the ECACC presented here, the research also 

expands on some of the key eco-driving concepts such as fuel-optimizing acceleration models, 

which could be used in conjunction with conventional vehicles and even autonomous vehicles, or 

assistive systems that are being implemented in vehicles.  

 

The dissertation first presents the results from an on-line survey soliciting driver input on public 

perceptions of in-vehicle assistive devices. The results of the survey indicate that user-

acceptance to systems that enhance safety and efficiency is ranked high. Driver–willingness to 

use advanced in-vehicle technology and cellphone applications is also found to be subjective on 

what benefits it has to offer and safety and efficiency are found to be in the top list.  

 

The dissertation then presents the algorithmic development of an Eco-Cooperative Adaptive 

Cruise Control system. The modeling of the system constitutes a modified state-of-the-art path-
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finding algorithm within a dynamic programming framework to find near-optimal and near-real-

time solutions to a complex non-linear programming problem that involves minimizing vehicle 

fuel consumption in the vicinity of signalized intersections. The results demonstrated savings of 

up to 30 percent in fuel consumption within the traffic signalized intersection vicinity.  

 

The proposed system was tested in an agent-based environment developed in MATLAB using 

the RPA car-following model as well as the Society of Automobile Engineers (SAE) J2735 

message set standards for vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) 

communication. The results showed how multi-vehicle interaction enhances usability of the 

system. Simulation of a calibrated real intersection showed average fuel savings of nearly 30 

percent for peak volumes. The fuel reduction was high for low volumes and decreased as the 

traffic volumes increased. The final testing of the algorithm was done in an enhanced Traffic 

Experimental Simulation tool (eTEXAS) that incorporates the conventional TEXAS model with 

a new web-service interface as well as connected vehicle message set dictionary. This testing 

was able to demonstrate model corrections required to negate the effect of system latencies as 

well as a demonstration of using SAE message set parsing in a connected vehicle application.  

 

Finally, the dissertation develops an integrated framework for the control of autonomous vehicle 

movements through intersections using a multi-objective optimization algorithm. The algorithm 

integrated within an existing framework that minimizes vehicle delay while ensuring vehicles do 

not collide. A lower-level of control is introduced that minimizes vehicle fuel consumption 

subject to the arrival times assigned by the upper-level controller. Results show that the eco-

speed control algorithm was able to reduce the overall fuel-consumption of autonomous vehicles 

passing through an intersection by 15 percent while maintaining the 80 percent saving in delay 

when compared to a traditional signalized intersection control. 
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Introduction 
 

The earth’s fossil fuels are being continuously depleted and toxic gases are being emitted to the 

atmosphere at an alarming rate. The United States is one of the prime consumers of the 

petroleum in the world, burning more than 22 percent of the total petroleum refined on the 

planet. The transportation sector consumes nearly three-quarters of this and is the second largest 

carbon emitter in the country. The surface transportation sector is therefore challenged by three 

things – availability of the fuel to drive vehicles, emissions of greenhouse gases and vehicular 

crashes. Therefore, it is important to reduce petroleum consumption and make transportation 

more efficient and sustainable without degrading safety.  

 

Progress has been made in reducing the energy consumption of vehicles and their associated 

carbon footprint for more than half a century bringing down the average passenger car fuel 

consumption from 18.4 liters per 100 km in 1975 to 10.1 liters in 2005. However the number of 

vehicles on the roadways and the total vehicle miles traveled is increasing since the last century. 

Researchers have been developing mathematical, statistical and even mechanical models to 

microscopically analyze the components of surface transportation. These include traffic flow 

models, microscopic emission and fuel-consumption models as well as crash worthiness models. 

Along with advancements in modeling and making efficient cars, efforts are being done to bring 

connectivity between components of a transportation system – infrastructure, vehicles and people 

to enhance safety. 

 

The microscopic models not only form the basis for analysis of a transportation system, but also 

lay the foundation over which multiple cost-optimization models can be developed. Better 

connectivity between system components can add to the benefits of such optimization models by 

providing enhanced situational awareness and reducing the number and ambiguity of constraints. 

The research presented in this dissertation develops one such optimization algorithm that 

attempts to reduce vehicle fuel consumption levels and thereby reduce vehicle emissions using 

advanced information from multiple components of a transportation system. 

Problem Statement 

Vehicles have to stop at an intersection when receiving a red indication. Furthermore, vehicles 

also have to stop during a green indication if a queue of vehicles is still being served. These 

slow-downs or stops produce fuel consumption losses. The Texas Transportation Institute 

quantified the lost fuel due to idling at intersections alone to be 2.8 billion gallons each year. 

However, most intersections have a defined SPAT timing (Signal Phasing and Timing) on which 

it will switch phases. Technologies such as DSRC (Dedicated Short Range Communication) or 

other roadside transmitters can provide this information to vehicles. The research presented in 

this dissertation uses this SPAT information along with other available information to generate 

eco-driving vehicle trajectories on signalized intersection approaches. 
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This dissertation makes the following contributions: 

1. Conduct an on-line survey to solicit driver input on advanced in-vehicle technologies in 

order to identify the prime benefits expected by users of these systems. 

2. Develop a real-time optimization algorithm that explicitly considers the vehicle fuel 

consumption level while accounting for vehicle dynamics and inter-vehicle interaction 

constraints.  

3. Test the algorithm in a state-of-the-art simulation tool using available SAE Connected 

Vehicle protocols.  

4. Evaluate the proposed system performance in a simulation environment for the 30 top-

sold light-duty vehicles in North America for different levels of system market 

penetration. 

Research Methodology 

Recently, researchers have attempted to develop tools that reduce these losses by capitalizing on 

traffic signal information received via vehicle connectivity with traffic signal controllers. As 

mentioned earlier, existing state-of-the-art approaches only consider surrogate measures (e.g. 

number of vehicle stops, time spent accelerating and decelerating, and/or acceleration or 

deceleration levels) in the objective function and fail to explicitly optimize vehicle fuel 

consumption levels. Furthermore, the majority of these models do not capture vehicle 

acceleration and deceleration limitations in addition to vehicle-to-vehicle interactions as 

constraints within the mathematical program. Consequently, this research effort develops an eco-

drive system that focuses primarily on reducing fuel consumption without compromising safety 

by using the signalized intersection’s SPAT information. This system is named Eco-Cooperative 

Adaptive Cruise Control (ECACC). In addition to developing the ECACC Algorithm, this 

research analyses a speed advisory system (Eco-Speed Control or ESC) that can give 

recommended instantaneous speeds to the driver based on inputs from him/her and the roadway 

using DSRC or radio communication.  

 

The overall research approach is detailed in Figure 1.1 which is divided into three sections: 

1. Introduction and Algorithm Development 

This includes a discrete problem statement and past literature with respect to eco-driving 

and advanced eco-driving algorithms that defines speed optimization within the vicinity 

of intersections as given in Chapter 2. Analysis of the drawbacks of the past literature 

was used to develop a more robust algorithm, which is defined in Chapter 3. This 

algorithm assumes user-acceptance of advanced driver-assistance systems. Consequently, 

Chapter 4 was therefore solicits public perception towards advanced in-vehicle 

technology using a two-part stated-preference survey. 
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Figure 1.1- Overview of the research presented. 

2. Algorithm Evolution and Testing 

The algorithm was originally developed for a single-vehicle approaching a signalized 

intersection receiving SPAT information. In order to expand it to an actual agent-based 

modeling of a full intersection, the algorithm was modified to model vehicle-specific 

characteristics along with calibrating thirty top-sold vehicles in US to the model. Multi-

vehicle modeling was then introduced using car-following and collision avoidance 

constraints along with sensitivity analyses for weather and grade impacts. These analyses 

are provided in Chapters 5 and 6. 

 

3. Evaluation and Integration 

In order to evaluate the proposed algorithm in an actual simulation environment, the 

algorithm was integrated with the state-of-the-art simulation tool - eTEXAS (enhanced 

Traffic Experimental Analytical Simulation). Since eTEXAS uses the standardized 

Connected Vehicle message set dictionary, SAE J2735, a connected vehicle framework 

was also developed in MATLAB to form an external communications protocol. The 

algorithm was additionally superimposed on an intersection management framework to 

provide a bi-level multi-objective optimization tool for automated vehicles. The system 
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was also integrated with the INTEGRATION tool to analyze the effect of varying 

penetration rates on the algorithm’s efficiency. These are described in Chapters 7 and 8. 

Research Contributions 

While there has been past research addressing the issue of fuel optimization at signalized 

intersections using advanced signal information, they lacked comprehensiveness in research and 

use of explicit microscopic modeling in the optimization function. The research presented in this 

document contributes further by developing a robust algorithm, named Eco-Speed Control, 

which uses explicit fuel-based optimization functions as well as microscopic modeling in 

establishing constraints.  

 

The specific contributions of the research include: 

1. Developed a robust eco-drive system in the vicinity of intersections that explicitly models 

the vehicle fuel consumption and considers vehicle and surrounding vehicle constraints 

on the system performance. 

2. Solicited user-acceptance in-vehicle driver assistance systems using stated-preference on-

line public surveys.  

3. Characterized the sensitivity of such a system to external variables, including weather 

and grade factors and internal variables such as vehicle type. Thirty top-sold vehicles that 

belong to different EPA classes were calibrated and tested using the proposed algorithm.  

4. Developed a Connected Vehicles framework that uses SAE J2735 message sets 

developed by the Society of Automotive Engineers to evaluate the performance in a 

simulated connected vehicles environment. The multi-component system was developed 

using a cloud-based eTEXAS environment.  

5. Enhanced the algorithm for use as a lower-level controller within the intersection 

Cooperative Adaptive Cruise Control (iCACC) system for management of autonomous 

vehicle intersections. This intersection management system looks at a broader, multi-

objective, bi-level optimization of vehicle delay and fuel consumption levels.  

Overall, the research presented in this dissertation develops a comprehensive tool for optimizing 

vehicle fuel consumption levels at signalized intersections and at intersections controlled using 

an autonomous vehicle control system. 

Dissertation Layout 

This dissertation document uses a manuscript format with multiple independent peer-reviewed 

papers that were published as part of this research and is divided in to nine sections. Please note 

that the papers follow a different format than the original publication to match the overall 

document format. Brief descriptions of each of these chapters along with their attributions are 

given below: 
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Chapter 1: This chapter gives an introduction to the proposed research effort along with the 

research objectives and an overall dissertation layout. 

 

Chapter 2: A synthesis of previous published research on similar research. It also includes some 

of the previous research that laid the foundation to some of the models highlighted in this 

research.  

 

Chapter 3: The basic algorithm development is explained in this chapter along with an extended 

write-up about the underlying microscopic models. 

 

Chapter 4: This chapter, co-authored by Dr. Hesham Rakha and Dr. Ismail Zohdy is accepted for 

publication in the International Journal of ITS Research published by Springer. The chapter 

conducts an analytic review on the current state of implementation of in-vehicle technology and 

the public perception and acceptance towards it by a two-staged online survey series. 

 

Chapter 5: Co-authored by Dr. Hesham Rakha, this chapter provides vehicle-specific modeling 

of the proposed ECACC system using sensitive variables such as speed-limits and vehicle types. 

Thirty different top-sold vehicles of the United States are calibrated and used in the analysis. 

This chapter is accepted for publication in the Journal of Intelligent Transportation Systems, 

Technology, Planning and Operations, published by Taylor and Francis. 

 

Chapter 6: This chapter looks in to the specifics of Agent-Based Modeling of the proposed 

system using simulations of a real calibrated intersection in Blacksburg, Virginia. This chapter is 

accepted for publication in the Transportation Research Record: Journal of the Transportation 

Research Board and is co-authored by Dr. Hesham Rakha.  

 

Chapter 7: Once the algorithm is tested in an agent-based modeling environment, the evaluation 

is done in a bi-level cloud-based simulation system that is based on the TEXAS simulation 

model in this chapter. This work, to date, was the only cloud-based traffic simulation with 

Connected Vehicle capability. The chapter that is co-authored with Dr. Hesham Rakha and Brian 

Badillo (Harmonia Holdings LLC.) was presented at the 93
rd

 Annual Meeting of the 

Transportation Research Board, Washington DC, January 2014. 

 

Chapter 8: A look at how eco-driving algorithms such as ECACC can be used in connection with 

intersection management algorithms is explained in this chapter. Co-authored by Dr. Hesham 

Rakha and Dr. Ismail Zohdy, this chapter is submitted for presentation at 94
th
 Annual Meeting of 

the Transportation Research Board, Washington DC, January 2015. 
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Chapter 9: This chapter explains the conclusions and future research directions from this 

dissertation and explains some of the use-cases regarding potential experimental evaluation of 

the system. 

References 

[1] S. C. Davis, S. W. Diegel, and R. G. Boundy, “Transportation Energy Data Book,” Oak 

Ridge, TN, 2010. 

[2] G. Schremp, A. Bahreinian, and M. Weng-Gutierrez, “Transportation Energy Forecasts 

and Analysis for the 2009 - Integrated Energy Policy Report,” 2009.
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Literature Review 
 

The U.S. Department of Transportation (USDOT) FHWA and other transportation agencies in 

developed nations have made significant advancements in various transportation technologies. In 

the mid-1990s, the FHWA's ITS Program emerged to increase the use of technology in the 

surface transportation sector [1]. Initial ITS applications were limited to Advanced Traffic 

Management Systems (ATMSs) and Advanced Traveler Information Systems (ATISs), but 

technology soon gained momentum in areas of communication and surveillance. In 2003, the VII 

Program was established by the FHWA to combine the benefits of technology to enhance 

roadway safety, reduce traffic congestion, and reduce vehicle emissions [2]. This was the first 

initiative to use information transfer and communication technologies on a large scale in the 

surface transportation sector. In 2009, VII was rebranded to IntelliDrive and in 2011 to 

Connected Vehicles [3][4].  

 

Many research efforts have attempted to develop autonomous and self-driving vehicles. The 

major challenge, however, is handling the complexity of driving behavior. Researchers in this 

area have been modeling various driving maneuvers and decision making abilities so that an 

autonomous vehicle may drive in heavy traffic in the future. Car following, lane changing, and 

intelligent cruising have all played their roles in this domain. Products such as automated parallel 

parking, adaptive cruise control, and lane-change warning systems are some examples of such 

individual products. However, modeling a driver is computationally extensive and complex.  

 

Modeling efforts have been able to predict fuel consumption and emissions of greenhouse gas 

emissions such as carbon dioxide, carbon monoxide, nitrogen oxides and hydrocarbons  precisely 

for various driving scenarios. The Comprehensive Modal Emissions Model (CMEM), the VT-

Micro model, the Virginia Tech Comprehensive Power-based Fuel Model (VT-CPFM), and the 

Vehicle Driveline model are some examples of state-of-the-art fuel consumption and emission 

models [5-7](Ahn, Rakha, Trani, & Van Aerde, 2002; H. A. Rakha, Ahn, Moran, Saerens, & 

Bulck, 2011a; H. Rakha, Ahn, & Trani, 2003). A number of vehicle dynamics models have also 

been developed to accurately predict the physics of a vehicle [8]. Since these models can 

collectively predict the vehicle motion and fuel consumption and emission levels, it should be 

possible to optimize the vehicle trajectory to minimize its fuel consumption. This is the basic 

principle used in most research efforts pertaining to reducing vehicle emission and fuel 

consumption levels. 

 

Research efforts attempting to reduce the carbon footprint and fuel consumption associated with 

driving a vehicle have advanced significantly. On the vehicular side, non-propulsion system 

improvements such as improved vehicle aerodynamics, tire-rolling friction, vehicle weight 

reduction and propulsion system improvements such as transmission and drive train have 

enhanced the average fuel efficiency of passenger cars from 18.4 l/100 km in 1975 to 10.1 l/100 
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km in 2005 [9]. Innovations to improve the fuel efficiency and reduce the carbon footprint of 

gasoline-powered vehicles have and continue to be made. This section reviews the research work 

conducted on the non-vehicular side to improve energy and emissions of vehicles. The efforts are 

broadly categorized into two categories: improvements in infrastructure and improvements in the 

system (Figure 2.1). 

 
Figure 2.1 - Classification of the literature review 

Infrastructure Improvements 

Intelligent traffic signals have been utilized in an attempt to enhance arterial throughput, 

intersection safety, and energy/emission levels. Conventional systems of obtaining traffic signal 

timings used objective functions that minimized vehicle delays and stops. Some studies 

suggested using explicit fuel spent at intersections as objective functions in intersection timings. 

Use of such objective functions that incorporate fuel consumption is predicted to achieve 

reductions in fuel and carbon emissions in the range of 1.5 percent [10-11]. Some traffic control 

improvements suggest the use of genetic algorithms to account for the dynamic routing of 

vehicles that have typically been neglected [12], while other field tests with genetic algorithms 

based on green-wave optimization revealed potential energy and emissions improvements [13]. 

System Improvements 

Researchers at the Laboratory of Energy and the Environment at the Massachusetts Institute of 

Technology (MIT) reported that approximately 7 percent energy of a vehicle is lost due to 

braking [9]. Hence, reducing braking was assumed a direct fuel savings strategy that gave result 

in driving practices (and driver assistive devices) known as eco-driving that assist drivers in 

achieving smoother speed variations. Intelligent Speed Adaptation (ISA) was an initiative in the 

UK aimed at developing driver assistive devices that advise drivers about desired speeds so as to 

avoid hard braking [14]. However, the initiative had its primary objective as traffic safety. As 

technology advanced, newer types of ISA devices were developed using Global Positioning 

System (GPS) technology to advise drivers about the speed limits set for the particular roadways 

[15-16]. The third generation of ISA devices included use of telematics to communicate real-

time traffic information for speed advisories to drivers [17].  

Available literature 
on reducing 

energy/emissions 

Infrastructure 
improvements 

System 
improvements 

Eco-routing 

Eco-driving 
Advanced Eco-
driving using 
Telematics 
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Even though the primary objective of ISA was reducing speed-limit violations from a traffic 

safety perspective, its inherent benefit was reducing fuel-consumption and emission levels due to 

smoother driver behavior [18]. The idea of having a smoother speed variation during driving is 

transformed into a variety of research topics pertaining to energy/emissions savings. Eco-driving 

and eco-routing were the sub-classification of driving system improvements found in a literature 

search. Eco-driving involves driving in an eco-friendly fashion, and eco-routing involves making 

a route choice that will consume minimum energy and produce minimum emissions. 

Advancements in eco-driving led to the use of telematics in making driving more intelligent and 

eco-friendly. This is termed advanced eco-driving and involves the use of some system to detect 

traffic, signals, or congestion and provide eco-advisory to drivers, including route advisory, 

speed advisory, etc. 

Eco-driving 

One of the most extensive research efforts conducted in the area of fuel consumption and 

emission reduction is eco-driving, which refers to driving in an eco-friendly and economical 

fashion. Preventing sudden speed changes in driving and maintaining a constant velocity around 

the fuel-optimal velocity of a vehicle have been associated with fuel consumption and emission 

reductions by various fuel consumption models [5-6]. However, a comparison of eco-driving and 

typical driver behavior showed no major differences in fuel consumption and emission levels 

when smaller vehicles were driven [19]. Studies conducted using vehicles equipped with 

resistive devices to prevent sudden velocity changes also showed no differences [20]. Some 

studies showed that eco-driving not only prevented sudden variations in speed but entailed 

predicting the optimum speed [21-22]. Studies about the freeway-based dynamic eco-driving 

systems showed fuel savings in the range of 10 to 20 percent and provided real-time traffic 

information to drivers [23]. Widodo et al. compared fuel consumed by vehicles during an 

Environment-Adaptive Driving (EAD) practice when inter-vehicle communication (IVC) was 

used and was not used. It was found that EAD had the potential to reduce the fuel consumed 

[24]. This study used the VT Micro-emissions model for comparison. However, EAD does not 

provide any speed advisories to drivers nor does it use communication of future signal changes 

to drivers.  

 

Evaluation of Greek bus drivers trained to eco-drive showed nearly a 10.2 percent reduction in 

fuel consumption levels [25]. Smart driver advisory tools were used to aid non-trained drivers on 

eco-driving. These tools used a fuel-efficiency driver support tool that back calculated the 

instantaneous fuel consumed and compared it with optimal fuel consumption. The system was 

evaluated and found to enhance gas mileage by 7 to 14 percent [26]. However, improper design 

of advisory/support tools posed a challenge to its use. Participant surveys about the eco-driving 

system used in the Kia Soul showed that eco-driving increased the cognitive load on the driver 
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[27]. Other research involving the use of a device that calculated optimum vehicle trajectory 

showed the computational time of such complex models as great as half the total trip time [28]. 

Eco-routing 

The advent of GPS-enabled navigation devices led to drivers adapting their driving route to goal-

oriented route choice selection. Studies have shown that route choice does affect energy 

consumption and emissions and that a slower arterial route may produce better fuel efficiency 

and emission levels compared to a faster highway route [29]. Earlier navigation devices were 

programmable with shortest-path or shortest travel-time algorithms. As the buzzword “eco” 

flooded the research industry, eco-routing emerged. Earlier algorithms employed simple eco-

routing techniques such as using weights for links based on fuel consumption/emission factors 

[30]. Link-weights also depended on grades of road segments [31]. As cloud computing and 

smart handheld devices became common terms, algorithms that modified on-the-fly with user-

fed fuel consumption data for road segments were developed. The GreenGPS initiative is an 

example of this [32]. 

Advanced Eco-driving 

The VII initiative proposed by the U.S. Department of Transportation has at its core wireless 

communications connecting vehicles with the infrastructure and with other vehicles [3]. This 

system allows vehicles to receive advanced notifications from intersection controllers that could 

potentially avoid idling. Idling has been identified to consume 2.8 billion gallons of fuel each 

year in the United States alone [33]. A few research efforts have been conducted to develop 

algorithms that would utilize traffic signal information to reduce vehicle energy consumption and 

emissions. These research efforts highlight the fact that if a road user is notified of the upcoming 

signal status, the vehicle speed can be adjusted accordingly to avoid hard-braking or hard-

acceleration maneuvers, thereby improving energy consumption and emission levels. The project 

focus of this report uses advanced notification of signal status to adjust the speed of vehicle to 

produce fuel savings. Some similar studies are summarized below. 

 

Wu et al. studied the energy/emission benefits of communicating Traffic Signal Status (TSS) to 

the road user via Changeable Message Signs (CMS) or an in-vehicle Advanced Driving Alert 

System (ADAS) and found benefits of up to 40 percent under hypothetical conditions [34]. This 

research, however, only aimed at alerting the driver of changing signal status from green to red. 

CMS or in-vehicle ADAS was used to alert the driver of Time to Red (TTR) so that the drivers 

could choose to decelerate slowly to a stop if they had little or no chance of passing the 

intersection prior to a red light. Authors identified potential benefits of preventing road users 

from maintaining a higher speed until the stop-bar if they knew they had to stop at the 

intersection and promoted decelerating gradually to a stop. However, they did not consider 

change of signal status to green using Time to Green (TTG) information to advice drivers to 
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reach an intersection when the signal turned green. This paper also did not consider potential 

benefits of utilizing a better acceleration maneuver after passing the intersection. 

 

In 2010, Asadi and Vahidi developed a predictive cruise control system that used constrained 

optimum control to adjust cruising speeds to minimize the probability of stopping at intersections 

[35]. Optimum control was used to adjust the time of arrival of the vehicle to lie within green 

intervals at each intersection, and the adjusted speed was tracked to actual speed using a vehicle 

dynamics model. However, the system did not compare fuel consumed for alternate speed 

profiles, nor did the system provide a speed advisory to the drivers. Up to 47 percent savings in 

fuel and 5 percent savings in travel time were reported. 

 

Tielert et al. endeavored to document the factors governing the impact of Traffic-Light-to-

Vehicle-Communication (TLVC) on fuel consumption and emissions of individual vehicles [36]. 

This study used effective red-phase duration, which is the time difference between end of red-

phase and time of arrival of vehicle if it did not reduce speed. The simulation used vehicles to 

follow various speeds within a certain interval to compare the effect of speed adaptation. The 

Passenger car and Heavy duty Emission Model (PHEM) was used to compare the effect on 

energy and emissions. Major factors identified to govern the impact of TLVC on energy and 

emissions were gear ratios and communication distance. Savings of up to 22 percent and 8 

percent were identified in single-vehicle cases and multi-vehicle cases, respectively. 

 

Sanchez et al. developed the logic to be used by a driver approaching a stoplight if he/she was 

notified of the upcoming change of signal status [37]. The authors assumed Intelligent-Driver 

Model Prediction (IDMP) for the simulation studies, which used the available information about 

the green interval to adjust the vehicle speed. The Akcelik and Biggs fuel consumption model 

[38] was used to compare results of various driver-modeling predictions but not when 

developing the logic. Results indicated a 30 percent reduction in fuel consumption and an 

increase in the average speed of the car platoon.  

 

Malakorn and Park assessed the energy and emissions of an IntelliDrive-based Cooperative 

Adaptive Cruise Control (CACC), which used Vehicle-to-Vehicle (V2V) and V2I 

communications over Adaptive Cruise Control (ACC) to further reduce headway and improve 

safety [39]. This system used constrained optimum control with the objective of minimizing 

acceleration and deceleration distances and idling time using TSS information. The system 

communicated favored trajectory information to vehicles equipped with CACC. However, it 

used fixed deceleration distance during simulation studies and entirely neglected speed profiling 

past the intersection. The VT Micro-emissions model was used only in evaluating the strategy 

but not in the actual optimization algorithm.  
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Mandava et al. introduced a modified intelligent speed adaptation logic called arterial velocity 

planning during which the speed profile for a vehicle approaching a signalized intersection was 

calculated to reduce fuel consumption and provide dynamic advice to the driver [40]. The system 

used an optimization algorithm to minimize the acceleration/deceleration rates when the signal 

status information was available in advance to increase the probability of encountering a green 

light. The algorithm used a vehicle-dynamics model for acceleration computations; however, it 

did not use any fuel consumption models. The CMEM model was used for evaluation of 

benefits. Benefits of 12 to 13 percent in fuel consumption and 13 to 14 percent for CO2 

emissions were identified.  

 

While these research efforts aimed at assisting drivers with how to approach an intersection so as 

to avoid idling, some work about artificial intelligence revealed the feasibility of using intelligent 

traffic signal agents that will self-evolve to changing traffic conditions in order to maximize 

intersection capacities [41]. During an effort named TRAVOLUTION, the German carmaker 

Audi and the GEVAS software firm tested the idea of green-wave optimization with genetic 

algorithms using car-to-infrastructure communication [13]. The test cars were equipped with car-

to-infrastructure communication devices to receive signal information. The entire set of driver 

advisories and green-wave optimization could reduce fuel consumed by 21 percent on average. 

However, no information about the parameters/models used in computing speed advisories is 

publicly available.  

 

In most of the aforementioned literature, drivers were provided optimized speed advisories about 

the ideal speed profile to be followed in order to minimize fuel consumption. However, no 

research used an explicit optimization objective of reducing fuel consumption. The goal of 

reducing fuel consumption in all these cases is transformed to simpler functions of 

acceleration/deceleration rates, or duration or even the time of arrival at the intersection. During 

this research, the objective function of reducing fuel consumption will be retained, which will 

potentially provide better intersection fuel efficiency for any given scenario by comparing 

alternate speed profiles. 

Cruise Control Systems 

Cruise control systems were introduced in the 1900s to reduce driving load on humans and the 

most traditional cruise control systems used centrifugal governors to adjust throttle based on 

engine load. They have developed into intelligent systems that focus on safety since then. The 

modern cruise control was introduced in the 1950s and had the capability of maintaining driver-

set speed using a solenoid. In the 1970s, newer types of cruise controls penetrated the market that 

were electronic and had a digital memory, which lets drivers pause and resume the cruising 

operation.  
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Newer research on cruise control systems were enabled by the electronic engine management 

systems. It made controlling the mechanical units in vehicles easier and more accurate. Adaptive 

Cruise Control (ACC) systems were introduced in the 21st century and enabled intelligent 

cruising with collision avoidance with lead vehicles. Radar (or LIDAR) sensors in the front of 

the vehicle are used to measure time-headways to detect speed changes required to avoid forward 

collision.  Since then modifications to ACC around using additional information to alter vehicle 

speeds started. Cooperative Adaptive Cruise Control (CACC) aimed closely-spaced heavy-

vehicle platooning using inter-vehicle communication and adaptive cruise control systems. Some 

research on CACC focused incorporating signal information also to the cruise control system 

using vehicle-infrastructure communication.  
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Algorithm Development 
 

From the previous section, it is clear that the models developed in previous research efforts 

focusing on optimizing vehicle fuel consumption levels near signalized intersections using signal 

information lacks clarity. All of these models used a simplified objective function for 

optimization such as minimizing the deceleration level or minimizing the cruising distance. None 

of these models had an explicit fuel consumption model in its objective function and that is one 

of the advancements addressed here. The project highlighted during this report retains the 

original objective function of minimizing fuel consumed in the entire maneuver near a signalized 

intersection while optimizing speed profiles of vehicles approaching the intersection. The term 

“entire maneuver” in this context sums the vehicle fuel consumption from the point where it 

receives advanced signal information until a fixed distance downstream of the intersection to 

enable it to revert to its original state (speed).  

 

The system leverages dedicated short-range communication (DSRC) capabilities between the 

roadway infrastructure and vehicles. The optimization is conducted in two steps: (1) 

Computation of a proposed time to intersection based on available intersection data (queued 

vehicle information), lead-vehicle information (if any) and signal change information (TTR or 

TTG); and (2) Computation of a fuel-optimal speed profile using the computed time to 

intersection, vehicle acceleration model, roadway characteristics and microscopic fuel 

consumption models. 

 

 
Figure 3.1: Speed profile of vehicles approaching a signalized intersection. 

Depending on the upcoming signal change, namely Time to Red (TTR) or Time to Green (TTG) 

information, Distance to Intersection (DTI) and its current speed (va), there are different 
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scenarios, a vehicle can be in. They are shown in Figure 3.1. A vehicle with no advanced 

information cannot change its profile as shown in the Figure. The scenarios as shown are 

summarized below: 

 

Scenario 1: 

As the vehicle receives upcoming signal change information from the intersection using 

Infrastructure-to-Vehicle (I2V) communication, it computes whether the vehicle will receive a 

green light at the stop line if it proceeded at its current speed; if it does, the system provides an 

advisory to proceed cautiously at the current speed. 

 

Scenario 2: 

If the TTR is not sufficient for the vehicle to pass the intersection at green at its current speed but 

is sufficient if the vehicle accelerates to the maximum allowed speed on the roadway, then the 

vehicle is advised to accelerate and pass cautiously through the intersection. 

 

Scenario 3: 

If the TTR is not sufficient for the vehicle to pass the intersection, then the vehicle is advised to 

come to a slow stop and wait for the next green light. 

 

Scenario 4: 

This is when TTG is longer than the vehicle’s TTI at the current speed. Hence, by reducing the 

average speed of the vehicle across the distance to the stop-line, a delay can be incurred in the 

vehicle trajectory so that the time to intersection is sufficient to receive a green light and to clear 

any available queues. This reduction in average speed can be achieved using an infinite number 

of vehicle trajectories; the focus of this research is to compute the most fuel-optimal way of 

accomplishing this. 

 

Scenario 5: 

When the current phase is red, but will turn green as the vehicle reaches the intersection, then no 

change in vehicle’s velocity profile is suggested to keep the same. 

 

Figure 3.2 shows a logical diagram of events that will lead to eco-vehicle speed control near an 

equipped signalized intersection [1]. As the vehicle enters the DSRC range of an intersection, it 

receives information about upcoming signal changes, lead-vehicle information and roadway 

information. It is at this point, when the eco-vehicle speed control system starts its optimization 

algorithm and provides an instantaneous speed advisory to the driver. At the point of this report, 

the authors have not considered human-vehicle interaction on how the speed advisory is handled 

by the driver and is assumed autonomous driving by the eco-vehicle. It should be noted, 

however, that the algorithm is re-calculated every time-step and thus would be able to respond to 

driver errors in responding to system recommendations.  
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The fourth scenario discussed above is a complex optimization function with the objective of 

minimizing fuel consumed. In order to make the system more accurate, the acceleration of the 

vehicle to a target speed past the stop-line is also considered. This optimization function is 

solved under the constraints of a given travel distance upstream (which is DTI), fixed time to 

reach the intersection (which is the TTG plus any clearance time needed for queues), and fixed 

roadway and vehicle characteristics (such as grade, engine power, frictional coefficients, etc.). 

The eco-vehicle does check for these scenarios and runs the optimization algorithm every time-

step.  

 

This section deals with the speed-profile optimization and its components, deriving equations 

and constraints for the optimization and explanation of physical models and fuel consumption 

models used in the system. 

Speed-profile prediction 

The speed-profile optimization is conducted to find the fuel-optimum speed profile of a vehicle 

that is informed of TTG. This logic applies when the time to intersection needs to be increased to 

some extent to incorporate signal change from red to green and dissipation of any queued 

vehicles. The vehicle movement is physically divided into three parts: deceleration part, cruising 

part and acceleration part. The constant deceleration model and the Rakha and Lucic acceleration 

model are used here [2]. The cruising part is optional and is conducted upstream to maintain the 

constraints and downstream to fix the optimization across a constant distance. Figure 3.3 shows 

the trajectory optimization of an eco-vehicle near a signalized intersection. 

 

 
Figure 3.3 - Extent of trajectory optimization near a signalized intersection. 

The speed profile of a vehicle approaching an intersection will have two components: (a) 

upstream of the traffic signal and (b) downstream of the traffic signal. The upstream portion 

introduces the desired delay to the vehicle in order to ensure that it arrives at the correct time. 

This is accomplished by advising the driver to decelerate to some cruising speed and cruise for 

the remainder of the distance. This cruising distance is zero when the initial deceleration is a 
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minimum value. The deceleration-cruising pair is determined by the effective Time to 

Intersection (TTI) needed and the DTI at the point the SPaT information is received. The 

downstream portion comprises accelerating back to the original speed. A lower speed at the 

intersection will cause the vehicle to have a larger acceleration maneuver, which adds to the total 

fuel consumed. This forms a trade-off between initial deceleration and speed at intersection. A 

higher initial deceleration level will result in a lower final speed at the intersection and hence 

higher fuel consumption associated with acceleration back to the original speed. 

Upstream Trajectory of the Vehicle 

As mentioned before, the eco-speed control model uses TTG information of an upcoming signal 

to alter an approaching vehicle's TTI to ensure that the vehicle traverses the intersection in a fuel-

efficient manner. In this section, the equations governing motion of the vehicle upstream of the 

intersection are derived. Let va be the approach speed when the traffic signal information is 

received and x be the distance to the intersection. Also, denote the TTI be t and TTG be t+∆t. 

The eco-speed control model alters the average speed from va = x/t to a new average speed v = 

x/(t+∆t). The change in speed profile should maintain x and t+∆t. Infinite pairs of parameters of 

deceleration level, d and speed at the stop line, vs can satisfy this condition. The minimum value 

of d, dmin allows the vehicle to decelerate until the stop-line when it can safely accelerate and 

pass through the intersection. Any value of deceleration greater than dmin has an associated 

cruising phase at speed vs in order to maintain the x and t+∆t parameters. 

 

The speed profile shown by the solid line in Figure 3.4 represents the speed profile of the vehicle 

if it travels at a constant minimum deceleration level in order to ensure that the vehicle traverses 

the distance x in time t+∆t. Let this value of deceleration be dmin. The speed profile shown by the 

dash-dotted line in Figure 3.4 represents the vehicle speed profile if the objective is to minimize 

the time spent decelerating. The vehicle decelerates at a maximum feasible rate of dmax m/s
2
 to a 

speed vs m/s initially and then cruises at that this speed across a distance xr. Within these two 

solutions is an infinite number of solutions for d ranging between dmin and dmax (i.e. d = [dmin, 

dmax]). 

 

Using equations for conservation of x and t+∆t, the value of dmin can be derived as 

 

     
     

    
           (1) 

where    
  

    
        (2) 

For any greater value of d, the following equation provides the positive solution of vs: 

      (    )(    )  √(    )((    )(    )     (    )    ) 

    (3) 
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Here G is the roadway grade and g is the gravitational acceleration (9.81 m/s
2
). The following 

equation computes xr (upstream cruising distance) corresponding to any given d as 

 

     
  
    

 

 (    )
          (4) 

 

It should be noted that when d = dmin, xr = 0. These equations can derive various speed profiles 

between the two bounding deceleration levels. The instantaneous speed vector and a microscopic 

fuel consumption model are used to estimate fuel consumed for different vehicle trajectories. 

 
Figure 3.4 - Vehicle trajectory upstream. 

Downstream Trajectory of the Vehicle 

Once the vehicle clears the intersection, its task is to accelerate back to its original speed. Unlike 

deceleration, the acceleration speed profile is non-linear and vehicle dependent. This project used 

a vehicle dynamics model for light-duty acceleration to compute the downstream speed profiles 

of vehicles [2]. In order to optimize the fuel consumed for the downstream portion, it is 

necessary to consider alternate throttle levels when accelerating from vs to va. Speed profiles 

corresponding to throttle levels of 20 to 100 percent are considered. A final comparison of the 

total fuel consumed is made for a constant distance that is computed as the distance required in 

accelerating at the minimum throttle level. In the case of greater throttle levels, this will entail 

accelerating and cruising at va for the remainder of the distance (Figure 3.5).  

 

Hence, the equation for total fuel consumed downstream of the traffic signal is computed as 

   (  )     (     )          (  )  (           )    (5) 

 

where FCi(ds) is the fuel consumed downstream of the traffic signal for case i, FCi(vs→va) is the 

fuel consumed while accelerating from vs to va for case i, FCcruise(va) is the fuel consumed per 
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meter cruising at speed va, xmax is the maximum distance covered during acceleration from vs to 

va in any case, and xi-acc is the distance covered during acceleration in the case i.  

 
Figure 3.5 - Downstream trajectory of the vehicle. 

Underlying Models 

The speed control module defined in this report uses state-of-the-art microscopic traffic models 

to define instantaneous vehicle velocities and to predict future fuel consumed. The three primary 

models used here are: 

a) Constant deceleration model 

b) Vehicle dynamics acceleration model [2] 

c) VT-CPFM [3] 

At this stage, the project mainly covers the speed control of the first vehicle arriving at an 

intersection and hence does not use any car-following logic. However, it should be noted that 

proper implementation of this system involves use of car-following models to analyze car-to-car 

interaction on the signalized arterial. This section expands on the microscopic models used 

during the project. 

Vehicle Deceleration Model 

The vehicle is assumed to undergo an initial deceleration upstream of the intersection to 

incorporate the required delay, and this deceleration is assumed constant and optionally followed 

by a cruising portion for the remainder of the DTI. The system does not consider a case 

involving acceleration upstream of the intersection. All acceleration occurs downstream of the 

traffic signal stop line. 

Vehicle Acceleration Model 

Once past the intersection, the vehicle accelerates to its original speed, and the time and distance 

at which it accelerates depends on the accelerator pedal level or simply the throttle level. In order 

to compare cases of any throttle level, a constant distance upstream is considered, which is 

defined by the distance covered during the application of minimum throttle. For any throttle level 

more than the minimum, some cruising is required at the final speed for the remainder of the 
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fixed distance. This deals with the acceleration model used during this project and is a non-linear 

model unlike the deceleration model. The modeling of vehicle accelerations involved the use of a 

vehicle dynamics model. Vehicle dynamics models compute the maximum vehicle acceleration 

levels from the resultant forces acting on a vehicle (mainly vehicle tractive force that is a 

function of the driver throttle input and the various resistance forces). 

 

Equation 6 computes the vehicle tractive effort F. Rakha and Lucic introduced the β factor into 

Equation 6 in order to account for the gearshift impacts at low traveling speeds when trucks are 

accelerating [1]. This factor is set to 1.0 for light-duty vehicles. The fp factor models the driver 

throttle input level and ranges from 0.0 to 1.0. The sum of the aerodynamic, rolling, and grade 

resistance forces acting on the vehicle, as demonstrated in Equation 7, forms the vehicle 

resistance force. 

min 3600 ,
p d ta

P
F f m g

v
        (6) 

2 0
1 225.92 1000

r
d h f r r

c
R C C A v mg c v c mgG

     (7) 

 

where fp is the driver throttle input [0,1] (unitless; field studies have shown that it is typically 

0.60); β is the gear reduction factor (unitless); ηd is the driveline efficiency (unitless); P is the 

vehicle power (kW); mta is the mass of the vehicle on the tractive axle (kg); g is the gravitational 

acceleration (9.8067 m/s
2
); μ is the coefficient of road adhesion or the coefficient of friction 

(unitless); ρ is the air density at sea level and a temperature of 15
◦
C (1.2256 kg/m

3
); Cd is the 

vehicle drag coefficient (unitless), typically 0.30; Ch is the altitude correction factor (unitless); Af 

is the vehicle frontal area (m
2
); cr0 is rolling resistance constant (unitless); cr1 is the rolling 

resistance constant (h/km); cr2 is the rolling resistance constant (unitless); m is the total vehicle 

mass (kg); and G is the roadway grade at instant t (unitless). 

 

The vehicle acceleration is calculated as a ratio of the difference between the tractive forces and 

resistance forces and the vehicle mass (i.e., a = (F − R)/m). The vehicle speed at t + △t is then 

computed using Euler’s first-order approximation as 

( ) ( )
( ) ( ) 3.6

F t R t
v t t v t t

m        (8) 

Fuel Consumption Model 

This section describes the fuel consumption model used in computing the fuel-optimal vehicle 

trajectory. Fuel consumption models generally fall into one of the following two categories: 

macro and micro models. Macro models estimate vehicle total fuel consumption based on 

aggregate characteristics such as average speed, total distance traveled, and average traffic 

volume. However, microscopic fuel consumption models calculate instantaneous fuel 
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consumption levels based on instantaneous operational characteristics. This study uses a 

microscopic model since optimizing speed trajectories requires estimating vehicle fuel 

consumption based on instantaneous vehicle operational data.  

 

This study uses the VT-CPFM-1 due to its simplicity, accuracy, and ease of calibration [3]. The 

fuel consumption model utilizes instantaneous power as an input variable and can be calibrated 

using publicly available fuel economy data (e.g., Environmental Protection Agency [EPA]-

published city and highway mileage). Thus, the calibration of model parameters does not require 

gathering any vehicle-specific data.  

 

The fuel consumption model is formulated as Equation (9), where α0 is the fuel consumption rate 

(g/s or l/s) for idling conditions and P(t) is the instantaneous total power in kilowatts (kW). The 

idling fuel consumption rate is estimated using Equation (10), where Pmfo is idling fuel mean 

pressure (400,000 Pa), ωidle is idling engine speed (rpm), d is engine displacement (liters), Q is 

fuel lower heating value (43,000,000 J/kg for gasoline fuel), and N is the number of engine 

cylinders. Estimation of the model coefficients (α1, α2) uses the fuel consumption rates of the 

standard fuel economy cycles (e.g., EPA-published city and highway mileage).  

 

Here Fcity and Fhwy are the total fuel consumed for the EPA city and highway driving cycles, 

respectively. The value of Fcity is adjusted to represent the engine transient operation since the 

EPA city cycle includes the cold start operation in the Bag 1 of Federal Test Procedure (FTP). 

Tcity and Thwy are the durations of the city and highway cycles (1875s and 766s). In addition, Pcity 

and Pcity
2
 represent the total power used and total sum of the squared power during the city 

driving cycle, expressed as 
0

( )
cityT

t
P t

 and 
2

0
( )

cityT

t
P t

 respectively. Similarly, Phwy and Phwy
2
 are 

estimated for the highway cycle.  
2
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Survey on Increasing In-Vehicle Technology Use: Results and 

Findings 
 

Raj K. Kamalanathsharma, Hesham A. Rakha, and Ismail H. Zohdy 

 

The use of advanced technology in automobiles has increased dramatically in the past couple of 

years. Driver-assisting gadgets such as navigation systems, advanced cruise control, collision 

avoidance systems, and other safety systems have moved down the ladder from luxury cars to 

more basic vehicles. Concurrently, auto manufacturers are also designing and testing driving 

algorithms that can assist with basic driving tasks, many of which are being continuously 

scrutinized by traffic safety agencies to ensure that these systems do not pose a safety hazard. 

The research presented in this paper brings a third perspective to in-vehicle technology by 

conducting a two-stage survey to collect public opinion on advanced in-vehicle technology. 

Approximately 64 percent of the respondents used a smartphone application to assist with their 

travel. The top-used applications were navigation and real-time traffic information systems. 

Among those who used smartphones during their commutes, the top-used applications were 

navigation and entertainment. 

 

Introduction 

Use of technology in our daily life is increasing so rapidly that we see computers and 

computerized devices everywhere. As far as automobiles are concerned, where we once only had 

cruise control units, power windows, and remote lock/unlock devices in our vehicles, we now 

have navigation systems, voice-command operating systems, adaptive cruise control systems, 

and automated parking control systems. Researchers are also developing driverless vehicles, and 

transportation authorities in many countries are legislating inter-vehicular communications to 

enhance safety. For instance, the U.S. Department of Transportation started the Connected 

Vehicle research program, partnering with auto manufacturers and research universities to 

include more connectivity and technology in automobiles [1]. Auto manufacturers are equipping 

vehicle dashboards with more gadgets, while regulators such as the National Highway Traffic 

Safety Administration (NHTSA), citing safety reasons, are working towards new legislation that 

limits technology in vehicles [2].  

 

For decades, researchers have been studying how to make driving more safe, fuel efficient, and 

comfortable. As a result, we now have vehicles that park themselves, cruise themselves, and 

even drive themselves. On the other hand, there are studies in which researchers analyze how 

effective or distractive these systems are. This has left a gap in research, namely, identifying 

what the end users want in their vehicles—more or less technology and the kind of assisting 

devices. An extensive background study suggested that most similar surveys reflect a non-

scientific approach through publishing blog platforms or newspapers. All of these were 
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consumer surveys that can be used as a comparison tool for different user interfaces and ease of 

use. The 2012 J.D. Power U.S. Initial Quality Study revealed that most of the complaints that 

new-car owners have relate to high-tech gadgets in their cars and how these gadgets interact with 

drivers [3].  

 

Consequently, this paper is intended to fill the gap between the perceptions of end users and 

vehicle manufacturer implementations using statistics from a scientifically designed online 

survey implemented in two stages. These stated preference surveys were intended to solicit a 

sample population’s opinions on the use of advanced technology in automobiles. The first stage 

of the survey, conducted in 2012, highlights the generalized implications on how typical drivers 

react to equipping their vehicles with different levels of automation. In particular, two types of 

advanced cruise control systems were analyzed in this survey, namely Adaptive Cruise Control 

(ACC) and Cooperative Adaptive Cruise Control (CACC). The second stage of the survey, 

conducted in 2013, focused on identifying public opinion about the benefits sought from these 

advanced technologies. This survey highlights and ranks the aspects of driving or riding that the 

public would like to be automated.  

 

A review of the literature reveals that most researchers have focused their efforts on testing the 

performance of new technology (e.g., advanced cruise control systems) and have assumed that 

drivers will accept such technologies. For example, some of the studies developed dynamic 

optimal speed advising algorithms on the vehicle side and compared system performance to 

actuated traffic signal control [4][5]. For connected vehicles, many researchers have studied the 

impact of advanced cruise control (ACC and/or CACC) systems using simulation/simulator 

experiments (e.g., [6] and [7]). In addition, a few attempts in the literature have been made to 

create simulators (or simulation software) for modeling fully automated/autonomous vehicles 

(e.g., Dresner and Stone [8-10]).  

 

However, a very limited number of researchers have attempted to study the impact of new 

technologies on driver behavior and driver distraction. In a NHTSA study, test vehicles with 

multiple vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) safety applications were 

tested using a total of 688 drivers, ages 20 to 70. The study concluded that, following the driver 

clinic, over 90 percent of the participants expressed a desire to have V2V communication safety 

features in their personal vehicles [11]. In the same context, the AAA Foundation for Traffic 

Safety (AAAFTS) in cooperation with the Automobile Club of Southern California (ACSC) 

conducted a survey to assess drivers’ experiences with ACC systems [12]. The overarching goal 

of that study was to learn more about the extent to which ACC systems enhance or detract from 

safety. The results of this study showed that most of the ACC owners indicated that the system 

helped them to drive more safely; however, the younger respondents (less than 65 years old) 

were more likely to report a need for safety improvements to the system.  
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In summary, most of the previous research addressed advanced technologies in vehicles from an 

operations perspective and neglected driver acceptance and/or the behavioral adaptation of 

drivers. This paper attempts to overcome some of the previous research shortcomings by 

collecting public opinion on new in-vehicle technologies through a user survey. 

Study Objectives 

The objective of this research was to collect public opinion on the recent increase of in-vehicle 

technology and gadgets that are enabled by telematics and connected vehicle technology using 

two online surveys. In this study, two survey questionnaires were specifically designed to solicit 

public opinion on the desired level of advanced technology in vehicles and highway systems as 

well as to quantify the public’s perception of these issues. While the phrase “technology in cars” 

could mean anything from Bluetooth to voice-command operations, this study deals with 

technology enabling safety and efficiency of driving. This includes systems such as ACC or 

connected vehicle applications using CACC systems.  

 

Major demographic characteristics such as age group, gender, education, and occupation were 

used to classify the responses and to draw statistically significant results. This survey is intended 

to address some questions regarding public acceptance of various driver-assistance systems and 

levels of vehicle automation. Some of these are: 

1. Identifying possible demographic characteristic effects (age, gender, etc.) on driver 

acceptance of in-vehicle technologies; 

2. Soliciting driver input on the intrusion of smart phone applications in transportation; 

3. Ranking the various types of systems that drivers like or dislike in their vehicles; 

4. Soliciting driver acceptance regarding various levels of vehicle and highway automation. 

 

As far as the paper layout is concerned, the survey methodology is described along with 

sampling the population characteristics, design and implementation of the survey, and post-

survey adjustments. An extensive section on the findings from this survey is provided along with 

charts of major public responses and a list of major conclusions. 

Methodology 

Advanced automobile technology is primarily controlled by two parties: the automobile 

manufacturers and governing authorities. The automobile manufacturers are equipping vehicles 

with driver-assistance devices (including forward collision warning [FCW] systems, drowsy 

driver sensors, etc.) and the governing authorities such as NHTSA are developing regulations to 

ensure that such systems do not produce a safety hazard. Between these two parties, there are 

211,000,000 licensed drivers in the United States (as of 2009) who will be the actual end users of 

such systems [13]. The research presented in this paper solicited a sample of drivers in the 

United States for their perceptions of advanced in-vehicle technologies and what types of 

innovations in transportation they would like to see. 
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Scientifically designed online surveys are considered an effective and quick tool to collect 

responses from a variety of audiences. The surveys used in this study had the following stages of 

implementation: 

1. Sample size computation: This was done primarily to define the statistical significance of 

the study. The sample size was derived from the population size as well as confidence 

intervals and levels. 

2. Design of questionnaire: The questionnaire was designed to incorporate the questions that 

would yield necessary data for the research in a set of easy-to-read plain English 

questions. Any technical descriptions were simplified to ensure layman understanding. 

3. Seeking necessary approvals: As per institutional requirements, some survey review and 

approval was necessary since this research involved human subjects. 

4. Invitations and publicity: This step was of utmost importance in the overall success of the 

survey. It involved solicitations through known listservs, electronic mailing lists, and 

social networking groups. Survey respondents were volunteers who chose to respond to 

the posting. 

5. Survey closure: Once the number of respondents reached the desired sample size plus 

some buffer considering the potential for incomplete responses, the survey was removed 

from the Web. 

6. Data analysis: The responses collected during the open period were post-processed to 

remove any incomplete responses. The final processed data were then analyzed to derive 

conclusions. 

Sampling 

The sample size required for the survey to be statistically significant is calculated using the 

following equations. 

 
2

/100 (1 )x z c r r        (1) 

2( 1)

Nx
n

N E x


 
    (2) 

where N is the population size, r is the fraction of response of interest, Z(c/100) is the critical 

value for the confidence interval c, and E is the margin of error allowed. Assuming the 

population’s response is not skewed and the sample is random, we consider an r-value of 0.5. A 

confidence interval of 5 percent and a confidence level of 95 percent will yield a minimum 

required sample size estimate of 385, where the population size is assumed to be all licensed 

drivers in the United States over the age of 18. Table 4.1a shows the number of licensed drivers 

in the United States based on the 2009 census (the latest available) [13]. Only drivers of age 18 

and above were considered for the survey due to Institutional Review Board (IRB) requirements. 

Survey design 

Since the survey population consists of any licensed driver in the United States, the survey 

questions were designed to be simple and easy to understand. The first survey was conducted in 
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2012 and spanned nearly 4 weeks. The survey was designed to provide valuable statistics 

showing the relationship between demographics and drivers’ perceptions of increased in-vehicle 

technology and their acceptance of future systems. The second survey in 2013 was specifically 

designed to expand on the benefits that end users are receiving from the current level of 

technology and the perceived benefits of future systems. The survey population was solicited 

using emails to known listservs as well as social networks and tweets. IRB approval was sought 

and received for the specifically designed questionnaires and the survey process. As per IRB 

requirements, respondents less than 18 years of age were not included in the study. The masking 

of any identifying information about respondents, including response location and IP address, 

was a requirement for IRB approval. 

Post-survey adjustments 

The surveys were online for over 4 weeks collecting survey responses from respondents who 

volunteered to fill out the questionnaire. There were some adjustments that were done after 

survey closure. They are listed here: 

1. Responses with empty answers were removed. This included responses with any question 

left unanswered. 

2. In some questions, the respondents could type out their own answers rather than selecting 

a given choice. Some of these answers were similar to the responses that could be 

selected. These options were merged.  

3. Answers that were not part of and different from the choice set were individually 

categorized, putting similar views together.  

4. Responses were linked based on certain demographics and respondent areas of expertise 

so that meaningful conclusions could be made. 

5. Post-stratification weights were used to adjust the responses to match the actual 

population. The adjustment also helped to form matching demographics for both surveys. 

This will be explained in the following subsection. 

Survey Results and Findings 

Post-processing yielded a set of over 400 survey responses for each of the surveys, which was 

well over the minimum sample size required. However, the demographic distribution has to be 

matched between the surveys and with the population in consideration. Post-stratified weights 

were used to match the stratified sample proportions to the population distribution given in Table 

4.1a. This method expanded the responses from the age groups that had lesser responses (over 65 

years) and contracted the responses from the age groups that had the most responses (25 to 40 

years). While post-stratification could be done based on several factors including socioeconomic 

ones, age is being considered here since the socioeconomic distribution of the licensed U.S. 

population consists of multiple variables that need factored weighing. Table 4.1b shows the 

calculation of post-stratification weights for making the respondent population comparable with 

the actual population of licensed drivers in the United States aged 18 and above. 
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Table 4.1 – Population distribution of licensed drivers in U.S. (2009 census data) 

Age Group 
Number of 

Licensed Drivers 

% of 

Population 

18 to 24 23,647,000 11.43 

25 to 40 55,906,000 27.02 

41 to 65 94,404,000 45.63 

Over 65 32,899,000 15.92 

Total (18 and up) 206,856,000 100.00 

 

Post-stratification of survey respondents 

Age Group Pop. 

Ratio 

Sample 

Proportion 

Stratification 

Weight 

Part 1 Part 2 Part 1 Part 2 

18-24 0.114 0.212 0.242 0.54 0.47 

25-40 0.270 0.645 0.450 0.42 0.60 

41-65 0.456 0.122 0.290 3.74 1.57 

Over 65 0.159 0.021 0.018 7.57 8.83 

 

These weights were then used to weigh the responses to the survey made by the respondents 

based on their age group. The weighted results are considered to replicate the actual population’s 

behavior (Table 4.1). Stratification also aligns the respondent demographics of the second part of 

the survey with the actual population, thereby making the results from both surveys comparable. 

In order to preserve the demographic representation of the population under consideration, no 

trimming was made on the weights and hence the number of weighted responses was equal to the 

number of actual responses. In the following sections, survey results based on different criteria 

are explained. 

Demographics 

Figure 4.1 shows the demographic distribution of survey respondents with respect to age, gender, 

education level, and car usage. The dissimilarity in age distribution was negotiated by the post-

stratification process. The prominent respondent education level was a four-year college degree 

and had a 35:65 gender split as shown. Over 87 percent of the respondents drove more than twice 

a week. Other demographic features are also shown in Figure 4.1. It was also seen that there is a 

bias between the education demographic and gender. For example, only 6 percent of the 

respondents listed their highest education as being less than a four-year degree. Therefore, a chi-

squared test was performed to see if the responses were independent of the respondents’ 

education or gender.   



R.K. Kamalanathsharma 

 

37 

 

 
Figure 4.1 – Distribution of respondent population based on demographics. 

 

Independence tests using Pearson’s chi-squared test were done with the test variables being 

whether the respondents support advanced technology in automobiles and what level of highway 

automation is desired. The test factors were age group, gender, education, and the respondent’s 

area of expertise. Table 4.2 shows the chi-squared values for a significance level of 0.05. Tests 

indicate that the responses were independent of respondent demographics. In other words, the 

demographic characteristics of the participants (respondents) did not affect their responses 

concerning the support of technology or the desired level of highway automation. It could be 

stated that many of these results are consistent with a previous study [12]. 

 

Table 4.2 – Chi-squared test of sample results. 

 Support 

technology in 

vehicles 

Desired level of 

highway 

automation 

Chi-

squared 

Prob > 

Chi 

Sq. 

Chi-

squared 

Prob > 

Chi 

Sq. 

Age 3.279 0.9932 18.064 0.1138 

Gender 5.504 0.2394 9.228 0.0556 

Education Level 11.402 0.7840 21.465 0.1613 

Area of Expertise 6.049 0.1955 4.473 0.3457 
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The survey also identified the most common commute mode among the respondents to which the 

results can be associated. The responses to the frequency of use of each transport mode were 

recorded for this purpose and were then weighted to rank them according to how often they were 

used. This ranked list is given below: 

1. Car/Truck/Motorcycle 

2. Walk 

3. Transit Bus 

4. Bike 

5. Metro/Light Rail 

6. Heavy Rail 

Smartphone Applications 

There has been an increasing trend of smartphone applications that help with multiple aspects of 

transportation. Smart-navigation, real-time traffic information, weather information, etc., are just 

a start of the growing influence information technology has on the way people commute. Though 

using cellphones while driving is discouraged and even legally banned in many states, 

smartphones contribute to bringing real-time information to drivers so that they can make 

informed choices on routes and modes. Around 64 percent of the survey respondents have used 

smartphones to help with their commutes in some way.  

 

 
Figure 4.2 – Smartphone applications that are used in connection with commute/travel. 

 

Figure 4.2 shows the top smartphone applications that are used in connection with commuting 

and travel. Smartphone applications are ranked based on the percentage of respondents who have 

used them. Navigation applications held the top position, with nearly 80 percent of people using 

them both prior to and during the trip. Traffic and transit applications held the next positions for 

the top apps that were used by the respondents to help with their trips. As far as the applications 

that are used by respondents during trips are concerned, entertainment and traffic applications 
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followed navigation apps in ranking. It should be noted that social apps and entertainment apps 

that were used prior to commuting were dropped since they rarely help with trip decisions.  

Advanced Control Systems 

A variety of vehicle control systems have been recently introduced in the market under different 

trade names as we move closer to self-driving vehicles. For example, ACC can detect slowing 

lead vehicles and adjust the speed accordingly to maintain a safe headway. CACC communicates 

with neighboring vehicles for more responsive safety applications, including red-light running 

and intersection collision avoidance. In contrast to these advances, the results from the survey 

reveal that adoption of traditional cruise control has been mixed with nearly 20 percent of the 

respondents never using it. However, 34 percent of respondents use cruise control whenever 

possible. Figure 4.3 shows the statistics on whether the respondents use traditional cruise control 

while driving and whether they are aware of the new advancements in cruise control technology. 

In order to test public awareness of the new types of assistive cruise control systems, respondents 

were asked if they were aware of ACC systems. An approximately 50:50 split was shown in the 

responses. This indicates the respondents’ average knowledge about the new technologies 

coming up in the transportation industry. 

 
Figure 4.3 – Percentage distribution of how often respondents use cruise control while driving. 

 

The penetration level of any new technology that affects how people drive depends on its 

trustworthiness. Most survey respondents highlighted the importance of “learning” in their 

perceived trustworthiness of advanced technology in driving-assistance systems. Around 15 

percent of the survey respondents did not trust the two advanced cruise control systems, namely 

ACC and CACC. The survey questionnaire provided brief descriptions of these systems so that 

respondents could make judgments. ACC maintains a constant headway by detecting the speed 

of the lead vehicle and CACC adjusts cruise speeds using advanced information from 

surrounding cars and infrastructure equipment. These results are shown in Figure 4.4. 
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Figure 4.4 – Percentage distribution of trustworthiness of advanced cruise control systems. 

 

As far as the statistics are concerned, 49 percent of the respondents had heard about ACC 

systems. Figure 4.5 shows the perceived trustworthiness of these two types of cruise control 

systems to the public. A total of 64 percent of the respondents would trust ACC systems after 

using them. This learned trustworthiness is approximately 55 percent for CACC systems. A total 

of 14 and 13 percent of the respondents indicated that they would trust these respective systems 

if they were available for use by the public. Around 7 and 14 percent, respectively, thought they 

might trust these systems after studying safety reports and consumer reviews, and less than 1 

percent had views that were not listed in the questionnaire, most of which reflected the opinion 

that it was not an issue of trustworthiness but an issue of need. 

 

 
Figure 4.5 – Effect of using cruise control on distraction while driving. 
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Anti-distracted driving has been the primary safety campaign by NHTSA and other traffic safety 

organizations. Recent studies have indicated that high-tech gadgets add to driver distraction [14]. 

This survey also analyzed public perception on driver distraction as a result of technology. In one 

question, respondents were asked if they thought they were distracted while using cruise control. 

A summary of the results is shown in Figure 4.5. Only 24 percent of the respondents agreed that 

they were more likely to be distracted while using cruise control. Around 44 percent of the 

respondents thought cruise control and driver distraction were unrelated, and 28 percent of the 

respondents had a neutral opinion.  

Driver-assistance Systems 

Vehicle control systems are just a part of some of the automation we see in today’s cars. 

Automobile companies are equipping vehicles with multiple systems to make driving and riding 

more comfortable, entertaining, and economical. The survey respondents were asked to rank the 

types of systems they would want in their vehicles, and the results are given in Figure 4.6a. 

Systems that enhance the safety of passengers were ranked at the top by over 60 percent of 

respondents. The second highest-ranked systems were those that make vehicles more fuel 

efficient. The entertainment and social systems that are being added by some of the 

manufacturers came the lowest on the ranking, with over 75 percent respondents marking them 

as least important. 

 

In order to perceive what benefits end users expect from advanced driver-assistance applications, 

the respondents were asked to rank benefits (shown in Figure 4.6b). Rank-weighted responses 

were used to give overall rank to all of the systems and were computed as the sum of the 

products of the number of responses with their corresponding ranks. These benefits were 

consequently ranked in the following order: 

1. Enhanced safety 

2. Reduced travel time and delays 

3. Fuel economy 

4. Driver and passenger comfort 

5. Reduced workload while driving 

 

Additionally, the respondents were asked if they were in favor of adding more technology to 

automobiles. Over 89 percent of the respondents supported more technology in automobiles, 

with around 45 percent strongly supporting this idea. Only 3 percent of all respondents opposed 

increased use of technology in automobiles. These results provide valuable input for researchers 

working on developing driver-assistance systems as to what areas to focus development on. 

Consequently, these results indirectly show the hierarchy of the price that users would pay for 

these systems. 
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Figure 4.6 – Respondent ranking of various driver assistance systems and the benefits sought from 

them. 

Vehicle Automation 

Numerous labs and research groups are in the process of developing autonomous driving 

systems. As guidance, NHTSA has identified major milestones on the way to fully automated 

vehicles. Five levels of automation have been identified currently, as given in Table 4.3. Specific 

definitions of these terms are available in [15]. The survey presented in this paper attempted to 

address the public perception of an automated driving environment. While the definitions of 

these levels are too complex to be explained in layman’s terms, the survey used well-defined 

systems that can cover these five milestones. Respondents rated how much they would want 

these systems.  
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Table 4.3 – Various levels of automation as identified by NHTSA 

Level Description 

0 No Automation 

1 Function-specific Automation 

2 Combined Function Automation 

3 Limited Self-Driving Automation 

4 Full Self-Driving Automation 

 

The following system definitions were used in the research: 

1. System 1: Systems that provide information about the trip, such as routes, congestion, 

incidents, etc. 

2. System 2: Systems that assist with driving, such as signal timing information, blind-spot 

occupancy, etc.  

3. System 3: Systems that enhance safety, such as automated braking systems, collision 

avoidance, etc. 

4. System 4: Systems that enable automated highway driving using lane centering and safe 

headways. 

5. System 5: Self-driving systems which need no human input other than destination. 

 

Figure 4.7 shows the public perception of the aforementioned systems. As shown, as the system 

becomes more and more complex and intrusive, the drivers are less receptive to the system. For 

example, nearly 90 percent of the respondents are receptive to System 1, which does not intrude 

on the driver’s role whereas only 33 percent of the respondents are receptive to a self-driving 

system (System 5).  

 

 
Figure 4.7 – Respondent opinions on various levels of automation systems. 
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Conclusions 

The survey conducted and analyzed in this paper evaluates the public perception of increased 

technology in vehicles and highway systems. The two-part survey covered multiple facets of 

advanced technology in driver-assistance devices. Results from this study are expected to help 

researchers focus their research into the latest innovations in connected vehicle research and 

advanced vehicle systems. The results could also be used by auto manufacturers in critical 

decisions regarding equipping vehicles with in-vehicle gadgets. The stated preference survey 

responses were able to yield a confidence interval of 5 percent and a confidence level of 95 

percent. Post-stratification was done to match the respondent population’s age groups with the 

actual population’s age groups.  

 

Findings from the survey highlight the following conclusions: 

1. Demographic factors such as age, gender, and education had no impact on the 

respondents’ answers to questions regarding in-vehicle technology. 

2. Approximately 64 percent of the respondents have used a smartphone application to 

assist with their travel. The top-used applications were navigation and real-time traffic 

information systems.  

3. Among those who used smartphones during their commute, the top-used applications 

were navigation and entertainment. 

4. More than 24 percent of respondents thought that they are more distracted while using 

cruise control. As far as the trustworthiness of advanced cruise control systems such as 

ACC and CACC systems is concerned, up to 60 percent of the respondents felt that they 

would need to get acquainted with these systems before making a judgment. This 

conclusion may be true with any new innovation. 

5. The top driver-assistance systems that respondents voted for are systems that enhance the 

safety of passengers and systems that make vehicles more fuel efficient. Among the 

benefits that the respondents sought from advanced driver assistance systems, the top 

ones were enhanced safety and reduced travel time and delays. 

6. Advancements in social and entertainment systems in the vehicles were ranked lowest by 

the respondents.  

7. More respondents voted for systems that are non-intrusive (over 90 percent) than fully 

autonomous (35 percent). 

 

These conclusions are expected to help bridge the gap between the advancing research and 

development of in-vehicle technology, including vehicle automation, and public expectations of 

those technologies that will influence their acceptance by end users. 
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Leveraging Connected Vehicle Technology and Telematics to 

Enhance Vehicle Fuel Efficiency in the Vicinity of Signalized 

Intersections 
 

Raj Kishore Kamalanathsharma and Hesham Rakha 

 

Driving on highways and arterial roadways involves vehicle acceleration, braking, cruising, 

coasting, and idling episodes. As the vehicle speed deviates from its “fuel optimum speed,” 

additional fuel is consumed and thus reducing the vehicle fuel efficiency. The research presented 

in this paper develops a connected vehicle application entitled Eco-Cooperative Adaptive Cruise 

Control (ECACC) that uses Infrastructure-to-Vehicle (I2V) communication to receive Signal 

Phasing and Timing (SPaT) data, predict future constraints on a vehicle’s trajectory, and 

optimize its trajectory to minimize the fuel vehicle’s consumption level. The trajectory 

optimization is made using a moving horizon dynamic programming (DP) approach. A modified 

A-star algorithm is developed to enhance the computational efficiency of the DP for use in real-

time implementations. The model is calibrated and tested on 30 top-sold vehicles in the United 

States and is demonstrated to provide fuel savings within the vicinity of signalized intersections 

in the range of 5 to 30 percent.  

 

Introduction 

Vehicle trajectories on arterials and freeways can be considered as a combination of five driving 

episodes – acceleration, deceleration, cruising, coasting and idling. Speed variations occur due to 

numerous factors, including: vehicle-vehicle interaction, traffic control device constraints, 

infrastructure limitations and even driver distraction. This speed variations result in additional 

fuel consumption because of travel at non-optimum speeds and the extra power exerted while 

accelerating. Avoiding these speed variations is not always possible without compromising 

safety and/or respecting traffic control devices.  

 

Consequently, optimizing the vehicle trajectory to minimize its fuel consumption can 

significantly enhance the vehicle fuel efficiency. Such an optimization tool predicts the future 

constraints that the vehicle will be subject to and generates a speed profile that is fuel-optimal. 

This prediction of future constraints was impossible until vehicle connectivity was introduced. In 

addition to the safety benefits, this technology promises valuable information to the vehicles and 

traffic controllers such as speed-acceleration-brake status and signal phasing and timing (SPaT) 

information. This information can be leveraged to develop spatial and temporal constraints to 

optimize the vehicle trajectory to achieve maximum fuel efficiency. The research presented in 

this paper develops a vehicle trajectory optimization tool entitled Eco-Cooperative Adaptive 

Cruise Control (ECACC). 
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ECACC is a type of Cooperative Adaptive Cruise Control (CACC) that works in conjunction 

with signalized intersections to optimize vehicle trajectories to minimize fuel consumption levels. 

The method used in this paper focuses on optimizing the trajectory of a vehicle approaching an 

intersection capable of communicating signal change information to the on-coming vehicles. 

Since the mathematical program is non-linear and complex, a dynamic programming (DP) 

framework is developed that uses a modification of the A-star path-finding algorithm to enhance 

the computational efficiency. Microscopic simulations of vehicles approaching a traffic signal 

revealed fuel-savings in the range of 5 to 30 percent in the vicinity of intersections for the 5 top-

sold cars of 2011 within each the 6 Environmental Protection Agency (EPA) categories. 

 

As far as the paper layout is concerned, it starts with a discussion of the literature currently 

available on the use of V2I/I2V communication to optimize vehicle fuel consumption. This is 

followed by a description of the problem statement and methodology used in developing the 

ECACC algorithm along with alternate optimization techniques tested. This section also 

describes the microscopic models used in this study followed by how the simulation analysis was 

conducted. Finally, the results and findings of the simulation study as well as a discussion on the 

conclusions of the research are presented. 

Background 

Around the world, transportation and environmental agencies have been concerned with 

depleting petroleum resources with a continuing reliance on these sources. In addition, stopping 

for red lights and other idling events consume 2.8 billion gallons of gasoline in the United States 

alone each year (Schrank et al., 2010). Concurrently, new technology is booming in the 

transportation industry with smarter vehicles and smarter intersections. Initiatives to use vehicle-

to-vehicle and vehicle-to-infrastructure communication to make transportation systems more 

efficient and safer have been well studied for decades (ITS JPO, 2012). The connected vehicle 

technology and similar research world-wide has drawn attention of researchers and public 

because of the scope it opens in the field of future transportation systems. Only a handful of 

researchers have used the availability of such information to enhance fuel efficiency of vehicles. 

These research efforts highlight the fact that if a road user is notified of the upcoming signal 

status, the vehicle speed can be adjusted accordingly to avoid hard-braking or hard-acceleration 

maneuvers, thereby improving energy consumption and emission levels (Rakha & 

Kamalanathsharma, 2011). 

 

Wu et al. studied the energy/emission benefits of communicating Traffic Signal Status (TSS) to 

the road user via Changeable Message Signs (CMSs) or an in-vehicle Advanced Driver Alert 

System (ADAS) (Wu et al., 2010). The proposed system allows drivers to develop the optimal 

course of action without any form of optimization. Asadi and Vahidi developed a predictive 

cruise control system that uses constrained optimal control to adjust cruising speeds to minimize 

the probability of stopping at intersections (Asadi & Vahidi, 2010). Tielert et al. used the 
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effective red-phase duration, which is the time difference between the end of red-phase and time 

of arrival of the vehicle if it did not reduce its speed to establish the factors governing the impact 

of Traffic-Light-to-Vehicle-Communication (TLVC) on vehicle fuel consumption and emission 

levels of individual vehicles (Tielert et al., 2010). 

 

Sanchez et al. developed the logic to be used by a driver approaching a traffic signal if he/she 

was notified of the upcoming change of signal status (Sanchez et al., 2007). This logic, however, 

did not formulate the problem as an explicit optimization problem with microscopic fuel 

consumption model estimates as the objective function, but instead adjusted vehicle speeds to 

reach the stop-line during the green indication, which may or may not be possible in real-life. 

Malakorn and Park used constrained optimal control with the objective of minimizing 

acceleration and deceleration distances and idling time using Traffic Signal Status (TSS) 

information (Malakorn & Park, 2010). Mandava et al. introduced an arterial velocity-planning 

tool that calculates the speed profile for a vehicle approaching a signalized intersection to reduce 

fuel consumption and provide dynamic advice to the driver (Mandava et al., 2009). The system 

minimizes acceleration and deceleration levels to achieve its objective. 

 

In recent studies, researchers were able to look closely at the same logic, i.e, optimizing the 

speed profile of vehicles to achieve fuel efficiency using SPaT data. Mahler and Vahidi studied 

reducing idling at red-lights using a probabilistic prediction of signal timings (Mahler & Vahidi, 

2012). In this study, the authors used a predictive algorithm to predict the signal phases for 

upcoming signals and adjusted vehicle speeds in a way to minimize the probability of arriving 

during a red interval. Kamal et al. developed a predictive control model that predicts the road 

traffic conditions ahead and generates an optimal control input for vehicles (Kamal et al., 2012). 

 

While the aforementioned literature used advanced signal information to optimize vehicle 

trajectories, only a few attempted to optimize the vehicle fuel consumption level. Furthermore, 

these efforts attempted to minimize vehicle deceleration/acceleration levels, as opposed to 

explicitly minimizing the fuel consumption level (Xia et al., 2013). In addition, all studies used a 

linear fuel consumption model to evaluate the alternative control strategies. It should be noted 

that the use of a linear power model would recommend full throttle accelerations and full braking 

decelerations to achieve fuel efficiency (also known as bang-bang control). These findings 

contradict empirical observations. Consequently, the proposed research effort extends the state-

of-the-art literature in the following ways: (1) we develop an explicit fuel consumption 

optimization algorithm; (2) we use a polynomial fuel consumption model to ensure that a non-

bang-bang control system is developed; (3) we use a moving horizon DP approach to 

continuously optimize the vehicle trajectory; and (4) we explicitly consider the vehicle dynamics 

constraints in the optimization algorithm. Specifically, the proposed DP algorithm uses a path-

finding algorithm to select the “least-cost” path by discretizing the solution-space and solving for 
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the optimum vehicle trajectory. A modified version of the A-star algorithm is developed and 

used to enhance the computational efficiency of the algorithm. 

Methodology 

An ECACC system is a driver-assistance tool that provides advisories regarding the most fuel 

efficient trajectory to navigate an intersection using SPAT information from I2V communicat ion. 

A vehicle equipped with the ECACC (test-vehicle) is assumed to have the following capabilities: 

a. Dedicated Short-Range Communication (DSRC) or cellular communication to receive 

packets of SPAT and auxiliary messages broadcasted using I2V communication. This 

enables the test vehicle to precisely know the upcoming signal change as well as any 

information regarding queued vehicles at the intersection stop-line. 

b. Adaptive Cruise Control (ACC) system, which implements the speed recommendations 

provided by the ECACC controller. Alternatively, we can assume that the driver follows 

the speed recommendations made by the system using some in-vehicle display system. 

c. Global Positioning System (GPS) to compute its distance from the signalized intersection. 

d. The test vehicle is manually steered by the driver since this paper does not address lateral 

vehicle movement. Only longitudinal movement is considered and optimized. 

 

The overall ECACC system logic is illustrated in a flowchart in Figure 5.1Figure 5.. The flowchart 

demonstrates that the ECACC optimization is repeated every ∆t to adjust for changes in 

conditions such as changes in SPaT data (which occurs when pre-emptive and vehicle actuation 

calls are placed to the controller). The inputs to the system are received through a 

communication module which can be adapted to the technology being used (such as cellular or 

DSRC) as well as from the vehicle’s on-board units that track the vehicle’s velocity and 

acceleration and a GPS unit that tracks the location of the vehicle. Using these data as well as the 

basic microscopic models, the ECACC module optimizes the vehicle trajectory in order to 

minimize the total fuel consumption over a fixed distance of travel. The optimum speed advisory 

can then be displayed to the driver or to a speed-governance unit. 

 

Figure 5.2 shows that according to a vehicle’s time to intersection (TTI) computed from its speed 

and distance to intersection (DTI), a test-vehicle can be in one of the four scenarios. These are 

shown in Figure and are explained below: 

 

Scenario 1: As the vehicle receives upcoming signal-change information from the intersection 

via I2V communication, it determines whether the vehicle will receive a green indication at the 

stop line if it proceeded at its current speed; if it does, then the optimal course of action is to 

proceed without any reductions in speed. 

 

Scenario 2: If the Time to Red (TTR) is not sufficient for the vehicle to pass through the 

intersection during a green signal indication if the vehicle continues at its current speed but is 
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sufficient if the vehicle accelerates to the maximum allowed speed on the roadway, then the 

optimal course of action is to accelerate and proceed through the intersection in the current phase. 

This saves fuel from lost inertia, idling and accelerating back to its desired speed. 

 

Scenario 3: If the TTR is not sufficient for the vehicle to proceed through the intersection and 

the time-to-green (TTG) to the next phase is large enough that the vehicle has to alter its 

trajectory, then the optimal course of action is nothing but coming to a complete stop and waiting 

for the next green indication. 

 

Scenario 4: This is when the TTG is longer than the vehicle’s Time to Intersection (TTI) at the 

current speed. Hence, by reducing the average speed while traveling to the intersection, a delay 

can be incurred in the vehicle trajectory so that the TTI is sufficient to receive a green indication 

after clearing any available queues.  

 

Scenario 4 provides most flexibility as far as fuel savings are concerned. While scenarios 1 

through 3 are generally easy to optimize, the last scenario requires a simulation/optimization 

algorithm. This simulation/optimization algorithm must consider constraints imposed by the 

traffic signal and vehicle dynamics, as follows: (a) temporal constraints based on the signal 

timings, (b) temporal and spatial constraints based on the queue dissipation times and the travel 

time to the intersection, (c) speed constraints enforced by speed-limits, and (d) vehicle 

deceleration/acceleration constraints enforced by the vehicle dynamics. Since these scenarios are 

defined based on TTI, it is possible to construct similar constraints when phase lengths are short 

resulting in multiple phases while the vehicle approaches the intersection stop-line. The above 

problem is a complex optimal control problem with the control variables being the brake pedal 

input and gas pedal input (throttle) that the driver applies. Deceleration and acceleration can be 

easily computed using these control variables (or vice-versa) using the vehicle dynamic 

equations. 
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Figure 5.1: Logical Model of ECACC System 
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Figure 5.2: Speed profile of vehicles approaching a signalized intersection. 

 

 
Figure 5.3: Comparison of optimized versus uninformed speed profile in the vicinity of intersection. 

 

In Figure 5.3, two profiles are shown for the same case of a test vehicle approaching a red-signal 

that will turn green in the near future. A vehicle that is blind to information will come to a stop 

and idle until the traffic signal changes to green (dash-dotted line). The test-vehicle, however, is 

informed of an imminent change to green in the near future and thus can modify its speed profile 

to maintain the same average speed, but travel through the intersection at a higher speed (solid 

line). In doing so, it will encounter minimal loss of inertia and also reduce the level of 

acceleration needed to return to its desired speed. Figure also defines the three states of transition 

for the vehicle – (i) Initial State, (ii) Intermediate State and (iii) Final State. 

Problem Formulation 

The ECACC system uses optimization to generate a velocity profile for vehicles that correspond 

to least fuel in navigating through the intersection. The mathematical formulation for the optimal 
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control problem is stated below and consists of an upstream component and a downstream 

component: 

Minimize:                  (1) 

where     ∫   ( )  
  

  
 defined as the upstream fuel consumed, 

and     ∫   ( )  
  
  

 defined as the downstream fuel consumed. 

where the limits of integration are:  , which is the start time of the optimization (usually, the 

time the vehicle receives the SPaT information);  , which is the predicted time that the vehicle 

should reach the intersection stop-line to proceed safely during a green indication; and  , which 

is the time that the vehicle accelerates back to its original speed. In order to fix an optimization 

horizon downstream, we define a downstream distance (xd) and the vehicle is assumed to cruise 

to that distance after accelerating back. It should be noted that    is computed from the time at 

which the signal changes to green plus any additional time required to clear queues formed at the 

intersection during the red indication. This translates the objective function to: 
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The computation equations for the fuel consumption model (Virginia Tech Comprehensive 

Power-based Fuel Model) including P(t) and the vehicle dynamics model that constrain the 

maximum acceleration are given in the forthcoming sub-section on underlying models.  

Solution Approach 

The ECACC system defined in this research uses a recursive path-finding logic in order to 

optimize the vehicle velocity profile. The overall upstream and downstream fuel consumption is 

optimized by considering dynamic programming logic to find the least-cost path of transition 

between three states (shown in Figure): 
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 Initial State: This is when the vehicle receives the SPaT information and the ECACC 

system elects to incur a delay. The time, speed and location of the vehicle are known for 

this state.  

 Intermediate State:  This is when the vehicle reaches the stop-line when the traffic signal 

turns green or the queue is cleared. The time and location of the vehicle at this state are 

known. 

 Final State: This is when the vehicle accelerates back to its original speed downstream. 

The position and speed of the vehicle are known at this state. 

 

Constraints from the optimization problem is used to construct these states defined by their 

respective times and locations. The optimization using DP principles, considers both upstream 

and downstream conditions to generate the optimal control strategy. Since dynamic 

programming is used the solution space is discretized and compared to achieve the most optimal 

one. The discretization upstream is done by various levels of brake-pedal inputs and downstream 

is done by various levels of throttle (gas-pedal inputs). Distance conservation constraints (1 and 

4) are used to create downstream and upstream profiles corresponding to each discretization.  For 

example, the downstream profile is generated to maintain a fixed average speed defined by the 

distance-to-intersection (xs) and time it should reach the stop-line (ts).  

 

In order to account for errors in driver input, changes in traffic signal timings, and/or latency in 

communications the ECACC logic is repeated every ∆t time-step so that the system adjusts to 

deviations from the optimum strategy. The DP approach is ideal when a closed-form analytical 

formulation is not available and when conditions change dynamically. The problem is solved as 

a least-cost path-finding problem where a vehicle at a specific approach velocity attempts to 

reach the stop-line considering a fixed average speed and then accelerates back to the same 

approach speed while consuming minimum fuel. A high level of discretization refines the 

solution but significantly increases the computational load. Preliminary experimentation with the 

Dijkstra’s path-finding algorithm revealed long computation times (Dijkstra, 1959). 

Alternatively, use of an A-star path-finding algorithm (Hart et al., 1968) not only resulted in 

minimum deviation from the Dijkstra formulation, but was significantly computationally faster.  

 

Both Dijkstra’s and the A-star path finding algorithms find the least cost path in a step-by-step 

incremental process. At each time-step, Dijkstra’s algorithm computes the most efficient path by 

searching the entire solution space. The algorithm is computationally slow since it has to 

evaluate all possible paths. On the other hand, the A-star algorithm uses a “heuristic” or an 

estimate of the remaining cost at each time step in order to reduce the search space. A unique 

version of the A-star algorithm was developed in this research effort to solve the optimization 

problem as will be described in the next subsection. A comparison of the A-star and Dijkstra 

algorithms revealed multi-fold benefits in computational speed, which is of utmost importance in 
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this context given that the system is envisioned to run in real-time in a moving horizon 

framework.  

Modified A-star Algorithm 

The A-star algorithm is a path-finding algorithm that is similar to Dijsktra’s algorithm except 

that it uses a heuristic estimate of the cost after each time-step to reduce the solution space. In 

simple terms, it uses recursive path-finding logic in which the optimum state advances each 

time-step by selecting the least-cost path for the previous movement plus a heuristic estimate of 

the future movements. This estimated cost is based on a heuristic that assumes that the driver 

input remains constant over the entire horizon. In this research effort, a modified version of the 

A-star algorithm was developed since a temporal/spatial constraint is required at the stop-line. 

Two simultaneous loops of the A-star algorithm are required to model the upstream and 

downstream components as shown in Figure 5.4.  

 

Input Files

Vehicle: 

Power, mass, drag 

coefficients, vehicle 

dynamics coefficients, 

resistance coefficients

Roadway: 

Speed-limit, weather-

condition, friction 

coefficients, air-

density

Grade-profile: 

Elevation profile of 
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Intersection Info: 
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coordinates. 
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Define end-
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Find least-

cost path from 

current-state 

to endstate

End

 
Figure 5.4: Modified A-star Optimization Logic used in ECACC 

The pseudo-code for this problem, depicted in Figure, can be cast as follows: 

1. Receive SPaT information, DTI, approach speed (va), position, and queued vehicle 

information. 

2. Identify the cases where a delay is required in its trajectory. 

3. Compute the average speed required to achieve the desired offset        
   

  
. 
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4. Assume S(0) to represent the current state and S(M) and S(N) the intermediate and final states, 

respectively. 

5. Construct a vector of possible next states up to S(M), S(i) and the corresponding fuel 

consumed to move from S(0) to S(i) is given by (G(i)). 

6. For each of these S(i)’s, compute the estimated fuel (H(i)) for transition from S(i) to S(M) 

assuming the vehicle deceleration level remains constant. 

7. Compute the fuel consumed to move from S(M) to S(N) 

7.1. For each S(M), compute the fuel consumed (X(j)) to move from S(M) to S(M+1) for all 

throttle levels j.  

7.2. For each S(M+1), estimate the fuel consumed (Y(j)) required to continue from S(M+1) to 

S(N) at the same throttle level j. 

7.3. Select the throttle level corresponding to the least fuel consumption downstream (min 

Z(j) = X(j)+Y(j)). 

8. Select the next state based on the minimum total fuel consumed F(i) = G(i)+H(i)+Z(j). 

9. Repeat 5 through 8 each time step until state S(M) is reached. 

10. Run 7 each time step until state S(N) is reached. 

 

The use of the A-star algorithm results in fast and efficient computations. Specifically, the 

solution can be derived in less than a second depending on the discretization level and approach 

speed. All complex microscopic models can be easily integrated in the logic without 

compromising the computational time, while achieving a good solution. For illustration purposes, 

the algorithm is tested on a 2011 Honda Accord accelerating from a stop to a speed of 75 km/h. 

We have considered only the acceleration portion of the maneuver so as to demonstrate the logic 

on a simple scenario. The optimized throttle is shown in Figure 5.5. Table 5.1 provides the fuel 

consumed by the vehicle while accelerating and cruising at the final speed in order to cover the 

same distance at various throttle levels. As shown, the largest or least throttle input does not 

provide the optimum solution to the problem as previous literature suggests; instead the optimum 

solution is somewhere in between both levels. While this example demonstrates how the A-star 

algorithm can compute the optimum vehicle trajectory, the modified A-star algorithm defined 

previously, extends the logic by considering the various constraints imposed on the vehicle 

trajectory. 

Table 5.1: Fuel Consumed for Acceleration Using Optimum Throttle Versus Low or High 

Throttles. 

Throttle Acceleration 

Fuel (l) 

Acceleration 

Distance (m) 

Cruising 

Distance (m) 

Cruising 

Fuel (l) 

Total Fuel 

(ml) 

0.25 0.0101 161.15 0.00 0.0000 10.0915 

0.50 0.0066 82.56 78.59 0.0033 9.9372 

0.75 0.0057 60.61 100.54 0.0043 9.9693 

1.00 0.0055 55.03 106.12 0.0045 10.0062 

Optimized 0.0061 71.08 90.07 0.0038 9.9247 
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Figure 5.5: Optimized throttle profile for accelerating from 0 to 75 km/h 

Underlying Models 

The equations provided in the previous sections may appear simple; however, the problem is 

complex because of the various temporal, spatial, and vehicle dynamics constraints imposed on 

the solution. Specifically, the model must explicitly capture of the various forces acting on the 

vehicle to capture its longitudinal motion in addition it must apply a nonlinear fuel consumption 

model to estimate the fuel consumption. In addition the vehicle trajectory is subject to a number 

of temporal and spatial constraints. The simulation component of the proposed algorithm is 

composed of two building blocks, namely: a vehicle dynamics model and a vehicle fuel 

consumption model. These two models are described are briefly described in this section. The 

queue-dissipation time can be computed as in (Kamalanathsharma & Hancock, 2012) using 

state-of-the-art queuing models such as (Marshall & Berg, 1997). 

Vehicle Dynamics Model 

The estimation of mode-specific fuel consumption and emission levels entails modeling the 

vehicle deceleration, cruising, idling, and acceleration modes of operation. In modeling vehicle 

decelerations, we assume a constant deceleration level for the entire maneuver which could be 

easily replicated by any braking system or even by a human driver. However, modeling vehicle 

accelerations involves use of a vehicle dynamics model (Rakha et al., 2004). Vehicle dynamics 

models compute the maximum vehicle acceleration levels from the resultant forces acting on a 

vehicle (mainly vehicle tractive force that is a function of the engine throttle input and the 
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various resistance forces). The equations for the tractive and resistive forces acting on a vehicle 

are given below: 

 ( )     (         
 ( )

 ( )
      )       (2) 

 ( )  
 

     
       

 ( )    
   

    
(    ( )     )     ( )    (3) 

 

Equation 2 computes the vehicle tractive effort   at a given velocity   (in m/s). Rakha and Lucic 

introduced the   factor in order to account for the gearshift impacts at low traveling speeds when 

trucks are accelerating. This factor is set to 1.0 for light duty vehicles. The    factor models the 

driver throttle input level and ranges from 0.0 to 1.0. Other parameter definitions are:    is the 

driveline efficiency (unitless);  ( ) is the vehicle power (kW) at instant t;     is the mass of the 

vehicle on the tractive axle (kg);   is the gravitational acceleration (9.8067 m/s
2
) and   is the 

coefficient of road adhesion or the coefficient of friction (unitless).  

 

The sum of the aerodynamic, rolling, and grade resistance forces acting on the vehicle, as 

demonstrated in Equation 3, forms the vehicle resistive forces. The parameter definitions for this 

equation are:   is the air density at sea level and a temperature of 15◦C (1.2256 kg/m
3
);    is the 

vehicle drag coefficient (unitless), typically 0.30;    is the altitude correction factor (unitless); 

   is the vehicle frontal area (m
2
);     is rolling resistance constant (unitless);     is the rolling 

resistance constant (h/km);     is the rolling resistance constant (unitless);   is the total vehicle 

mass (kg); and  ( ) is the roadway grade at instant t (unitless). The vehicle acceleration is 

calculated as the ratio of the difference between tractive and resistance forces and the vehicle 

mass (i.e., a = (F − R)/m). The vehicle speed at t + △t is then computed using Euler’s first order 

approximation as: 

 (    )   ( )     
 ( )  ( )

 
          (4) 

Fuel Consumption Model 

The proposed simulation/optimization algorithm uses a microscopic fuel consumption model to 

compute the instantaneous fuel consumption level. The total fuel consumed is then computed as 

the summation of the fuel consumed each time step. The Virginia Tech Comprehensive Power-

based Fuel Model, Type 1 (VT-CPFM-1) is used in this particular research because of its 

simplicity, accuracy, and ease of calibration (Rakha et al., 2011). This fuel consumption model 

utilizes instantaneous power as an input variable and can be calibrated using publicly available 

fuel economy data (i.e., EPA published city and highway fuel ratings). Thus, the calibration of 

model parameters does not require gathering any vehicle-specific data. A detailed description of 

the model and the calibration process is beyond the scope of this paper but can be found in the 

literature (Rakha et al., 2011).  

 

The fuel consumption model is formulated as follows: 
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  ( )   
      ( )     ( )      ( )   
                                             ( )   

      (5) 

where   ,    and    are the model parameters that can be calibrated for a particular vehicle and 

 ( ) is the instantaneous total power in kilowatts (kW). The power exerted at any instant t is 

computed as: 

( ) 1.04 ( )
( ) ( )

3600 d

R t ma t
P t v t



 
  
 

        (6) 

where m is the vehicle mass, a(t) is the acceleration at instant t, ηd is the driveline efficiency, v(t) 

is the velocity at instant t and R(t) is the resistance force on the vehicle given by Equation 3. 

 

The parameters   ,    and     in equation (5) can be calibrated using the following equations: 
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             (9) 

where Pmfo is idling fuel mean pressure (400,000 Pa), ωidle is idling engine speed (rpm), d is 

engine displacement (liters), Q is fuel lower heating value (43,000,000 J/kg for gasoline fuel), 

and N is the number of engine cylinders. Estimation of the model coefficients (α1, α2) uses the 

fuel consumption rates of the standard fuel economy cycles (i.e., EPA published city and 

highway mileage). Here Fcity and Fhwy are the total fuel consumed for the U.S. Environmental 

Protection Agency (EPA) city and highway driving cycles, respectively. The value of Fcity is 

adjusted to represent the engine transient operation, since the EPA city cycle includes the cold 

start operation in the Bag 1 of Federal Test Procedure (FTP). Tcity and Thwy are the durations of 

the city and highway cycles (1875s and 766s). In addition, Pcity and Pcity
2
 represent the total 

power used and total sum of the squared power during the city driving cycle, expressed as 

0
( )

cityT

t
P t

 and 
2

0
( )

cityT

t
P t

 respectively. Similarly, Phwy and Phwy
2
 are estimated for the highway 

cycle. It should be noted that the researchers have developed a MATLAB tool, which is freely 

available, that calibrates the model parameters using this procedure. 

 

The model uses a second-order power term in order to ensure that the control problem does not 

result in a bang-bang control system where the optimal control strategy is to decelerate at 

maximum braking, idle, and accelerate at full throttle. Further details on this model as well as 

computation equations is available in the literature (Rakha et al., 2011). The suitability of this 

model in real-time ITS applications is also studied by (Saerens et al., 2013). 
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Analysis 

The effectiveness of the proposed system was tested by running 2100 agent-based simulations in 

a MATLAB environment. The combination of controller-agents, ECACC-agents and driver-

agents were used specifically so that they act independently, while also interact with each other. 

Use of microscopic models to define vehicle movement and interactions ensures the simulation 

generates comparable results to commercial simulation tools. The communication between the 

agents was forced to follow the Connected Vehicles (CV) standards being set by the Society of 

Automotive Engineers (SAE) J2735 messages, which is currently not defined in any of the state-

of-the-art simulation tools (SAE, 2010). A total of 30 different calibrated vehicles that 

correspond to the 5 top-sold vehicles of 6 different EPA categories (compact cars, mid-size cars, 

full-size cars, sport utility vehicles, mini passenger vans and light-duty trucks) were used 

(NADA, 2011). The DSRC communication range was assumed to be 200 m as recommended by 

the SAE (SAE, 2010). The 2100 simulation runs included a total of 5 vehicle offset times (2, 4, 6, 

8 and 10 s) and 7 different approach speeds (30, 40, 50… 90 km/h). The time to green values 

were computed prior to simulations based on approach speeds and distances to the intersection.  

 

The various vehicle parameters that are required to calibrate the vehicle dynamics and fuel-

consumption models were found through an extensive search of manufacturer websites and 

catalogs of the identified vehicles. These parameters (both generic and calibrated) are 

summarized in an appendix to the paper. It should be noted that since the sales data for 2011 

were considered, the vehicle parameters pertain to 2011 base models of all vehicles. The VT-

CPFM MATLAB calibration tool was used to generate the model coefficients. EPA uses 

combined passenger and cargo volumes for passenger car categorization and the Gross Vehicle 

Weight Rating (GVWR) for other vehicle types. These values were used to create vehicle models 

that replicate the acceleration/deceleration characteristics of typical vehicles for simulation 

purposes. Calibrated fuel-consumption models were used, both in generating the optimized speed 

profile and also in comparing the measures of effectiveness between the base case and the test 

case. 

 

The base case simulation involved simulating a vehicle that is uninformed of the traffic signal 

change (i.e. has no communication with the controller and thus does not receive SPaT 

information). The microscopic behavior of this vehicle was programmed using ITE’s Traffic 

Engineering Handbook and AASHTO’s recommended deceleration and acceleration values at 

intersections (AASHTO, 2011; ITE, 2009). Specifically, an average deceleration value of 3 m/s
2
 

and an average acceleration of 1.1 m/s
2
 were used to reflect these guidelines. The test case used 

the proposed ECACC logic. For these two cases, the fuel-consumption was estimated using the 

VT-CPFM fuel model and comparisons were made.  
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Figure 5.6: Comparison of Fuel Consumed by an uninformed vehicle and a test vehicle for a 

particular case. 

Results and Findings 

While previous studies either minimized or maximized acceleration/deceleration levels without 

explicitly minimizing the fuel consumption level, this study explicitly minimizes the vehicle fuel 

consumption level. As shown in Table, the optimum profile is not achieved when the throttle 

input is maximum or minimum, but instead decreases as the vehicle approaches its desired speed. 

Contrary to what has been reported in the literature, we have to consider both the upstream and 

downstream profiles in order to optimize the vehicle motion. This is shown in Figure 5.6 which 

compares the optimum profile generated by the ECACC system versus an uninformed driver 

who coasts to the stop-line while the signal is red and then accelerates to their original speed. 

 

Figure 5.6 shows the fuel consumed for a 2011 Honda Accord approaching an intersection at 72 

km/h (20 m/s). The vehicle receives SPaT information at a distance of 200 meters from the 

intersection that the signal will turn from red to green in 14 seconds which implies a 4-second 

delay in its trajectory. Using this data, the vehicle incurs a 4-second delay so as to reach the stop 

line after 14 seconds and then accelerates back to its original speed downstream of the traffic 

signal. The blue-bars show the fuel consumed by a vehicle that does not receive SPaT 

information and the red-bar shows the ECACC vehicles that do receive SPaT information. While 

the upstream fuel consumption is lower for the uninformed driver (since it involves only 

coasting), the downstream fuel consumption is significantly higher.  

 

Since the vehicle fuel efficiency varies for different vehicle classes, the major measure of 

effectiveness used is the relative difference in fuel between the base case and the ECACC test 

case. Figure 5.7 shows the average fuel savings as a function of different variables, namely: (a) 

approach speed and (b) the required delay to be incurred to proceed through the intersection. The 
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dashed line in Figure 5.7 shows the absolute difference in fuel between the test case and base 

case (labeled on the left y-axis) and the solid line shows the percentage difference in fuel 

between the test case and the base case (labeled on the right y-axis). Figure 5.7(a) shows that the 

fuel savings are proportional to the vehicle’s approach speed. For example, fuel savings of 5 

percent were achieved for approach speeds of 30 km/h whereas fuel savings of 23 percent were 

achieve when the vehicle approach speed was 90 km/h. A major reason for these fuel savings is 

associated with the potential to make larger adjustments to the vehicle trajectory at higher speeds. 

The simulation results also show that the possible fuel savings reduce with increasing vehicle 

delay times (Figure 5.7b). In other words, if more delay is required in the vehicle’s nominal 

speed profile, the lesser the fuel savings are. This is because a longer delay results in a lower 

average speed upstream of the intersection and a lower speed from which the vehicle should 

accelerate back to its original speed. This results in a higher loss of inertia. While a 2-second 

vehicle delay yielded an average benefit of 17.5% fuel savings, a 10-second delay only yielded 

13.3% fuel savings within the vicinity of intersections. 

 

Figure 5.7 also shows the absolute values of fuel saved in the vicinity of an intersection. Even 

though these values look small when a single intersection is considered, the average miles-per-

gallon increase for a corridor with closely spaced intersections is found to be over 12.75 percent. 

Contrary to previous research (Johansson et al., 2003) that indicated that vehicles with larger 

engines benefit most when such eco-driving principles are used, the simulations show that 

compact cars benefitted equally to Light-Duty Trucks (LDTs) when they used the ECACC 

system (Figure 5.8). However, it should be noted that the absolute savings are higher for LDTs. 

Even though the results characterize the benefits that can be achieved by implementing the 

ECACC system, these results are only representative of the fuel that can be saved in the vicinity 

of intersections. This approach could be extended to enhance driving episodes in cities by 

considering the entire corridor rather than an isolated intersection. Other than at signalized 

intersections, the results from these simulation studies provide valuable information on the most-

fuel efficient acceleration maneuver which could be used in any driving condition.  
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Figure 5.7: Categorized average fuel savings between the test-cases and base-cases. 

 
Figure 5.8: Percentage Savings in Fuel Averaged Across EPA Categories 
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Agent-based Simulation of Eco-Speed Controlled Vehicles at 

Signalized Intersections 
 

Raj Kishore Kamalanathsharma and Hesham Rakha 

 

Eco-Speed Control systems attempt to reduce vehicle fuel consumption levels by optimizing 

vehicle trajectories in the vicinity of signalized intersections while accounting for traffic signal 

timing constraints. The proposed algorithm uses dynamic programming to compute the 

minimum-fuel vehicle trajectory required to navigate through the intersection subject to several 

constraints, including: vehicular interactions, traffic signal timing changes and vehicle/roadway 

constraints. The proposed application uses infrastructure-to-vehicle and vehicle-to-vehicle 

communication to receive traffic signal and vehicle data. The research presented in the paper 

develops an agent-based modeling tool to simulate and test the system under varying traffic 

volume and market penetration levels. The simulation model uses a variety of microscopic inputs 

such as the roadway vertical profile, roadway surface condition, traffic volumes, and traffic 

signal timing information. The system was tested on a sample signalized intersection producing 

fuel consumption reductions of 30 percent and travel speed increases of 200 percent on average 

within the vicinity of the intersection. Actual savings in total trip time, average speed and fuel 

consumed will depend on the trip profile including the number of intersections, and total trip 

length. 

 

Introduction 

With the introduction of Connected Vehicles (CVs) and Vehicle Infrastructure Integration (VII) 

initiatives worldwide, vehicles and infrastructure will be able to communicate and share 

important data. Vehicles can broadcast their speed, heading, acceleration and other information 

using Basic Safety Messages (BSMs) and signalized intersections can broadcast information 

about upcoming traffic signal timing changes and intersection geometry information using SPaT 

(Signal Phasing and Timing) and MapDATA messages [1]. While the primary focus of vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication is traffic safety as is the 

case with red-light running prevention and intersection collision warning systems, they can also 

be leveraged to make advanced eco-driving possible. The messages broadcast by the 

infrastructure and vehicles provide valuable eco-driving information as to when vehicles will 

have to stop and when they may proceed, thereby allowing for the construction of vehicle 

trajectories that minimize their fuel consumption level using advanced computation. 

 

The eco-speed control logic being tested in this paper optimizes vehicle trajectories using 

information broadcast through V2V and I2V communication to predict what the upcoming signal 

status will be and what other constraints affect the vehicle trajectory and then optimize the 

vehicle movement to minimize its fuel consumption level. Unlike earlier eco-driving models that 
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used SPaT information, the algorithm tested in this paper uses an explicit fuel-consumption 

based objective function to generate the most fuel-efficient vehicle trajectory. The eco-speed 

control logic optimizes a vehicle’s trajectory using a dynamic programming approach subject to 

a set of constraints such as upcoming traffic signal timing constraints, vehicle acceleration and 

deceleration limitations and the location and speed of lead vehicles. Preliminary analysis of this 

approach stated benefits averaging 15 percent in terms of fuel savings, however, these tests were 

done using a single vehicle (or a platoon of vehicles) approaching an intersection with assumed 

characteristics [2]. 

 

The simulation tool developed in this paper uses agent-based modeling to model vehicles as 

reactive agents that compute and implement their own desired trajectory by receiving inputs 

from other agents including surrounding vehicles and the intersection controller. The ability to 

model actual roadway volumes, intersection geometry and grade makes it possible to use the tool 

to analyze a real intersection using real intersection timings and geometry. The simulation tool 

also uses calibrated microscopic parameters of real-world vehicles as well as microscopic 

longitudinal motion models to capture vehicle interactions. Two measures of effectiveness are 

studied in this paper, including point-to-point fuel consumption savings and the changes in the 

vehicle’s average speed. This study in particular deals with the simulation of an intersection in 

Blacksburg and considers intersection-specific geometric details including the grade-profile as 

well as signal timings and approach volumes. 

 

As far as the layout of the paper is concerned, the following section provides an overview of the 

eco-speed control algorithm and compares it with other models in the literature. This section also 

describes the microscopic models used in the agent-based simulator. This is followed by a 

description of how the agent-based simulator is established using models that define important 

traffic flow parameters along with setting inputs and obtaining outputs from the simulation tool. 

Lastly, the paper presents a discussion of the results and findings from a real-intersection 

simulation from Blacksburg, VA for varying volumes followed by a summary of the conclusions 

of the study. 

Background 

Many intersections in the United States are being retrofitted with radio devices that can establish 

communication between the vehicles and the traffic signal controller as part of the Connected 

Vehicles initiative. These devices use Dedicated Short Range Communication (DSRC) to 

broadcast important messages wirelessly [3]. Among these messages is the SPaT message 

broadcasted by the intersection controller. This message provides information on when the 

current signal phase will end [3]. This information was designed to prevent road-users from red-

light running and other collision course scenarios. Alternatively, the MapDATA message set 

communicates the intersection geometry to equipped vehicles [3]. The Basic Safety Message 

(BSM) is another message broadcasted by equipped vehicles. This message includes the speed, 
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acceleration, heading, length, width, and location of the vehicle [3]. This message, also known as 

the heartbeat message is designed to enhance roadway safety by improving situational awareness 

of vehicles.  

 

Recently, researchers started investigating the benefits of using these message sets, particularly 

the SPaT messages, to predict signal changes and devise a system that computes the vehicle’s 

fuel-optimum trajectory. For example, Asadi and Vahidi developed a cruise control system that 

used constrained optimization to minimize the probability of reaching the stop-line during a red 

indication by varying the vehicle speed within a user-specified interval [4]. Malakorn and Park 

developed an IntelliDrive-based Cooperative Adaptive Cruise Control system with the objective 

function to minimize the distance traveled while decelerating, accelerating as well as idling time 

when Traffic Signal Status (TSS) information is available [5]. Mandava et al. developed an 

arterial velocity planning algorithm which used minimized deceleration and acceleration levels 

to compute an “optimized” vehicle trajectory at an intersection [6]. In a recent study by Xia et al, 

the proposed dynamic eco-driving system for signalized arterial corridors used a binary decision 

based advisory system that minimizes the acceleration and deceleration at an intersection and 

assumes this strategy saves fuel [7]. 

 

In summary, all studies reported in the literature used simplified objective functions rather than 

optimizing the actual fuel usage at an intersection because instantaneous fuel consumption 

models are non-linear making the problem computationally complex and hard to solve. The eco-

speed control algorithm presented in this paper, however, uses optimization techniques that are 

based on dynamic programming to explicitly minimize the vehicle’s fuel consumption level 

while accounting for car-following, vehicle dynamics, and signal timing constraints. The 

algorithm specifically discretizes the solution space both in time and space and then uses a 

moving horizon minimum path-finding algorithm to generate the ‘least-fuel-cost’ trajectory 

required to navigate through the intersection for a given set of constraints. This paper specifically 

builds an agent-based simulation tool to test this proposed eco-speed control logic. This tool uses 

state-of-the-art longitudinal vehicle motion models including car-following, collision avoidance 

and vehicle dynamics models to model vehicles navigating through an intersection.  

Eco-Speed Control Logic 

The eco-speed control algorithm attempts to minimize the vehicle fuel consumption level of 

vehicles traveling through a signalized intersection by optimizing their trajectories using 

information communicated via a Connected Vehicles environment, particularly, using V2I/I2V 

communication to receive upcoming traffic signal changes and V2V communication to receive 

surrounding vehicle speed and location information. As stated above, the objective of the 

optimization problem is to minimize the fuel consumed by a vehicle while navigating an 

intersection. This includes motion of the vehicle both upstream and downstream of the 

intersection while considering the following constraints: 
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1. Temporal and Spatial constraints by the signal timings and intersection geometry,  

2. Temporal and Spatial constraints based on the queue-dissipation at the intersection stop-

line, if any. 

3. Speed constraints enforced by speed-limits, 

4. Vehicle acceleration and deceleration constraints based on vehicle dynamics equations of 

motion (such as roadway coefficient of friction, drag coefficient etc.), 

5. Collision avoidance constraints to prevent collisions with surrounding vehicles, 

6. Steady-state car-following constraints to maintain a safe headway with its lead vehicle. 

The optimization logic uses several microscopic models in its constraints as listed above and also 

uses a power-based fuel consumption model in its objective function. The optimization of the 

vehicle trajectory occurs between two horizons – upstream and downstream. The upstream 

horizon starts when a vehicle approaching an intersection receives its first SPaT message about 

the upcoming signal change and accordingly chooses to accelerate, decelerate or continue at its 

current speed. This horizon ends when the vehicle passes the stop-line. Alternatively, the 

downstream horizon starts at the stop-line and extends ta a fixed distance downstream of the 

intersection. The vehicle is assumed to accelerate back to its desired speed over this distance. 

The proposed mathematical program is presented in Table 6.1. Since the microscopic models 

used in the constraints as well as the objective function are non-linear, we discretize the solution 

space and use recursive path-finding principles to find the optimal vehicle trajectory. An A-star 

path finding algorithm is used to find the optimal solution considering a discretized upstream and 

downstream solution space using two control variables: deceleration (as a function of the brake-

pedal input) and acceleration (as a function of gas-pedal input). The full logic of this 

mathematical program and the proposed solution algorithm is provided in the literature [8]. 

 

The A-star algorithm used in this paper recursively finds the least-cost path until the next time-

step by comparing the net fuel consumed for each discretization possible, which is computed as 

the sum of the estimated fuel consumed over the next time horizon plus a heuristic estimate of 

the consequential fuel consumed till the end of optimization horizon. Analysis has shown that 

this approach to path-finding is significantly computationally faster than the Dijsktra’s path-

finding algorithm [9]. 

 

 

 

 

 

 

 

 

 

Table 6.1: Proposed Eco-Speed Control Mathematical Program 
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 where: 

a. t0 is the start time of the optimization (usually, the time the vehicle receives the SPaT 

information), 

b. ts is the predicted time that the vehicle should reach the intersection stop-line to proceed 

safely,  

c. tf is the time at the end of optimization horizon and represents the time to navigate a 

fixed downstream distance xd.  

d. FC(t) is the instantaneous fuel consumption estimated using instantaneous power P(t) 

using the Virginia Tech Comprehensive Power-based Fuel Model coefficients α0,α1 and 

α2. P(t) is calculated as a function of instantaneous velocity and acceleration. 

e. xs is the distance to the stop-line at start of optimization (t0) and xd is the fixed distance 

considered downstream (at time tf). 

f. tq is the estimated time to clear any queue at the stop-line.  

g. F(t) and R(t) are the instantaneous tractive and resistive forces acting on the test vehicle 

with mass m. 

h. vlead is the speed of lead vehicle, dmax is the maximum acceptable deceleration, sn(t+Δt) is 

the predicted vehicle spacing at time (t+Δt) and kj is the jam density (veh/km). 
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i. c1, c2 and c3 are calibration constants for the Van Aerde Model, uf is the free-flow speed 

(km/h) and uc is the speed at capacity (km/h). 

Underlying Microscopic Models 

The proposed simulation/optimization algorithm uses a microscopic fuel consumption model to 

compute the instantaneous fuel consumption level. The total fuel consumed is then computed as 

the summation of the fuel consumed over all the time steps. The Virginia Tech Comprehensive 

Power-based Fuel Model, Type 1 (VT-CPFM-1) is used in this particular research because of its 

simplicity, accuracy, and ease of calibration [10]. This fuel consumption model utilizes 

instantaneous power as an input variable and can be calibrated using publicly available fuel 

economy data (i.e., EPA published city and highway fuel ratings). Thus, the calibration of model 

parameters does not require gathering in-field or laboratory vehicle-specific data. A detailed 

description of the model and the calibration process is beyond the scope of this paper but can be 

found in the literature [10]. 

 

The fuel consumption model is formulated as follows: 

  ( )   
      ( )     ( )      ( )   
                                             ( )   

      (1) 

where   ,    and    are the model parameters that can be calibrated for a particular vehicle and 

P(t) is the instantaneous total power in kilowatts (kW). The model parameters are calibrated 

using model-specific EPA estimates for city and highway cycles. The power exerted at any 

instant t is computed as: 
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where m is the vehicle mass, a(t) is the acceleration at instant t, ηd is the driveline efficiency, v(t) 
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where ρ is the density of air at sea level at a temperature of 15ᵒC, CD is the vehicle drag 

coefficient, Ch is a correction factor for altitude and computed as 1-0.085H (altitude in km), Af is 

the vehicle frontal area in m
2
, and Cr, c1 and c2 are rolling resistance parameters. 

 

The estimation of mode-specific fuel consumption and emission levels entails modeling the 

vehicle deceleration, cruising, idling, and acceleration modes of operation. In modeling vehicle 

decelerations, we assume a constant deceleration level for the entire maneuver which could be 

easily replicated by any braking system or even by a human driver. However, modeling vehicle 

accelerations involves use of a vehicle dynamics model [11]. Vehicle dynamics model computes 

the maximum vehicle acceleration level from the resultant forces acting on a vehicle (mainly 
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vehicle tractive force that is a function of the engine throttle input and the various resistance 

forces). The equations for the tractive and resistive forces acting on a vehicle are given below: 

 ( )     (         
 

 ( )
      )       (4) 

 ( )  
 

     
       ( )

    
   

    
(    ( )     )     ( )    (5) 

 

Equation 4 computes the vehicle tractive effort F at a given velocity v (in km/h). Rakha and 

Lucic introduced the β factor in order to account for the gearshift impacts on heavy vehicle 

behavior while accelerating at low speeds. This factor is set to 1.0 for light duty vehicles. The fp 

factor models the driver throttle input level and ranges from 0.0 to 1.0. Other parameter 

definitions are: ηd which is the driveline efficiency (unitless); P is the maximum vehicle power 

(kW); mta is the mass of the vehicle on the tractive axle (kg); g is the gravitational acceleration 

(9.8067 m/s
2
) and μ is the coefficient of road adhesion or the coefficient of friction (unitless).  

 

The sum of the aerodynamic, rolling, and grade resistance forces acting on the vehicle, as 

demonstrated in Equation 5, forms the vehicle resistive forces. The parameter definitions for this 

equation are: ρ is the air density at sea level and a temperature of 15◦C (1.2256 kg/m
3
); Cd is the 

vehicle drag coefficient (unitless), typically 0.30; Ch is the altitude correction factor (unitless); Af 

is the vehicle frontal area (m
2
); cr0 is rolling resistance constant (unitless); cr1 is the rolling 

resistance constant (h/km); cr2 is the rolling resistance constant (unitless); m is the total vehicle 

mass (kg); and G is the roadway grade at instant t (unitless). The vehicle acceleration is 

calculated as the ratio of the difference between tractive and resistance forces and the vehicle 

mass (i.e., a = (F − R)/m).  

 

The vehicle speed at t+△t is then computed using Euler’s first order approximation as: 

 (    )   ( )     
 ( )  ( )

 
          (6) 

Agent-Based Simulation Tool 

The simulation tool developed in this paper is based on agent-based modeling principles. The 

model was built to test the proposed eco-speed control algorithm using two major measures of 

effectiveness. Agent-based modeling was used since the vehicles were simulated to run 

independently in response to external stimulants using underlying algorithms. Particularly, the 

vehicles followed fuel-optimum trajectory generated using information received from the traffic 

signal controller and other vehicles. This vehicle trajectory generation used two separate 

principles for the two simulation cases. The base case used an algorithm which performs a non-

eco-speed control longitudinal motion modeling and is based on an underlying longitudinal 

model that includes a steady-state car-following model, a collision avoidance model and a 

vehicle dynamics model. The test case used the proposed eco-speed control logic which 

generates a fuel-efficient vehicle trajectory for the given sets of constraints.  
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The simulation components include both active and reactive agents – active agents act 

independently on a preset mode and the reactive agents react to external stimulants. The 

following components make up the simulation tool in this research: 

1. Vehicle Generation: This module generates vehicle arrivals to the intersection by 

reading approach volumes defined in a volume file. The arrivals are generated following 

a uniform distribution for the arrival times for the given approach volumes. Vehicles are 

assigned a random speed that is uniformly distributed between 0.7 to 1.0 times the 

roadway speed-limit which is the commonly observed spot-speed on similar roadways 

[12]. Each vehicle is randomly picked from a pool of calibrated vehicles and then post 

processed to ensure that vehicles follow a safe headway at the time of their generation. 

Vehicles are generated at a distance of 200 meters from the intersection. This is selected 

because this is the typical range of DSRC devices. 

2. Pool of calibrated vehicles: Thirty top-sold vehicles in the United States for the 2011 

base model are calibrated for the microscopic traffic models used in this research 

including their mass, drag coefficient, frontal area, fuel-consumption coefficients etc. 

These vehicles form six EPA categories including compact, mid-size, full-size, sports 

utility, mini-passenger vans and light-duty trucks. 

3. Simulation Engine: This is the main simulator module that performs the agent-based 

simulations using two agents – the traffic signal controller and the vehicle agents. This 

module uses either of ECS module or the NECS module (defined separately) to generate 

the vehicle trajectories based on traffic control models. 

a. Signal Controller Agent: This active agent reads information from a signal file 

and generates signal phases according to a preset cycle. The signal controller also 

generates SPaT information to be received by oncoming vehicle agents. 

b. Vehicle Agents: These reactive agents use external stimulants and microscopic 

traffic models to model their longitudinal motion. Since these external factors 

change, the trajectory is updated every time-step. As mentioned before, the 

vehicles use SPaT information and works on eco-speed control logic for the test 

case. Each vehicle agent is associated with its calibrated parameters including 

vehicle dynamics and fuel consumption coefficients. 

4. NESC Module: This module is used during the base-case simulation run in which 

vehicles do not use advanced signal information as a constraint in generating their 

trajectories. It generates the vehicle trajectory in response to the lead-vehicle’s speed and 

headway and the current signal status. The NESC (Non Eco-Speed Control) trajectory 

uses Traffic Engineering Handbook’s average deceleration and acceleration values at an 

intersection stop-light of 3 m/s
2
 and 1.1 m/s

2
, respectively for instances where traffic 

signals change. 

5. ESC Module: This module generates the vehicle trajectories for the test-case using the 

aforementioned Eco-Speed Control logic. The system uses SPaT information from the 

traffic signal controller in conjunction with other traffic flow models such as car-
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following and collision avoidance to generate a fuel-efficient velocity profile for the 

vehicles. 

6. Underlying Models: This includes a microscopic fuel consumption model entitled VT-

CPFM, the Rakha-Pasumarthy-Adjerid (RPA) vehicle longitudinal model [13] that 

includes a vehicle dynamics model for constraining vehicle accelerations, the Van Aerde 

steady-state car-following model and a collision avoidance model as described 

previously. It should be noted that the RPA model is currently implemented in the 

INTEGRATION software [14, 15]. 

 

Figure 6.1 shows a logical diagram that defines the agent-based simulation tool used in this 

research using the above components. The tool aggregates simulation results that are processed 

to compare the two measures of effectiveness segregated, based on their approach direction. The 

roadway grade and other frictional characteristics are defined in the Roadway Characteristic File 

and are used in the traffic flow models.  
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Figure 6.1: Agent-based Simulation Logic 

The agent-based simulation tool presented here was used to measure the effectiveness of the 

proposed eco-speed control strategy since state-of-the-art simulation software cannot directly 

model the Connected Vehicle standards set forth by the Society of Automotive Engineers. This 
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particular simulation tool uses the SAE J2735 framework for communicating BSM and SPaT 

messages between the signal controller and vehicle agents [16]. Other traffic flow models used in 

this simulation tool are identical to those used in the INTEGRATION software [17]. This makes 

the tool reliable when used in conjunction with calibrated vehicle and roadway models. The tool, 

however, has the following shortcomings: 

1. The vehicles follow the generated trajectory perfectly by assuming use of electronic throttle 

controls or driving agents with zero perception and reaction times. 

2. Lateral displacement is not considered in this tool and assumes perfect steering by the driving 

agent. 

3. Currently the model does not simulate lane-changing behavior and hence can only be used 

single lane approaches. 

4. The dynamic programming framework uses the empirical Marshall and Berg [18] equations 

to compute the queue dissipation times. 

5. Roadway weather conditions are captured by altering the roadway friction and rolling 

resistance coefficients. The model does not consider visual and other human-related factors 

in modeling weather impacts on driver behavior. 

Simulation Case Study 

In order to analyze the effectiveness of the eco-speed control strategy on the two measures of 

effectiveness, a real intersection was simulated using the proposed tool. The intersection of 

South Main Street and Washington Street in downtown Blacksburg (Virginia) was simulated. 

This intersection is shown in Figure 6.2 and some of the features are highlighted below: 

1. South Main Street is US 460 Business and carries the major traffic direction. 

2. Washington Street connects Virginia Tech campus on the west side to residential areas on the 

east side. 

3. All approaches are single lane and hence lane-change behavior need not be considered. 

4. Left turns have dedicated lanes on all the approaches. 

5. All approaches are on a grade and the proposed simulation tool uses the actual grade function 

of the roadway. 

6. Speed limit on all approaches is 25 miles per hour. 

7. Traffic signal timing data and approach volumes are made available by the Town of 

Blacksburg. 
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Figure 6.2 - Google Maps image showing the test-intersection in Blacksburg, VA 

Model Calibration 

The agent-based model described in this paper uses several vehicle-specific traffic-flow models 

that define the microscopic behavior of vehicles. The calibration of these models entailed three 

calibration efforts, as follows: 

1. The calibration of the Van-Aerde’s steady-state car-following model entailed calibrating four 

parameters, namely: the free-flow speed, the speed-at-capacity, the saturation flow rate, and 

the jam density. 

2. Calibration of the vehicle dynamics model was done using the vehicle-specific parameters 

such as mass, drag coefficient, frontal area, engine power etc. These data were obtained for 

the 30 vehicles in the vehicle pool from the auto manufacturer websites. Parameters used 

were pertaining to 2011 model year vehicles sold in the United States. 

3. Calibration of the VT-CPFM model parameters – α0, α1 and α2 also used the vehicle specific 

EPA mileage estimates for city and highway cycle in addition to other physical 

characteristics. These parameters were calibrated using a calibration tool developed earlier 

[19, 20]. 
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Estimation of Measures of Effectiveness 

The two measures of effectiveness studied were (i) the average travel speed to proceed through 

the intersection and (ii) the total fuel consumed. This test intersection was simulated using the 

proposed tool for various percentages of peak approach volumes to analyze the impact of the 

eco-speed control strategy. Evening peak volumes were used in this study and indicated that the 

peak travel directions are between North and South (Table 6.2). East to West traffic was only 

marginal (44 veh/h). The cycle-length for the particular intersection was 120 seconds with 10 

seconds lost-time and a 80:30 phase split. Assuming a lane capacity of 1600 passenger cars per 

hour, the factored capacities for the different approaches for the actual green-times are given in 

Table 2. The analyses of the results obtained from the intersection simulation are presented in the 

following section.    

Table 6.2 - Obtained Peak Volumes for the Test Intersection 

Direction Turn 

Movement 

Hourly 

Volume 

Total Approach 

Volume 

Green:Cycle 

length 

Factored 

Capacity 

Washington St. 

(Eastbound) 

Left 95 

253 30s:120s 400 Through 59 

Right 99 

Main St. 

(Southbound) 

Left 14 

659 80s:120s 1067 Through 589 

Right 57 

Washington St. 

(Westbound) 

Left 10 

44 30s:120s 400 Through 30 

Right 5 

Main St. 

(Northbound) 

Left 47 

611 80s:120s 1067 Through 552 

Right 13 

Model Validation 

In order to validate the agent-based simulation tool developed in MATLAB, it was tested against 

the state-of-the-art simulation tool INTEGRATION using the base case intersection. The tool 

developed in this paper and INTEGRATION uses the same underlying traffic flow models for 

steady state car-following behavior, vehicle acceleration and deceleration etc. The test 

intersection was simulated for 4 different volume factors in both simulation tools. The link-

lengths are assumed 200 meters and the values in Table 6.2 are used for the simulation. The 

following measures of effectiveness are compared: 

1. Average trip time per vehicle to travel from its origin to destination. 

2. Average travel speed of vehicles in the simulation in meters per second. 

3. Average fuel consumed per vehicle (or per trip).  
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Figure 6.3 - Validation Results of Travel-time and Speed Estimates with INTEGRATION 

Figures 6.3 and 6.44 shows the three different measures of effectiveness estimated for the four 

different volume combinations. As shown in Figure 6.3, the average values of travel-time and 

speed are similar for both the tools. The values are within 10 percent of each other which 

validates the agent-based simulation tool models against INTEGRATION. The small change in 

the values is because of the difference in the way both tools model vehicle turn-penalties. Figure 

4 shows the average fuel consumption per vehicle in both the tools. It has to be noted that 

INTEGRATION uses VT-Micro fuel consumption model whereas the proposed tool uses VT-

CPFM fuel model. VT-micro model uses empirical parametric based calculations whereas VT-

CPFM model uses instantaneous power for the calculations. This difference in modeling is 

evident in Figure 6.4. 

 

 
Figure 6.4 - Fuel consumption comparison between INTEGRATION and MATLAB tool 
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Results and Findings 

Agent-based simulations were conducted on the Blacksburg intersection using two control 

strategies considering four traffic demand scenarios. The base case entailed no exchange of SPaT 

information with oncoming vehicles. Alternatively, in the test case vehicles received SPaT 

messages communicated via I2V communication. These vehicles then used the aforementioned 

eco-speed control strategy to optimize their trajectories. The two measures of effectiveness 

studied were: 

i. Average percentage reduction in fuel consumed (upstream and downstream) for vehicles 

on each approach when the eco-speed control strategy was used: 
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where FCNu and FCNd are the fuel consumed for conventional driving upstream and 

downstream, FCEu and FCEd are the fuel consumed when the eco-speed control strategy 

upstream and downstream is applied, ni is the number of vehicles approaching from 

approach i. 

ii. Percentage change in the average speed of vehicles over the 400m section of roadway 

(from 200m upstream to 200m downstream of the intersection) as: 
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     (8) 

where xu and xd are the distances upstream and downstream, tne, j is the time taken by jth 

vehicle to cover this distance during conventional driving, te,j is the time taken by jth 

vehicle while using eco-speed control strategy, ni is the number of vehicles approaching 

the intersection from approach i. 

 

Table 6.3 - Cases simulated for the test intersection. 

Case 
Fraction of 

Peak Volume 

Actual tested volume Corresponding v/c 

EB WB SB NB EB WB SB NB 

1 0.25 11 63 165 153 0.03 0.16 0.15 0.14 

2 0.50 22 127 330 306 0.06 0.32 0.31 0.29 

3 0.75 33 190 494 458 0.08 0.47 0.46 0.43 

4 1.00 44 253 659 611 0.11 0.63 0.62 0.57 

5 1.25 55 316 824 764 0.14 0.79 0.77 0.72 

6 1.50 66 380 989 917 0.17 0.95 0.93 0.86 

7 1.75 77 443 1153 1069 0.19 1.11 1.08 1.00 

 



R.K. Kamalanathsharma 

 

83 

 

Each of the seven different traffic demand cases is presented in Table 6.3. Each case was 

simulated 20 times yielding a total of 140 1-hour simulations of the evening peak traffic demand. 

The measures of effectiveness compared were an average of these 20 simulations. It has to be 

noted that simulations were done up to 175% of the peak volume to generate cases in which the 

volume-capacity ratio was over 1.0 (representing over-saturated conditions). For the actual peak 

volume (case 4), the volume-to-capacity ratio is a maximum of 0.63. The actual test volume is 

given in vehicles per hour. The volume-to-capacity ratio is too small for East-bound traffic in 

this particular intersection with a maximum value of 0.19 corresponding to 175 percent peak 

volume. 

 

Figure 6.5 and Figure 6.6 show the MOEs categorized according to the approach and also the 

overall intersection MOE. Washington Street is the minor approach and Main Street is the major 

approach. The values for the MOEs corresponding to different directions of the same street are 

shown in the same graph. It has been shown that the proposed eco-speed control strategy reduces 

the fuel consumption level for the given intersections by 27 to 32 percent. An enhancement of 

average speed (denoted by reduction in delay) is anywhere between 1.6 to 2.4 times. Further 

analysis of the system indicates that as far as the delay and fuel consumption is concerned, major 

street traffic receives more benefits over minor street traffic since the cycle time split of minor 

and major street volumes is biased (25:75). This causes the minor street traffic to wait longer at 

red-light and thereby negating the benefits from the eco-speed control strategy. At the current 

peak traffic volume (case 4), the increase in average fuel consumption of vehicles was found to 

be 29.5 percent and the average increase in point to point travel time was found to be 2.3 times. 

Cases 5 through 7 show the values of the two measures of effectiveness for traffic demands 

greater than the current peak demands. 

 

Figure 6.5(a) shows that the westbound traffic (dashed line) incurs more fuel savings relative to 

the eastbound traffic (dotted line) on the minor street. This is because the greater volume of 

eastbound traffic requires queue dissipation at the onset of green leaving little or no room for 

eco-speed control optimization to produce fuel savings. The savings in fuel with respect to 

various approach volumes show that lower traffic volumes provide opportunities for higher fuel 

savings. Figure 6.5(b) shows the percentage reduction in fuel for the two directions of the major 

street. Vehicles on this street saved an average of 31 to 37 percent fuel during its course. Owing 

to the comparable volumes on both directions, the fuel savings have comparably closer values as 

shown. Figure 5(a) and (b) shows that the major street traffic saves around 10 times more fuel 

than the minor street traffic because of a shorter red-phase. Figure 6.5(c) shows the percentage 

reduction in fuel for the overall simulation at different approach volumes. The average reduction 

was between 27 and 32 percent with the highest being for the lowest volume and lowest for the 

highest volume.  
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Figure 6.5 - Percentage Reduction in Fuel Consumption for Different Approaches 
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Figure 6.6 - Percentage Change in Average Travel Speed (point-point) for Different Approaches 

Figure 6.6 shows the percentage deviation in average travel speed (point-to-point) for the four 

approaches as well as the overall values. The average travel speed was computed from the point 

to point travel time and denotes the reduction in delay as well. Figure 6.6(a) and (b) shows the 

deviation in average speed for the traffic on the minor street and the major street respectively. 
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The values for the eastbound minor street were relatively constant for all the volumes tested 

while it changed dramatically for westbound traffic from 287 percent to 118 percent. The 

percentage deviations in average speed as shown in Figure 6.6(b) for the major street were 

comparable in both directions. Figure 6.6(c) shows the overall change in average speed of 

vehicles when eco-speed control strategy was used. The values ranged from 239 to 182 percent 

and showed a declining trend for increasing volumes. It should be noted that this change in travel 

speed in the vicinity of the intersection does not conclude equivalent reduction in actual trip 

travel-time. The actual difference in average travel speed and travel time depends on the total trip 

profile such as trip length, number of intersections etc. 

 

In order to test the statistical significance of these observed changes in fuel consumption levels 

and point-to-point travel times, a t-test was conducted for the 20 simulation runs for each of the 

seven cases. All differences were found to be statistically significant at a 0.05 significance level.  

Conclusions 

The research given in this paper expands on an agent-based modeling tool to simulate eco-speed 

controlled vehicles at an intersection. Eco-speed control is a Connected Vehicle application that 

uses signal phasing and timing information from the signal controller to generate and implement 

a fuel-optimum vehicle trajectory by discretizing the solution space and finding the minimum 

path in the solution space. The agent-based simulation tool proposed uses Connected Vehicle 

standards given in the SAE framework to communicate between vehicles (V2V) and the vehicles 

and infrastructure (V2I/I2V). The tool uses the INTEGRATION longitudinal vehicle motion 

model to simulate the vehicles that are calibrated to real vehicle characteristics. The proposed 

tool was used to test the eco-speed control strategy at a single lane, four legged intersection in 

Blacksburg, Virginia using real estimates of approach volumes and signal timings. Approach 

volumes considered correspond to various fractions of the current evening peak demand up to 

175 percent, so as to have a scenario for over-saturated conditions (v/c > 1.0). The following 

conclusions can be made from the simulation results: 

1. Eco-speed control is able to reduce the overall fuel consumption of vehicles by around 30 

percent in the vicinity of intersections. 

2. The increase in average travel-speed for all the cases was 210 percent. 

3. Fuel savings were greater for the major street than the minor street for the test 

intersection because of the short red-time for the major approach. 

4. Lower volumes yielded more fuel savings and higher percentage increase in average 

travel-speed. 

5. The biased minor-street volumes caused the fuel savings for the higher-volume leg to be 

lower. This is because of the extended time to intersection caused by queuing. 

6. Fuel savings and percentage increase in average travel speed were comparable for the 

major approaches since they had comparable demands. 
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While these conclusions present interesting inferences regarding the agent-based simulation tool, 

further enhancements are warranted from this study. This includes simulating multiple 

intersections and signalized corridors which run on coordinated and uncoordinated signals. The 

simulation tool presented in this paper presents a comprehensive and novel approach to test eco-

driving strategies such as the one used in this paper in a simulation environment owing to its 

agent-based logic and ability of vehicle agents to react to external stimulants. A model validation 

is also warranted as a future work when actual field experiments can be done using the proposed 

eco-speed control approach. 
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Simulation Testing of Connected Vehicle Applications in a Cloud-

based Environment 
 

Raj Kishore Kamalanathsharma, Hesham Rakha and Brian Badillo 

 

Connected Vehicle Program applications are being developed by researchers in the United States 

and worldwide in an attempt to leverage data-packets transmitted and received through vehicle-

to-vehicle and vehicle-to-infrastructure communication. The majority of these application 

evaluations do not conform to J2735 messaging standards set forth by the Society of Automotive 

Engineers. Consequently, this paper develops an enhanced version of the enhanced Traffic 

Experimental Analytical Simulation (eTEXAS) tool that runs on a server and provides XML-

based message sets that conform to current Connected Vehicle standards. An eco-speed control 

algorithm that was developed earlier is integrated with the eTEXAS platform to receive signal 

timing and phasing data through infrastructure-to-vehicle and vehicle-to-vehicle communication. 

The application uses this information to optimize vehicle trajectories so as to reduce their fuel 

consumption levels while proceeding through the intersection. The platform was tested in a cloud 

environment and produced a 5.5 percent reduction in the total intersection fuel consumption level 

and a 9 percent increase in the average vehicle speed on a sample intersection. The results also 

showed that latency correction is critical in designing and implementing connected vehicle 

applications. 

 

Introduction 

The Vehicle Infrastructure Integration envisioned more than a decade ago has caught the 

attention of researchers and transportation professionals only recently due to the advancements in 

technology that enables its implementation [1]. The potential safety benefits that can be 

leveraged out of it in addition to the supplementary applications such as congestion mitigation 

and environmental applications has encouraged researchers world-wide to pursue this area.  The 

Connected Vehicles initiative in the United States has caused rapid growth in the research on 

multiple aspects of this system along with standards development and a large-scale pilot 

implementation in Ann Arbor, MI [2]. Simultaneously, the Society of Automotive Engineers 

(SAE) is developing and revising a communication standard (SAE J2735), to standardize the 

data that will be broadcasted as a result of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 

(V2I) communication using Dedicated Short Range Communication (DSRC) and Wireless 

Access in Vehicular Environment (WAVE) communications standard [3, 4]. However, except 

for eTEXAS, no other available traffic simulation software can explicitly model V2I and V2V 

communication as per J2735 standards.  

 

Most Connected Vehicle applications that are simulated use the software’s application 

programming interface to devise a custom communication channel which may not replicate the 



R.K. Kamalanathsharma 

 

91 

 

real-life DSRC protocols [5, 6]. This presents a gap between development of Connected Vehicle 

applications and their simulation testing without the use of a proper communication framework. 

The research presented in this paper expects to close this gap by presenting a cloud-based 

eTEXAS simulation model which uses SAE J2735 communication standards to test an eco-speed 

control application. The enhanced Traffic Experimental Analytical Simulation (eTEXAS) model 

works on a server and can interact with remote applications using XML-based web-services. 

This enables testing of Connected Vehicle applications without needing to install any simulation 

software. Such a simulation set up also helps in testing the communication framework of the test 

application because the eTEXAS uses SAE J2735 message sets to communicate with external 

modules. The integration of Vehicle Messaging System (VMS) enables remote application to 

modify vehicle trajectories during the simulation runs. This feature is used to apply the Eco-

Cooperative Adaptive Cruise Control (ECACC) trajectory instructions on the vehicles within the 

simulation environment. Please note that the abbreviation VMS used in this paper is different 

from Variable Message Signs used by traffic engineers. 

 

As far as the paper layout is concerned, the next section provides a background on the TEXAS 

model and the connected vehicle application being tested. This is followed by a description of 

the cloud-based simulation tool along with the simulation set-up that was used in this particular 

research. The final sections include major findings and conclusions of this study along with 

future research directions. 

Background 

SAE J2735 standards consist of a DSRC Message Set Dictionary that describes the different 

message data frames and data elements that are broadcast in a Connected Vehicles environment 

[3]. All Connected Vehicle applications are expected to follow these communication standards to 

receive information and broadcast them. Only a few Connected Vehicle applications have 

explicitly used a DSRC communication framework for simulation tests [7]. Therefore, the testing 

of these applications should use a program that can replicate the actual standards while 

communicating with the simulated traffic agents (vehicles and controllers). The research 

discussed in this paper presents such a cloud-based simulation tool which simulates traffic at an 

intersection and generates the corresponding Signal Phasing and Timing (SPAT), MapDATA 

message sets along with the Basic Safety Messages (BSM) to be received by a remote 

application and uses a simulation-specific Vehicle Messaging System (VMS) and Signal 

Controller Messaging System (SCMS) to communicate back. This tool is available through a 

web-based interface with the TEXAS simulation model running in its core. The test Connected 

Vehicle application is the eco-speed control application which generates fuel-optimized velocity 

profiles for vehicles in an intersection using constraints of signal change information, queued 

vehicle information as well as information about other vehicles on the same lane. 

The TEXAS model is a high-quality, single intersection, microscopic traffic simulation model 

developed at The University of Texas at Austin. The model acronym stands for Traffic 
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Experimental Analytical Simulation [8]. In order to enhance the applicability of the TEXAS 

model, the enhanced TEXAS model was developed with a web-interfaced Java program to 

achieve platform independence and was integrated with SAE J2735 compatibility by Harmonia 

Holdings Group, LLC [9]. The eTEXAS model features a cloud-in-the-loop simulation where the 

simulation takes place on a server environment while the remote computers will have the ability 

to run it using web-services. Representational State Transfer (REST) services are used to 

communicate with the server-based simulation which makes it possible for the remote computers 

to use any compatible program. In this particular research MATLAB program is used to 

remotely communicate and control the simulation. The enhanced TEXAS program also features 

other Connected Vehicle features such as varying penetration rates for On-Board Units (OBU), 

grouping the On-Board Units based on their feature availability, ability to define the frequency 

of broadcast of different message sets and configuring Road-Side Equipment (RSE) and OBUs. 

 

The ECACC application tested in this research is a speed-advisory tool that uses a vehicles 

location, speed and information about the upcoming signal change to generate a fuel-efficient 

vehicle trajectory to be followed by the vehicles [7]. The application uses dynamic programming 

based on least-cost path-finding methods to optimize the vehicle trajectory to minimize the fuel 

consumed upstream and downstream of the intersection. A detailed description of the ECACC 

logic is provided in the literature [7]. Agent-based modeling using MATLAB has shown fuel 

savings of around 15 percent. In the proposed set-up, the remote application that resides in 

MATLAB uses DSRC-based SPAT and BSM messages from the eTEXAS simulator to generate 

the fuel-optimal vehicle trajectory and then uses VMS to inject the proposed path to the vehicles 

in the simulation environment.  

Methodology 

The cloud-based eTEXAS simulation model uses a REST web-service to communicate back and 

forth between remote computers. Users can upload TEXAS project intersection and simulation 

files to the server and then run it on the server on a time-step based mode. The complete 

simulation logic of the server set up is given in Figure 7.1. Users use two different services to 

read outputs and execute simulation. They are: (a) WaveService, which is used to fetch the XML 

J2735 messages generated at each time-step based on the DSRC/WAVE technologies and (b) 

ExecService, which is used to execute commands such as advancing a simulation and injecting a 

VMS command. In order to generate message-sets, certain apps have to be defined in the 

simulation which corresponds to different messaging functionalities. The apps used in this 

particular research are given in Table 7.1. It has to be noted that these scenarios are applied along 

with appropriate underlying microscopic models such as acceleration/deceleration models and 

car-following models. The fuel-optimized trajectories are generated using A-star path-finding 

algorithms. The full algorithm is previously published and is beyond the scope of this paper. 

Interested readers can refer to [7] for information. 

 



R.K. Kamalanathsharma 

 

93 

 

Server-side - eTEXAS

Client-side - MATLAB

Simulate new 

timestep

Transferred 

Representational 

States

Add Vehicle 

Commands

Start 

Simulation

WaveService

Receive BSM, 

SPAT and 

MapDATA

XML Parsing

Model Eco-

Scenarios

Generate Eco-

Speed Profile 

using ESC 

algorithm

Generate 

Vehicle 

Commands

Initiate 

simulation 

progression

ExecService ExecService

End 

Simulation

Execute 

Vehicle 

Commands

 
Figure 7.1 - Cloud-based Simulation Logic in the case of ETEXAS 

Java Archive (JAR) files have inside access to simulation parameters such as vehicle status, 

signal states, and lane geometry and can produce messages such as BSM, SPAT and MapDATA. 

‘Remote’ apps are user-defined Connected Vehicle applications that utilize the J2735 messages 

being broadcasted during the simulation to perform some useful algorithm, In this research, the 

eco-speed control application is the ‘Remote’ app and is responsible to use J2735 message sets to 

develop eco-driving speed profiles for vehicles. 

 

As shown in Figure 7.1, the entire simulation logic is divided physically as server-side and 

client-side. MATLAB is the client-side application used in this research and it uses XML-parsing 

to read the XML content generated by the server at each simulation step. This XML file consists 

of three different message sets based on a defined frequency: BSM messages of all the vehicles, 

SPAT message for all the lane sets and MapDATA messages that describes intersection 

geometry. A 32-character unique alphanumeric application ID is used to fetch these message sets 

from the server. The BSM and other messages received from the server follow the SAE J2735 
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message set standards. Figure 7.2 shows a reverse parsing tool developed by SAE to generate 

these message sets. The MATLAB client program uses the same logic as the SAE tool to parse 

the XML information for use in the algorithm. Once the MATLAB parses this XML file, it 

generates a table of vehicle data along with its speed, distance to intersection, position on the 

network and details about current phase for its lane-set. The eco-speed control algorithm then 

uses these details to predict the future constraints of each vehicle and to generate a fuel-optimal 

velocity profile which are then changed to VMS commands.  

 

Table 7.1 - J2735 Messaging Apps Installed in ETEXAS 

App App-ID Type Description 

BSM ‘BSM-producer’ JAR Generates ‘BSM blob’ messages which is a 

hexadecimal long string with the basic data 

elements from the Basic Safety Message set. A 

frequency parameter is added to this app to define 

broadcast frequency. This app is installed on on-

board units in vehicles. 

BSMV ‘BSMVerbose-

producer’ 

JAR Generates the Basic Safety Message set in 

verbose format consisting of 14 different data 

elements. This app is installed on on-board units 

in vehicles and also consists of frequency 

parameter. 

MAP ‘MapData-

producer’ 

JAR Generates the MapData that specifies the 

intersection geometry and is installed in the Road-

Side Equipment (RSE). This app also consist of a 

frequency parameter 

SPAT ‘SPAT-producer’ JAR Generates the Signal Phasing and Timing message 

set from the signal controller and broadcasts it via 

the RSE at a set frequency. 

Remote ‘Eco-Speed 

Control’ 

Remote This app is used to communicate with the 

simulation using Wave Service and get the DSRC 

message sets to the client computer. There are no 

parameters associated with this app and it is 

installed on the RSE. 

 

The vehicle control (VMS) commands generated during the eco-speed control are sent to the 

server using the ExecService for implementation in the next time-step. The commands can either 

be to accelerate or decelerate to a certain speed. A typical VMS command injected to the 

simulation uses four variables: a 32-character alphanumeric execution ID, a numeric vehicle ID, 

accelerate or decelerate command and final speed in meters per second. The eTEXAS Webapp 

also uses XML based keys to advance the simulation. These steps are repeated every time-step 
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and forms the logic of a cloud-based simulation program where the actual simulation takes place 

in a server using the inputs and algorithms coded in a remote computer. The use of the actual 

communication standards helps Connected Vehicle application developers to implement and test 

the algorithm in a standard framework with all the latency and wireless communication realism 

that would result from an actual system. 

 

 
Figure 7.2 - BSM Message Editor from SAE Website 

Case-Study: Eco-Speed Control Algorithm 

An eco-speed control module further uses the information about each vehicle including its speed, 

location, signal phasing information for that approach etc. to model eco-scenarios by generating 

a least-cost velocity path from that position to reaching a position downstream constrained by the 

changing traffic light, position and speed of other vehicles on the same lane and the vehicle’s 

acceleration and deceleration characteristics. The eco-speed control models five different 

scenarios based on the speed, current phase on the lane, time remaining on the current phase and 

other constraints on a vehicle that is approaching the signalized intersection. They are shown in 

Figure 7.3 as a time-space diagram.  

 

These scenarios are explained below. The full logic of this algorithm is given in Reference [7]. 

1. Scenario 1: Here, the vehicle is in a lane which is currently being served green and will 

last until the vehicle passes the intersection safely. The vehicle is given no commands 

and proceeds at the same speed. 
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2. Scenarios 2 and 3: Here, the vehicle is in a lane which is currently being served green, 

but will turn to red before it reaches the stop-line. In this case, the vehicle is either 

commanded to accelerate to the speed-limit and pass through the intersection before 

green phase ends (Scenario 2), or to slow-down and stop and wait for the next green (if 

the former is not possible) which forms Scenario 3. 

3. Scenario 4: Here, the vehicle is in a lane which is currently being served red and will last 

until the vehicle reaches stop-line. In this case, an alternate profile is generated to allow 

for some delay in its trajectory so that the vehicle reaches the intersection at a lower-

speed and when the signal is green. This profile is then given as a command to the 

vehicle to decelerate to a certain speed until it clears the intersection and then accelerate 

back to the original speed. 

4. Scenario 5: Here, the vehicle is in a lane which is currently being served red, but will turn 

to green and clear the queued traffic by the time it reaches the stop-line at the current 

speed. The vehicle is commanded to proceed safely at the current speed. 

 
Figure 7.3: Speed profile of vehicles approaching a signalized intersection. 

It has to be noted that these scenarios are applied along with appropriate underlying microscopic 

models such as acceleration/deceleration models and car-following models. The fuel-optimized 

trajectories are generated using A-star path-finding algorithms. The full algorithm is previously 

published and is beyond the scope of this paper. Interested readers can refer to [7] for 

information. 
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Figure 7.4 - Intersection Layout 

Simulation Set-up 

The proposed cloud-based simulation set up was used to simulate a typical four-legged 

signalized intersection running on a pre-timed signal cycle. The details of the simulation set up 

including the approach volumes and phasing data is given in Table 7.2. Each inbound and 

outbound approaches consist of two lanes (lane-set number shown) with the lane permissions as 

shown in Figure 7.4. An assumed speed-limit of 30 miles per hour is considered for the two 

intersecting roadways. The approaches and the roadway are considered to be on a zero-grade 

surface so that effect of grade can be neglected from the underlying models. Simulation time was 

1200 seconds (20 minutes) with zero warm-up time. The frequencies set for BSM message 

broadcast was 0.1 second, SPAT message broadcast was 1 second and MapDATA broadcast was 

10 seconds. Since only one intersection is considered, the MapDATA remains the same over all 

time-steps. The eco-speed control was done every second (since the original eTEXAS model’s 

simulation fidelity was 1 second) and the XML parsing used spherical transformation to convert 

latitudes and longitudes in the BSM to specific distances to the intersection. SPAT messages 

used current phasing numbers as 1 (green), 3 (yellow) and 4 (red) as defined in the J2735 

dictionaries. All message sets that were produced followed SAE standards and required 

conversions to human-readable values. 
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Table 7.2 – Approach Volumes and Signal Controller Details for the Simulation Setup 

Parameter Values 

Length of Inbound Lanes 1100 ft 

Length of Outbound Lanes 250 ft 

Speed-limit 30 mph 

Leg 1 Details:  Volume: 340 vph 

LTR Split: 18:68:14 

Leg 2 Details: Volume: 750 vph 

LTR Split: 10:77:13 

Leg 3 Details: Volume: 192 vph 

LTR Split: 15:63:22 

Leg 4 Details: Volume: 475 

LTR Split: 6:84:10 

Intersection Details: Type: Pretimed (68s cycle) 

Green Split: 20s: 40s (2 phases) 

 

Since the TEXAS model lacks fuel consumption models, the remote MATLAB module saves 

instantaneous vehicle profiles at each time-step. This trajectory is then used to compute the fuel 

consumed by vehicles. Virginia Tech Comprehensive Power-based Fuel Model (VT-CPFM) is 

used as the microscopic fuel consumption model for this computation. Two cases of simulations 

are performed. The base case is without any eco-speed control commands and therefore 

corresponds to the conventional simulation. Web-service is still used to manage the simulation 

and to collect the vehicle trajectories. In the test-case, the remote MATLAB program generates 

VMS commands that correspond to optimized velocity profile. In this case also, the vehicle 

trajectories are saved in the remote computer. Post-simulation analysis includes use of the 

trajectory files to compare and evaluate the test Connected Vehicle application based on two 

different measures of effectiveness: average travel time vehicles in the simulation and average 

fuel consumption of vehicles in the simulation. 

Adjustment for Latency 

The simulation set-up that is based on eTEXAS includes certain latencies in the system that need 

to be accounted for while running the ECACC application. Primarily there are two types of 

latencies that the simulation needs to adjust its settings so as to prevent errors: 

1. Latency in the received SPAT and BSM messages: The SPAT and BSM message that is 

received by the system through WaveService is 1-timestep old. Hence, before calculating the 

optimum speed profile to the intersection, the change in SPAT and position of the vehicle has 

to be deduced using its current speed and position.  

2. Latency in implementing a VMS command: Any VMS commands generated and given to the 

simulation through ExecService will be implemented only in the next time-step. This latency 

requires the eco-speed control algorithm to forecast the position and traffic signal status for 
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when a command will be implemented in order to make an accurate fuel-optimized speed 

profile.  

These latencies are adjusted for in the remote Connected Vehicle application and most of these 

latencies are reflected in a real-world application because there will be a delay in vehicles to 

create and broadcast the BSM messages and for the controller to broadcast the SPAT messages. 

This is in addition to the computation time required by the connected vehicle application.  

Results and Findings 

The proposed cloud-in-the-loop simulation framework was used to simulate vehicles 

approaching an intersection given in the previous section for two different cases. The base case 

represents the conventional intersection case where the V2I and V2V communication is not used 

for any application and in the test case, V2I and V2V communication is used by vehicles to 

predict the future speed constraints and to generate a fuel-optimum velocity profile using the 

algorithm in [7]. Five random-seed simulations were done for the given intersection to yield 

meaningful results. MATLAB-based webservices was used to capture each vehicle’s position 

and instantaneous speed. For all the microscopic modeling purposes, these vehicles were 

assumed to hold the characteristics of a 2011 Honda Civic (which falls under the EPA compact 

car category). The Virginia Tech Comprehensive Power-based Fuel Model (VT-CPFM) was 

used to derive the instantaneous fuel consumed by vehicles using vehicle-specific parameters 

given in Table 7.3. 

Table 7.3 - Vehicle-specific parameters for Honda Civic 

Parameter Value 

Drag Coefficient (Cd) 0.30 

Frontal Area (m
2
) 2.32 

Engine Efficiency 0.92 

Percentage Mass on Tractive Axle 0.60 

Mass (kg) 1453 

Power (kW) 132 

VT-CPFM Alpha 0 0.00047738 

VT-CPFM Alpha 1 0.00005363 

VT-CPFM Alpha 2 0.000001 

 

The connected vehicle application for eco-speed control uses instantaneous information from 

vehicles and the intersection controller to generate optimized velocity profiles for vehicles. 

These optimum profiles are then converted to VMS (Vehicle Messaging Service) commands 

given to the simulation server to slow-down or speed-up vehicles to a particular speed. Therefore 

the base case represented by conventional vehicles approaching a conventional intersection is 

said to be before implementation of VMS commands and the test-case where vehicles follow a 

fuel-optimized eco-profile is after the implementation of VMS commands. Two different 

measures of effectiveness were used in the simulations to see if the connected vehicle application 
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was performing well. They were average speed of travel by the vehicles and total fuel consumed 

by the vehicles. These parameters were for the total distance of travel from 1100 feet upstream 

when the vehicles enter the simulation to 250 feet downstream when it exits. Since the DSRC 

range is around 1100 feet, the vehicles receive their first data-packet as it enters the simulation 

and begins to generate a fuel optimum speed profile. 

 

Figure 7.5 shows the average speed of each vehicle along with their vehicle IDs. For easier 

representation, only 300 vehicles are shown in the figure, but the trend remains the same. The 

red ‘+’ mark represents the average speed of each vehicle in meters per second before the 

implementation of VMS commands and therefore represents non-optimized profiles. The blue 

‘x’ mark represents the average speed of each vehicle after the implementation of VMS 

commands. They represent fuel-optimized velocity profiles. It can be seen that the average speed 

of fuel-optimized profiles are higher than those of non-eco profiles. An average gain in speed of 

9.23 percent was found across all simulated vehicles when VMS was implemented with a highest 

value of over 180 percent. Figure 7.6 shows the total fuel consumed by each vehicle and non-

optimized vehicles consume more fuel over optimized vehicles (eco-profiles). The reduction in 

fuel was an average 5.54 percent when VMS commands were implemented with highest 

reduction marked at over 62 percent.  

 

 
Figure 7.5 - Average speeds of vehicles before and after VMS implementation 
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Figure 7.6 - Fuel consumed by vehicles before and after implementation of VMS commands 

It was noted that latency played a major role in implementing the connected vehicle application. 

When latencies were not considered, the applications used ‘outdated’ SPAT and BSM data to 

generate VMS commands which negatively impacted the results. An increase in average fuel 

consumption of 13 percent was found when latency was not corrected for. This was because the 

algorithm used outdated SPAT information and thus the vehicles had to abruptly alter their 

speed-profile near the intersection since the forecasted change did not materialize. Proper latency 

corrections in forecasting SPAT information as well as implementing VMS commands were vital 

to the connected vehicle application. 

Conclusions 

The research presented in this paper introduces a cloud-in-the-loop simulation tool that is based 

on TEXAS micro-simulation tool that allows traffic simulations on remote servers that can be 

managed using any software using web-services. The tool also uses actual SAE J2735 standards 

as the back-bone for implementation of connected vehicle applications in the simulation 

environment. The system was integrated with eco-cooperative adaptive cruise control system and 

tested on a sample signalized intersection. Since the test framework used real SAE standards for 

V2V and V2I communication, it replicated a real connected vehicle environment along with their 

associated system latencies. Cloud-based simulations of ECACC system were conducted using a 

sample intersection, and following conclusions were made: 

1. Proper latency corrections are critical in developing connected vehicle applications. 

These latencies account for delays in receiving the DSRC messages as well as latencies in 

running the application in real-time. 
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2. The simulation testing of the ECACC system on a sample intersection showed an 

increase in vehicle average speed by approximately 9.2 percent and a reduction in 

average fuel consumption in the order of 5.5 percent considering a compact car. 

3. The total fuel consumed by vehicles showed that there is a significant reduction in fuel 

consumed by some vehicles while other vehicles remain unchanged. A similar trend was 

observed for the average speed. 

As is the case with any research effort further research is required to test the system considering 

different vehicle types, different traffic demand levels, different intersection configurations, and 

different signal timings.  
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Multi-Objective Optimization and Management of Automated 

Vehicles at Intersections 
 

Raj Kishore Kamalanathsharma, Ismail Zohdy and Hesham Rakha 

 

The research presented in this paper develops a multi-objective optimization algorithm for the 

control of autonomous and semi-autonomous vehicles at intersections. Specifically, three 

objectives are considered, namely: safety (i.e. ensuring vehicles do not collide), minimizing 

vehicle delay, and minimizing vehicle fuel consumption levels. The solution to this mathematical 

program is achieved through a bi-level optimization. At the upper level the system minimizes the 

intersection delay subject to collision avoidance constraints. At the lower level vehicle fuel 

consumption levels are minimized using a dynamic programming optimization framework. 

Preliminary analysis using agent-based simulations revealed delay reductions of approximately 

82 percent and fuel savings of approximately 79 percent compared to conventional signalized 

intersection control. The addition of the lower-level fuel optimization controller reduces the 

intersection fuel consumption level 10 percent relative to the use of single-level controller. 

 

Introduction 

Surface transportation sector is faced with three major problems, namely, congestion, 

environmental degradation as well as human fatalities. Congestion on American roadways 

accounted for almost 4.8 billion hours and an extra 3.9 billion gallons of fuel [1-2]. Driving is 

also one of the top contributors of human fatalities world-wide with over 90 percent of them 

attributed to human error [3]. Automated vehicles are considered an answer to these problems 

and most auto-manufacturers are working on commercializing them in the near future. Advanced 

ITS research has enabled connectivity between vehicles and infrastructure components for 

addressing some of the problems and to smoothen the transition to an automated driving 

environment. In the United States, these deployments and developments form the basis of 

Connected Vehicles Program which is currently piloted at multiple cities [4]. 

 

Once we have connectivity between vehicles and the infrastructure components and there are 

automated longitudinal controls for the vehicles, researchers foresee implementation of advanced 

intersection control algorithms [5-6]. Past efforts have addressed algorithms that optimize 

intersections for delay minimization, economy and above all crash avoidance [6-8]. However, 

the research in this paper presents a multi-objective intersection algorithm that works on two 

levels to generate crash-free, delay- and fuel-optimized vehicle trajectories. First, the algorithm 

generates a vehicle arrival time and intersection-entry speed for all vehicles to ensure no vehicles 

collide while minimizing the total vehicle delay. Second, the algorithm generates the most fuel-

efficient vehicle trajectories that satisfy the arrival times using dynamic programming. 
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The next sections describe some of the past research done in this area followed by a description 

of the bi-level optimization process. Subsequently, agent-based simulation analysis is described 

to demonstrate the effectiveness of the proposed algorithm with regards to intersection delay and 

fuel usage. The final section highlights the findings, results and conclusions of the research 

analysis. 

Background 

Several researchers have proposed optimizing vehicle movements, both autonomous and non-

autonomous, through an intersection [6, 9]. However, the optimization objective was either to 

minimize vehicle delay or to minimize vehicle fuel consumption levels [6-8]. Some research 

efforts used inputs from a fixed traffic signal as a constraint to alter the vehicle’s trajectory while 

other efforts assumed fully autonomous control without any traffic signals by reserving conflict 

points to ensure no vehicle conflicts occur while at the same time minimizing the total 

intersection delay. As far as the research efforts on intersection management of vehicles using 

V2I cooperation is concerned, Lee and Park proposed a Cooperative Vehicle Intersection Control 

(CVIC) system that enables cooperation between vehicles and infrastructure for effective 

intersection operations and management [9]. 

 

Researchers have also used V2I communication to construct fuel-efficient vehicle trajectories 

[10]. For example, Asadi and Vahidi developed a predictive cruise control system that uses 

constrained optimal control to adjust cruising speeds to intersections by minimizing the 

probability of stopping [11]. Malakorn and Park used constrained optimal control that minimizes 

acceleration and deceleration distances using advanced signal information [12]. In recent studies, 

several algorithms were developed to use Signal Phasing and Timing (SPaT) Information that is 

available as a part of the Connected Vehicle deployment to compute fuel-optimum vehicle 

trajectories [8, 10]. Most of these research efforts assumed some form of communication 

between the vehicles and the infrastructure. Only few of them have used explicit optimization 

objectives such as minimizing delay and minimizing fuel consumption. No research to date has 

looked into a multi-objective optimization of vehicle movements through an intersection to 

minimize both vehicle delay and the fuel consumption levels while ensuring no crashes occur.  

 

The research proposed in this paper uses a bi-level optimization structure to enable this. At the 

first level, the intersection management tool described earlier uses a moving horizon 

optimization approach to generate vehicle arrival times and speeds at the stop-line in order to 

avoid collisions while minimizing the intersection delay. At the second level, a dynamic 

programming approach is used to compute the fuel-optimum vehicle trajectory that satisfies the 

vehicle speed and arrival time at the stop-line given at the first level. This research use Rakha 

and Lucic vehicle dynamics model [13] to predict the maximum vehicle acceleration based on 

the instantaneous tractive and resistive forces, the Virginia Tech Comprehensive Power-based 

Fuel Model [14] to compute the microscopic fuel consumption levels and Van Aerde steady-state 
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car-following model to model vehicle longitudinal motion [15]. These can model microscopic 

vehicular behavior using physical characteristics of vehicles as well as the roadway and 

intersection characteristics including weather. 

Methodology 

The algorithm described in this paper aims at optimizing vehicle trajectories through an 

intersection while achieving three objectives – crash avoidance, minimizing overall delay and 

minimizing the fuel-consumed by individual vehicles. In order to satisfy these objectives, the 

optimization task is divided into two levels which are described in the following sub-sections. 

Vehicles are assumed to have automated longitudinal control and the intersection is assumed to 

be managed by an optimization controller. This assumption is made to avoid the modeling of 

human perception-reaction times (PRTs), but can be adjusted to model these delays if they are 

empirically established. The optimization controller, unlike conventional controllers, generates 

optimized vehicle trajectories which are forced on the vehicles using V2I communication. 

Upper Level Optimization 

At this level, the vehicle arrivals at the stop-line are optimized for minimizing the total 

intersection delay while ensuring that no vehicles collide. This is done by fixing the speed of 

vehicles at two anchor points on each approach. Vehicle speeds at these anchor points are fixed 

to a safe value and speed-profiles of vehicles are adjusted during the travel between them so that 

they will arrive at the stop-line at a time that will prevent simultaneous occupancy of conflict 

points. This arrival time at the intersection stop-line is assumed as the control variable while 

optimizing overall intersection delay.  

 

Figure 8.1 shows a typical 4-legged intersection along with a representation of what anchor 

points are and the speed-profiles anchored to these points. Each approach is divided into two 

zones. In Zone 1, all vehicles attain the maximum speed so as to provide room for optimization 

during the Zone 2. In the absence of conflicting vehicles, a vehicle could cross Zone 2 and the 

intersection at maximum speed. This case is called the zero-delay case and is represented by a 

non-variable speed profile in Zone 2. It has to be noted that for turning vehicles, this maximum 

speed is less than the speed-limit. In order to facilitate the optimization process to minimize 

delay and to prevent simultaneous conflict point occupancy, all vehicles are assumed to incur 

speed variation while in Zone 2.  
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Figure 8.1 Optimization zones in a typical 4-legged intersection. 

The upper level optimization incorporates generating vehicle arrival times at the stop-line so as 

to satisfy the condition of minimum overall delay: 

1

min

1

Min:

Subject to:

( ) ( ) ( );   

                      , , ,

( ) ( ) ( );   

                      , , , ,

( ) max (

n

i

i

i i j j im jm

i i mn k k nm im kn mn

i i mn f f m

D

OT D OT D H l l

i j i j m

OT D OT D l l c

i k i k m n

OT D OT D

  

 



   

    

      

    

    



1 0

), ( ) ;

                      , , , ,

0;   

n p p nm

i

OT D

i f p m n

D i

   

     

  
 

where: 

i,j,f,p: vehicle identification number; 

Di: Time delay incurred by vehicle i; for the ideal case it will be zero (no deceleration occurred 

in Zone II); 
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OTi: The optimum arrival time of vehicle i at the PIB (Entrance Point to the IB). OTi is estimated 

assuming that each vehicle accelerates to maximum speed in Zone I and continues to travel at the 

maximum speed until PIB. The arrival time is calculated based on the mathematical equations 

presented in the following sub-section); 

Ω
0
: The set of vehicles that entered the IZ the last time step and are still in the IZ in the current 

time step; 

Ω
1
: The set of vehicles that enter into IZ at current time step; 

Ω: The set of vehicles in IZ at current time step (Ω= Ω
0
+ Ω

1
); 

m,n: Lane identification number; 

Ψ: The set of lanes at the intersection; 

lim:= 1 if vehicle i enters into IB from lane m; and 0 otherwise, with 1im

m

l


 . 

cmn:= 1 if vehicle i from lane m has a conflict point with vehicles traveling on lane n; and 0 

otherwise, with 
,

1mn

m n

c


 . 

τmn : Travel time from the point PIB of lane m entering into IB to the conflict point of lane n; 

Distances to each conflict points are based on the intersection geometry. It is assumed that all 

vehicles will be running at maximum speed in the IB, thus, τmn is fixed for all vehicles from the 

same lane m to same conflict point mn (to facilitate the optimization process). It should be noted 

that the maximum speed may be different for different movements. 

Δτ: The duration of time that a vehicle occupies the conflict point, in other words, the safety 

interval between two consecutive vehicles occupying the same conflict point. To simplify the 

model formulation and calculation, we assumed Δτ to be identical for all vehicles. This 

assumption can be relaxed for future testing. 

Hmin: The minimum headway between vehicles in the same lane. 

 

The entire algorithm is available in Reference [6].  

Lower Level Optimization 

At this level, vehicle speed profiles are optimized for minimum fuel consumption using a 

dynamic programming approach. In this case, the trajectory of each vehicle for upstream and 

downstream of the intersection is considered during optimization and uses the spatio-temporal 

constraints dictated by the upper-level optimization such as anchor-point locations and speeds 

and times of arrival at these points. An additional constraint of downstream speed and location is 

added to account for vehicle acceleration downstream to get back to the initial speed. The 

optimization problem uses Virginia Tech Comprehensive Power-based Fuel Model [14] in its 

objective function as follows: 
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P(t) is the instantaneous power which is a function of instantaneous velocity and acceleration. 

The limits of the integration are t0, which is the start time of the optimization (usually, the time 

the vehicle receives the SPaT information); ts, which is the predicted time that the vehicle should 

reach the intersection stop-line to proceed safely during a green indication; and tf, which is the 

time that the vehicle accelerates back to its original speed. 

 

In order to solve this non-linear optimization problem, a dynamic programming approach is used 

where we discretize the solution space and then use recursive path-finding principles to generate 

optimal control variables. Acceleration and deceleration are the control variables used in this 

optimization. As shown in Figure 8.2, we have three defined spatio-temporal points for each 

vehicle. These points are: 

i. First anchor point where the location, time and speed of the vehicle is fixed. 

ii. Second anchor point where the location and time are fixed. The speed of the vehicle 

depends on the turn movement. 

iii. Downstream of the intersection where the location and speed of the vehicle are fixed. 

Path-finding logic is used to find the least cost path that passes through these points while 

conserving microscopically defined speed and acceleration models and car-following models. 

The solution space is discretized and a recursive A-star algorithm is used to find the optimum 

solution. The optimum state advances each time-step by selecting the state that corresponds to 

the least cost to reach that state plus a heuristic estimate of the future cost to move to the final 

state. The dynamic programming algorithm works every time-step to incrementally find the 

“least fuel-consumed” path between these three points with n discretization using the following 

cost function: 
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A full description of the algorithm is given in Reference [10]. 
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Figure 8.2 Discretizing solution space to find optimum path to traverse through defined states. 

It should be noted that since the vehicle arrival times at the stop-line are conserved after the 

upper-level optimization, the overall delay does not change after lower-level optimization. The 

outputs of the lower level of optimization are the actual vehicle profiles that correspond to least 

fuel consumption, least overall delay and crash avoidance.  

Optimization Controller  

The bi-level optimization controller proposed in this paper aims at optimizing the trajectories of 

the vehicles that pass through an intersection and is shown in Figure 8.3. The intersection 

controller is assumed to have V2I communication to force these speed profiles into incoming 

vehicles rather than a conventional approach with red, yellow and green. The controller receives 

inputs from vehicles using Basic Safety Messages as they enter the Zone 1 which includes 

vehicle-specific parameters as well as their locations and speeds. The upper-level optimization is 

then done to generate vehicle arrivals at the intersection stop-line that corresponds to minimizing 

overall intersection delay. Speed-rules for each vehicle according to their turn movement are also 

generated. This serves as the input to the lower-level optimization where the vehicle table is 

classified based on whether they need to incur a negative delay, zero delay or positive delay in 

Zone 2. Optimization is then done to generate speed profiles that correspond to least-fuel 

consumption for each vehicle while conserving the delay. In order to test the proposed strategy, a 

simulation case-study is done and described in the next section.  

 

The pseudo-code for the entire algorithm is given below: 

1. Initialization – The controller acquires information about all vehicles in the Zone 1 and 

recommends them to attain maximum speed. 

2. First Anchor Point – This defines the initial state of optimization which include initial 

speed va, distance to stop-line xs and time-stamp ta. 

3. Second Anchor Point – This is defined at the stop-line by the upper-level controller. This 

includes vehicle speed vs and time-stamp ts. 

4. Case-based categorization – categorize vehicles into sets based on the delay it has to 

incorporate between ta and ts. 
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5. Lower-level Optimization – As defined in previous sub-section, the a-star algorithm is 

used to find out discretized states of the vehicles that gives least fuel consumption. 

 

Upper Level

Lower Level

Input
Delay Optimization/
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Case 1

Case-based 

trajectory 

generation
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Optimization

Comparison
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Arrival Times 

& Speed Rules

 
Figure 8.3 Multi-Objective Optimization Framework 

Simulation Analysis 

In order to test the effectiveness of the proposed multi-objective optimization algorithm, a 

generic four-legged intersection was simulated in an agent-based test bed that was programmed 

in MATLAB. The testing tool used the microscopic longitudinal models that are used by 

INTEGRATION software. Figure 8.4 shows a schematic of the simulated intersection with three 

lanes for each approach dedicated to left, through and right movement to avoid complexity due 

to lane-changes. The roadway speed limit was assumed to be 35 miles per hour and 16 different 

volume combinations are simulated as shown in Table 8.2 to get a volume-capacity ratio of 0.2 

to 0.9. The measures of effectiveness tested were overall intersection delay and fuel-consumption 

per vehicle to overcome the intersection. These calculations used vehicle-specific parameters. In 

this paper, all vehicles are assumed to replicate the parameters of a 2010 Honda Civic as shown 

in Table 8.1. This assumption helps in gauging the results against a calibrated conventional 

simulation done in INTEGRATION. The origin-destination demand consisted of 20 percent of 

the traffic turning left and right and the remainder proceeding through the intersection. The 

maximum speed in the intersection was constrained by the turn movement for each vehicle with 
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the through vehicles traveling at the speed-limit and left and right turning vehicles traveling at 80 

and 60 percent of the speed-limit.  

 

The simulation analysis used three cases to simulate the sixteen volume scenarios. These are: 

1. Conventional Case – This case assumed conventional signalized intersection that ran an 

optimized signal cycle computed by Synchro 6 software. This simulation was done in 

INTEGRATION. 

2. Base Case – In this case, a single layer of optimization where vehicles approaching the 

intersection had minimum overall delay and avoided crashes was simulated to compare with 

past literature that aims at a single objective function. 

3. Test Case – This case simulated the actual multi-objective optimization proposed in this 

paper.  

 
Figure 8.4 Sample intersection showing conflict points 

A comparison of results is shown in Table 8.2 where the MoEs such as Average Fuel/Vehicle is 

compared for the three cases and the Average Delay/Vehicle is compared between the base case 

and the conventional case. It has to be noted that this value is same for both base case and test 
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case and hence not compared. Table shows that the proposed multi-objective optimization cause 

an average fuel savings of around 79 percent and average delay reduction of around 82 percent 

with respect to conventional signal control. Average fuel savings of around 11 percent was found 

with respect to just optimizing the delay (base case). Figure 8.5 shows the comparison of average 

fuel usage by vehicles between the Test Case and the Base Case. As shown, the fuel consumed 

for both the cases increase as v/c ratio increase. However, the average fuel consumption for the 

test case is always 10 to 15 percent lower than the average fuel consumption in the base case. 

 

Table 8.1 Microscopic parameters used to generate MoEs. 

Parameter Value 

Drag Coefficient (Cd) 0.30 

Frontal Area (m
2
) 2.32 

Engine Efficiency 0.92 

Percentage Mass on Tractive Axle 0.60 

Mass (kg) 1453 

Power (kW) 132 

VT-CPFM Alpha 0 0.00047738 

VT-CPFM Alpha 1 0.00005363 

VT-CPFM Alpha 2 0.00000100 

Table 8.2 Simulation results for the 16 scenarios. 

Scena

rio 

Major 

Vol 

(vph) 

Mino

r Vol 

(vph) 

Test Case Base Case Conventional Case 

Avg Fuel/ 

Veh (l) 

Avg 

Delay/V

h (s) 

Avg 

Fuel/ 

Veh (l) 

Avg 

Delay/Ve

h (s) 

Average 

Fuel/ 

Veh (l) 

1 500 250 0.0197 1.1 0.0215 11.5 0.105 

2 600 300 0.0193 1.2 0.0216 11.8 0.085 

3 700 350 0.0194 1.6 0.0218 13.3 0.092 

4 800 400 0.0197 2.1 0.0220 13.4 0.094 

5 900 450 0.0197 2.2 0.0221 13.3 0.093 

6 1000 500 0.0199 2.7 0.0222 14.1 0.090 

7 1100 550 0.0200 3.0 0.0225 15.0 0.092 

8 1200 600 0.0201 3.3 0.0225 16.1 0.097 

9 1300 650 0.0202 3.4 0.0225 16.8 0.094 

10 1400 700 0.0204 3.7 0.0227 15.7 0.094 

11 1500 750 0.0205 3.9 0.0228 19.0 0.094 

12 1600 800 0.0205 4.2 0.0229 19.5 0.095 

13 1700 850 0.0206 4.3 0.0229 18.8 0.096 

14 1800 900 0.0206 5.2 0.0233 21.0 0.097 

15 1900 950 0.0208 5.2 0.0234 25.1 0.098 

16 2000 1000 0.0204 4.0 0.0229 26.4 0.098 
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The proposed bi-level controller is case-based and involves different constraints based on the 

vehicle trajectory whether there was a positive speed change prior to the intersection or a 

negative speed change. Negative speed changes are applicable to cases in which the vehicles 

have to decelerate before they accelerate to the maximum possible speed in order to honor the 

crash-avoidance constraint in the upper level optimization. Figures 8.6 and 8.7 shows the 

comparison of average fuel usage by vehicles in the cases where they have a positive speed 

versus negative speed change. The average reduction in the fuel usage for cases with positive 

speed changes was 9 percent, as shown in Figure 8.6. For the cases with negative speed change, 

the average reduction in fuel consumption was 12 percent, as shown in Figure 8.7. The higher 

fuel reduction for the negative speed changes is because the fuel optimization algorithm has 

greater opportunity to optimize the vehicle trajectory. 

 

 
Figure 8.5 Fuel consumed per vehicle for test and base case. 

 

 
Figure 8.6 Vehicles with positive speed change 



R.K. Kamalanathsharma 

 

115 

 

 
Figure 8.7 Vehicles with negative speed change 

Conclusions 

The research presented in this paper provides a novel approach to managing automated vehicles 

at intersections. The proposed multi-objective optimization algorithm minimizes vehicle delay 

subject to collision avoidance constraints at the upper level and then minimizes the vehicle fuel 

consumption levels at the lower level. Specifically, at the upper level, the algorithm generates 

vehicle arrival times at the stop-line along with an associated speed that is generated by the 

upper-level controller. At the lower level, the algorithm generates a fuel-optimized vehicle 

trajectory subject to the constraints set by the upper level controller. The proposed controller 

performance was compared to a single level controller using an agent-based simulation as well as 

with an optimally timed conventional signalized intersection. The approach volumes were ranged 

from 500 to 2000 vehicles per hour per approach so that the volume-capacity ratio will range 

between 0.2 and 0.9. Measures of effectiveness compared were fuel consumption and delay 

incurred per vehicle. A case-based classification was also made so as to compare the individual 

vehicles that had a positive speed change with the ones that had a negative speed change 

upstream of the intersection. The following conclusions were made from this simulation 

analysis: 

1. It was found that the lower-level optimization produces fuel savings in the range of 10 to 

11 percent on top of the upper-level optimization.  

2. The upper-level optimization produces 76 percent fuel savings over conventional traffic 

signal control running on Synchro-optimized cycle. 

3. The overall fuel-savings provided by the multi-objective optimization controller is of the 

order of 79 percent compared to conventional signal controllers. 

4. When multiple volume combinations were simulated, the fuel savings yielded by the 

proposed algorithm was found to be independent of the approach volumes, whereas the 

actual fuel usage increased with increasing traffic volumes. 

5. The proposed approach reduces the average delay by 82 percent when compared to 

conventional traffic signal control. 
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Case-based classification shows that vehicles that require a negative speed change spend more 

fuel since they have a positive delay than the vehicles with negative delay. However, the vehicles 

with positive delay have more fuel savings in percentage when the optimization is done for their 

trajectory generation than the ones with negative delay. This is intuitive because vehicles with 

positive delay have more room for optimizing their speed profiles than the ones with negative 

delay. 

 

The multi-objective optimization algorithm presented and simulated in this paper warrants 

further analysis to modify and test this approach. More vehicle types could be analyzed versus a 

single vehicle type as used in this study. Also, the study presented here uses a MATLAB-based 

simulation approach. Even though it replicates the microscopic traffic models used in the 

INTEGRATION software, it would be worthwhile to test the system in a state-of-the-art 

simulation software. Lastly, the proposed approach assumes all vehicles have autonomous 

longitudinal control. Modifications to the algorithm are needed to use this system in a semi-

automated world were the penetration rates of both longitudinal control systems as well as V2I 

communication in not 100 percent. 
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Conclusions 

The research presented in this dissertation provides a comprehensive analysis of using advanced 

signal timing information as well as information about speed and spacing of surrounding 

vehicles to optimize the fuel consumption. This system, named, Eco-Cooperative Adaptive 

Cruise Control, was modeled, tested and evaluated in multiple simulation environments. As 

described in the introduction, chapters 4 through 8 are peer-reviewed manuscripts which 

autonomously describe various aspects of this research with its own conclusive remarks. In this 

chapter, the overall conclusions are made with respect to this dissertation.  

 

Chapter 2 analyzed the previous and concurrent research efforts in the field of advanced eco-

driving, using signal timing information. Multiple literatures were reviewed on optimizing fuel 

consumption at signalized intersections but most of them lacked a comprehensive analysis or 

even an explicit optimization function that incorporates microscopic fuel consumption models. 

Most researchers assumed fuel consumption to be tied directly with vehicle acceleration levels 

and used that as a control to optimize fuel consumption. This claim is not necessarily true and 

depends on a variety of other parameters. Chapter 3 described in brief how the algorithm is 

modeled to include multiple constraints that are prescribed by advanced signal information, 

vehicular and roadway parameters. 

Current State of Use of In-Vehicle Technology 

Chapter 4 makes some interesting conclusions regarding the current state-of-use of advanced in-

vehicle technology using a two-part public opinion survey. The stratified results to match the 

licensed population of United States suggested that demographic factors had insignificant impact 

on respondent’s opinion on advanced in-vehicle technology. This research piece analyzed 

respondent attitude towards multiple facets of in-vehicle technology such as advanced control 

systems including Cooperative Adaptive Cruise Control and Adaptive Cruise Control systems, 

smartphone applications, driver-assistance systems and potentially self-driving systems. 

 

Around 64 percent of respondents use smartphone applications to assist with their travel with the 

top applications being navigation and traffic information. Only 24 percent of respondents agree 

that cruise control adds to their distraction while over 60 percent of respondents felt that system 

acquaintance is an important factor in judging new technology. Top driver assistance systems 

that are voted for includes safety enhancing systems and eco-driving systems. Over 90 percent 

respondents voted for non-intrusive systems while only 35 percent respondents voted for fully 

autonomous systems. 

Modeling Results of ECACC 

Chapter 5 analyzes vehicle-specific modeling of ECACC where the system was calibrated to 30 

top-sold automobiles in the US which are attributed to six different EPA classes tabulated in 

Appendix A. MATLAB-based simulation analysis was done to test the sensitivity of the model 
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with respect to vehicle class, bounding speed-limits and green-time delay for optimization of 

speed profiles. The ECACC system was found to be sensitive to these three criteria and fuel 

savings were measured as absolute and relative values. Class-based analysis suggested that 

absolute fuel savings is highest in light-duty trucks and lowest in compact cars, whereas the 

relative fuel savings is vice-versa. However, the absolute and relative trends matched for other 

variables such as approach speed and green-time delay. A higher speed-limit caused greater fuel 

savings and a higher green-time delay caused lesser fuel savings. The green-time delay is defined 

as the time differential between the actual green time and the time to intersection of the vehicle 

prior to optimization. 

 

Agent-based modeling of ECACC, as explained in Chapter 6, was performed to test the 

endurance of the system on a fully functional signalized intersection from Downtown 

Blacksburg. The intersection was simulated at a microscopic level including specific features 

such as grade and lane geometry. Reactive agents were used to simulate vehicles that run on 

ECACC logic with respect to changing signal conditions. Two measures of effectiveness were 

considered – the average fuel consumption and the average travel-time for the 400 meter vicinity 

of the intersection. It was found that over30 percent fuel savings can be achieved within the 

vicinity of intersections when the algorithm is used. The proposed algorithm also caused an 

increase in the average travel-speed of vehicles by more than 210 percent. It was also found that 

the fuel savings were greater for the major street than the minor street owing to their uneven 

green split. Lower volumes yielded more fuel savings and higher percentage increase in the 

average travel speed. 

Expanding ECACC Research 

In order to test the endurance of the proposed system, it was integrated in to a modified version 

of TEXAS model which could replicate connected vehicles scenario and dual-component 

system. The eTEXAS uses cloud-based simulation models which could remotely be controlled 

using web-service modules. Chapter 7 provided a comprehensive description of this system 

which was consequently used to simulate the proposed eco-speed control algorithm with a 

standard four-legged intersection. Average increase in speed of 9.2 percent and average decrease 

in fuel consumption of 5.5 percent were found. The measures of effectives are different from the 

agent-based modeling results because of the difference in underlying models used by eTEXAS 

and the ones in the ECACC optimization. This research also presented the impact of considering 

and correcting for communication latencies in the connected vehicle environment. 

 

Many researchers in the transportation industry have predicted fully autonomous vehicles in the 

near future. This dissertation tried to incorporate eco-driving concept in automated vehicle 

management at intersections. Chapter 8 demonstrates a bi-level multi-objective optimization tool 

that optimizes vehicles at intersections to avoid crashes, minimize delay and minimize fuel 

consumption. Multiple volume cases of a sample intersection were simulated in this chapter 
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proving 82 percent reduction in average vehicle delays and 79 percent reduction in vehicle fuel 

consumption compared to conventional signalized intersection control.  

Overall Contributions 

While there has been past research addressing the issue of fuel optimization at signalized 

intersections using advanced signal information, they lacked comprehensiveness in research and 

use of explicit microscopic modeling in the optimization function. The research presented in this 

document contributes further by developing a robust algorithm, named Eco-Speed Control, 

which uses explicit fuel-based optimization functions as well as microscopic modeling in 

establishing constraints.  

 

The specific contributions of the research include: 

1. Developed a robust eco-drive system in the vicinity of intersections that explicitly 

models the vehicle fuel consumption and considers vehicle and surrounding vehicle 

constraints on the system performance. 

2. Solicited user-acceptance in-vehicle driver assistance systems using stated-preference 

on-line public surveys.  

3. Characterized the sensitivity of such a system to external variables, including weather 

and grade factors and internal variables such as vehicle type. Thirty top-sold vehicles 

that belong to different EPA classes were calibrated and tested using the proposed 

algorithm.  

4. Developed a Connected Vehicles framework that uses SAE J2735 message sets 

developed by the Society of Automotive Engineers to evaluate the performance in a 

simulated connected vehicles environment. The multi-component system was 

developed using a cloud-based eTEXAS environment.  

5. Enhanced the algorithm for use as a lower-level controller within the intersection 

Cooperative Adaptive Cruise Control (iCACC) system for management of 

autonomous vehicle intersections. This intersection management system looks at a 

broader, multi-objective, bi-level optimization of vehicle delay and fuel consumption 

levels.  
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Future Research 

As is the case with any research effort, there is always scope for further research. These 

additional research directions are described in this subsection. The ECACC system has been 

modeled, tested and evaluated with the objective to field implement the system. However, the 

state-of-instrumentation did not allow for a real-world implementation study. Therefore, the first 

warranted research direction will be an actual experiment on a connected vehicle test-bed. 

Further to this, the system can also be modified to consider additional constraints and therefore 

look at optimizing speed-profiles over an arterial with multiple intersections rather than just one 

intersection in this case.  

Experimental Analysis 

The Connected Vehicles/Infrastructure University Transportation Center is currently retrofitting 

the Smart Road intersection in Blacksburg, VA to incorporate connected vehicles capability 

which can be utilized for actual implementation analysis of the ECACC system. The Smart-Road 

intersection’s custom controller can be used to create repeatable scenarios to change signal 

phases based to the vehicle’s distance to the intersection (DTI). The Road-Side Equipment (RSE) 

with wireless capability can be used to communicate this information to the vehicles which will 

have portable devices generating and updating “fuel-optimum” vehicle trajectories. Figure 9.1 

shows the typical concept of operations diagram for the proposed experiment. Driving 

experiments will involve drivers from different demographics to replicate an actual test 

population and will be done for the four cases described in this section. The vehicle will log the 

test vehicles’ instantaneous speed, throttle levels, brake levels, fuel consumption and the road-

grade so that comparison can be made between the cases. 
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Figure 9.1 - Experimental Set-up 

 

Case 1: Uninformed Driver 

This will form the base case of experimentation and will involve drivers approaching the 

intersection in an uninformed manner. There will be no communication of SPaT information or 

driver advisory in this case. This is expected to replicate the pre-system scenario. This case will 

also be compared to the behavior extracted from the instrumented signals in the Blacksburg test-

bed. 

 

Case 2: Informed Driver 

This will involve communication of SPaT information to drivers. The Driver-Vehicle Interface 

(DVI) will show “seconds to next signal change” to the driver. The driver uses this information 

and his/her perception about the situation to make speed changes and safely maneuver the 

intersection.  

 

Case 3: Informed Driver with Speed Advisory 

In this case, the SPaT information will be used by the in-vehicle devices to generate the fuel-

optimum vehicle trajectory and then communicate the instantaneous speed recommendation to 

the driver using the DVI. The suggested speed and actual speed will be logged and could be used 

to generate an error function. The speed advisory will be updated every time-step to incorporate 

driver’s error in following the previous advisory. 

 

Case 4: ECACC System 

ECACC system test could be done if a specified speed profile could be implemented in a test-

vehicle’s cruise control system by enhancing the Adaptive Cruise Control system. This case is 

similar to the previous one except that the driver perception on speed-following will not come in 
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to play. The cruise control’s latency to follow speed will be studied in this case and will give a 

more accurate replica of the proposed algorithm. 

 

Once the four cases are experimented, the logged data will be used to generate meaningful 

inferences on many research questions including the following: 

a. What are the implementation issues with respect to eco-speed control systems? 

b. What percentage fuel-savings can be expected from providing speed-advisories to 

drivers? 

c. What percentage of fuel-savings can be expected just by giving “seconds-to-next-signal-

change” information to the drivers? Such systems already exist in many European and 

Asian countries on an infrastructure-based display system. 

d. What is the error-function with which a typical driver can follow instantaneous speed-

advisories? 

The proposed study will be the first of its kind field-testing of the proposed Eco-Speed Control 

Algorithm and will enable comparing simulation results with field study results. The study will 

also serve as the first step to identify implementation issues associated with Eco-Cooperative 

Adaptive Cruise Control and Eco-Speed Control strategies. This research will also address the 

issues of driver-acceptance of intelligent advisories such as how humans respond to alerts from 

an in-vehicle device or with what error humans or automated cruising devices can follow a 

particular advised speed profile. The error function generated for speed-following can be of high 

research value for studies involving speed-following. 

Multi-Intersection Control 

In the research established in this dissertation including development of the algorithm and its 

testing in an agent-based environment, the optimization of speed-profile was done on a per-

intersection basis. A vehicle with ECACC capability is assumed to receive SPAT information 

from one intersection at a time and subsequently optimizes its speed-profile to overcome that 

particular intersection. However, when there are closely spaced intersections, the optimum 

speed-profile as a result of the first intersections’ information would depreciate the possibility of 

fuel-savings in the next one. Therefore, when there is information from multiple intersections, a 

multi-window optimization approach can be used to form a speed-profile for the vehicles where 

it is constrained by green-windows from all the intersections at once. This enhancement to the 

algorithm would be an efficient way to negotiate signalized arterials where there are multiple 

close-spaced intersections. The algorithm can also help generate a speed-profile to avoid 

stoppage when vehicles are going against the coordinated green-signal intersections. 
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Appendix A 

 

Model parameters for top-sold cars in the US (2011 Base Models) 

Make Model W (Kg) Cd 

Engi

ne 

size 

(L) 

EPA 

Estimat

e (mpg) 

Max. 

Powe

r 

(kW) 

VT-CPFM 1 Parameters 

C H α0 α1 α2 

Compact Cars (Passenger + Cargo Volume between 100 and 109 Cu. Ft.) 

Honda Civic 1212 0.27 1.8 28 39 104.4 3.41E-04 5.83E-05 1.00E-06 

Ford Focus 1341 0.29 2.0 28 38 119.3 3.03E-04 5.41E-05 1.00E-06 

Toyota Corolla 1270 0.29 1.8 27 34 98.4 2.71E-04 7.69E-05 1.00E-06 

Volkswagen Jetta 1272 0.31 2.0 24 32 85.7 3.93E-04 1.81E-18 6.62E-06 

Mazda 3 1329 0.26 2.0 24 33 110.3 3.79E-04 7.04E-05 1.00E-06 

Mid-size Cars (Passenger + Cargo Volume between 110 and 119 Cu. Ft.) 

Toyota Camry 1447 0.28 2.5 25 35 132.7 3.84E-04 5.44E-05 1.00E-06 

Nissan Altima 1442 0.31 2.5 23 32 130.5 4.32E-04 5.69E-05 1.00E-06 

Ford Fusion 1490 0.33 2.5 23 33 130.5 4.68E-04 4.61E-05 1.00E-06 

Chevrolet Cruze 1435 0.30 1.8 26 38 102.9 4.16E-04 4.08E-05 1.00E-06 

Chevrolet Malibu 1557 0.30 2.4 22 33 126.0 5.17E-04 4.31E-05 1.00E-06 

Full-size Cars (Passenger + Cargo Volume between 120 or more Cu. Ft.) 

Honda Accord 1487 0.30 2.4 23 34 132.0 4.89E-04 4.29E-05 1.00E-06 

Hyundai Sonata 1451 0.28 2.4 24 35 147.6 4.45E-04 4.76E-05 1.00E-06 

Chevrolet Impala 1613 0.33 3.6 18 30 223.7 7.93E-04 2.24E-05 1.00E-06 

Chrysler 300 1814 0.32 3.6 18 27 217.7 6.47E-04 4.33E-05 1.00E-06 

Dodge Charger 1929 0.33 3.6 18 27 217.7 6.42E-04 4.01E-05 1.00E-06 

Light-duty Trucks (Gross vehicle Weight Rating less than 8,500 lbs.) 

Ford F150 2125 0.42 3.7 17 23 225.2 6.73E-04 -1.73E-20 2.51E-06 

Chevy Silverado 2024 0.43 4.3 15 20 145.4 7.79E-04 7.01E-20 2.99E-06 

Dodge Ram 2050 0.38 3.7 14 20 160.3 8.76E-04 -2.34E-19 3.04E-06 

GMC Sierra 2015 0.41 4.3 15 20 145.4 7.63E-04 5.40E-20 3.20E-06 

Toyota Tundra 2077 0.37 4.0 16 20 201.3 5.79E-04 5.34E-19 3.89E-06 

Sports Utility Vehicles (Gross vehicle Weight Rating less than 10,000 lbs.) 

Ford Escape 1466 0.38 2.5 23 28 127.5 4.08E-04 -3.50E-19 4.79E-06 

Honda CR-V 1536 0.41 2.4 21 28 134.2 5.40E-04 -2.52E-19 3.68E-06 

Chevy Equinox 1717 0.36 2.4 22 32 135.7 5.32E-04 2.89E-20 2.86E-06 

Jeep Cherokee 2028 0.37 3.6 16 23 216.2 7.26E-04 -8.39E-19 3.08E-06 

Ford Explorer 2210 0.35 3.5 17 25 216.2 6.86E-04 3.05E-05 1.00E-06 

Mini-Vans (Gross vehicle Weight Rating less than 8,500 lbs.) 

Toyota Sienna 1939 0.31 2.7 19 24 139.4 4.04E-04 6.66E-05 1.00E-06 

Chrysler Town Cntry 2110 0.33 3.6 17 25 211.0 6.76E-04 3.61E-05 1.00E-06 

Dodge Caravan 2046 0.33 3.6 17 25 211.0 6.82E-04 3.70E-05 1.00E-06 

Honda Odyssey 1967 0.35 3.5 18 27 184.9 6.88E-04 8.66E-19 2.50E-06 

Nissan Quest 1981 0.32 3.5 19 24 193.9 4.13E-04 6.24E-05 1.00E-06 
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Appendix B 

Summary of Basic DSRC Message Sets 

This white paper entails the message set description pertaining to the DSRC format as set by the 

standards given in SAE J2735. There are three levels of information carried by the Dedicated 

Short-Range Communication. They are, Message Sets, Data Frames and Data Elements. As the 

name suggests, message sets form the top of the hierarchy. Each message set consists of many 

data frames and each data frame consists of data elements. Data elements can also consist of 

multiple parts. Particularly three messages are described in this document as seemed appropriate. 

They are: Basic Safety Message (BSM), Signal Phasing and Timing Message (SPAT) and 

MapDATA Message (MAP). All definitions and terms are taken from the SAE International 

Surface Vehicle Standard, Dedicated Short Range Communications (DSRC) Message Set 

Dictionary (11/2009). 

 

Basic Safety Messages 

BSM consists of two parts. Part 1 messages are broadcasted 10 times per second and Part 2 

messages are optional information which can be tailor-made for each scenario. Therefore only 

Part 1 message set is included in this document. As far as the Basic Safety Message is concerned, 

the hierarchy of data elements is given in the Figure 1. 

The definitions of the data frames and data elements are given in the following indented list: 

1. msgCnt stands for MsgCount (1 byte) 

2. id is a TemporaryID (4 bytes) 

3. secMark is the DSecond (2 bytes) – represented as milliseconds within a minute. 

4. pos consists of PositionLocal3D data: 

a. lat stands for Latitude (4 bytes) – expressed in 1/10
th

 of a micro-degree 

b. long stands for Longitude (4 bytes) - expressed in 1/10
th
 of a micro-degree 

c. elev stands for Elevation (2 bytes) – expressed in decimeters above or below the 

reference ellipsoid 

d. accuracy stands for Positional Accuracy (4 bytes) 

i. Semi-major accuracy – represented as 0.05m 

ii. Semi-minor accuracy – represented as 0.05m 

iii. Orientation of semi-major axis relative to true north 

5. motion consists of the following: 

a. speed denotes TransmissionAndSpeed (2 bytes) 

i. Bits 1 to 13 is Speed represented as 0.02 m/s 

ii. Bits 14 to 16 is TransmissionState 

b. heading denotes Heading (2 bytes) expressed as 0.0125 degrees from North 

c. angle denotes SteeringWheelAngle (1 byte) expressed at 1.5 degrees with right 

being positive 

d. accelSet denotes AccelerationSet4Way (7 bytes) 

i. long Acceleration – represented as 0.01 m/s2 
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ii. lat Acceleration - represented as 0.01 m/s2 

iii. vert Acceleraion - represented as 0.01 m/s2 

iv. yaw YawRate – expressed as 0.01 degrees per second with right being 

positive 

6. control consists of any motion control terms: 

a. brakes which shows the BrakeSystemStatus (2 bytes) 

i. wheelBrakes as BrakeAppliedStatus (4 bits) 

ii. wheelBrakesUnavailable (1 bit) 

iii. spareBit (1 bit) 

iv. traction as TractionControlState (2 bits) 

v. abs as AntiLockBrakeStatus (2 bits) 

vi. scs as StabilityControlStatus (2 bits) 

vii. brakeBoost as BrakeBoostApplied (2 bits) 

viii. auxBrakes as AuxiliaryBrakeStatus (2bits) 

7. size includes the VehicleSize (3 bytes) 

a. VehicleWidth – in centimeters (10 bits) 

b. VehicleLength – in centimeters (14 bits) 

 

SPAT Message Definitions 

SPAT messages can include information regarding one or multiple intersections. Information 

regarding each intersection comes under the dataframe intersectionState. The hierarchy of data 

frames and data elements is given in Figure 1. 

The definitions of the data frames and data elements are given in the following indented list: 

1. name stands for a string which is an optional human readable name. 

2. id is a 32 bit field to identify the intersection and unique to a region. 

3. status is optional and contains Advanced Traffic Controller status information (1 byte). 

a. Manual control enabled/disabled. 

b. Stop-time is activated/deactivated 

c. Conflict Flash active/inactive. 

d. Preempt active/inactive. 

e. Priority active/inactive. 

f. 3 bits reserved. 

4. lanesCnt - number of lanes representing the same sign state. 

5. States represent a single intersection controller state. It consists of the following: 

a. movementName – optional definition of movement 

b. laneCnt – number of lanes to follow 

c. laneSet – contains the LaneNumber 

d. Choice of current movement state: 

i. currState – SignalLightState defines the current signal state being served 

(or the next). Please refer to table 1 for signal phase indication encoding. 
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ii. pedState – represents the current or next known pedestrian signal state. (0 

= unavailable, 1 = do not walk, 2 = flashing don’t walk, 3 = walk) 

iii. specialState – signal for a special lane-type (trains etc.) 

e. timeToChange – moment in local UTC time when signal state will change 

(represented in 1/10
th

 of a second). 

f. stateConfidence – confidence of current phase data, where 0 = unknown estimate, 

1 = minTime, 2 = maxTime and 3 = timeLikelyToChange. 

g. Choice of current yellow state: 

i. yellState – similar to currState 

ii. yellPedState – similar to pedState 

h. yellTimeToChange – similar to TimeToChange 

i. yellStateConfidence – similar to stateConfidence 

j. Optional Items: 

i. vehicleCount – integer representing count of vehicles. 

ii. pedDetect – represents pedestrian detection (0 = none, 1 = may be, 2 = one 

and 3 = some). 

iii. pedCount – integer representing count of pedestrians 

6. priority – uses SignalState Data Element consisting of 1 byte: 

a. Bit 7 – if this state is currently active. 

b. Bit 6~4 – preemption or priority value 

c. Bit 3~0 – PreeemptState or PriorityState definitions. 

7. Preempt – similar to priority. 

 

MapDATA Message Definitions 

MapDATA in general is used with SPAT data and is broadcasted at intersections to describe 

complex intersection geometry and even high-speed curve outlines. It primarily consists of 6 

elements:  

1. msgID of type DSRCmsgID. 

2. msgCnt of type MsgCount 

3. name that represents a human readable name (optional) 

4. layerType (optional) 

5. layerID (optional), and 

6. intersectios of the type Intersection which is data frame by itself. 

The hierarchical information about different elements that constitute this message set is given in 

the Figure on Page 2.The definitions of the data frames and data elements in the intersection data 

frame are given in the following list: 

1. DescriptiveName – A string that can be read by humans (optional) 

2. IntersectionID – id and refInterNum – A 32bit unique ID given to each intersection. 

3. Position3D – uses WGS-84 coordinate system to locate the intersection center. 

a. Latitude - in 1/10
th
 of a micro degree. 
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b. Longitude – in 1/10
th

 of a micro degree 

c. Elevation – optional (in decimeters) 

4. Heading – expressed in 0.0125 degrees from North. 

5. LaneWidth – width for a lane in centimeters 

6. IntersectionStatusObject – contains ATC status information 

a. Manual control enabled/disabled. 

b. Stop-time is activated/deactivated 

c. Conflict Flash active/inactive. 

d. Preempt active/inactive. 

e. Priority active/inactive. 

f. 3 bits reserved. 

7. ApproachObject – details about the approaches and egresses of the intersection. 

a. Position3D 

b. LaneWidth 

c. Approach (approach and egress) 

i. DescriptiveName 

ii. ApproachNumber – unique index value for each approach or egress. 

iii. VehicleReferenceLane & SpecialLane – defines the characteristics of a 

driving lane or a special lane. VRL has to be at least one for each 

approach. 

1. LaneNumber – unique number for the lane 

2. LaneWidth 

3. VehicleLaneAttributes – explains possible movements from a 

vehicle lane. 

4. NodeList – nodeList and keepOutList – offset values that define, 

X, Y and Z to construct lanes. 

5. ConnectsTo – lanes to which a particular lane connects to. 

iv. VehicleComputedLane 

1. LaneNumber 

2. LaneWidth 

3. VehicleLaneAttributes 

4. DrivenLineOffset – perpendicular offset of a computed lane from a 

reference lane in centimeters. 

5. NodeList 

6. ConnectsTo 

v. BarrierLane – defines the lanes that represents barriers, medians etc. 

1. LaneNumber 

2. LaneWidth 

3. BarrierAttributes – describes the type of barrier (such as no curb, 

low curb etc.) 
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4. NodeList 

vi. CrosswalkLane 

1. LaneNumber 

2. LaneWidth 

3. CrosswalkLaneAttributes 

4. NodeList (nodeList and keepOutList) 

5. ConnectsTo 

8. SignalControlZone (preemptZones and priorityZones) – describe the zones that are used 

by vehicles to preempt or prioritize the signal control. 

a. DescriptiveName 

b. SignalReqScheme – describes the type of preemption or priority associated using 

1 byte. 

c. LaneNumber 

d. LaneWidth 

e. NodeList 

 


