THE DESIGN, CONSTRUCTION, AND TESTING OF A REACTIMETER

bу

Kim Allen Jones

Thesis submitted to the Graduate Faculty of the

Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

ín

Nuclear Science and Engineering

APPROVED:

T. F. Parkinson, Chairman

P. R. Rony

R. J. Onega

October, 1977

Blacksburg, Virginia

ACKNOWLEDGMENTS

I am very pleased that I have been able to contribute to this area of research. I would like to express my gratitude to my faculty advisors; to Dr. Thomas F. Parkinson who motivated me to do my best, to Dr. Ronald J. Onega who had the patience to answer many of my questions, and to Dr. Peter R. Rony who shared his knowledge of digital electronics and microcomputers with me. A special thanks goes to the reactor personnel who constructed the electrical hardware I required.

I dedicate this to my mother and father, and , and to the seven families who treated me as one of their own; and and and and and , and and and

TABLE OF CONTENTS

	Pa	ge
Title Pa	age	i
Acknow1	edgments	ii
List of	Figures	vi
List of	Tables	ii
Chapter		
I.	Introduction	1
	General References	5
II.	Theory	6
	Introduction	6
	Background	6
	Point Reactor Kinetics	7
	Neutron Generation Time versus Prompt Neutron Lifetime	11
	Effective Delayed Neutron Fraction	12
	Prompt Jump Approximation	13
	Feedback Effects	17
	Six Delayed Neutron Groups	17
	Computer Algorithm Equation	18
	Conclusion	22
III.	Equipment	24
	Introduction	24
	Compensated Ion Chamber	24
	Keithley Model 411 Micro-microammeter	28

TABLE OF CONTENTS (Continued)

		Page
	Digital Panel Meter	. 30
	Mark 80 Microcomputer	. 30
IV.	Hardware	. 32
	Introduction	. 32
	Keithley Micro-microammeter Interface	. 32
	Digital Panel Meter Interface	. 36
	Interrupt Timing Circuit	. 44
	Display Interface	. 48
	Decoding Circuit	53
	500 KHz Clock Speed	. 53
	Conclusion	57
v.	Software	. 59
	Introduction	59
	Neutron Flux Algorithm	59
	Reactivity Algorithm	64
	Time Interval	66
	Reactimeter Program Introduction	70
	INPUT	. 73
	SELECT	. 79
	HRFC-LRFC	81
	DIRECT	87
	PRECURI	87
	TRANSFER	95

TABLE OF CONTENTS (Continued)

		Page
	REACT	95
	OUTPUT	100
	WAIT	117
	START	119
	Conclusion	119
VI.	Conclusions	123
	Conclusion	123
	Reactimeter Program	127
VII.	Recommendations	148
Referen	nces	151
Appendi	ix	
A.	Calculation of $\beta_{\mbox{eff}}$	152
В.	Intel 8080 Float Point Package	153
С.	Instrument Documentation	177
D.	Reactimeter Program - Kinetics Equations	196
E.	Intel 8080 Float Point Program	236
F.	Reactimeter Program - Inhour Equation	276
Vita .		296

LIST OF FIGURES

Figure		Page
2.1	Diagram for a Typical Neutron Precursor	. 10
2.2	Neutron Flux Change for a Positive Reactivity Insertion	. 16
3.1	Block Diagram of Reactimeter	. 25
3.2	Compensated Ion Chamber Detector	. 27
4.1	Gray Shaft Encoder	. 35
4.2	Gray Shaft Encoder Circuit	. 37
4.3	Block Diagram of Gray Shaft Encoder	. 38
4.4	Keithley Interface Circuit	. 39
4.5	Digital Panel Meter Interface Circuit	. 41
4.6	Zero Input Interface Circuit	. 42
4.7	Connection Diagram for Digital Panel Meter	. 45
4.8	0.2 sec Timing Interval Circuit	. 47
4.9	Output Interface Circuit	. 50
4.10	Decoding Circuit	. 54
4.11	Automatic Single Step Mode Circuit	. 58
5.1	Main Flowchart	. 71
5.2	INPUT Routine	. 74
5.3	SELECT Routine	. 80
5.4	HRFC Routine	. 82
5.5	LRFC Routine	. 85
5.6	DIRECT Routine	. 88
5.7	PRECURi Routines	. 91

LIST OF FIGURES (Continued)

		Page
5.8	TRANSFER Routine	96
5.9	REACT Routine	97
5.10	OUTPUT Routine	102
5.11	CHECK Subroutine	115
5.12	WOUT Subroutine	116
5.13	WAIT Loop	118
5.14	START Routine	120
6.1	Reactivity versus Reactor Period	124
6.2	Connection Diagram for Digital Panel Meter-Modified Version	128
6.3	100 Hz Timing Circuit for the Digital Panel Meter	129
6.4	Interrupt Circuit for the Digital Panel Meter	130
6.5	Main Flowchart - Inhour Program	131
6.6	INPUT Routine	133
6.7	CMPAR Routine	135
6.8	TRACK Routine	138
6.9	EXCH Subroutine	139
6.10	CALC Routine	140
6.11	CHSGN Subroutine	146

LIST OF TABLES

Table		Page
2.1	Delayed Neutron Precursors	. 19
2.2	U ²³⁵ Delayed Neutron Data	. 20
2.3	U ²³⁵ Delayed Neutron Decay Constants	
3.1	Current Measured vs Voltage Output	. 29
4.1	Gray Code	. 34
4.2	4-Input AND Gate Truth Table for Devices Select Pulses IN 0 through IN 3	. 43
4.3	Binary Representation of Output Data	. 52
4.4	Truth Table for a 4-Line-to-16-Line Decoder	. 55
4.5	Peripheral Device vs Clock Pulse	. 56
5.1	Mantissa Values vs Output Voltage	. 61
5.2	Conversion Constants for Neutron Flux Algorithm	. 63
5.3	Constants for Reactivity Algorithm	. 67
5.4	Device Codes and Peripheral Devices	. 78
5.5	ASCII Coded 13-Byte Representation of Floating-Point Decimal Numbers	. 110
5.6	Decimal Point Location and Digital Display	. 114
6.1	Instrumentation Calibration	. 125

CHAPTER I

INTRODUCTION

A reactimeter is a useful piece of equipment to have on a nuclear reactor and is becoming widely used in the nuclear industry. The reactimeter records the neutron flux and calculates the reactivity by using a computer algorithm. Reactor operators and nuclear engineers use reactimeters for the following applications:

- (1) Determination of critical control rods settings in
 - criticality experiments,
 - investigations relating to the so-called stuck
 rod problem
 - investigations of the symmetry properties of a core;
- (2) Calibration of control rods;
- (3) Determination of the reactivity equivalents of
 - fuel assemblies,
 - reflector assemblies,
 - irradiation rigs,
 - detectors;
- (4) Determination of temperature coefficient of the reactivity;
- (5) Determination of the level of xenon poisoning
- (6) Determination of the power output feedback coefficient;

- (7) Determination of the reactivity burnup of
 - fuel assemblies,
 - control rods,
 - active irradiation rigs;
- (8) Testing the period channel. (1)

The main proposed uses of the reactimeter for the VPI & SU reactor are to monitor the change of reactivity as samples are inserted into and removed from the reactor for irradiation, for control rod calibration, and for reactor testing.

The history of the reactimeter, or reactivity meter, is relatively short. The first instruments to be called a reactivity meter started to appear in the early 1970's, even though methods to determine the neutron reactivity of nuclear reactors were around since the early 1950's. Early reactivity measurements were made using a period meter and a rate meter. From the reactor period and the change in neutron flux, the reactivity could be calculated. Today, the recommended way to measure the change in neutron population is to employ either an analog or digital method. One of the more common methods is to use an ionization chamber, whose current is converted by high gain amplifier into a voltage. The voltage signal can be converted into the reactivity of the reactor.

The current development status on the reactimeter is the use of more than one detector and the development of a Californium-252 ionization counter. A better signal is produced when more than one ionization chamber is used. By locating the ionization chambers at

different places in the reactor core, the noise picked up by one detector can be eliminated by the other detectors. A Californium-252 counter is used as a correlation counter to compare the fission events in the reactor core to the fission events in the Californium. For further references, see the General Reference page following this Introduction.

The point reactor kinetics equations with six delayed neutron groups and no feedback effects are employed to calculate the reactivity from the neutron flux. This model is simple, accurate, and involves seven coupled differential equations. The prompt jump approximation is used to solve the system of equations and is valid under conditions of less than prompt critical. The prompt critical condition is reached when the reactivity inserted is equal to the delayed neutron fraction $\rho = \beta$. For conditions equal to or greater than prompt critical, delayed neutrons do not govern the reactor period, and the neutron flux increases rapidly during very short periods which are determined by the prompt neutrons [pg. 441 in (2)].

The reactimeter is comprised of a compensated ion chamber (CIC) and a microcomputer with auxiliary equipment. A Keithley Micromicroammeter moniters the CIC's signal and sends two signals to the microcomputer. One signal is a normalized analog voltage that is converted to a digital signal by a digital panel meter before being conveyed to the microcomputer. The other signal requires a special interface between the Keithley meter and the microcomputer.

The purpose of this thesis is to design and construct the hardware for the reactimeter, and to develop the software program that converts neutron flux into reactivity.

GENERAL REFERENCES

- I. E. E. Gross and J. H. Marable, "Static and Dynamic Multiplication Factors and Their Relation to the Inhour Equation,"

 <u>Nuclear Science and Engineering</u>, 7 (1960), 281-291.
- II. S. B. Grunst, J. C. Connor, E. D. McGarry, and D. E. Conway, "The Reliability and Physical Interpretation of Measurements in a Reactivity Measurement Facility," <u>Transactions of the American Nuclear Society</u>, 8 (May 1965), 262-263.
- III. L. Anselmi, W. Hage, H. Hettinger, H. Hohmann, and S. Kumpf, "Aspects in the Use of the Inverse Neutron Kinetics Technique," <u>Nuclear Instruments and Methods</u>, 98, No. 3(1972), 485-491.
- IV. J. T. Mihalczo and V. K. Paie, "Theory of Correlation, Measurement in Time and Frequency Domains with Cf 252," Annals of Nuclear Energy, 2 (1975), 97-105.
 - V. J. B. Bullock, "Criteria for Reactivity Anomoly Monitoring in Nuclear Reactor," <u>Transactions of the American Nuclear Society</u>, 22 (Nov. 1975), 558-559.
- VI. Tai Ping Lung and Lawrence Ruby, "Two Detector Reactivity Monitor Utilizing Ion Chambers," <u>Transactions of the American</u> Nuclear Society, 22 (1975), 690-691.
- VII. W. R. Sheets, "Digital Period Meter," <u>Nuclear Technology</u>, 24 (Oct. 1974), 99-101.

CHAPTER II

THEORY

Introduction

A reactimeter converts neutron flux measurements into reactivity. Both of these quantities are generally time dependent. It is important to be able to predict the time behavior of the neutron multiplication factor, k, or reactivity, ρ , by changes in the neutron flux. To accomplish the above, the point reactor kinetics with delayed neutrons and feedback effects are used.

For the purpose at hand, the point reactor kinetics equations can be applied to the VPI & SU reactor. Some of the neutron constants are not the literature values, but are effective values that depend on the geometry and physics of the core. The number of point reactor kinetics equations depends on the number of delayed neutron groups, which range from one to six, used and the number of feedback equations required. In the most conventional form, the reactivity is difficult to determine, but by applying the prompt jump approximation the reactivity can easily be calculated.

Background

The neutron flux, ϕ , is not really a flux as one would think of the term in a physics context. Instead, it is a simple characterization of the total rate at which neutrons pass through a unit area regardless of the neutron direction [pg. 110 in (3)]. The neutron flux

(neutrons/cm²-sec) is defined as the density (neutrons/cm³) multiplied by the average velocity (cm/sec). Reactivity, ρ , is a function of the effective neutron multiplication factor, k. Fast neutrons are produced in a fission event and usually scatter about the reactor until they are destroyed in an absorption reaction or leak out of the system. Some of the absorption is in the fissile fuel, which induces fission and produces more neutrons, thus starting a new generation of neutrons.

Suppose it was possible to measure the number of neutrons in two successive fission generations using one group diffusion theory, which considers only thermal neutrons. A ratio of the two numbers could be defined as the multiplication factor, k, characterizing the chain reaction [pg. 75 in (3)]. Let k be defined as the effective multiplication factor, that is

$$k \equiv \frac{\text{the number of neutrons in the ith generation}}{\text{the number of neutrons in the (i-1)th generation}}$$
 (2.1)

It is more convenient to measure the ratio of the deviation of the neutron multiplication factor from unity, a quantity which is defined as the reactivity, $\rho(t)$, such that [pg. 239 in (3)],

$$\rho(t) \equiv \frac{k(t) - 1}{k(t)} . \qquad (2.2)$$

Point Reactor Kinetics

In the field of nuclear reactor kinetics, a model is needed that enables one to predict the neutron reactivity of the time-dependent

neutron flux. The model that is used is the point reactor kinetics model, which assumes that the reactor dynamics are position-independent and are determined by the fundamental mode of the spatial flux distribution [pg. 202 in (3)].

The point reactor kinetics equations can be derived from the one-speed diffusion equation [pp. 238-239 in (3)] or from the more sophisticated neutron transport equation. (4) In their most conventional form, the point reactor kinetics equations are as follows:

$$\frac{d\phi(t)}{dt} = \left[\frac{\rho(t) - \beta}{\Lambda}\right] \phi(t) + \sum_{i=1}^{6} \lambda_i C_i(t)$$
 (2.3)

$$\frac{dC_{i}(t)}{dt} = \frac{\beta_{i} \phi(t)}{\Lambda} - \lambda_{i} C_{i}(t) \qquad i = 1, 6, \qquad (2.4)$$

where $\phi(t)$ is the thermal neutron flux (neutrons/cm²-sec),

ρ(t) is the time dependent reactivity,

 $C_{i}(t)$ is the neutron precursor flux of group i, (neutrons/ cm^{2} -sec),

 λ_i is the decay constant of precursor i (sec⁻¹),

 β_i is the delayed neutron fraction of precursor i,

β is the total delayed neutron fraction, and

A is the neutron generation time (sec) [pg. 239 in (3)].

The initial conditions for equations (2.3) and (2.4) at $t \le 0$ are,

$$\phi(0) = \phi_{0},$$

$$C_{i}(0) = C_{i0} = \phi \beta_{i}/\Lambda \lambda_{i},$$

$$\rho(0) = \rho_{0} = 0.$$
(2.5)

When considering neutron flux, there are two types of neutrons that are of concern, prompt and delayed neutrons. Prompt neutrons are the result of a fission event and make up the majority (approximately 99.3%) of the neutron flux, have an average energy of 2 MeV, and occur within 10⁻¹⁷ seconds after a fission event. Delayed neutrons are produced by the decay of neutron precursors, which are unstable fission products. The neutron precursor decays by emitting a beta particle from the nucleus to form an emitter. In the low energy state the emitter will decay by gamma or beta emission, but in the higher energy state the emitter will decay by neutron emission. In both cases the daughter nuclide may not be stable and further gamma or beta decay may take place; however, no further neutron emission will occur (see Fig. 2.1). Delayed neutrons appear from 10⁻⁴ seconds to five minutes in the system after an initial fission event and have an average energy of 0.5 MeV.

In the point reactor kinetics equations, $C_i(t)$ has the same units as $\phi(t)$. When referring to neutron precursors, one usually is concerned about the density. Therefore, let $\overline{C_i}(t)$ be the i^{th} precursor density (precursor of group i/cm^3), $\overline{v_i}(cm/sec)$ be the velocity of the i^{th} precursor, $\lambda_i(sec^{-1})$ be the decay constant of the i^{th} precursor, and β_i be the delayed neutron fraction of the i^{th} precursor, such that $\beta = \sum_{i=1}^{n} \beta_i$. β is the total fraction of delayed neutrons per neutron emitted in one fission, and $(1-\beta)$ is the total number of prompt neutrons per neutron emitted. If $C_i(t)$ is to have the same units as $\phi(t)$ (neutrons/cm²/sec), then $C_i(t)$ must be equal to

Fig. 2.1 Diagram for a Typical Neutron Precursor [pg. 13 in (7)]

$$\overline{v_i} \times \overline{C_i(t)}$$
 [pg. 238 in (3)].

Even though the thermal neutron flux (neutrons with energies of 1 eV or less) has been discussed, the fast flux must also be considered. The multiplication factor, k, is determined by a six factor formula in which variable factors relating to the fast flux are taken into account [Chapt. 3 in (3)].

Neutron Generation Time versus Prompt Neutron Lifetime

In the point reactor kinetics equations, the neutron generation time, Λ , is used instead of the prompt neutron lifetime, ℓ . The prompt neutron lifetime is the mean time before one neutron is destroyed, and is the sum of the neutron slowing-down time and the neutron diffusion time. The slowing-down time is the time that the neutron spends above the thermal energy range after a fission event, while the diffusion time is the time that a neutron spends in the thermal range that ends when the neutron is absorbed or leaks out of the system.

If ℓ were used in equations (2.3) and (2.4) instead of ℓ , ℓ would be replaced by ℓ/k . The prompt neutron lifetime is based on the reciprocal probability of the destruction of the neutron.

$$\ell = \frac{\text{Total neutron population in the system at time t}}{\text{Rate of neutron loss in the system}}$$
 (2.6)

The rate of neutron loss includes neutron absorption in the fuel, neutron capture in non-fuel materials, and leakage out of the system [pg. 77 in (3)].

The neutron generation time is the mean time before one neutron generates one prompt neutron or one precursor. Λ is normalized to the fission event and is defined as, $\Lambda = 1/k$. Prompt neutrons are removed by different processes and not all of these cause a new fission event; however, the production of all prompt neutrons occurs only one way, via a fission event. Also, the effect of delayed neutron precursors is expressed as a fractional production, β . It is more convenient to reference fission events than removal processes, and employ parameters based on production, β , β , and Λ .

Effective Delayed Neutrons Fraction

Each reactor has a characteristic effective delayed neutron fraction, $\beta_{\rm eff}$. The actual delayed neutron fraction cannot be used because its value is too small. Delayed neutrons, when produced, have an average energy less than that of prompt neutrons, and thus slow down to thermal energies quicker. The overall effect is that there appears to be more delayed neutrons in the system than there actually are. The correction factor for a homogeneous fuel is,

$$\beta_{i}^{*} = \beta_{i} \exp B^{2}(\tau_{p} - \tau_{i}),$$
 (2.7)

where β_i^* is the effective delayed neutron fraction of the ith group, τ_p is the Fermi age of the prompt neutrons, and τ_i is the Fermi age of the ith delayed neutron group [pg. 436 in (2)]. The uranium in the VPI & SU reactor is at least 90% or more U²³⁵

in each fuel plate. (6) The Fermi age of a neutron is one-sixth the average distance squared (crow-flight) that a neutron travels, starting when it enters the system at energy E_0 and ending when thermal energy is reached at 1 eV [pg. 367 in (3)].

 $\beta_{\rm eff}$ for the VPI & SU reactor is 0.00679, which can be calculated by measuring a known reactivity change over a known period and using a Reactirule sliderule to calculate $\beta_{\rm eff}$ (see Appendix A). According to equation (2.7), each effective delayed neutron group fraction should be calculated individually from its own Fermi age. Since a calculation for $\beta_{\rm eff}$ is being used, and $\beta_{\rm eff} = \frac{6}{5} \beta_{\rm i}^{*}$, and β is very close to $\beta_{\rm eff}$, an approximation for $\beta_{\rm i}$ is used. For U²³⁵, $\beta_{\rm i}/\beta$ are tabulated; therefore the approximation for $\beta_{\rm i}$ that is used is,

$$\beta_{i}^{*} = (\beta_{i}/\beta) \beta_{eff}. \qquad (2.8)$$

 β_i^* is not exact, but is precise enough for the simple model employed. As will be shown, the values of β_i^* do not need to be calculated. In the development of the computer algorithm later in the chapter, the ratio of β_i^*/β_{eff} is used. This value reduces to β_i/β and these values are tabulated.

Prompt Jump Approximation

To understand the prompt jump approximation, one can start with the inhour equation. Using Laplace transforms to solve equations (2.3) and (2.4) simultaneously for $\phi(s)$, the following result is

obtained,

$$\phi(s) = \frac{N_0 \left[\Lambda + \sum_{i=1}^{6} \frac{\beta_i \lambda_i}{\lambda_i + s}\right]}{\Lambda s - \rho_0 + \beta - \sum_{i=1}^{6} \frac{\lambda_i \beta_i}{s + \lambda_i}}.$$
 (2.9)

The denominator can be shown to have seven distinct real roots, which implies $\phi(s)$ has seven poles on the real s-axis [pg. 21 in (7)]. The inverse transform of equation (2.9) is

$$\phi(t) = \sum_{j=1}^{7} A_{j} \exp(\omega_{j} t),$$
 (2.10)

where ω_j (sec⁻¹) are the seven roots of the denominator of $\phi(s)$ for s=j. Setting the denominator of equation (2.9) equal to zero, the inhour equation becomes

$$\rho_0 = \beta + \Lambda \omega - \sum_{i=1}^{6} \frac{\beta_i}{\omega + \lambda_i}. \qquad (2.11)$$

Since $\beta = \sum_{i=1}^{6} \beta_i$, equation (2.11) becomes

$$\rho_0 = \Lambda \omega + \sum_{i=1}^{6} \frac{\beta_i \omega}{\omega + \lambda_i}, \qquad (2.12)$$

which is the most conventional form of the inhour equation [pg. 22 in (7)]. Six of the seven roots are based on six delayed neutron groups, and the seventh is primarily determined by the generation time and reactivity. ω_1 through ω_6 refer to the delayed neutron groups with ω_1 representing the delayed neutron groups which has the largest ω and ω_6 representing the delayed neutron group with the smallest ω .

 ω_{7} represents the prompt neutrons and is the smallest of all the ω roots.

The effect of ω can be seen in Figure 2.2. During time intervals of two seconds or less, $\phi(t)$ has the shape of the term, $A_7 \exp(\omega_7 t)$. For longer periods of time $\phi(t)$ follows the sum of the six delayed neutron group terms. Each term of the sum, $A_j \exp(\omega_j t)$, for i=1 to 6, has a similar exponential shaped curve. During a step change in reactivity, the reactor flux has a very rapid transient behavior initially that is characteristic of the prompt neutron lifetime, and is followed by a slower transient behavior that is controlled by the delayed neutron groups. The time behavior of the neutron flux is essentially governed by the delayed neutron flux for systems below prompt critical [pg. 250 in (3)].

The prompt jump approximation makes use of the above fact for systems below prompt critical. The prompt neutron lifetime is assumed to be zero so that for a step reactivity insertion, the neutron flux level jumps from ϕ_0 to ϕ_1 (Fig. 2.2) instantaneously. The effect on the point reactor kinetics equations (2.3) and (2.4) is to neglect the time derivative, $\frac{d\phi}{dt}$, by setting it equal to zero. Delayed neutron production cannot change instantaneously during a step change. The prompt jump approximation predicts a reactivity jump that yields an instantaneous change in neutron flux from ϕ_0 to ϕ_1 given by $\phi_1(\beta-\rho_1)=\phi_0(\beta-\rho_0)$ [pg. 251 in (3)]. The prompt jump approximation is very useful and accurate for reactor systems below prompt critical. It is a good approximation for

Fig. 2.2 Neutron Flux Change for a Positive Reactivity Insertion. pg. 34 in (7)

injection into and removal of samples from the reactor at criticality.

Feedback Effects

Feedback effects are changes in the physical and chemical properties of the reactor materials that cause changes in the neutron flux. To illustrate the above, the moderator temperature is a feedback effect. As the neutron flux increases, the moderator temperature increases and causes the neutron flux to decrease. Other feedback effects are fuel temperature and the build-up of neutron poisons, such as xenon, iodine, and samarium. No feedback equations are required in the algorithm, because the changes in the neutron flux occur internally in the reactor.

Six Delayed Neutron Groups

There are six delayed neutron groups that have distinct half lives and decay times (Table 2.1 and Table 2.2). The six groups can be collapsed into fewer groups and new decay constants can be calculated for each group (Table 2.3) by the equation [pg. 242 in (3)],

$$\frac{1}{\lambda} = \frac{1}{\sum_{i}^{\beta} \beta_{i}} \left(\sum_{i}^{\beta} \frac{\beta_{i}}{\lambda_{i}} \right). \tag{2.13}$$

The purpose for combining neutron groups would be to reduce the number of differential equations from seven to no less than two.

The fewer delayed neutron groups used in the point reactor kinetics equations, the less accurate are the results. As can be seen from

Table 2.1, the delayed neutron groups are divided into the fewest groups possible to have good accuracy. According to the natural logs of the half lives, the difference between the number in any group is no more than 0.5, while the difference between groups is one.

Reducing the seven equation system to make the model simpler would decrease the accuracy of the results. The evaluation of each of the six delayed neutron groups represents the same type of calculation, with only the constants being different. A microcomputer can easily perform all six calculations in under one-half second. The time to perform the six calculations is not a major factor, so nothing is gained from a simplification from six groups to something less, and accuracy is lost.

Computer Algorithm Equations:

A simplification of equations (2.3) and (2.4) is needed before they can be used in the computer algorithm. Consider the constants first. Let $\alpha_R = \beta/\Lambda$ and $\beta_1/\beta = a_1$, where a_1 is the relative neutron fraction. Reactivity is measured in dollars. When the reactivity change is equal to beta, $\rho(t) = \beta$, this quantity is called a dollar; therefore let $\rho'(t) = \rho(t)/\beta$. Finally, the precursor flux is defined as $Y_1(t) = C_1(t)\Lambda \lambda_1/\beta_1$. If one multiplies $\rho(t)$ by β/β and $\lambda_1 C_1(t)$ by $\Lambda \beta_1 \beta/\Lambda \beta_1 \beta$ in equation (2.3) and everything in equation (2.4) by $\Lambda \lambda_1/\beta_1$ and simplifies, (2.3) and (2.4) become

$$\frac{d\phi}{dt} = \alpha_{R}[\phi(t)(\rho'(t) - 1) + \sum_{i=1}^{6} a_{i}Y_{i}(t)], \qquad (2.14)$$

Table 2.1
Delayed Neutron Precursors

Group Number	Precursor	Half-life second	ln t _{l2} /sec
1	Br ⁸⁷	54.5	3.99
2	1 ¹³⁷	24.4	3.19
	Br ⁸⁸	16.3	2.79
3	Br (89)	6.3	1.84
	Rb ^(93,94)	~6.	1.79
4	1 ¹³⁹	2.0	.69
	(Cs, Sb, or Te)	(1.6-2.4)	.4788
	Br (90,91)	1.6	.47
	_{Kr} (93)	~1.5	.41
5	(I ¹⁴⁰ Kr ?)	0.5	69
6	(Br, Rb, As ?)	0.2	-1.61

^{*}Uncertain quantities are indicated by parentheses. [pg. 99 in (2)]

Table 2.2

U²³⁵ Delayed Neutron Data

Group	Decay Constant (sec ⁻¹)	Fractional Yield ^β i
1	0.0127 ± 0.0002	0.000247
2	0.0317 ± 0.0008	0.001385
3	0.115 ± 0.003	0.001222
4	0.311 ± 0.008	0.002645
5	1.40 ± 0.081	0.000832
6	3.87 ± 0.369	0.000169
	$\beta = \sum_{i=1}^{6} \beta_i = 0.0065 \pm 0.0002$	

[pg. 22 in (8)]

Table 2.3 ${\tt U}^{235} \ {\tt Delayed \ Neutron \ Decay \ Constants}$ for One, Two, and Three Groups

1 group	$\lambda = .102 \text{ sec}^{-1}$
2 groups	$\lambda_1 = .0387 \text{ sec}^{-1}$
	$\lambda_2 = .399 \text{ sec}^{-1}$
3 groups	$\lambda_1 = .0285 \text{ sec}^{-1}$
	$\lambda_2 = .202 \text{ sec}^{-1}$
,	$\lambda_3 = 1.57 \text{ sec}^{-1}$

$$\frac{dY_{i}}{dt}(t) = \lambda_{i}(\phi(t) - Y_{i}(t)), \qquad i = 1 \text{ to 6.}$$
 (2.15)

The above equations have the following initial conditions for $t \le 0$:

$$\phi(0) = \phi_0,$$

$$Y_i(0) = Y_{i0} = \phi_0,$$

$$\rho'(0) = \rho'_0 = 0.$$
(2.16)

Dividing through by α_R , applying the prompt jump approximation, and then solving for $\rho(t)$ in equation (2.14), one obtains

$$\rho'(t) = \frac{\phi(t) - \int_{1}^{6} a_{i}Y_{i}(t)}{\phi(t)} . \qquad (2.17)$$

Everything but $Y_i(t)$ is known in equation (2.17). $Y_i(t)$ can be determined by solving the simple differential equation (2.15). Thus,

$$Y_{i}(t) = \phi_{0} \exp(-\lambda_{i} t) + \lambda_{i} \int_{0}^{t} \phi(\tau) \exp(-\lambda_{i} (t - \tau)) d\tau. \qquad (2.18)$$

The integral can be evaluated by a numerical integration technique, such as Simpson's Rule or the Trapezoid Rule. Equations (2.17) and (2.18) are the equations on which the microcomputer algorithm is based [pp. 132-133 in (9)].

Conclusion:

Starting with the basic form of the point reactor kinetics equations, seven equations have been derived for use in the computer

algorithm. Six delayed neutron groups are used for accuracy. Since the system is used to calculate the reactivity below prompt critical, the prompt jump approximation is employed. This model is simple and accurate to within two decimal places and is implemented in the software program.

CHAPTER III

EQUIPMENT

Introduction

The reactimeter for the VPI & SU reactor is comprised of four components: a compensated ion chamber, a micro-microammeter, a digital panel meter, and a microcomputer (see Fig. 3.1 for a block diagram).

The Westinghouse Type 6377 compensated ion chamber measures the thermal neutron flux from the reactor and outputs an electrical current that is directly proportional to the thermal neutron flux. The current is measured by a Keithley Model 411 micro-microammeter. The current range of the Keithley is from 10⁻¹¹ to 10⁻³ amperes and is divided into seventeen logarithmic range settings. The Keithley has a normalized analog voltage signal for each range that determines the magnitude of the current in that range setting. This signal is converted into a digital signal by a digital panel meter, which is made by Analog Devices, Inc., before being read by the microcomputer. A second signal is required to interpret the range of the Keithley and relay such information to the microcomputer. The microcomputer is a Mark 80 that is made by E&L Instruments, Inc.

Compensated Ion Chamber:

The compensated ion chamber (CIC) is a Westinghouse Type 6377 and is designed to detect thermal neutron fluxes from 2.5 x 10^2 to 2.5 x 10^{10} neutrons/cm²-sec, in fields where very high gamma radiation

Fig. 3.1 Block Diagram of Reactimeter

is present. The CIC can be operated in any position at any temperature up to 175°F. It has an operating voltage range from 300 to 800 volts that is set to 425.3 volts DC, and a compensating voltage that is set to -43.2 volts DC. The current output is directly proportional to the thermal neutron flux, $I_n = K \times \phi$, where $K = 2.5 \times 10^{13} \text{ nv/}$ amperes (nv = neutrons/cm²/sec).

A compensated ion chamber records neutron flux by using two regions of equal volume and three parallel plates (see Fig. 3.2), which may be cup shaped for greater surface area. One region has a boron coating, enriched in boron-10, covering the inside faces of the plates and has a positive potential on the outside plate. The boron-10 has a high capture cross section for thermal neutrons, and emits an alpha particle after absorption of a neutron: $^{10}B(^{1}n, ^{4}\alpha)^{7}Li$. The alpha particle along with the gamma radiation produces a current between the plates. The other region has a negative potential on the outside plate and has a current due only to gamma radiation in the direction opposite to that in the other region. The middle plate is the signal collector and is grounded. The middle plate has a boron coating on the face in the region with the positive potential, but has none on the face in the region with the negative potential. Since the gamma rays are approximately the same in both regions, the final current output of the middle plate is due only to the thermal neutrons. Thus, the current output from the CIC is directly proportional to the thermal neutron flux [pp. 312-313 in (10)]. Specifications for the Westinghouse Type 6377 CIC are located in

Fig. 3.2 Compensated Ion Chamber Detector [pg. 313 in (10)]

Appendix C.

Keithley Model 411 Micro-microammeter

The Keithley Model 411 Micro-microammeter has seventeen current ranges from 10^{-11} to 10^{-3} amperes. The Keithley meter uses a resistor network to partition the current into smaller logarithmic decades as follows: 1×10^{-11} , 3×10^{-11} , 1×10^{-10} , 3×10^{-10} , 1×10^{-9} ,, 3×10^{-4} , and 1×10^{-3} amperes. The lowest range setting, 1×10^{-11} , is not used because values of neutron flux at this setting are of no concern. There is a ± 2% accuracy for the ranges from 1 x 10^{-3} to 3 x 10^{-7} and a ± 4% accuracy for all other ranges. The input current to the Keithley meter is the output current from the CIC, which can be read from a meter on the front panel. The Keithley meter has a 0 to 100 mV output on the back panel from which a normalized signal is produces for each of the sixteen ranges. The normalized voltage is an analog signal that must be converted to a digital signal before it can be used by the microcomputer. mantissa of the electrical current is determined from this signal, which represents a number either between one and three, or a number between three and ten (see Table 3.1). Since there is no method in the manufacturer's design to determine the actual range setting, such as, by using an analog or digital signal from which the limits of the mantissa and the magnitude of the characteristic can be determined, a method must be devised. This limitation poses an interesting interfacing problem. Specifications for the Keithley meter are

Table 3.1
Current Measured vs Voltage Output

Correlation between the current read by the Keithley meter and the normalized voltage output.

Range	Current Ra	ange Limits	Current	Voltage	
Setting	Low	High	Measured (amps)	Output	
3 x 10 ⁻¹⁰	1 x 10 ⁻¹⁰	3 x 10 ⁻¹⁰	2.0 x 10 ⁻¹⁰	50.0	
			1.5×10^{-10}	25.0	
			2.5×10^{-10}	75.0	
1×10^{-9}	3×10^{-10}	1×10^{-9}	4.0×10^{-10}	14.3	
			6.5×10^{-10}	50.0	
			8.0×10^{-10}	71.5	
3×10^{-9}	1×10^{-9}	3×10^{-9}	2.0×10^{-9}	50.0	
			1.1×10^{-9}	5.0	
			1.6×10^{-9}	30.0	
1 x 10 ⁻⁵	3×10^{-6}	1×10^{-5}	5.5×10^{-6}	35.7	
			6.5×10^{-6}	50.0	
			7.5×10^{-6}	64.3	
3×10^{-5}	1×10^{-5}	3×10^{-5}	1.0×10^{-5}	0.0	
			1.5×10^{-5}	25.0	
			2.5×10^{-5}	75.0	
			3.0×10^{-5}	100.0	

located in Appendix C.

Digital Panel Meter

The digital panel meter (DPM) is a 3 1/2-Digit AC line-powered DPM Model AD2009/S made by Analog Devices, Inc. The AD2009/S is designed around TTl logic circuits and is TTL/DTL (transistor-transistor logic/diode-transistor-logic) compatible. It is capable of analog input voltages from 0 to 200 mV and outputs a parallel binary-coded-decimal (BCD) digital signal with an accuracy of ± 0.1% reading, ± 1 digit. Under external control, the AD2009/S can be triggered to give readings up to 100 conversions per second, but under internal control has a conversion rate of six conversions per second. All thirteen digital output lines are valid when the status lines are low. Analog Devices, Inc. documentation is located in Appendix C.

Mark 80 Microcomputer

The microcomputer is a Mark 80^R which is made by E&L Instruments, Inc. and is used in conjunction with IF-101 interface board, also made by E&L Instruments Inc. The heart of the Mark 80 is a CPI-80/B Central Processor and Interface Controller printed circuit board which contains the Intel 8080 microprocessor chip. The minimum memory requirements for the Mark 80 is 1 K of R/W (Read/Write) memory, that can be obtained from MB-80/B memory circuit board. The Mark 80^R can be expanded up to 64 K of memory by using sixteen memory boards and

a chassis rack. The Mark 80 has some unique features and concepts in data busing and I/O (input/output). (11) See Bugbook III, reference 11 for programming and basic interface techniques.

CHAPTER IV

HARDWARE

Introduction

The purpose of the hardware in the reactimeter is to allow for an exchange of information between the Mark 80 and the peripheral devices. In total there are five external circuits connected to the Mark 80. There are two sources of input data that together represent one piece of data. The digital panel meter interface allows a three-digit mantissa to be read into the Mark 80, where the Keithley interface supplies the characteristic of the mantissa. The third circuit, the output interface, receives a number, consisting from one to five digits plus the sign, that represents the final calculated result. A clock circuit, the fourth external circuit, is required to generate an interrupt to the Mark 80 every 0.2 seconds to restart it for a new calculation. The final circuit is one that automatically single steps the Mark 80 at a speed of 500 kHz instead of the normal operating speed of 2 MHz.

Keithley Micro-microammeter Interface

The Keithley interface is the more complex of the two data input interfaces. The interface involves the transmission of a binary signal from the range dial of the Keithley to the Mark 80. The first problem that arises is that there is no signal of any kind generated by the range dial in the manufacturers specifications.

The method used to create a signal is the construction of a Gray shaft encoder that uses the Gray code to generate a binary signal for each range setting.

In the Grade code, which is a binary code, only one bit changes at a time when the switch changes between consecutive positions. This allows for the least amount of error in interpreting the binary signal. The Gray code, with its binary representation and binary code equivalent value, is listed in Table 4.1 [pg. 218 in (12)].

A Gray shaft encoder uses the Grady code to assign a binary value to each range of the Keithley meter. Four bits can represent the sixteen ranges. The Gray shaft encoder was manufactured according to the drawing in Figure 4.1. As can be noticed, there are 0.20-cm holes drilled around the encoder disk at different radii. The binary code, generated by light passing through the holes lying on a single radius, is detected by a phototransistor array. The Gray shaft encoder is fastened to the range dial shaft on the inside of the Keithley meter. Each radius is assigned a binary weight. The holes lying on the circles with radii 1.68, 1.93, 2.18, and 2.44 cm represent bits DATAO, DATA1, DATA2, and DATA3, respectively.

The light detector is a FTK0040 9-element NPN planar phototransistor array that has a high illumination sensitivity. Each phototransistor channel is electrically isolated, is on a 0.254 cm center, and requires a Schmitt trigger for operation (see documentation in Appendix C). A Schmitt trigger is a hybrid analog/digital device in which the output pulse of the trigger remains at a constant

Table 4.1
Gray Code

Position	Gray Code	Binary Equivalent Value
0	0000	0
1	0001	1
2	0011	3
3	0010	2
4	0110	6
5	0111	7
6	0101	5
7	0100	4
8	1100	12
9	1101	13
10	1111	15
11	1110	14
12	1010	10
13	1011	11
14	1001	9
15	1000	8

amplitude as long as the input voltage exceeds a certain DC voltage value. A resistor is needed on each channel to adjust the light sensitivity. It was determined that a 10 K ohm resistor was required to permit each phototransistor channel to be used with a G.E. #47 6.3 V light bulb. Only four of the nine channels are required for the binary code. The remaining five are left unconnected (see Fig. 4.2 for circuit connection). The arrangement of the 6.3 V light bulb, the Gray shaft encoder, and the phototransistor is shown in Figure 4.3. Each channel is connected to an input of a 7475 flip-flop, which latches the value (logic 1 or 0) of the four channels on a positive device select pulse generated by the Mark 80. The data is read into the Mark 80 when a negative device select pulse is applied to the corresponding 8095 three state-buffer. The 8095 three-state buffer has three outputs, a "logic 0" state, a "logic 1" state, and a state in which the output is, in effect, disconnected from the rest of the circuit and has no influence on it. The negative device select pulse is used to enable the 8095 buffer and allows the information in the 7475 flip-flop to be transferred on to the data bus of the Mark 80 and be read into the accumulator (see Fig. 4.4 for interface connection). The 8095 chip output pins are connected to the data bus lines DO through D3. Data bus lines D4 through D7 are set to "logic 0".

Digital Panel Meter Interface

The interface between the digital panel meter and the Mark 80

Fig. 4.2 Gray Shaft Encoder Circuit

Fig. 4.3 Block Diagram of Gray Shaft Encoder

Fig. 4.4 Keithley Interface Circuit

is simple. Four bits are required for each of the three digits that are produced by the digital panel meter. Three 7475 flip-flops and three 8095 three-state buffers are required to latch the twelve bits of data (see Fig. 4.5). A positive device select pulse is used to latch the three 7475 flip-flops simultaneously as well as the 7475 flip-flop used in the Keithley meter interface. Each 8095 buffer has its own individual negative device select pulse to allow the Mark 80 to read the data from one 7475 flip-flop at a time. All three 8095 buffer outputs are connected to the data bus lines DO through D3. Lines D4 through D7 are set to zero by using three 2-input AND gates and a 8095 three-state buffer with its inputs set at "logic O" (see Fig. 4.6). The arrangement of the three 2-input AND gates is that of a 4-input AND gate. The purpose of creating a 4-input AND gate is to allow four devices to use the same device for the same purpose, which is the setting of the data bus lines D4 through D7 to "logic 0" while input data is being read on the other four data bus lines by the Mark 80. The inputs to the AND gates are always at "logic 1" unless a negative device select pulse is sent. Thus, only one line at a time will ever be at "logic 0". Table 4.2 summarizes the truth table for the AND gate circuit. A 4-input AND gate could be used in place of the three 2-input AND gates, but in the decoding circuit that appears later in this manuscript, a 2-input AND gate is needed. Each 7408 chip has four 2-input AND gates; three of these and one 4-input AND gate would be wasted if a 7425 chip, which has two 4-input AND gates, were used with the 7408.

Fig. 4.5 Digital Panel Meter Interface Circuit

Fig. 4.6 Zero Input Interface Circuit

Table 4.2
4-Input AND Gate Truth Table for Device Select Pulses
IN 0 through IN 3

Logic State of				Logic State of
IN O	IN 1	IN 2	IN 3	Output
1	1	1	1	1
0	1	1	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	0

In Figure 4.7, the connections for the digital panel meter are shown. A 110 VAC source and an earth shield are required for operation of the DPM. An external trigger is used for a conversion rate of five times per second. To trigger a new conversion, a positive clock pulse is required at pin B. A positive clock pulse is obtained by inverting the negative clock pulse generated by an IN 1 instruction, which also enables a three-state buffer. The IN 1 instruction starts a new conversion by the DPM after the previous data has been latched by an OUT 10 instruction.

Thus, while the microcomputer performs calculations with the current data, the DPM updates the reading for the next calculation. Since the analog-to-digital conversion takes less than 10 msec, the new reading is ready for the next reading before the microcomputer is done with the current calculations. The analog voltage output of the Keithley is connected to the analog voltage input of the DPM (pins 10 and 2). To ensure the correct conversion from analog to digital, the analog and digital signal grounds are connected together (pins N and 10). Only twelve out of the thirteen data lines are used because all input voltages are positive and the data line for the number sign is not required. The twelve data lines are connected to the inputs of three 7475 flip-flops (see Fig. 4.5).

Interrupt Timing Circuit

Because of a software requirement, the Mark 80 needs to know when one 0.2 second period ends and the next 0.2 second period begins.

Fig. 4.7 Connection Diagram for Digital Panel Meter

The Mark 80 itself cannot keep track of the time because of the timing variations in the software system. Instead, an interrupt signal from a timing circuit is used to keep track of the time period of 0.2 seconds (see Fig. 4.8). A 555 timer IC chip is the basis for the external clock. A frequency of 40 Hz is used to generate eight clock pulses every 0.2 seconds. To generate a frequency of 40 Hz from the 555 timer chip the following equation is used,

$$Hz = 1.443/(R_A + 2R_B) C$$
 (4.1)

where $R_A = 2.28 \text{ K}\Omega$ $R_B = 660 \Omega$ $C = 10 \mu\text{F}.$

The above value yields a frequency of 40.08 Hz, but this is of no consequence because the resistors have a tolerance of \pm 5%, and the capacitor has a tolerance of \pm 20% (13). Since the frequency must be as close as possible to 40 Hz, a potentiometer is used in the circuit to adjust the resistance to obtain the exact frequency.

At pin 3 of the 555 timer, a clock pulse is generated at every cycle. The clock pulses are directed to the input pin of a 7490 decade counter. Since there are eight counts every 0.2 seconds, on the eighth count pin 11 of the 7490 counter goes from a "logic 0" to a "logic 1", which is changed to a "logic 0" by an inverter. When a "logic 0" appears at the inverter output, two things happen:

Fig. 4.8 0.2 sec. Timing Interval Circuit

(1) a "logic O" enables a three-state buffer on a 74125 chip, which allows that same signal to be read on to the data bus, and (2) a "logic 0" acknowledges the interrupt, resets the interrupt flag of the Mark 80, and jams an instruction on the data bus. Note that a data bus line that is not connected to a peripheral device during an interrupt signal assumes a "logic 1". Thus, during the interrupt, data bus lines DO through D3 and D5 through D7 assume a "logic 1", while D4 is set to "logic O". The octal code that appears on the data bus, 357, has significance to the Mark 80 because it directs the Mark 80 to memory location HI = 000_{g} and LO = 050_{g} to restart the program. Located at that address is an OUT instruction, that is used to reset the 7490 counter back to zero to count another eight clock pulses for a new time interval. Since a positive clock pulse is required to reset the 7490 counter, an inverter is used to change the negative clock pulse from the Mark 80 to a positive clock pulse. When the 7490 counter is reset, pin 11 goes to "logic 0", which disconnects the 74125 buffer from the data bus line and returns EXT to its normal state of "logic 1". The 7490 counter begins counting pulses again for the next interrupt.

Display Interface

The display is constructed from Texas Instruments Inc. TIL309 digital displays, which contain a built in 4-bit flip-flop, display, and buffer. The TIL309 operates in the following manner: Input data from the data bus is transferred to pins 7, 6, 10, and 15.

Pin 12 is used to light the decimal point, which appears to the right of the figure. Pin 5 is the TIL309 display enable input; data at the input lines are latched during a negative clock pulse. A "logic 1" at pin 11 allows the input data to be displayed, while a "logic 0" blanks the display.

The TIL309 display with the device select pulse OUT 4 is the only display with the decimal point illuminated and is the only display that is not blanked (see Fig. 4.9A). In the Reactimeter program, the software calls for blanking the other four displays on certain occasions. Device select pulses OUT 5, 6, 7, and 8 each enable a TIL309 display. The TIL309 display can be blanked by setting pins 7, 6, and 15 to "logic 1" and pin 10 to "logic 0". Table 4.3 lists the binary representation of the numbers, 0 through 9, and the software codes for plus sign, minus sign, and blank (for blanking the display).

The sign of the number is displayed by a light-emitting diode (LED). If the LED is on, the sign is negative, whereas if the LED is off, the sign is positive (see Fig. 4.9B). A 7475 flip-flop is used to latch the data appearing on the data bus line D7. Only a single bit is needed to light the LED. The octal codes for the minus and plus signs are 200 and 000, respectively. A positive device select pulse enables the 7475 flip-flop, which latches the data at bit D7. A 330 ohm resistor is used as a current limiting resistor to ensure that the LED does not burn out.

Fig. 4.9 A Output Interface Circuit Numeric Displays

Fig. 4.9 B Output Interface Circuit Sign Display

Table 4.3
Binary Representation of Output Data

Output Data	Binary	Rep	re	se	nt	ation
0	0 0	0 0	0	0	0	0
1	0 0	0 0	0	0	0	1
2	0 0	0 0	0	0	1	0
3	0 0	0 0	0	0	1	1
4	0 0	0 0	0	1	0	0
5	0 0	0 0	0	1	0	1
6	0 0	0 0	0	1	1	0
7	0 0	0 0	0	1	1	1
8	0 0	0 0	1	0	0	0
9	0 0	0 0	1	0	0	ì
plus sign	0 0	0 0	0	0	0	0
minus sign	1 0	0 0	0	0	0	0
blank	0 0	0 0	1	1	0	1

Decoding Circuit

Device select pulses are used as clock pulses for the DPM, 7475 flip-flops, 8095 three-state buffers, and TIL309 digital displays. Three chips are required to construct the decoding circuit: a 74154 4-line-to-16-line decoder, a 7408 AND gate, and a 7404 inverter. The 74154 input lines are connected to the address bus lines AO through A3, which permit the device code to be read into the chip at the same time the chip is enabled by a negative clock pulse that is generated by either an IN or OUT instruction (see Fig. 4.10). All output channels of the 74154 are at "logic 1" in the standard state. When a 4-bit code is read into the address bus and the 74154 is enabled, the corresponding output channel goes to "logic 0" and remains there until the chip is disabled (see Table 4.4). The 7475 flip-flop requires a positive clock pulse, so an inverter is used to change the negative clock pulse into a positive clock pulse. To permit the use of one 74154 decoder for both IN and OUT instructions, the IN and OUT status bits are ANDed together. These bits cannot be directly connected together to the same line, since both cannot be "logic 0" at one time without causing damage. Both bits can be "logic 1" at the same time or they can have opposite logic. Table 4.5 summarizes the device codes, the peripheral devices, and the types of clock pulse sent out.

500 KHz Clock Rate

The Mark 80 microcomputer must operate at 500 KHz instead of

Fig.4. 10 Decoding Circuit

Table 4.4

Truth Table for a 4-Line-to-16-Line Decoder

Octal Device Code	Inputs	Outputs
	D C B A	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
000	0 0 0 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
001	0001	101111111 1 1 1 1 1 1
002	0 0 1 0	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
003	0 0 1 1	1110111111 1 1 1 1 1 1
004	0 1 0 0	1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
005	0 1 0 1	1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
006	0 1 1 0	1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
007	0 1 1 1	1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
010	1 0 0 0	1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
011	1 0 0 1	1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
012	1 0 1 0	1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
013	1 0 1 1	1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
014	1 1 0 0	1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
015	1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
016	1 1 1 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
017	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 4.5

Peripheral Device vs Clock Pulse

Peripheral Device	Device Code	Clock Pulse
8095 Three-state buffer	000	Negative
8095 Three-state buffer	001	Negative
8095 Three-state buffer	002	Negative
8095 Three-state buffer	003	Negative
TIL309 Display	004	Negative
TIL309 Display	005	Negative
TIL309 Display	006	Negative
TIL309 Display	007	Negative
TIL309 Display	010	Negative
7475 Flip-flop	011	Positive
Four 7475 Flip-flops	012	Positive
7490 Decade Counter	013	Negative

the normal rate of 2 MHz to allow the software to function correctly. At 2 MHz, mathematical calculations performed by the math subroutine package produces inaccurate results, but at the slower rate of 500 KHz the correct results are produced. To decrease the operating rate from 2 MHz to 500 KHz, the 2 MHz internal clock of the Mark 80 is used along with the circuit on Figure 4.11 to single step the Mark 80 through the program. The 7493 binary counter chip is used to generate one clock pulse for every four clock pulses received, and the new clock pulse is used to single step the Mark 80 through the program. The yellow switch on the top row of switches on the front panel of the Mark 80 must be in the up position to allow single step operation to proceed.

At a speed of 2 MHz, each machine cycle is executed immediately after the previous machine cycle. When the microcomputer is single stepped at a clock rate of 500 KHz, the machine cycles still operate at 2 MHz, but there is a waiting period between two consecutive machine cycles.

Conclusion

All the circuits that have appeared in this section are to be wire wrapped together on one circuit board that can be plugged directly into the Mark 80 system. Because of a lack of time this was not done and the circuits have only been tested individually. The software required to direct information in and out of these circuits is discussed in the next chapter.

Fig. 4.11 Automatic Single Step Mode Circuit

CHAPTER V

SOFTWARE

Introduction

The programming of the microcomputer is the last step in the development of the reactimeter. The program has two major computations to perform. One computation is the interpretation of the flux from the two signals received from the Keithley micro-microammeter. The flux interpretation program is comprised of four routines: two which convert electrical current into neutron flux, one that selects one of the conversion routines and the correct conversion constant, and one that stores the calculated flux in the correct memory location. The second computation is the calculation of the reactivity from the present and past neutron flux. Simpson's Rule is used to evaluate the integral in equation (2.18). Two flux measurements must be recorded before a new reactivity calculation can be performed. Thus, if the flux is measured at each time interval, Δt , the reactivity is calculated every 2 Δt . The time interval, Δt , that is chosen must be based on the decay times of the neutron precursors and on the time requirements for the calculations of the neutron flux and reactivity.

Neutron Flux Algorithm

The neutron flux algorithm converts electrical current data received from the Keithley meter into neutron flux data. The Keithley

has sixteen range settings; eight range settings have mantissas between one and three, and eight have mantissas between three and ten. On all ranges the mantissa is represented as an analog voltage between 0 and 100 mV at the auxiliary output of the Keithley meter. This signal is digitized by a digital panel meter and read into the microcomputer in binary-coded-decimal form. During the read routine, the data is changed into binary-floating-point form and stored in MANT (normalized mantissa). By using one of two equations, the actual mantissa of the electrical current measured by the Keithley is determined and is labeled ACMAN (actual mantissa). MANT is a number between 0 and 100 mV that represents a number either between one and three, or a number between three and ten. If MANT represents a number between one and three, then 0 mV corresponds to one and 100 mV corresponds to three (see Table 5.1). For a range setting with the mantissa between one and three, ACMAN is defined as follows,

$$ACMAN = 1 + MANT * (3-1)/100,$$
 (5.1)

which simplifies to

$$ACMAN = 1 + MANT * 0.02.$$
 (5.2)

If the range setting of the Keithley is between three and ten, 0 mV corresponds to three and 100 mV corresponds to ten. ACMAN is defined as follows,

$$ACMAN = 3 + MANT * (10-3)/100,$$
 (5.3)

Table 5.1

Mantissa Value vs Output Voltage

Electric current range setting with the mantissa between one and three.

Value of Mantissa	Output Voltage (mV)
1.00	0.000
1.50	25.0
2.00	50.0
2.50	75.0
3.00	100.0

Electric current range settings with the mantissa between three and ten.

Value	of Mantissa	Output	Voltage	(WW)
	3.00		0.000	
	4.00		14.3	
	5.00		28.6	
	6.00		42.9	
	7.00		57.2	
	8.00		71.5	
	9.00		85.8	
1	10.00		100.0	

which simplifies to

$$ACMAN = 3 + MANT * 0.07.$$
 (5.4)

Equations (5.2) and (5.4) are the equations that are employed to calculate the actual mantissa of the electrical current measured by the Keithley. Table 5.2 lists the binary-floating-point values for the constants and their labels for memory addressing.

To obtain the complete value for the current, ACMAN must be multiplied by the correct power of ten. The exponent is between -11 and -4. The neutron flux is obtained by multiplying the electrical current by the conversion factor, $K = 2.5 \times 10^{13}$ nv/amp, from the compensated ion chamber. The neutron flux is equal to the current times K.

FLUX = Current
$$*2.5 *10^{13} \text{ nv/amp},$$
 (5.5)

which is equivalent to

FLUX = ACMAN x
$$10^{J}$$
 * 2.5 * 10^{13} nv/amp, (5.6)

where J = -11, -10, -9, ... -4. For simplicity, the constants 10^J and K can be defined as a new constant, CONn. Let CONn = $2.5 \times 10^{13+J}$ for n = 1 to 8, and let J be defined in terms of n such that J = n - 12. For n = 1, J = -11, CON1 = 2.5×10^2 , and if n = 8, J = -4, and CON8 = 2.5×10^9 . Table 5.2 lists the values of CONn and their binary-floating-point values. Equation (5.6) can be simplified to the following,

Table 5.2

Conversion Constants for Neutron Flux Algorithm

Number	Label			y Floa eprese	-	
0. 02	CONT2		173	043	327	010
0.07	CONT7		175	017	134	050
1.00	ONE		201	000	000	000
3.00	THREE		202	100	000	000
2.5×10^2	CON1		210	171	377	320
2.5×10^3	CON2		214	034	077	340
2.5×10^4	CON3		217	103	120	010
2.5×10^5	CON4		222	164	043	270
2.5×10^6	CON5		226	030	226	270
2.5×10^{7}	CON6	:	231	076	274	100
2.5×10^{8}	CON7		234	156	152	370
2.5 x 10 ⁹	CON8		240	025	003	060

FLUX = ACMAN * CONn,
$$n = 1$$
 to 8. (5.7)

Equations (5.2), (5.4), and (5.7) comprise the neutron flux algorithm.

Reactivity Algorithm

The reactivity algorithm is based on equations (2.17) and (2.18),

$$\rho'(t) = 1 - (\sum_{i=1}^{6} a_{i}Y_{i}(t))/\phi(t). \qquad (2.17)$$

$$Y_{i}(t) = \phi_{0} \exp(-\lambda_{i}t) + \lambda_{i} \int_{0}^{t} \phi(\tau) \exp(-\lambda_{i}(t-\tau)) d(\tau). \quad (2.18)$$

Since the microcomputer cannot integrate, a numerical integration technique, such as Simpson's Rule, must be used to evaluate the integral in equation (2.18). Simpson's Rule requires the use of three points to calculate the area under the curve. The first point in the area calculation is the end point from the previous area calculation. Thus, two neutron flux measurements are needed before the next neutron precursor flux and reactivity can be calculated.

The precursor flux at time t is calculated from the previous precursor flux at time t = $2 \Delta t$. Let t_k , t_{k+1} , and t_{k+2} be three consecutive points in time when a flux measurement is recorded, and define $\Delta t = t_{k+1} - t_k$, and $2 \Delta t = t_{k+2} - t_k$. Assume that $Y_i(t)$ is known and that a relationship for $Y_i(t_{k+2})$ can be derived from $Y_i(t_k)$. By applying Simpson's Rule to the integral, one can calculate $Y_i(t_k)$ and $Y_i(t_{k+2})$ in equations (5.8) and (5.9), respectively. (See the following page.) $Y_i(t_{k+2})$ can be rewritten as equation (5.10), which can be simplified to equation (5.11).

$$Y_{1}(t_{k}) = \phi_{0} \exp(-\lambda_{1}t) + \frac{\lambda_{1}\Delta t}{3} \left[\phi(t_{0}) \exp(-\lambda_{1}(t_{k}-t_{0})) + 4\phi(t_{1})\exp(-\lambda_{1}(t_{k}-t_{1}) + 2\phi(t_{2})\exp(-\lambda_{1}(t_{k}-t_{2})) + \dots + 4\phi(t_{k}-t_{k}) + 4\phi(t_{k}-t_{k})$$

Equations (5.11) and (2.17) are the two equations that are used in the reactivity algorithm. Equation (5.11) is used once for each of the six neutron precursor groups, and is performed six times every two time intervals. Equation (2.17) is used only once every two time interval.

One additional modification makes it easier for the microcomputer to perform the reactivity algorithm. We define and calculate eighteen constants, three for each of the six equations. Thus, let

CEX1i = exp
$$(-2 \lambda_i \Delta t)$$
 (5.12)

CEX2i = 4 x exp
$$(-\lambda_i \Delta t)$$
 (5.13)

$$CLAMi = \lambda_i \Delta t/3 \tag{5.14}$$

for i = 1 to 6, where $\Delta t = 0.2$ seconds. Refer to Table 5.3 for the numerical values and binary-floating-point values for each of the above constants and the relative yield fraction, Ai.

Time Interval

How often should one take neutron flux measurements? There are two criteria: (1) a time interval that is short enough so that it provides accurate results when used in the point reactor kinetics equations, (2) a time interval that is long enough to permit the microcomputer to perform all calculations in the time span of two time intervals, and (3) a time interval that is long enough to permit a significant change in power.

Table 5.3

Constants for Reactivity Algorithm

Number	Label	Binary Floating Point Representation
0.03800	A1	174 033 245 340
0.21310	A2	176 132 066 340
0.18800	A3	176 100 203 020
0.40690	A4	177 120 125 060
0.12800	A5	176 003 022 160
0.02600	A6	173 124 375 260
3.97468	CEX21	202 176 141 050
3.93710	CEX22	202 173 371 162
3.77649	CEX23	202 161 262 002
3.42395	CEX24	202 133 041 377
1.98634	CEX25	201 176 100 140
0.57770	CEX26	200 013 344 040
0.98738	CEX11	200 174 304 360
0.96880	CEX12	200 170 003 100
0.89137	CEX13	200 144 060 321
0.73271	CEX14	200 073 222 340
0.24660	CEX15	176 174 204 260
0.02086	CEX16	173 052 342 230
0.00212	CLAM1	170 012 357 260
0.00528	CLAM2	171 055 003 330
0.01917	CLAM3	173 035 012 150
0.05183	CLAM4	174 124 113 260
0.23333	CLAM5	176 156 256 020
0.64500	CLAM6	200 045 036 270

The maximum time interval depends upon the accuracy desired in the point reactor kinetics equations. Time intervals that are larger than the half-life of any single neutron precursor group yield an inaccurate representation of the neutron precursor flux of that group as well as the total neutron flux. Ideally, the time interval for recording neutron flux measurements should be less than the smallest half-life (0.2 sec. for group six, see Table 2.1). For good accuracy, the time interval should be no larger than 0.2 seconds. If necessary, neutron flux measurements can be taken every 0.5 seconds and still provide acceptable accuracy. At 0.5 seconds, only group six would not be represented accurately. Group six comprises approximately 3% of the total neutron flux and would introduce, at most, the same amount of error. Group five has a half-life of 0.55 seconds and comprises about 13% of the total neutron flux. Any further increase in the time interval past 0.5 seconds would introduce more error. The maximum time interval should not exceed 0.5 seconds.

The Mark 80 microcomputer is single stepped at 500 kHz instead of operating at 2 MHz to allow the 1702 EPROMs, which contain the reactimeter program and the floating point math routines, to operate correctly. There is no equation to determine how much time is required to perform all the calculations at 500 kHz. An estimate of the total time required for the routines SELECT, HRFC, LRFC, DIRECT, PRECURI, TRANSFER, and REACT to perform the calculations can be obtained by implementing the following program after the last instruction in the routine REACT.

LXI H, COUNT ;HL + COUNT

DCR M ; $(COUNT) \leftarrow (COUNT - 1)$

JMP SELECT ; If the result is not zero, jump

to the starting address of SELECT

HLT ;HALT

If the value of COUNT is not zero after the DCR M instruction, the microcomputer jumps to the starting address of the routine SELECT and performs the calculation over again. If the result is zero, then the microcomputer stops. It was found that the average execution time at 500 kHz for the routines SELECT to REACT was 0.130 ± 0.005 seconds. Together, the average execution time of the routines INPUT and OUTPUT are less than 0.01 second. Thus, if we choose 0.15 seconds as a conservative estimate for the entire program to execute the longest instruction set, a time interval of 0.2 seconds is adequate for calculation time and provides good results.

The reactor period is the time that it takes for the neutron flux (and power) to change by a factor of "e". During a thirty second or greater period, the thermal neutron flux changes slowly. Thus, during two consecutive neutron flux measurements, the conversion from the analog signal to digital signal may not register any significant change. The digital panel meter can only detect changes of 0.1 mV from the output of the Keithley meter. Thus, many time intervals could pass before a voltage change of 0.1 mV could be detected by the digital panel meter. The reactivity displayed during this time would be inaccurate.

Reactimeter Program Introduction

There are ten main routines used to calculate the reactivity from the electrical current in addition to the math routines in the 8080 Intel Floating Point Package. Figure 5.1 contains the main flowchart of the reactimeter program. A discussion and flowchart of each of the ten routines follow. To help the reader better interpret the flowcharts, we have summarized below the symbols that we have used.

Registers

Symbols	Comments
A	Register A, accumulator
В	Register B
С	Register C
D	Register D
E	Register E
н	Register H
L	Register L
HT	Register pair HL, usually an address with $H = HI$ and $L = LO$
(HL)	The data located at the memory location in H and L
Labels	
MANT	The 16-bit address of MANT
(MANT)	The 8-bit value of MANT

Fig. 5.1 A Main Flowchart

Fig. 5.1 B Main Flowchart (cont.)

Numbers

10 10 (base 10)
10 H 10 (base 16)
FE H FE (base 16)

Expressions

HL + MANT

The address of MANT is loaded into the HL register pair

H + (HL)

The value of the memory location, whose address is in the HL register is moved into register H

OUT 10

Generate a device select pulse to device 10

A + 7C H

Load A with 7C (base 16)

HI = 13 H

HI address is 13 (base 16)

INPUT

The purpose of INPUT is to read the BCD signals from the Keithley meter and the digital panel meter, convert the input data from the digital panel meter into an appropriate form, and store the results in the correct memory locations for later use by other routines (see Fig. 5.2 for flowchart). The first task of INPUT is to latch the two bytes of input data simultaneously. An OUT 10 instruction is used to generate a device select pulse to four 7475 flip-flops. Each flip-flop latches four bits. Three 7475 chips latch the tenths, ones, and tens digits from the digital panel meter, and the fourth 7475 chip latches the binary coded signal from the range dial of the Keithley meter.

The memory storage location, DMANT + 4, for the tenths digit is loaded

Fig. 5.2 A INPUT Routine

Fig. 5.2 B INPUT Routine (cont.)

Fig. 5.2 C INPUT Routine (cont.)

into the HL register pair and an IN 1 instruction generates a device select pulse to input device one (see Table 5.4 for peripheral device and codes). Input device one is an 8095 three-state buffer, which when enabled allows the data stored in the 7475 chip to be read into bits DO to D3 of the accumulator, whose contents are then moved to the address given by the HL register pair. Register L is decremented twice, and the memory storage location for the ones digit, DMANT + 2, appears in the HL register pair. One byte is skipped to leave space to hold the ASCII code for the decimal point, which must appear for the conversion subroutine INP. Input device two is an 8095 three-state buffer for the ones digit, and behaves the same way as input device one. Register L is decremented and the memory storage location (DMANT + 1) for the tens digit appears in the HL register pair. Input device three is an 8095 three-state buffer for the tens digit and functions the same way as input devices one and two.

Input device zero is an 8095 three-state buffer for the binary code from the range dial of the Keithley. After the bits are read into bits D0 to D3 of the accumulator, two RCL instructions are used to move the four bits to bits positions D2 to D5. The accumulator byte corresponds to the low address byte in the high address block O1 H. The data of the accumulator is stored in the memory location GRAYC. Initially, DMANT, the three digit BCD string number is converted into a binary floating-point number by calling the subroutine INP. The result is stored in MANT, and control is passed to SELECT.

Device Codes and Peripheral Devices

Table 5.4

Octal Device Number	Peripheral Device
000	8095 Three-state buffer from Gray shaft encoder from Keithley
001	8095 Three-state buffer from tenths digit of the DPM
002	8095 Three-state buffer from ones digit of the DPM
003	8095 Three-state buffer from tens digit of the DPM
004	Numeric Display-latch for ones digit
005	Numeric Display-latch for tens digit
006	Numeric Display-latch for hundreds digit
007	Numeric Display-latch for thousands digit
010	Numeric Display-latch for ten-thousands digit
011	7475 flip-flop for sign
012	Four 7475 flip-flops that latch data from the Keithley and DPM
013	7475 flip-flop for 7490 decade counter

SELECT

The purpose of SELECT is to direct the microcomputer to one of two electrical-current-to-neutron-flux conversion routines and select the corresponding constant, CONn, n = 1 to 8, for the range setting of the Keithley micro-microammeter. Each range setting has a binary value between zero and fifteen assigned to it. This value has been stored in bits D2 through D5 in memory location GRAYC and is the low address byte of the first byte of a four byte section of memory that contains the starting address of either HRFC (High Range Flux Conversion) or LRFC (Low Range Flux Conversion), and the address of the constant CONn. Since four bytes are required to store the two addresses, the binary code of each range setting of the Keithley is stored in bits D2 through D5 instead of D0 through D3, thus making it possible to address every fourth byte. Sixty-four bytes of memory must be reserved at the beginning of a 1K memory block to store the four bytes for each of the sixteen range settings.

The routine, SELECT (see Fig. 5.3 for flowchart), begins by loading the address of GRAYC into the HL register pair and then moves the value of GRAYC into the L register. The high address of the first byte of four bytes is loaded into the H register. The HL register pair contains the address of a byte that contains the starting low address of either HRFC or LRFC. This value is moved from memory to register E; register L is incremented. The HL register pair now contains the address of the second byte that

Fig. 5.3 SELECT Routine

contains the high address of either HRFC or LRFC. This address in the HL register pair is stored on the microprocessor stack for later reference by LRFC or HRFC to determine the address of the first byte of CONn. Durin, a PUSH instruction, the contents of the HL register pair do not change, so the value of the byte addressed by the HL register pair can still be moved into the H register. The value in register E is moved to the L register. The HL register pair now contains the starting address of HRFC or LRFC. A jump to that address is initiated by a PCHL instruction, which moves the data in the HL register pair to the program counter and causes the microcomputer to jump to that address.

HRFC-LRFC

Energy HRFC (High Range Flux Conversion) and LRFC (Low Range Flux Conversion) convert the electrical current input data into the corresponding neutron flux measured in the reactor core. Depending on the range setting on the Keithley meter, the mantissa of the electrical current is either between one and three or between three and ten. The normalized mantissa is read by the microcomputer and stored in MANT (normalized mantissa) in binary floating-point form. If HRFC (see Fig. 5.4 for flowchart) is chosen, equation (5.4) is used for the first half of the calculation. MANT is loaded into the floating-point-accumulator and multiplied by CONT7 (0.07); ONE (1.00) is added to obtain the actual mantissa (ACMAN). ACMAN is a dummy name because no memory space is allocated for the result,

Fig. 5.4 A HRFC Routine

Fig. 5.4 B HRFC Routine (cont.)

which remains in the floating-point accumulator until it is multiplied by CONn. If LRFC (see Fig. 5.5 for flowchart) is chosen, equation (5.2) is used instead of equation (5.4). The procedure is the same with only the constants differing; CONT2 (0.02) and THREE (3.00) replace CONT7 and ONE. From here to the end, both routines are exactly alike and are based on equation (5.7).

So far, only two of the four bytes that the routine SELECT has previously addressed have been used. The address of the second byte is stored on the microprocessor stack and is available for retrieval. Using a POP instruction, that address is moved back into the HL register pair and then register L is incremented by The address of the byte in the HL register pair contains the value of the low address for the constant CONn. A multiplication is to be performed on ACMAN, which is in the floating-pointaccumulator, by CONn, whose address must be loaded into the HL register pair. The low address of CONn is moved to register E from memory and register L is incremented. The HL register pair contains the memory location for the high address of CONn. This value is moved to register H, and the value of register E is moved to register L. The address in the HL register pair is the address of CONn and the multiplication between ACMAN and CONn can be performed. The result of the multiplication is stored in the memory location FLUX. Control is passed to the routine DIRECT, which assigns the value of FLUX to either FLUX2 or FLUX3.

Fig. 5. 5 A LRFC Routine

Fig. 5.5B LRFC Routine (cont.)

DIRECT

DIRECT receives control from either HRFC or LRFC, and stores the calculated value of the most recent neutron flux measurement in either FLUX2 or FLUX3. If the neutron flux measurement is the first measurement after the previous reactivity calculation, then it represents $\phi(t-\Delta t)$ and is stored in FLUX2. If it is the second measurement after the previous reactivity calculation, it represents $\phi(t)$ and is stored in FLUX3.

The method of directing the neutron flux measurement to the proper storage address is simple (see Fig. 5.6 for flowchart). One byte of memory, MEM, is set aside with the initial value of two. When control is given DIRECT, it decrements MEM by one, and tests the result for a zero value by using a conditional jump instruction. If MEM is not equal to zero, the value of FLUX is loaded in the floating-point-accumulator and stored in the address of FLUX2 and control is given to WAIT. If the value of MEM is zero, the operation is the same, with FLUX being stored in the address of FLUX3. After FLUX3 has been stored, MEM is reset to the value of two and control is passed to PRECURI.

PRECURI

PRECURI calculates the neutron precursor flux at time t from the previous neutron precursor flux at time t - 2 Δt with the aid of equation (5.11). There are six PRECURI routines, one for each of the six delayed neutron groups. In the six PRECURI routines

Fig. 5.6A DIRECT Routine

Fig. 5.6B DIRECT Routine (cont.)

(see Fig. 5.7 for flowchart), a temporary four-byte section of memory is required to store a result from a multiplication operation. This section in memory is labeled HOLD and is used twice by each PRECURi routine to store the result from one multiplication operation while another multiplication operation is being performed. The two results are added later.

The first half of the calculation is based on the use of Simpson's Rule to determine the value of the new neutron flux introduced since the last reactivity calculation. FLUX1, $\phi(t-2\Delta t)$, is loaded into the floating-point accumulator and multiplied by CEX1i, $\exp{(\text{-2}\ \lambda_{\text{i}}\Delta t)}$. This result is stored in the address HOLD to permit the next multiplication to be performed. FLUX2, $\phi(t - \Delta t)$, is loaded into the floating-point-accumulator and is multiplied by CEX2i, 4 exp(- $\lambda_i \Delta t$). The result of the multiplication appears in the floating-point-accumulator. HOLD, FLUX3, $(\phi(t))$, and CLAMI $(\lambda_{\text{i}}\Delta t/3)$ are each loaded as operands, and two additions and one multiplication are performed, respectively [CLAMI * (FLUX1 * CEX1i + FLUX2 * CEX2i + FLUX3)]. The final result of the above calculation is stored in HOLD while the multiplication of Y2Ti, the previous neutron precursor flux, and CEX1i is performed. HOLD is added to Y2Ti to obtain the new neutron precursor flux at time t. The result is stored in memory location Y2Ti for the next neutron precursor calculation (for the reactivity calculation at time $t + 2 \Delta t$). The present neutron precursor flux is still in the floating-point-accumulator. A multiplication is performed with Ai,

Fig. 5.7A PRECURI Routines

Fig. 5.7B PRECURI Routines (cont.)

Fig. 5.7C PRECURI Routines (cont.)

Fig. 5.7 D PRECURI Routines (cont.)

the relative fractional yield, with the result being stored in YTi.

The YTi's are summed together in REACT, which calculates the reactivity.

TRANSFER

TRANSFER (see Fig. 5.8 for flowchart) is a small routine that assigns the last flux measurement, FLUX3, to FLUX1 in preparation for a new calculation in each of the six PRECURi routines. In the reactivity algorithm, an integral is evaluated by using Simpson's Rule, which requires three points. The last point of one area section becomes the first point of the next successive area section. This program is very simple since all that is done is to load FLUX3 into the floating-point-accumulator and output it to FLUX1.

REACT

REACT performs the final calculation for determining the reactivity of the reactor (see Fig. 5.9 for flowchart). In order to sum the relative neutron precursor yields $a_i^Y{}_i(t)$, labeled in memory as YTi, YT1 is loaded into the floating-point-accumulator and YT2 is loaded into the operand. The floating-point AD subroutine is called, with the result of the operation appearing in the floating-point-accumulator. Similarly, YT3, YT4, YT5, and YT6 are added one at a time in the same way through the use of the proper address for the operand in the HL register pair. The address of FLUX3 is loaded and the floating-point DIV subroutine is called, with the result

Fig. 5.8 TRANSFER Routine

Fig. 5.9 A REACT Routine

Fig. 5.9B REACT Routine (cont.)

Fig. 5.9 C REACT Routine (cont.)

being stored in the floating-point-accumulator. The result is the sum of the relative yields of each neutron precursor divided by the neutron flux at time t. This result must be subtracted from one to obtain the final answer which is the reactivity. One method to calculate the reactivity would be to output the result to a storage place in memory, load the number one into the floating-pointaccumulator, and call the floating-point SB subroutine to subtract it from one. This operation requires 24 bytes of memory. A second method is to leave the result in the floating-point-accumulator, change the sign of the result with the floating-point CHS subroutine, and then use the AD subroutine to add one to obtain the reactivity. This operation requires nine bytes of memory, which is a savings of greater than 50% in memory space and a couple of milli-seconds of time. Of the two methods mentioned above, the latter is more efficient and is employed in REACT. The units of RHO are dollars, which is a very large quantity to measure reactivity. common units are per cent mills. One dollar equals 650 per cent mills. Since RHO is desired in per cent mills, after one is added, RHO is multiplied by 650. REACT stores the final result in RHO in a binary-coded-decimal form that requires thirteen bytes of memory for the decimal representation. RHO is the final derived value. REACT passes control to OUTPUT, which transfers RHO to a digital display.

OUTPUT

The purpose of OUTPUT is to locate the decimal point in the

computed reactivity and transfer it to the digital display. Most reactor operators prefer to detect changes in reactivity of 1 to 10 pcm, but no smaller. OUTPUT does not immediately transfer the computed reactivity to the display latches because it has to make a decision and a search (see Fig. 5.10 for flow chart). On entry into OUTPUT, the decision that must be made is whether or not the absolute value of the computed reactivity is less than 1 pcm. so, the value that is transferred to the digital display is zero. If the value is not less than 1 pcm, then a search for the decimal point is performed. Only numbers whose absolute value are less than 0.1 or greater than or equal to 1×10^7 are written in scientific notation by the floating point subroutine OU. The subroutine OU converts binary floating-point numbers into a 13-byte BCD characterstring representation (see Appendix B). The first byte is the sign of the number. The next eight bytes are seven significant digits and the decimal point. The last four bytes represent the exponent; if it exists, 025° (ASCII code for E) appears in the first byte. The last three bytes are the sign and a two digit exponent. If there is no exponent, all four bytes are set to 360 (ASCII code for space) and the number is not written in scientific notation. illustrates the different forms of the 13-byte floating point representation. The subroutine OU is used in the routine REACT, but the results are interpreted by OUTPUT.

All bytes are referenced from the first byte in the 13-byte representation of decimal numbers. For instance, the computed

Fig. 5.10 A OUTPUT Routine

Fig. 5.10B OUTPUT Routine (cont.)

Fig. 5.10 C OUTPUT Routine (cont.)

Fig. 5.10 D OUTPUT Routine (cont.)

Fig. 5.10 E OUTPUT Routine (cont.)

Fig. 5.10F OUTPUT Routine (cont.)

Fig. 5.10 G OUTPUT Routine (cont.)

Fig. 5. 10 H OUTPUT Routine (cont.)

Table 5.5

ASCII Coded 13-Byte Representation of Floating-Point-Decimal Numbers

ASCII Code in Octal	Definition
000	0
001	1
002	2
003	3
004	4
005	5
006	6
007	7
008	8
009	9
360	space
374	plus
375	minus
376	decimal point
025	E

ASCII Coded 13-Byte Representation of Floating-Point-Decimal Numbers (continued)

Table 5.5

Floating Point Number					13-I	Byte	Rep	ceser	ntat:	Lon			
1.0×10^{-3}	360	001	376	000	000	000	000	000	000	025	375	000	003
1.5×10^{-2}	360	001	376	005	000	000	000	000	000	025	375	000	002
2.75×10^{-1}	360	376	002	007	005	000	000	000	000	360	360	360	360
4.5×10^{0}	360	004	376	005	000	000	000	000	000	360	360	360	360
-4.5×10^{0}	375	004	376	005	000	000	000	000	000	360	360	360	360
1.2×10^{1}	360	001	002	376	000	000	000	000	000	360	360	360	360
2.9×10^2	360	002	011	000	376	000	000	000	000	360	360	360	360
5.85×10^3	360	005	010	005	000	376	000	000	000	360	360	360	360
6.789×10^4	360	006	007	010	011	000	376	000	000	360	360	360	360
8.0×10^5	360	010	000	000	000	000	000	376	000	360	360	360	360
1.5×10^{6}	360	001	005	000	000	000	000	000	376	360	360	360	360
1.75×10^{7}	360	001	376	007	005	000	000	000	000	025	374	000	007
1.05×10^{12}	360	001	376	000	005	000	000	000	000	025	374	001	002

reactivity is converted into a 13-byte BCD string and is labeled RHO in the reactimeter program. To reference byte 10 of RHO, the exponential byte, one refers to it as RHO + 9. This is the first of two bytes that are checked to determine if the computed reactivity is less than 1 pcm in absolute value. The largest reactivity magnitude will never exceed 1000 pcm. Therefore, any value of RHO that has an exponent, 025₈ appearing in byte RHO + 9 is a number that is less than one. In such a case, the routine OUTPUT transfers zero to the digital display. If a space instead of an E is found in RHO + 9, RHO + 1 is checked as the second part of the test. A decimal point in RHO + 1 signifies a number greater than or equal to 0.1 and less than 1.0. Again the value of zero is transferred to the digital display (see Fig. 5.10 for flowchart).

If the test determines that the value of the computed reactivity is not less than 1 pcm in absolute value, then a search is conducted for a decimal point in bytes RHO + 6 through RHO + 3. RHO + 6 is the first byte checked. If one is found, then RHO + 5 through RHO + 1 are transferred to the ones through ten-thousands digit displays, respectively. If no decimal point is found, then RHO + 5 is checked. If RHO + 5 contains a decimal point, then RHO + 4 through RHO + 1 are transferred respectively to the ones through thousands digit displays, and the ten-thousands digit display is blanked. If no decimal point is found, RHO + 4 is checked, then RHO + 3. If no decimal point is found, it is assumed to be in RHO + 2. The decimal point cannot be located in RHO + 7 or RHO + 8, because the numbers

represented by a decimal point in these locations are beyond the actual values of reactivity capable of being produced in the VPI & SU reactor. Table 5.6 lists the location of the decimal point, the digital displays with numbers, and the displays that are blanked.

After the test for zero and the decimal point search have been completed, the data is ready for transfer to the digital display. If the value to be transferred is zero, OUTPUT starts OTPTO, which loads the accumulator with zero and proceeds to OTNUM. If the value is not zero, OUTPUT starts at OTNUM. The first value to be transferred has been previously loaded into the accumulator immediately after the location of the decimal point was determined. The number of digits to be transferred had also been stored in Register E at this same time. The data are transferred to the digital display by generating a device select pulse with an OUT instruction and calling the subroutine CHECK after each OUT instruction. Table 5.4 sum—marizes the peripheral devices and their respective codes.

The purpose of the subroutine CHECK (see Fig. 5.11 for flowchart) is to determine if the next value moved into the accumulator is a number or the code word to blank the display. Register E, which was loaded earlier with the number of significant digits to be latched, is decremented on each entry into the subroutine. If the result is zero, the subroutine calls the subroutine WOUT; if the result is not zero, register L is decremented and the next number is loaded into the accumulator. The subroutine WOUT (see Fig. 5.12 for flowchart) loads the address of BLANK + 1 in the HL register pair and the value

Table 5.6

Decimal Point Location	Location of Decimal Digit	Digit
RHO + 6	RHO + 5 RHO + 4 RHO + 3 RHO + 2 RHO + 1	Ones Tens Hundreds Thousands Ten-thousands
RHO + 5	RHO + 4 RHO + 3 RHO + 2 RHO + 1 Blank	Ones Tens Hundreds Thousands Ten-thousands
RHO + 4	RHO + 3 RHO + 2 RHO + 1 Blank Blank	Ones Tens Hundreds Thousands Ten-thousands
RHO + 3	RHO + 2 RHO + 1 Blank Blank Blank	Ones Tens Hundreds Thousands Ten-thousands
RHO + 2	RHO + 1 Blank Blank Blank Blank	Ones Tens Hundreds Thousands Ten-thousands
RHO + 1	Zero Blank Blank Blank Blank	Ones Tens Hundreds Thousands Ten-thousands

Fig.5.11 CHECK Subroutine

Fig. 5.12 WOUT Subroutine

of one in register E before returning to CHECK. The address directly above BLANK is loaded because, on returning to CHECK, register L is decremented and the address of BLANK is now in the HL register pair. Register E is set to one so subsequent displays can be blanked if required. CHECK is called four times by OTNUM, once after each of the first four OUT instructions.

WAIT

The purpose of WAIT is to let the microcomputer idle until an interrupt signal is received from the external clock (see Fig. 5.13 for flowchart). The external clock generates an interrupt signal every 0.2 seconds and restarts the microcomputer at the address RESTR, which provides a device select pulse to reset the 7490 decade counter that is used to generate the interrupt signal (see Chapter 4).

WAIT receives control from DIRECT if no reactivity calculation is performed, from OUTPUT if a reactivity calculation has been performed, and from START after a power termination. WAIT is a three instruction loop. The first instruction enables the interrupt that permits the external clock to signal the start of a new time interval. The third instruction is a jump to the address occupied by the first instruction. The second instruction is a NOP. The Mark 80 cycles through this loop until an interrupt signal along with a RST 5 is received. The RST command restarts the Mark 80 at HI = 000₈ and LO = 050₈, which is the starting address of RESTR. After clearing the decade counter, the routine INPUT regains control.

Fig. 5.13 WAIT Loop

START

The START routine is used only once, when the power is first turned on. The entire program can be stored in EPROM, but 256 bytes of R/W memory are required for temporary data: 64 bytes for scratch pad use by the math routines, 64 bytes for use by the Reactimeter program to store input data and results from calculations, and sixteen bytes for stack pointer use. The purpose of START (see Fig. 5.14) is to locate the stack pointer at the high end of R/W memory, insert the ASCII codes for decimal point, space, and end-of-BCD string into the storage section of DMANT, and initialize FLUX1 and Y2Ti (i = 1 to 6) to zero for the first calculation. After this is done, START gives control to WAIT to begin the first calculation.

Conclusion

The development of the software system is based on two algorithms and the constraints governing the hardware system for the input and output of data. The program was assembled using MAC80, a cross assembler on the VPI & SU IBM 360 computer. The MAC80 reads mnemonic symbols and labels typed into a source program and generates a listing program that assigns an address and the correct code to each mnemonic symbol. In conjunction with the reactivity program, the Intel Floating Point Package of basic mathematical subroutines is used to perform mathematical operations. The Intel Floating Point Package is listed in Appendix E. The Reactimeter program is listed in Appendix D. In assembling the Reactimeter program, dummy

Fig. 5.14 A START Routine

Fig. 5.14 B START Routine (cont.)

routines were placed under the floating-point subroutine names and addresses so that the cross assembler could reference them. The cross assembler generates the address and the code in hexadecimal notation. Once the listing program is free of errors, it can be stored in the Mark 80 and testing can begin. Results of testing are discussed in Chapter 6.

CHAPTER VI

CONCLUSIONS

Conclusion

Figure 6.1 compares the reactor period versus the actual reactivity for the VPI & SU reactor. The point reactor kinetics algorithm developed does not calculate the correct reactivity for certain reactor periods. Table 6.1 summarizes the actual and the calculated reactivity for different reactor periods, the per cent change in flux during a 0.2 second interval, and the change in the digital panel meter reading in 0.4 seconds. These calculations were performed at 10%, 50%, and 90% of scale readings for the 0 to 100 mV range. At 10% of scale, reactor periods greater than 50 seconds have a calculated reactivity of zero. Reactor periods greater than 300 seconds have a calculated reactivity of zero at 90% of scale. It is desired that reactor periods up to 1000 seconds (16 minutes) be detected by the reactimeter. The reason for the inaccurate reactivity calculation for reactor periods longer than thirty seconds is the lack of sensitivity of the digital panel meter in detecting changes of voltage from the Keithley meter. The method developed to calculate reactivity is not wrong, but is as only accurate as the instrumentation supplying the information.

Two solutions are offered to solve the problem. One solution is to change the instrumentation, and the other is to change the method of calculation. Changing the instrumentation involves

Fig. 6.1 Reactivity versus Reactor Period

Table 6.1
Instrumentation Calibration

pact (pcm)	T (sec)	% ф in. 0.2 sec	10% scale	ing Change of in 0.4 sec 50% scale reading	DPM 90% scale reading	10% scale reading	^p calculated 50% scale reading	90% scale reading
337	5	4.1	.8	4.0	7.4	335	334	336
211	15	1.3	 .2 	1.3	2.3	180	215	205
144	30	0.7	0.1	0.7	1.2	118	148	145
104	50	0.4	0	0.4	0.7	0	103	102
78	75	0.3	0	0.3	0.5	0	83	80
60	100	0.2	0	0.2	0.3	0	62	55
53	125	0.16		0.1			35	55
45	150	0.10		0.1	0.2		35	39
35	200	0.10		0	0.1		0	21
29	250	0.08			0.1			21
28	300	0.04			0			0

obtaining a more sensitive digital panel meter and is the more costly of the two methods. A more sensitive digital panel meter, capable of detecting a microvolt, could be used to interpret the signal from the Keithley meter. This would allow measurements to be taken every 0.2 seconds and the correct reactivity calculated by the algorithm for reactor periods of 1000 seconds at 10% of scale. With the high sensitivity meter, background noise on the signal line becomes a major concern. If the noise level is greater than the voltage change, it is useless to employ a more sensitive instrument.

The second solution is to change the calculation method. The inhour equation, equation (2.12), provides acceptable results for reactor periods of thirty seconds or greater.

$$\rho_0 = \Lambda \omega + \sum_{i=1}^{6} \frac{\beta_i}{\omega + \lambda_i}$$
 (2.12)

One of the seven solutions to the inhour equation is ω = 1/T, where T is the reactor period. The inhour equation can be written in the following form,

$$\rho_0 = \frac{\Lambda}{T} + \sum_{i=1}^{6} \frac{\beta_i}{1 + \lambda_i T}$$
 (6.1)

This algorithm is simpler than the first and is employed in the reactimeter program in Appendix F.

Reactimeter Program

The following circuits discussed in Chapter IV can still be used.

Figure 4.5 Digital Panel Meter Interface Circuit -- No change Figure 4.6 Zero Input Interface Circuit -- Device select pulse INO is not used. Therefore pin 9 of the 7408 AND gate is set to "logic 1"

Figure 4.8 Digital Panel Meter -- Two changes (see Fig. 6.2)

(1) Pin B, the external trigger, is connected to a 100 Hz

timing circuit (shown in Fig. 6.3), which generates a conversion

pulse to the DPM every 10 msec; (2) Pin 3, Status (Print), is

used to generate an interrupt instruction (RST 5) to the Mark 80,

that signals an update in data (see Fig. 6.4)

Figure 4.9 A Output Interface Circuit displays -- No change Figure 4.9 B Not required

Figure 4.10 Decoding Circuit -- Channels 0 (pin 1), 9 (pin 10), and 11 (pin 13) are not needed and are unconnected

The inhour reactimeter program works in the following manner.

A master flowchart of the inhour program is shown in Figure 6.5. The first measurement on each range setting is used as initial power reference. There is no cross referencing between range settings of the Keithley meter. If a power change of 10% is detected, the previous measurement becomes the new reference. The routine INPUT that transfers data into the Mark 80, has two modifications (see

Fig. 6.2 Connection Diagram for Digital Panel Meter-Modified Version

Fig. 6.3 100 Hz Timing Circuit for the Digital Panel Meter

Fig. 6.4 Interrupt Circuit for the Digital Panel Meter

Fig. 6.5 Main Flowchart-Inhour Program

Fig. 6.6). The OUT 11 instruction is not required since the decade counter is not used, and the IN O instruction is omitted since no data is transferred from the range dial of the Keithley meter. The purpose of INPUT is to change the input data from BCD form to binary-floating-point form and store it in FLX2.

Measurements are recorded every 10 msec and compared to a reference, FLX1. The purpose of the routine CMPAR (compare) is to determine the per cent power change with respect to the reference power, FLX1 (see flowchart Fig. 6.7). If the power change is less than 1% with respect to the reference power, CMPAR passes control to TRACK. If the power change is greater than 10%, the subroutine EXCH (exchange) is called. On return from the subroutine CMPAR passes control to WAIT (no change, see Chapter V). If the power change is between 1 and 10%, control is passed to CALC (calculate). A change of 10% between two consecutive readings from the DPM implies one of two things; a 10% change in the reactor power, or the range setting of the Keithley meter has been changed. The 10% change in power change can be ruled out, because for a 10% change in power during 10 msec (the time between two consecutive measurements) implies the reactor is on a 0.1 second period, which is an impossible situation. The per cent change is calculated by subtracting FLX1 from FLUX2, and dividing the absolute value of the result by FLX1. After FLX1 is subtracted from FLX2, the subroutine FLAG is called to determine and store the sign of the subtraction result in SGST (sign storage). If a period calculation is required, this is

Fig. 6.6 A INPUT Routine

Fig. 6.6 B INPUT Routine (cont.)

Fig. 6.7A CMPAR Routine

Fig. 6.7 B CMPAR Routine (cont.)

recalled later by CALC. Two tests are performed by subtracting 0.01 and 0.1, respectively, from the absolute value of the per cent change in power. If the result of the subtraction of 0.01 is negative, then control is passed to TRACK. If the result of the subtraction of 0.1 is negative, control is passed to CALC. If neither result is negative, control is passed to EXCH.

The purpose of TRACK (see Fig. 6.8) is to increment a two-byte section of memory, MEM1 and MEM, every time the power change is less than 1%. The number of counts stored in MEM1 and MEM is equal to the reactor period in seconds. Thus if MEM1 equals 0000010_2 and MEM equals 10001001_2 , the reactor period is equal to $2^9 + 2^7 + 2^3 + 2^0 + 1 = 650$ seconds. A maximum limit is imposed on the number of counts recorded before a 1% change is detected. If there is no 1% change after 1024 counts (1024 seconds or 17 minutes), TRACK passes control to OUTPT, which transfers the value of zero to the digital displays. OUTPT is the data output routine from Chapter V. Reactor periods longer than 15 minutes have a reactivity that is essentially zero, and this is the reason for the upper limit.

The purpose of EXCH (see Fig. 6.9) is to transfer the most recent measurement, FLX2, into the reference location, FLX1. With a new reference power, the two-byte period counter, MEM1 and MEM, is set to zero. EXCH is called by either CMPAR, if a 10% power change is detected, or by CALC after a reactivity calculation is made.

The routine CALC (see Fig. 6.10) performs only when a reactivity calculation is required. Before calculating the reactivity, CALC

Fig. 6.8 TRACK Routine

Fig. 6.9 EXCH Subroutine

Fig. 6. 10 A CALC Routine

Fig. 6.10 B CALC Routine (cont.)

Fig. 6.10 C CALC Routine (cont.)

Fig. 6. 10 D CALC Routine (cont.)

Fig. 6.10E CALC Routine (cont.)

determines the reactor period. MEMI and MEM are loaded into registers B and C, respectively. Registers A and D are set to zero. Register E, which is the binary-fixed point scaling factor is set to 030₈, (see Appendix B for further information). The subroutine FLT is used to change the number of counts into a binary-floating-point number. The memory location SGST is checked to determine the sign for the reactor period. SGST was previously set to one for a negative number and to zero for a positive number by FLAG. SGST is decremented, and if the result is zero the subroutine CHSGN is called. CHSGN (Fig. 6.11) changes the sign of the reactor period from positive to negative.

After the period is determined, the reactivity is calculated using the inhour equation. LAMi (λ_i , the decay constant) and PER (reactor period) are multiplied together. One is added to this quantity which is divided into BIi (β_i , the delayed neutron fraction). This value is added to RES, which had previously been set to zero before CALC started the calculation. This calculation is performed six times, once for each delayed neutron group. Finally, the neutron generation time is divided by the period and added on. The reactivity is converted from absolute units to pcm by multiplying by 1 * 10 5 . Control is passed to OUTPT.

OUTPT is the routine developed in Chapter V with the following modifications. After RHO + 1 is checked for a decimal point, RHO + 5 is checked instead of RHO + 6. This also eliminates the section in OUTPT labeled OTPT5. The OUT 8 instruction and the Call CHECK instruction just before it, located in the section OTNUM, are omitted.

In the subroutine SIGN, the OUT 9 instructions are changed to OUT 8. Other than these small changes, the routine OUTPT remains the same as discussed in Chapter V. After the data have been transferred to digital displays, RES is initialized to zero and the subroutine EXCH is called. EXCH sets the period counter to zero and stores a new reference in FLX1. Control is passed to WAIT.

The routines WAIT and START perform the same functions as discussed in Chapter V. The only difference is the number of initializations. Instead of seven, there are now only three; RES, MEM, and MEM1. All of these corrections can be found in the program appearing in Appendix F.

CHAPTER VII

RECOMMENDATIONS

Recommendations for Completing the System

Originally the reactimeter calculations were to be performed by a KIM 1 microcomputer instead of the Mark 80. The Mark 80 was used because KIM accessories needed for the reactimeter were unavailable. The hardware circuits presented in Chapters IV and VI will work with most microcomputers with slight modifications. The programs presented in Appendices D, E, and F will only work on 8080 systems.

The following steps are recommendations for completing the reactimeter using the KIM system. Parts have been ordered to complete the system using the KIM 1. When these parts arrive, assembly and testing is required. If a system other than a KIM is used, the following recommendations hold.

- I. Study interface techniques of the KIM system
 - A. Data transfer between peripheral devices and KIM
 - 1. Connect the three 8095 three-state buffers to the data bus (Fig. 4.5)
 - Connect input pins of the five TIL309 latch displays to the data bus (Fig. 4.9)
 - Connect the 74154 decoder (Fig. 4.10) to the address bus and the chip enable to the device select pulse clock.

- B. Connect the vector interrupt from the DPM (Fig. 6.4)
- C. Note corrections required for the software routines INPUT, OUTPT, and WAIT
- II. Study the math package that is to be used
 - A. Math routines that are required
 - 1. Addition
 - 2. Subtraction
 - 3. Multiplication
 - 4. Division
 - 5. Absolute Value
 - 6. Change of Sign
 - B. Extra routines required for a binary-floating-point math package
 - 1. Binary-floating-point to BCD conversion
 - 2. BCD to binary-floating-point conversion
 - Binary-fixed-point to binary-floating-point conversion
 - C. For a BCD math package, only a binary-fixed-point to

 BCD conversion routine is needed
 - D. If these routines are not available, refer to Appendix
 E and use the Intel 8080 Floating Point Package to aid
 in the development for the needed routines.
- III. Become familiar with software of the KIM system
 - A. Study the experiments in the lab manual left by the author

- B. Practice using the 6502 cross assembler located on the VPI & SU IMP 360 computer
- C. Rewrite the software in the KIM system using the flow charts and the 8080 programs as guides; assemble the program on the cross assembler.

It is the recommendation of the author that the use of the KIM system be abandoned and that further development of the reactimeter be based on the use of 8080 A/8085/Z-80 family of chips.

REFERENCES

REFERENCES

- Gernd Punch and Eckart Schwiegger, "A Digital Reactimeter," Kerntechnik, 17 (1975), 537.
- 2. John R. Lamarsh, <u>Introduction to Nuclear Reactor Theory</u>, Addison-Wesley, Reading, Mass. (1966).
- 3. James J. Duderstadt and Louis J. Hamilton, <u>Nuclear Reactor</u>
 Analysis, John Wiley & Sons, New York (1976).
- 4. A. Z. Akcasu, G. S. Lellouche, and L. M. Shotkin, <u>Mathematical</u> Methods in Nuclear Reactor Dynamics, Academic, New York (1971).
- 5. Jeffery Lewins, "The Use of the Generation Time in Reactor Kinetics," Nuclear Science and Engineering, 7 (1960), 122.
- 6. VPI & SU Reactor Technical Specifications.
- 7. David L. Hetrick, <u>Dynamics of Nuclear Reactors</u>, University of Chicago Press, Chicago (1971).
- 8. J. G. Tyror and R. I. Vaughan, An Introduction to the Neutron Kinetics of Nuclear Power Reactors, Pergamon Press, Oxford, England (1970).
- 9. Ronald J. Onega, An Introduction to Fission Reactor Theory, University Publications, Blacksburg, Va. (1975).
- 10. Samuel Glasstone and Alexander Sesonske, <u>Nuclear Reactor</u>
 <u>Engineering</u>, Van Nostrand Reinhold, New York (1967).
- David G. Larsen, Peter R. Rony, and Jonathan A. Titus, <u>The Bugbook III</u>, E&L Instruments, Derby, Conn. (1975).
- 12. Thomas P. Sifferlen and Vartan Vartanian, <u>Digital Electronics</u> with Engineering Applications, Prentice Hall, Englewood Cliffs, N.J. (1970).
- 13. David G. Larsen and Peter R. Rony, <u>The Bugbook I</u>, E&L Instruments, Derby, Conn. (1974).

APPENDIX A

Calculation of β_{eff}

 $\beta_{\rm eff}$ for the VPI & SU reactor is a slide rule calculation. A known reactivity change, in per cent mills, is measured along with the corresponding period in seconds, and then are aligned as inputs on a Babcock and Wilcox Reactrirule sliderule. $\beta_{\rm eff}$ is read off a scale. The following reactivity and period measurements, from which $\beta_{\rm eff}$ was determined, were made by Robert Stone, Reactor Supervisor, on April 4, 1977.

ρ	T	
(per cent mills)	(seconds)	eta eff
179	20.4	.00680 ± .00001
170	48.0	.00682
244	11.1	.00676

To determine $\beta_{\mbox{eff}}$ for the reactor, the average of the three $\beta_{\mbox{eff}}$'s is used. The average value for $\beta_{\mbox{eff}}$ is .00679 \pm .00003 which is the value that is used in the algorithm.

APPENDIX B

Intel 8080 Floating Point Package

The following copyrighted material is duplicated here with the permission of Dr. Peter R. Rony, Professor of Chemical Engineering, Virginia Polytechnic Institute and State University.

INTEL 8080 FLOATING POINT PACKAGE

INTRODUCTION

The following pages represent an attempt to describe the Intel 8080 floating point package.

The Intel 8080 floating point package, which was written by 0. C. Juelich of Rockwell International Corporation, has its origin in an earlier 8008 floating point package written by C. E. Ohme that consists of a 768-byte ROM program and 63 bytes of scratch pad read/write memory.

The documentation of the 8080 floating point package is poor. To understand what Juelich is doing, you must seek clues in Ohme's much better documentation of the 8008 floating point package, after which the 8080 package is patterned.

The first thing that you must learn is what is meant by a "floating point number." This is discussed below.

FLOATING POINT NUMBER REPRESENTATION

Floating point numbers are represented by four consecutive 8-bit bytes in memory. According to 0hme, they should be in the same bank of memory (you might test whether or not this is true). The interpretation of these four bytes is as follows:

First byte: If this byte is 000₈, the number represented is zero and the remaining bytes are meaningless.

If this byte is non-zero, then it is the floating point exponent (base 2) plus a bias of 200₈. The exponent indicates the power of 2 by which the fraction is multiplied to obtain the represented value. Examples will be given later.

Second byte: Bit 7 indicates the sign of the floating point number. If bit 7 is logic 0, the number is positive; if bit 7 is logic 1, the number is negative.

Bits 6 through 0. These bits, plus an assumed logic 1 in bit 7, are the eight most significant bits of the fraction that is multiplied by 2 to an exponent. The fraction is stored in absolute form

(unsigned) with the radix point positioned to the left of bit 7. The value of the fraction is thus less than 1.000000 and equal to or greater than 0.500000.

Third byte: This byte contains the second most significant

eight bits of the fraction.

Fourth byte: This byte contains the eight least significant

bits of the fraction.

EXAMPLES OF FLOATING POINT NUMBERS

The significance of the representation does not become clear until you examine some decimal numbers that are represented in floating point notation. Once you get the floating point package in operation on an 8080-based system, you will enjoy converting from decimal numbers to floating point numbers. It takes less than 1 ms to do so on a microcomputer operating at 2 MHz.

a. First byte

It is most appropriate to list the values of 2ⁿ that correspond to the first byte in the floating point representation. Thus, consider the table below:

First byte	n	2 ⁿ
000		$2^{-\infty} = 0.00000000$
170	-8	$2^{-8} = 0.00390625$
171	- 7	$2^{-7} = 0.0078125$
172	-6	$2^{-6} = 0.015625$
173	- 5	$2^{-5} = 0.03125$
174	-4	$2^{-4} = 0.0625$
175	- 3	$2^{-3} = 0.125$
176	- 2	$2^{-2} = 0.25$
177	-1	$2^{-1} = 0.5$
200	0	20 = 1
201	1	$2^{1} = 2$

202	2	22	=	4	
203	3	2 ³	=	8	
204	4	24	=	16	
205	5	2 ⁵	=	32	
206	6	26	=	64	
207	7	2 ⁷	=	128	
210	8	28	=	256	

The largest possible exponential value of 2^n is $2^{128} = 3.4028 \cdot 10^{38}$. The smallest possible exponential value of 2^n is $2^{-128} = 2.9386 \cdot 10^{-39}$. This is sufficient range for almost any type of floating point calculation.

b. Second byte

The first rule involves bit 7, the sign bit for the floating point number. If the second byte is between

$$000_8$$
 and 177_8

the sign is positive. If the second byte is between

$$200_8$$
 and 377_8

the sign is negative.

The next thing is to consider the weighting factor for the remaining bits in the second byte. This is shown in the table below:

Bit	Weighting Factor
7	1/2 = 0.5 [always assumed to be present]
6	1/4 = 0.25
5	1/8 = 0.125
4	1/16 = 0.0625
3	1/32 = 0.03125

2	1/64 = 0.015625
1	1/128 = 0.0078125
0	1/256 = 0.00390625

If the indicated bit is logic 1, you add the weighting factor to that for bit 7, which is always assumed to be at logic 1. You proceed bit by bit until you obtain the sum of the fractions for the eight bits in the second byte. To this sum, you add the sum of the fractions for the eight bits in both the third and fourth bytes in the floating point representation.

As a practical matter, we have found it convenient to stop after the second byte and assume the third and fourth bytes do not add much to the floating point number. Whenever we use a hand calculation to check a floating point value, we ignore the third and fourth bytes.

c. Third byte

The procedure is the same as for the second byte. Consider the following table:

Bit	Weighting Factor
7	1/512 = 0.001953125
6	1/1024 = 0.0009765625
5	1/2048 = 0.00048828125
4	1/4096
3	1/8192
2	1/16384
1	1/32768
0	1/65536

d. Fourth byte

More of same. Consider the following table:

Bit	Weighting factor
7	1/131,072
6	1/262.144

5	1/524,288
4	1/1,048,576
3	1/2,097,152
2	1/4,194,304
1	1/8,388,608
0	1/16,777,216

The error inherent in the four-byte floating point representation is one part in 16,777,216, or $5.96 \cdot 10^{-8}$ parts in unity. The precision is quite acceptable for most engineering applications.

e. Examples of floating point numbers

 $202 \ 200 \ 000 \ 000 = -2.0$

Let us now consider some actual numbers and how they are calculated. The four bytes are listed in sequence in octal code.

 $202\ 300\ 000\ 000 = -3.0$

 $204\ 040\ 000\ 000 = +10.0$

150 126 277 255 = +0.00000005

201 174 017 334 = $\pi/2$ = 1.570796

 $200\ 061\ 245\ 030 = 1n\ 2 = 0.693147$

These last several values have been taken from Juelich's program. Our conclusion is that it is easy to represent any number in floating point binary representation. To make the conversion from decimal to floating point binary, use the floating point package rather than trying to perform the calculation by hand. Use hand calculations only for rough values.

FIXED POINT BINARY NUMBER REPRESENTATION

The second format written by C. E. Ohme, and used by O. C. Juelich, is the fixed point binary number representation. The fixed point data format consists of four-byte (32-bit) binary numbers plus an additional byte, called the binary scaling factor, that locates the binary point, ".", relative to the bits representing the value. Two's complement notation is used to represent negative binary values.

The binary scaling factor, the fifth byte, is not normally recorded in the microcomputer. When a format conversion subroutine is called, the binary scaling factor must be specified in the E register. A binary scaling factor of zero indicates that the binary point is immediately to the left of the most significant bit of the 32-bit word,

.00000000 00000000 00000000 00000000

plus the scaling factor of 000_8 . A binary scaling factor of 32_{10} = 040_8 indicates that the binary point is immediately to the right of the least significant bit in the 32-bit word.

00000000 00000000 00000000 00000000.

The permissible range of the binary scaling factor is $-128_{10} = 200_8$ to $+127_{10} = 177_8$. Note that bit 7 in the scaling factor byte is the sign, a logic 0 representing a positive scaling factor and a logic 1 representing a negative scaling factor.

In general, we will not use this notation very often. Its main value is in the conversion of multi-byte binary numbers to floating

point binary numbers. An example of a binary number that would need conversion is a two-byte COUNT register that is monitoring the number of counts from a device. The fixed point binary number representation would be,

00000000 00000000 01001011 01110100.

These bytes COUNT set to register zero

Since the number of counts is an integer that is greater than 0, the binary scaling factor should be 040_8 and the binary point should be located to the right of the least significant bit in COUNT.

EXAMPLES OF FIXED POINT BINARY NUMBERS

In general, you will be working with binary integers. Given below are the fixed point representations of several low-value integers.

 $000 \ 000 \ 000 \ 001 \ 040 = 1.0$

 $000 \ 000 \ 000 \ 002 \ 040 = 2.0$

 $000 \ 000 \ 000 \ 003 \ 040 = 3.0$

 $000 \ 000 \ 000 \ 007 \ 040 = 7.0$

 $000 \ 000 \ 000 \ 002 \ 037 = 1.0$

 $000 \ 000 \ 000 \ 004 \ 036 = 1.0$

 $000 \ 000 \ 000 \ 010 \ 035 = 1.0$

 $000 \ 000 \ 000 \ 020 \ 034 = 1.0$

 $100\ 000\ 000\ 000\ 002 = 1.0$

 $200\ 000\ 000\ 000\ 002 = 2.0$

 $300\ 000\ 000\ 000\ 002 = -1.0$

 $300\ 000\ 000\ 000\ 001 = -0.5$

 $100\ 000\ 000\ 000\ 001 = 0.5$

 $100\ 000\ 000\ 000\ 001 = 0.25$

Note that the fifth byte in the above examples is the scaling factor. In most cases, the value of this fifth byte will be 040_8 .

CHARACTER STRING FORMAT

The character string format for data processed by the floating point package consists of binary representations of decimal characters occupying consecutive bytes of memory. A character string, according to Ohme, may not cross a memory bank boundary (you may wish to test this limitation as well). The characters that may be included in the character string, along with their corresponding octal representations, are listed below:

Character	Octal representation	ASCII representation
0	000	060
1	001	061
2	002	062
3	003	063
4	004	064
5	005	065
6	006	066
7	007	067
8	010	070
9	011	071
+ (plus)	373	053
- (minus)	375	055
. (decimal po	int) 376	056
(space)	360	040
E (exponentia sign)	1 025	105

Observe that the octal representation can be converted to the corresponding ASCII representation by adding $060_{\rm Q}$.

The output format in the floating point package generates character strings in two formats, each consisting of 13 consecutive characters in memory. The format used in a specific case is dependent upon the magnitude of the value represented. For example, zero and magnitudes between 0.1000000 and 9999999. are represented by a space or minus sign, seven decimal characters, and an appropriate positioned decimal point, all followed by four spaces (octal 360). Magnitudes outside this range are represented by a space or minus sign, a value between 1.000000 and 9.999999, an exponential sign (octal 025), and a signed two-digit power of ten.

The input subroutine in the floating point package converts character settings in either of the above formats, or a modified version of them.

The leading sign character may be included or omitted. Up to 37 digits may be used to indicate the value, with or without an included decimal point. If a power-of-ten multiplier is indicated, it may be signed or unsigned and may contain one or two digits. An input character string is terminated by the first character which departs from the specified format above. We use the octal byte, 377₈, to terminate an input character string.

EXAMPLES OF CHARACTER STRINGS

We first give the following examples of input strings and the corresponding output character strings:

Input character string	Output character string
3,141593	3.141593
000000000001	-1.000000E-13
+1.6E5	160000.0
123456789	1.234568E+08
54321E-10	5.432100E-06
-2718281828	-2.718282E+09

It would be advisable to stick to a certain format, such as that illustrated by the number, 5.432100E-06, for all input character strings. We shall do so wherever possible and appropriate.

Subroutines INP and OUT can be used to interconvert string representations with floating point binary representations. Given below are the resulting string representations for input floating point binary quantities.

Floating poin binary	:	rresponding representation				
160 000 000 00	360 007 376	5 006 002 011	003 011 005 0	25 375 000 006		
170 000 000 0	360 001 376	6 011 005 003	001 002 005 0	25 375 000 003		
171 000 000 0	00 360 003 376	5 011 000 006	002 005 000 0	25 375 000 003		
174 000 000 0	360 003 376	5 001 002 005	000 000 000 0	25 375 000 002		
175 000 000 0	00 360 006 376	5 002 005 000	000 000 000 0	25 375 000 002		
176 000 000 00	00 360 376 001	L 002 005 000	000 000 000 3	360 360 360 360		
177 000 000 00	00 360 376 002	2 005 000 000	000 000 000 3	60 360 360 360		
200 000 000 00	360 376 005	5 000 000 000	000 000 000 3	60 360 360 360		

201	000	000	000	360	001	376	000	000	000	000	000	000	360	360	360	360
204	000	000	000	360	010	376	000	000	000	000	000	000	360	360	360	360
210	000	000	000	360	001	002	010	376	000	000	000	000	360	360	360	360
220	000	000	000	360	003	002	007	006	010	376	000	000	360	360	360	360
221	000	000	000	360	006	005	005	003	005	376	011	011	360	360	360	360
222	000	000	000	360	001	003	001	000	007	002	376	000	360	360	360	360
223	000	000	000	360	002	006	002	001	004	004	376	000	360	360	360	360
224	000	000	000	360	005	002	004	002	010	007	376	011	360	360	360	360
225	000	000	001	360	001	000	004	010	005	007	006	376	360	360	360	360

Many of the rules governing string character representations are evident in the listing on the preceding page. Note the following:

- o The four spaces, 360 360 360, at the end of many string representations.
- o The exponential representation, 025 375, for small numbers.
- o The space, 360, at the beginning of each character string. Thus all of the numbers in the listing are positive.
- o The number of significant digits in the character strings is seven. Digits beyond seven are rounded off.
- o Each character string format contains thirteen bytes.

FLOATING POINT ACCUMULATOR

The floating point accumulator consists of four successive bytes in read/write memory that store an operand and the result of an arithmetic operation. This accumulator must not be confused with the accumulator (A) register in the 8080 chip that contains only eight bits. The floating point accumulator is a 32-bit word in which the four bytes are arranged in the floating point number representation discussed previously:

- Byte 1: Floating point exponent
- Byte 2: Sign bit and eight most significant bits in fraction
- Byte 3: Next eight most significant bits in fraction
- Byte 4: Least significant eight bits in fraction

Each numeric quantity represented by a 32-bit floating point representation has a precision of approximately one part in 16,000,000. Byte 2 may initially appear to contain nine bits; in practice, the first bit in the binary fraction is always assumed to be at logic 1. Thus, bit 7 in Byte 2 can be used as the sign bit.

You can have many different floating point accumulators in your program simply by defining them at the appropriate points using register pair H.

SUMMARY OF ARITHMETIC SOFTWARE IN FLOATING POINT PACKAGE

INIT

The arithmetic and data handling software in the floating point package consists of the following (they are listed by their subroutine names):

Floating point initialize subroutine. Moves a

	section of code from ROM to scratchpad read/write memory in preparation for the execution of the floating point multiply and divide subroutines. The overflow flag is also set to zero.
STR	Floating point store registers subroutine. Stores the contents of registers A, B, C, and D into four consecutive memory locations (in the same bank of memory) in read/write memory. The address where the first word will be stored is indicated by the contents of the H register pair.
LOD	Floating point load subroutine. Places the specified floating point operand in the floating point accumulator.
AD	Floating point add subroutine. Adds the specified floating point operand to the value in the floating point accumulator and places the sum in the floating point accumulator. The address of the operand is given by the contents of register pair H.
SB	Floating point subtract subroutine. Subtracts the specified floating point operand from the value in the floating point accumulator and places the difference in the floating point accumulator. The address of the operand is given by the contents of register pair H.
MUL	Floating point multiply subroutine. Multiplies the

specified floating point operand by the value in

the floating point accumulator and places the product in the floating point accumulator. address of the operand is given by the contents of register pair H.

Floating point divide subroutine. Divides the DIV specified floating point operand into the value in the floating point accumulator and places the quotient in the floating point accumulator. address of the operand is given by the contents of register pair H.

Floating point absolute subroutine. ABS sign of the value in the floating point accumulator to positive.

ZRO Floating point zero subroutine. Places the value zero in the floating point accumulator.

Floating point test subroutine. Loads the value TST in the floating point accumulator into registers A through D and sets the zero and sign flag bits to indicate the corresponding attributes of the floating point number.

CHS Floating point complement subroutine. Changes the arithmetic sign of the value in the floating point accumulator.

> Character string input subroutine. Converts the value represented by a character string stored in memory to floating point format and stores the result in the floating point accumulator. address of the first character in the character string is contained in register pair H.

Character string output subroutine. Converts the value in the floating point accumulator to a character string format consisting of 13 characters, and stores the string in read/write memory. address of the first character in the character string is contained in register pair H.

Float subroutine. Converts the fixed point binary data format in the A, B, C, and D registers to floating point format and stores the result in the floating point accumulator. The binary scaling factor (a single byte) needed for the fixed point binary word is contained in register E upon entry to this subroutine.

INP

OU

FLT

FIX Fixed subroutine. Converts the value in the floating point accumulator to fixed point format and returns the result in the A, B, C, and D registers. The binary scaling factor needed for the fixed point binary word is contained in register E upon entry to this subroutine.

The memory addresses, given in both octal and hexadecimal, of the various subroutines described above are as follows:

Subroutine	Hexadecimal address	Octal address
INIT	02 2F	002 057
STR	02 3E	002 076
LOD	02 6E	002 156
AD	02 D7	002 327
SB	02 D4	002 324
MUL	02 8C	002 214
DIA	02 B4	002 264
ABS	02 50	002 120
ZRO	02 46	002 106
TST	02 59	002 131
CHS	02 4D	002 115
INP	05 4A	005 112
ou	06 OC	006 014
FLT	04 FF	004 377
FIX	05 16	005 026

You would call the subroutines at these addresses when needed, provided only that the proper information is available in the internal 8080 registers and in memory.

DRIVER ROUTINES FOR THE ARITHMETIC FLOATING POINT PACKAGE

In the preceding section, we described the various routines available

and their starting addresses. Each such routine is called, and executes a return operation at the end. Let us now proceed to the question of how the routines are used in practice. What we must do is take into account the information needed in registers or memory prior to executing a subroutine.

A. To translate a BCD string (located at address STRNG to STRNG+14) into a floating point accumulator word.

LXI H, STRNG CALL INP LXI H, FLOAT CALL STR

Memory location FLOAT consists of four bytes, which are the floating point accumulator. Register pair H points at the memory location of the first byte.

B. To translate a floating point word into a BCD string (located at address STRNG to STRNG+14).

LXI H, FLOAT CALL LOD LXI H, STRNG CALL OU

C. To translate a fixed point binary word (located in FIXED to FIXED+3) with binary scale byte at FIXED+4 to floating point representation.

LXI H, FIXED
MOV A,M
INR L
MOV B,M
INR L
MOV C,M
INR L
MOV D,M
INR L
MOV E,M
CALL FLT
LXI H, FLOAT
CALL STR

Observe that we are moving five successive bytes in memory into registers A through E, then calling subroutine FLT.

D. To translate floating point representation into a fixed point binary word (located at FIXED to FIXED+3) with binary scale byte at FIXED+4.

LXI H, FLOAT
CALL LOD
LXI H, FIXED+4
MOV E, M
CALL FIX
LXI H, FIXED
CALL STR

E. To copy a floating point accumulator word in location FLOAT to another location FLOATQ

LXI H,FLOAT CALL LOD LXI H,FLOATQ CALL STR

In other words, we can move the floating point accumulator around in memory.

F. To multiply the quantity in the floating point accumulator by the operand at memory location FLOATQ and store the result in the floating point accumulator.

LXI H,FLOAT
CALL LOD
LXI H,FLOATQ
CALL MUL
LXI H,FLOAT
CALL STR

Note how simple it is to multiply two numbers. Addition, subtraction, and division are equally simple.

G. To divide the quantity in the floating point accumulator by the operand at memory location FLOATQ and store the quotient in the floating point accumulator.

LXI H,FLOAT
CALL LOD
LXI H,FLOATQ
CALL DIV
LXI H,FLOAT
CALL STR

Observe that it is not necessary to lose the contents of the floating point accumulator in a multiplication or division (or for that matter, an addition or subtraction) operation. The second instruction from the bottom, LXI H,FLOAT, could easily point to some other memory location.

H. To add the quantity in the floating point accumulator to the operand at memory location FLOATQ and store the sum in the floating point accumulator.

LXI H,FLOAT
CALL LOD
LXI H,FLOATQ
CALL AD
LXI H,FLOAT
CALL STR

I. To subtract the operand in memory location FLOATQ from the quantity in the floating point accumulator and store the difference in the floating point accumulator.

LXI H, FLOAT
CALL LOD
LXI H, FLOATQ
CALL SB
LXI H, FLOAT
CALL STR

J. To set the quantity in the floating point accumulator to zero.

CALL ZRO LXI H, FLOAT CALL STR

K. To change the sign of the quantity in the floating point accumulator.

LXI H, FLOAT
CALL LOD
CALL CHS
LXI H, FLOAT
CALL STR

L. To replace the quantity in the floating point accumulator by its absolute value.

LXI H,FLOAT CALL LOD CALL ABS LXI H,FLOAT CALL STR

M. To set the flags for the value of the quantity in the floating point accumulator.

LXI H, FLOAT
CALL LOD
CALL TST

This ends the list of driver routines available in the basic mathematics package for the 8080 microprocessor. Juelich has written additional software that permits you to perform operations such as sine, cosine, arc sine, arc cosine, exponential, natural logarithm, arc tangent, hyperbolic sine, hyperbolic cosine, and inverse. The form of the driver routines is very much like that given above.

In the above driver routines, observe the interplay between the various subroutines. If we have a 32-bit floating point number in memory, we can load it into the 8080 registers using subroutine LOD. To perform an addition, subtraction, multiplication, or division, we must first identify the memory address, FLOATQ, of the operand. We then call AD, SB, MUL, or DIV to perform the desired mathematical operation. Finally, we identify the memory address, typically FLOAT (but not always so), where we wish to store the result, and then call subroutine STR.

In practice, we have found that the arithmetic floating point package is quite easy to use with the aid of driver routines such as the above. It takes eighteen instruction bytes to perform a single simple arithmetic operation; this total includes both acquiring the information and storing the result.

One point might be of interest: Why were the labels INP, OU, AD, and SB used instead of IN, OUT, ADD, and SUB? The reason is that the latter group of four labels are identical to 8080 instruction mnemonics.

EXAMPLES OF THE USE OF THE SUBROUTINES IN THE FLOATING POINT PACKAGE

What we wish to give here are some numerical examples that demonstrate the operation of some of the above routines.

FLOAT					FLOATQ					FLOAT				
	202	000	000	000	x	202	000	000	000	=	203	000	000	000
	202	100	000	000	x	202	100	000	000	=	204	040	000	000
	203	000	000	000	x	202	000	000	000	=	204	000	000	000
	204	000	000	000	x	202	000	000	000	=	205	000	000	000
	201	000	000	000	+	201	000	000	000	=	202	000	000	000

```
202 000 000 000 + 201 000 000 000 = 202 100 000 000
                   201 000 000 000 =
202 100 000 000
                                       203 000 000 000
                +
                   201 000 000 000
                                       203 100 000 000
203 040 000 000
                   201 000 000 000
                                       203 040 000 000
203 100 000 000
203 040 000 000
                   201 000 000 000 =
                                       203 000 000 000
                   201 000 000 000 =
                                       202 100 000 000
203 000 000 000
                   201 000 000 000
                                       202 000 000 000
202 100 000 000
                   201 000 000 000
                                       201 000 000 000
202 000 000 000
201 000 000 000
                   201 000 000 000 =
                                       000 000 000 000
000 000 000 000
                   201 000 000 000 =
                                       201 200 000 000
201 200 000 000 - 201 000 000 000 =
                                       202 200 000 000
```

We shall leave it to you as an exercise to convert the above floating point binary numbers into decimal numbers and to verify the arithmetic operations shown.

We have also tested the use of the FIX and FLT subroutines. A table of results is provided on the following page. Observe that there are many different ways to represent simple integers in the fixed binary format. We prefer the representation in which the binary point is to the right of the least significant bit and the scaling factor is $040_{\rm g}$.

Decimal number	FIXED	FLOAT
1.0	000 000 000 001 040	201 000 000 000
2.0	000 000 000 002 040	202 000 000 000
3.0	000 000 000 003 040	202 100 000 000
7.0	000 000 000 007 040	203 140 000 000
1.0	000 000 000 002 037	201 000 000 000 .
1.0	000 000 000 010 035	201 000 000 000
1.0	000 000 000 020 034	201 000 000 000

	1.0	000	000	000	004	036	201	000	000	000
	1.0	100	000	000	000	002	201	000	000	000
,	-1.0	300	000	000	000	002	201	200	000	000
	0.5	100	000	000	000	001	200	000	000	000
,	-0.5	300	000	000	000	001	200	200	000	000
	2.0	177	377	377	377	002	202	000	000	000
	0.25	100	000	000	000	000	177	000	000	000

MEMORY MAP FOR FLOATING POINT PACKAGE

The full floating point package, including the elementary functions, requires several kilobytes or ROM and perhaps no more than 24 bytes of read/write scratch pad memory. The following routines have been placed into 1702A EPROM chips:

02 00	to 04 FE	8080 Binary Floating Point System Arithmetic and Utility Package. Programmer, Cal Ohme. December 26, 1973.
04 FF	to 06 F4	8080 Binary Floating Point System Format Conversion Package. Programmer, Cal Ohme. December 26, 1973.
06 F5	to 07 06	IDV. Inverse divide routine.
07 07	to 07 40	FSQRT. Square root routine.
07 41	to 07 BB	FMACL. Maclaurin series routine.
07 BC	to 08 52	FCOS and FSIN. Sine and cosine routine.
08 53	to 08 D2	ARCTAN. Arc-tangent routine.
08 D3	to 09 28	FCOSH. Hyperbolic cosine routine.
09 29	to 09 E1	FSINH and FEXP. Hyperbolic sine and exponential routine.
09 E2	to OA 53	FLOG. Natural logarithm routine using Maclaurin series.

SCRATCH PAD MEMORY

A scratch pad memory is a region of read/write memory that is used to store temporary results. In the floating point package, even a short segment of ROM is copied into the scratch pad memory for use in multiplication and division operations.

For the entire arithemtic floating point package, including the elementary function package written by Jeulich, eighty-seven, or hexadecimal 57, scratch pad bytes are required. They can be located at LO memory addresses 00 through 57 (hexadecimal notation) in any HI memory address byte desired. This HI address byte must be entered into the following memory address locations in the Juelich program:

Memory locations that refer to scratch pad memory

hexadecimal		octal	
02		002	065
02	47	002	107
02	52	002	122
02		002	
02	80	002	
02	C6	002	
02	CB		313
02	E1	002	
03	9D	003	
04	8 F	004	
04		004	
04	F5	004	
	08	005	
05	17	005	
05		005	
05	E6	005	
06	3B	006	
06	Al	006	
06	C6	006	
06	DA	006	
06	E2	006	
07		007	
07	51	007	121
07	57	007	
07	5D	007	135
07	79	007	171
07	7 D	007	175
07	89	007	211

In the floating point package that we currently have in 1702A EPROM, the scratch pad memory HI byte is 020, in octal code (10 in hexadecimal). The EPROMs cover the address range of from 02 00 to 0A 53. Depending upon the type of application, it may be necessary to change the HI byte to a different value. It is useful to think of memory as being subdivided into IK memory blocks. The first such blocks are as follows. We define a memory bank as 256 contiguous memory locations that have the same HI address byte.

Memory Banks

•		
Memory block	Hexadecimal	Octal
00	00, 01, 02, 03	000, 001, 002, 003
01	04, 05, 06, 07	004, 005, 006, 007
02	08, 09, 0A, 0B	010, 011, 012, 013
03	OC, OD, OE, OF	014, 015, 016, 017
04	10, 11, 12, 13	020, 021, 022, 023
05	14, 15, 16, 17	024, 025, 026, 027
06	18, 19, 1A, 1B	030, 031, 032, 033
07	1C, 1D, 1E, 1F	034, 035, 036, 037
08	20, 21, 22, 23	040, 041, 042, 043
09	24, 25, 26, 27	044, 045, 046, 047
OA	28, 29, 2A, 2B	050, 051, 052, 053
ОВ	2C, 2D, 2E, 2F	054, 055, 056, 057

This listing should be sufficient for our purposes. It is quite likely that 8708 (2708) EPROMs, which have one kilobyte of memory, will be used to store programs. Thus, it will not be possible to subdivide a memory block into both read-only memory and read/write memory.

We have made an attempt to identify the types of information that are stored in the scratch pad read/write memory in the floating point package. Of particular interest is the fact that from LO = 00 to LO = 2F (hexadecimal code) is stored an actual segment of ROM program that has been copied into scratch pad memory. This is performed using subroutine INIT.

In the listing below, the HI byte is the one which you have chosen for your scratch pad memory. We simply list the LO bytes, the labels, and the significance of the specific memory locations. Memory locations are given in hexadecimal code.

LO memory	·. <u>.</u>	
address	Name	Description
00	MULX4	
01	MULP3	Operand third fraction
05	MULP2	Operand second fraction
09	MULP1	Operand first fraction
OD	DIVX5	
OE	OP4S	Divisor fourth fraction
11	OP3S	Divisor third fraction
15	OP2S	Divisor second fraction
19	OP1S	Divisor first fraction
1C	OP4A	Remainder fourth fraction
1E	DIVX6	
1F	OP3A	Remainder third fraction
23	OP2A	Remainder second fraction
27	OP1A	Remainder first fraction
2A	OP4X	Remainder fourth fraction
2E	OVER	
2F	PREX	Previous exponent
30	ACCE	Accumulator exponent
31	ACCS	Accumulator sign
32	ACC1	Accumulator first fraction
33	ACC2	Accumulator second fraction
34	ACC3	Accumulator third fraction
3 5	SF	Subtraction flag
36	ADPL	Character string word
37	ADRH	Character string bank
38	TMP1	Temporary storage
39	TMP 2	Temporary storage
3 A	TMP3	Temporary storage
3B	VALE	Value exponent
3C	VAL1	Value first fraction
3D	VAL2	Value second fraction
3E	VAL3	Value third fraction
3 F	TMP4	Temporary storage
40	FSQRN	
40	FMACX	
44	FSQRX	
44	FMACS	
48	FMACT	
4C	FMACG	
4E	FCSHD	
4E	FLOGE	
4E	FSNHD	

4F	FEXOV
50	FATNT
50	FSINX
50	FSNHX
50	FLOGX
54	FATNU

Stored in the above LO address locations are the indicated quantities, which vary during the arithmetic calculations. This is why these quantities need to be located in scratch pad memory.

APPENDIX C

Instrument Documentation

Westinghouse

6377

May 1, 1960

COMPENSATED IONIZATION CHAMBER TYPE 6377

The 6377 compensated ionization chamber is designed to detect thermal neutrons in the range from 2.5×10^2 to 2.5×10^{10} neutrons cm² necond, in the presence of very high gamma radiation fields. The detector is extremely rugged in construction, meeting MIL-S-901 for shock and MIL-Std-167 (type 1) for vibration, and may be operated in any position at temperatures up to $175^{\circ}F$. The 5377, including the connectors, is constructed of magnesium alloy, with high stability, crosslinked polystyrene insulation. The use of this latter material assures completely noise free performance of the detector, even in the lowest decade of operation.

The 6377 incorporates two outstanding features. The first is the use of guard ring construction throughout to minimize the reduction in signal currents due to electrical leakage of the insulators. The second is the provision for continuously variable, electrical compensation. This feature provides any desired degree of reduction of the signal caused by gamma radiation, including complete cancellation.

The thermal neutron sensitivity of the 6377 is approximately 4×10^{-14} amperes neutron cm² second. The gamma sensitivity, when operated uncompensated, is approximately 3×10^{-11} amperes. R. hour.

The 6377 is similar to the 7353, differing only in outline dimensions.

MECHANICAL.		
Maximum Diameter ,	3-3-16	Inches
Maximum Overall Length 23	-13 /6	Inches
Approximate Sensitive Length,	14	Inches
Net Weight	5-3 '8	Pounds
Shipping Weight	19	Pounds
MATERIALS:		
Outer Case	. 3% A I,	97% Mg Allay
Electrodes	. 3% Al,	97% Mg Allay
Insulation	Stabiliza	d Polystyrene
Neutron Sensitive Material:		
Content	Boron enr	iched in B-10
Thickness		I marcm²
Gas Filling		. Nifregen
IMPEDANCE:		
Resistance: (Note 2)		
Signal Electrode to Case (Minimum)	1014	Ohms
H.V. Electrade to Case (Minimum)	1012	Ohms
Compensating Electrode to Case		
(Minimum)	1011	Ohms
Capacitance: (Note 1)		
Signal Electrade to Case (Approx.)	275	ILIE!
H.V. Electrode to Case (Approx.)	315	igit
Compensating Electrade to Case		
(Approx.)	125	րդւ
MAXIMUM RATINGS:		
Valtage Between Electrodes (dc) 15	00 mas.	Yolts
Temperature	75 max.	Degrees F
External Pressure (Note 3)	80 max. f	Pounds/Inch2
Thermal Neutron Flux 5-10		

Neutron & Radiation Detector Section

WESTINGHOUSE ELECTRIC CORPORATION, ELECTRONIC TUBE DIVISION, ELMIRA, NEW YORK

Westinghouse

Page 2

YPICAL OPERATION:	
Typical Connection	See Figure 1
Operating Voltage 300 to 800	Volte
Compensating Voltage	
(See Figure 3)	Valta
Saturation Characteristics	See Figure 2
Thermai Neutron Flux	
Range 2.5 × 10 ² to 2.5 × 10 ¹⁰	0.1
Thermal Neutran Sensitivity 4×10^{-14}	Amperes/ny
Gamma Sensitivity:	
Tatal Compensation	
Uncompensated 3 + 10-11	Amperes/R/hou

- Capacitance is measured between an electrode and case, with all other electrodes grounded.
- The detector may not be immersed directly in water, and high humidity environments should be avoided as they will impair performance.
- 3. The pressurizing atmosphere must be dry and non-corresive.

TYPICAL CONNECTION DIAGRAM

Note: Permissible power supply regulation and ripple will depend upon the particular-application. See Section entitled "lonization Chamber Operation."

CE-A1324 RE

FIGURE 1

FIGURE 2

6377

Westinghouse

Page 4

CONTENTS

	SECTION
INTRODUCTION	I
DESCRIPTION	II
Current ranges Input Impedance Input Connectors Input Switch Grid Current Zero Drift Zero Control Recorder Output Response Speed Amplifier Noise Circuit Description Calibration	
OPERATION Imput Connections Input Connections Using Direct Leads Grid Current Recording Speed of Response	III
MAINTENANCE	IA
SPECIAL INSTRUCTIONS FOR THE MODEL 411-C	V
SCHEMATIC PIAGRAMS	

₹

SECTION I INTRODUCTION

Model 411

The Keithley Model 411 Micro-microammeter is a line operated vacuum tube electrometer designed and constructed aspecially for measuring small currents. Full scale ranges are from 10^{-3} to 10^{-11} ampere.

The features include full-scale voltage drop at the input of less than five millivolts, zero drift of less than 2% of full scale per week, good accuracy and calibration stability, and simplicity of operation. It also has an output which will drive a 0-1 or 0-5 milliampere recorder as well as the numerous potentiometer - rebalance recorders; one output terminal is at ground, making it convenient to connect cathode ray oscilloscopes or pen-driving amplifiers, similar to the Brush and Sanborn equipment.

The major panel controls are the range switch (amperes full-scale) and the zero. Minor controls are the Zero Check, used to short circuit the input and in setting the zero, Meter Polarity for providing up-scale readings for currents flowing in either direction, and an ON-OFF power switch. The meter dial is illuminated, and these bulbs serve as the pilot light.

Model 411C

The Keithley Model 411C is identical to the Model 411, except that the panel meter is provided with contacts which can be set to close at any predstermined meter pointer deflection. The delicate contacts of the meter operate a relay in the 411C, and the relay contacts (SPDT) are available for external switching functions through an AN connector on the rear of the chassis.

Response Speed, both models

The 411 and 411C are shipped with capacitors shunting the range resistors on the 10-5 through 10-11 ampere ranges. The capacitors damp the response, limiting the amplification of spurious disturbances, and preventing overshoot and ringing when a square pulse of current is applied and input cable capacitance is as much as 5000 micro-microfarads. Such damping is usually preferred when long input cables are used, as with remote ion chambers. When maximum speed is desired, as in some production tests, and very short input cables are being used, the capacitors may simply be removed from the range switch. See details on page II-2.

£,

- I-1 -

KEITHLEY INSTRUMENTS

SECTION II DESCRIPTION

Seventeen overlapping current ranges, from 10 x 10^{-14} ampere to 10×10^{-12} ampere are selected by the Amperes Full Scale switch, located left of the Meter. The accuracy of the ranges from 10×10^{-14} through 3×10^{-7} is within 2%, 10×10^{-9} through 10×10^{-12} is within 4%.

<u>Input Impedance</u> is controlled by negative feedback from the output so that the voltage drop across the input terminals is less than 5 millivolts for full-scale meter deflection.

The Input Connector is located on the back face of the chassis. It is a UHF connector with teflon insulation, and accepts a standard teflon insulated mating plug. The plug and lead wires or cable should be extremely well insulated to prevent the leakage of the small currents. A cap is provided for keeping dirt out when the instrument is stored.

Input Switch Labelled ZERO CHECK is located to the left of the range switch. When depressed, it effectively shorts the input to remove spurious charges, and provides the zero input current reference for zeroing the meter with the Zero Control.

<u>Grid Current</u> is less than 5×10^{-14} ampere, and represents the limit of measurement of a vacuum tube electrometer. This is about 0.5% of full-scale on the most sensitive range.

Zero Drift is less than 2% of full scale per week on all ranges. This includes warmup from a cold start, provided the source voltage is 10 volts or more.

Zero Control - The Zero knob is located to the right of the meter and is used for zeroing the meter with zero input current. Effectively zero input current can be obtained by depressing the Zero Check button. The input must not be short-circuited. This upsets the negative feedback path and makes it impossible to zero the meter.

It is recommended that the meter pointer not be set anywhere but zero on the meter scale with zero input current, because with the feedback used, a dc potential is developed across the input whenever the output and the panel meter are not zero for zero input current. Recorders, of course, can be biased to any part of their scale for zero volts at the Model 411 output.

Output is provided for driving recorders. The amplifier will develop 10 volts for full-scale meter deflection, and 5 milliamperes can be drawn without upsetting the circuits. The GUTFUT connector is at the rear of the chassis. The connection details and suitable output attenuators are discussed in OPERATION. Section III.

Response Speed of the 411 depends upon the current range being used and also upon the capacitance of the external circuitry. On the less sensitive ranges the speed is limited by the amplifier response, which is from do to approximately 1,000 cps. On the ranges from 3 x 10-7 to 10 x 10-11 ampered the speed has been reduced to about 1.0 second by the addition of capacitors across the range resistors. On the three most sensitive ranges, shunt capacitance across the input limits the response speed. Because of the method of application of the negative feedback, the slowing effects of capacitance from the high input terminal to ground have been greatly reduced, but are still significant. Table I below gives typical response speeds; viz; the time constant of the response to a step function.

TABLE I

TYPICAL RESPONSE SPEEDS

(to reach 67% of final value)

Ranges	with no significant external capacitance	with 5000 mmf across the input	
1 x 10-11	2.0 Seconds	4.0 Seconds	
3 x 10-11	1.0	2.0	
1 x 10-10	0.5	1.0	
3 x 10-10	0.5	1.0	

If the maximum speed of response is desired, the capacitors shunting the range resistors may be removed; however the increased response to spurious ac signals may interfere with recording, and the transient response may suffer.

Amplifier Noise is principally power frequency, and is 50 millivolts rms max at the output terminals, irrespective of the current range. From the most general point of view, grid current and amplifier zero drift are also background noise; these have already been discussed.

Ě

- II-2 -

KEITHLEY INSTRUMENTS

Circuit Description

The circuit diagram DR 111.75-C is enclosed at the back. The amplifier consists of two 5886 electrometer tubes operated as a balanced stage, with a substantial amount of in-phase rejection. Further in-phase rejection is obtained by supplying V1 and V2 screens from V3 and V4. A triode connected 6CM6 is used as the cathode follower output stage.

Negative feedback from the output is accomplished through the shunt resistor to the grid of the input electrometer tube. It is this feedback which keeps the input voltage drop low.

The open loop voltage gain of the amplifier, measured from the first stage grid to the feedback connection which would normally be connected to the low impedance end of the shunt resistor, is about 2500. This assures a low input drop.

To insure low drift, the feedback-voltage (the voltage drop across the high resistance range resistors) is made ten volts on all ranges.

The power supply is regulated by a Sola transformer. Half-wave selenium rectifiers supply the B+ and B- potentials. The filtering is conventional.

Calibration is determined by the value of the high resistance range resistors. From 10^{-3} to 10^{-7} amperes, the overall accuracy is better than 2%. From 3 x 10^{-8} to 10^{-11} amperes, the accuracy is better than 14%.

The meter is connected between the output terminal and ground. When the range resistor is shorted in zeroing the instrument, the meter measures the voltage existing between the input terminal and the output terminal (which are connected together when the shorting button is pressel) and ground.

The balancing of the amplifier, with the Zero control, is done in the filament circuit of V2. This is a convenient low-impedance point and does not disturb the electrode potentials of the low grid current electrometer tube.

Ę

100

SECTION III OPERATION

Simplicity of operation is an outstanding characteristic of the Model 411. First connect the input to a current source, and the cutput to a recorder or external indicator, if desired.

- Then: a) Plug the power cord into a 110 volt 60 cps outlet. Note that because a Sola resonant regulating transformer is used, the power frequency, as well as voltage, must be the proper value.
 - b) Turn the amperes Full Scale to the 10 x 10^{-4} position.
 - c) Turn the power switch to ON.
- d) After a few minutes warmup, set the panel meter to zero with the ZERO control.
- e) Advance the instrument's sensitivity with the range switch, until a usable deflection is obtained on the panel meter. The current is read directly. Attention should be paid to the METER polarity switch, so that an up-scale deflection is obtained.
- f) Periodically check the zero setting by operating the ZERO CHECK switch and rezeroing the meter if necessary.

Input, using cabling

The current source should be connected to the input connector with the high impedance side of the current source associated with central conductor of the connector. The lead-in cable should be polyethylene, polystyrene, or teflon insulated coaxial cable, and the connector should have teflon insulation. Amphenol type 83-756 or equivalent is recommended. During preparation of cable and connectors, it is essential that all high impedance surfaces be kept scrupulously clean to avoid leakage. With graphite coated cable, it is necessary to avoid tracking graphite onto the high impedance surfaces of the cut end of the insulation and the teflon surface of the connector. Movement of the cable during measurement should be avoided since this will cause spurious needle movements, because of capacitance changes and generation of static charges.

RECORDING: The Model 411 is provided with a connector on the rear of the chassis for recording. The output for full-scale meter deflection is \$10 volts. The maximum current that may be drawn from the output terminals is 5 milliamperes. This output is suitable for driving one and five milliampere recorders as well as recorders employing an amplifier. Cinch-Jones S-202-B is the chassis connector, P-202-CCT is the mating plug. Terminal #1 is ground.

- III-1 -

KEITHLEY INSTRUMENTS

ľ

Table III gives resistance to be used in series with one and five milliampere recording milliammeters, to make the recorder full-scale deflection equal the panel meter full-scale deflection.

TABLE III

 Recorder
 Series Resistance

 1 m.a.
 8.3 to 3.7K

 5 m.a.
 1920 to 1940

The exact series resistance varies from recorder to recorder, and a portion of the series resistance should be adjustable so that the recorder may be calibrated exactly against the punch meter.

A suitable voltage divider for more sensitive recorders can easily be made, keeping in mind that 10 volts appear at the cutput terminals for full-scale deflection of the panel mater, and that a 2000 ohm divider will not draw too much output current and will be sufficiently low impedance to connect to amplifier inputs.

The Speed of Response, or the time constant of an input transducer and micro-microammeter, depends upon the speed of response of the circuitry of the instrument and also upon the capacitance of the current source and its connecting cable. Because of the way the negative feedback is applied in the Model 411, the external input capacitance is not nearly as important as in systems using a voltmeter across a shunting resistor, and quite large capacitances can be tolerated without having an impossibly slow response. Thus, a cable run from an ion chamber to the micro-microammeter is permissible.

The internal time constant of the Model 411 depends upon both the frequency response of the amplifier stages and the time constants of the high megohm range resistors and the associated distributed capacitances. These change from range to range on the 411, the speed decreasing as the sensitivity is increased. Table I in Section II, Description, gives quantitative values.

\$\frac{1216 \text{ Volts}}{216 \text{ Volts}}\$. A connector has been mounted on the back face of the chassis to provide \$216 \text{ volts} for polarizing an ion chamber. The potential is derived from 2 CB2 voltage regulator tubes and is well filtered. The supply can be short circuited without damaging it. The chassis connector is Cinch-Jones SlOl, and PlOl is the mating plug.

Ę

- III-2 -

KEITHLEY INSTRUMENTS

SECTION IV MAINTENANCE

The Keithley Model 411 Micro-microammeter has been designed to give long, trouble-free service. High quality components have been used throughout, and the circuits are stabilized by a substantial amount of negative feedback.

DR 11175-C, at the back, is the detailed circuit schematic diagram of the Model 411. The circuit operation was discussed in Section II, Description.

Maintenance Adjustments

One maintenance control is provided. It is accessible from the top of the chassis, and is located behind the meter.

R138, METER CALIBRATION, is in series with the Meter. To recalibrate, use the 10 x 10-4 range and, with 7 x 10-4 ampere through the input circuit, adjust R138 so the moter reads exactly 7.0. Since the shunt resistor on this range is accurate to 0.1% of its nominal value the overall accuracy can be adjusted to about 1% of full scale. On the 3 x 10-4 to 10 x 10-8 ampere range the range resistors are accurate to 1% and, providing the calibration was accurately done on the 10 x 10-4 range, the overall accuracy will be 2%. From 3 x 10-8 to 10 x 10-12 amperes the range resistors are accurate to 3% and the overall accuracy will be 4%.

Vacuum Tubes VI and V2 are the two electrometer tubes, and are located in an aluminum can which plugs onto the top of the chassis near the input terminals. The tubes have been selected, matched and labelled; VI is Keithley part EV5386-5 and V2 is EV5886-6. The difference between the two is that EV5856-6 does not have to have low grid current. It is recommended that the complete Input Tube assembly, Model 4102 be kept for replacement purposes.

The other tubes are standard receiving tubes and need no special selection to assure satisfactory performance of the Model 411.

INSULATION: All insulation for the high impedance conductors is made of teflon, as are the contact insulators on the range switch. This should give satisfactory service in all humidities. Occasionally, the high impedance insulators should be inspected to insure that they are free from dirt and dust.

CONNECTOR CAP: The cap for the input connector should be kept in place whenever the connector is not being used. In storage and in transport, it keeps the insulation from accumulating dust and dirt. Before screwing the cap back onto the connector, be certain that it is clean, so the insulation will not be contaminated.

ŧ

- IV-1 -

KEITHLEY INSTRUMENTS

$3\frac{1}{2}$ Digit AC Line Powered DPM

AD2009

EATURES C Line Powered

Bright, Seven Segment Gas Discharge Display SCD Data Outputs Standard told and Trigger Control Signals full Scale Ranges of ±1.999V or ±199.9mV Display Blanking Control ndustry Standard Panel Cutout

APPLICATIONS

General Purpose DPM Applications Requiring AC Power and a High Visibility Display

Data Logging and Digital Feedback Control Systems

e AD2009 is a low cost 3½ digit, AC line powered DPM dened for general porpose DPM applications. The AD2009 casures bipolar input voltages over full scale ranges of either 999V or ±199 9mV, with an accuracy of ±0.1% reading ±1 git and displays the readings on large, bright 0.55 " (14mm) ckman gas discharge displays.

ARGE, BRIGHT DISPLAY

ir display only applications, the Beckman display offers exilent appearance and visibility. The AD2009 display is easily id-up to 50 feet (15m) away and over all ambient lighting inditions. The non-glare lens allows a choice of either red or ither display colors, and is easily silk-screened with company to or measurement units. External control of decimal points and display blanking is provided.

MPLE DATA INTERFACING

ice the AD2009 is designed around TTL logic circuits, paral-BCD data, TTL/DTL compatible, is a standard feature, owing easy interfacing to a variety of data peripherals, such digital compararors and line printers. Under internal coni, the AD2009 converts at a nominal rate of six conversions r second. Using the Hold and Trigger controls, up to 100 oversions per second can be externally triggered.

DUSTRY STANDARD CASE DESIGN

response to industry's urgent need for DPM standardization, alog Devices has adopted the most popular AC powered DPM net eutout size for the AD2009 and all future AC line powered DPM's. Since this 3.924" x 1.682" (99.67 x 42.72mm) net cutout is used by so many AC powered panel meters, the tential DPM customers can be assured that second-sources.

will be available and future new products will be usable without mechanical changes to their instruments or systems.

DESIGNED AND BUILT FOR RELIABILITY

Design and manufacturing techniques are chosen to insure reliability in the AD2009. Conservative design techniques and thorough component evaluation are only the beginning. Manufacturing processes are monitored by continuous quality assurance inspections to insure proper workmanship and testing. Like every other Analog Devices' DPM, each AD2009 is fully tested for electrical specifications, calibrated, and given one full week of failure free burn-in before shipment.

THEORY OF OPERATION

The AD2009 uses a dual slope conversion technique with an absolute value voltage to current converter input. The entire conversion cycle takes less than 10 milliseconds, allowing a complete conversion to be done during the negative half cycle of the AC line, and the resulting reading is displayed during the positive half cycle of the AC line. This scheme not only insures a flicker free display, but also allows externally triggered conversions at rates up to 100/second for data interfacing applications. In order to insure a bright display even during operation at low line voltages and to help insure the rehability of the Beckman displays, a separate power supply is provided to continually illuminate two "keep-alives" in the Beckman display.

ormation furnished by Analog Devices is believed to be accurate direliable. However, no responsibility is assumed by Analog Devices itiase, nor for any infringements of patents or other rights of third (ties which may result from its use. No license is grented by implicain or otherwise under any patent or patent rights of Analog Devices. Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062
Tel: 617/329-4700 TWX: 710/394-6577
West Coast Mid-West Texas
213/595-1783 312/894-3300 214/231-5094

SPECIFICATIONS (typical @ +25°C and nominal line voltage)

DISPLAY OUTPUT

- Beckman Seven Segment Gas Discharge Display, 0.55" High (14mm) for Three Data Digits, 100% Overrange and Negative Polarity Indication. Overload indicated by blanking the three data digits and displaying the "1 overrange. The polarity remains valid.
- Decimal Points Selectable at Input.
- Display Blanking

ANALOG INPUT

- · Configuration: Bipolar, Single Ended
- Full Scale Range: ±1.999V or ±199.9mV (see S option)
- **Automatic Polarity**
- Input Impedance: 100MΩDC
- Bias Current, Both Ranges. 3nA @ 2V FS, 20nA @ 200mV FS
- · Overvoltage Protection, Both Ranges: 200VDC Sustained

ACCURACY

- ±0.1% ±1 Digit¹
- Resolution: ImV or 100µV (S option)
- Temperature Range²: 0 to +50°C Operating -25°C to +85°C Storage
- Temperature Coefficient:

Gain (both ranges) – ±60ppm/°C Zero Offset (2V Input) - ±30μV/°C

- (200mV lnput) ±10μV/°C • Warm-Up Time to Rated Accuracy 15 minutes
- Settling Time to Rated Accuracy: 0.3 sec

NORMAL MODE REJECTION

18 dB @ 60Hz

COMMON MODE REJECTION (IkΩ source imbalance @ 50-6011z, with standard shielded transformer)

- 2V Input 100dB
- 200mV Input 80dB

COMMON MODE VOLTAGE

 ±300VDC (600VAC p/p) (floated on power supply transformer when BCD outputs and control signals are not used)

CONVERSION TIME

• 10msec

CONVERSION RATE

- Internal Trigger: 6 conversions per second
- External Trigger: 0-100 conversions per second

DIGITAL CONTROL SIGNALS

• DTL/TTL Compatible

ln Logic "0" <0 8 V <0.4V >2.4V >2.0V

CONTROL INPUTS³

- Display Blank (17TL Load). Logic "0" or grounding blanks the entire display, not including the decimal points. Logic "1" or open circuit for normal operation, Display blanking has no effect on output data and the display reading is valid immediately upon removal of a blanking signal.
- Hold (1TTL Load), Logic "0" or grounding disables either the external or internal trigger and the last conversion is held and displayed.
- External Trigger (TTTL Load), Positive pulse (500µsec max width) will initiate conversion,

 Decimal Points (Not TTL Compatible), Grounding will illuminate the desired decimal point. External drive circuitry must be capable of withstanding 100V when the decimal points are turned off,

DATA OUTPUTS³

- 3BCD Digits (Drives oTTL Loads). Positive true, unlatched
- Overrange (Drives 6TTL Loads). Unlatched, Logic "0" indicates overrange (≥1000).
- Overload (Drives oTTL Loads). Unlatched, Logic "0" indicates overload (≥2000).
- Polarity (Drives 6 TTL Loads). Latched, Logic "1" indicates positive polarity.
- Status (Drives 10TTL Loads). All digital outputs are valid when status is at Logic "0". Logic "1" indicates conversion is in progress.
- Internal Trigger Output (Not ITL Compatible). When connected to External Trigger Input will cause the AD2009 to convert at 6 conversions per second. This output can only be used for triggering the AD2009

POWER INPUT

 AC line, 50-60Hz, 4.2 Watts at 60Hz; 4.7 Watts at 50Hz (at nominal line voltages).

CALIBRATION ADJUSTMENTS

- Gain
- Zero
- Recommended recalibration interval 6 months

- 4.18"W x 1.93"H x 4.15"L (106 x 49 x 112mm)
- 4.77"1. (121mm) to rear of card edge connector.
- Panel cutout required: 1.682 x 3.924" (42.72 x 99.67mm)

WEIGHT

• 15 ounces (425 grams)

OPTIONS4 - ORDERING GUIDE

 AC Power Inputs (50-6011z) AD2009 117VAC AD2009/E - 220VAC ±10% AD2009/F - 100VAC AD2009/H - 240VAC

- 1.999VDC Full Scale AD2009/S - 199.9mVDC Full Scale

Lens 7 - Red with ADI Logo Lens 8 - Red without ADI Logo Lens 13 - Amber with ADI Logo Lens 14 - Amber without ADI Logo

CONNECTOR

- 30 Pin, 0.156" Spacing Card Edge Connector, Amphenol 225-21524-601 (117) or Equivalent
- Optional: Order AC2611 € \$4.50

PRICING

- \$140 (unit quantity)
- · Consult Factory for OEM quantity pricing

Not to be used when the AD2009 is floating on common mode voltages.

^{*}Only one input range and AC power input may be specified.

Lens 7 is supplied if no lens option is specified

Specifications subject to change without notice

Applying the AD2009

INTERFACING THE AD2009

Input Connections

The AD2009 has a single ended input with common analog and digital grounds. When digital control lines and BCD data outputs are not used, the entire DPM can be floated on the power supply transformer at up to 300VDC common mode voltages. If these signals are used, care should be taken to insure against ground loops within the system causing erratic and/or erroneous readings.

Decimal Points

Grounding the proper pin will illuminate the desired decimal point. If external logic drives are used to control the decimal points, drive circuitry must be able to withstand 100V when the decimal points are turned off.

Display Blanking

The entire display (excluding decimal points) may be blanked by applying logic "O" or grounding the proper control input (pin 13). Blanking the display has no effect on the output data or the conversion process. The data remains valid during blanking and the DPM reading is correct immediately upon removal of the blanking signal.

Interfacing Digital Data Outputs

The digital data outputs of the AD2009 are unlatched, positive true, parallel BCD, at D1L/TTL logic levels. As shown in the timing diagram (Figure 1), all data outputs are valid when the STATUS line is low. The STATUS line is high during conversion when erroneous data will be present on the outputs.

TRIGGERING CONVERSIONS

The AD2009 may be triggered internally at six conversions per second, or externally at rates of up to 100 conversions per second. For internal triggering, the Internal Trigger Output (Pin 1) should be connected to the Trigger Input (Pin B). For external triggering, a positive trigger pulse (<500µs width) should be applied to the Trigger Input (Pin B). Whether in-

Figure 1. AD2009 Timing Diagram

ternal or external triggering is used, the last reading can be held and displayed by grounding or applying logic "0" to the Hold Input. At high conversion rates, the display may flicker unless synchronized to the AC line input, but data outputs will remain valid.

CALIBRATION PROCEDURE

"WARNING: For the safety of personnel and interconnected equipment, all calibration should be done using a plastic trimming tool only."

A precision voltage reference is needed for calibration of the AD2009. The location of calibration potentiometers is shown in Figure 2. Before calibrating the AD2009, allow the unit to warmup to normal operating temperature. Always adjust the zero offset first then the gain.

Zero adjustment: Short the signal input (Pin 2) to the signal ground (Pin 10) and adjust the zero adjustment pot until the meter reads 000.

Gain adjustment. Apply an input of +1.900V (+190.0mV on AD2009/S) and adjust the gain pot until the meter reads 1900 exactly.

Figure 2. AD2009 Mechanical Outline (Dimensions shown in inches and (mm))

Figure 3. AD2009 Mounting Instructions (Dimensions shown in inches and (mm))

PIN REF	PIN FUNCTION
1	INTERNAL TRIGGER OUT
2	SIGNAL INPUT
3	STATUS (PRINT)
4	POLARITY
5	BCD 8
6	BCD 2
7	BCD 80
8	BCD 20
9	BCD 800
10	SIGNAL GROUND
11	BCD 400
12	BCD 200
13	DISPLAY BLANK
14	OVERRANGE
15	AC LINE HI

PIN REF	PIN FUNCTION
A	NO CONNECTION
В	EXTERNAL TRIGGER IN1
С	OVERLOAD
D	HOLD
E	BCD 1
F	BCD 4
Н	BCD 10
J	BCD 40
K	BCD 100
<u> </u>	DP3/XX.X
M	DP2/X.XX
N.	DIGITAL GROUND
Р	DP1/.XXX
R	SHIELD (EARTH GROUND)
S	AC LINE LO

Pin 1 and Pin B must be connected for operation with internal trigger.

Figure 4. AD2009 Signal and Pin Designations

KEY

The FTK0040 is a 9 element npn Planar' phototransistor array having exceptionally stable characteristics and high illumination sensitivity. Each transistor is electrically isolated and mounted on 100 mil centers. The case is a plastic compound with transparent resin encapsulation which exhibits stable characteristics under high humidity conditions.

- HIGH ILLUMINATION SENSITIVITY
- EXHIBITS STABLE CHARACTERISTICS UNDER HIGH HUMIDITY CONDITIONS
- ESPECIALLY DESIGNED FOR PUNCHED OR MARKED CARD READING APPLICATIONS
- OTHER APPLICATIONS INCLUDE: OPTICAL ENCODER APPLICATIONS

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures/Humidity	
Storage Temperature	-55°C to +100°C
Operating Junction Temperature	55°C to + 85°C
Relative Humidity at Temperature	98% at 65°C
Maximum Power Dissipation	
Total Dissipation 25°C Case	200 mW
Total Dissipation 25 C Ambient	133 mW
VCEO Collector to Emitter Sustaining Voltage	20 V
Maximum Current	
IC Collector Current	25 mA

ELECTRICAL CHARACTERISTICS (25°C)

SYMBOL	CHARACTERISTICS	TYP	UNITS	TEST CONDITIONS
ICEO	Collector Dark Current/Cell	4.0	nΑ	VCE = 5.0 V
ICE(L)	Photo Current	200	$\mu \mathbf{A}$	$V_{CE} = 5.0 \text{ V},$
				$H = 5 \text{ mW/cm}^2$
ICE(L)	Photo Current	1.75	mA	VCE = 5.0 V,
				H = 10 mW/cm ²
ICE(L)	Photo Current	2.25	mΑ	VCE = 5.0 V,
,-,				H = 5 mW/cm ²
Smin/				
Smax	Matching Factor	0.5		$V_{CE} = 5.0 \text{ V},$
	•			H = 5 mW/cm ²
tr	Light Current Rise Time	4.0	μs	GaAs, IC = 2.0 mA,
tf	Light Current Fall Time	_		$R_L = 100\Omega$,
	•			V _{CC} = 5.0 V
VCE(sat)	Collector-Emitter Saturation Voltage	0.16	V	$I_C = 500 \mu$ A,
02,021,	-			H = 20 mW/cm ²
VCEO(sus)	Collector-Emitter Sustaining Voltage	20	V	Ic = 1.0 mA (Pulsed)
BVECO	Emitter-Collector Breakdown Voltage	7.0	V	IEC = 100 μA
				•

*Planar is a patented Fairchild process

APPENDIX D

Reactimeter Program

1	NEPR1		CEX2I, CLAMI, Y2TI
1		LODE	
1		LXI H, CEXII	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1			;CFX1I
1		CALL MUL	;CALL IFPP MUL SUBROUTINE TO MULTIPLY
1		LXI H, HOLD	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1			; HOLD
l		STRIN	
1		LXI H, FLUX2	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1			;FLUX2
1		LODE	
1		LXI H, CEX2I	; LOAD H L REGISTER PAIR WITH ADDRESS OF
1			;CEX2I
1		CALL MUL	;CALL IFPP MUL SUBROUTINE TO MULTIPLY
1		LXI H,HOLD	; LOAD H L REGISTER PAIR WITH ADDRESS OF
1			;HCLD
1		CALL AD	; CALL IFPP AD SUBROUTINE TO ADD
1		LXI H.FLUX3	; LOAD H L REGISTER PAIR WITH ADDRESS OF
1			;FLUX3
ì		CALL AD	; CALL IFPP AD SUBROUTINE TO ADD
1		LXI H, CLAMI	; LOAD H L REGISTER PAIR WITH ADDRESS OF
1			;CLAMI
1		CALL MUL	; CALL IFPP MUL SUBROUTINE TO MULTIPLY
1		LXI H, HOLD	; LOAD H L REGISTER PAIR WITH ADDRESS OF
1			; HOLD
1		STRIN	
1		LXI H,Y2TI	;LGAD H L REGISTER PAIR WITH ADDRESS OF
l			;Y2TI

```
LODE
1
                  LXI H.CEXII :LOAD H L REGISTER PAIR WITH ADDRESS OF
                               :CEX1I
                  CALL MUL
                               ; CALL IFPP MUL SUBROUTINE TO MULTIPLY
                  LXI H. HOLD
                               ;LOAD H L REGISTER PAIR WITH ADDRESS OF
                               :HOLD
                  CALL AD
                               :CALL IFPP AD SUBROUTINE TO ADD
                  LXI H, Y2TI
                               LOAD H L REGISTER PAIR WITH ADDRESS OF
                               ;Y2TI
                  STRIN
                  ENDM
          NEPR2
                  MACRO AI, YTI
                  LXI H, AI
                               ; LOAD H L REGISTER PAIR WITH ADDRESS OF AT
                  CALL MUL
                               CALL IFPP MUL SUBROUTINE TO MULTIPLY
                  LXI H.YTI
                               ;LOAD H L REGISTER PAIR WITH ADDRESS OF
                               ;YTI
                  STRIN
                  ENDM
          LODE
                  MACRO
                  CALL LOD
                               ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
                               ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                               ;BY H L REGISTER PAIR
                  ENDM
```

1	STRIN MACRO	
1	CALL STR	CALL IFPP STR SUBROUTINE THAT STORES THE
1		FLOATING-POINT-ACCUMULATOR IN THE ADDRESS

	1			GIVEN BY THE H L REGISTER PAIR
			ENDM	
	1	NEUCO	MACRO	
	ı		CALL AD	CALL IFPP AD SUBROUTINE TO AD
	1		POP H	; POP THE HIGH AND LOW ADDRESS, STORED BY
	1			; SELCT OFF THE STACK AND LOAD IN THE H L
	1			REGISTER PAIR
	1		INX H	; INCREMENT THE H L REGISTER PAIR
	1			THE H L REGISTER PAIR CONTAIN THE MEMORY
	1			; LOCATION OF THE LOW ADDRESS BYTE OF CONI
	1		MOV E,M	; MOVE THE LOW ADDRESS BYTE OF CONI TO E
	1		INX H	; INCREMENT H L REGISTER PAIR
	1			THE H L REGISTER PAIR CONTAIN THE MEMORY
	1			;LOCATION OF THE HIGH ADDRESS BYTE OF CONI
	1		Mav H.M	; MOVE THE HIGH ADDRESS BYTE OF CONI TO H
	1		MOV L,E	;MOVE THE LOW ADDRESS BYTE OF CONI TO L
	1			THE H L REGISTER PAIR CONTAIN THE ADDRESS
	1			; OF CONI
	1		CALL MUL	;CALL IFPP MUL SUBROUTINE TO MULTIPLY
	1		LXI H,FLUX	LOAD H L REGISTER PAIR WITH THE ADDRESS
	1			;OF FLUX
	1		STRIN	
			ENDM	
022F			ORG 022FH	
022F	00	INT:	NOP	
0230	C 9		RE T	
023E			ORG 023EH	
023F	90	STR:	PCN	
023F	C9		RET	
0240			ORG 024DH	
024D	00	CHS:	NOP	
024E	C 9		RET	

026E			DRG	026EH
326E	00	LOD:	NOP	
026F	C 9		RET	
028C			ORG	028CH
J28C	00	MUL:	NOP	
028D	C9		RET	
0284			ORG	02B4H
0284	00	DIV:	NOP	
0285	C9		RET	
0204			ORG	02D4H
0204	00	SB:	NOP	
02D 5	C9		RET	
0207			ORG	0207H
0207	00	AD:	NOP	
0208	C 9		RET	
054A			OR G	054AH

;THE FOLLOWING LABELS ARE FOR THE FLOAT-;ING POINT ROUTINES THAT ARE IN EPROM AND ;ARE BY CERTAIN ROUTINES TO PERFORM MATHE ;MATICAL OPERATIONS. THESE ROUTINES ARE ;IN ANOTHER PRINT OUT AND ARE GIVEN HERE ;AS DUMMY PROGRAMS TO BE REFERENCE BY THE ;CROSS ASSEMBLER.

054A	00	INP:	NOP									
054B	C 9		RET									
360C			ORG	060CH								
060C	00	០បៈ	NOP									
06 OD	C9		RET									
0000		START:	ORG	H0000								
0000	31FF10		LXI	SP, 10FFH	;LOAD	STACK	POINTER	TO HI	10	AND	LO	FF
0003	218010		LXI	H, DMANT								
0006	36F0		MVI	M.360Q								
8000	2 C		INR	L								

```
0009
       20
                        INR L
A000
       20
                        INR L
000B
       36FE
                        MVI M,376Q
0000
       20
                        INR L
000E
       2 C
                        INR L
000F
       36FF
                        MVI M,377Q
0011
       1607
                        MVI D,7
                                      ; SET D EQUAL TO 7
0013
       218610
                        LXI H, Y2T1
                                      :LOAD H L REGISTER PAIR WITH Y2TI
0016
       3E00
                        MVI A.O
0018
       77
                 INITZ: MOV M.A
0019
       20
                        INR L
001A
       20
                        INR L
001B
       20
                        INR L
0010
       20
                        INR L
001D
       15
                        DCR D
001E
       C21800
                        JNZ INITZ
0021
       CD2F32
                        CALL INT
                                      ; CALL IFPP INT SUBROUTINE TO
                                      ; INITIALIZE THE FLOATING-
                                      : POINT-ROUTINES
0024
       C 35C 00
                        JMP WAIT
                                      JUMP TO WAIT AND BEGIN PROGRAM
0028
                 INTRO: ORG 0028H
3028
       D308
                 RESTR: OUT 11
                                      GENERATE A DEVICE SELECT PULSE
002A
       D30A
                 INPUT: OUT 10
                                      GENERATE A DEVICE SELECT PULSE
                                      ; TO DEVICE TEN, THIS CASE FOUR 7475
                                      ; LATCHES
002C
       218410
                        LXI H. DMANT+4; ADDRESS OF TENTHS DIGIT OF DMANT, WHICH
                                      ; IS THE FIRST DIGIT TO BE READ INTO THE
                                      ; ACCUMULATOR
002F
       DB01
                        IN 1
                                      READ TENTHS DIGIT FROM DEVICE 1 INTO
                                      : ACCUMULATOR
0031
       77
                        A.M VOM
                                      ; MOVE TENTHS DIGIT TO MEMORY ADDRESS BY
                                      :H L REGISTER PAIR
```

1/1	
\sim	
$\overline{}$	
. ~	

0032	20	DCR	L	
0033	20	DCR	L	
0034	D602	IN	2	READ ONES DIGIT FROM DEVICE 2 INTO ACCUMULATOR
0036	77	VGM	M,A	
0037	2 D	DCR	L	
0038	DB03	IN	3	READ TENS DIGIT FROM DEVICE 3 INTO
003A	77	MOV	M , A	MOVE TENS DIGIT TO MEMORY ADDRSS BY H L

				REGISTER PAIR
003B	0800		IN O	;READ GRAY
003D	07		RLC	ROTATE ACCUMULATOR LEFT
003E	07		RLC	
003F	21CE10		LXI H, GRAYC	
0042	77		MOV M, A	; MOVE ACCUMULATOR TO MEMORY LOCATION GIVEN
				BY H L REGISTER PAIR
0043	218010		LXI H, DMANT	;LOAD H L REGISTERS WITH ADDRESS OF DMANT
0046	CD4A05		CALL INP	; CALL IFPP SUBROUTINE TO CHANGE A STRING
				OF BCD DIGITS INTO A BINARY FLOATING-
				; POINT-NUMBER
0049	210610		LXI H, MANT	; LOAD H L REGISTERS WITH ADDRESS OF MANT
3	L	+	STRIN	
004C 1	L CD3E02	+	CALL STR	;CALL IFPP STR SUBROUTINE THAT STORES THE
1	L	+		FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
1	L	+		GIVEN BY THE H L REGISTER PAIR
004F	00		NOP	

0050	21CE10	SELCT:	LXI H,GRAYC	;LOAD THE ADDRESS OF GRAYC INTO H L;REGISTER PAIR
				GRAYC CONTAINS THE LOW ADDRESS OF THE
				FIRST BYTE OF A FOUR BYTE MEMORY LOCA-
				;TION, CONTAINS THE ADDRESS OF THE ROU-
				; TINE HREC OR LREC AND THE CONSTANT CONI
0053	6E		MOV L,M	; MOVE KEITHLEY CODE INTO L
0054	2601		MVI H,001Q	; LOAD H WITH OG1
0056	5 E		MOV E,M	;MOVE LOW ADDRESS INTO E
J057	2C		INR L	; INCREMENT L
0058	£5		PUSH H	STORE CONTENTS OF H L REGISTER PAIR IN
				;STACK POINTER
0059	66		MOV H,M	; MOVE HIGH ADDRESS TO H
005A	6 B		MOV L,E	; MOVE LOW ADDRESS FROM E TO L
0058	E9		PCHL	; PUSH CONTENTS OF H AND L INTO PROGRAM
				COUNTER AND JUMP TO THAT ADDRESS
005C	FB	WAIT:	EI	; ENABLE FLAG INTERRUPT
005D	00		NOP	; NC OPERATION
				THE PURPOSE OF THIS LOOP IS TO LET THE
				; MICROCOMPUTER IDLE WHILE WAITING FOR THE
				;START OF A NEW TIME INTERVAL SIGNAL FROM
				:555 MONOSTABLE MULTIVIBRATOR CLOCK CIR-
				; CUIT THAT PRODUCES AN INTERRUPT COMMAND
				; EVERY 0.2 SECUNDS.
005E	C35C00	_	TIAW 9ML	;JUMP TO WAIT
0061	210610	LRFC:	LXI H, MANT	;LOAD H L REGISTER PAIR WITH THE ADDRESS
				; OF MANT
1		+	LODE	
0064 1	CD6E02	+	CALL LOD	; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
1	•	+		;-PUINT-ACCUMULATOR FROM THE ADDRESS GIVEN
1		+		;BY H L REGISTER PAIR
JJ67	216401		LXI H, CONT2	; LOAD THE H L REGISTER PAIR WITH THE AD-

			INKE22	S UF (CUNI	2		
006A	CD8C02	CALL MUL	; CALL	IFPP	MUL	SUBROUTINE	TO	MULTIPLY

8080 MACRO ASSEMBLER. VER 2.4 ERRORS = 0 PAGE 5

006D 21CC01		LXI H, ONE	;LOAD H L REGISTER PAIR WITH THE ADDRESS;OF ONE
1	+	NEUCO	
0070 1 CDD702	+	CALL AD	; CALL IFPP AD SUBROUTINE TO AD
0073 1 E1	+	POP H	POP THE HIGH AND LOW ADDRESS, STORED BY
1	+		SELCT OFF THE STACK AND LOAD IN THE H L
î.	+		:REGISTER PAIR
0074 1 23	+	INX H	; INCREMENT THE H L REGISTER PAIR
1	+		THE H L REGISTER PAIR CONTAIN THE MEMORY
1	+		; LOCATION OF THE LOW ADDRESS BYTE OF CONI
00 75 1 5E	+	MOV E,M	; MOVE THE LOW ADDRESS BYTE OF CONI TO E
0076 1 23	+	INX H	;INCREMENT H L REGISTER PAIR
1	+		THE H L REGISTER PAIR CONTAIN THE MEMORY
1	+		;LOCATION OF THE HIGH ADDRESS BYTE OF CONI
0077 1 66	+	MOV H.M	; MOVE THE HIGH ADDRESS BYTE OF CONI TO H
00 78 1 68	+	MOV L,E	; MOVE THE LOW ADDRESS BYTE OF CONI TO L
ì	+		THE H L REGISTER PAIR CONTAIN THE ADDRESS
1	+		; OF CONI
0079 1 CD8C02	+	CALL MUL	;CALL IFPP MUL SUBROUTINE TO MULTIPLY
007C 1 21CA10	+	LXI H, FLUX	; LOAD H L REGISTER PAIR WITH THE ADDRESS
1	+		;OF FLUX
2	+	STRIN	
007F 2 CD3E02	+	CALL STR	CALL IFPP STR SUBROUTINE THAT STORES THE
2	+		FLOATING-POINT-ACCUMULATOR IN THE ADDRESS

2		+		GIVEN BY THE H L REGISTER PAIR
0082	C3A600		JMP DIRCT	JUMP TO ROUTINE DIRCT
0085	210610	HRFC:	LXI H, MANT	LOAD H L REGISTER PAIR WITH THE ADDRESS
				; OF MANT
1		+	LODE	
0088 1	CD6E02	+	CALL LOD	; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
1		+		;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
1		+		BY H L REGISTER PAIR
998B	216801		LXI H, CONT7	; LOAD THE H L REGISTER PAIR WITH THE AD-
				DRESS OF CONT7
008E	CD8C02		CALL MUL	CALL IFPP MUL SUBROUTINE TO MULTIPLY
0091	210001		LXI H, THREE	; LOAD H L REGISTER PAIR WITH THE ADDRESS
				;OF THREE
1		+	NEUCO	
-	CDD 702	+	CALL AD	;CALL IFPP AD SUBROUTINE TO AD
0097 1	E1	+	POP H	; POP THE HIGH AND LOW ADDRESS, STORED BY
1		+		SELCT OFF THE STACK AND LOAD IN THE H L
1		+		;REGISTER PAIR
0098 1	23	+	INX H	; INCREMENT THE H L REGISTER PAIR
1		+		THE H L REGISTER PAIR CONTAIN THE MEMORY
1		+		;LOCATION OF THE LOW ADDRESS BYTE OF CONI
0099 1		+	MOV E,M	; MOVE THE LOW ADDRESS BYTE OF CONI TO E
009A 1	23	+	INX H	;INCREMENT H L REGISTER PAIR
1		+		THE H L REGISTER PAIR CONTAIN THE MEMORY
1		+		; LOCATION OF THE HIGH ADDRESS BYTE OF CONI
009B 1	66	+	MÖV H,M	MOVE THE HIGH ADDRESS BYTE OF CONI TO H
009C 1	6B	+	MOV L,E	MOVE THE LOW ADDRESS BYTE OF CONI TO L

1	•	l	+		THE H L REGISTER PAIR CONTAIN THE ADDRESS
JOAO 1 2ICA1D + LXI H,FLUX ; COAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX 2		1	+		; OF CONI
1 + STRIN 2 + STRIN 2	009D	1 CD8C02	+	CALL MUL	CALL IFPP MUL SUBROUTINE TO MULTIPLY
CALL STR CALL S	OAOC	1 21CA10	+	LXI H,FLUX	;LOAD H L REGISTER PAIR WITH THE ADDRESS
ODAS 2 CUSEO2 + CALL STR ; CALL IFPP STR SUBROUTINE THAT STORES THE ; FLOATING-POINT-ACCUMULATOR IN THE ADDRESS ; GIVEN BY THE H L REGISTER PAIR ILOAD H L REGISTER PAIR WITH THE ADDRESS ; WITH MEM ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; WITH MEM BY ONE ; JUMP TO LODIR IF THE RESULT IS ZERO ODAD 21CA10 LXI H,FLUX ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX ; OF F	,	1	+		;OF FLUX
2		2.	+	STRIN	
COA6 21CF10 DIRCT: LXI H,MEM ; GIVEN BY THE H L REGISTER PAIR DIRCTS ; WITH MEM ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; WITH MEM ; DECREMENT MEM BY ONE ; JUMP TO LODIR IF THE RESULT IS ZERO ; OF FLUX ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX ; LOAD H L REGISTER PAIR WITH THE ADDRESS GIVEN ; POINT—ACCUMULATOR FROM THE ADDRESS GIVEN ; BY H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX2 ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX2 ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX2 ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX2 ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX2 ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX2 ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX ; LOAD H L REGISTER PAIR WITH T	00A3	2 CD3E02	+	CALL STR	; CALL IFPP STR SUBROUTINE THAT STORES THE
OOA6 21CF10 DIRCT: LXI H, MEM ;LOAD H L REGISTER PAIR WITH THE ADDRESS ;WITH MEM OOAA CABCOO JZ LODIR ;JUMP TO LODIR IF THE RESULT IS ZERO LXI H, FLUX ;OF F		2	+		;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
OOA9 35 DCR M ; DECREMENT MEM BY ONE OOA0 CABCOO JZ LODIR ; JUMP TO LODIR IF THE RESULT IS ZERO OOA0 21CA10 LXI H, FLUX ; LOAD H L REGISTER PAIR WITH THE ADDRESS OF FLUX 1	;	2	+		GIVEN BY THE H L REGISTER PAIR
OOAA CABCOO OOAD 21CA10 LXI H,FLUX LODE CALL LOD CALL IFPP LOD SUBROUTINE TO LOAD FLOATING FLUX CALL STR PAIR WITH THE ADDRESS GIVEN FLUX LXI H,FLUX2 CALL IFPP STR SUBROUTINE THAT STORES THE FLOATING-POINT-ACCUMULATOR IN THE ADDRESS FLUX CALL STR FLUX2 CALL IFPP STR SUBROUTINE THAT STORES THE FLOATING-POINT-ACCUMULATOR IN THE ADDRESS FLOAD H L REGISTER PAIR WITH THE ADDRESS FLUX CALL IFPP LOD SUBROUTINE TO LOAD FLOATING	00 A 6	21CF10	DIRCT:	LXI H, MEM	;LOAD H L REGISTER PAIR WITH THE ADDRESS
OOAD CABCOO OOAD 21CA10 LXI H,FLUX ;LOAD H L REGISTER PAIR WITH THE ADDRESS; OF FLUX					;WITH MEM
OOAD 21CA10 LXI H,FLUX ;LOAD H L REGISTER PAIR WITH THE ADDRESS ;OF FLUX 1	PAOC	35		DCR M	; DECREMENT MEM BY ONE
OBS COSCOO OSCOO OBS COSCOO	0044	CABCOO		JZ LODIR	JUMP TO LODIR IF THE RESULT IS ZERO
1 CD6E02 + CALL LOD CALL IFPP LOD SUBROUTINE TO LOAD FLOATING 1 FPOINT-ACCUMULATOR FROM THE ADDRESS GIVEN 1 FEDATING 1 FLUX2 1 CD3E02 + CALL STR 1 CD3E02 + CALL STR 1 FLOATING-POINT-ACCUMULATOR IN THE ADDRESS 1 GIVEN BY THE H L REGISTER PAIR OOBC 21CA10 LODIR: LXI H, FLUX 1 CD3E02 + CALL STR 1 GIVEN BY THE H L REGISTER PAIR WITH THE ADDRESS 1 GIVEN BY THE H L REGISTER PAIR COBF 1 CD6E02 + CALL LOD CALL IFPP LOD SUBROUTINE TO LOAD FLOATING	ODAD	21CA10		LXI H, FLUX	;LOAD H L REGISTER PAIR WITH THE ADDRESS
OOBO 1 CD6EO2 + CALL LOD ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN ; BY H L REGISTER PAIR OOBO 21A210 LXI H,FLUX2 ;LGAD H L REGISTER PAIR WITH THE ADDRESS ;OF FLUX2 1 + STRIN OOBO 1 CD3EO2 + CALL STR ;CALL IFPP STR SUBROUTINE THAT STORES THE ;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS ;GIVEN BY THE H L REGISTER PAIR OOBO C35COO JMP WAIT ;JUMP TO WAIT PROGRAM OOBC 21CA10 LODIR: LXI H,FLUX ;LOAD H L REGISTER PAIR WITH THE ADDRESS ;OF FLUX 1 + LODE ;CALL IFPP LOD SUBROUTINE TO LOAD FLOATING					; OF FLUX
CALL LOD CALL LOD CALL LOD CALL IFPP LOD SUBROUTINE TO LOAD FLOATING	•	1	+	LODE	
3083 21A210 LXI H,FLUX2 ;LGAD H L REGISTER PAIR WITH THE ADDRESS;OF FLUX2 1 + STRIN 3086 1 CD3E02 + CALL STR ;CALL IFPP STR SUBROUTINE THAT STORES THE FLOATING-POINT-ACCUMULATOR IN THE ADDRESS GIVEN BY THE H L REGISTER PAIR 3089 C35C00 JMP WAIT ;JUMP TO WAIT PROGRAM 3080 C35C00 LODIR: LXI H,FLUX ;LOAD H L REGISTER PAIR WITH THE ADDRESS ;OF FLUX 1 + LODE 3081 CD6E02 + CALL LOD ;CALL IFPP LOD SUBROUTINE TO LOAD FLOATING	00B0	1 CD6E32	+	CALL LOD	; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
21A210 LXI H,FLUX2 ;LOAD H L REGISTER PAIR WITH THE ADDRESS ;OF FLUX2 1		1	+		;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
; OF FLUX2 1 + STRIN 0086 1 CD3E02 + CALL STR ; CALL IFPP STR SUBROUTINE THAT STORES THE ; FLOATING-POINT-ACCUMULATOR IN THE ADDRESS ; GIVEN BY THE H L REGISTER PAIR 0089 C35C00 JMP WAIT ; JUMP TO WAIT PROGRAM 008C 21CA10 LODIR: LXI H, FLUX ; LOAD H L REGISTER PAIR WITH THE ADDRESS ; OF FLUX 1 + LODE 008F 1 CD6E02 + CALL LOD ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING		l	+		;BY H L REGISTER PAIR
1 + STRIN ODB6 1 CD3EO2 + CALL STR ; CALL IFPP STR SUBROUTINE THAT STORES THE FLOATING-POINT-ACCUMULATOR IN THE ADDRESS GIVEN BY THE H L REGISTER PAIR ODB6 C35COO JMP WAIT ODB7 C35COO LODIR: LXI H, FLUX ;LOAD H L REGISTER PAIR WITH THE ADDRESS OF FLUX ODB7 1 CD6EO2 + CALL LOD ;CALL IFPP LOD SUBROUTINE TO LOAD FLOATING	00B3	21A210		LXI H,FLUX2	LOAD H L REGISTER PAIR WITH THE ADDRESS
OOBO 1 CD3EO2 + CALL STR ; CALL IFPP STR SUBROUTINE THAT STORES THE ;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS ;GIVEN BY THE H L REGISTER PAIR OOBO C35COO JMP WAIT ;JUMP TO WAIT PROGRAM OOBC 21CA10 LODIR: LXI H, FLUX ;LOAD H L REGISTER PAIR WITH THE ADDRESS ;OF FLUX 1 + LODE OOBF 1 CD6EO2 + CALL LOD ;CALL IFPP LOD SUBROUTINE TO LOAD FLOATING					;OF FLUX2
The state of the	•	1	+	STRIN	
1 + ;GIVEN BY THE H L REGISTER PAIR 00B9 C35C00 JMP WAIT ;JUMP TO WAIT PROGRAM 00BC 21CA10 LODIR: LXI H,FLUX ;LOAD H L REGISTER PAIR WITH THE ADDRESS ;OF FLUX 1 + LODE 00BF 1 CD6E02 + CALL LOD ;CALL IFPP LOD SUBROUTINE TO LOAD FLOATING	00B6	1 CD3E02	+	CALL STR	; CALL IFPP STR SUBROUTINE THAT STORES THE
00B9 C35C00 JMP WAIT ;JUMP TO WAIT PROGRAM 00BC 21CA10 LODIR: LXI H, FLUX ;LOAD H L REGISTER PAIR WITH THE ADDRESS ;OF FLUX 1 + LODE 00BF 1 CD6E02 + CALL LOD ;CALL IFPP LOD SUBROUTINE TO LOAD FLOATING		1	+		- · · · · · · · · · · · · · · · · · · ·
00BC 21CA10 LODIR: LXI H, FLUX ;LOAD H L REGISTER PAIR WITH THE ADDRESS ;OF FLUX 1 + LODE 00BF 1 CD6E02 + CALL LOD ;CALL IFPP LOD SUBROUTINE TO LOAD FLOATING		1	+		GIVEN BY THE H L REGISTER PAIR
; OF FLUX 1 + LODE 00BF 1 CD6E02 + CALL LOD ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING					; JUMP TO WAIT PROGRAM
1 + LODE 00BF 1 CD6E02 + CALL LOD ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING	OOBC	21 CA10	LODIR:	LXI H, FLUX	;LOAD H L REGISTER PAIR WITH THE ADDRESS
00BF 1 CD6E02 + CALL LOD ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING					;OF FLUX
, and the control of		1	+		
1 + ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN	00BF :	1 CD6E02	+	CALL LOD	
		1	+		;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN

BY H L REGISTER PAIR 00C2 21A610 LXI H, FLUX3 ; LOAD H L REGISTER PAIR WITH THE ADDRESS OF FLUX3 STRIN 00C5 1 CD3E02 CALL STR ; CALL IFPP STR SUBROUTINE THAT STORES THE :FLOATING-POINT-ACCUMULATOR IN THE ADDRESS 1 GIVEN BY THE H L REGISTER PAIR 21CF10 0008 LXI H, MEM ;LOAD H L REGISTER PAIR WITH THE ADDRESS OF MEM OOCB 3602 MVI M,002Q SET MEM EQUAL TO TWO 0000 C30014 JMP PREC1 :JUMP TO PRECI 0000 3ADA01 ZERO: LDA PLUS ; LOAD ACCUMULATOR WITH PLUS 0003 D309 OUT 9 ; OUTPUT ACCUMULATOR TO DEVICE 9 00D5 C35C00 JMP WAIT :JUMP TO WAIT 00D8 10 CHECK: DCR E :DECREMENT REGISTER E 0009 CCDFOO CZ WOUT ; CALL SUBROUTINE WOUT IF RESULT IS ZERO OODC 20 DCR L :DECREMENT L 0000 7E MOV A.M ; MOVE THE DATA FROM MEMORY LOCATION :ADDRESSED BY THE H L REGISTER PAIR TO :THE ACCUMULATOR

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 7

OODE **C9** RET :RETURN OODF 210901 LXI H.BLANK+1: LCAD H L REGISTER PAIR WITH BLANK + 1 WOUT: 00E2 1E01 MVI E.1 SET REGISTER EQUAL TO 1 00E4 C9 RET : RETURN 1400 ORG 1400H 1400 219E10 PREC1: LXI H.FLUX1 :LOAD H L REGISTER PAIR WITH ADDRESS OF

```
:FLUX1
                       NEPRI CEXII, CEX21, CLAMI, Y2T1
     1
                       LODE
1403 2 CD6E02
                       CALL LOD
                                    CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
                                    :-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                     BY H L REGISTER PAIR
1406 1 216001
                       LXI H, CEXII ; LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :CEXII
1409 1 CD8CO2
                       CALL MUL
                                    CALL IFPP MUL SUBROUTINE TO MULTIPLY
1400 1 210210
                       LXI H, HOLD
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    : HOLD
                       STRIN
140F 2 CD3E02
                       CALL STR
                                    CALL IFPP STR SUBROUTINE THAT STORES THE
                                    :FLUATING-POINT-ACCUMULATOR IN THE ADDRESS
                                     GIVEN BY THE H L REGISTER PAIR
1412 1 21A210
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
                       LXI H, FLUX2
                                     ;FLUX2
                       LODE
1415 2 CD6E02
                       CALL LOD
                                     CALL IPPP LOD SUBROUTINE TO LOAD FLOATING
                                    :-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                    BY H L REGISTER PAIR
1418 1 218401
                       LXI H, CEX21
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                     :CEX2I
141B 1 CD8C 02
                       CALL MUL
                                    ; CALL IFPP MUL SUBROUTINE TO MULTIPLY
141E 1 21C210
                       LXI H. HOLD
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                     :HOLD
1421 1 CDD702
                       CALL AD
                                    ; CALL IFPP AD SUBROUTINE TO ADD
1424 1 21A610
                       LXI H, FLUX3
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :FLUX3
1427 1 CDD702
                       CALL AD
                                    ; CALL IFPP AD SUBROUTINE TO ADD
142A 1 219C01
                       LXI H, CLAM1
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    ; CLAMI
```

```
142D 1 CD8CO2 +
                      CALL MUL
                                    ; CALL IFPP MUL SUBROUTINE TO MULTIPLY
1430 1 210210 +
                      LXI H.HOLD
                                   ; LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    HOLD
                       STRIN
1433 2 CD3E02 +
                      CALL STR
                                    ; CALL IFPP STR SUBROUTINE THAT STORES THE
    2
                                    FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                    GIVEN BY THE H L REGISTER PAIR
1436 1 218610 +
                      LXI H, Y2T1
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
                                   ;Y2TI
                      LODE
1439 2 CD6E02
                      CALL LOD
                                    ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
                                    ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
     2
                                    ;BY H L REGISTER PAIR
```

1430 1 216001	+	LXI H, CEXII	; LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		;CEX1I
143F 1 CD8C02	+	CALL MUL	;CALL IFPP MUL SUBROUTINE TO MULTIPLY
1442 1 210210	+	LXI H,HOLD	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		;HOLD
1445 1 C00702	+	CALL AD	; CALL IFPP AD SUBROUTINE TO ADD
1448 1 218610	+	LXI H.Y2T1	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		;Y2TI
2	+	STRIN	
144B 2 CD3E02	+	CALL STR	CALL IFPP STR SUBROUTINE THAT STORES THE
2	+		;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
2	+		GIVEN BY THE H L REGISTER PAIR
1	+	NEPR2 Al,YT1	

```
144E 1 21B401 +
                       LXI H.Al
                                    ; LOAD H L REGISTER PAIR WITH ADDRESS OF AI
1451 1 CD8CO2 +
                       CALL MUL
                                    ; CALL IFPP MUL SUBROUTINE TO MULTIPLY
1454 1 21AA10
                       LXI H,YT1
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :YTI
     1
                       STRIN
1457 2 CD3E02
                       CALL STR
                                    ; CALL IFPP STR SUBROUTINE THAT STORES THE
                                    :FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                    GIVEN BY THE H L REGISTER PAIR
145A
       21A210
                PREC2: LXI H, FLUX2
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :FLUX1
     1
                       NEPRI CEXI2, CEX22, CLAM2, Y2T2
                       LODE
1450 2 CD6E02
                       CALL LOD
                                    ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
                                    ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                    :BY H L REGISTER PAIR
1460 1 217001
                       LXI H.CEX12
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    ;CEX1I
1463 1 CD8C02
                                    :CALL IEPP MUL SUBROUTINE TO MULTIPLY
                       CALL MUL
1466 1 210210
                       LXI H, HOLD
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    ; HOLD
                       STRIN
1469 2 CD3E02
                       CALL STR
                                    ; CALL IFPP STR SUBROUTINE THAT STORES THE
                                    :FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                    GIVEN BY THE H L REGISTER PAIR
146C 1 21A210
                       LXI H.FLUX2 ; LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    ;FLUX2
                       LODE
146F 2 CD6E02
                       CALL LOD
                                    ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
                                    ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                    BY H L REGISTER PAIR
1472 1 218801
                       LXI H.CEX22
                                    ; LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :CEX2I
```

1475 1 CD8CO2	+	CALL MUL	;CALL IFPP MUL SUBROUTINE TO MULTIPLY
1478 1 210210	+	LXI H, HOLD	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		;HOLD
147B 1 CDD702	+	CALL AD	;CALL IFPP AD SUBROUTINE TO ADD
147E 1 21A610	+	LXI H, FLUX3	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		;FLUX3

1481 1 CD0702	+	CALL AD	;CALL IFPP AD SUBROUTINE TO ADD
1484 1 21A001	+	LXI H, CLAM2	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		; CLAMI
1487 1 CD8CO2	+	CALL MUL	; CALL IFPP MUL SUBROUTINE TO MULTIPLY
148A 1 21C210	+	EXI H, HOLD	;LOAD H L REGISTER PAIR WITH ADDRESS OF
l	+		; HOLD
2	+	STRIN	·
148D 2 CD3E02	+	CALL STR	; CALL IFPP STR SUBROUTINE THAT STORES THE
2	+		;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
2	+		GIVEN BY THE H L REGISTER PAIR
1490 l 218A10	+	LXI H,Y2T2	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		;Y2TI
2	+	LODE	
1493 2 CD6E02	+	CALL LOD	; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
2	+		;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
2	+		;BY H L REGISTER PAIR
1496 1 217001	+	LXI H, CEX12	LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		;CEX1I
1499 1 CD8C02	+	CALL MUL	CALL IFPP MUL SUBROUTINE TO MULTIPLY
149C 1 21C210	+	LXI H,HOLD	;LOAD H L REGISTER PAIR WITH ADDRESS OF

```
:HOLD
     1
149F 1 CDD702
                       CALL AD
                                    CALL IFPP AD SUBROUTINE TO ADD
14A2 1 218A10
                       LXI H.Y2T2
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :Y2TI
                       STRIN
14A5 2 CD3F02
                       CALL STR
                                    :CALL IFPP STR SUBROUTINE THAT STORES THE
                                    :FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
     2
                                    GIVEN BY THE H L REGISTER PAIR
                       NEPR2 A2.YT2
14A8 1 21B801
                       LXI H,A2
                                    LOAD H L REGISTER PAIR WITH ADDRESS OF AT
14AB 1 CD8C02
                       CALL MUL
                                    CALL IFPP MUL SUBROUTINE TO MULTIPLY
14AE 1 21AE10
                       LXI H,YT2
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    ;YTI
                       STRIN
14B1 2 CO3EO2
                                    :CALL IFPP STR SUBROUTINE THAT STORES THE
                       CALL STR
                                    FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                    GIVEN BY THE H L REGISTER PAIR
1484
      219E10
               PREC3: LXI H, FLUX1
                                   LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    : FLUXI
                       NEPRI CEX13, CEX23, CLAM3, Y2T3
     1
                       LODE
14B7 2 CD6E02
                       CALL LOD
                                    CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
     2
                                    ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                    BY H L REGISTER PAIR
14BA 1 217401
                       LXI H.CEX13
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    ;CEX1I
14BD 1 CD8C02
                       CALL MUL
                                    ; CALL IFPP MUL SUBROUTINE TO MULTIPLY
1400 1 210210
                       LXI H, HOLD
                                    FLOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    HOLD
                       STRIN
14C3 2 CD3E02 +
                       CALL STR
                                    ; CALL IFPP STR SUBROUTINE THAT STORES THE
```

2	+		;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS.;GIVEN BY THE H L REGISTER PAIR
14C6 1 21A210	+ +	LXI H,FLUX2	;LOAD H L REGISTER PAIR WITH ADDRESS OF ;FLUX2
2	+	LODE	••••••••••••••••••••••••••••••••••••••
14C9 2 CD6E02	+	CALL LOD	; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
2	+		;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
2	+		BY H L REGISTER PAIR
1400 1 218001	+	LXI H,CEX23	; LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+	.,,	;CEX2I
14CF 1 CD8C32	+	CALL MUL	; CALL IFPP MUL SUBPOUTINE TO MULTIPLY
1402 1 210210	+	LXI H, HOLD	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+	·	;HOLD
14D5 1 CDD702	+	CALL AD	; CALL IFPP AD SUBROUTINE TO ADD
1408 1 21A610	+	LXI H, FLUX3	
1	+		;FLUX3
140B 1 CDD702	+	CALL AD	; CALL IFPP AD SUBROUTINE TO ADD
14DE 1 21A401	+	LXI H, CLAM3	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		;CLAMI
14E1 1 CD8C02	+	CALL MUL	;CALL IFPP MUL SUBROUTINE TO MULTIPLY
14E4 1 21C210	+	LXI H,HOLD	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		; HOLD
2	+	STRIN	
14E7 2 C03E02	+	CALL STR	; CALL IFPP STR SUBROUTINE THAT STORES THE
2	+		;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
2	+		GIVEN BY THE H L REGISTER PAIR
14EA 1 218E10	+	LXI H,Y2T3	:LOAD H L REGISTER PAIR WITH ADDRESS OF

```
;Y2TI
     1
                       LODE
14ED 2 CD6E02
                       CALL LOD
                                     CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
     2
                                    ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                    BY H L REGISTER PAIR
14F0 1 217401
                       LXI H, CEX13
                                    ; LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :CEXII
     1
14F3 1 CD8CO2
                       CALL MUL
                                    :CALL IFPP MUL SUBROUTINE TO MULTIPLY
14F6 1 21C210
                       LXI H, HOLD
                                    ; LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                     : HOLD
14F9 1 CDD702
                       CALL AD
                                    CALL IFPP AD SUBROUTINE TO ADD
14FC 1 218E10
                       LXI H, Y2T3
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :Y2TI
                       STRIN
14FF 2 CD3E02
                       CALL STR
                                     ; CALL IFPP STR SUBROUTINE THAT STORES THE
                                    ;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                     GIVEN BY THE H L REGISTER PAIR
                       NEPR2 A3.YT3
1502 1 21BC01
                       LXI H, A3
                                     ;LOAD H L REGISTER PAIR WITH ADDRESS OF AI
1505 1 CD8C02
                       CALL MUL
                                    ; CALL IFPP MUL SUBROUTINE TO MULTIPLY
1508 1 218210
                       LXI H,YT3
                                     ;LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :YTI
     1
                       STRIN
150B 2 CD3E02
                       CALL STR
                                     :CALL IFPP STR SUBROUTINE THAT STORES THE
```

> 2 + ; FLOATING-POINT-ACCUMULATOR IN THE ADDRESS 2 + ; GIVEN BY THE H L REGISTER PAIR

```
150E
      219E10 PREC4: LXI H, FLUX1 ; LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :FLUXI
                       NEPRI CEX14, CEX24, CLAM4, Y2T4
     1
                       LODE
1511 2 CD6E02
                       CALL LOD
                                    ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
                                    :-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                    BY H L REGISTER PAIR
1514 1 217801
                       LXI H, CEX14
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :CEX1I
     1
1517 1 CD8C02
                       CALL MUL
                                    ; CALL IFPP MUL SUBROUTINE TO MULTIPLY
151A 1 21C210
                       LXI H, HOLD
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    ; HOLD
     2
                       STRIN
151D 2 CD3E02
                       CALL STR
                                    ; CALL IFPP STR SUBROUTINE THAT STORES THE
     2
                                    FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                    GIVEN BY THE H L REGISTER PAIR
1520 1 21A210
                       LXI H, FLUX2 ; LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    ;FLUX2
                       LODE
1523 2 C06E02
                       CALL LOD
                                    CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
                                    :-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
     2
                                    BY H L REGISTER PAIR
1526 1 219001
                       LXI H, CEX24
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :CEX2I
                       CALL MUL
                                    ; CALL IFPP MUL SUBROUTINE TO MULTIPLY
1529 1 CD8CO2
1520 1 210210
                       LXI H, HOLD
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :HOLD
152F 1 CDD702 +
                       CALL AD
                                    ; CALL IFPP AD SUBROUTINE TO ADD
1532 1 21A610 +
                       LXI H.FLUX3 :LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :FLUX3
1535 1 CDD702 +
                       CALL AD
                                    ;CALL IFPP AD SUBROUTINE TO ADD
1538 1 21A801 +
                       LXI H, CLAM4 : LOAD H L REGISTER PAIR WITH ADDRESS OF
```

```
; CLAMI
     1
1538 1 CD8CO2 +
                      CALL MUL
                                    CALL IFPP MUL SUBROUTINE TO MULTIPLY
153E 1 21C210 +
                      LXI H, HOLD
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    ; HOLD
     1
     2
                       STRIN
1541 2 CD3E02 +
                       CALL STR
                                    ; CALL IFPP STR SUBROUTINE THAT STORES THE
     2
                                    FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
               +
                                    GIVEN BY THE H L REGISTER PAIR
1544 1 219210 +
                      LXI H,Y2T4
                                    ; LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :Y2TI
     1
               +
                      LODE
1547 2 CD6E02
                       CALL LOD
                                    ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
     2
                                    ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                    BY H L REGISTER PAIR
154A 1 217801 +
                       LXI H, CEX14 ; LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :CEXII
154D 1 CD8CO2 +
                       CALL MUL
                                    :CALL IFPP MUL SUBROUTINE TO MULTIPLY
```

1550 1 210210	+	LXI H, HOLD	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		; HOLD
1553 1 CDD702	+	CALL AD	;CALL IFPP AD SUBROUTINE TO ADD
1556 1 219210	+	LXI H,Y2T4	;LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		; Y2 T I
2	+	STRIN	
1559 2 CD3E02	+	CALL STR	CALL IFPP STR SUBROUTINE THAT STORES THE
2	+		;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
2	+		GIVEN BY THE H L REGISTER PAIR

```
NEPR2 A4,YT4
155C 1 21C001
                       LXI H.A4
                                    LOAD H L REGISTER PAIR WITH ADDRESS OF AI
155F 1 CD8C02
                       CALL MUL
                                    :CALL IFPP MUL SUBROUTINE TO MULTIPLY
1562 1 218610
                       LXI H, YT4
                                    ; LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :YTI
                       STRIN
1565 2 CD3E02
                       CALL STR
                                    :CALL IFPP STR SUBROUTINE THAT STORES THE
                                    FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                    GIVEN BY THE H L REGISTER PAIR
1568
      219E10
               PREC5: LXI H, FLUX1
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :FIUX1
                       NEPR1 CEX15, CEX25, CLAM5, Y2T5
                       LODE
156B 2 CD6E02
                       CALL LOD
                                    CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
                                    :-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                    :BY H L REGISTER PAIR
156E 1 217C01
                       LXI H.CEX15
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :CEX1I
1571 1 CD8C02
                       CALL MUL
                                    CALL IFPP MUL SUBROUTINE TO MULTIPLY
1574 1 210210
                       LXI H, HOLD
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :HOLD
                       STRIN
1577 2 CD3E02
                       CALL STR
                                    CALL IFPP STR SUBROUTINE THAT STORES THE
     2
               +
                                    ;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                    GIVEN BY THE H L REGISTER PAIR
157A 1 21A210
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
                       LXI H,FLUX2
                                    ;FLUX2
                       LODE
157D 2 CD6E02
                       CALL LOD
                                    ;CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
                                    ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                    ;BY H L REGISTER PAIR
1580 1 219401
                       LXI H, CEX25 : LOAD H I REGISTER PAIR WITH ADDRESS OF
```

1 :CEX2I 1583 1 CD8CO2 + CALL MUL CALL IFPP MUL SUBROUTINE TO MULTIPLY 1586 1 210210 + LXI H.HOLD ; LOAD H L REGISTER PAIR WITH ADDRESS OF 1 : HOLD 1589 1 CDD702 CALL AD ;CALL IFPP AD SUBROUTINE TO ADD 158C 1 21A610 + LXI H, FLUX3 ; LOAD H L REGISTER PAIR WITH ADDRESS OF 1 :FLUX3 158F 1 CDD702 + CALL AD CALL IFPP AD SUBROUTINE TO ADD 1592 1 21ACO1 + LXI H.CLAM5 ; LOAD H L REGISTER PAIR WITH ADDRESS OF 1 + :CLAMI

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 13

1595 1 CD8CO2 + CALL MUL CALL IFPP MUL SUBROUTINE TO MULTIPLY 1598 1 210210 + LXI H, HOLD ; LOAD H L REGISTER PAIR WITH ADDRESS OF 1 ;HOLD STRIN 1598 2 CD3E02 CALL STR ; CALL IFPP STR SUBROUTINE THAT STORES THE 2 :FLOATING-POINT-ACCUMULATOR IN THE ADDRESS GIVEN BY THE H L REGISTER PAIR 159E 1 219610 LXI H,Y2T5 ; LOAD H L REGISTER PAIR WITH ADDRESS OF 1 :Y2TI + LODE 15A1 2 CD6E02 CALL LOD :CALL IFPP LOD SUBROUTINE TO LOAD FLOATING 2 ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN BY H L REGISTER PAIR 15A4 1 217C01 + LXI H, CEX15 ; LOAD H L REGISTER PAIR WITH ADDRESS OF :CEX1I 15A7 1 CD3CO2 + CALL MUL ; CALL IFPP MUL SUBROUTINE TO MULTIPLY

```
15AA 1 21C210 +
                       LXI H, HOLD
                                    LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    : HOLD
15AD 1 CDD702
                       CALL AD
                                    ; CALL IFPP AD SUBROUTINE TO ADD
15B0 1 219610
                                    ; LOAD H L REGISTER PAIR WITH ADDRESS OF
                       LXI H,Y2T5
     1
                                    :Y2TI
                       STRIN
15B3 2 CD3E02
                       CALL STR
                                     CALL IFPP STR SUBROUTINE THAT STORES THE
                                     ;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                     GIVEN BY THE H L REGISTER PAIR
                       NEPR2 A5,YT5
1586 1 210401
                       LXI H.A5
                                     LOAD H L REGISTER PAIR WITH ADDRESS OF AT
15B9 1 CD8C02
                       CALL MUL
                                    CALL IFPP MUL SUBROUTINE TO MULTIPLY
15BC 1 21BA10
                       LXI H, YT5
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :YTI
               +
                       STRIN
15BF 2 CD3E02
                       CALL STR
                                    ; CALL IFPP STR SUBROUTINE THAT STORES THE
     2
                                    FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
               +
                                     GIVEN BY THE H L REGISTER PAIR
1502
      219E10
                PREC6: LXI H, FLUX1
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
                                     : FLUXI
     1
                       NEPRI CEX16, CEX26, CLAM6, Y2T6
                       LODE
15C5 2 CD6E02
                       CALL LOD
                                     CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
     2
                                    ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                     BY H L REGISTER PAIR
1508 1 218001
                       LXI H, CEX16
                                    ;LOAD H L REGISTER PAIR WITH ADDRESS OF
                                     CEXII
15CB 1 CD8CO2
                       CALL MUL
                                    ; CALL IFPP MUL SUBROUTINE TO MULTIPLY
15CE 1 21C210 +
                       LXI H, HOLD
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    : HOLD
                       STRIN
1501 2 CO3EO2 +
                       CALL STR
                                    :CALL IFPP STR SUBROUTINE THAT STORES THE
```

2 + ;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
2 + ;GIVEN BY THE H L REGISTER PAIR
1504 1 21A210 + LXI H,FLUX2 ;LOAD H L REGISTER PAIR WITH ADDRESS OF

1 2	+	LODE	;FLUX2
15D7 2 CD6E02	+	CALL LOD	; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
2	+		;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN ;BY H L REGISTER PAIR
15DA 1 219801 1	+	LXI H, CEX26	;LOAD H L REGISTER PAIR WITH ADDRESS OF ;CEX2I
15DD 1 CD8C02	+	CALL MUL	;CALL IFPP MUL SUBROUTINE TO MULTIPLY
15E0 1 21C210 1	+ +	LXI H,HOLD	;LOAD H L REGISTER PAIR WITH ADDRESS OF ;HOLD
15E3 1 CDD702	+	CALL AD	; CALL IFPP AD SUBROUTINE TO ADD
15E6 1 21A610	+	LXI H,FLUX3	; LOAD H L REGISTER PAIR WITH ADDRESS OF
15E9 1 CDD702	*	CALL AD	;FLUX3
	τ.	CALL AD	; CALL IFPP AD SUBROUTINE TO ADD
15EC 1 21B001 1	+ +	LXI H, CLAM6	;LOAD H L REGISTER PAIR WITH ADDRESS OF CLAMI
15EF 1 CD8C02	+	CALL MUL	CALL IFPP MUL SUBROUTINE TO MULTIPLY
15F2 1 21C210	+	LXI H, HOLD	; LOAD H L REGISTER PAIR WITH ADDRESS OF
1	+		;HOLD
2	+	STRIN	
15F5 2 CO3EO2	+	CALL STR	; CALL IFPP STR SUBROUTINE THAT STORES THE
2	+		;FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
2	+		GIVEN BY THE H L REGISTER PAIR

```
15F8 1 219A10 +
                       LXI H,Y2T6
                                    LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :Y2TI
                       LODE
15FB 2 CD6E02
                       CALL LOD
                                    ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING
                                    ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN
                                    :BY H L REGISTER PAIR
15FE 1 218001
                       LXI H.CEX16
                                    ; LOAD H L REGISTER PAIR WITH ADDRESS OF
                                    :CEX1I
     1
1601 1 008002
                       CALL MUL
                                    :CALL IFPP MUL SUBROUTINE TO MULTIPLY
1604 1 210210
                       LXI H, HOLD
                                    ; LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    : HOLD
1607 1 CDD702
                       CALL AD
                                    :CALL IFPP AD SUBROUTINE TO ADD
160A 1 219A10
                       LXI H,Y2T6
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :Y2TI
                       STRIN
160D 2 CD3E02
                       CALL STR
                                    CALL IFPP STR SUBROUTINE THAT STORES THE
                                    FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                    GIVEN BY THE H L REGISTER PAIR
                       NEPR2 A6.YT6
1610 1 210801
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF AI
                       LXI H, A6
1613 1 CD8C02
                       CALL MUL
                                    ; CALL IFPP MUL SUBROUTINE TO MULTIPLY
1616 1 218E10
                       LXI H, YT6
                                    :LOAD H L REGISTER PAIR WITH ADDRESS OF
     1
                                    :YTI
                       STRIN
1619 2 CD3E02
                       CALL STR
                                    ; CALL IFPP STR SUBROUTINE THAT STORES THE
     2
                                    :FLOATING-POINT-ACCUMULATOR IN THE ADDRESS
                                    GIVEN BY THE H L REGISTER PAIR
       21A610
              TRANS: LXI H, FLUX3 ; LOAD H L REGISTER PAIR WITH THE ADDRESS
1610
```

;OF FLUX3 LODE 161F 1 CD6E02 :CALL IFPP LOD SUBROUTINE TO LOAD FLOATING CALL LOD 1 :-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN 1 BY H L REGISTER PAIR 1622 219E10 LXI H, FLUXI ;LOAD H L REGISTER PAIR WITH THE ADDRESS OF FLUXI STRIN 1625 1 CD3E02 CALL STR ; CALL IFPP STR SUBROUTINE THAT STORES THE :FLOATING-POINT-ACCUMULATOR IN THE ADDRESS 1 GIVEN BY THE H L REGISTER PAIR 1628 21AA10 REACT: LXI H,YT1 ; LOAD H L REGISTER PAIR WITH THE ADDRESS OF YT1 LODE 1 162B 1 CD6E02 CALL LOD ; CALL IFPP LOD SUBROUTINE TO LOAD FLOATING 1 + ;-POINT-ACCUMULATOR FROM THE ADDRESS GIVEN BY H L REGISTER PAIR 162E 21AE10 LXI H, YT2 ; LOAD H L REGISTER PAIR WITH THE ADDRESS :OF YT2 CDD 702 CALL AD 1631 ;CALL IFPP AD SUBROUTINE TO ADD 1634 218210 LXI H.YT3 :LOAD H L REGISTER PAIR WITH THE ADDRESS ;OF YT3 CDD 702 1637 CALL AD ; CALL IFPP AD SUBROUTINE TO ADD 163A 218610 LXI H, YT4 ;LOAD H L REGISTER PAIR WITH THE ADDRESS ;OF YT4 CDD 702 1630 CALL AD :CALL IFPP AD SUBROUTINE TO ADD 1640 21BA10 LXI H, YT5 LUAD H L REGISTER PAIR WITH THE ADDRESS : OF YT5 1643 CDD 702 CALL AD ; CALL IFPP AD SUBROUTINE TO ADD 1646 21BE10 LXI H,YT6 ;LOAD H L REGISTER PAIR WITH THE ADDRESS

			; OF YT6
1649	CDD702	CALL AD	;CALL IFPP AD SUBROUTINE TO ADD
164C	21A610	LXI H.FLUX3	; LOAD H L REGISTER PAIR WITH THE ADDRESS; OF FLUX3
164F	CDB402	CALL DIV	CALL IFPP DIV SUBROUTINE TO DIVIDE
1652	C04D02	CALL CHS	CALL IFPP CHS SUBROUTINE TO CHANGE THE SIGN OF THE FLOATING-POINT-ACCUMULATOR
1655	210001	LXI H, ONE	; LOAD H L REGISTER PAIR WITH THE ADDRESS; OF ONE
1658	CDD 702	CALL AD	; CALL IFPP AD SUBROUTINE TO ADD
165B	210401	LXI H, TEN5	;LOAD H L REGISTER PAIR WITH THE ADDRESS;OF TEN5
165E	CD8C02	CALL MUL	; CALL IFPP MUL SUBROUTINE TO MULTIPLY
1661	214001	LXI H, OF SET	;LOAD H L REGISTER PAIR WITH ADDRESS OF ;OFSET
1664	CDD 7 02	CALL AD	; CALL IFPP AD SUBROUTINE TO ADD
1667	210010	LXI H,RHO	;LOAD H L REGISTER PAIR WITH THE ADDRESS;OF RHO
166A	C 0 0 C 0 6	CALL OU	CALL THE IFPP OU SUBROUTINE THAT STORES THE FLOATING-POINT-ACCUMULATOR IN THE AD- ORESS BY THE H L REGISTER PAIR IN BCD

; FORMAT

166D 3AD910 OUTPT: LDA RHO+9
; LOAD THE ACCUMULATOR WITH THE VALUE OF
; RHO+9
; THIS VALUE IS TESTED TO DETERMINE IF A
; BLANK OR THE NUMBER 025, WHICH MEANS AN

```
1670
       06F0
                       MVI B.3600
                                     :LOAD B WITH THE VALUE 360(CODE FOR BLANK)
1672
       88
                       CAD B
                                     ; COMPARE B WITH THE ACCUMULATOR. TEST FOR
                                     :BLANK IN RHO+9
                                     JUMP TO CHKI IF THE RESULT IS ZERO
1673
       CA9316
                       JZ CHK1
1676
       3E00
                OTPTO: MVI A,OH
                                     :LOAD A WITH O
1678
       1E01
                       MVI E, 1
                                     :SET REGISTER EQUAL TO 1
167A
       D304
                OTNUM: OUT 4
                                     COUTPUT ACCUMULATOR TO DEVICE 4
167C
       CDD800
                       CALL CHECK
                                     ; CALL SUBROUTINE CHECK
167F
       0305
                       0UT 5
                                     COUTPUT ACCUMULATOR TO DEVICE 5
1681
       CDD800
                       CALL CHECK
                                     ;CALL SUBROUTINE CHECK
1684
       0306
                       OUT 6
                                     ; OUTPUT ACCUMULATOR TO DEVICE 6
1686
       008000
                       CALL CHECK
                                     :CALL SUBROUTINE CHECK
1689
       D307
                       OUT 7
                                     COUTPUT ACCUMULATOR TO DEVICE 7
1688
      00800
                       CALL CHECK
                                     :CALL SUBROUTINE CHECK
168E
       0308
                       OUT 8
                                     ;OUTPUT ACCUMULATOR TO DEVICE 8
1690
       C3ED16
                       JMP SIGN
                                     JUMP TO SIGN
1693
       3AD110
                CHK1:
                       LDA RHO+1
                                     :LUAD ACCUMULATOR WITH RHO+1
1696
       06FE
                       MVI B.3760
                                     :LOAD REGISTER B WITH 3760
1698
       B 8
                       CMP B
                                     COMPARE B WITH ACCUMULATOR
1699
       CA7616
                       JZ OTPTO
                                     :JUMP TO OTPTO
169C
       3AD610
                       LDA RHO+6
                                     :LOAD ACCUMULATOR WITH RHO+6
169F
       06FE
                       MVI B,376Q
                                     ; LOAD B WITH 376Q(CODE FOR DECIMAL POINT)
16A1
                       CMP B
       88
                                     COMPARE B WITH ACCUMULATOR
16A2
       CAC 916
                       JZ OTPT5
                                     JUMP TO OTPT5
16A5
       3AD510
                       LDA RHO+5
                                     ; LOAD ACCUMULATOR WITH RHO+5
16A8
       06FE
                       MVI B.376Q
                                     :LOAD B WITH 376Q(CODE FOR DECIMAL POINT)
16AA
                       CMP B
       88
                                     COMPARE B WITH ACCUMULATOR
16AB
       CAD216
                       JZ OTPT4
                                     JUMP TO OTPT4
16AE
       3AD410
                       LDA RHO+4
                                     :LOAD ACCUMULATOR WITH RHO+4
1681
       06FE
                       MVI B.3760
                                     :LOAD B WITH 376Q(CODE FOR DECIMAL POINT)
1683
       B8
                       CMP B
                                     COMPARE B WITH ACCUMULATOR
```

: EXPONENT FOLLOWS

1)
١.	٥
U	٦

1684	CADB16		JZ	OTPT3	; JUMP TO OTPT3
1687	3AD310		LDA	RH0+3	;LOAD ACCUMULATOR WITH RHO+3
16BA	06FE		IVM	B,376Q	;LOAD B WITH 376Q (CODE FOR DECIMAL POINT)
16BC	88		CMP	В	;COMPARE B WITH ACCUMULATOR
16BD	CAE416		JZ	OTPT2	; JUMP TO OTPT2
1600	210110		LXI	H,RHO +	1; LOAD H L REGISTER PAIR WITH RHO + 1
1603	7E		VOM	A , M	; MOVE THE DATA FROM THE MEMORY LOCATION
					; ADDRESSED BY THE H L REGISTER PAIR TO
					; THE ACCUMULATOR
1604	1E01		I VM	E,1	;SET REGISTER EQUAL TO ONE
1606	C37A16		JMP	OTNUM	; JUMP TO OTNUM
1609	210510	OTPT5:	LXI	H,RHO+5	;LOAD H L REGISTER PAIR WITH RHO+5
1600	7E		VOM	A,M	; MOVE THE DATA FROM THE MEMORY LOCATION
					ADDRESS BY THE H L REGISTER PAIR TO

					; THE ACCUMULATOR
16CD	1E05		MVI	E,5	SET REGISTER EQUAL TO FIVE
16CF	C37A16		JMP (MUNTO	; JUMP TO OTNUM
1602	210410	OTPT4:	LXI	H,RHO+4	;LOAD H L REGISTER PAIR WITH RHO+4
1605	7 E		NOV A	A , M	
1606	1E04		MVI	E,4	;SET REGISTER EQUAL TO FOUR
1608	C37A16		JMP (MUNTO	; JUMP TO OTNUM
1608	210310	OTPT3:	LXI	H,RHO+3	;LOAD H L REGISTER PAIR WITH RHO+3
16DE	7E		NOV A	A , M	
16DF	1E03		MVI {	E,3	SET REGISTER E EQUAL TO THREE
16E1	C37A16		JMP (OTNUM	HUNTO OT AMUL;
16E4	210210	OTPT2:	LXI	H,RHO+2	;LOAD H L REGISTER PAIR WITH RHO+2

16E7 16E8 16EA 16ED 16F0 16F2 16F3 16F6 16F9	7E 1E02 C37A16 3AD010 06F0 B8 CAD000 3AD901 D309	SIGN:	MOV A,M MVI E,2 JMP OTNUM LDA RHO MVI B,360Q CMP B JZ ZERO LDA MINUS OUT 9	;SET REGISTER EQUAL TO E ;JUMP TO OTNUM ;LOAD ACCUMULATOR WITH RHO ;LOAD B WITH 360Q (CODE FOR SPACE) ;COMPARE B WITH ACCUMULATOR ;JUMP TO ZERO ;LOAD ACCUMULATOR WITH MINUS ;OUTPUT ACCUMULATOR TO DEVICE 9
16FB	C35C00	0.1114.5744	JMP WAIT	; JUMP TO WAIT
1080			ORG 1080H	ATOMACC FOR THOUT BATH BOOK
1080			DS 6	STORAGE FOR INPUT DATA FROM DPM
1086 108A		Y2T1:	DS 4 DS 4	; PRECURSOR FLUX FOR GROUP 1
108E		Y2T2:		; PRECURSOR FLUX FOR GROUP 2
1092		Y2T3:	DS 4	; PRECURSOR FLUX FOR GROUP 3
1092		Y2T4:	DS 4	; PRECURSOR FLUX FOR GROUP 4
1096 109A		Y2T5:	DS 4 DS 4	; PRECURSOR FLUX FOR GROUP 5
109A 109E		Y2T6: FLUX1:		; PRECURSUR FLUX FOR GROUP 6
10A2			DS 4	; NEUTRON FLUX AT TIME T-2 * DELTA T
1042				; NEUTRON FLUX AT TIME T-DELTA T
1046		FLUX3:		; NEUTRON FLUX AT TIME T
10AA 10AE		YT1: YT2:	DS 4 DS 4	RELATIVE PRECURSOR FLUX FOR GROUP 1
1082		YT3:	DS 4	RELATIVE PRECURSOR FLUX FOR GROUP 2
1086		YT4:	DS 4	RELATIVE PRECURSOR FLUX FOR GROUP 3
1086 108A			DS 4	RELATIVE PRECURSOR FLUX FOR GROUP 4
10BA		YT5: YT6:		RELATIVE PRECURSOR FLUX FOR GROUP 5
1062			DS 4 DS 4	RELATIVE PRECURSOR FLUX FOR GROUP 6
1002		HOL D:	US 4	;TEMPERARY HOLDING SPACE FOR A MULTIPLICA- ;TION
1006		MANT:	05 4	; NORMALIZED MANTISSA FOR THE ELECTRICAL CURRENT
10CA		FLUX:	DS 4	; MOST RECENT NEUTRON FLUX CALCULATION

```
10CE
                GRAYC: DS 1
                                    ; KEITHLEY RANGE CODE
10CF
                MEM:
                       DS 1
                                    COUNTER FOR DIRECT
1000
                RHO:
                       05 13
                                    FINAL ANSWER IN BCD FORMAT, THE REACTIVITY
0100
                DATA:
                      ORG 0100H
0100
                       DW LRFC
       6100
                                    ; ADDRESS OF LRFC
0102
      4401
                       DW CON1
                                    ; ADDRESS OF CON1
0104
       8500
                       DW HREC
                                    :ADDRESS OF HREC
```

0106	4401	DW CON1	; ADDRESS OF CUNI
0108	8500	DW HRFC	; ADDRESS OF HREC
010A	4801	DW CON2	;ADDRESS OF CON2
0100	6100	DW LRFC	; ADDRESS OF LRFC
010E	4801	OW CON2	; ADDRESS OF CON2
0110	8500	DW HREC	; ADDRESS OF HREC
0112	5001	DW CON4	; ADDRESS OF CON4
0114	6100	DW LRFC	;ADDRESS OF LRFC
0116	5001	DW CON4	; ADDRESS OF CON4
0118	6100	DW LRFC	; ADDRESS OF LRFC
011A	4CO1	DW CON3	;ADDRESS OF CON3
0110	8500	DW HREC	; ADDRESS OF HRFC
011E	4001	DW CON3	; ADDRESS OF CON3
0120	850 0	DW HRFC	; ADDRESS OF HREC
0122	6301	DW CON8	; ADDRESS OF CON8
0124	6100	DW LRFC	; ADDRESS OF LEFC
0126	6001	DW CON8	; ADDRESS OF CON8
0128	6100	DW LRFC	; ADDRESS OF LREC
012A	5001	DW CON7	;ADDRESS OF CON7

```
0120
       8500
                         DW HREC
                                       ; ADDRESS OF HRFC
012E
       5C01
                         DW CON7
                                       :ADDRESS OF CON7
0130
       6100
                         DW LRFC
                                       :ADDRESS OF LRFC
0132
       5401
                         DW CON5
                                       ; ADDRESS OF CON5
0134
       8500
                         DW HRFC
                                       :ADDRESS OF HREC
3136
       5401
                         DW CON5
                                       :ADDRESS OF CON5
0138
       8500
                         DW HRFC
                                       ; ADDRESS OF HREC
013A
       5801
                         DW CON6
                                       :ADDRESS OF CON6
013C
       6100
                         DW LRFC
                                       :ADDRESS OF LRFC
013E
       5801
                         DW CON6
                                       ; ADDRESS OF CON6
0140
       83
                 OFSET:
                        DB 203Q
                                       ; NUMBER VALUE IS 5.66
0141
       35
                         DB 065Q
0142
       1 E
                         98 0360
0143
       B8
                         DB 270Q
0144
       88
                 CON1:
                         DB 210Q
                                       NUMBER VALUE IS 2.5000 * 10**2
0145
       7 A
                         DB 1720
0146
       00
                         DB JOJQ
0147
       00
                         DB 000Q
0148
       80
                 CON2:
                         DB 214Q
                                       ; NUMBER VALUE IS 2.5000 * 10**3
0149
       10
                         08 0340
014A
       40
                         DB 100Q
014B
       00
                         DB 000Q
0140
       8F
                 CUN3:
                         DB 217Q
                                       ; NUMBER VALUE IS 2.5000 * 10**4
014D
       43
                         DB 103Q
J14E
       50
                         DB 120Q
014F
       00
                         DB 000Q
0150
       92
                 CON4:
                         DB 222Q
                                       ; NUMBER VALUE IS 2.5000 * 10**5
0151
       74
                         DB 164Q
0152
       24
                         DB 0440
0153
       00
                         DB 000Q
0154
       96
                 CON5:
                         DB 226Q
                                       : NUMBER VALUE IS 2.5000 * 10**6
0155
       18
                         DB 030Q
```

0156	9 6		DB	226Q							
0157	80			200Q							
0158	99	CON6:	0B	231Q	; NL	JMB ER	VALUE	15	2.5000	*	10**7
0159	3 E		DB	076Q							
015A	вС		DΒ	274Q							
015B	20		80	040Q							
0150	90	C ON 7:	DB	234Q	; NL	JMB ER	VALUE	IS	2.5000	*	10**8
0150	6E		DВ	156Q							
015E	6B		DB	153Q							
015F	28		DB.	050Q							
0160	A0	CON8:	DΒ	240Q	;NL	IMBER	VALUE	15	2.5000	*	10**9
0161	15		DB	0250							
0162	02		DB	002Q							
0163	F9		DB	371Q							
0164	7 8	CONT2:	DΒ	173Q	; NL	IMBER	VALUE	15	0.02000		
0165	23		DB	043Q							
0166	D7		DB	327Q							
3167	OΑ		DB	012Q							
0168	7 0	CONT7:	DB	175Q	; NL	IMBER	VALUE	15	0.07000		
0169	OF		DВ	017Q							
016A	5C		DB	134Q							
016B	29		DB	051Q							
016C	80	CEX11:	DB	200Q	; NL	IMBER	VALUE	15	0.99493	2 9)
0160	7 E		ÐВ	176Q							
016E	B3		DВ	2030							
016F	ΕD		DВ	355Q							

21.70	0.0	C 57 V 1 0 -		2000		·			
2170	80	CEX12:	อย	200Q	; NUM	BER	VALUE	15	0.9874001
0171	7 C		DB	174Q					
0172	C6		DB	306Q					
0173	43		DB	103Q					
0174	80	CEX13:	DB	200Q	; NUM	BER	VALUE	15	0.9550420
0175	74		DB	164Q					
0176	7 0		DB	175Q					
0177	Αl		DB	2410					
0178	80	CEX14:	ÐВ	200Q	; NUM	BER	VALUE	15	0.8830266
0179	62		DB	1420					
017A	OΕ		DB	016Q					
0178	OA		D8	012Q					
017C	80	CEX15:	DB	200Q	; NUM	BER	VALUE	15	0.5712091
0170	12		ÐВ	022Q					
017E	3A		08	072Q					
017F	C2		DB	30 2Q					
0180	7 E	CEX16:	DВ	176Q	; NUM	BER	VALUE	15	0.2126729
0181	59		DB	131Q					
0182	C5		DВ	306Q					
0183	Eθ		DB	355Q					
0184	82	CEX21:	DB	202Q	; NUM	BER	VALUE	15	3.989853
0185	7F		DB	177Q					
0186	59		DB	131Q					
0187	CO		DB	300Q					
0188	82	CEX22:	DB	202Q	: NUM	BER	VALUE	15	3.974720
· · ·	- -				,			• 0	

0189 **7**E

DB 176Q

018A	61	i	กล	141Q							
0188	Do		DB	320Q							
0180	82			202Q	: NUMBER	VALU	F 15	3.909050			
018D	7A			172Q	¥11011321	· VALO		30,0,0,0			
018E	20		DB								
018F	ΕO			3400							
0190	82			2 02 Q	: NUMBER	VAI U	F 15	3.758780			
0191	70			1600	, ,, ,, ,,			30.30.00			
0192	8F			217Q							
0193	DA			332Q							
0194	82			202Q	:NUMBER	VALU	F 1S	3.023135			
0195	41			101Q	7.1.0.1.7.2.						
0196	7 B			173Q							
0197	08			0130							
0198	81			201Q	: NUMBER	VALU	E IS	1.844659			
0199	60			154Q	,						
019A	10			035Q							
019B	CA			312Q							
0190	76	CLAM1:	DB	166Q	NUMBER	VALU	E 15	8.466667	*	10**-4	
0190	50	!	DΒ	135Q							
019E	F2		DΒ	362Q							
019F	CE		DB	316Q							
0140	78	CLAM2:	ÐΒ	170Q	; NUMBER	VALU	E IS	2.113333	*	10**-3	
01A1	OA	1	DΒ	012Q							
01A2	7F		08	177Q							
01A3	D 8		ÐВ	330Q							
0144	79	CLAM3:	DΒ	171Q	; NUMBER	VALU	E IS	7.666667	*	10**-3	
01A5	78		DB	173Q							
01A6	38	İ	DB.	070Q							
0147	AA	1	D8	252Q							
01 A8	78	CLAM4:	DΒ	173Q	NUMBER	VALU	E 15	2.073333	*	10**-2	
01A9	29	I	DB	05 I Q							

```
OLAA
                          DB 330Q
         08
 01AB
         F2
                          DB 362Q
 OIAC
         70
                  CLAM5: DB 175Q
                                        ; NUMBER VALUE IS 9.333333 * 10**-2
 OIAD
         3F
                          DB 077Q
  DIAE
         25
                          DB 045Q
 OLAF
         8B
                          DB 213Q
  0180
         7 F
                  CLAM6: DB 177Q
                                        NUMBER VALUE IS 0.258000
  0181
                          DB 004Q
         04
 0182
         18
                          DB 030Q
 0183
         93
                          DB 223Q
 0184
         7C
                  Al:
                          OB 174Q
                                        : NUMBER VALUE IS 0.038000
 0185
                          DB 033Q
         18
 0186
         A5
                          DB 245Q
 0187
         E 3
                          DB 343Q
         7E
                  A2:
                          DB 1760
 0188
                                        :NUMBER VALUE IS 0.2131000
 0189
         5A
                          DB 132Q
 01BA
         36
                          DB 066Q
 0188
         E3
                          DB 343Q
8080 MACRO ASSEMBLER, VER 2.4
     ERRORS = 0 PAGE 21
 OIBC
         78
                   A3:
                          DB 1760
                                        :NUMBER VALUE IS 0.1880000
```

NUMBER VALUE IS 0.4069000

DB 100Q

DB 203Q

DB 022Q

DB 177Q

DB 120Q

DB 125Q

DB 062Q

0180

0188

01BF

0100

0101

0102

0103

40

83

12

7F

50

55

32

A4:

```
0104
                 A5:
       7E
                        DB 176Q
                                      NUMBER VALUE IS 0.128000
0105
       03
                        DB 003Q
0106
       12
                        DB 022Q
0107
       6E
                        DB 1560
0108
       7B
                 A6:
                        DB 173Q
                                      :NUMBER VALUE IS 0.0260000
0109
       54
                        DB 124Q
OLCA
       FD
                        DB 375Q
DICB
       F3
                        DB 363Q
OICC
       81
                        08 201Q
                ONE:
                                      :NUMBER VALUE IS 1.0000
OICD
       00
                        DB 000Q
OICE
       00
                        DB 0000
OICF
       00
                        DB 000Q
0100
       82
                 THREE: DB 202Q
                                      :NUMBER VALUE IS 3.0000
0101
       40
                        DB 100Q
0102
                        DB 000Q
       00
0103
       00
                        DB 000Q
0104
       91
                 TEN5:
                        DB 221Q
                                      ; NUMBER VALUE IS 1.0000 * 10**5
0105
       43
                        DB 103Q
0106
       50
                        DB 120Q
0107
                        DB 000Q
       00
0108
       00
                 BLANK: DB 015Q
                                      ; CODE WORD FOR BLANKING DISPLAY
0109
                 MINUS: DB 200Q
                                      :CODE WURD FOR MINUS SIGN
       80
OLDA
       00
                 PEUS:
                        DB 0000
                                      CODE WORD FOR PLUS SIGN
                 END
```

NO PROGRAM ERRORS

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 22

SYMBOL TABLE

•

.

APPENDIX E

Intel 8080

Math Floating Point Package

The following is a reproduction of the Intel 8080 Math Floating Point Package that was developed by Otto C. Juelich.

0200		JRG	200H	
0002		AR THB	EWU	\$ SHR 8 AND OFFH
0200		ARITH	ã QU	\$
0100		SCR EQU	100H	
0001		SCRB	EQU	SCR SHR 8 AND OFFH
				BLANK NUMBER OF SCRATCHPAD
		; 8080 83	INARY FLOA	TING POINT SYSTEM
				TILITY PACKAGE
			MMER CAL O	
		DATE 2	6 DECEMBER	1973
		-		INNING ADDRESS OF THE
				TILITY PACKAGE OF THE FLOATING
			SYSTEM.	
		SCR IS	THE BEGIN	NING ADDRESS UF THE
				TCHPAD FOR THE SYSTEM.
				AND DIVIDE SUBROUTINES
				OM TO RAM BY SUBROUTINE
		; INIT A	AN ARE EXE	CUTED IN RAM ONLY.
		; RAM MUI	LTIPLY SUB	ROUTINE.
0100		MUL X4	EQU	\$-ARITH+SCR
0200	0600	ADI	0;	ADDOPERAND 3RD FRACTION
0001		MULP3	EQU	\$-1-ARITH
0202	5 F	VGM	E,A;	4TH PARTIAL PRODUCT
0203	7A	MÚV	A,D;	3RD PARTIAL PRODUCT
0204	CEOO	ACI	U;	ADD OPERAND 2ND FRACTION
0)05		MULP2	EQU	\$-1-ARITH
0206	57	VCM	Û,A;	3RD PARTIAL PRODUCT
0207	79	MUV	A, C;	2ND PARTIAL PRODUCT

0208	CEOO	AC I	υ;	ADD OPERAND IST FRACTION
	CE. OO			
0009		MULPI	EQU	\$-1-ARITH
020A	C37304			TO ROM CODE
		RAM DIVI	DE SUBROUT	TINE,
0100		DIVX5	EQU	8-ARITH+SCK
0200	D600	SUI	Û;	SUB DIVISOR 4TH FRACTION
ODOE		OP4S	EQU	\$-1-ARITH
020F	70	VOM	A, L;	REMAINDER 3RD FRACTION
0210	DE00	SBI	0 ;	SUB DIVISOR 3RD FRACTION
0011		0P3S	EQU	5-1-ARITH
0212	6F	VCM	L,A;	REMAINDER 3RD FRACTION
J213	7C	MOV	A,H;	KEMAINDER 2ND FRACTION
0214	DEOO	SBI	O ;	SUB DIVISOR 2ND FRACTION
0015		UP2\$	EQU	\$-1-ARITH
0216	67	VOM	H,A;	REMAINDER 2ND FRACTION
0217	7 B	VOM	A, E;	REMAINDER 1ST FRACTION
0218	DE00	SBI	0;	SUB DIVISOR 1ST FRACTION
0019		OP1S	EQU	\$-1-ARITH
021A	5F	MOV	E,A;	REMAINDER IST FRACTION
J21B	3E00	IVM	A,0;	REMAINDER 4TH FRACTION
0010		OP4A	EQU	\$-1-ARITH
0210	C 9	RET	;	RETURN TO ROM
0116		DIVX6	ÉQU	\$-ARITH+SCR

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 2

021E	0600	ADI	0;	ADDDIVISOR 3RD FRACTION
001F		OP3A	EQU	\$-1-ARITH
0220	6F	MOV	L,A;	REMAINDER 3RD FRACTION

```
0221
       7 C
                      May
                               A.H:
                                          REMAINDER 2ND FRACTION
0222
       CEOO
                      AC I
                               );
                                          ADD DIVISOR 2ND FRACTION
0023
                OP2A
                               EQU
                                          $-1-ARITH
0224
       67
                      VOM
                               H.A:
                                          REMAINDER 2ND FRACTION
J225
       78
                      MOV
                               A,E;
                                          REMAINDRER IST FRACTION
0226
       CEOO
                      AC I
                               0;
                                          ADD DIVISUR 1ST FRACTION
0027
                OPIA
                               EQU
                                          $-1-APITH
0228
       5F
                      MOV
                               E.A:
                                          REMAINDER IST FRACTION
0229
       3E00
                      MVI
                               A . 0:
                                          REMAINDER 4TH FRACTION
002A
                OP4X
                               EQU
                                          $-1-ARITH
0228
       C 3DF 04
                      JMP
                               DIVX2:
                                          TO ROM CODE
                      RAM LOCATIONS USED BY THE BINARY
                      FLUATING POINT SYSTEM
002E
                OVER
                               EQU
                                          $-ARITH
022E
       0.0
                      DΒ
                               0:
                                          INITIALLY CLEAR
002F
                PREX
                               EQU
                                          OVER+1:
                                                   PREVIOUS EXPONENT
0030
                ACCE
                               EQU
                                          PREX+1:
                                                   ACCUMULATOR EXPONENT
0031
                ACCS
                               FUU
                                          ACCE+1:
                                                    ACCUMULATOR SIGN
0032
                ACC1
                               EQU
                                          ACCS+1;
                                                   ACCUMULATOR 1ST FRCTN
0033
                ACC2
                               EQU
                                          ACC1+1:
                                                   ACCUMULATOR 2ND FRCTN
0034
                ACC3
                               EQU
                                          ACC2+1:
                                                   ACCUMULATOR 3RD FROTN
0035
                SF
                      EQU
                               ACC3+1;
                                          SUBTRACTION FLAG
                      INT SUBROUTINE ENTRY POINT
02.2F
       2E2F
                INIT:
                               MVI
                                          L, PREX; TO ADDR LAST WO TO MOVE
0231
                INIT1:
       2602
                                  MVI
                                          H. AKTHB: TO ADDRESS ROM COPY
0233
       5 E
                      MOV
                                  E,M;
                                          CURRENT WURD OF ROM COPY
0234
       2601
                      MVI
                                 H, SCRB; TO ADDRESS RAN COPY
0236
       73
                      MOV
                                 M.F:
                                          WRITE CURRENT WO TO RAM
J237
       20
                      DCR
                                  L;
                                          DECREMENT WORD ADDRESS
0238
       F23102
                      JP
                                  INIT1:
                                          IF MORE TO MOVE
0238
       €9
                      RET
                                          RETURN TO CALLER
                      SIR SUBROUTINE ENTRY POINT.
```

```
0230
                STKO:
       73
                                 MOV
                                         M.E: STOR ZEROETH WORD
0230
       2C
                    INR
                                 l:
                                         TO ADDRESS FIRST WORD
023E
       77
                STR: MOV
                                 M.A:
                                         STOKE FIRST WORD
023F
       2 C
                STR1:
                                 INK
                                         L: TO ADDRESS SECOND WORD
0240
       70
                     VOM
                                 M. B:
                                         STORE SECOND WORD
0241
       20
                     INR
                                 L;
                                         TO AUDRESS THIRD WORD
0242
       71
                     MUV
                                 M,C;
                                         STORE THIRD WORD
0243
       20
                                 L;
                     INR
                                         TO ADDRESS OF FOURTH WORD
0244
       72
                     MOV
                                 M.D:
                                         STOKE FOURTH WORD
0245
       C9
                     RET
                                          RETURN TO CALLER
                ;FLOATING POINT ZERO SUBROUTINE ENT. PT.
0246
       2601
                ZRO: MVI
                                 H. SCRB: TO ADDRESS SCRATCH BLAND
0248
       2E30
                ZR01:
                                 MVI
                                         L. ACCE; TO ADDR ACCUM EXPONENT
024A
       ΑF
                      XRA
                                 A ;
                                         ZERO
024B
       77
                      VON
                                 M.A:
                                         CLEAR ACCUMULATOR EXPONENT
0240
       09
                      RET
                                         RETURN TO CALLER
```

		; FLOATING	POINT CHS	S SUBROUTINE ENT.PNT.
0240	3E80	CHS: MVI	A,200Q;	MASK FOR SIGN BIT
024F	0E	DB	016Q;	LBI INST TO SKIP NEXT WD
		; FLOATING POINT	ABS SUBH	ROUTINE ENT. PHT.
0250	ΑF	ABS: XRA	A ;	ZERO
0251	2601	JV N.	H,SCRB;	TO ADDRESS SCRATCH BLANK
0253	2631	IVI	L,ACCS;	TU ADDRESS ACCUM SIGN
0255	A6	ANA	M	; COMPLIMENT OF SIGN
0255	EE80	XRI	200Q;	COMPLIMENT THE SIGN BIT
0258	77	MAV	M, A;	ACCUMULATOR SIGN

```
FLOATING POINT TEST ENTRY POINT,
0259
                 TST:
       2601
                       MVI
                                   H. SCRE: TO ADDRESS SCRATCH BLANK
025B
       2F30
                 TST1:
                                           L, ACCE; TO ADDR OF ACCUM
                                   MVI
0250
       7 E
                        MOV
                                   A.M:
                                            ACCUMULATOR EXPONENT
025F
       Α7
                        ANA
                                   A :
                                           SET CONTROL BITS
025F
       CA4602
                        JZ
                                   ZRO:
                                           IF ACCUMULATOR IS ZERO
0262
       5F
                        VON
                                   E.A:
                                            ACCUMULATOR EXPONENT
       20
0263
                        INR
                                   L:
                                            TO ADDR ACCUMULATOR SIGN
0264
       7£
                        VOM
                                   A . M :
                                             ACCUMULATOR SIGN
0265
       20
                        INR
                                   L;
                                             TO ADDR ACCUM 1ST FRACTN
0266
       ΑE
                        XRA
                                   M:
                                             ACCUM SIGN AND 1ST FROTN
       20
0267
                        INR
                                   L:
                                             TO ADDR ACCUM 2ND FROTN
       48
0268
                        VOM
                                   C,4;
                                             ACCUMULATUR 2ND FRACTION
0269
       20
                        INR
                                   L;
                                            TO ADDR ACCUM 3PD FRCTN
026A
       56
                        VC<sub>M</sub>
                                   D.M:
                                             ACCUMULATOR 38D FROTN
0268
       C37A03
                        JMP
                                   ADD12:
                                            TO SET FXIT CONDITIONS
                        FLOATING
                                 POINT LOAD ENTRY POINT.
026E
       7 E
                 LUD:
                        VOM
                                   A . M :
                                               UPERAND EXPONENT
026F
       A I
                        ANA
                                   A:
                                               SET CONTROL BITS
       CA4602
0270
                        JZ
                                   ZRO:
                                               IF OPERAND IS ZERO
0273
       5F
                        MOV
                                   F,A;
                                               UPERAND EXPONENT
3274
       2C
                        INR
                                   L;
                                               TO ADDR CP SIGN AND 1ST
0275
       7E
                       VGM
                                   A.M.
                                               UPERAND SIGN AND 1ST FRCTN
0276
       20
                        INR
                                   L;
                                               TO ADDRESS OPERAND 2ND FROTN
3277
       4E
                        VOM
                                   C,M;
                                               OPERAND 2ND FRACTION
0278
       20
                        INR
                                   L;
                                               TO ADDRESS OPERAND 3RD FROTN
J2 79
       56
                        MOV
                                   D, M;
                                               OPERAND 3RD FRACTION
                        STORE THE GPERAND IN THE ACCUMULATOR.
                 ;
027A
       6F
                        NOV
                                   L.A;
                                               UPERAND SIGN AND IST FRCTN
J2 78
       F580
                 LOD1:
                                   CR I
                                               2000: ACCUMULATOR 1ST FRACTION
0270
       47
                        MOV
                                   B, A;
                                               ACCUMULATOR IST FRACTION
027E
       ΑĐ
                        XRA
                                  L;
                                                ACCUMULATOR SIGN
```

```
027F
       2601
                      MVI
                                H.SCRB:
                                            TO ADDRESS SCRATCH BLANK
0281
      2E30
                      IVM
                                L.ACCE:
                                            TO ADDR ACCUM EXPONENT
0283
      CD3C02
                                            SET THE ACCUMULATOR
                      CALL
                                STRO:
0286
       8 A
                      XRA
                                B:
                                            ACCUM SIGN AND 1ST FRACTION
                      SET CONTROL BITS AND EXIT
0287
      47
                      VOM
                                B.A:
                                            ACCUM SIGN AND 1ST FRACTION
0288
      F601
                      ORI
                                1;
                                            SET SIGN BIT FOR EXIT
028A
      7B
                      VOM
                                A,E;
                                            ACCUMULATOR EXPONENT
J28B
      C9
                      RET
                                            RETURN TO CALLER
```

		;	FLOATING	POINT MUL	SUBROUTINE ENT. PNT.
028C	7 E	MUL:	VOM	A • M ;	OPERAND EXPONENT
028D	Α7		ANA	A	; SET CUNTROL BITS
J285	C49503		CNZ	MDEX;	READ OPERAND IF NOT ZERO
0291	CA4602		JZ	ZRO;	IF ZERO CK UNDERFLOW
J2 94	DACA02		JC	OVERF;	IF OVERFLOW
0297	CD4D04		CALL	MULX;	CALL FIXED MULT SUBRIN
		;	NORMALIZE	IF NECES	SARY.
J2 9A	7 3		MOV	А,В;	LST PRODUCT
0298	Α7		ANA	٨	; SET CONTROL
029C	FAA902		JM	ENDA;	LE NO NORMALIZATION REQUIRED
029F	2E30		IVM	L,ACCE;	TO ADDR ACCUM EXPONENT
02A1	7 E		MOV	A.M.	ACCMUMLATOR EXPONENT
U2A2	DE D1		SBI	1;	DECREMENT ACCUMULATOR EXPONENT
02A4	77		VÜM	M,A;	ACCUMULATOR EXPONENT
02A5	СЗ		RZ	;	RETURN TO CALLER IS UNDERFLOW
J2 A6	CDBC 03		CALL	LSH;	CALL LEFT SHIFT SUBROUTINE

```
ROUND IF NECESSARY.
J2A9
       C03004
                 RNDA:
                                  CALL
                                               ROND: CALL POUNDING SUBROUTINE
U2AC
       DACA02
                       JC
                                  OVERE:
                                               IF OVERFLOW
02AF
       47
                       MOV
                                  B . A:
                                               ACCUM SIGN AND 1ST FRACTION
02BO
       F601
                                  1:
                       0RI
                                               SET SIGN BIT
0262
       78
                       VOM
                                  A.E:
                                               ACCUMULATUR EXPONENT
0283
       C9
                       RET
                                               RETURN TO CALLER
                       FLOATING POINT DIV SUBROUTINE ENT. PNT.
                DIV:
                       XRA
02B4
       AF
                                  A:
                                               ZERO
0285
       9á
                       SUB
                                               COMPLEMENT OF DIVISOR EXPONENT
                                  M:
       FE01
0286
                       CPI
                                  1:
                                               SET CARRY IF DIVISION BY ZERO
0288
       D49503
                                  MDEX:
                       CNC
                                               READ OPERAND IF NOT ZERO
0288
                       JC
       DAC A 0 2
                                  OVERF:
                                               IF OVERFLOW OR DIVISION BY ZERO
02BE
       CA4802
                       JZ
                                  ZRO1:
                                               IF UNDERFLOW OR ZERO
0.201
       4F
                       MOV
                                  C,A;
                                              DIVISOR 1ST FRACTION
0202
       CU9004
                       CALL
                                  DIVX:
                                               CALL FIXED DIV SUBRIN
0205
       2601
                       MVI
                                  H.SCRB:
                                              TO ADDRESS SCRATCH BANK
J2C7
       DAA902
                       JC
                                  PNDA:
                                               LE NO OVERFLOW
                       SET OVERFLOW FLAG.
02CA
                OVERE:
       2601
                                  MV I
                                              H. SCRB; TO ADDRESS SCRATCH
J2CC
       2E2E
                       IVE
                                  L, GVER;
                                              TO ADDA GVERFLOW FLAG
02CE
       3EFF
                                  A.377Q;
                       MVI
                                               COVERFLOW FLAG
0200
       77
                       MOV
                                  A, A:
                                               DIVERFLOW FLAG
02DI
       07
                       RLC
                                               SET CARRY BIT FOR EXIT
0202
       09
                       RET
                                              RETURN TO CALLER
       00
02D3
                       OB
                                              CHECK SUM WORD
                                  0;
                       FLOATING POINT SUB SUBROUTINE ENT. PNT.
0204
       3E80
                 SB:
                       HVI
                                  A,2000:
                                              MASK TO CHANGE OP SIGN
J2D6
       0E
                       Di3
                                  016Q;
                                              LBI INST TO SKIP NEXT WO
                       FLOATING POINT ADD SUBROUTINE ENT. PNT.
0207
       ΑF
                 AD:
                       XRA
                                  A:
                                               ZERO
                       LOAD THE OPERAND.
```

```
E.M:
                                                OPERAND EXPONENT
 02D9
         20
                         INR
                                   L:
                                                TO ADDR UP SIGN, 1ST FRCTN
8080 MACRO ASSEMBLER, VER 2.4
     ERRORS = 0 PAGE 5
  02DA
         AE
                         XRA
                                   N:
                                                UPERNAD SIGN AND IST FROTN
  020B
         47
                                                OPERAND SIGN AND 1ST FRCTN
                         VON
                                    B.A:
 0200
         20
                         INR
                                   L:
                                                TO ADDR OPERAND 2ND
  0200
         4 E
                         VOM
                                   C.M;
                                                OPERAND 2ND FRACTION
  02DE
         20
                         LNR
                                                TO ADDR OPERAND 3RD FRCTN
                                   L;
 02DF
         56
                         VCM
                                   D.M.
                                                OPERNAD 3RD FRACTION
                         SAVE INITIAL EXPONENT.
  02E0
         2601
                         MVI
                                   H.SCRB:
                                                TO ADDRESS SCRATCH BANK
 02E2
         2E30
                         IVM
                                   L, ACCE:
                                                TO ADDR ACCUM EXPONENT
  02E4
         7E
                         MOV
                                   A , M;
                                                ACCUMULATUR EXPONENT
 02E5
         2.0
                         DCR
                                   L;
                                                TO ADDR INITIAL EXPONENT
  J2E6
         77
                         MOV
                                    M.A:
                                                INITIAL EXPONENT
                         CHECK FOR ZERO OPERAND.
 02E7
         7 B
                                    A, E;
                         MOV
                                                OPERAND EXPONENT
  J2E8
         A 7
                         ANA
                                    Λ
                                                ; SET CONTROL BITS
 02E9
         CA5602
                         JZ
                                   TST1:
                                                IF OPERAND IS ZERO
                         GENERATE SUBTRACTION FLAG, RESTURE
                         SUPPRESSED FRACTION BIT.
 02 EC
         68
                         VOM
                                   L,B;
                                                OPERAND SIGN AND 1ST FROTN
 02ED
         78
                         VOM
                                   A.B:
                                                OPERAND SIGN AND 1ST FRACTION
  02EE
         F680
                         ORI
                                   200Q;
                                                OPERAND IST FRACTION
 02F0
         47
                         VOM
                                    B, A;
                                                OPERAND IST FRACTION
 02F1
         Aυ
                         XRA
                                   L:
                                                OPERAND SIGN
 02F2
         2E31
                         IVM
                                   L.ACCS:
                                                TO ADDRESS ACCUMULATOR SIGN
```

0208

5E

VEM

```
J2F4
                       XRA
       ΑE
                                 Μ;
                                              SUBTRACTION FLAG
02F5
       2535
                       MVI
                                 L.SF:
                                              TO ADDRESS SUBTRACTION FLAG
02F7
       77
                                 M.A:
                       VOK
                                              SUBTRACTION FLAG
                       DETERMINE RELATIVE MAGNITUDES OF
                       OPERAND AND ACCUMULATOR.
02F8
       2630
                       MVI
                                 L.ACCE:
                                               TO ADDRESS ACCUMULATOR
                                                : EXPONENT
02FA
       7 E
                                 A.M:
                       VOM
                                               ACCUMULATOR EXPONENT
02 FB
       A7
                       ANA
                                  Α
                                               :SET CONTROL BITS
02FC
       CA8603
                       JZ
                                 ADD17:
                                               IF ACCUMULATOR IS ZERO
02FF
       93
                       SUB
                                 E ;
                                               DIFFERENCE IN EXPONENTS
       DAGE03
                       JC
J300
                                 ADD2:
                                               IF ACCUM SMALLER THAN OP
                       CHECK FOR INSIGNIFICANT OPERAND
0363
       EA5B02
                       JM
                                 TST1:
                                               IF THE UPERAND IS INSIGNIFICANT
0306
       FE19
                       CPI
                                 031Q:
                                               COMPARE SHIFT COUNT TO 25
0308
       DA2003
                       J.C.
                                 ADD3;
                                               JOIN EXCH PATH IF OP SIGNIF
030B
       C35802
                       JMP
                                 1511:
                                               OPERAND IS INSIGNIFICANT
                       CHECHK FOR INSIGNIFICANT ACCUMULATOR
030E
       F28603
                ADD2:
                                  JP
                                               ADD17; IF ACCUM IS INSIGNIFICANT
3311
       FEE7
                       CPI
                                 347Q;
                                               COMPARE SHIFT COUNT TO MINUS 25
0313
       DA8603
                       JC
                                 A0017;
                                               IF ACCUM IS INSIGNIFICANT
0316
       73
                      MOV
                                M, E;
                                               OPERAND EXPONENT
0317
       5E
                       MOV
                                 F,A:
                                               SHIFT COUNT
0318
       2E35
                       MVI
                                 1,SF:
                                               TO ADDRESS THE SUBTRACTION
                                                      :FLAG
031A
       7£
                       VOM
                                 A.M:
                                               SUBTRACTION FLAG
0318
       2E31
                       MVI
                                 L, ACCS;
                                               TO ADDRESS THE ACCUMULATOR
```

```
:SIGN
0310
       ΑE
                       XRA
                                  Μ:
                                                 CPERAND SIGN
031F
       77
                       MOV
                                  M.A:
                                                ACCUMULATOR SIGN
031F
       AF
                       XRA
                                  A;
                                                ZERO
0320
       93
                       SUB
                                  F:
                                                COMPLIMENT SHIFT COUNT
                       EXCHANGE
                                 ACCUMULATOR AND OPERAND
3321
       20
                       INR
                                  L:
                                                TO AUDR ACCUM 1ST FRACTION
0322
       5E
                       VOM
                                  E,M;
                                                ACCUMULATOR 1ST FRACTION
0323
       70
                       VGM
                                  M. B:
                                                OPERAND IST ERACTION
0324
       43
                       MOV
                                  B,E;
                                                ACCUMULATUR 1ST FRACTION
0325
       20
                                  L:
                        INR
                                                TO ADD ACCUM 2ND FRACTION
0326
       5 E
                       VOM
                                  E,M;
                                                ACCUMULATOR 2ND FRACTION
0327
       71
                       MOV
                                  M,C;
                                                OPERAND 2ND FRACTION
0328
       48
                       MOV
                                  C,E;
                                                ACCUMULATOR 2ND FRACTION
0329
       20
                       INR
                                  L;
                                                TO ADDR ACCUM 3PD FRACTION
032A
       5 E
                       VOM
                                  E,M;
                                                ACCUMULATOR 3RD FRACTION
0328
       72
                       MOV
                                  M.D;
                                                OPERAND 3PD FRACTION
332C
       53
                       VOM
                                  0.8:
                                                ACCUMULATOR 3RD FRACTION
                       POSITION THE OPERAND.
0320
       CDC903
                 ADD3:
                                  CALL
                                                RSH: POSITION THE OPERAND
       2E35
3330
                       MVI
                                  L.SF;
                                                TO ADDRESS SUBTRACTION FLAG
0332
       7F
                       VCM
                                  A,M:
                                                SUBTACTION FLAG
3333
       A7
                       ANA
                                                 ; SET CONTROL BITS
                                  А
0334
       2E34
                       MVI
                                  L.ACC3;
                                                TO ADDR ACCUM 3RD FRCTN
0336
       FA5003
                       J4
                                  ADD9:
                                                  IF SUBRACTION REQUIRED
                       ADD ADDEND TO AUGEND.
0339
       7Ē
                       MOV
                                  A,M;
                                                AUGEND 3RD FRACTION
033A
       82
                       ADD
                                                ADDEND 3RD FRACTION
                                  D;
033B
       57
                       YOV
                                  D,A;
                                                SUB 3%O FRACTION
0330
       20
                       DCR
                                  L;
                                                TO ADDRESS AUGEND 2ND FRACTION
J33D
       7E
                       VOM
                                  A . M :
                                                AUGNED 2ND FRACTION
```

```
033E
       89
                       ADC
                                 C;
                                               ADDEND 2ND FRACTION
033F
       4F
                       VON
                                  C.A:
                                               SUB 2ND FRACTION
0340
       20
                       DCR
                                  L;
                                               TO ADDRESS AUGEND 1ST FRACTION
0341
       7 E
                       VOM
                                  A,M;
                                                AUGEND 1ST FRACTION
0342
       88
                       ADC
                                  Β;
                                                ADDEND 1ST FRACTION
0343
       47
                       VOM
                                  B,A;
                                               SUB IST FRACTION
0344
       D27403
                       JNC
                                  ADD11:
                                            IF NO CARRY FROM 1ST FRACTION
                       RIGHT SHIFT SUM TO NORMALIZED POSITION.
0347
       1 F
                       RAR
                                               RIGHT SHIFT SUM IST FRACTION
0348
       47
                       VOM
                                  B, A;
                                               SUM 1ST FRACTION
0349
       79
                       VOM
                                  A,C;
                                               SUM 2ND FRACTION
034A
       1 F
                       RAR
                                               RIGHT SHIFT SUM 2ND FRACTION
J34B
       4F
                       VOM
                                  C,A;
                                               SUM 2ND FRACTION
034C
       7A
                       VGM
                                  A,D;
                                               SUM 3RD FRACTION
0340
       1 F
                       RAR
                                               RIGHT SHIFT SUM 3RD FRACTION
034E
       57
                       VOM
                                 D,A;
                                               SUM 3KD FRACTION
034F
       15
                       RAR
                                               4TH FRCTN = LOW BIT OF 3RD
0350
       5F
                       MOV
                                  F,A;
                                               SUM 4TH FRACTION
0351
       2E30
                       MVI
                                  L,ACCE;
                                               TO ADDRESS ACCUMULATOR
                                                 ; EXPONENT
```

0353	7 E	VOM	A , M ;	ACCUMULATOR EXPONENT
J354	C601	ADI	1;	INCREMENT ACCUMULATOR EXPONENT
0356	DAC 402	JC	OVERF;	IF OVERFLOW
0359	71	VGM	M, A;	ACCUMULATOR EXPONENT
035A	C37403	JMP	ADDII;	TO ROUND FRACTION
		; SUBRAC	T SUBTRAHEND	FROM MINUEND

0350	AF	ADD9:	XRA	A; MINUEND 4TH FRCTN IS ZERO
035E	93	SUB	E;	SUBTRAHEND 4TH FRACTION
035F	5F	MOV	E,A;	DIFFERENCE 4TH FRACTION
0360	78	VOM	A,M;	MINUEND 3RD FRACTION
0361	9A	SBB	D;	SUBTRAHEND 3RD FRACTION
0362	57	VOM	D,A;	DIFFEHENCE 3RD FRACTION
J363	20	DCR	L;	TO ADDRESS MINUEND 2ND
0364	7E	VOM	A,M;	MINUEND 2ND FRACTION
0365	99	S B B	C;	SUBTRAHEND 2ND FRACTION
0366	4F	MOV	C , A ;	DIFFERENCE 2ND FRACTION
0367	20	DCK	L;	TO ADDRESS MINUEND 1ST FRCTN
J368	7E	VOM	Λ, M;	MINUEND IST FRACTION
0369	98	SBB	Б;	SUBTRAHEND IST FRACTION
036A	47	MOV	B,A;	DIFFERENCE 1ST FRACTION
J36 8	DCEF03	A0010:	CC	COMP; COMPLEMENT IF NEGATIVE
036E	F40204	CP	NORM;	NORMALIZED IF NECESSARY
0371	F24802	JP	Z801;	IF UNDERFLOW OR ZERO
0374	003004	AUD11:	CALL	ROND; CALL ROUNDING SUBROUTINE
0377	DACA02	JC	OVERF;	IF OVERFLOW
037A	47	ADD12:	MUV	B,A; ACCUM SIGN AND 1ST FRCTN
0378	2E2F	MVI	L,PREX;	TO ADDRESS PREV EXPONENT
0370	7 8	MGV	A,E;	ACCUMULATOR EXPONENT
037E	96	SUB	M;	DIFFERENCE IN EXPONENTS
037F	6F	MOV	1. , A ;	DIFFERENCE IN EXPONENTS
0380	7੪	MOV	А, в;	ACCUM SIGN AND 1ST FRCTN
0381	F601	ÜKI	1;	SET SIGN BIT FOR FXIT
0383	7 8	VGM	A,E;	ACCUMULATOR EXPONENT
0384	5 D	MOV	E, L;	SIGNIFICANT INDEX
0385	C 9	RET	•	RETURN TO CALLER
			UMULATUR WITH	·
J386	2E35	ADD17:	MVI	L,SF; TO ADDR SUBTRACTION
0388	7 E	VGM	A,M;	SUBTRACTION FLAG
			• •	

```
0389
         2E31
                                  L. ACCS:
                        MVI
                                                TO ADDR ACCUMULATOR SIGN
 0388
         AE
                        XRA
                                   Μ;
                                                OPERAND SIGN
 038C
         20
                        DCR
                                  L;
                                                TO ADDR ACCUM EXPONENT
  338D
         CD3C02
                        CALL
                                  STRO:
                                                SET THE ACCUMULATOR
 0390
                                  B;
         A8
                        XRA
                                                ACCUM SIGN AND 1ST FRCTN
 0391
                        JMP
         C37403
                                   ADD12:
                                                JUIN EXIT CODE
 0394
         00
                        DB
                                  0:
                                                CHECK SUM WORD
                        SUBROUTINE TO READ THE OPERAND AND
                        CHECK THE ACCUMULATOR EXPONENT
 0395
         47
                  MDEX:
                                   MOV
                                                B.A: EXPONENT MODIFIER
  0396
         20
                        INR
                                  L;
                                                TO ADDR OP SIGN. 1ST FRCTN
  J397
                        VOM
                                  C.M;
         4 E
                                                OPERAND SIGN AND 1ST FRACTION
  0398
                                                TO ADDRESS OPERAND 2ND FRCTN
         20
                        INR
                                  L:
8080 MACRO ASSEMBLER, VER 2.4
     ERRORS = 0 PAGE 8
  0399
         56
                        VCM
                                  D.M:
                                                OPERAND 2ND FRACTION
 039A
         20
                        INR
                                  L;
                                                TO ADDRESS OPERAND 3RD ERCTN
  539B
         5E
                        VCM
                                  E.M:
                                                UPERAND 3RD FRACTION
 0390
         2601
                        MVI
                                  H, SCRB:
                                                TO ADDRESS SCRATCH BANK
 J39E
         2630
                                  L, ACCE;
                        MV I
                                                TO ADDRESS ACCUMULATOR
                                                 : EXPONENT
 03A0
         7 E
                        VON
                                   A,M:
                                                ACCUMULATOR EXPONENT
 J3A1
                        ANA
         A7
                                   Á
                                                : SET CONTROL BITS
 03A2
         C8
                        RZ
                                                RETURN IF ACCUM IS ZERO
  J3A3
         80
                        ADD
                                  B ;
                                                RESULT EXPONENT PLUS BIAS
 0344
         47
                        VOM
                                                RESULT EXPONENT PLUS EIAS
                                   B , A ;
  03A5
         1F
                        RAR
                                                CAPRY TO SIGN
 03 A6
                        XRA
         Αď
                                   B:
                                                CARRY AND SIGN MUST DIFFER
```

```
33A7
       78
                      MOV
                                 A . B ;
                                               RESULT EXPONENT PLUS BIAS
03A8
       0680
                                 B.2000:
                      MVI
                                               EXP BIAS, SIGN MASK, MS BIT
03 AA
       F2B803
                      JP
                                 OVUN:
                                               IF OVERFLOW OR UNDERFLOW
03AD
       90
                      SUB
                                 8:
                                               REMOVE EXCESSS EXP BIAS
03AE
       C 8
                      RZ
                                               RETURN IF UNDERFLOW
J3 AF
       77
                      VOM
                                 M.A:
                                               RESULT EXPONENT
0380
       20
                      INR
                                 L:
                                               TO ADDRESS ACCUMULATOR SIGN
0381
       7 E
                      VOM
                                 A.M:
                                               ACCUMULATUR SIGN
0382
       Α9
                      XRA
                                 С;
                                               RESULT SIGN IN SIGN BIT
0383
       A O
                      ANA
                                 B ;
                                              RESULT SIGN
03B4
       77
                      MOV
                                 M.A:
                                               RESULT SIGN
0385
       79
                                 A,C;
                                              OPERAND SIGN AND 1ST FRCTN
                      VOM
0386
       BO
                      ORA
                                 B :
                                              OPERAND IST FRACTION
J3B7
       C 9
                      RET
                                 ;
                                               RETURN TO CALLER
0368
       0.7
                OVUN:RLC:
                                               SET CARRY BIT IF OVERFLOW
0389
                      RC
       D8
                                               RETURN IF OVERFLOW
       AF
J3BA
                      XRA
                                 A ;
                                               ZERO
03BB
       C9
                      RET
                                              RETURN IF UNDERFLOW
                      SUBPOUTINE TO LEFT SHIFT THE B.C.
                      D. AND E REGISTERS ONE BIT.
03BC
       78
                LSH: MOV
                                 A, E;
                                              ORIGINAL CONTENTS OF E
       17
                      RAL
33BD
                                 ;
                                              LEFT SHIFT E
03BE
       5F
                      MOV
                                 E.A:
                                               RESIDRE CONTENTS OF REGISTER E
03BF
       7A
                 LSH1:
                                 MOV
                                               A.D: ORGINAL CONTENTSS OF D
                                               : REGISTER
0300
       17
                      RAL
                                 ;
                                              LEFT SHIFT D
0301
       57
                      VUM
                                 D.A:
                                               RESTURE CONTENTS OF D REGISTER
0302
       79
                      MOV
                                 A . C :
                                              ORIGINAL CONTENTS OF C
                                               ; REGISTER
0303
       17
                      RAL
                                 ;
                                              LEFT SHIFT C
0304
       4F
                                 C,A;
                                              RESTURE CONTENTS OF C REGISTER
                      MUV
0305
       78
                      VOM
                                 A,B;
                                              ORIGINAL CONTENTS OF B
```

```
; REGISTER
0306
      8 F
                   ADC
                          A ;
                                        LEFT SHIFT B
                            B, A;
J3C7
     47
                   M3V
                                       RESTORE CONTENTS OF B REGISTER
3303
     C9
                   RET
                                       RETURN TO CALLER
                   RIGHT SHIFT THE B. C. D. AND E REGISTERS
                  BY THE SHIFT COUNT IN THE A REGISTER
```

•				EGISTER INDICATED BY
0000			COUNT	
0309	1E00	RSH: MVI	E • 0 •	OPERAND 4TH FROTH IS ZERO
03CB	2E08	RSHO:	MVI	L, Jlog; EACH REG IS 8 BITS OF
				;SH!FT
03CD	BD	RSH1:	CMP	L: COMPARE SHIFT COUNT TO 8
03CE	FADA03	JM	kSH2;	IF REQ SHIFT LESS THAN 8
03D1	5 A	MÜV	E,U;	UPERAND 4TH FRACTION
0302	51	VOM	0,0;	OPERAND 3RD FRACTION
0303	48	VOM	С, В;	OPERAND 2ND FRACTION
0304	0600	MVI	8,0;	OPERAND IST FRACTION IS ZERO
J3D6	95	SUB	L;;	REDUCE SHIFT COUNT BY 1 REG
03D 7	020003	JHZ	RSH1;	LE MORE SHIFTS REQUIRED
		; SHIFT	GPERAND RIGHT	BY - SHIFT COUNT-
		; BITS.		
03 C A	Α7	RSH2:	ANA	A; SET CONTROL BITS
030 8	C 8	RZ	;	RETURN IF SHIFT IS COMPLETE
0300	óF	VOM	L,A;	SHIFT COUNT
0300	A 7	RSH3:	ANA	A; CLEAR CARRY BIT
03DE	18	VGM	А,В;	OPERAND 1ST FRACTION

03DF	1F	RAR	;	RIGHT SHIFT OP 1ST FROTN
03E0	47	VOM	В , А;	OPERAND 1ST FRACTION
03E1	79	VOM	A,C;	OPERAND 2ND FRACTION
03E2	1F	RAR	;	RIGHT SHIFT OP 2ND FRACTION
03E3	4F	MOV	C , A ;	UPERAND 2ND FRACTION
03E4	7 A	VOM	A,D;	UPERAND 3RD FRACTION
03E5	1 F	RAR	•	RIGHT SHIFT OP 3RD FRACTION
J3E6	57	MOV	D,A;	OPERAND 3RD FRACTION
03E7	7B	VOM	A, E;	OPERAND 4TH FRACTION
03E8	1 F	RAR	;	RIGHT SHIFT OP 4TH FRACTION
J3E9	5F	VOM	E,A;	OPERAND 4TH FRACTION
03EA	2 0	DCR	L;	DECREMENT SHIFT COUNT
93EB	C2DD03	J!1Z	RSH3;	IF MORE SHIFTS REQUIRED
J3EE	C 9	RE T		
			ENT THE B,C,	D, AND E REGISTERS,
03EF	20	COMP:	DCR	L; TO ADDR ACCUM SIGN
03F0	7 E	VOM	A , M ;	ACCUMUALATOR SIGN
03F1	EE80	XRI	200Q;	CHANGE SIGN
03F3	77	VUM	M , A ;	ACCUMULATOR SIGN
03F4	AF	COMP1:	XRA	A; ZEKU
03F5	6F	VOM	L,A;	ZERO
03F6	93	SUB	E;	COMPLIMENT 4TH FRACTION
03F7	5F	MOV	E,A;	4TH FRACTION
J3F8	7 0	MOV	A, L.;	ZERO
03F9	9A	\$83	Ù;	COMPLIMENT 3RD FRACTION
03FA	57	VOM	D, A;	3RD FRACTION
03FB	7 Đ	VCM	A,L;	ZERO
03FC	99	SBB	C ;	COMPLIMENT 2ND FROTN
03FD	4F	MOV	C , A ;	2ND FRACTION
03FE	7 0	MOV	A , L ;	ZERO
03FF	93	SBB	B;	COMPLIMENT 1ST FRCTN

0400	47	ΜÜV	B,A;	1ST FRACTION
0401	C 9	RET	;	RETURN TO CALLER
		; NORMALIZ	ZED THE REGIS	TERS.
3402	2E2)	NORM:MVI	L,040Q;	MAX NORMALIZING SHIFT
U404	7 8	NORM1:	MOV	A,B; 1ST FRACTION
0405	Α7	ANA	Α	; SET CONTROL BITS
04 06	C 22204	JNZ	NOEM3;	IF 1ST FRACTION NENZERO
0409	41	MOV	B,C;	1ST FRACTION
J40A	4 A	VGM	C, D;	
040B	53	MOV	D,ĉ;	3RD FRACTION
040C	5F	· MOV	F,A;	ZERO 4TH FRACTION
3400	7 ט	VOM	A, L;	NURMALIZING SHIFT COUNT
040E	8060	SUI	0100;	REDUCE SHIFT COUNT
0410	6F	VGM	L,A;	NORMALIZING SHIFT COUNT
0411	C20404	JAZ	NOFM1;	IF FRACTION NONZERO
0414	C 9	RET	j	IF FRACTION IS ZERO
0415	20	NORM2:	DCR	L; DECREMENT SHIFT COUNT
0416	7 B	MOV	A,E;	ORIGINAL CONTENTS OF E
0417	17	RAL	;	LEFT SHIFT E
0418	5F	VOM	E,A;	RESTORE CONTENTS OF E REGISTER
0419	7A	VŪM	Α,υ;	ORIGINAL CONTENTS OF D
041A	17	RAL	;	LEFT SHIFT D
341 B	57	VOM	D,A;	RESTORE CONTENTS OF D REGISTER
041C	79	VOM	A , C ;	ORIGINAL CONTENTS OF C
0410	17	RAL	;	LEFT SHIFT C
041E	4F	VOM	C,A;	RESTORE CONTENTS OF C REGISTER
041F	78	VOM	A,B;	ORIGINAL CONTENTS OF B

```
0420
                     ADC
       8F
                                 A:
                                              LEFT SHIFT B
0421
       47
                     MOV
                                 6 . A :
                                              RESTURE CONTENTS OF B REGISTER
0422
       F21504
                NORM3:
                                 JP
                                             NURM2: 1F NOT NORMALIZED
0425
       70
                     VOM
                                 A.L:
                                             NORMALIZING SHIFT COUNT
0426
       D620
                     SUI
                                 0400:
                                             REMOVE BIAS
0428
       2E30
                     MVI
                                 L.ACCE:
                                             TO ADDR ACCUM EXPONENT
J42A
       86
                     ADD
                                 Μ;
                                              ADJUST ACCUM EXPONENT
0428
       77
                     VEIN
                                 M.A:
                                             MEW ACCUM EXPONENT
0426
       C8
                     ΚZ
                                             RETURN IF ZERO EXP
0420
       1 F
                     RAR
                                             BORROW BIT TO SIGN
042E
       A7
                     ANA
                                 A :
                                             SET SIGN TO IND. UNDERFLOW
042F
       C9
                     RET
                                              RETURN TO CALLER
                      SUBROUTINE TO ROUND THE B.C. D REGISTERS.
0430
       2E30
                ROND:
                                 MVI
                                             L.ACCE: TO ADDR ACCUM EXPONENT
0432
       7B
                                 A,E:
                                              4TH FRACTION
                      VCIN
0433
       A 7
                     ANA
                                 Δ
                                              ; SET CONTROL BITS
0434
       5E
                     MOV
                                 E,M;
                                              ACCUMULATOR EXPONENT
0435
       FC3F04
                     C.M
                                 RNDR:
                                             CALL 2ND LEVEL ROUNDER
0438
       0.8
                     RC
                                 ;
                                              IF OVERFLOW
0439
       78
                     VCM
                                 A . 8:
                                             1ST FRACTION
043A
       20
                     INR
                                 L;
                                             TO ADDR ACCUM SIGN
043B
       A٤
                     XRA
                                 Μ:
                                             ACCUM SIGN AND 1ST FRCTN
0430
       C33F02
                     JMP
                                 STR1: RETURNG THRU STORE SUBR.
                     SECOND LEVEL ROUNDING SUBROUTINE.
```

043F 14 RNDR: INR D; ROUND 3RD FRACTION 0440 CO RNZ; RETURN IF NO CARRY

```
0441
       00
                      INR
                                  С;
                                               CARRY TO 2ND FRACTION
0442
                      RNZ
       CO
                                               RETURN IF NO CARRY
                      INR
J443
                                  8;
                                               CARRY TO 1ST FRACTION
       04
0444
       CO
                      RNZ
                                               RETURN IF NO CARRY
0445
                      VCM
       78
                                  A, E;
                                               ACCUMULATOR EXPONENT
0446
       C601
                      LGA
                                  1;
                                               INCREMENT ACCUM EXPONENT
0448
       5F
                      VOM
                                  E,A;
                                              NEW ACCUMULATOR EXPONENT
0449
       0680
                      MVI
                                  B,2000:
                                              NEW IST FRACTION
0448
                      VOM:
                                  M,A;
       77
                                               NEW ACCUM EXPONENT
044C
       C9
                      RET
                                               RETURN TO ROND SUBPOUTINE
                      FIXED POINT MULTIPLY SUBROUTINE.
044D
       2509
                 MULX:
                                  MVI
                                               L, MULPI; TO ADDR IST
                                               : MULTIPLICAND
044F
       77
                      VOM
                                  M.A:
                                               1ST MULTIPLICAND
0450
       2F05
                      MVI
                                  L, MULP2;
                                               TO ADDR 2ND MULTIPLICAND
J452
       72
                      VCM
                                  M.D:
                                               2ND MULTIPLICAND
0453
       2E01
                      IVM
                                  L, MULP3;
                                               TO ADDR 3RD MULTIPLICAND
0455
       73
                      VOM
                                  M.E:
                                               3RD MULTIPLICAND
J456
       ΑF
                      XRA
                                  A ;
                                              CLEAR 6TH PRODUCT
0457
       5F
                      VÜM
                                  F,A;
                                              CLEAR 5TH PRODUCT
0458
       57
                      MOV
                                  D,A;
                                              CLEAR 4TH PRODUCT
                      MULTIPLY BY EACH ACCUMULATOR
                      FRACTION IN TURN.
3459
       2E34
                      MVI
                                  L, ACC3;
                                               TO ADDRESS 3RD FRCTN
045B
       CD6804
                      CALL
                                  MULX2:
                                               MULTIPLY BY ACCUM 3RD FRCTN
045E
       2E33
                      MVI
                                 L, ACC2;
                                              TO ADDRESS 2ND FRCTN
0460
       CU6504
                      CALL
                                  MULXI;
                                            MULTIPLY BY ACCUM 2ND FRCTN
0463
       2E32
                      MVI
                                 L.ACC1:
                                           TO ADDRESS 1ST FROTN
                      MULTILPY BY ONE ACCUMULATOR WORD.
0465
                 MUL X1:
       7A
                                 MGV
                                               A,D; 5TH PARTIAL PRODUCT
0466
       59
                      VOM
                                 E, C:
                                                4TH PARTIAL PRODUCT
0467
       50
                      MOV
                                                3RD PARTIAL PRODUCT
                                 D, B;
```

```
0468
                MULX2:
                                VOM
       46
                                               B,M; MULTIPLIER
0469
       6F
                      MOV
                                L.A;
                                               5TH PARTIAL PRODUCT
J46A
       AF
                     XRA
                                A ;
                                               ZERO
0468
                     MOV
       4F
                                C,A;
                                               2ND PARTIAL PRODUCT
046C
       90
                      SUB
                                B:
                                               SET CAPRY BIT FOR FXIT FLAG
3460
       DA 7904
                      JC
                                MULX3:
                                               IF MULTIPLIER IS NOT ZERO
0470
       4 A
                     MOV
                                               2ND PARTIAL PRODUCT
                                C.D:
0471
       53
                     VUM
                                D,E;
                                               3RD PARTIAL PRODUCT
0472
       C 9
                     RET
                                               MULT BY ZEPO COMPLETE
                     COMPLETE ADDITION OF MULTIPLICAND
J473
       4F
                MULX5:
                                MOV
                                              C.A: 2ND PARTIAL PRODUCT
0474
       D27904
                     JINC
                                MULX3:
                                              IF NO CARRY TO 1ST PRODUCT
0477
       04
                     INR
                                ₿;
                                              ADD CARRY TO 1ST PRODUCT
·)478
       Α7
                     ANA
                                A :
                                              CLEAR CARRY BIT
                     LUOP FOR EACH BIT OF MULTIPLIER WORD.
0479
       70
                MULX3:
                                MOV
                                              A,L; 5TH PART PRODUCT, EXIT
                                                  ; FLAG
```

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 12

U47A	8F	ADC	A ;	SHIFT EXIT FLAG OUT IF DONE
047B	C 8	RZ	;	EXIT IF MULTIPLICATION DONE
347C	6F	VCM	L,A;	5TH PART PRODUCT, EXIT FLAG
04 7 D	7 B	VOM	A,E;	4TH PARTIAL PRODUCT
047E	17	RAL	i	SHIFT 4TH PARTILA PRODUCT
047F	5F	MUV	E,A;	4TH PARTIAL PRODUCT
0480	7.A	VGM	A,D;	3RD PARTIAL PRODUCT
0481	17	ŔAL	;	SHIFT 3RD PARTIAL PRODUCT
0482	57	VCM	U,A;	3 KO PARTIAL PRODUCT

```
0483
                                 A . C :
                                              2ND PARTIAL PRODUCT
       79
                      MOV
                      RAL
0484
       17
                                              SHIFT 2ND PARTIAL PRODUCT
0485
       4F
                      VOM
                                C,A;
                                              2ND PARTIAL PRODUCT
                                 A, B;
0486
       78
                      VGM
                                              1ST PARTIAL PRODUC AND MULTIPLIFR
                      KAL
0487
       17
                                              SHIFT IST PROOD AND MULTIPLIER
       47
                      VCM
0488
                                B , A;
                                              IST PART PROD AND MULTIPLIER
1489
       D27904
                     JNC
                               MULX3;
                                              IF NO ADDITION REQUIRED
                      ADD THE MULTIPLICAND TO THE PRODUCT
                     IF THE MULTIPLIER BIT IS ONE.
348C
       78
                     VOM
                                 A.E.
                                               4TH PARTIAL PRODUCT
0480
       C30001
                     JMP
                                 MULX4;
                                              TO RAM CODE
                     FIXED POINT DIVIDE SUBROUTINE.
                     SUBTRACT DIVISOR FROM ACCUMULATOR TO
                     OBTAIN IST REMAINDER.
       2E34
                                           L.ACC3: TO ADDRESS ACCUM 3RD
0490
                 OIVX:
                                 MVI
J492
       7Ē
                     MOV
                                A,M;
                                           ACCUMULATOR 3RD FRACTION
0493
       93
                     SUB
                                Ē:
                                           DIVISOR 3ED FRACTION
0494
       73
                     VOM
                                M.F:
                                           REMAINDER 3RD FRACTION
0495
       20
                     DCR
                                 L:
                                           TO ADDRESS ACCUM 2ND FRACTION
0496
       7 E
                     VUM
                                 A . M :
                                           ACCUMULATOR 2ND FRACTION
1491
       9A
                     588
                                υ;
                                           DIVISOR 2ND FRACTION
0493
       77
                     MOV
                                 M.A:
                                           REMAINDER 2ND FRACTION
0499
                     DC R
       20
                                L:
                                           TO ADDRESS ACCUM 1ST FROTN
049A
       7Ē
                     40V
                                A . . . .
                                           ACCUMULATOR 1ST FRCTN
0493
                     SBB
       99
                                С;
                                           DIVISOR IST FRACTION
J49C
       71
                     10V
                                M.A:
                                           REMAINDER IST FRACTION
                     HALVE THE DIVISOR AND STORE FOR
                     ADDITION OR SUBTRACTION
0490
       74
                     MOV
                                 A,C;
                                           DIVISOR 1ST FRACTION
049E
                     RAL
       17
                                           SET CARRY BIT
049F
                     VGM
                                 A,C;
       79
                                           DIVISOR 1ST FRACTION
       1F
U4A0
                     RAR
                                           HALF OF DIVISOR 1ST FRACTION
```

		;	+ 2000 TO	CORRECT QUOTIENT
04A1	2E19	MVI	L,OP1S;	TO ADDRESS IST SUBTRACT
				; DIVISOR
04A3	77	MOV	Μ, Α;	IST SUBTRACT DIVISOR
J4A4	2E27	MVI	L,OPIA;	TO ADDRESS IST ADD DIVISOR
04A6	77	VOM	M,A;	IST ADD DIVISOR
04A7	7 A	MOV	A, D;	DIVISOR 2ND FRACTION
34A8	1 F	RAR	;	HALF OF DIVISOR 2ND FRACTION
04A9	2515	MVI	L,OP2S;	TO ADDRESS 2ND SUBTRACT
				;DIVISOR

8080 MACRO ASSEMBLER, VER 2.4 ERRURS = 0 PAGE 13

77	VOM	M, A;	2ND SUBTRACT DIVISOR
2523	I VM	L,OP2A;	TO ADDRESS 2ND ADD DIVISOR
77	VOM	M, A;	2ND 4DD DIVISOR
7 B	MOV	A, E;	DIVISOR 3RD FRACTION
1 F	RAR	;	HALF OF DIVISOR 3RD FRACTION
2E11	MVI	L,OP3S;	TO ADDRESS 3PD SUBTRACT
			; DIVISOR
7.7	VCM	Μ,Δ;	3RD SUBTRACT DIVISOR
281F	IVM	L,OP3A;	TO ADDRESS 3PD ADD DIVISOR
77	MOV	M, A;	3RD AOD DIVISOR
0600	ΜVΙ	В,О;	INIT QUOTIENT IST FROTN
7 3	VOM	A, B;	DIVISOR FOURTH FRACTION IS ; ZERO
1F	RAR	;	LOW BIT OF DIVISOR 3RD FRACTION
2E0E	MVI	LICIPAS;	TO ADDRESS 4TH SUBTRACT
	2E23 77 78 1F 2E11 77 2E1F 77 0600 78	2E23 MVI 77 MOV 78 MOV 1F RAR 2E11 MVI 77 MOV 2E1F MVI 77 MOV 0600 MVI 78 MOV	2E23 MVI L, DP2A; 77 MOV M, A; 78 MOV A, E; 1F RAR; 2E11 MVI L, OP3S; 77 MOV M, A; 2E1F MVI L, OP3A; 77 MOV M, A; 0600 MVI B, O; 78 MOV A, B;

```
: DIVISOR
       77
                     VOM
04BD
                                M.A:
                                              4TH SUBTRACT DIVISOR
U4BE
       2E1C
                     AV I
                                L. OP4A:
                                              TO ADDRESS 4TH ADD DIVISOR
0400
       77
                     VOM
                                              4TH ADD DIVISOR
                                M.A:
       2E2A
0401
                     IVM
                                L, OP4X;
                                              TO ADDRESS 4TH ADD DISIOR
0403
       77
                     VOM
                                M.A.
                                              4TH ADD DIVISOR
                     LOAD 1ST REMAINDER, CHECK SIGN
0404
       2E32
                     I VM
                                                TO ADDR REMAINDER IST FROTN
                                L,ACC1;
       7 E
                     MOV
0406
                                A . M:
                                                 REMAINDER 1ST FRACTION
0407
       2C
                     INR
                                L;
                                                 TO ADDR REMAINDER 2ND FRCTN
0408
                     MOV
       56
                                                 REMAINDER 2ND FRACTION
                                D.M;
       20
J4C9
                     INR
                                L:
                                                 TO ADDR REMAINDER 3RD FRCTN
       58
04CA
                                E,M;
                     MOV
                                                 REMAINDER 3RD FRACTION
04CB
       A7
                     ANA
                                A :
                                                 SET CONTROL BITS
U4CC
       FAF604
                     JM
                                                 IF REMAINDER IS NEGATIVE
                                DIVX4;
                      ADJUST EXPONENT, POSITION REMAINDER
                     AND INITIALIZE THE QUOTIENT,
U4CF
       2E 30
                     AV I
                                L.ACCE:
                                                 TO ADDRESS ACCUMULATOR
                                                 : EXPONENT
04D1
       4E
                     MOV
                                C,M;
                                                 QUOTIENT EXPONENT
0402
       OC.
                     INE
                                C;
                                                 INCREMENT QUOTIENT EXPONENT
0403
       63
                     RZ
                                                 RETURN IF OVERFLOW
       71
J4D4
                     VUN
                                M,C;
                                                 QUUTIENT EXPONENT
0405
       613
                     VCM
                                L,E;
                                                 REMAINDER 3PD FRACTION
0406
       62
                     VGM
                                H, D;
                                                 REMAINDER 2ND FRACTION
0407
       5£
                     NUV
                                E,A;
                                                 REMAINDER IST FRACTION
0408
       1601
                     !4V I
                                D, 1;
                                                 INITIALIZE QUOT 3RD FRCTN
04LA
                     MOV
       48
                                C . B:
                                                 INITIALIZE QUOT 2ND FRCTN
                     SUBTRACT THE DIVISOR FROM THE REMAINDER
                     IF IT IS POSITIVE.
                 DIVXI:
J405
       ΑF
                                ASX
                                                 A; REMAINDER 4TH FROTN IS ZERO
0400
       000001
                     CALL
                                DIVX5;
                                                 CALL RAM SECTION
```

```
04DF
         07
                  DIVX2:
                                RLC
                                                : SHIFT REM 4TH FROTH TO CY
                       SHIFT THE REMAINDER LEFT ONE BIT
 04E0
         78
                       MOV
                                A.b:
                                                QUOTIENT 1ST FRACTION
8080 MACRO ASSEMBLER, VER 2.4
     ERRORS = 0 PAGE 14
 04E1
                       RAL
         17
                                                MS BIT OF QUOTIENT TO CY
 04E2
                       RC
         D8
                                                IF DIVISION COMPLETE
 04E3
        1 F
                       RAR
                                                REMAINDER 4TH FROTH TO CY
 04E4
        70
                       MOV
                                A.L:
                                                REMAINDER 3RD FRACTION
 04E5
        17
                       RAL
                                                LEFT SHIFT REM 3RD FRACTION
        6F
 0486
                                1. A:
                       MOV
                                                REMAINDER 3RD FRACTION
 04 E 7
        70
                       VOM
                                A,H;
                                                REMAINDER 2ND FRACTION
 04E8
        17
                       RAL
                                ;
                                                LEFT SHIFT REM 2ND FROTN
 04F9
                       VEM
         67
                                H.A:
                                                REMAINDER 2ND FRACTION
 04EA
         CDBC03
                       CALL
                               LSH:
                                                CALL LEFT SHIFT SUBROUTINE
                       BRANCH IF SUBTRACTION IS REQUIRED
 04ED
         7 A
                       VCM
                                                QUOTIENT 3RD FRACTION
                                A.D:
        OF
 04EE
                       RRC
                                                REM SIGN INDIC TO CARRY BIT
 04EF
        DADB04
                       JC
                                DIVX1:
                                          TO SUB DIVISOR IF REM POS
                       ADD THE DIVISOR IF THE REMAINDER
                       IS NEGATIVE.
 04F2
         70
                  DIVX3:
                                MOV
                                              A.L: REMAINDER 3RD FRACTION
 04F3
        C31003
                                DIVX6;
                       JMP
                                               TO RAM CODE
                      POSITION THE REMAINDER AND INITIALIZE
                       THE QUOTIENT.
 J4F6
         6в
                  DIVX4:
                                MCV
                                               L.F. REMAINDER 3RD FRACTION
 04F7
        62
                      VOM
                                H.D:
                                               REMAINDER 2ND FRACTION
 04F8
         5F
                      MOV
                                E,A;
                                               REMAINDER IST FRACTION
```

```
04F9
                              0.6:
       50
                    MOV
                                              INITIALIZE QUOT 3RD FRCTN
04FA
       48
                    VOM
                              C.B:
                                              INITIALIZE QUOT 2ND FRCIN
J4FB
       C3F204
                    JMP
                              DIVX3:
                                              ADD DIVISOR IF REM IS NEG
04FE
       00
                    DB
                               0:
                                              CHECKSUM WORD
                : SCR EQU
                                HCUL
                : SCRB
                                 EUU
                                              SCR SHR 8 AND DEFH
                                             BANK NUMBER OF SCRATCH PAD
                : ARITH
                                 FQU
                                             200H: BASE ADDRESS OF
                                              :ARITHEMATIC PACKAGE
                      8080 BINARY FLOATING POINT SYSTEM
                      FORMAT CONVERSION PACKAGE
                      PROGRAMMER CAL UHME
                      DATE 26 DECEMBER 1973
                      ARITH IS THE BEGINNING ADDRESS OF THE
                      ARITHEMATIC AND UTILITY PACKAGE OF THE FLOATING
                      POINT SYSTEM
                      SCR IS THE BEGINNING ADDRESS OF THE
                      RAM USED AS SCRATCHPAD FOR THE SYSTEM.
                      RAM LOCATION USED BY THE BIMARY
                      FLOATING POINT SYSTEM.
                :OVER
                                FOU
                                        560; OVERFLOW FLAG
                :ACCE
                                EQU
                                        60Q: ACCUMULATUR EXPONENT
                :ACCS
                                EUU
                                        ACCE+1; ACCUMULATOR SIGN
                :ACC1
                                        ACCS+1: ACCUMULATOR 1ST FRCTN
                                EQU
0033
                ACC2
                                EQU
                                        ACC1+1; SCCUMULATOR 2ND FRICH
0034
                ACC3
                                EQU
                                        ACC2+1: ACCUMULATOR 3RD FRCTN
                :SF
                                   ACC3+1: SUBTRACTION FLAG
                         EQU
0036
                ADRL
                              EQU
                                      SF+1: CHARACTER STRING WORD
```

```
0037
                ADRH
                              EQU
                                      ADPL+1: TEMPORARY STORAGE
0038
                TMP1
                              EQU
                                      ADRH+1; TEMPORARY STORAGE
0039
                TMP2
                              EQU
                                      TMP1+1: TEMPORARY STORAGE
003A
                TMP3
                              EQU
                                      TMP2+1; VALUE EXPONENT
003B
                VALE
                              EúU
                                      TMP3+1: VALUE EXPONENT
303C
                VALI
                              FQU
                                      VALE+1; VALUE 1ST FRACTION
0030
                VAL 2
                              EQU
                                      VALI+1: VALUE 2ND FRACTION
003E
                VAL3
                              FOU
                                      VAL2+1:
                                               VALUE 3RD FRACTION
003F
                TMP4
                              EQU
                                      VAL3+1: TEMPOKARY STORAGE
                    ADDRESS IN THE ARITHMETIC AND UTILITY
                    PACKAGE REFERENCE BY THE FORMAT CUNVERSION
                    PACKAGE.
                : STR
                        EQU
                                 AR ITH+ 760
                : ZRO
                        EQU
                                 AKITH+1060
                : ABS
                        EQU
                                 ARITH+1200
                : TST
                        EQU
                                 ARITH+1310
                : LOD
                        EQU
                                 ARITH+1500
                ; MUL
                       EOU
                                 ARITH+2140
                ; DIV
                        EQU
                                 ARITH+2640
                ; AD
                        EQU
                                 Ak1TH+3270
                : ADDIO
                                 EUU
                                         421TH+553Q
                ; LSH
                        EuU
                               ARITH+5740
                : RSH
                                 ARTTH+7110
                       EQU
                : COMP1
                                 EQU
                                          ARITH+7640
                        SUBROUTINE TO CONVERT FROM FIXED
                        POINT IG FLOATING POINT FORMAT.
                        ARBITRARY BOD CHARACTER CODES, LOFFSET 30H
                                           ; FROM ASULI):
                            SPACE - OFOH
                                            DECIMAL POINT - OFEH
                            PLUS - OFBH
                                            LETTER &
                                                           - 015H
```

```
MINUS - OFDH
04FF
                 FLT: MOV
       6B
                                 L.E:
                                              INPUT EXPONENT
0500
                      MOV
                                 E,D;
       5A
                                              4TH INPUT
0501
       51
                      MOV
                                 U,C;
                                              3RD INPUT
0502
       48
                      VOM
                                 C. 8;
                                              2ND INPUT FRACTION
0503
       47
                      МΰУ
                                 B,A;
                                              1ST INPUT FRACTION
0504
       70
                      VGM
                                 A.L:
                                              INPUT EXPONENT
0505
       E680
                      XRI
                                 2000;
                                              APPLY EXPONENT BIAS
0507
       2601
                      MVI
                                 H.SCRB:
                                              THE ADDRESS SCRATCH BANK
0509
       2E30
                      I VM
                                 L, ACCE;
                                              TO ADDRESS ACCUM EXPONENT
0508
       77
                      MOV
                                 M.A:
                                              ACCUMULATOR EXPONENT
0500
       20
                      INR
                                 L:
                                              TO ADDRESS ACCUM SIGN
0500
       3680
                      MVI
                                 M, 2000:
                                              SET ACCUM SIGN POSITIVE
050F
       20
                      INR
                                 L;
                                              TO ADDR ACCUM 1ST FRCTN
0510
                                 A. 5:
       78
                      MűV
                                              IST INPUT FRACTION
0511
       A 7
                      ANA
                                 Α
                                              : SET SIGN BIT
0512
       17
                      RAL
                                              INPUT SIGN TO CARRY
0513
       C36B03
                      JMP
                                 ADDIO:
                                              COMPLETE CONVERSION
                      SUBROUTINE TO CONVER FROM FLOATING
                      POINT TO FIXED POINT FURMAT.
0516
       2601
                 FIX: MVI
                                 H.SCRB:
                                              TO ADDRESS SCRATCH BANK
```

3518	2E30	MVI	L,ACCE;	TO ADDR ACCUM EXPONENT
051A	7E	MOV	A , M;	ACCUMULATOR EXPONENT
051B	Α7	ANA	Α	; SET CONTROL BITS
051C	CA4405	JZ	FIX1;	IF ACCUMULATOR IS ZERO
051F	78	MOV	A,E;	INPUT EXPONENT

```
0520
       C67F
                      ADI
                                 1770:
                                              APPLY BIAS - 1
3522
       95
                      SUB
                                 M:
                                              SHIFT COUNT -1
0523
       08
                      RC
                                              RETURN IF ACCUM TOO LARGE
0524
       FE1F
                      CPI
                                 0370:
                                              COMPARE TO LARGE SHIFT
J526
       024405
                      JNC
                                 FIX1;
                                              IF ACCUMULATOR TOO SMALL
0529
       C601
                      ADI
                                 1;
                                              SHIFT COUNT
J52B
       2532
                      IVM
                                 L.ACC1:
                                              TO AUDR ACCUM 1ST FROTN
0520
       46
                      VCM
                                 B.M:
                                              ; ACCUMULATOR IST FRACTION
       20
0525
                      INR
                                 L:
                                              TO ADDR ACCUM 2ND FRCTN
052F
       4E
                      MOV
                                 C.M;
                                              ACCUMULATOR 2ND FRCTN
0530
       20
                      INR
                                 L:
                                              TO ADDR ACCUM 3RD FRCTN
3531
       56
                      VON
                                D.M:
                                              ACCUMULATUR 3RD FRACTION
0532
       CDC 903
                      CALL
                                RSH:
                                              PUSITION THE FRACTION
0535
       2E31
                      I VN
                                L,ACCS:
                                              TO ADDR ACCUM SIGN
0537
       7E
                      VC.M
                                A.M:
                                              ACCUMULATOR SIGN
0538
       A 7
                      ANA
                                              ; SET CONTROL BITS
                                A
0539
       F4F403
                      CP
                                COMP1:
                                              CUMPEMENT FROTN IF NEG
0530
       3E01
                      MVI
                                A,1;
                                              NON-ZERO
053E
       80
                      ORA
                                8;
                                              SET CONTROL BITS FOR EXIT
053F
       73
                      MOV
                                A, B;
                                              IST RESULT
0540
       41
                      VUM
                                B,C;
                                              2ND RESULT
0541
       41
                      VOM
                                C,D;
                                              3RD RESULT
0542
       53
                      VCM
                                D.E:
                                              4TH RESULT
0543
       C9
                      RET
                                              RETURN 19 CALLER
0544
       AF
                 FIX1:
                                XRA
                                              A: ZERU
3545
       47
                      MOV
                                B.A:
                                              ZERO
0546
       4F
                      VOM
                                C,A;
                                              ZERO
3547
       57
                      VOM
                                D,A;
                                              ZERO
0548
       C 9
                      RET
                                              RETURN TO CALLER
                                ;
0549
       O0
                      DВ
                                9:
                                              CHECKSUM WORD
                       INP SUBROUTINE ENTRY POINT
                 ;
                       INITIALIZE TEMPORARY STORAGE
```

055A FEFB CPI 373Q; COMPARE CHAR TO PLUS 055C CA6705 JZ INPL; IF PLUS SIGN COMPARE TO MINUS 055F FEFD CPI 375Q; COMPARE TO MINUS 0561 C26D05 JNZ INP2; IF NOT MINUS SIGN 0564 2E3A MVI L, TMP3; TO ADDR VALUE SIGN	054A 054B 054E 054F 0551 0553 0554 0555	5E COD406 2C 3683 2E30 72 7B FEF0 CA6705	INP: MOV CALL INR MVI MVI MOV MOV CPI	L; M,200Q; L,ACCE; M,U; A,E; 360Q;	SET	FIRST CHARACTER OF STRING CHAR ADDR, PNT FLG, EXP TO ADDRESS VALUE SIGN SET VALUE SIGN POSITIVE TO ADDR ACCUM EXPONENT SET ACCUM TO ZERO FIRST CHARACTER COMPARE TO SPACE LE SPACE CHARACTER
0554 78 MOV A,E; FIRST CHARACTER 0555 FEFO CPI 360Q; COMPARE TO SPACE 0557 CA6705 JZ INP1; IF SPACE CHARACTER 055A FEFB CPI 373Q; COMPARE CHAR TO PLUS 055C CA6705 JZ INP1; IF PLUS SIGN 055F FEFO CPI 375Q; COMPARE TO MINUS 0561 C26D05 JNZ INP2; IF NOT MINUS SIGN				•		
0555 FEFO CPI 360Q; COMPARE TO SPACE 0557 CA6705 JZ INP1; IF SPACE CHAPACTER 055A FEFB CPI 373Q; COMPARE CHAR TO PLUS 055C CA6705 JZ INP1; IF PLUS SIGN 055F FEFO CPI 375Q; COMPARE TO MINUS 0561 C26D05 JNZ INP2; IF NOT MINUS SIGN		. –				SET ACCUM TO ZERO
D557 CA6705 JZ INP1; IF SPACE CHAPACTER D55A FEFB CPI 373Q; COMPARE CHAR TO PLUS D55C CA6705 JZ INP1; IF PLUS SIGN D55F FEFD CPI 375Q; COMPARE TO MINUS D561 C26D05 JNZ INP2; IF NOT MINUS SIGN	0554	7 B	VCM	А,Е;		FIRST CHARACTER
055A FEFB CPI 373Q; COMPARE CHAR TO PLUS 055C CA6705 JZ INPL; IF PLUS SIGN COMPARE TO MINUS 055F FEFD CPI 375Q; COMPARE TO MINUS 0561 C26D05 JNZ INP2; IF NOT MINUS SIGN	0555	FEFO	CPI	360Q;		COMPARE TO SPACE
055C CA6705 JZ INPL; IF PLUS SIGN 055F FEFD CPI 375Q; COMPARE TO MINUS 0561 C26D05 JNZ INP2; IF NOT MINUS SIGN) 557	CA6705	JZ	INPl;		IF SPACE CHAPACTER
055F FEFO CPI 375Q; COMPARE TO MINUS 0561 C26D05 UNZ INP2; IF NOT MINUS SIGN	055A	FEFB	CPI	3730;		COMPARE CHAR TO PLUS
0561 C26D05 JNZ INP2; IF NOT MINUS SIGN	0550	CA6705	JZ	INP L;		IF PLUS SIGN
	355F	FEFO	CPI	375Q;		COMPARE TO MINUS
0564 2E3A MVI L, TMP3; TO ADDR VALUE SIGN	0561	C26D05	JNZ	INP2;		IF NOT MINUS SIGN
	0564	2E3A	MVI	L,TMP3;		TO ADDR VALUE SIGN

8030 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 17

0565	7 2	VUM	M,D;	SET VALUE OF SIGN NEGATIVE
		: ANALYZE	NEXT CHARACT	ER IN STRING
0567	CDE 106	INP1:	CALL	CHAD; CALL CHAR ADDR SERTN
J56A	7 E	MOV	A, M;	NEXT CHARACTER
0568	2601	IVM	H,SCRB;	TO ADDRESS SCRATCH BANK
056D	0600	INP2:	MVI	B,O; DIGIT 2ND WD OF DEC EXP
056F	FEFE	CPI	376N;	COMPARE TO DECIMAL POINT
0571	CAAA05	JZ	INP3;	IF DECIMAL POINT
0574	FE15	CPI	0250;	COMPARE TO EXPONENT SIGN
0576	CAB405	JZ	INP4;	IF EXPONENT SIGN
0579	FEOA	CPI	120;	SET CARRY IF CHAR IS DIGIT
057B	0255 35	JNC	INP8;	IF CHAR IS NOT A DIGIT

```
05 7E
       2E3F
                      MVI
                               L.TMP4:
                                             TO ADDR CURRENT DIGIT
                                             SAVE CURRENT DIGIT
0580
       77
                      VOM
                               M.A:
0581
       21EC06
                      LXI
                               H.FTEN:
                                             TO ADDR FLOATING TEN
0584
       CD8C02
                      CALL
                                MUL:
                                             MULTIPLY BY TEN
0587
       2E3B
                      MV I
                               L.VALE:
                                             TO ADDR VALUE
0589
       CD3E02
                      CALL
                               STR:
                                             STORE OLD VALUE TIMES TEN
0580
       20
                                             TO ADDE CURRENT DIGIT
                      INR
                               L;
J58D
       7 E
                      VUM
                                A . M :
                                             CURRENT DIGIT
058E
                      MVI
       0600
                                B,0;
                                             CLEAR 2ND WORD OF DIGIT
0590
       48
                      VCM
                               C . B;
                                             CLEAR 3FD WORD OF DIGIT
0591
       5)
                      MOV
                                D . B:
                                             CLEAR 4TH WORD OF DIGIT
0592
       1508
                      MVI
                                E.0100:
                                             INDICATE DIGIT IS IN REG A
0594
       CDFF04
                      CALL
                               FLT:
                                             CONVERT DIGIT TO FLOATING PAT
0597
       2E3B
                      MVI
                               L, VALE;
                                             TO ADDR VALUE
0599
       CDD702
                      CALL
                                AD:
                                             ADD OLD VALUE TIMES TEN
0590
       2E39
                      4VI
                               L.TMP2:
                                             TO ADDR DEC PNT FLAG
059E
       7E
                      VOK
                                             DECIMAL POINT FLAG
                                A . M:
059F
       A7
                      ANA
                                              : SET CONTROL BITS
                                A
05A0
       CA6705
                      JZ
                                INP1:
                                             IF NO DEC PNT ENCOUNTERED
05A3
       20
                      DCR
                               L;
                                             TO ADDR INPUT EXPONENT
0544
                      MOV
                                B.M:
                                             INPUT EXPONENT
       46
05A5
                      DCR
                               в:
       05
                                             DECREMENT INPU EXPONENT
05A6
       70
                      MGV
                               M,B;
                                             UPDATE INPUT EXPONENT
05A7
       C36705
                      JMP
                               INP1;
                                             TO GET NEXT CHARACTER
       2E39
                 INP3:
                               MVI
OSAA
                                             L.TMP2: TU ADDR DEC PNT FLAG
J5AC
       AΕ
                               Μ:
                      XRA
                                             ZERO IF FLAG SET
05AD
       77
                      MUV
                               M,A;
                                             SET DEC PNT FLAG
05AE
       C26705
                      JNZ
                               INP1:
                                             IF FLAG NOT ALREADY SET
0581
       C3E505
                     JMP
                               INP8:
                                             IF 2ND DEC PNT
                       PROCESS DECIMAL EXPONENT
0584
       CDE106
                 INP4:
                               CALL
                                             CHAD: CALL CHAR ADDR SBRIN
```

05b7	7E	MOV	A , M ;	NEXT CHARACTER OF STRING
0588	47	MOV	В, А;	CURRENT CHARACTER
0589	N6FD	SUI	375Q;	COMPARE TO MINUS CHAR
0588	5F	VOM	Ε,Α;	CHAR = MINUS SIGN
05BC	CAC505	JZ	INP5;	IF MINUS SIGN
05BF	C602	ADI	2;	COMPARE TO PLUS CHAR
0501	7 8	VOM	A,B;	CURRENT CHARACTER

0502	C2C705	JNZ	INP6;	IF NOT PLUS SIGN
0505	20 .	INP5:	INR	L; TO AUDRESS NEXT CHAR
0506	7 E `	VOE:	A,M;	NEXT CHARACTER OF STRING
J5C7	3633	INP6:	MVI	B,O; POSSIBLE DEC EXPONENT
0509	FEOA	CPI	120;	SET CARRY IF CHAR IS DIGIT
05 CB	D2E505	JNC	INP8;	IF CHAR IS NOT A DIGIT
05CE	47	VGM	В,А;	DEC EXP EQUAL DIGIT
05CF	2C	INR	L;	TO ADDRESS NEXT CHAR
3500	7 6	VGM	A , r4;	NEXT CHARACTER OF STRING
0501	FEOA	CPI	120;	SET CARRY IS NOT A DIGIT
0503	D2DE05	JNC	INP7;	IF CHAR IS NOT A DIGIT
		; FORM (CUMPLETE DE	CIMAL EXPONENT
0506	4F	VCM	C , A ;	LS DIGIT OF DEC EXP
0507	7ძ	VON	А, В;	MS DIGIT OF DEC EXP
05D8	8 7	ADD	Α;	2 * MS DIGIT
05D9	87	ADD	A ;	4 * MS DIGIT
05DA	80	ADD	B;	5 * MS DIGIT
05DB	87	ADD	A ;	10 * MS DIGIT

```
05DC
       81
                               C :
                      ADD
                                             10 # MS + LS DIGIT
0500
       47
                      VOM
                               B.A:
                                             DECIMAL EXPONENT
05DE
       7B
                 INP7:
                               MUV
                                             A.F: SIGN OF DEC EXPONENT
05DF
       A 7
                      ANA
                                Α
                                             : SET CONTROL BITS
35E3
       D2E505
                      JMC
                               INP8:
                                             IF SIGN PLUS
05E3
       90
                      SUB
                               B :
                                             COMPLEMENT DEC EXP
05E4
       47
                      VGM
                                B . A:
                                             DECIMAL EXPONENT
J565
       2601
                INP8:
                               MVI
                                             H, SCRB; TO ADDRESS SCRATCH BAND
05E7
       2E3A
                      IVM
                               L. TMP3:
                                             TO ADDRESS INPUT SIGN
05E9
       4 E
                                C,M;
                      MOV
                                             INPUT SIGN
U5 EA
       2E31
                      MVI
                               L.ACCS:
                                             TO ADDRESS ACCUM SIGN
05EC
       71
                               M.C:
                      MOV
                                             ACCUMULATOR SING
05ED
       78
                      MOV
                                A.B:
                                             DECIMAL EXPONENT
                       CONVERT DECIMAL EXPONENT TO BINARY.
05EE
       2E38
                 INP9:
                               MVI
                                             L. TMP1; TO ADDRESS DEC EXPONENT
05F0
       85
                               M:
                      AOO
                                             ADJUST DECIMAL EXPONENT
05F1
       CA5902
                      JZ
                               TST:
                                             YN DEC EXP IS ZERO
05F4
       77
                      MOV
                               M,A;
                                             CURRENT DECIMAL EXPONENT
05F5
       21EC06
                      LXI
                               H, FTEN;
                                             TO ADDR FLUATING TEN
05F8
       F20306
                      JP
                               INPIO:
                                             IF MULTIPLY REQUIRED
05FB
       C98402
                      CALL
                               DIV:
                                             DIVIDE BY TEN
OSFE
       3501
                      IVM
                               A, 1;
                                             TO INCREMENT DEC EXP
3633
       C3EE05
                      JMP
                               INP9:
                                             TO TEST FUR COMPLETTION
0603
       C08C02
                 INPlO:
                               CALL
                                             MUL: MULTIPLY BY TEN
0606
                      RC
       D3
                                             RETURN (F OVERFLOW
0607
       38FF
                      MVI
                               A,377Q:
                                             TO DECREMENT DEC EXP
0609
       C3EE05
                                             TO TEST FOR COMPLETION
                      JMP
                               INP9:
                      OUT SUBROUTINE ENTRY POINT.
                 i
                        SAVE CHARACTER ADDRESS AND ACCUMULATOR.
0600
                      DCR
       20
                 OU:
                               L:
                                             DECREMENT CHARACTER ADDRESS
J60D
       CDD406
                      CALL
                               SVAD:
                                             SET CHAR ADDR. DIG CNT. DEC EXP
0610
       C05902
                      CALL
                               TST;
                                             LUAD ACCUM TO REGISTERS
```

0613	2E3B	MVI	L, VALE;	TO ADDR ACCUM SAVE AREA
0615	CD3E02	CALL	STR;	CALL REG STR SUBROUTINE
		; OUTPUT	SIGN CHARACTE	:R•
0618	CDE106	CALL	CHAD;	CALL CHAR ADDR SBRTN
061 B	36F0	IVM	M,360Q;	STORE SPACE CHARACTER
051D	A7	ANA	Α	; SET CONTROL BITS
061E	CA3A06	JZ	OUT3;	IF ACCUMULATOR IS ZERO
0621	5F	VOM	Ē,A;	
0622	78	VOR	A,b;	ACCUM SIGN AND 1ST FROTN
0623	A 7	ANA	Α	; SET CONTROL BITS
0624	7 8	MGV	Δ,Ε;	
0625	F22A06	JP	OUT1;	IF ACCUM IS POSITIVE
J6 28	36FD	IVM		CHANGE SIGN TO MINUS
				1 .1 = 1. RANGE/
362A	FE 7 E	OUT1:	CPI	1750; COMPARE TO SMALL EXPONENT
062C	21EC06	DUT2:	LXI	H, FTEN; TO ADDR FLOATING TEN
062F	DA4406	JC	OUT4;	IF EXPONENT TOO SMALL
9632	FE81	CbI	201Q;	COMPARE TO LARGE EXP
0634	DA4F06	JC	OUT5;	IF EXP SMALL ENOUGH
0637	CDB402	CALL	DIV;	DIVIDE BY TEN
J63A	2501	OUT3:	MVI	H. SCRB; TO ADDRESS SCRATCH BANK
063C	2E39	MVI	L,TMP2;	TO ADDR DECIMAL EXPONENT
363E	5E	VOM	E,N;	DECIMAL EXPONENT
063F	10	INR	E ;	INCREMENT DECIMAL EXPONENT
0640	73	MOV	M, E;	DECIMAL EXPONENT

```
0641
       032006
                               OUT2:
                      JMP
                                             TO TEST FOR SCALING COMPLETE
0644
       CD8C02
                OUT4:
                               CALL
                                             MUL; MULTIPLY BY TEN
       2E39
                               L, TMP2;
0647
                      I VM
                                             TO ADDR DECIMAL EXPONENT
0649
       5E
                      MOV
                               E.M:
                                             DECIMAL EXPONENT
0644
       10
                      DCR
                               E ;
                                             DECREMENT DECIMAL EXPONENT
064B
       73
                     VCM
                               M,E:
                                             DECIMAL EXPONENT
064C
       C32A06
                      JMP
                               OUT1;
                                             TO TEST FOR SCALING COMPLETE
                       ROUND THE VALUE BY ADDING . 00000005
J64F
       C05002
                OUT5:
                               CALL
                                             ABS; SET ACCUM POSITIVE
0652
       21F006
                     LXI
                               H,RM00;
                                             TO ADDRES ROUNDER
0655
       CDD702
                      CALL
                               AD;
                                             ADD THE ROUNDER
0658
       FE81
                     CPI
                                             CHECK FOR OVERFLOW
                               201W:
065A
       D22C06
                      JNC
                               OUT2;
                                             IF EXP TOO LARGE
                      SET DIGIT COUNTS.
0650
       2E39
                      MVI
                               L.TMP2;
                                             TO ADDR DECIMAL EXPONENT
065F
       7 E
                     MOV
                               A.M:
                                             DECIMAL EXPONENT
0660
       5F
                     VCM
                               E,A;
                                             DIGITS BEFORE DECIMAL POINT
       FE 08
                     CPI
0661
                               0100:
                                             CUMPARE TO LARGE EXP
0663
       DA6806
                      JC
                               OUT6:
                                             IF EXPONENT IN RANGE
3666
       1E01
                      MV I
                               ē,l;
                                             DIGITS BEFORE DEC POINT
                OUT6:
8360
       93
                               SUB
                                             E; ADJUST DEC EXPONENT
0669
       77
                      MOV
                               M, A;
                                             DECIMAL EXPONENT
066A
       3607
                      MVI
                               A.7;
                                             TUTAL NUMBER OF DIGITS
0660
       93
                      SUB
                               F;
                                             DIGITS AFTER DECIMAL PNT
J660
       2C
                      INR
                               L;
                                             TO ADDR 2ND DIGIT CNT
```

066E 77

MOV M.A;

DIGITS AFTER DECIMAL POINT

```
066F
       10
                      DC R
                                E;
                                              DECREMENT DIGIT COUNT
0670
       78
                      VC:M
                                A.E.
                                              DIGITS BEFORE DEC PNT
                               SIGNIFICANT DIGITS.
                       OUTPUT
0671
       2E38
                 OUT7:
                                IVM
                                              L. TMP1: TO ADDR DIGIT COUNT
0673
       86
                      GCA
                                M:
                                              ADJUST DIGIT COUNT
0674
                                M.A;
       77
                      VGM
                                              NEW DIGIT COUNT
0675
       FA9206
                      J.4
                                              IF COUNT RUN OUT
                                :8100
0678
       21EC06
                      LXI
                                H. FTEN:
                                              TO ADOR FLOATING TEN
067B
       CD8C02
                      CALL
                                MUL:
                                              MULTIPLY BY TEN
067E
       1E08
                      MVI
                                E.10Q:
                                              TO PLACE DIGIT IN RE A
0630
       C01605
                      CALL
                                FIX:
                                              CONVERT TO FIXED FORMAT
0683
       CDE 106
                      CALL
                                CHAD:
                                              CALL CHAR ADDR SBRT
0686
       77
                      MOV
                                M,A:
                                              DUTPUT DECIMAL DIGIT
0687
       AF
                      XRA
                                A :
                                              CLEAR CURRENT DIGIT
       1E03
                      I VM
0688
                                E,010Q:
                                              BINARY SCALING FACTOR
068A
       CDFF04
                      CALL FLT:
                                              RESTORE VALUE MINUS DIGIT
0830
       3EFF
                      MVI
                                A.3770:
                                              TO ADJUST DIGIT CNT
368F
       C37106
                      JAP
                                DUT7;
                                              YLOOP FOR NEXT DIGIT
       2E3A
0692
                                MVI
                 OUT8:
                                              L. TMP3; TO ADDR 2ND DIGIT CNT
0694
       7 F
                      MOV
                                A , M;
                                              DIGITS AFTER DECIMAL PNT
3695
       36FF
                      MVI
                                M.377Q:
                                              SET 2ND COUNT NEG
0697
       A 7
                      AMA
                                              ; SET CONTROL BITS
                                А
0698
       FAA506
                      JM
                                CUT9:
                                              IF 2ND COUNT RAN OUT
069B
       CDE106
                      CALL
                                              CALL CHAR ADDR SBRIN
                                CHAD:
369E
       36FE
                      IVM
                                M.3760:
                                              STORE DECIMAL POINT
       2601
                      MVI
05A0
                                H.SCRB:
                                              TO ADDRESS SCRATCH BANK
0642
       C37106
                      JMP
                                OUT7;
                                              LUOP FOR NEXT DIGIT
06A5
       2D
                 0UT9:
                                DCR
                                              L: TO ADDR DECIMAL EXP
06A6
       A6
                      ANA
                                M
                                              : DECIMAL EXPONENT
06A7
       CACCO6
                      JZ
                                CUT13:
                                              IF DECIMAL EXPONENT IS ZERO
                       OUTPUT DECIMAL EXPUNENT.
                 ÷
       06FB
J6AA
                      MVI
                                              PLUS CHARACTER
                                B,373Q;
```

```
06AC
       F28406
                     JP
                               OUT LO:
                                             IF EXPONENT IS POSITIVE
OoAF
       06FD
                     MVI
                               B.3750:
                                             CHANGE SIGN TO MINUS
0681
       4F
                     MOV
                               C,A;
                                             NEGATIVE EXPONENT
0682
       ۸F
                     XR A
                               Α;
                                             ZERO.
3683
       91
                     SUB
                               C :
                                             COMPLEMENT EXPONENT
0684
       OEFF
                OUT10:
                               MVI
                                             C,377Q; EMBRYO TENS DIGIT
36B6
       57
                OUT11:
                               MOV
                                             U.A: UNITS DIGIT
0687
       OC
                      INR
                               Ĉ;
                                             INCREMENT TENS DIGIT
0688
       D60A
                     SUI
                               0120:
                                             REDUCE REMAINDER
06BA
       028606
                     JIIC
                               OUTIL:
                                             IF MORE TENS
0680
       3E15
                     MVI
                               A,025Q:
                                             EXPONENT SIGN
J6 BF
       CDE106
                OUT 12:
                               CALL
                                             CHAD: CALL CHAR ADDR SBRTN
0602
       CD 3E 02
                     CALL
                                             STORE LAST 4 CHARACTER
                               STR:
0605
       2601
                     IVM
                               H, SCRB:
                                             TO ADDRESS SCRATCH BANK
J6C7
       2E3B
                     MVI
                               L, VALE:
                                             TO ADDRESS ACCUM SAVE AREA
0609
       C36E02
                      JMP
                               LOD:
                                             RESTORE ACCUM AND EXIT
                      DUTPUT 4 SPACES IF EXPUNENT IS ZERO.
```

0600	3EFO	OUT 13:	MVI	A, 3600; SPACE CHARACTEP
JáCE	47	VCM	В,А;	SPACE CHARACTER
06CF	4F	VCM	C , A ;	SPACE CHARACTER
OGDO	57	MOV	D,A;	SPACE CHARACTER
06D1	C3BF06	JMP	GUT12;	TO STORE CHARACTERS
		; SUBRO	UTINE TO SAVE	CHARACTER STRING ADDR.
0604	7 0	SVAD:	MOV	A, L; CHARACTER STRING WORD

```
0605
       44
                     VON
                               B.H:
                                             CHARACTER STRING BANK
0606
       0500
                     IVM
                               C.0:
                                             INPUT EXP UR DIGIT
0608
       51
                     MOV
                               D, C;
                                             DEC PNT FLAG OR DEC EXP
0609
       2601
                     IVM
                               H,SCRB:
                                             TO ADDRESS SCRATCH BANK
0603
       2E36
                     MVI
                               L,ADRL:
                                             TO ADDR CHAR STRING WORD
03600
       C03E02
                     CALL
                               STR;
                                             STRUE A, B, C, AND D
36E3
      C 9
                     RET
                               ;
                                             RETURN T CALLER
                      SUBROUTINE TO OBTAIN NEXT CHARACTER ADDR.
06E1
       2601
                CHAD:
                               IVM
                                             H, SCRB; TO ADDRESS SCRATCH BANK
06E3
       2E36
                     MVI
                               L,ADRL:
                                             TO ADDR CHAR STRING WORD
06F5
       5 E
                     VOM
                               F.M:
                                             CHARACTER STRING WORD
36E6
       10
                     INR
                               E ;
                                             TO ADDR NEXT CHARACTER
06E7
       73
                     MOV
                               M,F;
                                             UPDATE CHAR STRING WORD
06F8
       20
                     INR
                               L;
                                             TO ADDR CHAR STRING BANK
OoE9
       66
                     MOV
                               H,M;
                                             CHARACTER STRING WORD
06 E A
       6B
                     VCM
                               L.E.;
                                             CHARACTER STRING WORD
06 EB
       C9
                     RET
                               ;
                                             RETURN TO CALLER
06EC
       84200000 FTEN:
                                9G
                                             2040,0400,0,0; FLOATING TEN
       6856BFAD RNDO:
06F0
                               DB
                                             1500,1260,2770,2550; .00000005
06F4
       00
                               0:
                     DΒ
                                             CHECKSUM WORD
                     END
```

NO PROGRAM ERRORS

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 22

SYMBOL TABLE

А	0007	ABS	0250	ACCI	0032	ACC2	0033
ACC 3	0034	ACCE	0030	ACCS	U031	GA	0207
ADD10	036 B	ADD11	0374	AUD12	037A	ADD17	0386
ADD2	03)E	ADD 3	032 0	ADU9	0350	ADRH	0037
ADRL	0036	ARITH	0200	AKTHB	0002	Ь	0000
C	0001	CHAD	06E1	CHS	J24D *	COMP	03EF
COMPI	03F4	Ö	0002	91 A	J284	XVIG	0490
DIVXI	04DB	DIVX2	04DF	DIVX3	04F2	DIVX4	04F6
DIVX5	01 JD	DIVX6	011E	E	J JJ3	FIX	0516
FIX1	0544	FLT	04FF	FTEN	OSEC	H	0004
INIT	022F *	INITI	0231	IMP	054A *	INPl	0567
IMP10	0603	INP2	0560	INP3	05AA	INP4	05B4
INP5	05C5	INP6	0507	INP7	050อี	1 NP8	05E5
INP9	05EE	L	0005	1.00	026E	Loni	0278 *
LSH	0 3 8C	L SH 1	038F #	M	8006	MDEX	0395
MUL	023C	MULP1	0009	MULP2	ز000	MULP3	0001
MULX	044D	MULXI	0465	MULX2	J468	MUL X3	0479
MUL X4	0100	MUL X5	0413	NORM	0402	NORMI	0404
NORM2	0415	NORM3	0422	OPIA	0027	OPIS	0019
OP2A	0023	OP2S	0015	DP3A	001F	OP 3 S	0011
0P4A	001C	OP4S	000E	OP4X	0024	OU	060C *
DUTI	062A	00T 10	06B4	CUT11	Ú686	GUT12	06BF
0UT13	0600	OUT 2	062C	UUT3	063A	OUT 4	0644
OUT 5	064F	0UT6	0558	OUTZ	0671	OUT8	0692
OUTS	J6A5	OVER	332E	OVERF	O2CA	NUVC	0388
PREX	002F	PSW	0 3 0 6	RNDO	05F0	KNDA	02A9
RNDR	043F	ROND	0430	RSH	0369	ƙ SHO	03CB *
R SH1	0300	R SH2	J 30A	RSH3	0300	\$B	0204 *
SCR	0100	SCRB	0001	SF	0035	SP	9000
STR	023E	STRI	023F	STRO	023C	SVAD	36D4
TMP I	0038	TMP2	0039	TMP3	0034	TMP4	003F

000	0600	0248
	VALC	7 K01
	0036	0246
	VALI	2k0
	025B	0038
- - - -	1-2-	VALE
0	6670	003E
} (2	V4L3

APPENDIX F

Reactimeter Program

Inhour Equation

1		PART	MACRO LAMI, BI	I				
1			LXI H, LAMI	;LOAD ADDRESS	S OF	LAMI	IN	HL
1			LODE					
1			LXI H, PER	:LOAD ADDRESS	S OF	PER	IN	il.
1			CALL MUL	; MULTIPLY				
1			LXI H, ONE	:LOAD ADDRES:	S ON	ONE	IN	HL
1			CALL AD	; AD				
1			LXI H, HOLD	:LOAD ADDRESS	S OF	HOLD	IN	HL
1			STRIN					
1			LXI H, BII	;LOAD ADDRESS	S OF	BII	IN	HL.
1			LODE					
1			LXI H, HOLD	; LOAD ADDRESS	S OF	HOLD	IN	HL
1			CALL DIV	;DIVIDE				
1			LXI H, RES	:LOAD ADDRESS	S OF	RES	IN I	HL
1			CALL AD	; ADD				
1			LXI H, RES	; LOAD ADDRESS	S OF	RES	IN	HL
1			STRIN					
			ENDM					
1		LODE	MACRO					
1			CALL LOD	:LODLOADS	FLOAT	ING-	POI	NT-ACCUMULATOR
1				FROM THE ADI	DRESS	GIV	EN :	IN HL
			ENDM					
1		STRIN	MACRO					
1			CALL STR	STRSTORES	THE	FLOA	TIN	G-POINT-
1				; ACCUMULATOR	IN T	THE A	DDRE	SS GIVEN BY HL
			ENDM					
022F			ORG 022FH					
022F	00	INT:	NOP					

0230	C 9		RET	
023E			ORG	023EH
023E	00	STR:	NOP	
023F	C 9		RET	
0250			ORG	0250H
0250	00	ABS:	NOP	
0251	C 9		RET	
024D			ORG	024DH
024D	00	CHS:	NOP	
024E	C 9		RET	
026E			ORG	026EH
026E	00	LOD:	NOP	
026F	C9		RET	
028C			DRG	028CH
028C	00	MUL:	NOP	
0280	C 9		RET	
02B4			ORG	02B4H
02B4	00	DIV:	NOP	
0285	C9		RET	
02D4			ORG	02D4H
0204	00	SB:	NOP	
0205	C9		RET	
02D 7			ORG	02D7H

THE FOLLOWING LABELS ARE FOR THE FLOAT-ING POINT ROUTINES THAT ARE IN EPROM AND ARE BY CERTAIN ROUTINES TO PERFORM MATHE MATICAL OPERATIONS. THESE ROUTINES ARE IN ANOTHER PRINT OUT AND ARE GIVEN HERE AS DUMMY PROGRAMS TO BE REFERENCE BY THE CROSS ASSEMBLER.

8080 MACRO ASSEMBLER, VER 2.4 ERRORS = 0 PAGE 2

0207	00	AD:	NOP	
02D8	C9		RET	
04FF			ORG	04FFH

```
04FF
                FLT:
                        NOP
       00
0500
       C9
                        RET
054A
                        ORG 054AH
054A
       00
                 INP:
                        NOP
       C 9
054B
                        RET
0600
                        ORG 060CH
0600
       00
                OU:
                        NOP
060D
       C9
                        RET
0000
                 START: ORG GOODH
0000
       31FF10
                        LXI SP, 10FFH ; LOAD STACK POINTER TO HI 10 AND LO FF
0003
       210A13
                        LXI H. DMANT
0006
       36F0
                        MVI M. 360Q
8000
       2C
                        INR L
0009
       20
                        INR L
000A
       20
                        INR L
000B
       36FE
                        MVI M.376Q
0000
       2C
                        INR L
000E
       20
                        INR L
000F
       36FF
                        MVI M,377Q
0011
       1607
                        MVI D.7
                                      SET D EQUAL TO 7
0013
       CD2F02
                        CALL INT
                                      ; INT--INITIALIZE SCRATCH PAD MEMORY
0016
       210213
                        LXI H, RES
                                      ; LOAD ADDRESS OF RES IN HL
0019
       3600
                        MVI M.O
                                      RES = 0
001B
       20
                        DCR L
001C
       3600
                        O.M IVM
                                      MEM = 0
001E
       20
                        DCR L
001F
       3600
                        MVI M.O
                                      :MEM1 = 0
0021
       C39C00
                        JMP WAIT
                                      JUMP TO WAIT AND BEGIN PROGRAM
0028
                 INTRO: ORG 0028H
0028
       D30A
                 INPUT: OUT 10
                                      GENERATE A DEVICE SELECT PULSE
                                      :TO DEVICE TEN
002A
       210E13
                        LXI H, DMANT+4; ADDRESS OF THE TENTHS DIGIT OF DMANT
```

```
0020
         DB01
                         IN 1
                                       READ TENTHS DIGIT FROM DEVICE 1 INTO
                                       : ACCUMULATOR
  002F
         77
                         MOV M.A
                                       :MOVE A TO DMANT + 4
  0030
         20
                         DCR L
  0031
         2D
                         DCR L
  0032
         DB 02
                         IN 2
                                       READ ONES DIGIT FROM DEVICE 2 INTO
                                       : ACCUMULATOR
  0034
         77
                         A.M VOM
                                       :MOVE A TO DMANT + 2
  0035
         20
                         DCR L
  0036
         DB03
                         IN 3
                                       READ TENS DIGIT FROM DEVICE 3 INTO
                                       : ACCUMULATOR
  0038
         77
                         MOV M.A
                                       :MOVE A TO DMANT + 1
  0039
         2D
                         DCR L
8080 MACRO ASSEMBLER, VER 2.4
     ERRORS = 0 PAGE 3
  003A
         CD4A05
                         CALL INP
                                       :INP--CHANGES A BCD STRING NUMBER INTO
                                       : A BINARY-FLOATING-POINT NUMBER
  0030
         212513
                         LXI H.FLX2
                                       :LOAD ADDRESS OF FLX2 INTO HL
       1
                         STRIN
  0040 1 CD3E02
                         CALL STR
                                       :STR--STORES THE FLOATING-POINT-
                                       ; ACCUMULATOR IN THE ADDRESS GIVEN BY HL
         212513
  0043
                  CMPAR:
                         LXI H, FLX2
                                       LOAD ADDRESS OF FLX2 IN HL
                         LODE
  0046 1 CD6E02
                         CALL LOD
                                       :LOD--LOADS FLOATING-POINT-ACCUMULATOR
       1
                                       FROM THE ADDRESS GIVEN IN HL
  0049
         212113
                         LXI H.FLX1
                                       LOAD ADDRESS OF FLX1 IN HL
```

PUSH H

004C

E5

:ACCUMULATOR

PUSH HL ON TO THE STACK

```
004D
      CDD402
                       CALL SB
                                     : SUBTRACT
0050
      CDA100
                       CALL FLAG
                                    :CALL SUBROUTINE FLAG
0053
                       CALL ABS
      CD5002
                                    :ABSOLUTE VALUE
0056
       Εl
                       POP H
                                    POP HL OFF OF THE STACK
0057
                       CALL DIV
       CDB402
                                    :DIVIDE
005A
      213C01
                       LXI H. TH100
                                    :LOAD ADDRESS OF THIOO IN HL
005D
      CDD402
                       CALL SB
                                    :SUBRACT
0060
      FA8700
                       JM TRACK
                                    JUMP TO TRACK ON NEGATIVE RESULT
0063
      214001
                                    :LOAD ADDRESS OF NTHLO IN HL
                       LXI H.NTH10
0066
      CDD402
                       CALL SB
                                    :SUBTRACT
0069
      FA0014
                       JM CALC
                                    JUMP TO CALC ON NEGATIVE RESULT
0060
      CD7200
                       CALL EXCH
                                      :CALL EXCH
006F
      C39C00
                       JMP WAIT
                                    JUMP TO WAIT
0072
               EXCH:
      212513
                       LXI H,FLX2
                                    ; LOAD ADDRESS OF FLX2 INTO HL
     1
                       LODE
0075 1 CD6E02
                       CALL LOD
                                    :LOD--LOADS FLOATING-POINT-ACCUMULATOR
    1
               +
                                    FROM THE ADDRESS GIVEN IN HL
      212113
0078
                       LXI H, FLX1
                                    :LOAD ADDRESS OF FLX1 INTO HL
                       STRIN
007B 1 CD3E02
                       CALL STR
                                    :STR--STORES THE FLOATING-POINT-
    1
                                    ACCUMULATOR IN THE ADDRESS GIVEN BY HL
007E
       210113
                       LXI H, MEM
                                    ; LOAD ADDRESS OF MEM INTO HL
0081
      3600
                       MVI M.O
                                    :MEM = 0
0083
      2D
                       DCR L
0084
       3600
                       MVI M.O
                                    :MEM1 = 0
0086
      C9
                       RET
0087
      210113
                TRACK: LXI H. MEM
                                    ; LOAD ADDRESS OF MEM IN HL
A800
       34
                       INR M
                                    ; INCREMENT CONTENTS OF MEM
008B
      CA9100
                       JZ HMEM
                                    JUMP TO HMEM IF RESULT IS ONE
008E
      C 39C 00
                       JMP WAIT
                                    JUMP TO WAIT
0091
       20
                HMEM:
                       DCR L
                                    ; DECREMENT L
0092
       34
                       INR M
                                    :INCREMENT MEM+1
```

```
0093
     3E04
                     MVI A,004Q ; A = 4
0095
     9E
                     SBB M ;SUBTRACT MEM+1 FROM A
0096
     C29C00
                     JNZ WAIT ; JUMP TO WAIT IS RESULT IS NOT ZERO
0099
      C35901
                     JMP OTPTO ; JUMPT TO OTPTO
009C
      FB
              WAIT: EI
                                 ; ENABLE FLAG INTERRUPT
0090
      00
                     NOP
                                 :NO OPERATION
                                 :THE PURPOSE OF THIS LOOP IS TO LET THE
```

				; MICROCOMPUTER IDLE WHILE WAITING FOR THE
				START OF A NEW TIME INTERVAL SIGNAL FROM
				THE DPM WHICH OCCURS EVERY 0.01 SEC.
009E	C39C00		JMP WAIT	JUMP TO WAIT
00A1	212913	FLAG:	LXI H,SGST	;LOAD ADDRSS OF SGST IN HL
00A4	FAAAOO		JM NEGAT	JUMP TO NEGAT IF RESULT IS NEGATIVE
00A7	3600		MVI M,O	;SET $M = 0$
00A9	C 9		RET	RETURN FROM SUBROUTINE
AAOO	3601	NEGAT:	MVI M,001Q	SET M = 001Q
OOAC	C 9		RET	
OAAD	210613	CHSGN:	LXI H, PER	;LOAD ADDRESS OF PER IN HL
1	L	+	LODE	
00B0 1	L CD6E02	+	CALL LOD	;LODLOADS FLOATING-POINT-ACCUMULATOR
1	l	+		FROM THE ADDRESS GIVEN IN HL
00B3	CD4D02		CALL CHS	; CHANGE OF SIGN
00B6	210613		LXI H, PER	LOAD ADDRESS OF PER IN HL
]	L	+	STRIN	
00B9	L CD3E02	+	CALL STR	;STRSTORES THE FLOATING-POINT-
1	l	+		ACCUMULATOR IN THE ADDRESS GIVEN BY HL

```
OOBC
       C 9
                       RET
                                     RETURN FROM SUBROUTINE
1400
                       ORG 1400H
1400
       210113
                       LXI H, MEM
                CALC:
                                     ;LOAD ADDRESS OF MEM IN HL
1403
       4E
                       MOV C.M
                                     :MOVE CONTENTS FROM MEM TO C
1404
       20
                       DCR L
                                     :DECREMENT L
1405
       46
                       MOV B, M
                                     :MOVE CONTENTS FROM MEM TO B
1406
       03
                        INX B
                                     :INCREMENT BC PAIR
1407
       3E00
                       MVI A.O
                                     A = 0
1409
       1600
                       MVI D,0
                                     :REGISTER D = 0
140B
       1E18
                       MVI E,030Q
                                     REGISTER E = 24
140D
       CDFF04
                       CALL FLT
                                     CALL IFPP ROUTINE FLT TO CONVERT BINARY
                                     FIXED POINT TO BINARY FLOATING POINT
1410
       210613
                       LXI H, PER
                                     ; LCAD ADDRESS OF PER IN HL
     1
                       STRIN
1413 1 CD3E02
               +
                       CALL STR
                                     :STR--STORES THE FLOATING-POINT-
     1
                                     ACCUMULATOR IN THE ADDRESS GIVEN BY HE
       212913
1416
                       LXI H, SGST
                                     ;LOAD ADDRESS OF SGST IN HL
1419
       35
                       DCR M
                                     :DECREMENT SGST
141A
       CCADOO
                       CZ CHSGN
                                     ; CALL CHGSN IF THE RESULT IS ZERO
     1
                       PART LAMI, BII
1410 1 210001
                       LXI H, LAMI
                                     :LOAD ADDRESS OF LAMI IN HL
     2
                       LODE
1420 2 CD6E02
                       CALL LOD
                                     ;LOD--LOADS FLOATING-POINT-ACCUMULATOR
               +
                                     FROM THE ADDRESS GIVEN IN HL
1423 1 210613
                       LXI H, PER
                                     ;LOAD ADDRESS OF PER IN HL
1426 1 CD8C02
                       CALL MUL
                                     : MULTIPLY
1429 1 213801
                       LXI H. ONE
                                     ;LOAD ADDRESS ON ONE IN HL
142C 1 CDD702
                       CALL AD
                                     : AD
142F 1 211013
                       LXI H, HOLD
                                     ; LOAD ADDRESS OF HOLD IN HL
     2
                       STRIN
1432 2 CD3E02
                       CALL STR
                                     :STR--STORES THE FLOATING-POINT-
               +
     2
                                     :ACCUMULATOR IN THE ADDRESS GIVEN BY HL
```

1435 1 211801	+	LXI H,BII	;LOAD ADDRESS OF BIT IN HL
2	+	LODE	
1438 2 CD6E02	+	CALL LOD	; LODLOADS FLOATING-POINT-ACCUMULATOR
2	+		FROM THE ADDRESS GIVEN IN HL
1438 1 211013	+	LXI H, HOLD	;LOAD ADDRESS OF HOLD IN HL
143E 1 CDB402	+	CALL DIV	; DIVIDE
1441 1 210213	+	LXI H, RES	;LOAD ADDRESS OF RES IN HL
1444 1 CDD702	+	CALL AD	; ADD
1447 1 210213	+	LXI H, RES	;LOAD ADDRESS OF RES IN HL
2	+	STRIN	
144A 2 CD3E02	+	CALL STR	;STRSTORES THE FLOATING-POINT-
2	+		ACCUMULATOR IN THE ADDRESS GIVEN BY HL
1	+	PART LAM2, BI	
144D 1 210401	+	LXI H, LAM2	;LOAD ADDRESS OF LAMI IN HL
2	+	LODE	
1450 2 CD6E02	+	CALL LOD	;LODLOADS FLOATING-POINT-ACCUMULATOR
2	+		FROM THE ADDRESS GIVEN IN HL
1453 1 210613	+	LXI H, PER	;LOAD ADDRESS OF PER IN HL
1456 1 CD8CO2	+	CALL MUL	; MULTIPLY
1459 1 213801	+	LXI H, ONE	;LOAD ADDRESS ON ONE IN HL
145C 1 CDD702	+	CALL AD	; AD
145F 1 211013	+	LXI H, HOLD	; LOAD ADDRESS OF HOLD IN HL
2	+	STRIN	
1462 2 CD3E02	+	CALL STR	STRSTORES THE FLOATING-POINT-
2	+		ACCUMULATOR IN THE ADDRESS GIVEN BY HL
1465 1 211CO1	+	LXI H,812	;LOAD ADDRESS OF BII IN HL

```
LODE
     2
1468 2 CD6E02
                       CALL LOD
                                     :LOD--LOADS FLOATING-POINT-ACCUMULATOR
     2
                                     FROM THE ADDRESS GIVEN IN HL
146B 1 211013
                       LXI H, HOLD
                                     LOAD ADDRESS OF HOLD IN HL
146E 1 CDB402
                       CALL DIV
                                     :DIVIDE
1471 1 210213
                       LXI H, RES
                                     LOAD ADDRESS OF RES IN HL
1474 1 CDD702
                       CALL AD
                                     : ADD
1477 1 210213 +
                       LXI H.RES
                                     :LOAD ADDRESS OF RES IN HL
     2
                       STRIN
147A 2 CD3E02
                       CALL STR
               +
                                     :STR--STORES THE FLOATING-POINT-
     2
                                     ACCUMULATOR IN THE ADDRESS GIVEN BY HL
                       PART LAM3.BI3
147D 1 210801
                       LXI H, LAM3
                                     :LOAD ADDRESS OF LAMI IN HL
                       LODE
1480 2 CD6E02
                                     :LOD--LOADS FLOATING-POINT-ACCUMULATOR
                       CALL LOD
     2
                                     FROM THE ADDRESS GIVEN IN HL
1483 1 210613
                       LXI H. PER
                                     ; LOAD ADDRESS OF PER IN HL
1486 1 CD8CO2
                       CALL MUL
                                     :MULTIPLY
1489 1 213801 +
                       LXI H, ONE
                                     LOAD ADDRESS ON ONE IN HL
148C 1 CDD702
                       CALL AD
                                     : AD
148F 1 211013
                       LXI H, HOLD
                                     ;LOAD ADDRESS OF HOLD IN HL
     2
                       STRIN
               +
1492 2 CD3E02
                       CALL STR
                                     :STR--STORES THE FLOATING-POINT-
     2
                                     :ACCUMULATOR IN THE ADDRESS GIVEN BY HL
1495 1 212001
                       LXI H.BI3
                                     :LOAD ADURESS OF BII IN HL
```

2 + LODE

```
1498 2 CD6E02 +
                       CALL LOD
                                    ; LOD--LOADS FLOATING-POINT-ACCUMULATOR
     2
                                    FROM THE ADDRESS GIVEN IN HL
149B 1 211013
                       LXI H, HOLD
                                    ;LOAD ADDRESS OF HOLD IN HL
149E 1 CDB402
                       CALL DIV
                                    :DIVIDE
14A1 1 210213
                       LXI H, RES
                                    :LOAD ADDRESS OF RES IN HL
14A4 1 CDD702
                       CALL AD
                                    : ADD
14A7 1 210213 +
                       LXI H.RES
                                    :LOAD ADDRESS OF RES IN HL
     2
                       STRIN
14AA 2 CD3E02
                       CALL STR
                                    STR--STORES THE FLOATING-POINT-
     2
                                    ; ACCUMULATOR IN THE ADDRESS GIVEN BY HL
                       PART LAM4, BI4
14AD 1 210C01
                       LXI H, LAM4
                                    LOAD ADDRESS OF LAMI IN HL
                       LODE
14B0 2 CD6E02
                       CALL LOD
                                    ; LOD--LOADS FLOATING-POINT-ACCUMULATOR
     2
                                    FROM THE ADDRESS GIVEN IN HL
1483 1 210613
                       LXI H, PER
                                    LOAD ADDRESS OF PER IN HL
14B6 1 CD8CO2
                       CALL MUL
                                    : MULTIPLY
1489 1 213801
                       LXI H. ONE
                                    ;LOAD ADDRESS ON ONE IN HL
14BC 1 CDD 702
                       CALL AD
                                    ; AD
14BF 1 211013
                       LXI H, HOLD
                                    :LOAD ADDRESS OF HOLD IN HL
     2
                       STRIN
14C2 2 CD3E02
                       CALL STR
                                    :STR--STORES THE FLOATING-POINT-
                                    ; ACCUMULATOR IN THE ADDRESS GIVEN BY HL
1405 1 212401
                       LXI H,BI4
                                    LOAD ADDRESS OF BII IN HL
                       LODE
14C8 2 CD6E02
                       CALL LOD
                                    ;LOD--LOADS FLOATING-POINT-ACCUMULATOR
                                    FROM THE ADDRESS GIVEN IN HL
14CB 1 211013
                       LXI H. HOLD
                                    ; LOAD ADDRESS OF HOLD IN HL
14CE 1 CDB402
                       CALL DIV
                                    :DIVIDE
1401 1 210213 +
                       LXI H.RES
                                    :LOAD ADDRESS OF RES IN HL
14D4 1 CDD702 +
                       CALL AD
                                    : ADD
14D7 1 210213 +
                       LXI H, RES
                                    LOAD ADDRESS OF RES IN HL
```

```
STRIN
14DA 2 CD3E02
                       CALL STR
                                    STR--STORES THE FLOATING-POINT-
     2
                                    ACCUMULATOR IN THE ADDRESS GIVEN BY HL
                       PART LAMS.BIS
14DD 1 211001
                       LXI H.LAM5
                                    ; LOAD ADDRESS OF LAMI IN HL
                       LODE
14E0 2 CD6E02
                       CALL LOD
                                    :LOD--LOADS FLOATING-POINT-ACCUMULATOR
     2
                                    FROM THE ADDRESS GIVEN IN HL
14E3 1 210613
                       LXI H. PER
                                    ;LOAD ADDRESS OF PER IN HL
14E6 1 CD8C02
                       CALL MUL
                                    :MULTIPLY
14E9 1 213801
                       LXI H. ONE
                                    ; LOAD ADDRESS ON ONE IN HL
14EC 1 CDD702
                       CALL AD
                                    : AD
14EF 1 211013
                       LXI H, HOLD
                                    ;LOAD ADDRESS OF HOLD IN HL
                       STRIN
14F2 2 CD3E02
                       CALL STR
                                    STR--STORES THE FLOATING-POINT-
               +
                                    ; ACCUMULATOR IN THE ADDRESS GIVEN BY HL
14F5 1 212801
                       LXI H.BI5
                                    :LOAD ADDRESS OF BII IN HL
     2
                       LODE
```

14F8 2 CD6E02	+	CALL LOD	;LODLOADS FLOATING-POINT-ACCUMULATOR ;FROM THE ADDRESS GIVEN IN HL
14FB 1 211013	+	LXI H, HOLD	LOAD ADDRESS OF HOLD IN HL
14FE 1 CD8402		CALL DIV	DIVIDE
1501 1 210213		LXI H, RES	LOAD ADDRESS OF RES IN HL
1504 1 CDD702	+	CALL AD	; ADD
1507 1 210213	+	LXI H.RES	; LOAD ADDRESS OF RES IN HL
2	+	STRIN	

```
150A 2 CD3E02 +
                       CALL STR
                                     :STR--STORES THE FLOATING-POINT-
                                     ACCUMULATOR IN THE ADDRESS GIVEN BY HL
                       PART LAM6.BI6
150D 1 211401
                       LXI H.LAM6
                                     :LOAD ADDRESS OF LAMI IN HL
                       LODE
1510 2 CD6E02
                       CALL LOD
                                     :LOD--LOADS FLOATING-POINT-ACCUMULATOR
                                     FROM THE ADDRESS GIVEN IN HL
1513 1 210613
                       LXI H. PER
                                     ; LOAD ADDRESS OF PER IN HL
1516 1 CD8C02
                       CALL MUL
                                     : MULTIPLY
1519 1 213801
                       LXI H. ONE
                                     ; LOAD ADDRESS ON ONE IN HL
151C 1 CDD702
                       CALL AD
                                     ; AD
151F 1 211013
                       LXI H, HOLD
                                    :LOAD ADDRESS OF HOLD IN HL
                       STRIN
1522 2 CD3E02
                       CALL STR
                                     ;STR--STORES THE FLOATING-POINT-
                                     ; ACCUMULATOR IN THE ADDRESS GIVEN BY HL
1525 1 212001
                       LXI H,BI6
                                     ; LOAD ADDRESS OF BIT IN HL
                       LODE
     2
1528 2 CD6E02
                       CALL LOD
               +
                                     ;LOD--LOADS FLOATING-POINT-ACCUMULATOR
     2
                                     FROM THE ADDRESS GIVEN IN HL
152B 1 211013
                       LXI H.HOLD
                                     ;LOAD ADDRESS OF HOLD IN HL
152E 1 CDB402
                       CALL DIV
                                     :DIVIDE
1531 1 210213 +
                       LXI H.RES
                                     ;LOAD ADDRESS OF RES IN HL
1534 1 CDD702
                       CALL AD
                                     : ADD
1537 1 210213
                       LXI H.RES
                                     ;LOAD ADDRESS OF RES IN HL
                       STRIN
     2
153A 2 CD3E02
                       CALL STR
               +
                                     :STR--STORES THE FLOATING-POINT-
                                     ACCUMULATOR IN THE ADDRESS GIVEN BY HL
153D
       213401
                       LXI H, PNLF
                                     ;LOAD ADDRESS OF PNLF
                       LODE
1540 1 CD6E02
               +
                       CALL LOD
                                     :LOD--LOADS FLOATING-POINT-ACCUMULATOR
                                     FROM THE ADDRESS GIVEN IN HL
       210613
1543
                       LXI H, PER
                                     ; LOAD ADDRESS OF PER IN HL
```

1546	CD8402	CALL DIV	; DIVIDE
1549	210213	LXI H, RES	;LOAD ADDRESS OF RES IN HL
154C	CDD702	CALL AD	; ADD
154F	213001	LXI H, CONV	LOAD ADDRESS OF CONV IN HL
1552	CD8C02	CALL MUL	; MULTIPLY
1555	211413	LXI H,RHO	LOAD ADDRESS OF RHO IN HO
1558	CD0C06	CALL OU	;OUTPUT IN BCD FORMAT
155B	210213	LXI H, RES	;LOAD ADDRESS OF RES IN HL
155E	3600	MVI M,O	;SET RES = 0
1560	CD7200	CALL EXCH	;CALL EXCH
1563	C35001	JMP OUTPT	; JUMP TO OUTPT

OF
Α
AN
LANK 1
FOR
• •
A L

```
0164
       CDD201
                       CALL CHECK
                                     :CALL SUBROUTINE CHECK
0167
       D306
                       OUT 6
                                     COUTPUT ACCUMULATOR TO DEVICE 6
                       CALL CHECK
0169
       CDD201
                                     :CALL SUBROUTINE CHECK
0160
       0307
                       OUT 7
                                     COUTPUT ACCUMULATOR TO DEVICE 7
016E
       C3B901
                       JMP SIGN
                                     JUMP TO SIGN
0171
       3A1513
                CHK1:
                       LDA RHO+1
                                     :LOAD ACCUMULATOR WITH RHO+1
0174
       06FE
                       MVI B,376Q
                                     :LOAD REGISTER B WITH 3760
0176
       88
                       CMP B
                                     :COMPARE B WITH ACCUMULATOR
0177
       CA5901
                        JZ OTPTO
                                     JUMP TO OTPTO
017A
       3A1913
                       LDA RHO+5
                                     :LOAD ACCUMULATOR WITH RHO+5
017D
       06FE
                       MVI B, 376Q
                                     LOAD B WITH 376Q(CODE FOR DECIMAL POINT)
017F
       B8
                       CMP B
                                     COMPARE B WITH ACCUMULATOR
0180
       CA9E01
                        JZ OTPT4
                                     JUMP TO OTPT4
0183
       3A1813
                       LDA RHO+4
                                     ; LOAD ACCUMULATOR WITH RHO+4
0186
                                     :LOAD B WITH 376Q(CODE FOR DECIMAL POINT)
       06FE
                       MVI B, 376Q
0188
                       CMP B
       88
                                     COMPARE B WITH ACCUMULATOR
0189
       CAA701
                        JZ OTPT3
                                     :JUMP TO OTPT3
0180
       3A1713
                       LDA RHO+3
                                     :LOAD ACCUMULATOR WITH RHO+3
018F
       06FE
                       MVI B,376Q
                                     ;LOAD B WITH 376Q (CODE FOR DECIMAL POINT)
0191
       B 8
                       CMP B
                                     COMPARE B WITH ACCUMULATOR
0192
       CABOO1
                       JZ OTPT2
                                     :JUMP TO OTPT2
0195
       211513
                       LXI H.RHO + 1:LOAD H L REGISTER PAIR WITH RHO + 1
0198
                       MOV A,M
                                     MOVE THE DATA FROM THE MEMORY LOCATION
       7 E
                                     ; ADDRESSED BY THE H L REGISTER PAIR TO
                                     :THE ACCUMULATOR
0199
       1E01
                       MVI E,1
                                     SET REGISTER EQUAL TO ONE
0198
       C35D01
                        JMP OTNUM
                                     JUMP TO OTNUM
019E
       211813
                OTPT4: LXI H,RHO+4
                                     ; LOAD H L REGISTER PAIR WITH RHO+4
01A1
       7 E
                       MOV A.M
01 A2
       1E04
                       MVI E,4
                                     ;SET REGISTER EQUAL TO FOUR
01A4
       C35D01
                                     :JUMP TO OTNUM
                       JMP OTNUM
01A7
       211713
                OTPT3: LXI H,RHO+3
                                    :LOAD H L REGISTER PAIR WITH RHO+3
```

```
O1AA 7E MOV A,M
O1AB 1E03 MVI E,3 ;SET REGISTER E EQUAL TO THREE
O1AD C35DO1 JMP OTNUM ;JUMP TO OTNUM
O1BO 211613 OTPT2: LXI H,RHO+2 ;LOAD H L REGISTER PAIR WITH RHO+2
```

O1B3 7E MOV A,M O1B4 1EO2 MVI E,2 ;SET REGISTER EQUAL TO E O1B6 C35DO1 JMP OTNUM ;JUMP TO OTNUM O1B9 3A1413 SIGN: LDA RHO ;LOAD ACCUMULATOR WITH RHO O1BC 06F0 MVI B,360Q ;LOAD B WITH 360Q (CODE FOR SPACE) O1BE B8 CMP B ;COMPARE B WITH ACCUMULATOR O1BF CACAO1 JZ ZERO ;JUMP TO ZERO	
O1B9 3A1413 SIGN: LDA RHO ;LOAD ACCUMULATOR WITH RHO O1BC 06F0 MVI B,360Q ;LOAD B WITH 360Q (CODE FOR SPACE) O1BE B8 CMP B ;COMPARE B WITH ACCUMULATOR O1BF CACAO1 JZ ZERO ;JUMP TO ZERO	
O1BC 06FO MVI B,360Q ;LOAD B WITH 360Q (CODE FOR SPACE) O1BE B8 CMP B ;COMPARE B WITH ACCUMULATOR O1BF CACAO1 JZ ZERO ;JUMP TO ZERO	
O1BE B8 CMP B COMPARE B WITH ACCUMULATOR O1BF CACAO1 JZ ZERO ; JUMP TO ZERO	
01BF CACA01 JZ ZERO ; JUMP TO ZERO	
• • • • • • • • • • • • • • • • • • • •	
O1CO 244401 LOA MINUC ALGAD ACCUMULATOR UTTIL STRUCK	
01C2 3A4401 LDA MINUS ;LOAD ACCUMULATOR WITH MINUS	
O1C5 D308 OUT 8 ; OUTPUT ACCUMULATOR TO DEVICE 8	
01C7 C39C00 JMP WAIT ; JUMP TO WAIT	
OlCA 3A4501 ZERO: LDA BLANK ; LOAD ACCUMULATOR WITH PLUS SIGN	
O1CD D308 OUT 8 ; OUTPUT ACCUMULATOR TO DEVICE 8	
OICF C39COO JMP WAIT ; JUMP TO WAIT	
01D2 1D CHECK: DCR E ;DECREMENT REGISTER E	
01D3 CCD901 CZ WOUT ; CALL SUBROUTINE WOUT IF RESULT IS ZER	0
01D6 2D DCR L ; DECREMENT L	
01D7 7E MOV A,M ; MOVE THE DATA FROM MEMORY LOCATION	
ADDRESSED BY THE H L REGISTER PAIR TO	
; THE ACCUMULATUR	
01D8 C9 RET ;RETURN	
01D9 214601 WOUT: LXI H, BLANK+1; LOAD H L REGISTER PAIR WITH BLANK + 1	
01DC 1E01 MVI E,1 ;SET REGISTER EQUAL TO 1	

```
OIDE
       C9
                        RET
                                      :RETURN
0100
                 DATA:
                        ORG 0100H
0100
                LAM1:
                        DB 172Q
       7A
                                      ;LAMDA1 = 0.0127
0101
       50
                        DB 120Q
0102
                        DB 023Q
       13
0103
       6A
                        DB 152Q
0104
       7C
                LAM2:
                        DB 1740
                                      :LAMDA2 = 0.0317
0105
                        DB 001Q
       01
0106
       07
                        DB 327Q
0107
       DC
                        DB 334Q
0108
       70
                LAM3:
                        DB 175Q
                                      ;LAMDA3 = 0.115
0109
       6B
                        DB 153Q
010A
       85
                        DB 205Q
0108
       16
                        DB 036Q
010C
       7 F
                        DB 177Q
                 LAM4:
                                      ;LAMDA4 = 0.311
0100
       1 F
                        DB 037Q
010E
       3B
                        DB 073Q
010F
       65
                        DB 145Q
0110
       81
                 LAM5:
                        DB 201Q
                                      ;LAMDA5 = 1.40
0111
       33
                        DB 063Q
0112
       33
                        DB 063Q
0113
       33
                        DB 063Q
0114
                 LAM6:
                        DB 202Q
                                      :LAMDA6 = 3.87
       82
0115
       77
                        DB 167Q
0116
       ΑE
                        DB 256Q
```

0117 15 DB 025Q

```
0118
       75
                 BI1:
                        DB 165Q
                                      ;BETA1 = 0.000247
0119
       01
                        DB 001Q
011A
       7F
                        DB 177Q
011B
       63
                        DB 310Q
0110
                        DB 167Q
       77
                 BI2:
                                      ;BETA2 = 0.001385
0110
       35
                        08 065Q
011E
       88
                        DB 210Q
                        DB 344Q
011F
       E4
0120
       77
                 BI3:
                        DB 167Q
                                      ;BETA3 = 0.001222
0121
       20
                        DB 040Q
0122
       28
                        DB 053Q
0123
       83
                        DB 203Q
0124
       78
                        DB 170Q
                 B14:
                                      ;BETA4 = 0.002645
0125
       20
                        DB 055Q
0126
       57
                        DB 127Q
0127
       BC
                        DB 274Q
0128
       76
                 BI5:
                        OB 166Q
                                      ;BETA5 = 0.000832
0129
       5A
                        DB 132Q
012A
                        DB 032Q
       1 A
012B
       92
                        DB 2220
0120
       74
                 BI6:
                        DB 164Q
                                      ;BETA6 = 0.000169
0120
       31
                        DB 061Q
012E
       35
                        DB 065Q
012F
       97
                        DB 227Q
0130
       91
                 CONV:
                        DB 221Q
                                      CONVERSION FACTOR FROM ABSOLUTE
0131
                        DB 103Q
       43
                                      REACTIVITY TO PCM
0132
       50
                        DB 120Q
0133
                        DB 000Q
       00
0134
       73
                 PNLF:
                        DB 163Q
                                      ; PROMP NEUTRON LIFETEME = 0.0001
0135
       51
                        OB 121Q
0136
       B7
                        DB 267Q
0137
       16
                        DB 026Q
```

```
0138
                ONE:
       81
                       DB 201Q
                                     :NUMBER VALUE IS 1.000
0139
       00
                       DB 000Q
013A
       00
                       DB 000Q
013B
       00
                       DB 000Q
013C
       7A
                TH100: DB 172Q
                                     ; NUMBER VALUE EQUALS 0.01
0130
       23
                       DB 043Q
013E
       D7
                       08 3270
013F
       OA
                       DB 012Q
0140
       7D
                NTH10: DB 175Q
                                     :NUMBER VALUE IS 0.1
0141
       4C
                       DB 114Q
0142
       CC
                       DB 314Q
0143
       CD
                       DB 315Q
0144
       0B
                MINUS: DB 013Q
                                     ;CODE FOR MINUS
0145
       00
                BLANK: DB 015Q
                                     CODE FOR BLANK
1300
                RWMEM: ORG 1300H
1300
                MEM1:
                       DS 1
                                     :HIGH YTE FOR PERIOD COUNTER
1301
                MEM:
                       DS 1
                                    ;LOW BYTE FOR PERIOD COUNTER
1302
                RES:
                       DS 4
                                   STORAGE LOCATION FOR SUMMING TERM
```

1306	PER: DS	4	STORAGE FOR REACTOR PERIOD
130A	DMANT: DS	6	STORAGE LOCATION INPUT DATA(BCD FORM)
1310	HOLD: OS	4	;TEMPORARY SPACE
1314	RHO: DS	13	REACTIVITY IN PCM
1321	FLX1: DS	4	STORAGE SPACE FOR POWERL
1325	FLX2: OS	4	STORAGE SPACE FOR POWER2
1329	SGST: DS	1	STORAGE SPACE FOR PERIOD SIGN
	EN	D	

SYMBOL TABLE

*	Ω	1
	v	4

A	0007	ABS	0250	AD	02D7	В	0000
BI1	0118	B12	011C	BI3	0120	BI4	0124
BI5	0128	816	012C	BLANK	0145	C	0001
CALC	1400	CHECK	Olda	CHK1	0171	CHS	024D
CHSGN	OOAD	CMPAR	0043 *	CONV	0130	D	0002
DATA	01E7 *	DIV	02B4	DMANT	130A	Ε	0003
EXCH	0072	FLAG	00A1	FLT	04FF	FLX1	1321
FLX2	1325	Н	0004	HMEM	0091	HOLD	1310
INP	054A	INPUT	0028 *	INT	022F	INTRO	0024 *
L	0005	LAM1	0100	LAM2	0104	LAM3	0108
LAM4	010C	LAM5	0110	LAM6	0114	LOD	026E
LODE	0366	M	0006	MEM	1301	MEM1	1300 *
MINUS	0144	MUL	02 8C	NEGAT	OOAA	NTH10	0140
ONE	0138	OTNUM	015D	OTPTO	0159	OTPT2	0180
OTPT3	01A7	OTPT4	019E	OU	060C	CUTPT	0150
PART	0370	PER	1306	PNLF	0134	PSW	0006
RES	1302	RHO	1314	RWMEM	0146 *	SB	0204
SGST	1329	SIGN	01B9	SP	0006	START	060E *
STR	023E	STRIN	034E	TH100	013C	TRACK	0087
WAIT	009C	WOUT	01E1	ZERO	01D2		

The vita has been removed from the scanned document

THE DESIGN, CONSTRUCTION, AND TESTING OF A REACTIMETER

bу

Kim Allen Jones

(ABSTRACT)

A reactimeter has been developed to measure the neutron reactivity of the Virginia Polytechnic Institute and State University nuclear research reactor. The reactimeter will be employed in monitoring reactivity changes of samples entering and leaving the reactor.

The reactimeter is comprised of a compensated ion chamber that measures the neutron flux of the reactor and a microcomputer that performs the reactivity calculations. The calculations are based on the six group, point reactor kinetics equations. To simplify the algorithm programming into the microcomputer, the prompt jump approximation is used. The entire reactimeter program can be stored in 2 K of memory, but it requires a separate program of elementary mathematical subroutines. This second program performs all the mathematical operations and requires 1.25 K of memory.