A MEASUREMENT OF THE RESONANCE
ESCAPE PROBABILITY OF NEUTRONS IN A
HOMOGENEOUS THORIUM REACTOR

by

Lee S. Anthony

Dissertation submitted to the Graduate Faculty of
the Virginia Polytechnic Institute
in candidacy for the degree of

DOCTOR OF PHILOSOPHY

in

Physics

March 1962

Blacksburg, Virginia
II. TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Title Page</td>
<td>2</td>
</tr>
<tr>
<td>II. Table of Contents</td>
<td>2</td>
</tr>
<tr>
<td>III. List of Illustrations</td>
<td>3</td>
</tr>
<tr>
<td>IV. List of Tables</td>
<td>4</td>
</tr>
<tr>
<td>V. Introduction</td>
<td>5</td>
</tr>
<tr>
<td>VI. Literature Review</td>
<td>10</td>
</tr>
<tr>
<td>VII. Description of Experiment</td>
<td>12</td>
</tr>
<tr>
<td>VIII. Data Analysis</td>
<td>24</td>
</tr>
<tr>
<td>A. Discussion of Results</td>
<td>27</td>
</tr>
<tr>
<td>B. Summary</td>
<td>33</td>
</tr>
<tr>
<td>IX. Acknowledgements</td>
<td>35</td>
</tr>
<tr>
<td>X. Bibliography</td>
<td>36</td>
</tr>
<tr>
<td>XI. Vita</td>
<td>38</td>
</tr>
<tr>
<td>XII. Appendices</td>
<td>39</td>
</tr>
<tr>
<td>A. Derivation of Standard Expression for Resonance Escape Probability</td>
<td>39</td>
</tr>
<tr>
<td>B. Correlation of Flux Distributions</td>
<td>50</td>
</tr>
<tr>
<td>C. Tabulations of Data and Values of Parameters Used</td>
<td>54</td>
</tr>
</tbody>
</table>
III. LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIG.</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coordinates of Thorium System</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Cross-sectional View of System</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Neutron Density vs. ((z)) in Concentrated Ferric Nitrate Solution</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>Neutron Density vs. ((z)) Position in Ferric Nitrate Solutions</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Neutron Density vs. ((z)) Position in Thorium Nitrate Solutions</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Neutron Density vs. ((\gamma)) Position at ((z = \text{pos. 6})), in Very Dilute Thorium Nitrate Solution</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Resolving Time of Ultrascaler C1</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>Resolving Time of Ultrascaler C2</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>Fast Neutron Density in Water, Ferric Nitrate, and Thorium Nitrate Solutions</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>Neutron Density versus Absorber Number Density</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>Neutron Density versus (N_{\text{th}} \left(\frac{\sigma_e}{\sigma_s} \right)_{\text{th}})</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>Comparison of Monte Carlo and Experimental Values of E.E.P.(_{\infty})</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>Comparison of Effective Resonance Integrals</td>
<td>31</td>
</tr>
<tr>
<td>14</td>
<td>Energy, Lethargy, and Slowing-down Density Relationships</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>Maxwell-Boltzmann Energy Distribution</td>
<td>51</td>
</tr>
</tbody>
</table>
IV. LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Neutron Density vs. (z) Position in Ferric Nitrate Solutions</td>
<td>23</td>
</tr>
<tr>
<td>Table 2</td>
<td>Neutron Density vs. (z) Position in Thorium Nitrate Solutions</td>
<td>23</td>
</tr>
<tr>
<td>Table 3</td>
<td>Neutron Density vs. (z) Position in Concentrated Ferric Nitrate Solution</td>
<td>54</td>
</tr>
<tr>
<td>Table 4</td>
<td>Neutron Density vs. Absorber Number Density</td>
<td>55</td>
</tr>
<tr>
<td>Table 5</td>
<td>Comparison of Monte Carlo and Experimental Values of R.E.P.^a</td>
<td>56</td>
</tr>
<tr>
<td>Table 6</td>
<td>Values of I_{eff} from Theory and Experiment</td>
<td>57</td>
</tr>
<tr>
<td>Table 7</td>
<td>Values used for Computation of $\bar{\xi}$</td>
<td>58</td>
</tr>
<tr>
<td>Table 8</td>
<td>Certified Analysis of Concentrated Thorium Solution</td>
<td>59</td>
</tr>
<tr>
<td>Table 9</td>
<td>Analysis of Iron Solutions</td>
<td>60</td>
</tr>
<tr>
<td>Table 10</td>
<td>Analysis of Thorium Solutions</td>
<td>61</td>
</tr>
</tbody>
</table>
V. INTRODUCTION

In order to ascertain the feasibility of a proposed reactor system, and to properly design such a system with the least expenditure of time and money, it is desirable to be able to predict analytically the values of the nuclear parameters pertinent to the system. The probability of a fast neutron from the fission process surviving to thermal energies, where it may be usefully employed in a thermal reactor, is such a parameter. Since the most probable cause of absorption is interaction with materials which exhibit resonance peaks in the intermediate energy range, the above survival probability is referred to as the resonance escape probability (R.E.P.). Analytical calculations are now possible with computers, provided that the problem is not too complex either to analyze mathematically or to compute with available computing equipment. A Monte Carlo calculation has been performed at Virginia Polytechnic Institute (1) to predict the resonance escape probability in a homogeneous thorium reactor. This computation was made for low number densities of absorber, whereas most previous calculations had been performed for much higher absorber densities, such as one would encounter in fuel rods or heavy slurries. A complementary experiment was therefore performed at VPI, utilizing the Cockcroft-Walton accelerator as a source of neutrons from the D(d,n)He\(^3\) reaction. This experiment investigated the resonance escape probability in the selected system as a function of absorber concentration at room temperature. The system is composed of
Fig. 1
LEGEND

- PARAFFIN
- BORATED PARAFFIN
- ALUMINUM

UNDERSIDE OF LID

CROSS SECTION OF SYSTEM AND LID

SCALE ———— 3/32" = 1"
an aqueous solution of thorium nitrate contained in an aluminum box approximately 24" x 24" x 13". The definition of resonance escape probability used here is the ratio of neutrons which survive to 10 ev to the number which began the traversal of the resonance energy region at 1000 ev.

The experiment parallels as closely as possible the theoretical Monte Carlo analysis. A number of neutrons is introduced into the side of the box at \((x = 0, y = 0, z = 0)\) (Fig. 1), and these are subsequently thermalized and/or absorbed in the system, or leak out of the system. The thermal neutron density in the system is sampled with a BF₃ detector. The decrease in this density upon addition of thorium nitrate is due to the combined effects of scattering and absorption with the thorium, nitrogen, and oxygen added. If one could compensate for the effect of the nitrogen, oxygen, and non-resonance absorption of thorium, then one could obtain a measure of the resonance absorption of thorium in aqueous nitrate solution. To accomplish this, iron was chosen as a material whose total cross-section closely parallels what the thorium cross-section would be without resonances. By adding the iron as ferric nitrate, the effect of nitrogen and oxygen can also be accounted for. The experiment then consisted of examining the thermal neutron density in both ferric nitrate and thorium nitrate solutions as a function of concentration, going from approximately zero concentration (pure water) to as concentrated solutions as were readily available.
In accordance with the definition of resonance escape probability given above, we would like to measure all neutrons in a given system which get to 10 ev or below. Since this is not possible, the boron detector was used because it gives a measurement of neutron density rather than flux. The difference in cross-section in this low energy range is compensated for by comparison of equivalent number densities of iron and thorium. This equivalence is based on the normalization of thermal neutron distributions in the thorium and iron systems. A measurement of neutron density in the energy range of thermal to about 0.5 ev is therefore taken as a fraction of all neutrons in the range of thermal to 10 ev.
VI. LITERATURE REVIEW

The earliest experiments to determine quantitative information on the magnitude of the resonance absorption in bulk material, and its dependence on size, shape, temperature, and dilution were carried out on uranium by E. C. Creutz, R. E. Wilson, E. P. Wigner, and T. Snyder at Princeton University in 1941. These experiments, as well as theoretical work carried out in the United States during the period 1939-1941, are reported in a series of papers (2), (3), (4) in J. Appl. Phys. 26 (1955).

Activation measurements on homogeneous mixtures of uranium and various moderators were made in 1944 by Mitchell, Brown, Pruett, and Nering (5). Similar work was performed for uranium by Hughes and Goldstein (6) and for thorium by Hughes and Eggler (7).

Considerable work has also been done with ThO₂ and thorium by Dayton and Pettus, Pettus (see refs. 8, 10), and by Macklin and Pomerance (8).

Calculations pertinent to homogeneous systems have been performed by a number of people, notably Dresner (10), Nordheim (16), and Nordheim and Sampson (17).

A survey of U. S. work prior to the first Geneva Conference was reported by Macklin and Pomerance (8); a similar Russian survey was presented by Spivak et al (9). Dresner has given a very comprehensive review of the literature, theory, and experiments concerning resonance
absorption processes (10). This was published as a monograph and is the most recent summary in the field (1960). In view of the above comprehensive surveys, details of previous work are not given in this literature review.
VII. DESCRIPTION OF EXPERIMENT

An experiment was run initially to determine the effect, if any, of neutrons returning into the proposed system from the room. By placing various amounts of moderator and absorber between the target and a BF$_3$ detector, it was found that a considerable scatter was observed from nearby objects in the room. A shield of six inches of paraffin, two inches of borated paraffin, and a 30 mil cadmium sheet was designed to reduce the scattered neutrons. The aluminum box in which the experiment was to be run was therefore surrounded by such a shield, with the cadmium next to the box, the borated paraffin outside the cadmium, and the unborated paraffin outermost. A cross-sectional view of this system can be seen in Fig. 2.

Holes of 1-3/32" diameter were made in the lid to permit insertion of the detector.* These holes were made in two perpendicular rows, one in the beam (z) direction; the other in the (y) direction. The traversals used to determine relative neutron density were made in the (z) direction. The detector, which is cylindrical in shape, was lowered through the appropriate hole in the lid until its sensitive volume was centered at the height of the neutron target. Since the sensitive volume of the detector is approximately 10-1/2" long, the detector has some integrating action which would tend to diminish vertical inhomogeneities in the solutions.

*The detector was a 1/2" diameter BF$_3$ detector filled to 40 cm. pressure, and was manufactured by N. Wood Counter Laboratory, Chicago, Ill. The monitor was a 1" diameter BF$_3$ detector, type ESN-7A, ser. 556. filled to 40 cm. pressure, manufactured by Reuter-Stokes.
Another BF₃ detector was attached to the outside of the system, near the target tube, to serve as monitor. This monitor could then be used to normalize the detector readings to compensate for differing rates of neutron production. It was noted that measurement of beam current is not an exact measure of neutron production, but that the neutron production varies with accelerating voltage, beam focusing, condition of the target, and with pressure in the accelerating tube.

The target, in order to conform to the Monte Carlo conditions, was a deuterium drive-in target made of a 1/16" brass disk, and cooled by compressed air.

Counting equipment was composed of the above mentioned BF₃ detectors and two associated scalers.* The normalized measure of neutron density at a given point was expressed in terms of the ratio C₂/C₁. Both counting systems were checked periodically by placing the detectors in a standard geometry, which consisted of a plutonium-beryllium neutron source in a graphite pile.

The traversing detector (or detector, as opposed to the monitor), was protected from the solutions by insertion into a steel tube. It was noted that both soft solder and brass are corroded by nitrate solutions, so the tube was made by welding a steel disc on the end of a steel tube. The steel used for this purpose was type 304 stainless

*The scalers were Nuclear-Chicago Ultrascalers, Model 192A. The Reuter-Stokes 1" detector and Ultrascaler serial 209 are referred to as counter number one (C₁); the N. Wood 1/2" detector and Ultrascaler serial 204 as counter number two (C₂).
steel, and the welding was done gratis by Valley Roofing Corp., Roanoke, Virginia. Type 304 stainless steel proved resistant to corrosion by both ferric nitrate and thorium nitrate. Monel metal, which was used for fittings in the pump used for transfer and mixing of the solutions, also seemed corrosion resistant in these solutions. Nalgon plastic tubing was used in conjunction with the pump.

The aluminum box was coated inside with Miccropeel, a strippable film lacquer paint. However, the concentrated ferric nitrate solution blistered the film and caused slight localized pitting under the blisters. Before the thorium nitrate solution was run, the box was cleaned inside, and coated successively with Amercoat primer, two coats of Amercoat gray paint, and then with two coats of Miccropeel. In this case, the Miccropeel adhered well to the Amercoat and there was no evidence of blistering.

Data was characteristically taken in the following manner: the solution to be investigated was prepared by draining part of the previous solution from the box, refilling the box with demineralized water and, in the case of the viscous thorium solutions, circulating the solutions for a few hours with a pump to hasten mixing. The height of the solution in the box and the temperature of the solution were recorded, and the beam current of the accelerator was monitored and maximized. Counter efficiencies were monitored in the standard geometry, and the detectors subsequently placed in position; the monitor on the outside of the system and the detector in the solution. Traversals were normally started at one end of the 1-3/32" holes
(Fig. 2) along the (z) direction, either in position 2 or 10
(positions 1 and 11 were small holes adjacent to the edges of the
system). The detector was lowered to a fixed level, at which it was
symmetrically placed with respect to the target. Background counts
were taken on both counters, the accelerating voltage turned on, and
counting begun. After completion of a traversal, the neutron density
at the initial position was re-measured to assure reproducibility of
results. Normally, 10^6 counts were obtained at each point on both
counters unless the counting time required for a point exceeded 5-7
hours. The count registered by the detector for a given period,
corrected for resolving time, was divided by the corresponding
monitor count as a means of normalization to compensate for fluctu-
ations in neutron production. The counting rate of the monitor was
sufficiently slow so that it required no resolving time corrections.

Location of the monitor was extensively investigated. The
monitor was initially placed at different positions within the system
and the possibility of interaction between the detector and the
monitor investigated. When the monitor was placed so that its
counting rate would be compatible with counting times at a given
point of seven hours or less (as in position 1, near the target),
there was a slight indication of a flux depression around the monitor
by the detector when the detector was covered with cadmium and placed
in the adjacent position. The monitor was therefore placed on the
outside of the paraffin shielding, where there was no longer any such
NEUTRON DENSITY
$A(Z) \text{ vs. } (Z)$
IN
CONCENTRATED FE(NO$_3$)$_3$
NEUTRON DENSITY
A(Z) VS. (Z)
IN
FOUR CONCENTRATIONS OF FERRIC NITRATE

FIG. 4

POSITION
NEUTRON DENSITY
A(Z) VS. (Z)
IN
FOUR CONCENTRATIONS OF
THORIUM NITRATE.
effect, even though the cadmium cover was not normally used on the
detector, but only to determine flux behavior in the various solutions.

A lateral traverse (Fig. 6) was made in the (y) direction at
(z = position 6) to ascertain the general shape of, and to look for,
any significant irregularities in the neutron density in this region.
No such irregularities were noted.

Resolving Time

The resolving time of the Nuclear-Chicago Ultrascalers was
determined by introducing a series of two pulses with a variable
delay between them. Both pulses were obtained from a Hewlett-
Packard pulse generator, Model 212A; the primary or repetition pulse
being obtained from the "sync output" and the second or delayed pulse
from the "pulse output". The position in time of the second pulse
with respect to the first pulse is varied by adjusting the "pulse
advance" setting. These pulses were mixed in a UHF tee and fed into
the input jack of the Ultrascaler. Whenever the delay between two
pulses is more than the resolving time of the scaler, two pulses are
counted for each two introduced into the input. Conversely, when the
second pulse is introduced within the resolving time of the scaler,
only one pulse is counted for each two introduced at the input.
Therefore, by delaying the time interval between the two pulses and
noting where the counting rate changes by a factor of two, the resolving
time of the scaler is found. As may be noted in Figs. 7 and 8, the
NEUTRON DENSITY
$A(Y)$ VS. (Y)
POSITION AT $Z =$ POSITION
6 IN VERY DILUTE
TH(NO$_3$)$_4$
resolving time was found to be approximately 5 µ sec for pulses of approximately the same size as those obtained from a BF₃ detector (i.e., of the order of 5 mv in amplitude and 2 µs wide.)

Solutions

The concentrated solution of ferric nitrate was made by dissolving two hundred pounds of Fisher certified reagent grade Fe(NO₃)₃· 9H₂O crystals in water, the total volume of solution being 119,770 ± 200 cc.

Dilution were performed in the system by pumping or siphoning off part of the solution and refilling with water.

The concentrated solution of thorium nitrate was obtained from Davison Chemical Co., Erwin, Tennessee. The analysis of this solution is given in Table 8. Dilutions were performed as above with subsequent pumping of the diluted solutions to hasten mixing, since concentrated thorium nitrate is somewhat viscous.

The water used to perform these dilutions was obtained from the Barnstead demineralizer associated with the VPI reactor, and the purity of the water ranged from 0.1 - 0.5 ppm as NaCl.
Fig. 7
RESOLVING TIME OF C1

Fig. 8
RESOLVING TIME OF C2

COUNTS/MIN \(\times 10^3 \)

DELAY TIME OF SECOND PULSE (\(\mu\)S)

DELAY TIME OF SECOND PULSE (\(\mu\)S)
TABLE 1. NEUTRON DENSITY \(A(z) \) vs. \(z \) IN FERRIC NITRATE SOLUTIONS

<table>
<thead>
<tr>
<th>Position</th>
<th>Concentrated (A(z))</th>
<th>First Dilution (A(z))</th>
<th>Second Dilution (A(z))</th>
<th>Third Dilution (A(z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>23.072</td>
<td>26.650</td>
<td>28.296</td>
<td>32.021</td>
</tr>
<tr>
<td>3</td>
<td>19.228</td>
<td>21.913</td>
<td>23.644</td>
<td>26.742</td>
</tr>
<tr>
<td>4</td>
<td>13.441</td>
<td>15.231</td>
<td>16.659</td>
<td>19.199</td>
</tr>
<tr>
<td>5</td>
<td>8.246</td>
<td>9.442</td>
<td>10.003</td>
<td>11.797</td>
</tr>
<tr>
<td>6</td>
<td>4.469</td>
<td>5.311</td>
<td>5.445</td>
<td>6.471</td>
</tr>
<tr>
<td>7</td>
<td>2.805</td>
<td>3.203</td>
<td>3.314</td>
<td>3.881</td>
</tr>
<tr>
<td>8</td>
<td>1.535</td>
<td>1.732</td>
<td>1.778</td>
<td>2.048</td>
</tr>
<tr>
<td>9</td>
<td>0.761</td>
<td>0.862</td>
<td>0.908</td>
<td>1.043</td>
</tr>
<tr>
<td>10</td>
<td>0.395</td>
<td>0.437</td>
<td>0.447</td>
<td>0.522</td>
</tr>
</tbody>
</table>

TABLE 2. NEUTRON DENSITY \(A(z) \) vs. \(z \) IN THORIUM NITRATE SOLUTIONS

<table>
<thead>
<tr>
<th>Position</th>
<th>Concentrated (A(z))</th>
<th>First Dilution (A(z))</th>
<th>Second Dilution (A(z))</th>
<th>Water (A(z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20.101</td>
<td>23.034</td>
<td>27.858</td>
<td>31.599</td>
</tr>
<tr>
<td>3</td>
<td>16.431</td>
<td>18.466</td>
<td>23.518</td>
<td>26.721</td>
</tr>
<tr>
<td>5</td>
<td>7.235</td>
<td>8.180</td>
<td>10.284</td>
<td>11.830</td>
</tr>
<tr>
<td>6</td>
<td>3.988</td>
<td>4.501</td>
<td>5.489</td>
<td>6.588</td>
</tr>
<tr>
<td>7</td>
<td>2.359</td>
<td>2.617</td>
<td>3.220</td>
<td>3.892</td>
</tr>
<tr>
<td>8</td>
<td>1.293</td>
<td>1.410</td>
<td>1.738</td>
<td>2.109</td>
</tr>
<tr>
<td>9</td>
<td>0.658</td>
<td>0.722</td>
<td>0.884</td>
<td>1.062</td>
</tr>
<tr>
<td>10</td>
<td>0.319</td>
<td>0.357</td>
<td>0.439</td>
<td>0.515</td>
</tr>
</tbody>
</table>
VIII. DATA ANALYSIS

Cadmium ratios which varied from 40-80 and cadmium differences of 150-250 indicated that the bare detector was counting mostly neutrons with energy $E \leq 0.5$ ev (cadmium cut-off). The techniques of cadmium ratios and cadmium differences are standard techniques and are discussed in most texts (12). These techniques are based on the fact that the cross-section of cadmium in the low energy region looks somewhat like a step function, starting about 2400 barns in the thermal range, and rising to a peak of about 7200 barns at 0.18 ev. Therefore, the assumption is made that, for sufficiently thick cadmium, essentially all neutrons with energies less than some effective cut-off energy are absorbed in the cadmium shield. One is then able to tell approximately what the contribution to the total counting rate is due to neutrons of energies above and below this effective cut-off energy by taking the difference in counting rate with and without the cadmium shield ("cadmium difference"). Since the transmission of neutrons through cadmium is exponential in nature, the effective cut-off energy will vary slightly with cadmium thickness. The cut-off for 10 mil cadmium is approximately 0.4 ev, while it is between 0.5 and 0.6 ev for 30 mil thicknesses. In this experiment, the cadmium shield was approximately 30 mil thick. The cadmium ratio, R_{cd}, is defined as the ratio of the counting rate of the bare detector to the counting rate of the cadmium covered detector. (Many bare detectors normally used in measuring neutron
density or flux are sensitive to some extent to both thermal and resonance neutrons; when shielded with sufficient cadmium, they count essentially only resonance neutrons.) This ratio, \(R_{cd} \), is expressed as

\[
R_{cd} = \frac{\text{thermal counting rate} + \text{resonance counting rate}}{\text{resonance counting rate}}
\]

It is shown in Appendix A that, for an infinite system,

\[
q_{Th}(u_t) = q(u_o) P_{Th}, \quad \text{and}
\]

\[
q_{Fe}(u_t) = q(u_o) P_{Fe},
\]

where \(q(u_t) \) = the slowing down density at lethargy \(u_t \);

\[
q(u_o) = q(0) = \text{the slowing down density at source energy}
\]

\[
P_{Th} = \text{non-absorption probability for thorium}
\]

\[
P_{Fe} = \text{non-absorption probability for iron}
\]

For a finite system, however, neutrons are lost by absorption and by leakage. Therefore, we have in a finite system,

\[
q_{Th}(u_t) = q(u_o) P_{Th} P_{\alpha}, \quad \text{and}
\]

\[
q_{Fe}(u_t) = q(u_o) P_{Fe} P_{\alpha},
\]

where \(P_{\alpha} \) = non-leakage probability. Examination of the curves of neutron density versus spatial position for corresponding number densities (both total counts with bare detector, and fast counts with cadmium covered detector) shows that the spatial distribution of neutrons is essentially constant, indicating a constant leakage rate.
FAST NEUTRON DENSITY IN
H₂O, Fe(NO₃)₃, Th(NO₃)₄

○ CONC. Th(NO₃)₄
• CONC. Fe(NO₃)₃
X WATER

NEUTRON DENSITY (ARBITRARY UNITS)

FIG. 9 POSITION
for corresponding systems. This fact then allows us to cancel the non-leakage probabilities in the above equation. It is suggested, however, that if this method of determining R.E.P. is used over a wider range of concentrations or in more concentrated solutions, a measurement be made of leakage from the system and proper corrections applied.

Still using the previous notation, we have

\[q_{\text{Th}}(u_t) = \frac{q_{\text{Fe}}(u_t)}{p_{\text{Fe}}^2} p_{\text{Th(nr)}} \cdot p_{\text{Th(r)}} \cdot P_{\text{r}}. \]

We will now take the ratio \(\frac{p_{\text{Fe}}}{p_{\text{Th(nr)}}} \) and define \(k = \frac{p_{\text{Fe}}}{p_{\text{Th(nr)}}} \). Since \(p_{\text{Fe}} = kp_{\text{Th(nr)}} \), we may write

\[q_{\text{Th}}(u_t) = \frac{q_{\text{Fe}}(u_t)}{k} p_{\text{Th(r)}}, \]

or

\[p_{\text{Th(r)}} = \frac{k q_{\text{Th}}(u_t)}{q_{\text{Fe}}(u_t)}, \]

which is the measured R.E.P., and which is also the R.E.P. for an infinite system, due to the cancellation of non-leakage probabilities of corresponding number densities of thorium and iron.

A. Discussion of Results

A comparison of experimental results for R.E.P. with Monte Carlo predictions (see Fig. 12) shows good correlation between the two. The greatest experimental errors lie in the determination of the neutron density. The efficiency of the counting system was

*R.E.P. is the resonance escape probability for an infinite system, including neutrons which "skip" by the resonance region in one collision.
FE - IRON
TH - THORIUM

NEUTRON DENSITY
VS.
ABSORBER NUMBER DENSITY

FIG. 10 ABSORBER NUMBER DENSITY (x10^{21} ATOMS/CC.)

NEUTRON DENSITY (ARBITRARY UNITS)
MONTE CARLO LINE
MONTE CARLO POINTS
EXPERIMENTAL VALUES WITH ERROR BARS ±1%

COMPARISON
OF
MONTE CARLO R.E.P.‘∞
AND
EXPERIMENTAL R.E.P.‘∞

FIG. 12 THORIUM NUMBER DENSITY \(\times 10^{21} \text{ATOMS/CC.} \)
THEORY EXPERIMENT (ERROR BARS REFLECT ±1% IN REF. 8)
• MONTE CARLO
X BUSHNELL'S CALCULATIONS USING DRESNER'S METHOD
○ MACKLIN AND POMERANCE (P. 100, REF. 8) MEASURED
× MEASURED SEE P. 93, REF. 8, AND REF. 7.
× HUGHES AND EGGERT (MEASURED) SEE REF. 7.

FIG. 13 THORIUM NUMBER DENSITY (X 10^9 ATOMS/CC)
examined periodically in standard geometry, and showed that measurements of neutron density are reliable to within two percent. Seven such checks show a maximum deviation of initial and "check" counts of 1.33 percent, a minimum of eight parts in thirteen thousand, and an average of 0.69 percent. Since the statistics on the measurements of neutron density are better (of the order of 10^6 counts) than those on the "checks" ($10^5 - 10^6$ counts), an assignment of ± 1 percent to these measurements is reasonable. It should be kept in mind that by utilizing the area under a curve of neutron density vs. position, minor fluctuations would tend to cancel out, while any significant long-term drifts in either direction would be noted in the routine checks.

The error in R.E.P. caused by reasonable changes in cross-sections used in computations is also small, and would lead to changes in values obtained for the R.E.P. of ≤ 3 percent.

In order to increase the reliability of neutron density comparisons between thorium and the equivalent iron concentrations, the lines of neutron density versus number density of absorber (Fig. 8) are drawn from the least concentrated solutions to the most concentrated solutions, thereby tending to minimize any possible discrepancies in the dilution and/or sampling procedures. It should be noted, however, that a least squares fit (which is considered less accurate in this case), would change the slope of both lines by approximately the same amount.
Even though this experiment is designed to measure the R.E.P. rather than the effective resonance integral (I_{eff}), a comparison of I_{eff} calculated from both the experimental and Monte Carlo values of R.E.P. is made in Fig. 13. Two things should be noted in the interpretation of this graph. First, it should be noted, as mentioned above, that determining I_{eff} from the R.E.P. is not normally done, since an uncertainty of 1 percent in the R.E.P. may cause an uncertainty of order of 100 percent in I_{eff}. Second, the values obtained for I_{eff} from Monte Carlo values of R.E.P. and the values of R.E.P. obtained from this experiment are for absorption in the resonance region. The I_{eff} normally reported is composed of this quantity ($I_{\text{eff(res)}}$) plus the small contribution between cadmium cut-off and the resonance region, and the small contribution above the resonance region. Therefore, a correction (2.5 barns) has been added to our $I_{\text{eff(res)}}$ to yield a value of $I_{\text{eff(total)}}$ which is directly comparable with other experimental determinations of I_{eff}.

B. Summary

An experiment was performed on aqueous solutions of thorium nitrate and ferric nitrate to determine the resonance escape probability of thorium in such a system with physical dimensions of 61 cm. x 61 cm. x 33 cm. Neutrons for the experiment were obtained by the D(d, n) He3 reaction with deuterons from a Cockcroft-Walton 200 kev accelerator. The neutron density was examined at given spatial points as a function of concentration of the above salts. By
compensation for spectral changes of the neutrons in the energy range "seen" by the bare detector, it was possible to subtract the absorption due to a smooth thorium cross-section from the actual cross-section, thereby giving the effect of absorption in the resonance peaks. The correlation with the Monte Carlo calculations in the range of the experiment is good, being within 1 percent.
IX. ACKNOWLEDGEMENTS

The author is indebted to many people for their aid in this experiment and in his graduate studies:

To the United States Atomic Energy Commission for financial support of the experiment,

To the members of his graduate committee; Dr. James A. Jacobs, Department Head; Dr. Andrew Robeson, thesis advisor; Dr. A. Keith Purr; Dr. Clarence D. Bond, and Dr. Svend T. Gormsen, for their advice and review of the thesis,

To Dr. W. G. Pettus of Babcock and Wilcox for his critical review of the rough thesis,

To all the graduate students who have contributed to the construction and/or experiment; to , co-worker;

, , ,

, and ,

To for her typing of the smooth thesis, and

: for his drawing,

And mostly to his wife, for her sacrifices and encouragement during the years of graduate school.
X. BIBLIOGRAPHY

The vita has been removed from the scanned document
APPENDIX A. DERIVATION OF STANDARD EXPRESSION
FOR RESONANCE ESCAPE PROBABILITY

An application of the laws of conservation of linear momentum and energy to perfectly elastic neutron collisions with nuclei initially at rest shows that the kinetic energy \(E \) of a neutron in the laboratory after collision is related to its initial kinetic energy \(E_0 \) by

\[
E = \frac{E_0}{(A + 1)^2} \left(A^2 + 2\eta A + 1 \right)
\]

where

\[
A = \frac{M}{m}
\]

\(M \) = mass of nucleus

\(m \) = mass of neutron

\(\eta = \cos \beta \)

\(\beta \) = angle between the initial and final velocities of the neutron in the center of mass system.

The maximum value of \(E \) is seen to be \(E_0 \), while the minimum value is

\[
E_{\text{min}} = \frac{E_0}{(A + 1)^2} \left(A^2 - 2\eta A + 1 \right) = E_0 \frac{(A - 1)^2}{(A + 1)^2} = \alpha E_0,
\]

where

\[
\alpha = \left(\frac{A - 1}{A + 1} \right)^2.
\]

We may now define a frequency function, \(f \), which describes the angular distribution of neutrons emerging from a collision between a neutron of given speed and a nucleus of a particular type:
Energy, Lethargy and Slowing-down Density Relationships

Figure 14
\[f(\eta) \, d\eta = \text{fraction of all scattering collisions which result in scattering angles in the C.M. system whose cosines lie between } \eta \text{ and } \eta + d\eta. \]

For isotropic scattering in the center-of-mass system, the cosine of the scattering angle \(\eta \) is uniformly distributed between -1 and 1. \(f(\eta) \) is therefore a constant and its value is 1/2. We next define a frequency function in energy by

\[h(E, E_o) \, dE = \text{fraction of all scattering collisions which result in final kinetic energies of neutrons in range } E \text{ to } E + dE, \text{ where } 0 \leq E \leq E_o. \]

We require that the probability that a certain event occur be the same regardless of the independent variable (\(E \) or \(\eta \)) used to describe it. This implies

\[h(E, E_o) \, dE = f(\eta) \, d\eta. \]

\(h, f, h \, dE \) and \(f \, d\eta \) are positive quantities; therefore,

\[h(E, E_o) = f(\eta) \, \frac{dn}{dE}. \]

From

\[E = \frac{E_o}{(A + 1)^2} \left(A^2 + 2\eta \, A + 1 \right) \]

we find

\[\frac{dn}{dE} = \frac{(A + 1)^2}{2 \, A \, E_o}. \]

Therefore

\[h(E, E_o) = \frac{1}{2} \cdot \frac{(A + 1)^2}{2 \, A \, E_o} = \frac{(A + 1)^2}{4 \, A \, E_o} = \frac{1}{(1 - \alpha) \, E_o}. \]
We may transform this energy frequency function to one in lethargy. The lethargy, \(u \), of a neutron of kinetic energy \(E \), is defined as
\[
u = \ln \frac{E_{\text{ref}}}{E}
\]
where \(E_{\text{ref}} \) is the highest energy of interest.

The frequency function \((g)\) in lethargy space is defined as:
\[
g(u, u_0) \, du = \text{probability that a neutron of lethargy } u_0 \text{ when scattered emerges with a lethargy between } u \text{ and } u + du
\]

We require that
\[
| g(u, u_0) \, du | = | h(E, E_0) \, dE |
\]
and
\[
g(u, u_0) = h(E, E_0) \left| \frac{dE}{du} \right|.
\]

From the definition of lethargy
\[
u = \ln \frac{E_{\text{ref}}}{E}
\]
we have
\[
du = - \frac{dE}{E}, \text{ and } \frac{dE}{du} = -E.
\]

Now
\[
e^u = e^{\frac{E_{\text{ref}}}{E}} \quad \text{and} \quad e^{-u} = e^{-\ln \frac{E_{\text{ref}}}{E}}
\]
and
\[
e^{u - u_0} = e^{\frac{E_{\text{ref}}}{E_0} - \ln \frac{E_{\text{ref}}}{E}} = e^{\frac{E_{\text{ref}}}{E_0} \ln \frac{E_0}{E}} = e^{\frac{E_{\text{ref}}}{E_0} \ln \frac{E_0}{E}} = e^{\frac{E_{\text{ref}}}{E_0} \ln \frac{E_0}{E}}
\]
\[
g(u, u_0) = \frac{1}{(1 - \alpha) E_0} \left| - E \right| = \frac{E}{E_0} \left(\frac{1}{1 - \alpha} \right) = \frac{-(u - u_0)}{1 - \alpha}.
\]
The corresponding distribution function, $G(u, u_0)$ is defined to be

$$G(u, u_0) = \int_{u_0}^{u} g(u'; u_0) \, du'$$

(\text{where prime here denotes variable of integration})

$$= \frac{u - u'}{u_0} \cdot \frac{u_0}{1 - \alpha} \, du' = \frac{u_0 - u + e}{1 - \alpha} = \frac{1 - e}{1 - \alpha}.$$

This is the probability that a neutron with an initial lethargy u_0 emerges with lethargy $\leq u$. The probability of a neutron of lethargy u_0 emerging from the scattering process with lethargy $> u$ is

$$1 - G(u, u_0) = 1 - \frac{1 - e}{1 - \alpha} = \frac{1 - \alpha - 1 + e}{1 - \alpha} = \frac{e}{1 - \alpha}.$$

The total number of neutrons scattered from du' which emerge with lethargy greater than u is then

$$\sum_s (u') \, g(u') \left[\frac{e^{-(u-u')} - \alpha}{1 - \alpha} \right] \, du'.$$

The "slowing-down density", $q(u)$ is defined as the number of neutrons crossing lethargy u per second per unit volume. In order to obtain the total contribution to the slowing-down density $q(u)$ from all intervals du', we integrate the above from lethargy u_0 corresponding to E_0 to lethargy u, corresponding to E. To eliminate the necessity for a correction for the first-flight losses, we modify the limits and specify the minimum lethargy. As was indicated previously (p.40,41) the energy range of interest is from $\frac{E}{\alpha}$ to E where $\frac{E}{\alpha} < E_0$. The corresponding lethargy interval becomes u to $u - \ln \frac{1}{\alpha}$ where
\[u > u_0 + \ln \frac{1}{\alpha} \]. Thus, the slowing-down density becomes:

\[
q(u) = \int_{u - \ln \frac{1}{\alpha}}^{u} \sum_s (u') \varrho(u') \left[\frac{e^{-(u-u')} - \alpha}{1 - \alpha} \right] du'.
\]

Choosing the reference energy \(E_{\text{ref}} \) as \(E_0 \) implies that \(u_0 = 0 \).

We now consider the above equation for \(q(u) \) and introduce the condition that

\[
\frac{d}{du} q(u) = - \sum_s (u) \varrho(u)
\]

where \(q(u_0) \) is defined as \(q_0 \).

For small absorption, \(\varrho(u) \) is a slowly varying function, and

\[
\sum_s (u') \varrho(u') \text{ can be expanded in a Taylor series about } u.
\]

Retaining the first two terms, we have

\[
\sum_s (u') \varrho(u') \approx \sum_s (u) \varrho(u) + (u' - u) \frac{d}{du} \left[\sum_s (u) \varrho(u) \right].
\]

Substituting this in the equation for \(q(u) \):

\[
q(u) = \frac{1}{\alpha} \int_{u - \ln \frac{1}{\alpha}}^{u} \left\{ \sum_s (u) \varrho(u) + (u' - u) \frac{d}{du} \sum_s (u) \varrho(u) \right\} \left[e^{(u'-u)} - \alpha \right] du'.
\]
If we define
\[\psi = 1 - \frac{\alpha \ln^2 \alpha}{2(1 - \alpha)} \]
and define
\[\xi = \ln \frac{E}{E_o} = \int_{0}^{E_o} \ln \frac{E}{E_o} h(E, E_o) \, dE \]
\[= \int_{0}^{E_o} \ln \left(\frac{E}{E_o} \right) \frac{dE}{(1 - \alpha) E_o} = 1 + \frac{\alpha \ln \alpha}{1 - \alpha} \]

\[q(u) \text{ becomes upon integration} \]
\[q(u) \approx \xi \sum_s (u) \vartheta(u) - \gamma \frac{d}{du} \left[\sum_s (u) \vartheta(u) \right] \]

As a first approximation, we take
\[q(u) \approx \xi \sum_s (u) \vartheta(u) \frac{d}{du} q(u) = \xi \frac{d}{du} \left[\sum_s (u) \vartheta(u) \right] \]

If this approximate derivative is substituted in the above result of integration, we have
\[q(u) \approx \xi \sum_s (u) \vartheta(u) - \gamma \xi \cdot \frac{1}{\xi} \frac{d}{du} q(u) \]

If we refer to our previous assumption that
\[\frac{d}{du} q(u) = - \sum_s (u) \vartheta(u) \]
and use this relationship for \(q(u) \)
\[q(u) \approx \xi \sum_s (u) \vartheta(u) - \gamma \left[- \sum_s (u) \vartheta(u) \right] \]
\[
q(u) \approx \left[\xi \sum_a (u) + \gamma \sum_a (u) \right] \theta(u).
\]

But \(\theta(u)\) from the above assumption is

\[
\theta(u) = -\frac{1}{\sum_a (u)} \frac{d}{du} q(u).
\]

So

\[
q(u) \approx -\left[\xi \sum_a (u) + \gamma \sum_a (u) \right] \frac{1}{\sum_a (u)} \frac{dq(u)}{du}.
\]

or

\[
\frac{dq(u)}{du} + \frac{\sum_a (u)}{\xi \sum_a (u) + \gamma \sum_a (u)} q(u) = 0.
\]

This is a linear differential equation whose integrating factor is

\[
I = \exp \left[\int_0^u \frac{\sum_a (u)}{\xi \sum_a (u) + \gamma \sum_a (u)} \, du \right].
\]

The solution is

\[
qI = \text{constant (C)}.
\]

\[
q(u) \exp \left[\int_0^u \frac{\sum_a (u)}{\xi \sum_a (u) + \gamma \sum_a (u)} \, du \right] = C.
\]

\[
q(u) = C \exp \left[- \int_0^u \frac{\sum_a (u)}{\xi \sum_a (u) + \gamma \sum_a (u)} \, du \right].
\]

\[
q(u) = q_0 \exp \left[- \int_0^u \frac{\sum_a (u)}{\xi \sum_a (u) + \gamma \sum_a (u)} \, du \right].
\]

The nonabsorption probability for a system containing some absorbing material is given by the above exponential. In general for any
interval \(u_1 \) to \(u_2 \), the nonabsorption probability, or resonance escape probability, is defined by

\[
\text{R.E.P.} = \exp - \int_{u_1}^{u_2} \frac{\sum a(u)}{\xi \sum t(u)} \, du
\]

if the assumption is made that \(\xi \approx \gamma \).

Using the above notation, the probability of a neutron going from source lethargy to the lethargy corresponding to \(E_t \), where \(E_t \) is an undefined mean energy of the measured neutron population in the system, is \(P \). This energy will be near thermal, and < 0.5 ev, but need not be known precisely in this case.

For iron, we may write

\[
q_{Fe}(u_t) = q(u_o) P_{Fe},
\]

where \(q_{Fe}(u_t) \) is the slowing down density at \(u_t \), the lethargy corresponding to \(E_t \), the energy somewhere near "thermal", \(q(u_o) \) is the slowing down density at source lethargy, and \(P_{Fe} \) is the non-absorption probability of a neutron traversing the lethargy range from \(u_o \) to \(u_t \) in the ferric nitrate solution.

We may write an analogous equation for thorium:

\[
q_{Th}(u_t) = q(u_o) P_{Th},
\]

where \(P_{Th} \) is the non-absorption probability for a neutron traversing the same lethargy range in the thorium nitrate solution, and is composed of the non-resonance non-absorption probability \((P_{Th(nr)}) \) and resonance non-absorption probability \((P_{Th(r)}) \). The non-resonance absorption is the absorption which would be exhibited by thorium if
it had a smooth cross-section without resonances. Thus,

\[P_{\text{Th}} = P_{\text{Th(nr)}} \cdot P_{\text{Th(r)}} \]

where the subscripts r and nr refer to resonance and non-resonance conditions respectively, and the above is true since \(P_{\text{Th(nr)}} \) and \(P_{\text{Th(r)}} \) as defined are independent probabilities.

Noting that \(P_{\text{Fe}} = k P_{\text{Th(nr)}} \), we may solve for \(q(u_o) \) from the iron equation and substitute in the thorium equation:

\[
q(u_o) = \frac{q_{\text{Fe}}(u_t)}{P_{\text{Fe}}}
\]

\[
q_{\text{Th}}(u_t) = \left(\frac{q_{\text{Fe}}(u_t)}{P_{\text{Fe}}} \right) \cdot P_{\text{Th}}
\]

\[
= \left(\frac{q_{\text{Fe}}(u_t)}{P_{\text{Fe}}} \right) (P_{\text{Th(nr)}} \cdot P_{\text{Th(r)}})
\]

\[
= \left(\frac{q_{\text{Fe}}(u_t)}{P_{\text{Fe}}} \right) \cdot P_{\text{Th(r)}}
\]

or

\[
P_{\text{Th(r)}} = \frac{k q_{\text{Th}}(u_t)}{q_{\text{Fe}}(u_t)}
\]

\(k \), the ratio of \(\frac{P_{\text{Fe}}}{P_{\text{Th}}} \), is evaluated by comparing the probability of non-absorption of a neutron upon interaction with equal number densities of absorbers. The probability of non-absorption per interaction is given by \(P = \frac{\sigma_s}{\sigma_t} \). A calculation of \(P \) for \(\text{Fe(NO}_3)_3 \) and for \(\text{Th(NO}_3)_4 \) shows \(k \) is, within the accuracy of the cross-sections, equal to 1.0.
It is shown (Ref. 13, p. 160, 171) that in the asymptotic case, when the neutron energies are less than \(\alpha E_o \), that \(q = \sum_i \theta_i \) for a weakly absorbing system.

Also, it is seen that the reaction rate in a detector containing \(\text{B}^{10} \) is a function of \(\theta \). (Ref. 15, p. 260) The contribution \(dR \) to the reaction rate by neutrons between the energy \(E \) and \(E + dE \) in the volume element \(dV \) is

\[
dR = N(r) \sigma(E) \theta(E, r) dE dV
\]

where \(N(r) = \text{number of } \text{B}^{10} \text{ atoms per unit volume at point } r. \)

\(\sigma(E) = \sigma_{\text{B}^{10}}^{(n,\alpha)} \) cross-section at energy \(E. \)

\(\theta(E, r) = \text{flux per unit energy interval at point } r. \)

We may see then, that \(dR \propto \theta \), and may write

\[
P_{\text{Th}}(r) = \frac{R_{\text{Th}}}{R_{\text{Fe}}}
\]

where \(R_{\text{Th}} \) and \(R_{\text{Fe}} \) are the normalized counts at a given point, corrected to the same value of \(F = \left(\sum_i \frac{a}{k} \sum_s \theta_i \right) \), a procedure which compensates for the differences in the "Maxwellian" thermal flux in the thorium and iron systems. (See Appendix B.)

If, however, instead of the normalized counts at a point, we plot normalized counts versus \(z \), we have a more reliable measurement of \(q_{\text{Th}}(u_t) \) and \(q_{\text{Fe}}(u_t) \) for comparison. Therefore, we now write

\[
P_{\text{Th}}(r) = \frac{A_{\text{Th}}}{A_{\text{Fe}}}
\]

where \(A_{\text{Th}} \) and \(A_{\text{Fe}} \) represent the areas under curves of counts versus \(z \), properly normalized and corrected to the same value of \(F \).
APPENDIX B. CORRELATION OF FLUX DISTRIBUTIONS

In order to properly compare the counting rates obtained with a BF₃ detector in solutions of the same absorber number densities, but which have different nuclear parameters, one must compensate for changes in the Maxwellian distribution of the neutrons in the thermal region. We will identify the following parameters:

\[E_0 = \text{the most probable energy of the Maxwellian distribution} \]

\[E_1 = \text{the energy at which the Maxwellian and } 1/E \text{ fluxes join.} \]

It is shown in standard texts that

1. \[q(E_1) = \frac{Q_T}{a} \sum a, \text{ and that} \]

2. \[\tilde{G}(E) = \frac{q_o \frac{P_r}{\bar{\xi}} \frac{P_{nr}}{\sum s E}}{\sum a}, \text{ where} \]

\[\tilde{G}(E) = \text{flux at energy } E \]

\[P_r = \text{resonance escape probability} \]

\[P_{nr} = \text{non-resonance escape probability} \]

\[\bar{\xi} = \text{average logarithmic energy decrement per collision} \]

\[\sum s = \text{macroscopic scattering cross-section} \]

\[q(E_1) = \text{slowing down density at energy } E_1 \]

\[q_o = \text{slowing down density at source energy} \]

\[Q_T = \text{total flux} = \int_{0}^{\infty} \tilde{G}(E) \text{ dE} \]

\[\sum a = \text{macroscopic absorption cross-section corresponding to average energy} \]

For a weakly absorbing system, we may write:

3. \[\bar{\xi} \sum s E_1 \tilde{G}(E_1) = Q_T \sum a \]

The Maxwellian flux is given by:
Fig. 15

MAXWELL-BOLTZMANN DISTRIBUTION
OF ENERGY (ILLUSTRATING THE
"MAXWELLIAN" AND "1/E" REGIONS)

E_0 = most probable Maxwellian energy

E_1 = Junction between "Maxwellian"
and "1/E" regions
The Maxwellian flux at energy \(E_1 \) is then

\[
q_m(E_1) = \frac{Q_T}{E_0} E_1 e^{-E/E_0}
\]

But \(q_m(E_1) = \frac{P_{\text{maxm}} P_{\text{maxm}}}{E_1} \) from (2) for a unit source.

So

\[
\frac{P_{\text{maxm}} P_{\text{maxm}}}{\xi \sum_s E_1} = \frac{Q_T}{E_0} E_1 e^{-E/E_0}
\]

If we invoke the boundary condition that \(\frac{E_1}{E_0} = \frac{E_1}{E_0} \), and substitute for \(\frac{E_1}{E_0} \) in Eq. (3):

\[
\frac{P_{\text{maxm}} P_{\text{maxm}}}{\xi \sum_s E_1} \left(\frac{Q_T}{E_0} E_1 e^{-E/E_0} \right) = \frac{E_1}{E_0} \sum_a
\]

we obtain

\[
\frac{E_1^2}{E_0^2} e^{-E_1/E_0} = \frac{\sum_a}{\xi \sum s}
\]

which says that if two thermal distributions are the same, their values of \(\frac{\sum_a}{\xi \sum s} \) will be the same. Conversely, in order to compensate for changes in the flux distributions of two systems, we will require that equal values of \(\frac{\sum_a}{\xi \sum s} \) be compared, rather than equal number densities of absorbers.

The criterion for comparison of "thermal" counting rates in absorbing solutions being established as \(\frac{\sum_a}{\xi \sum s} = F \), we may compute \(F \) for ferric nitrate and thorium nitrate, noting that \(\xi \) is essentially
the same for comparable absorber number densities in these dilute
hydrogenous media:

\[F_{Abs} = \frac{N_{Abs} (\sigma_a Abs) + N_{NO_3} (\sigma_a NO_3)}{N_{Abs} (\sigma_a Abs) + N_{NO_3} (\sigma_a NO_3)} \]

where \(F_{Abs} = F_{Th} \) or \(F_{Fe} \)

\[N_{Abs} = \text{number of absorber atoms used in the comparison (}= 1) \]
\[N_{NO_3} = \text{number of nitrate radicals per absorber atom (3 or 4)} \]
\[\sigma_{NO_3} = \sigma_N + 3 \sigma_o \]

We thus obtain values for \(F_{Fe} \) and \(F_{Th} \) of 0.10368 and 0.1408 when \(\varepsilon = 1 \). The change in variable in the plot of neutron density vs. absorber number density to neutron density vs. \(F \) is then accomplished by translation of points of one line in the first plot with respect to the other line as indicated by the ratio of \(F \)'s. The measured neutron densities are thereby given as a function of \(F \), and their ratios are taken for a given \(F \) value to determine the resonance escape probability, as shown in Appendix A.
APPENDIX C. TABULATIONS OF DATA AND VALUES OF PARAMETERS USED

TABLE 3. NEUTRON DENSITY $A(z)$ vs. (z) POSITION IN CONCENTRATED FERRIC NITRATE

<table>
<thead>
<tr>
<th>Position (cm.)</th>
<th>$A(z)$ (arbitrary units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.678</td>
</tr>
<tr>
<td>0.6</td>
<td>0.876</td>
</tr>
<tr>
<td>1.6</td>
<td>1.014</td>
</tr>
<tr>
<td>2.6</td>
<td>1.066</td>
</tr>
<tr>
<td>3.6</td>
<td>1.035</td>
</tr>
<tr>
<td>4.6</td>
<td>0.974</td>
</tr>
<tr>
<td>5.6</td>
<td>0.885</td>
</tr>
<tr>
<td>6.6</td>
<td>0.784</td>
</tr>
<tr>
<td>7.6</td>
<td>0.696</td>
</tr>
<tr>
<td>8.6</td>
<td>0.603</td>
</tr>
<tr>
<td>9.6</td>
<td>0.518</td>
</tr>
<tr>
<td>10.6</td>
<td>0.439</td>
</tr>
<tr>
<td>11.6</td>
<td>0.376</td>
</tr>
<tr>
<td>12.6</td>
<td>0.290</td>
</tr>
<tr>
<td>13.6</td>
<td>0.260</td>
</tr>
<tr>
<td>14.6</td>
<td>0.212</td>
</tr>
<tr>
<td>15.6</td>
<td>0.178</td>
</tr>
<tr>
<td>16.6</td>
<td>0.164</td>
</tr>
<tr>
<td>17.6</td>
<td>0.129</td>
</tr>
<tr>
<td>18.6</td>
<td>0.107</td>
</tr>
<tr>
<td>19.6</td>
<td>0.086</td>
</tr>
<tr>
<td>20.6</td>
<td>0.072</td>
</tr>
<tr>
<td>21.6</td>
<td>0.059</td>
</tr>
<tr>
<td>22.6</td>
<td>0.048</td>
</tr>
<tr>
<td>23.6</td>
<td>0.040</td>
</tr>
<tr>
<td>24.6</td>
<td>0.037</td>
</tr>
<tr>
<td>25.6</td>
<td>0.026</td>
</tr>
<tr>
<td>26.6</td>
<td>0.022</td>
</tr>
<tr>
<td>Thorium Solution</td>
<td>Thorium Number Density (x 10^{21} atoms/cc.)</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Concentrated</td>
<td>1.054</td>
</tr>
<tr>
<td>First Dilution</td>
<td>0.768</td>
</tr>
<tr>
<td>Second Dilution</td>
<td>0.431</td>
</tr>
<tr>
<td>Water</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iron Solution</th>
<th>Iron Number Density (x 10^{21} atoms/cc.)</th>
<th>Neutron Density (arbitrary units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated</td>
<td>1.128</td>
<td>187</td>
</tr>
<tr>
<td>First Dilution</td>
<td>0.680</td>
<td>213</td>
</tr>
<tr>
<td>Second Dilution</td>
<td>0.558</td>
<td>228</td>
</tr>
<tr>
<td>Third Dilution</td>
<td>0.000</td>
<td>262</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Thorium Number Density (x 10^{21} atoms/cc.)</td>
<td>Thorium Neutron Density</td>
<td>Corresponding Iron Neutron Density</td>
</tr>
<tr>
<td>0.1000</td>
<td>252.4</td>
<td>253.1</td>
</tr>
<tr>
<td>0.2000</td>
<td>242.8</td>
<td>244.1</td>
</tr>
<tr>
<td>0.2439</td>
<td>238.6</td>
<td>240.2</td>
</tr>
<tr>
<td>0.3000</td>
<td>233.2</td>
<td>235.2</td>
</tr>
<tr>
<td>0.3991</td>
<td>223.6</td>
<td>226.1</td>
</tr>
<tr>
<td>0.5000</td>
<td>214.0</td>
<td>217.1</td>
</tr>
<tr>
<td>0.6000</td>
<td>204.5</td>
<td>208.1</td>
</tr>
<tr>
<td>0.6231</td>
<td>202.3</td>
<td>206.0</td>
</tr>
<tr>
<td>0.7000</td>
<td>194.9</td>
<td>199.1</td>
</tr>
<tr>
<td>0.8000</td>
<td>185.3</td>
<td>190.0</td>
</tr>
<tr>
<td>0.9000</td>
<td>175.7</td>
<td>181.0</td>
</tr>
<tr>
<td>0.9013</td>
<td>175.6</td>
<td>183.2</td>
</tr>
<tr>
<td>1.0000</td>
<td>166.05</td>
<td>172.05</td>
</tr>
<tr>
<td>Thorium Number Density (x 10^{21} atoms/cc.)</td>
<td>Experimental I_{eff}</td>
<td>α_p</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Infinite Dilution</td>
<td>I_{eff}(res)</td>
<td>I_{eff}(total)</td>
</tr>
<tr>
<td>0.2439</td>
<td>36.2</td>
<td>38.7±56.6</td>
</tr>
<tr>
<td>0.3991</td>
<td>37.0</td>
<td>39.5±34.6</td>
</tr>
<tr>
<td>0.6231</td>
<td>37.6</td>
<td>40.1±22.0</td>
</tr>
<tr>
<td>0.7370</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>0.9013</td>
<td>40.6</td>
<td>43.1±15.2</td>
</tr>
</tbody>
</table>

* It should be noted that the uncertainty given for these values is caused by the uncertainty of ± 1 percent in the R.E.P., indicating that one would not normally determine I_{eff}, the "effective resonance integral", from measurements of the R.E.P.
TABLE 7. VALUES USED FOR COMPUTATION OF $\bar{\xi}$

<table>
<thead>
<tr>
<th>N_{Th}</th>
<th>$s (cm^{-1})$</th>
<th>ξ_{ox}</th>
<th>N_{ox}</th>
<th>$\sigma_{ox}(b)$</th>
<th>ξ_{ox}</th>
<th>N_{H}</th>
<th>$\sigma_{H}(b)$</th>
<th>ξ_{H}</th>
<th>H</th>
<th>ξ_{N}</th>
<th>N_{N}</th>
<th>$\sigma_{N}(b)$</th>
<th>ξ_{N}</th>
<th>N</th>
<th>$\bar{\xi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2439</td>
<td>1.459</td>
<td>0.12</td>
<td>35.42</td>
<td>3.8</td>
<td>0.0162</td>
<td>1</td>
<td>64.99</td>
<td>20.2</td>
<td>1.3128</td>
<td>0.136</td>
<td>0.976</td>
<td>9.1</td>
<td>0.0121</td>
<td>0.9192</td>
<td></td>
</tr>
<tr>
<td>0.3991</td>
<td>1.448</td>
<td>0.12</td>
<td>36.69</td>
<td>3.8</td>
<td>0.0167</td>
<td>1</td>
<td>63.81</td>
<td>20.2</td>
<td>1.2890</td>
<td>0.136</td>
<td>1.596</td>
<td>9.1</td>
<td>0.0198</td>
<td>0.9154</td>
<td></td>
</tr>
<tr>
<td>0.6231</td>
<td>1.419</td>
<td>0.12</td>
<td>38.91</td>
<td>3.8</td>
<td>0.0177</td>
<td>1</td>
<td>61.43</td>
<td>20.2</td>
<td>1.2409</td>
<td>0.136</td>
<td>2.492</td>
<td>9.1</td>
<td>0.0308</td>
<td>0.9087</td>
<td></td>
</tr>
<tr>
<td>0.9013</td>
<td>1.359</td>
<td>0.12</td>
<td>39.64</td>
<td>3.8</td>
<td>0.0181</td>
<td>1</td>
<td>57.64</td>
<td>20.2</td>
<td>1.1643</td>
<td>0.136</td>
<td>3.605</td>
<td>9.1</td>
<td>0.0446</td>
<td>0.9029</td>
<td></td>
</tr>
</tbody>
</table>

$N_i = \text{number density of nuclide } i \ (x \ 10^{21}) \ \text{per cc.}$

$\sigma_i = \text{microscopic scattering cross-section of } i \ \text{th nuclide}$

$\sum_i = N_i \sigma_i$

$\sum_s = \text{total macroscopic scattering cross-section for all nuclides present}$

$$\bar{\xi} = \frac{1}{\sum_s(u)} \sum_{i=1}^N \xi_i \sum_s (1) (u)$$
CERTIFICATE OF ANALYSIS

Material: Thorium Nitrate Solution
Customer: Virginia Polytechnic Institute

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ANALYSIS, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td><0.10</td>
</tr>
<tr>
<td>Al</td>
<td>18</td>
</tr>
<tr>
<td>B</td>
<td>0.28</td>
</tr>
<tr>
<td>Ba</td>
<td><5</td>
</tr>
<tr>
<td>Be</td>
<td><0.1</td>
</tr>
<tr>
<td>Bi</td>
<td>4</td>
</tr>
<tr>
<td>Ca</td>
<td>34</td>
</tr>
<tr>
<td>Cd</td>
<td><0.1</td>
</tr>
<tr>
<td>Co</td>
<td>1</td>
</tr>
<tr>
<td>Cr</td>
<td>6</td>
</tr>
<tr>
<td>Cu</td>
<td>3</td>
</tr>
<tr>
<td>Fe</td>
<td>120</td>
</tr>
<tr>
<td>Li</td>
<td><50</td>
</tr>
<tr>
<td>Mg</td>
<td>12</td>
</tr>
<tr>
<td>Mn</td>
<td><2</td>
</tr>
<tr>
<td>Mo</td>
<td><1</td>
</tr>
<tr>
<td>Na</td>
<td><75</td>
</tr>
<tr>
<td>Ni</td>
<td><10</td>
</tr>
<tr>
<td>P</td>
<td>170</td>
</tr>
<tr>
<td>Pb</td>
<td><1</td>
</tr>
<tr>
<td>Si</td>
<td>10</td>
</tr>
<tr>
<td>Sn</td>
<td>2</td>
</tr>
<tr>
<td>Sr</td>
<td><100</td>
</tr>
<tr>
<td>Ti</td>
<td>0.75</td>
</tr>
<tr>
<td>V</td>
<td><5</td>
</tr>
<tr>
<td>Zn</td>
<td><25</td>
</tr>
<tr>
<td>Zr</td>
<td><2</td>
</tr>
</tbody>
</table>

Thorium 406.5 grams/liter

Certified By: K. D. Healy
Quality Control Department
TABLE 9

NO. J-421-12

ANALYSIS OF 8 AQUEOUS SOLUTIONS OF FERRIC NITRATE

MADE FOR: VIRGINIA POLYTECHNIC INSTITUTE, DEPARTMENT OF PHYSICS, BLACKSBURG, VA. ATTN: MR. LEE S. ANTHONY, GRADUATE ASSISTANT

MARKED: AS SHOWN BELOW:

0-0-0

<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>TOTAL IRON as Fe, % BY VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>3.10</td>
</tr>
<tr>
<td>E2</td>
<td>2.96</td>
</tr>
<tr>
<td>E3</td>
<td>3.29</td>
</tr>
<tr>
<td>E4</td>
<td>8.59</td>
</tr>
<tr>
<td>C</td>
<td>CONCENTRATED Fe(NO₃)₃</td>
</tr>
<tr>
<td>D</td>
<td>FIRST DILUTION Fe(NO₃)₃</td>
</tr>
<tr>
<td>E</td>
<td>SECOND DILUTION TAKEN AFTER FIRST CARBOY</td>
</tr>
<tr>
<td>F</td>
<td>VERY DILUTE Fe(NO₃)₃</td>
</tr>
</tbody>
</table>

REMARKS: PRELIMINARY TESTS INDICATED THAT THE IRON CONTENT COULD BE DETERMINED BY EITHER OF TWO PROCEDURES, NAMELY, (1) PRECIPITATING THE IRON BY MAKING THE ACIDIFIED SOLUTIONS AMMONIACAL, FILTERING OFF THE R₂O₃, IGNITING AND WEIGHING THE OXIDES GRAVIMETRICALLY; (2) BY REDUCING THE ACIDIFIED SOLUTIONS WITH STANNOUS CHLORIDE AND TITRATING WITH N/20 POTASSIUM DICHROMATE SOLUTION. THE ABOVE RESULTS WERE OBTAINED USING THE LATTER PROCEDURE.

RESPECTFULLY,
FROEHLING & ROBERTSON, INC.

4cc VIRGINIA POLYTECHNIC INSTITUTE
CERTIFICATE OF ANALYSIS

TABLE 10

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>Th (NO₃)₄</th>
<th>ANALYSIS, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Container Number</td>
<td>Grams of Thorium per Liter</td>
</tr>
<tr>
<td>1</td>
<td>H-1</td>
<td>277.58</td>
</tr>
<tr>
<td>2</td>
<td>H-2</td>
<td>296.15 First Dilution</td>
</tr>
<tr>
<td>3</td>
<td>I-1</td>
<td>396.04</td>
</tr>
<tr>
<td>4</td>
<td>I-2</td>
<td>166.20 Second Dilution</td>
</tr>
<tr>
<td>5</td>
<td>G-1</td>
<td>401.97 Concentrated</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>0.684</td>
</tr>
</tbody>
</table>

Material: Thorium Nitrate
Customer: Commonwealth of Virginia
Virginia Polytechnic Institute
Blacksburg, Virginia

Purchase Order No. 10508

Date: March 6, 1962
Date Shipped: March 5, 1962
Bill of Lading No. 4247
Sales Order No. 2263

Certified By: Quality Control Department
K.D. Hensley
ABSTRACT

A determination of the resonance escape probability of thorium as thorium nitrate in aqueous solution has been made as a function of thorium concentration.

The physical system used was an aluminum box surrounded by successive layers of cadmium, paraffin and borated paraffin to keep out neutrons scattered by objects in the laboratory.

Neutrons were obtained from a Cockcroft-Walton type accelerator by the D(d,n)He3 reaction. The drive-in target was located at the center of one of the faces of the aluminum box.

Neutron density was measured at nine spatial positions in the direction of the neutron beam with a bare boron trifluoride detector. The area under a curve of neutron density versus spatial position was obtained for various concentrations of absorber.

The above process was carried out for the thorium solution and for a 'mock solution', whose cross-section was similar to that of thorium except that it had no resonances in the thorium resonance region.

By taking ratios of the neutron densities (area under curves of neutron density versus spatial position) in the thorium solution to the neutron density in the mock solution, it was possible to determine the resonance escape probability of neutrons in a homogeneous, aqueous solution of thorium nitrate.

It is shown that, for the absorber concentrations used in this experiment, the resonance escape probability for an infinite
geometry may be obtained by the above ratio method. The difference between a finite system and an infinite one is exhibited as leakage of neutrons from the system in the finite case. If one can compare neutron densities for systems which are large enough so that leakage is negligible or for systems with corresponding leakage rates, the effect of leakage can be overcome and the resonance escape probability for the infinite geometry obtained.

Before taking the above ratios of neutron densities, it was necessary to compensate for the spectral shift of the thermal flux in the two solutions. After such a correction, the resonance escape probability so obtained shows good correlation with the results of the Monte Carlo prediction for this system. Over the range covered by the experiment (0 - 1 x 10^{21} atoms of thorium per cubic centimeter), experimental results agree with Monte Carlo predictions to within one percent.

Counting statistics were good, with 10^6 counts normally taken per spatial position. The curves from which the values of neutron density were determined were formed by nine points, each of which represented at least 10^6 counts. Reproducibility of the neutron density at a point was of the order of one percent. Various changes made in the analysis of the data have caused corresponding changes in the values obtained for the resonance escape probability of less than one percent. These facts all indicate that the uncertainty in the experimental determination is of the order of one percent.
Calculations of effective resonance integrals from the experimentally
determined values of the resonance escape probability show good
agreement with published measurements on other systems.