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Hao Zhang

ABSTRACT

An increasing variety of malware, including spyware, worms, and bots, threatens data confiden-
tiality and system integrity on computing devices ranging from backend servers to mobile devices.
To address these threats, exacerbated by dynamic network traffic patterns and growing volumes,
network security has been undergoing major changes to improve accuracy and scalability in the
security analysis techniques.

This dissertation addresses the problem of detecting the network anomalies on a single device by
inferring the traffic dependence to ensure the root-triggers. In particular, we propose a dependence
model for illustrating the network traffic causality. This model depicts the triggering relation of
network requests, and thus can be used to reason about the occurrences of network events and
pinpoint stealthy malware activities. The triggering relationships can be inferred by means of
both rule-based and learning-based approaches. The rule-based approach originates from several
heuristic algorithms based on the domain knowledge. The learning-based approach discovers the
triggering relationship using a pairwise comparison operation that converts the requests into event
pairs with comparable attributes. Machine learning classifiers predict the triggering relationship
and further reason about the legitimacy of requests by enforcing their root-triggers. We apply our
dependence model on the network traffic from a single host and a mobile device. Evaluated with
real-world malware samples and synthetic attacks, our findings confirm that the traffic dependence
model provides a significant source of semantic and contextual information that detects zero-day
malicious applications.

This dissertation also studies the usability of visualizing the traffic causality for domain experts.
We design and develop a tool with a visual locality property. It supports different levels of visual
based querying and reasoning required for the sensemaking process on complex network data.

The significance of this dissertation research is in that it provides deep insights on the dependency
of network requests, and leverages structural and semantic information, allowing us to reason about
network behaviors and detect stealthy anomalies.
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Chapter 1

Introduction

Anomaly detection – a field pioneered by Denning [49] – defines, specifies, and enforces normal
traffic and interaction patterns in a network or on a host. Anomalies or outliers refer to any activities
that do not conform to regular behaviors. Statistical techniques modeled under specific domain
knowledge have been proposed for anomaly detection [49, 74, 119, 123]. For example, dynamic
Bayesian networks can be used to detect abnormal data access patterns by malicious insiders to a
sensitive database [23]. However, achieving general anomaly detection is challenging, especially
for complex and diverse behaviors involving activities spanning users, hosts, and networks.

In this dissertation, we describe a triggering relation discovery solution to construct the request-
level causality structure in network traffic. There have not been systematic studies on the request
level causal analysis for malware detection. Existing dependence analysis work focuses on the
network services and is not designed for malware detection. For example, Orion [39] and NSD-
Miner [105] addressed the problem of network service dependency for automatic manageability
and network stability. Rippler [152] is proposed to actively perturb the network traffic to under-
stand the dependencies between service and devices. In comparison, we propose to achieve the
request-level causality structure of network traffic. This finer granularity (request vs. flow) re-
quires different relation semantics and more scalable analysis methods.

In our solution, we aim at reasoning about the network incidents and identifying malicious requests
by analyzing the dynamic behaviors of malware. Our goal is to profile the legitimacy of the traffic
pattern of benign applications, and thus to detect the malicious network requests that are sent
without user’s awareness.

1
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1.1 Motivation and Challenges

A study showed that a significant portion of computers worldwide is infected with malware con-
ducting clandestine activities [13]. Meanwhile, recent advancements in information technology
have raised concerns on the security risks posed by the prevalence of malicious apps on mobile
devices. Malware, either on hosts or mobiles, may spy on the victim users, cause data exfiltration,
and abuse the device for conducting bot activities (e.g., command-and-control).

The initial infection vector of most malware is usually through exploiting vulnerabilities of com-
mon networked software, e.g., heap overflow vulnerability in a web browser or its plug-ins [45].
Once the infection is successful (e.g., zero-day exploits), virtually all malware activities require
sending outbound network traffic from the infected machine, though network requests from ad-
vanced malware may not exhibit distinct communication patterns.

Determining whether or not networked hosts and devices are infected with stealthy malware is
technically hard. Common network analysis methods typically follow two approaches: i) inspect-
ing requests individually using pattern matching with known malicious signature strings, and ii)
or performing statistical analysis (e.g., [69, 134]). Most commercial intrusion detection systems
(IDS) focus on detecting the specific intrusive and malicious patterns. They work well if the at-
tack signatures or behaviors are known or can be modeled a priori. However, modern attacks
and stealthy malicious software (malware) evolve constantly, e.g., executables in Mariposa botnets
change every 48 hours, making it difficult for intrusion detection systems to identify emerging and
zero-day exploits. Therefore, the conventional patten-based scanning is limited, as it is challenging
to obtain the signature for a zero-day exploit at its early stage. Frequency-based and counting-based
statistical methods are not effective due to the low traffic volume of stealthy malware and diverse
behaviors of malicious activities. When the definitions for normal behaviors are restrictive, false
positives (i.e., false alarms) may be high; whereas broad definitions for normal behaviors may
result in high false negatives.

Firewalls are introduced as the conventional means to prevent attacks that try to hide themselves
and communicate with remote hosts. Most firewalls work on a per packet basis, by filtering the
process ID, IP, port, protocol, and other attributes assigned by the applications. Therefore, if the
application is compromised, then the malicious packets that contain forged information cannot be
detected by firewalls. Besides, worms and Trojans are constantly changing their behaviors and
activities. Hence, it is impossible for network administrators to define all rules on the firewalls.

Compared with the aforementioned security techniques, a more effective network security ap-
proach is to discover characteristic behavioral patterns in network event attributes and construct
the causality structure in network traffic, e.g., [47, 68, 86]. For example, BINDER [47] detects
anomalous network activities on personal computers through analyzing the correlation in network
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events by the temporal and process information. BotMiner [68] performs a correlation analysis
across multiple hosts of a network for detecting similarly infected bots. King et al. [86] con-
structed directed graphs from logs to show network connections for dissecting attack sequences.
However, none of these above solutions present a formulation of the traffic dependence on the
request-level for security purposes.

Our solution generalizes the traffic dependence model on hosts and mobile devices. We explore
direct and indirect dependencies in how a user interacts with applications and how applications re-
spond to the user’s requests following the specifications of the applications. The traffic dependence
cannot be easily discovered from the raw logs. Our solution leverages the stateful information and
builds story-telling scenarios to help people comprehensively understand the traffic and detect
anomalies. We investigate both rule- and learning-based approaches to identify such relation.

Last, monitoring network traffic and detecting anomalies are essential tasks that are carried out
routinely by security analysts. The sheer volume of network requests often makes it difficult to
investigate attacks and pinpoint their causes. The missing gap between the information from data
engine and human experts is huge, as they need to leverage and apply the domain knowledge on
voluminous logs for making the security decisions.

1.2 Research Contributions

In this dissertation, we consider stealthy malware residing on a single device, which either is a
stand-alone process or piggy-backing on a legitimate process such as a malicious browser exten-
sion. We assume that the malware is actively making network connections for attacks (i.e., com-
mand and control). Our work aims to demonstrate the feasibility of traffic dependence analysis for
detecting these suspicious network activities.

We formalize the problem of triggering relation discovery in network requests, the structure and
presentation of triggering relation graph, and their applications for detecting stealthy malware
activities. The causality analysis of network requests enhances the understanding of the context-
aware security. We describe a root-trigger security policy, which is used for detecting unauthorized
network traffic from devices. Our dependence model has advantages over conventional pattern-
based solutions (e.g. [38, 41, 131]), because it does not require a priori knowledge or assumptions
about the normal data patterns.

We demonstrate with experiments that discovering fine-grained causality in network traffic is fea-
sible. We extensively evaluate and compare the detection accuracy of the rule- and learning-based
approaches with DARPA dataset and real-world network data, including HTTP, DNS, and TCP
traffic. Both approaches are proved to be effective in detecting stealthy malware activities, with
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the learning-based method yielding better results than rule-based one.

The contributions of my dissertation are summarized as follows.

1. We introduce the problem of triggering relation discovery in network traffic. The new def-
inition of triggering relationship between user actions and network events is given in the
security context. We describe how to construct a triggering relation graph as a dependence
analysis model and demonstrate its application in solving challenging network security prob-
lems, such as stealthy malware detection.

2. We present a rule-based approach for discovering the triggering relations on network data.
The discovery algorithm is generated based on empirically derived rules. It inspects the tem-
poral, semantic, and process-related attributes to reveal the causal relations among network
requests. Our proposed traffic dependence solution cannot be realized by the conventional
(stateful) firewall, because the inference of triggering relation requires complex algorithmic
computation on system events beyond the simple rule-based filtering.

3. We describe an advanced learning-based approach for efficiently discovering the underlying
triggering relations on a large scale of network events. A new feature extraction method is
introduced as the pairing operation. It performs pairwise attribute comparisons, enabling the
use of machine learning classifiers for the triggering relation discovery.

4. We adopt a new root-trigger security policy on discovered triggering relations for malware
detection. This policy allows one to identify vagabond events, i.e., network events that
do not have proper causes to justify their occurrences. We also propose to distinguish the
root-triggers using dependency features extracted from the dependence graph. The features,
revealing the patterns of automatically-generated benign, are unique and enables the predic-
tion of malicious activities at a high accuracy.

5. We develop a visualization tool for security analysts to efficiently display the network traffic
dependency. This tool has a visual locality feature that can optimize the displaying of struc-
tured data. The visual representation is a radial layout based on a curved timeline display,
which maximizes the use of the screen and enables the high visual locality. We conduct
a user study that confirms our design can enhance the readability and perceptibility of the
network traffic causality.

1.3 Organization

The rest of the dissertation is organized as follows. In Chapter 2, we survey the related work and
existing solutions for detecting malicious activities. Then, we introduce our dependence analysis
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model and its security applications in Chapter 3. Our solution for the host-based anomaly detection
is given in Chapter 4. We further extend the solution to address the new challenges on mobile
devices in Chapter 5. We present a visualization tool for security analysts to efficiently analyze the
traffic dependence in Chapter 6. Chapter 7 concludes our work and discusses the future directions.



Chapter 2

Literature Review

This chapter describes the background of our research work, surveys the literature, and gives an
overview of how our work fits in. We divide our discussions of related literature into four domains:
discovering and enforcing network traffic dependence (§2.1), machine learning approaches to de-
tecting network anomalies (§2.2), Android network traffic analysis for detecting malicious apps
(§2.3), and visual analytics solutions for security forensics (§2.4).

2.1 Discovering and Enforcing Network Traffic Dependence

We compare our work with the existing solutions on enforcing or discovering dependencies [47,
61, 86, 110, 119, 142], user intention-based security [71, 121, 149], web security [33, 34, 91,
102, 118, 132], as well as general malware detection techniques [38, 41, 127]. We summarize the
selected literature in Table 2.1. The table is not intended to be exhaustive and the papers are not
mutually exclusive in each topic.

The dependence analysis provides an effective way to pinpoint the origins of the vulnerability,
reason about the complex structures, and maintain the service reliability. There exist solutions for
inferring the dependence among data flow [119], intrusion detection logs [68, 86], and network ser-
vice [28, 39, 83, 85, 86, 105, 152]. However, the dependence analysis on network requests/packets
has not been well studied, with a few exceptions [47, 92, 141].

BINDER [47] is a host-based solution that detects break-ins on personal computers through analyz-
ing the dependency of network packets based on temporal and process information. The detection
algorithm in BINDER considers three kinds of delays, and thus to identify the temporal relations
of the network packets. Though both BINDER and our rule-based solution correlate the outgo-
ing network traffic and process information with user activities, we further semantically infers the

6
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Table 2.1: Selected literature on network traffic dependence analysis.

Major Domain Paper Topic

Orion [39] Network application dependency discovery.
BINDER [47] Host-based break-ins detection.
LogMaster [61] General-purpose event correlation.

Dependence Kagal et al. [80] Dependence analysis for policy management.
Analysis King et al. [86] Traffic dependency on IDS (Snort) logs.

WebProphet [92] Dependence analysis of web for performance.
NSDMiner [105] Dependence analysis of network service.
Rippler [152] Traffic watermarking for analyzing services.
Not-A-Bot [71] Authenticating traffic-generating user inputs.
Gyrus [77] Verifying user intents from a UI.

User BLADE [98] Analysis of user events and file creation.
Intention WebCapsule [106] Analysis of user events and web sessions.

based ClickMiner [107] Reconstructing user-browser interactions.
Security WebWitness [108] Analysis of the malware download path.

UIBAC [121] Analysis of user events and program events.
DeWare [145] Analysis of user events and file system.
Borders et al. [33, 34] Identify anomalous HTTP traffic.

Web WebShield [91] A proxy for testing malicious JavaScript.
Security SpyProxy [102] Execution-based web content analysis.

Doppelganger [118] Enforce cookie policies.
Louw et al. [132] Ensure extensions on broswers.

dependence of network packets. The dependency inference algorithm in our solution considers
the semantics and contextual information from the request headers, which makes ours beyond the
temporal analysis of network events. For example, BINDER treats network events equally without
inspecting their contents. Consequently, it does not defend against piggybacking attacks. How-
ever, we describe our rule-based approach as a more powerful solution that supports dependence
analysis in a much finer granularity.

WebProphet [92], developed by Li et al., extracts the dependencies of web requests to diagnose
the performance bottlenecks in backend infrastructures. The assumption of WebProphet is that the
performance of loading a webpage depends on the download time of embedded objects. There-
fore, the authors utilize WebProphet to simulate the page load process of a browser and extract
the dependence of web objects. Our work differs from theirs, as we focus on the inference of
dependency on application layer requests and detection of anomalous network events. Besides,
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the parental dependency graph (PDG) in [92] is to decompose the components of one web page.
However, our model is used to describe the dependencies of network requests over a long period,
which enables us to build story-telling scenarios and detect anomalies.

ReSurf [141], as one of the closest related solutions, aims at reconstructing web surfing activities
from traffic traces via an analysis of request headers. The heuristic in ReSurf is a referrer-based
approach. Our rule-based approach differs from theirs in two aspects. First, the triggering relation
model accurately identifies the dependency between any two web requests. However, ReSurf does
not tell the relations when a web object (e.g., an advertisement request) is commonly triggered
by different root requests. Second, ReSurf identifies the root requests using heuristic rules. In our
solution, we precisely point out the triggering relations between user event and its triggered request
by correlating system level information and network data, which guarantees the accuracy of our
root-trigger policy.

In SpiderWeb [129], the authors proposed to create redirection graphs by aggregating redirection
chains that lead to a specific webpage. The features extracted from the redirection graph and
visiting users are then used to classify the webpage as malicious or benign.

Other existing dependence analysis work (e.g., [39, 105, 152]) is on network service level and is
not designed for malware detection. For example, Orion [39] and NSDMiner [105] addressed the
problem of network application/service dependency for network stability and automatic manage-
ability. Rippler [152] presents a solution to obtain the dependencies between devices and services
by actively perturbing the network traffic. The authors propose to introduce delays into network
flows and evaluate how other service reacts using statistical tests. In [29], the authors inject wa-
termark signatures into the network flow to identify co-residency of virtual machine instances.
In general, correlating events to find dependency is a commonly used approach in detecting at-
tacks (e.g., [36, 60, 86]). Unlike the work mentioned above, we aim to achieve the request-level
causality structure in network traffic.

User intention-based security. The research on the interplay between human behaviors and sys-
tem properties has been studied in the context of anomaly detection. ClickMiner [107] is proposed
to reconstruct user-browser interactions from network traces by actively replaying the recorded
HTTP traffic within an instrumented browser. Unlike our triggering relation model, ClickMiner
focuses on the user’s events that cause the browser to initiate an HTTP request for a new web pages.
Therefore, it builds the referrer graph by pruning away the automatically generated requests. Be-
sides, the applications of ClickMiner include aiding the forensic analysis of network incidents and
identifying the malicious download, while our solution aims at detecting general malware activities
that are not attributed to user’s interactions.

WebWitness [108] is proposed to trace back and label the sequence of events (e.g., visited web
pages) preceding malware downloads. It leverages automatically labeled malware download paths
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to better understand the attack trends, especially how users reach attack pages on the web.

WebCapsule [106] is a lightweight forensic tool for analyzing the web browsing sessions. It records
all user interactions, the rendered web contents, and runtime events/signals. It allows a forensic an-
alyst to fully analyze the past web sessions. By replaying all non-deterministic inputs, WebCapsule
enables the discovery of short-lived phishing and social engineering attack webpages.

Gyrus [77] is designed to verify whether a system’s behavior matches the users’ intention by con-
firming with users from a UI. The authors focus on the text-based network applications and use
Gyrus to ensure the data integrity. Gyrus can secure these applications from malicious behaviors
such as spam and fraud by allowing only outgoing traffic with the content that matches the user’s
intention. Our solution systematically differs from Gyrus, as ours infers the user intentions by
analyzing the semantic between events, rather than explicitly asking users for validation.

Not-A-Bot [71] is a system for authenticating traffic-generating user inputs such as mouse clicks
on hyperlinks. It is designed to defeat DDoS attacks as well as click fraud. However, it does
not analyze the triggering relations among network requests for anomaly detection as our solution
does. As explained in §4.5.2, our solution can use Not-A-Bot and similar techniques (e.g., [144])
to ensure the integrity of user inputs collected.

Besides the traffic dependence studied in this dissertation, the approach of user intention-based de-
pendence analysis is widely adopted for anomaly detection in file-system events. The enforcement
of dependencies between user actions and file-system events enables the detection of unauthorized
file-system activities, such as download, read, or write. For example, DeWare [145], BLADE [98],
and UIBAC [121] leverage user behaviors for certain file-access regulations. Our host-based solu-
tion is built for analyzing network events, as opposed to file-system events in above three solutions.
Therefore, we address new technical challenges in this dissertation.

Web security. Previous studies proposed tools (e.g., [33, 92, 102]) to ensure the web security and
detect HTTP-based malware. WebTap, developed by Borders and Prakash [33], is a tool to monitor
the changes and deviations in aggregated flows patterns. It identifies anomalies in the HTTP traffic
by evaluating the metrics such as request regularity, bandwidth usage, inter-request delay time, and
transaction size. Besides, both WebShield [92] and SpyProxy [102] propose the execution-based
web content analysis, so the web contents can be tested before reaching to user’s browser.

Xiong et al. proposed to predict the outbound requests by parsing the web pages requested by
users [142]. Their solution serves as a parallel universe to the browser, so that it can predict the le-
gitimacy of outgoing requests in real-time. They report the anomalies when there are discrepancies
in network events from the parallel universe and the browser. However, dynamic web components
(e.g., JavaScript requests) are heavily used in modern websites and usually generated on-the-fly,
which makes it impossible to predict accurately. Last, because their tool needs to fetch web objects
independently from the browser, it doubles the bandwidth overhead.
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Louw et al. [132] addressed the problem of malicious browser extensions. They propose to en-
sure the browser by allowing only extensions installed by users and detects unauthorized changes
made to installed extensions. In our host-based solution, we sign and verify the outbound network
requests by appending a keyed hash value, which guarantees the data integrity, so that no forged
request can be sent out.

2.2 Machine Learning Approaches to Network Security

Machine learning approaches have been widely adopted in the security literature, since the work by
Lee, Stolfo, and Mok [90]. Existing solutions of machine learning approaches to detecting threats
are studied in the form of code analysis [45, 94], network traffic classification [56, 101, 109, 139],
malicious domain classification [32, 99, 111], and intrusion/botnet analysis [69, 96, 162].

Sommer and Paxson [125] did pioneer work on employing machine learning in network intrusion
detection, and they provided a set of guidelines meant to strengthen future research on anomaly
detection. Machine learning approaches are often employed to reduce the labor burden of research
scientists. For example, Zomlot et al. [162] aim at filling the semantic gap between Intrusion
Detection System (IDS) outputs and malicious activities understood by users. They proposed
a prediction model to classify the interesting IDS outputs that need further forensic analysis by
domain experts.

Network traffic classification. Nguyen and Armitage surveyed on Internet traffic classification
using machine learning methods in [109]. Their paper presents an overview of how machine
learning techniques can be used in network security and motivates our work to infer the triggering
relation of network traces in a much finer granularity.

Williams et al. [139] did an empirical study on summarizing the features from payload-independent
features, such as packet length and inter-arrival time distributions. Their work [139] compares dif-
ferent machine learning algorithms to classify IP traffic flows, while ours desires to unveil the
underlying causal relations of HTTP requests. Therefore, we focus on the semantic features ex-
tracted from the request headers, rather than the per-flow statistics.

Moore and Zuev [101] proposed to use the header-derived features to classify the Internet flow in
different categories. Roughan et al. [114] used a statistical signature-based approach to classifying
the IP traffic. Our work differs with theirs as the following reasons. i) The goals are different.
We aim to discover the triggering relation among network requests, then to identify anomalies.
Their solutions are used to cluster the Internet traffic, provide different Quality of Service, and
thus optimize the usage of the existing network infrastructure. ii) They focus on the Internet traffic
flows, while our scope is confined to HTTP requests. Therefore, our granularity is much finer and
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the resolving power is much stronger.

Erman et al. [55] used two unsupervised algorithms (namely K-means and DBSCAN) to cluster the
traffic by transport layer statistics. Their evaluation indicates that their solution is better than the
conventional port-based and payload-based analysis. Livadas et al. [96] proposed to use machine
learning techniques to detect the IRC-based botnet traffic. Compared with these traffic clustering
and classification solutions, the uniqueness of our triggering relation model and learning-based
approach is the ability to automatically extract and recognize directional relations and structures.

Link prediction problem. Our triggering relation discovery problem may bear superficial sim-
ilar to the link prediction problem in the context of mining social network data [26, 64, 81, 93].
Getoor and Diehl [64] surveyed the link mining problem and pointed out the sparsity in linked
data. Liben-Nowel and Kleinbergz [93] formalized the link prediction problem and surveyed an
array of methods for measuring the proximity of nodes in a network. Follow-up research applied
advanced machine learning methods to social network data. These advanced methods include lo-
gistic regression, decision tree, and naive Bayesian [81] as well as supervised random walks [26].
Besides the obvious semantic differences in the two problems, our learning-based solution differs
from the social network link prediction.

• Links in social networks connect nodes that are considered equivalent to a given logical re-
lationship. However in our model, links are triggered by a hierarchical relationship between
nodes. This conceptual difference makes it possible for our model to create pairwise features
for finding the semantic relations, rather than analyzing the similarity of the nodes, or the
link strength in a network.

• Our triggering relation modeling (§4.3 and §5.3) and root-trigger security analysis (§4.4) are
unique and beyond the link prediction type of inference problem. To detect the ever-changing
malware, our model can be further extended by applying more sophisticated security poli-
cies.

Malicious domain classification. Also related are studies that proposed classification methods
for identifying the suspicious domains or phishing URLs [32, 62, 99, 138]. EXPOSURE [32] is
designed to detect domains involved in malicious activities by conducting large-scale and passive
DNS analysis at the network level. Authors extracted 15 temporal and DNS query-based features,
and used machine learning classifier to identify the malicious domains. Ma et al. proposed to
examine the lexical features of the URLs and features of the sites’ hosting information to identify
the malicious URLs [99]. Authors in [138] utilized page content-related features to detect phishing
webpages.

Our detection approach systematically differs from theirs. The above solutions classify the events
on an individual basis, while we utilize classifiers to infer the relations between events. Most
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features used in previous solutions can be categorized as i) time-based, ii) lexical and iii) host-
based features. However, they do not include the dependency features for the security purpose
as ours. Our study makes an important step towards addressing the significance of dependency
knowledge in the detection of malicious domains and requests.

2.3 Android Network Traffic Analysis and Malware Detection

Existing work on protecting Android system and detecting malicious apps is studied in the form
of static analysis [19, 24, 46, 63, 72, 95, 97, 112, 140, 148, 150, 153], taint analysis [37, 51,
65, 147, 151], and privilege control [130, 136, 159]. Most existing static analysis solutions take
advantage of the APIs, system calls and bytecode for detecting malicious apps. For example, SCS-
Droid [95] identifies malicious apps by extracting subsequences of system calls. ViewDroid [153]
detects repackaging apps by analyzing the bytecode of Android apps. Drebin [24] extracts features
including APIs, permissions, components to characterize and classify apps.

Dynamic analysis, as a complementary to the static analysis, monitors and detects the runtime
behaviors of the apps. For example, Crowdroid [37] is a framework to dynamically analyze ap-
plication behaviors. It collects the Android system traces from real users through crowdsourcing
and processes the data at a central server. TaintDroid [51] monitors the sensitive data flow on
the system-wide, but it cannot provide the insights of how the data are triggered from the user’s
perspective. AppIntent [151] considers the user-intended data transmission on Android and builds
the missing leak between the data leaking and user’s interactions However, AppIntent requires
tremendous efforts in static taint analysis to preprocess and extract all possible data transmission
paths, as it treats the apps as whitebox. SmartDroid [160] proposes a hybrid analysis method
to identify UI-based event trigger conditions using the sensitive APIs. Our dependence analysis
systematically differs from the aforementioned solutions, as ours identifies unauthorized network
activities and detects malicious apps by analyzing the dependencies between user interactions and
app’s behaviors (e.g., network traffic).

App Guardian [158] proposes to temporally pause suspicious background process to prevent the
potential data leaking. We do not solve the side channel attacks as App Guardian does, but
our solution prevents the data exfiltration by identifying the suspicious outbound traffic. Droid-
Scope [147] proposes to reconstruct the OS-level and Java-level semantics simultaneously and
seamlessly. Therefore, it can be used to profile the API-level activities and track information leak-
age through both the Java and native components using taint analysis. Additionally, A5 is proposed
as a hybrid system combining both static and dynamic analysis techniques [133]. Our dependence
analysis on Android-generated traffic continues the trend of dynamic analysis. Our solution col-
lects the data including the system information and network events. We build the dependence
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graph of the network requests, trace the origins of events, and thus detect anomalies.

The classification and profiling of Android network traffic have been recently reported in the liter-
ature [48, 103, 137, 146]. Authors in [146] proposed to distinguish the mobile traffic by investigat-
ing the network traffic using HTTP headers. Mulliner [103] conducted a study to detect the data
leaks when people use mobile devices to access websites. Conti et al. [43] shows that attackers
can recognize user’s actions on Android apps by analyzing the network traffic, even it is encrypted.
In comparison, our solution is focused on inferring the traffic dependence for identifying the ma-
licious requests. Other existing solutions (e.g., [48, 137]) on profiling Android network traffic are
not used to detect the malicious requests, therefore, do not solve our problem.

2.4 Visual Analytics for Network Security

Information visualization has been widely adopted in the network security area. A collection of
the security visualization tools is summarized in [100]. Many visualization designs have been pro-
posed as the intuitive and efficient means of displaying complex structures that cannot be explicitly
seen in the raw data [120]. GraphPrism [82] adopts node-link diagrams and heatmaps to compactly
visualize the large and complex networks topology. ClockView [87] provides a scalable glyph rep-
resentation of host activities. The advantage of the circular design in ClockView is that people can
read the aggregated overview data and smoothly switch between different levels of the hierarchy.
Hviz [70] is a visualization tool designed for explore anomalies based on cross-computer correla-
tion analysis. Authors propose to group and aggregate the HTTP traffic into abstract events (e.g.,
according to requests’ effective second level domain). In contrast, we focus on the host-based data
and condense the display based on the structural information and legitimacy of the data. Besides,
the visualization we proposed is space-efficient regarding the dependency structure.

Traffic Circle [31] and Radial Traffic Analyzer [84] are two network visualization tools that adopt
the radial layout. Both solutions are used for monitoring the network (e.g., identifying communica-
tion patterns) by displaying the raw packet or flow information. In our solution, we use concentric
arcs to display different dependency levels, in such way that our tool visualize the logical relations
of the network traffic in an information-rich fashion.

Visual analysis of network anomalies. In recent years, many research efforts have been ded-
icated to visualizing the network traffic and highlight the anomalies [25, 35, 42, 75, 115]. For
example, Conti et al. [42] created two complementary security visualization systems that help find
anomalous behavior on a high level and perform rapid in-depth packet level analysis. TVi [35],
as a visual querying tool, is proposed to monitor the network and detect anomaly from Snort logs.
BURN [115] is a tool to display autonomous systems exhibiting rogue activity and helps at find-
ing misbehaving networks. BURN can be used for manual inspection of the root-cause, but the



14

visualization tool does not provide a structural view of the data.

Traffic Causality Graph (TCG) [25] enables the profiling of network application through the tem-
poral and spatial causality of flows. This solution aggregates the packets into flows and focuses
on the causality of them. The causality finding algorithm in [25] is based on the protocol, IP and
port information of flows, while our fine-grained algorithm relies on the application layer infor-
mation and has better descriptive power. Traffic Dispersion Graph (TDG) [75] is used to display
the network-wide flows by aggregating the packets. TDG captures the interaction between hosts
in a network, while our triggering relation model is built on the host-based network traffic. Last,
our visualization tool differs from TCG and TDG, as they aim at classifying the traffic or detect-
ing port-related threats (e.g., port scanning). However, ours is used for identifying the general
anomalous requests through revealing their triggering relations.



Chapter 3

Triggering Relation Model

In this chapter, we formalize our triggering relation model, introduce the terminology used in the
model, and present the security applications.1 The chapter is organized as follows. We give our
model and new definition of security in §3.1. We then introduce the triggering relation discovery
problem in §3.2. The security applications of our dependence model are described in §3.3.

3.1 Triggering Relation Graph: Definitions and Properties

In this section, we introduce the concept and properties of the triggering relation model.

Definition 3.1.1 (Triggering relationship). The triggering relation of two events ei and ej exists
if ej cannot be issued unless ei is sent out first. We denote ei triggers ej by ei → ej .

Triggering relationship between event ei and event ej describes the temporal relation and causal
relation between them, specifically ei precedes ej and ei is the reason that directly causes ej to
occur. The specific semantics of triggering relation depend on the type of events and environment.
An event may be defined at any relevant type or granularity, including user actions (e.g., keyboard
stroke, mouse click), machine behaviors (e.g., network request, function call, system call, file
system access), and higher-level operations and missions (e.g., database access, obtaining Kerberos
authorization, distributing video to select users). We also refer the triggering relation (ei → ej) as
the parent-child relationship, where ei is the parent trigger or parent and ej is the child.

Triggering relations of events can be represented in a directed graph that is referred to by us as
triggering relation graph (TRG), where each event is a node and a directed edge (ei → ej) from
ei and to ej represents the triggering relation.

1The content of this chapter is mainly based on our papers [154, 157].

15
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We illustrate two TRG examples in Figure 3.1. In (a), the user events (e.g., U3) such as entering a
URL into the browser address bar are root triggers, which are followed by DNS queries (e.g., D3)
for translating the requested domain names. Then, one or multiple HTTP requests (e.g., H5) are
sent to the servers, and additional HTTP requests (e.g., H6) may be triggered to fetch embedded
objects. In (b), triggering relations in a TCP type of sessions are shown. A TRG provides a
structural representation of triggering relations of observed events. For specific types of network
traffic, such a TRG may manifest unique topology and properties. For example, for outbound
HTTP and DNS traffic from a host, the TRG forms a forest of trees, rooted by user inputs.
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Figure 3.1: Schematic drawings of triggering relation graphs for outbound traffic from a host (a)
and traffic between two hosts (b).

Definition 3.1.2 (Triggering Relation Graph). A triggering relation graph (TRG) is a forest of
trees of arbitrary depths with directed edges representing the dependencies among network events
and user actions. Each tree is rooted at a legitimate user event or network request. The internal
and leaf nodes of the trees are network events. A directed edge from event ei to ej represents that
event ej is caused by ei. The trees in the forest are chronologically ordered, so are the children of
a node.

The TRG is composed of two types of nodes, user events and network events. User events refer to
the user’s actions to the application through input devices such as the keyboard or mouse. A user
event in TRG is legitimate if and only if it is not forged by any malicious software. We give several
practical techniques for ensuring the authenticity and provenance of user events in §4.5.2. In the
context of a browser, we consider two main types of traffic-inducing user events: mouse clicks on
hyperlinks and keyboard inputs to the address bar.

Network events refer to the outgoing HTTP requests from the host. They are further categorized
into different levels according to their relative dependencies.2 We refer the first request that triggers

2We use the phrases network event and network request interchangeably in the dissertation.



17

others as the root-trigger request. For example, the root-trigger requests may fetch web objects by
generating additional outgoing requests from a browser, i.e., fetching the images or JavaScript
referred to by an HTML page. The root-trigger requests are caused by legitimate user activities or
generated by benign apps. By our Definition 3.1.2, a node in TRG has at most one parent, thus, at
most one root-trigger.

The edges in a TRG refer to the triggering relations that describe the causal relationship between
nodes. We further distinguish two types of edges:

• Root-trigger dependency is the relation between a legitimate user’s input (e.g., mouse clicks
on hyperlinks) and its generated first network request.

• Inter-request dependency is the relation between two network requests where one directly
triggers the other.

For specific types of network traffic, the TRG may manifest unique topology and properties. In Fig-
ure 3.2, we present one concrete example to demonstrate the triggering relations existing in HTTP
and DNS requests. After a user clicks a link to Financial Times (www.ft.com), the browser first
resolves the IP address by sending out a DNS query. Corresponding HTTP requests are issued
after the IP address is known. Then, the user is directed to a news page by clicking a link.
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The TRG is composed of a list of trees, which are rooted by their root-triggers and can be sorted
chronologically. Each tree depicts one scenario that how user requests the network resources (e.g.,
browsing a website, downloading a song). The graph allows one to understand the causality among
network events and find anomalous ones (i.e., requests) based on their root-triggers. A TRG satis-
fying its definition is well-formed. We give the definition of security below.

Definition 3.1.3 (Security). In the user intention-based security model, a legitimate network event
belongs to a tree in the TRG as defined in Definition 3.1.2. That is, the network event e is either
a root-trigger, i.e., the child node of a legitimate user action, or e’s ancestor node is a legitimate
root-trigger. Otherwise, the network event is a vagabond request and considered suspicious.

TRG has its unique properties, enabling us to adopt different strategies to infer the triggering
relationship. We summarize the properties of TRG G as follows.

• Attribute-based: Each event in the TRG has multiple attributes, describing its network and
system features that can be used to infer the triggering relationship.

• Expandable: TRG is a forest of trees in arbitrary height. The degree of a node in a tree can
be expanded as it grows. If one legitimate network event e is appended to G, the TRG still
meets the security definition.

• Acyclic: The edge in each tree connected between two events is unidirectional. Because of
the temporal property of events, triggering relation graphs are free of cycles.

• Sparsity: A TRG is usually sparse, i.e., the number of a node’s neighbors compared to the
total numbers of nodes is small. The triggering relations occur in a short time range. Two
events rarely form the triggering relationship, if they are far apart in terms of time.

The enforcement of dependence has not been previously studied in the literature as a general
method for anomaly detection. Our work focusing on the dynamic interactions between the user
and application lends a novel security methodology that is not limited to the ever-changing anoma-
lous patterns. One important use of the TRG model is to enforce the legitimacy inheritance of
the nodes in dependence graph. In this policy, the legitimacy of the tree is determined by its
root-trigger, i.e., the dependent nodes are benign as long as the root is legitimate.

3.2 Triggering Relation Discovery

The problem of triggering relation discovery is that given a set of events, to construct the complete
triggering relation graph corresponding to the events. To solve this problem, one direction is to
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create the TRG by incrementally inserting new events to a partially well-formed TRG by prede-
fined algorithms. Specifically, the tree-based TRG enables us to apply the breadth-first traversal
when inferring dependencies. The algorithms need to be generated by domain experts using the
application specific knowledge.

The other direction is to adopt learning-based classifiers to infer the triggering relations. The TRG
comprises a plural of triggering relations between two events. Therefore, one can construct a
complete TRG by given the existence of edges between pairs of nodes and the directions of the
edges. We illustrate the TRG construction operation in Figure 3.3.
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Figure 3.3: The triggering relation graph (TRG) on the right can be constructed from the pairwise
triggering relations on the left.

We, therefore, transform the problem of discovering triggering relations among a set of events into
discovering the triggering relations of pairs of events, which is defined as the pairwise triggering
relationship. In our context, the pairwise triggering relation discovery is a simpler problem, which
is to determine whether a triggering relation exists in two events. To this end, we design a novel
pairing operation that produces the pairwise features, so that the discovery problem can be effi-
ciently solved using classification tools. In Figure 3.4, we give an overview of main operations
used in rule- and learning-based approaches. The details of both approaches are given in §4.
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Figure 3.4: System workflow containing major operations in the rule- and learning-based ap-
proaches.

Our definition of event-level triggering relation discovery relates to, but differs from the service
dependency inference in existing research work (e.g., [105, 152]). The service dependency refers
to that one service relies on another to function, e.g., a web service depends on the DNS resolu-
tion. Our event-level triggering relationship refers to the causality of two network events, e.g., the
transmission of one network packet triggers the transmission of the other.
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Our triggering relation graph is defined differently from the parental dependency graph (PDG) in
WebProphet [92] in terms of graph semantics and security applications. The PDG in WebProphet
predicts the performance impact of webpage objects. Therefore, the graph is built based on the
timing information only, without capturing the causality among requests or objects. We rely on
the semantic information (e.g., domain name, request string) of each request to build TRG, thus
enabling the TRG to detect anomalous network events.

3.3 Security Applications of Triggering Relation Graph

We consider the malware that behaves as a stand-alone user-space application on a host or a device.
In the stealthy malware taxonomy [116], the family of application-level malware is referred to as
Type-0 malware – the malware that “does not interact with any part of the operating system (nor
other processes) using any undocumented methods”. Type-0 malware does not intend to break
kernel’s functionality or inject code into kernel’s API during its execution. Type-0 malware differs
from rootkits as it does not modify data or code sections of the kernel or the running processes, or
intended to gain root access to the operating system.

In this dissertation, our traffic dependence analysis is designed to detect general stealth malware
on hosts and mobile devices. The stealthy malware behaves as a user-level application, e.g., certain
instances of spyware, malicious bots performing data exfiltration, and botnet launching denial-of-
service attacks. Specifically, we consider three types of threats on hosts as follows.

• Malware is an extension or add-on component of an existing legitimate application, e.g.,
spyware as a malicious Firefox browser extension or parasitic malware [127]. Malware
runs along with the host program and has the same process ID as the host one.3 A specific
example of such a type of spyware is FFsniff, which secretly sends out victim’s ID along
with the password to the remote host.

• Malware is a stand-alone user-level application and runs with a unique process ID (e.g.,
Trojan.Brojack.A). This type of malware commonly threaten the data confidentiality
and system integrity.

• Software may perform undesirable and unauthorized network activities that are not causally
related to the user’s inputs due to inadvertent software flaws or software errors (e.g., software

3If malicious extensions can modify the existing DOM of a visited page loaded in a browser, a user may be tricked
to click malicious links, which sends outbound requests for unintended objects. To detect this attack, one needs to
utilize additional techniques (e.g., WebCapsule [106], WebWitness [108], or a parallel universe for predicting browser
contents [142]).



21

behaviors that deviate from specifications). Identifying stealthy unwanted traffic is impor-
tant, as these packets may leak user information, consume bandwidths, and cause further
security vulnerabilities [79].

For protecting the Android security, we adopt our TRG model to detect the popular mobile threats:
repackaged apps that result in data leak, drive-by download apps, and Android bots.

• Repackaged apps refer to the malicious apps created by repackaging the existing benign
ones [161]. They are known to contain malign payloads that may cause malicious requests,
which are usually generated without user’s consent, e.g., AnserverBot malware family.

• Drive-by download apps fetch malicious payloads at runtime. They lure users to install
a new malicious app or create a shortcut icon to some malicious or advertisement sites,
e.g., com.Punda.Free. Besides, drive-by download attacks take place when users view a
compromised web page. For example, attackers may insert a hidden iframe in the bottom
of a hacked website, which directs the link to a malicious download when users access the
website using a browser app [3].

• Android bots, being controlled by bot masters through the network, can be used to con-
ducted remote attacks. Android bots are not exclusive to the other two categories. Their
behaviors often include the stealthy network communication to remote command and con-
trol (C&C) servers. Due to the lack of signatures for newly invented bot apps, it is quite
challenging to detect the ever-changing bots.

Based on the TRG model, we introduce a user-intention based security policy, which enforces that
all network events must be attributed to the legitimate user events. This security policy classifies
the network requests on TRG without valid triggers as vagabond requests. The anomalous events
without legitimate causes are likely raised by stealthy malware activities. Hence, by inferring the
triggering relations on traffic data, our analysis can reason about the network incidents and pinpoint
suspicious activities that are not intended by users. Blocking these outbound requests effectively
isolates the malware, including

• websites collecting and reporting sensitive user data, affecting user privacy,
• spyware exfiltrating sensitive information through outbound network traffic from the moni-

tored host,
• bots’ command-and-control traffic, and attack activities (e.g., spam or DoS traffic) originated

from the monitored host.

We describe a scenario for using our dependency model to detect stealthy malware activities on a
host. DNS tunneling has been abused by botnets for command and control communications [143].
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These abnormal outbound DNS queries are automatically generated by malware on the host, typ-
ically with the botnet-related payload. These surreptitious DNS activities are difficult to detect,
because of their format resemblance to regular DNS queries. Our analysis tool reasons about the
legitimacy of observed DNS traffic on a possibly infected host. Legitimate DNS queries are usually
issued by an application (e.g., browser) upon receiving certain user inputs (e.g., entering a URL
into the address bar). The application then issues additional DNS or other requests (e.g., HTTP,
FTP). Botnet DNS queries lack of any matching user triggers. Our tool detects these vagabond
events and reports them.

In our dependence analysis, the inferred dependency in a TRG illustrates the logic chains of the
network requests, which reveals the origin and time range of the malicious activities. With a built
TRG, advanced security policies can be proposed depending on the traffic types (e.g., HTTP, TCP,
or mixed), host types (e.g., client or server), and the definitions for network anomalies. Our model
can be used in combination with conventional signature-based and statistic-based detection.



Chapter 4

Host-based Network Anomaly Detection via
Triggering Relation Discovery

In this chapter, we design and compare general approaches for building triggering relation graph
on network data.1 By enforcing the root-trigger policy, we can ensure an application’s correct
responses to user activities and identify anomalous activities based on the structural information
from TRG model.

The chapter is organized as follows. We present the motivations, specific problems, and an overview
of our approaches on the host-based security in §4.1. The rule- and learning-based approaches are
described in §4.2 and §4.3, respectively. The implementation details and security analysis are
given in §4.5. We conduct extensive evaluations on our host-based solution and present the results
in §4.6. §4.7 concludes the chapter.

4.1 Motivation and Design Goals

Malicious software activities have become more and more clandestine, making them challenging
to detect. Existing security solutions rely heavily on the recognition of known code or behavior
signatures, which are incapable of detecting new malware patterns. In this chapter, we propose to
discover the triggering relations on network traffic data and leverage the structural information to
identify anomalous activities that cannot be attributed to a legitimate user request (i.e., user intent).

Discovering user intention-based traffic dependencies is challenging, because modern applications
such as web browsers often automatically fetch content and generate requests without explicit

1The content of this chapter is mainly based on our papers [154, 157].
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user actions. The dependencies of those legitimate requests should be properly identified without
triggering false alarms. One needs to discover not only the dependencies among user actions
and network events, but also the layered dependencies of those network events. This chapter
focuses on outbound HTTP packets by the web browser, which can be generalized to other types
of applications and network-flow types.

We apply the triggering relation model (in §3.1) on network data and describe its application in
solving challenging network security problems, such as stealthy malware detection. Triggering
relations of events provide contextual interpretations for the behaviors of systems and networks,
illustrating why sequences of events occur and how they relate to each other.

The higher-level information such as the underlying relations or semantics of events is useful for
human experts’ cognition, reasoning, and decision-making in cyber security [67]. Thus, analyzing
relations between network events provides important insights for identifying network anomalies.
The causality offers the logical interpretation to the vast amount of otherwise structureless and
contextless network events. Our work demonstrates that triggering relations among cyberspace
events enables the network assurance with structural evidence of the hosts.

4.1.1 An Overview of Our Approaches

We design and compare rule- and learning-based approaches to infer the triggering relations on
network data, and thus detect network activities of stealthy malware.

Based on our observation from the real world network traffic, a rule-based approach is created to
detect anomalous HTTP requests on a host. The algorithm is designed to efficiently infer the trig-
gering relations of outbound requests, i.e., to find the network event that causes the newly-observed
outbound request. We explore the direct and indirect dependencies in how a user interacts with ap-
plications and how applications respond to the user’s requests following the specifications of the
applications. The rule-based method serves as a baseline for the comparison with our learning-
based approach.

We design a new learning-based method that scales. General techniques for learning and recog-
nizing directional triggering relations of network events do not exist. Most of the existing machine
learning based security studies are on binary classification problems, where an unknown instance
(e.g., email, code, or network request) needs to be classified into two classes – legitimate or sus-
picious. In our approach, we design a new function pairing that produces distinctive pairwise
features, so that the discovery problem can be efficiently solved with existing binary classification
methods (e.g., SVM). Our analysis using machine learning is scalable, capable of rapidly process-
ing a large amount of traffic. Using machine learning algorithms eliminates the need for manually
deriving classification rules and thus simplifies the detection.
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A triggering relation graph can be built with the outputs from either the rule- or the learning-based
approach. We further introduce a root-trigger security policy for pinpointing anomalous activities
based on the TRG. By enforcing this user-intention based policy, we can identify the vagabond
events (i.e., suspicious requests) that are lack of valid triggers, and thus ensure an application’s
correct responses to user activities. Vagabond events refer to outbound network events that are not
generated by any user actions and may hence be due to anomalies.

4.1.2 Comparisons Between Rule- and Learning-based Approaches

We further make a detailed comparison of properties between these two triggering relation discov-
ery approaches in Table 4.1. The rule-based approach is only applicable to known patterns, and
requires non-trivial human efforts in rule generation and tuning. Yet, the machine learning-based
approach extracts the pairwise features that can characterize the relationship between nodes, and
thus the generalized triggering relation model adapts to diverse and complex patterns.

Table 4.1: Comparison of properties between rule-based and machine learning (ML)
based approaches.

Approach Rule-based ML-based

Sub-Goal To recognize parent-child relations based on event attributes.

Operation Rule generation, rule-based identification Feature extraction, train & test
Model Empirically derived rules Automatic generated
Labeled Data No Yes (for training)
Manual Effort Needed for generating rules Minimal
Major Cost Rule tuning by human Pairing operation
Flexibility Low (cannot recognizes beyond rules) High (can adapt to subtle cases)

4.1.3 Contributions

Triggering relation discovery provides a new perspective for analyzing network traffic. It allows
one to reason about the occurrences of network events, to detect unexplained network activities
that are due to stealthy malware. We demonstrate with experiments that discovering fine-grained
causality in network traffic is feasible. The significance of our traffic reasoning approach is its
ability to detect new and stealthy malware activities.

Our contributions are summarized as follows.
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1. We present a rule-based solution for discovering the triggering relations on network events.
The triggering relation discovery algorithm, based on empirically derived rules, inspects the
temporal, semantic, and process-related attributes to reveal the causal relationships.

2. We propose a scalable learning-based approach that applies to multiple types of network
traffic. We introduce a new operation called pairing. This operation converts individual
network event into pairs with comparable attributes, enabling the use of binary classifiers for
the triggering relation discovery.

3. We utilize a new root-trigger security policy to infer the origins of malicious activities on dis-
covered triggering relations (i.e., TRG). This policy allows one to identify vagabond events,
i.e., network events that do not have proper causes to justify their occurrences.

4. We extensively evaluate our solution on 10+ GB data (including a DARPA dataset and real-
world network traffic). Our results indicate that both rule- and learning-based approaches
successfully detect stealthy malware activities on hosts. With good scalability for large
datasets, the learning-based method achieves better classification accuracy than the rule-
based one.

4.2 Rule-based Triggering Relation Graph Construction

In this section, we describe a rule-based approach for discovering triggering relations of HTTP
requests on a host. A triggering relation discovery algorithm is designed to identify the triggering
relationship between a new incoming event and existing events in a TRG.

A TRG can be constructed incrementally by inserting a new network event with unknown depen-
dency to a well-formed TRG, which is suitable for real-time monitoring. The construction of TRG
relies on the attributes of events and dependency rules derived from the specific application. Our
rules are generated based on the patterns of user interactions and the attributes of HTTP requests
from the browser.

4.2.1 Triggering Relation Discovery Procedure

This section describes our breadth-first search (BFS) based algorithm for the TRG construction.
The algorithm utilizes the building blocks (namely IsChild, IsSibling, and IsRoot), which
are presented in the next section.

Given a new request, the triggering relation discovery (TRD) algorithm aims at identifying its de-
pendence with respect to the known requests. We construct a forest structure to store the network
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requests and organize them according to the definition of TRG. The requests with known depen-
dencies are chronologically organized into trees rooted by user events in the existing TRG. The
root-triggers, thus, are also chronologically ordered.

Algorithm 1 Triggering Relation Discovery (TRD) Algorithm
Input: A newly-observed network event p; the chronologically ordered trees {T1, . . . , Tm} of events rooted

by root requests {r1, . . . , rm}, where rm is the most recent one and Ti ∈ T; and a threshold τ .
Output: True, if the parent node of request p is found; False, otherwise.

1: if IsRoot(p) then
2: create a new tree Tm+1 with root p
3: T← T ∪ {Tm+1}
4: return True
5: else
6: for i← m to 1 do
7: continue if p.time− ri.upTime > τ or ri.pid 6= p.pid

8: define a queue Q and enqueue ri onto Q
9: while Q 6= ∅ do

10: node n← dequeue Q
11: if IsChild(n, p) then
12: UpdateTime(ri.upTime)
13: append {n→ p} to Ti
14: return True
15: else if IsSibling(n, p) and not IsRoot(n) then
16: UpdateTime(ri.upTime)
17: append {n.parent→ p} to Ti
18: return True
19: else
20: . Breadth-first traversal by queue Q
21: for all children of node n do
22: enqueue the child nodes onto Q
23: end for
24: end if
25: end while
26: end for
27: end if
28: return False

The pseudocode of our rule-based triggering relation discovery procedure is shown in Algorithm 1.
A new tree is created if the newly observed event p is a root request. Otherwise, existing trees T are
searched in reversed chronological order. The searching is stopped if: i) the triggering relation of p
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is found, so that it can be attached to an existing tree Ti ∈ T; ii) no such tree is found after all nodes
on the TRG are compared, which indicates p is a vagabond request, and thus suspicious. Based on
what our experiments have shown, the incoming new request is commonly caused by recent ones
in a constructed TRG. Therefore, our algorithm opts for a breadth-first traversal of a tree starting
from the most recent root-triggers, a strategy that allows us to efficiently and effectively identify
the parent node of the newly observed request.

We further optimize the TRD algorithm by avoiding unnecessary comparisons. We achieve the
speedup by leveraging the underlying consistency of attributes (e.g., PID). Besides, we adopt the
UpdateTime function to refresh the upTime for each tree in T, in which way we track the freshness
of a tree and skip the comparison between a newly coming request and an out-of-date tree.

If the triggering relation is not found after all nodes in the tree are compared, then the next root-
trigger and its descendant nodes are compared. Intuitively, the process terminates if either a de-
pendence is found or all existing requests have been compared. The worst-case complexity of this
TRD algorithm requires traversing the entire TRG, and is O(n) where n is the total number of
network events on the TRG.

4.2.2 Details of Sub-procedures

In the TRD algorithm (Algorithm 1), we instantiate three building blocks IsRoot, IsChild, and
IsSibling to facilitate the process of inferring triggering relations.

The IsRoot procedure is used to test whether or not a request is the first one triggered by a
user event. In the context of the browser, traffic-inducing user events may include typing into the
address bar of the browser, clicking on a hyperlink or a bookmark, opening a new window or tab,
and reloading a webpage. Therefore, the corresponding root request is the first immediate outgoing
network request that has the identical process ID and with correlating content. The content may be
the URL of the hyperlink for a mouse click, which needs to match the URL in the root request.

The IsChild procedure is used to test whether or not there is a triggering relation (i.e., parent-
child relation) between requests. Given two requests pa and pb, where pa is a node on TRG with
known dependency and pb’s dependency is unknown. The event pa triggers pb, if and only if the
following conditions are all satisfied.

• The interval between the timestamps of pa and pb is within a threshold τ and pa proceeds pb.
• The two outbound network requests pa and pb share the same (non-null) process ID.
• The domain name in pb’s referrer is identical to that of pa.

The IsSibling procedure is used for the nodes whose parent nodes cannot be directly deter-
mined. Therefore, identifying the sibling relation of a request helps establish a triggering relation
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by the transitivity. We are given two outbound HTTP requests pa and pb, where pa’s parent node is
known, pb’s parent is unknown, and pa proceeds pb. To determine whether pb is a sibling node of
pa, we define the rules as follows.

• The interval between timestamps of pa and pb is within a threshold τ and pa proceeds pb.
• The two outbound network requests pa and pb share the same (non-null) process ID.
• Referrers of both requests are non-null and identical.

Finding sibling relations is useful in identifying new triggering relations in our causality reasoning
analysis. The IsSibling procedure is a necessary complement to the IsChild procedure as
IsSibling helps identify late-arriving child nodes whose intervals of timestamps with respect to
the parents are larger than the specified threshold, yet whose intervals with respect to the (older)
sibling are still within the threshold.

4.2.3 Discussion on the Usability Under Complex Web Scenarios

Web browser is the most important and widely used application, with high extensibility and sup-
porting many dynamic features. A traffic dependence analysis needs to properly handle complex
web scenarios without generating false alarms.

Based on the algorithm and building blocks described in §4.2.1 and §4.2.2, we implement a pro-
totype CR-Miner, as our rule-based triggering relation discovery solution. In this section, we
discuss the usability of CR-Miner under complex web scenarios.

• Requests to third-parties such as doubleclick or facebook are automatically issued
by the browser. The triggering relation of these records can be recognized in our solution,
because the referrer fields of the third-party traffic match the hosting domain. Alternatively,
parsing and analyzing the content of proceeding webpages have been used to predict future
(legitimate) outbound requests in [142], which is compared with our approach in §2.1.

• Redirection allows the browser to issues an HTTP GET request from the URL A′ different
from the user’s original request to the URLA. The triggering relation of redirected traffic can
be identified by CR-Miner as the request for A′ contains the original domain in its referrer.

Along with other attributes, one may establish that A′ is a child node of A by our trigger-
ing relation discovery (TRD) algorithm in CR-Miner. Therefore, our algorithm ensures the
causal chain.

• AJAX technique allows users to retrieve information from the web server without inter-
fering the display of the current page. Our experiments (with AJAX traces) confirm that
CR-Miner handles the AJAX traffic, in terms of discovering the dependencies.
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• HTTPS traffic contains encrypted HTTPS packet that can be sniffed by a known SSL prox-
ying technique [2]. The technique allows to generate a certificate for the server and signs it
with its own root certificate, so that the client’s outbound traffic is relied by the man-in-the-
middle and can be inspected by our tool.

• Automatic updates do not have explicit user actions that trigger them (e.g., system updates
and RSS feeds). One mitigation is to recognize the periodic update requests with a prede-
fined whitelisting. Besides, a learning-based approach to generating a whitelisting is also
introduced in §5.3.3.

• Browser caching does not affect CR-Miner. According to RFC2616 [57], even when a
browser caches HTML files locally, it still sends requests to remote servers for checking
the freshness of the cache. The servers may return the code 304 (Not Modified), or the
new contents. Thus, CR-Miner still captures all the necessary requests for the dependence
analysis.

• Social engineering attacks allow an attacker to fool a user to click on a malicious link
and visit an attacker’s website. As a result, the traffic to attacker’s website has the proper
traffic dependence (i.e., triggering relation) and are not deemed suspicious. Hence, CR-
Miner requires additional mechanisms to educate users about social engineering attacks.

Summary. Compared with the traditional approaches of analyzing network requests independently
in isolation, our approach provides more structural and contextual information for anomaly detec-
tion on network activities. We confirm the usability of our prototype under complex web scenarios,
such as requests to third-party hosts, redirection, AJAX calls, HTTPS traffic, and automatic up-
dates.

4.3 Learning-based Triggering Relation Graph Construction

We describe a machine learning approach to inferring triggering relations among network requests
in this section. Compared with the heuristic rules, the learning-based solution can achieve better
classification accuracy. We introduce a scalable feature extraction method referred to as pair-
ing. This operation converts individual network events into event pairs with comparable pairwise
attributes. We then show how binary classification algorithms (e.g., SVM) can be used for the
triggering relation discovery. Last, evaluations confirm that our proposed learning-based approach
achieves high scalability and detection accuracy.

Compared with the learning-based approach described in this section, the rule-based one (in §4.2)
has several drawbacks that hinder its scalability and accuracy. It requires manual rule specification,
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which is time-consuming. The rigid rule structures are not flexible enough to recognize complex
traffic scenarios, resulting in low classification accuracy and false alarms. In the presence of a large
number of features or due to the limitations of human knowledge, the rules may not be generated.

Our work on triggering relation discovery using probabilistic machine learning algorithms demon-
strates a specific big data security approach, where we are capable of analyzing voluminous net-
work traffic to identify anomalies. These discovered relations produce structural and contextual
information for reasoning and justifying the occurrences of system and network behavior patterns.

4.3.1 An Overview of Learning-based Approach

The primary operations in our learning-based method are Data Collection, Pairing, Data Labeling,
Training, Classification, and TRG Construction. The Data Labeling, Training and Classification
operations are standard for machine learning based methods. The new operations are Pairing and
TRG Construction.

• Data Collection is to record and store the events E = {e1, e2, . . . , en} to be analyzed. Given
one event ei ∈ E, ei hasm attributes and each is denoted as ei.attr, where attr is one type of
features (e.g., time, IP, port, host, URL, etc). All the features can be obtained by inspecting
the event ei.

• Pairing is a new operation that we design for extracting pairwise features of events’ attributes.
Its inputs are two events ei and ej . Pairing operation outputs the event pair (ei, ej) with m
pairwise attribute values. Each pairwise feature is obtained by computing fk(ei.attrk, ej.attrk),
where fk is a comparison function for the k-th attribute in the events (1 ≤ k ≤ m). There-
fore, the output of Pairing operation on events ei and ej can be written as

P (ei, ej) = {f1(ei.attr1, ej.attr1), . . . , fm(ei.attrm, ej.attrm)}. (4.1)

The comparison function fk (e.g., IsGreaterThan, WithinThreshold, IsSubstring,
IsEqual, etc.) is chosen based on the type of attribute. The feature construction can be
extended to comparing different traffic types. Pairing is performed on every two events that
may have the triggering relation. Moreover, we demonstrate an efficient pairing algorithm
and advanced strategies to reduce the cost of pairing without compromising the analysis
accuracy in §4.3.3. The pairwise features are used as inputs to the subsequent learning
algorithms.

• Data Labeling is the operation that produces the correct triggering relations for the event
pairs in a (small) training dataset. A binary label (1 or 0) indicates the existence or non-
existence of any triggering relationship in an event pair, e.g., (P (ei, ej), 1) represents that
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event ei triggers ej . The Data Labeling operation can be done by running simple rules and
verifying by domain experts, both of which require manual efforts.

• Training is the operation that produces a machine learning model with labeled training data.
It takes as inputs the features of event pairs and their labels.

• Classification is the operation that leverages the trained machine learning model to predict
triggering relations on the new event pairs P = {P (ei, ej)}, where ei 6= ej . The outputs
of binary prediction results are in the form of P∗ = {(P (ei, ej), lij)}, where the binary
classification result lij ∈ {0, 1} represents whether event ei triggers ej in P.

• TRG Construction is the operation to build the complete triggering relation graph based on
pairwise classification results. If event ei triggers ej in the event pairs P, then ei and ej are
connected by a directed edge in the TRG.

Figure 4.1 illustrates the workflow of our learning-based approach. We describe and highlight
the design details of our new Pairing operation in the next section. The feature extraction using
pairwise comparison is unique and enables the use of binary classifiers for solving the triggering
relation discovery problem.

Pairing 
Operation

Label Triggering 
Relation

Find Threshold of 
Pairing Interval

Build 
Models

Feature 
Selection

Test

Cross 
Validation

Define 
Features

Raw 
Network 
Packets

Data
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Figure 4.1: The workflow of the machine learning approach.

4.3.2 Pairing Operation

The pairwise attributes are formed by aligning the same event features and comparing the relevant
ones (e.g., the request type and the referrer type). Without loss of generality, we illustrate a basic
pairing procedure with HTTP requests as an example. The approach can be generalized to other
event or traffic types, which is evaluated in §4.6.

In Table 4.2, we show examples of some HTTP events. The triggering relations, if known, are
shown in the last column (under ParentID). The features in Table 4.2 are derived from the header
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Table 4.2: Original network events observed.

ID Time PID DestAddr Request (Q) Host Referrer (R) Q Type R Type ParentID

...
4 22.723 2724 64.30.224.103:80 / www.cnet.com N/A website NULL 0
5 22.733 2724 198.82.164.40:80 .../combined.js i.i.com.com www.cnet.com/ JavaScript website 4
6 22.973 2724 198.82.164.40:80 .../matrix.css i.i.com.com www.cnet.com/ CSS website 4
...
14 25.307 2724 198.82.164.40:80 .../bgBody.gif i.i.com.com .../matrix.css multimedia CSS 6
...

Note: Time, Q Type, R Type, and ParentID stands for timestamp, request type, referrer type, and the ID of its parent event. The source IP of
network events in this example is the same, while the source ports may differ (not shown).

of HTTP requests. As the header contains operating parameters of an application layer transaction,
the triggering relation can be measured by the attributes of the requests. These attributes are
previously used to understand the behavioral model of web traffic [40], while our work further
leverages them to build the trigger relations of network traffic for the security purpose.

Table 4.3: Examples of pairwise attributes as outputs of the Pairing operation.

(ID1,ID2) TimeDiff PIDDiff AddrDiff RequestSim HostSim ReferrerSim Q1 R2 Relation

(4,5) 0.01 1 1111000001 1 0.5 0 website website 1
(4,6) 0.25 1 1111000001 1 0.5 0 website website 1
(4,14) 2.584 1 1111000001 0.1667 0.5 0 website CSS 0
(5,6) 0.24 1 1111111111 0.1356 1 1 JavaScript website 0
(5,14) 2.574 1 1111111111 0.5593 1 0.5 JavaScript CSS 0
(6,14) 2.334 1 1111111111 1 1 0.5 CSS CSS 1

Note: Q1 and R2 stand for the first event’s request type and the second event’s referrer type, respectively.

Six event pairs are generated and their new pairwise attributes are shown in Table 4.3. For example,
the HostSim measures the string similarity of the Host attributes between two events. Each pair
has a binary representation of the existence of a triggering relation (under Relation in Table 4.3).
The pairing details are illustrated as follows.

• Numeric attributes (e.g., timestamps) are compared by computing their difference, e.g., the
interval between the timestamps of two network events.

• A nominal attribute (e.g., file type, protocol type) categorizes the property of an event. Com-
paring nominal attributes usually involves string comparison, e.g., substring or equality tests.

• For the string type of attributes, we compute the similarity of the attribute values as the
pairing attribute value. That is, fsim(ei.attr, ej.attr), where function fsim is a similarity
measure, e.g., normalized edit distance. Take HTTP request as an example, we compute
pairwise features HostSim and ReferrerSim by measuring the string similarities between two
host fields and two referrer fields, respectively.
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• A composite attribute can be converted to primitive types, e.g., a destination address con-
taining four octets for the IP address and an integer for the port. Therefore, the comparison
of two composite attribute values is made by comparing the sub-attribute values separately.

Our structural scalable and semantic-aware approach is suitable to discover triggering relation of
events in time series. The events, such as network requests, are partially ordered in time and have
a list of comparable attributes. Because the relation of events is asymmetric and transitive, the
pairwise triggering relationship is unidirectional between two events. Our approach pairs any two
events at most once and outputs the set P.

4.3.3 Efficient Pairing Algorithm

Given a list of n network events, the total number of event-pair candidates is bounded by O(n2).
To reduce the computational cost, one may pair up events that occur within a certain time frame τ ,
assuming that events occurring far apart are unlikely to have triggering relations [156].

We describe the efficient pairing algorithm – a more sophisticated pairing heuristic. It prescreens
attributes to quickly eliminate unqualified pair candidates. Shown in Algorithm 2, it takes a list
of chronologically sorted network requests as the input and outputs a set of pairs of events. The
efficient pairing algorithm uses a dictionary to store the recent network events, which are the can-
didates of triggers for the future events. The key of the dictionary is the domain attribute of an
event. The value is a set of requests, whose domain attribute is same as the key. Events with
unmatched key values are filtered out (in Screening function of Algorithm 2) and not stored or
paired, reducing both storage and computation overheads. As a result, a much longer time can be
used to retire a domain, providing a more comprehensive coverage on pairs.

Efficiency Pairing using Parallel Computing. Pairing is a time-consuming operation step in
the learning-based approach. To improve the efficiency, we propose to leverage two advanced
strategies to reduce the running time.

Divide-and-conquer. Given a list of events E, we divide E into k consecutive blocks and assign
them to multiple machines. Each host outputs are the intra-block pairs. For every two neighbor
blocks, we merge them and process pairwise comparisons until all records have been paired. From
the second iteration, the task is the inter-block comparisons. The pairing computation on disjoint
data can be made parallel. However, the overall complexity is still bounded by O(n2).

MapReduce. Using the same blocks described in the divide-and-conquer method, we assign each
host two blocks Bi and Bj (1 ≤ i ≤ j ≤ k) as inputs. The hosts perform the pairing operation
between any two records a and b, where a ∈ Bi and b ∈ Bj . The outputs are the intra-block pairs,
if i and j are equal. Otherwise, the outputs are the inter-block pairs.
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Algorithm 2 Efficient Pairing Algorithm (EPA)
Input: A list of chronological sorted events, L = {ei}.
Output: A set of event pairs, P = {P (ei, ej)}, 1 ≤ i < j.

1: define a set P to store the compared pairs {(ei, ej)}
2: define a dictionary D = (d, {e}), where d is the domain of event and {e} is a set of events whose

domain is d.
3: for each event ej ∈ L do
4: d← the domain of ej’s Host
5: if ej’s Referrer is not null then
6: dom← the domain of ej’s Referrer
7: else
8: dom← d

9: end if
10: if dom in D’s keyset then
11: for each event ei in D[dom] do
12: if pass the Screening(ei, ej) then
13: P← P ∪ P (ei, ej)
14: end if
15: end for
16: calculate the expire time and update D[d]

17: add ej in D[d]

18: else
19: add new entry (d, {ej}) in D
20: end if
21: end for
22: return P

The MapReduce framework is more suitable for the pairing operation, as it is a type of data-
intensive computation. The divide-and-conquer approach is easy to implement on both multi-
thread and multi-host environments, while the workload issue may hinder its scalability.

4.3.4 Feature Selection and Classification

Feature selection is to find an optimal set of representative features can significantly improve the
effectiveness of machine learning classifiers. We use two different feature selection algorithms,
namely Information Gain and Gain Ratio. Once a set of features is chosen, we train and classify
the data using three standard supervised machine-learning classifiers – Naive Bayes, a Bayesian
network [78], and a support vector machine (SVM) [44].
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Cost Sensitive Classifiers. Due to the sparsity of triggering relations existing in network traffic,
we leverage the customized cost matrices [50] to penalize missed relations during the training.

In cost-sensitive classifiers, the cost matrix can be defined to weigh the false positive (FP) and false
negative (FN) differently. A false negative refers to the failure to discover a triggering relation. A
false positive means finding triggering relation in a non-related pair.

Shown in Table 4.4, the cost matrix used in our model is labeled by two categories: with triggering
relation and without triggering relation. The values in the matrix are the weights for penalizing
classification mistakes. We set positive values in the cells for FNs and FPs. The cost-sensitive
classification takes a cost matrix as an input. The trained model aims at minimizing the total
penalty in imbalanced datasets. For simplicity, we show the values and omit the labels of the cost
matrix. For example,

[
0, 1
1, 0

]
is a cost matrix that has no bias on FPs and FNs;

[
0, 1
10, 0

]
penalizes the

FNs 10 times more than FPs for a classifier. In §4.6, we thoroughly evaluate how cost matrices
improve our analysis accuracy.

Table 4.4: Semantics of values in a cost matrix.

Classified As
W/O TR With TR

G
ro

un
d

Tr
ut

h

W/O TR TN: No penalty.
FP: penalty for finding
triggering relations in
non-related pairs.

With TR
FN: penalty for failure
to discover triggering
relations.

TP: No penalty.

Note: TR stands for triggering relation.

4.4 Root-trigger Security Policy

Given the parent node of each request using the rule-based method, or given the predicted results
of pairwise triggering relations from the learning-based approach, we can construct a triggering
relation graph (TRG). The graph serves as a source for locating anomalous network activities.

The security policy defines the legitimate and abnormal events, which can be used to analyze the
TRG and make security decisions. A specific root-trigger security policy is based on the user
intention, where a valid root trigger should be related to a user activity (e.g., a function call to
retrieve user inputs, mouse clicks, or keyboard inputs). Other definitions for valid root triggers
may be made according to the specific applications.
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Under the root-trigger security policy, one determines the legitimacy of a network event e based
on the legitimacy of e’s root trigger, i.e., whether or not e has a legitimate root trigger. Anomalous
events are those without a valid root trigger, namely the vagabonds. These events may be due to
malware activities or server misconfiguration.

Based on the results obtained from the TRD algorithm in §4.2.1, it is unambiguous to trace back
to its root-trigger for each newly-observed event. However, in the learning-based approach, the
pairwise classification results may lead to multiple parent events. Therefore, we design a root
finding algorithm (RFA) to obtain the root(s) for a given event ek, based on all predicted pairwise
triggering relations.

Algorithm 3 Root Finding Algorithm (RFA)
Input: An event ek; P∗ = {(P (ei, ej), lij)}, where ei 6= ej and lij ∈ {0, 1}.
Output: A set R, where each in R is a root of ek.

1: define a set R to store the results
2: define a queue Q and enqueue ek onto Q
3: while Q 6= ∅ do
4: event n← dequeue Q
5: set F← find n’s parent(s) based on P∗

6: for each event e ∈ F do
7: if e is of type root then
8: R← R ∪ {e}
9: else if e /∈ Q then

10: enqueue e onto Q
11: end if
12: end for
13: end while
14: return R

Shown in Algorithm 3, the inputs of the root finding algorithm are an event ek and a set P∗ con-
taining all the predicted pairwise triggering relations. The output is a set containing all the roots of
ek. To compute the transitive reduction, we opt for a queue Q to perform breadth-first traversal of
TRG. In each iteration, we obtain the parent(s) F of a dequeued event n. For each event e in the set
F, we add e to the return set R if it is a root-type event. Otherwise (i.e., e is an intermediate node on
the path from ek’s root to ek), the algorithm enqueues e onto Q for further iteration. This analysis
returns root triggers for the network requests. Network requests without valid root triggers, namely
the vagabonds, are flagged and alerted to the administrator for further inspection.

By the definition of triggering relation graph (TRG) in §3.1, each node on a valid TRG should
have at most one parent and thus at most one root trigger. In reality, we relax the definition in
that this property may not hold in the TRGs constructed from pairwise classification results, e.g., a
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node may have multiple paths leading to the same root, or multiple paths leading to different roots.
Therefore, our root finding algorithm needs to identify all the root triggers of a network event,
which makes the problem equivalent to compute the transitive reduction of a direct graph.

We illustrate the various cases where an event’s predicted root trigger is correct (a-c) or wrong (d-
g) on the constructed TRG in Figure 4.2. Our root-trigger policy allows the existence of multiple
intermediate parents for a node, as long as the root trigger is correct, e.g., Figure 4.2 (c).
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Figure 4.2: The illustration of various cases where B’s predicted root trigger is correct (a-c) or
wrong (d-g) on the triggering relation graph constructed from pairwise triggering relations. Let the
ground truth of B’s root trigger be A. Case (a) is where B’s parent is also B’s root. Cases (b) and
(c) are where there are one or more paths from the single root A to B, respectively. Cases (d), (e),
and (f) are where the predicted root of B is or includes a node other than A (e.g., E). Case (g) is
where the predicted root of B is null, i.e., no root-trigger.

We infer the root-triggers by integrating the system and network information. For example, we
can log the application information by a browser extension (e.g., Tlogger [17]). The browser
extension provides browser and tab events that can be used to identify the user-HTTP dependency
and user-DNS dependency. Besides, we adopt a heuristic method to infer the root-triggers. The
method determines root-triggers if the requests are larger than B bytes and have at least T mil-
lisecond away from the last root-trigger. The heuristic method applies for the lower level protocols
(e.g., TCP) that are not easily linked to user’s events.

We demonstrate the use of our method for detecting three types of common malware in §4.6,
including

• spyware as a browser extension,
• data-exfiltrating malware as a stand-alone process,
• a DNS-based botnet command and control channel,
• a remote break-in due to the software vulnerability.
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4.5 Prototype Implementation and Security Analysis

We present CR-Miner, a prototype of our host-based solution in §4.5.1. Then, we analyze the
robustness of CR-Miner against several potential circumvention attacks in §4.5.2.

4.5.1 Prototype Implementation

We develop the prototype CR-Miner in the Windows 7 operating system. The detailed architecture
of our prototype is shown in Figure 4.3. We build CR-Miner (refer to the darker parts in Figure 4.3)
between the application and the kernel layers.

System 
services 

(updates etc.) 

 
Windows API 

Hook API IP Helper API LIBPCAP API 

Application Programs 
 

 
Other App.  Signer 

 Causal relation analyzer 

Process module Traffic module 

Verifier 

Hook module 

Figure 4.3: The architecture of the CR-Miner prototype.

There are three sensors deployed to collect data on the host. The causal relation analyzer computes
the triggering relations based on the algorithms and rules described in §4.2. The Windows APIs
(namely hook API, IPHelper API, and libpcap API) are used in the implementation. Our imple-
mentation details are described next, including process identification, traffic monitoring, and user
event collection.

The traffic module collects the outbound HTTP GET and POST requests via the libpcap API.
We record the HTTP request header information, including the timestamp, IP address, get URL,
host, and etc. The process module obtains network and system information of the active connec-
tions. We obtain the IP table, a kernel data structure, by using GetExtendedTcpTable() in
IPHelperAPI.dll and associate the TCP connections to corresponding process IDs.

The hook module collects the kernel-level user events. By using the existing Windows hook API,
this module installs the hooks to log keyboard and mouse events (including mouse click, mouse
double click, mouse wheel, and key press). Furthermore, we obtain the process ID of the current
foreground window by using GetWindowThreadProcessId(). In such way, we can figure out
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the corresponding process for each user event. Repetitive user events that do not generate traffic
such as mouse movements are ignored.

We also record user events at the application level through the use of Tlogger. It is a Firefox
extension for capturing the information of mouse clicks during web browsing [17]. Tlogger pro-
vides the URL information associated with mouse-click events and the tab-related information.
Attributes of user events collected at the application level and kernel level are both used for iden-
tifying the root triggers in the IsRoot procedure (see §4.2.2).

4.5.2 Security Analysis

In this section, we answer the question Can CR-Miner be tricked? We examine the data integrity
in our prototype, as the data collection operation solely relies on the security of CR-Miner. Once
the data is collected, the dependence analysis may be conducted on a separate trusted machine.
Thus, the main security threats come during the data collection phase. Our threat model (in §3.3)
considers application-level malware. Therefore, we analyze the security and defense of CR-Miner
against two types of attacks: i) forgery attack where an adversary modifies attributes of his net-
work activities to make them appear legitimate, and ii) piggybacking attack where an adversary
strategically determines when to send outbound requests and exploits CR-Miner’s temporal rules.
We then summarize the effectiveness of CR-Miner in achieving our security goal of identifying
anomalous network activities.

Integrity of traffic data. Our triggering relation discovery solution relies on the integrity of the
data collected and analyzed, specifically the outbound HTTP header. Malware may attempt to
spoof the header fields in its outgoing request, e.g., forging its referrer field in the HTTP header so
that it appears to be referred by a valid root-trigger.

To prevent this problem, we equip the browser with a signer (in Figure 4.3), which implements a
lightweight message authentication code to ensure the integrity of the HTTP header created. Then,
the signed headers are verified by a trusted program called verifier on the same host. The signer and
the verifier share secret keys that are used for signing and verification. Traditional key distribution
mechanisms, such as the Diffie-Hellman key exchange scheme, can be used to set up the shared
secret key as the operating system starts.

The signer resides in the browser and we implement it in Mozilla Firefox 4.0. We modify the
Firefox browser to add a message authentication code (MAC) field to the HTTP header. The MAC
prevents the header from being tampered by malware on the host.

To implement, we define a new HTTP atom MAC in nsHttpAtomList.h for storing the keyed
hash value of the HTTP header. Init() in nsHttpTransaction.cpp is used to create the
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whole request header. After the HTTP header is generated in Init(), signer calculates a keyed
hash (MD5) for each request. The keyed hash method takes two inputs: the original HTTP header
and the symmetric key. The output of the hash function is a 32-digit hexadecimal value, which is
stored in the MAC field of the header. Our experiment shows that the overhead of the keyed hash
mechanism is negligible.

The verifier is implemented as a stand-alone program outside the browser on a host. The HTTP
requests that fail the integrity verification are logged. When collecting the outbound network
requests, the verifier obtains the HTTP headers and peels off the MAC fields to recover the original
headers. The verifier recomputes the keyed hash of the original header. If the computed MD5 value
is identical to the MAC value found in the HTTP header, the verifier delivers the packet to the traffic
module for further processing. Otherwise, the verifier regards the request as suspicious and alerts
the user.

Our cryptographic operations are orthogonal to those provided by SSL, which is for end-to-end
security with a remote server, whereas the purpose of signer and verifier is to guarantee the net-
work requests are not tampered with by malware before leaving the host. In our prototype, both
the signer and verifier reside on the same host. Our above integrity verification solution may bear
superficial similarity with the web referral architecture against DDoS [135]. However, our verifi-
cation mechanism is specific to web browsers and is designed to protect against stealthy malware
on the host.

Integrity of system data and user events. Our threat model considers application-level stealthy
malware. Therefore, the kernel-level system data, including the process ID, keyboard and mouse
events, is trusted. Process information (e.g., PID) can be obtained through known APIs. The user-
space malware cannot forge process information without the root privilege. Besides, the recent
work on cryptographic identification of natives applications in the operating system can be adopted
to prevent the forgery of process ID information [20].

Because user activities are used for identifying root-trigger events, the integrity of user events
is important. User events may be forged or deleted by user-space application leveraging known
APIs. To ensure the integrity of system data, advanced keystroke-integrity solutions such as the
provenance verification in [71, 73, 128] can be incorporated in CR-Miner to further improve the
system data assurance, which is a useful fail-safe mechanism to guard against potential operational
errors. These methods provide provable assurance to the origin of user events and effectively
prevent event forgery (i.e., injection of fake user input events). For example, Hasan et al. [73] show
how to provide strong integrity and confidentiality assurances for data provenance information at
the kernel, file system, or application layer, which may be applied to prevent the forgery of user
events in our prototype.

Defense against forgery attack and piggybacking attack. Our cryptography-based verification
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method effectively prevents the forgery attacks, because the headers are tamper-resistant once the
browser creates them.

In a piggybacking attack, the adversary sends network requests (to the attacker’s server) immedi-
ately after a legitimate network event. Such an attack would be effective in a naive temporal-only
analysis. However, our dependency rules inspect the context and property of traffic such as domain
names, referrers, and PIDs. Therefore, piggybacking requests can be easily detected as vagabond
requests, as malware traffic lacks the required attributes. The similar piggybacking attacks are
discussed by Xu et al. in [145] in the context of detecting drive-by-download attacks.

4.6 Evaluation and Results

We implemented our solution and evaluated using different types of network data. We have con-
ducted extensive tests on our triggering relation analysis and obtained positive results. The ques-
tions we seek to answer through our experiments are:

• How accurate is our learning-based approach for inferring the triggering relations on differ-
ent types of network traffic? (§4.6.3, §4.6.4, §4.6.5, and §4.6.6)
• Can our solution detect outbound network activities caused by stealthy malware and real-

world threats? (§4.6.7)
• Comparison to the rule-based TRD algorithm, how well does our machine learning approach

perform? (§4.6.8)
• How efficient is the learning-based approach? What is the most time-consuming operation

in learning-based approach? (§4.6.9)

4.6.1 Datasets

Our evaluation is mainly focused on the network traffic via HTTP and DNS protocols, which are
commonly used communication protocol both by legitimate users and attackers, and most firewalls
allow them [143]. Because of the privacy concerns (e.g., most application layer requests are in
plain text), there is no known public data source that includes both HTTP traffic and user’s inputs,
so we have to collect data on our own. We collect and analyze outbound HTTP and DNS requests
from hosts, aiming to detect suspicious activities by stealthy malware. Additionally, we adopt our
approach on a DARPA dataset [6]. This dataset contains network requests over multiple subnets
and it is originally created for assessing the intrusion detection systems. Last, we evaluate the
scalability of our learning-based approach with a much larger TCP dataset collected from a sever.
The details of data collection are listed as follows.
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• Dataset I (HTTP): We collected the user events and outbound HTTP traffic in a user study
with 20 participants. Each participant was asked to actively surf the web for 30 minutes on
a computer equipped with our data collection program.

• Dataset II (DNS and HTTP): We used tcpdump to continuously collect the outbound DNS
queries and HTTP requests on an active user’s workstation for 19 days. We collected types
A/AAAA DNS queries and the outbound HTTP requests that contain valid GET, HEAD, or
POST information in the headers.

• Dataset III (UDP and TCP): The dataset includes a DDoS attack scenario. The attackers
first performed IPsweep and probed the hosts that run the Sadmind service. By attempting
some remote-to-root exploits, three hosts got infected and were installed malicious scripts.
Last, attackers launched a DDoS attack from the victim machines. In this experiment, we
focus on our detection to the individual host and verify whether our method could be used
for identifying the break-ins on each host.

• Dataset IV (server TCP traffic): We collected TCP packets on an active Linux server in a
research lab. The inbound and outbound TCP packet headers were collected for 42 days
using tcpdump.

Table 4.5: An overview of four datasets in the experiments.

Dataset I II III IV

Type HTTP DNS (D) & HTTP (H) TCP & UDP† TCP
# of Raw Events HTTP: 45,988 D: 35,882; H: 85,223 All types: 649,787 TCP: 3,010,821

Efficient Pairing (η)‡ 94.7% 98.8% 96.8% 99.6%
# of Event Pairs 3,436,635 953,916 47,215,275 119,372,631

# of Root-triggers 899 2,795 21,416 45,960
Size (MB) 229.5 55.1 3441.3 6697.1

TR labeling∗ TRD (Algo. 1) TRD + rules TCPFLOW [16] TCPFLOW

RT labeling¶ Tlogger [17] Tlogger Rules Rules
†

Dataset III contains 33 different protocols, including TCP, UDP, DNS, and etc.
‡
η is the reduction percentage after using our Efficient Pairing Algorithm (EPA).
∗ TR labeling describes the methods to label triggering relations (TR), e.g., rule-based TRD, TCPFLOW,

or other rules (integral analysis of user-HTTP dependency and DNS-HTTP dependency for Dataset II).
¶

RT labeling describes the methods to label root-triggers (RT), e.g., Tlogger and the heuristic rules men-
tioned in §4.4.

A summary of the experimental data is shown in Table 4.5. In dataset I, we manually check the
legitimacy of vagabond requests after running TRD algorithm (Algorithm 1). In dataset III, the
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malicious requests are labeled based on the IDMEF alerts and audit logs [6]. In datasets II and IV,
we set up a firewall, run antivirus software and install a commercial IDS when collecting the data,
so we assume the collected data are clean.

Effectiveness of EPA. We define η ∈ [0, 1] as the reduction percentage in Equation 4.2, where
EPA(n) is the number of event pairs after using the efficient pairing algorithm in §4.3.3, and n is
the total number of events.

η = 1− EPA(n)

n× (n− 1)/2
(4.2)

Pairwise Feature Extraction on Network Data. The pairwise features are defined based on the
features of the traffic types. We summarize the categories of pairwise features in Table 4.6. The
comparison between two addresses (IP and port) and the temporal relation are commonly used for
all types of network traffic.

Table 4.6: Pairwise features defined on different types of protocols in Pairing operation.

Protocol Feature Category Illustrations of Pairwise Features

All Address difference Comparison between two IPs/ports
Types Temporal relationship Time difference, session duration, delta time

Transport Protocol difference Comparison/relationship between two protocols
Layer Flag difference Comparison between control bits/flags in headers.

Semantical similarity Similarity between two request URLs/referrers/domain.
Application File type difference Comparison between file types (e.g., request and referrer).

Layer System info. difference Comparison between system attributes (e.g, PIDs).
Aggregate info. # of the duplicated domains/referrers/DNS queries.

For transport layer protocols, the extracted features are obtained in two categories: i) the relation-
ship between two protocols (e.g., co-occurrence, succession, etc), which describes whether the
protocol is kept the same and how protocol is changed from one to the other; ii) the comparison
between control bits/flags, for example, the SYN and ACK values, the Length of a packet and the
MSS (maximum segment size) of a session.

For application layer protocols, besides the features above, we extract the pairwise features that
have semantic meanings, e.g., the similarity between two request URLs, two referrers, and a do-
main and a DNS query. This type of features includes human-readable languages and can be
analyzed using string comparison and advanced natural language processing techniques. In addi-
tion, the aggregate information over time is particularly useful to decide the triggering relationship,
when there are some missing or incomplete values in the packet.
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All pairwise features are finally chosen by two feature ranking algorithms (InfoGain and GainRa-
tio). In our evaluation, we select the most contributive features with the cut-off value 0.01. The
number of pairwise features in datasets I and II is 12 to 15, while in dataset III and IV, there are
about 10 pairwise features.

Classification Setup of Learning-based Method. Three common classification techniques are
compared: naive Bayes classifier, a Bayesian network, and a support vector machine (SVM)2.
Classification and TRG construction operations are implemented in Java using the Weka library.
We perform both 10-fold cross validation and train-n-test types of evaluation. The two evalua-
tion methodologies yield similar classification results. We report the train-n-test results, unless
otherwise specified.

4.6.2 Accuracy and Security Metrics

• The conventional precision and recall measures [27] evaluate the classification accuracy of
the positives (i.e., the existence of triggering relations). In the equations below, TP, FP, and
FN stand for true positives, false positives, and false negatives, respectively.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
. (4.3)

• The pairwise accuracy of classification is the percentage of pairwise triggering relations that
are predicted correctly by using machine learning classifiers. The pairwise accuracy is with
respect to the ground truth obtained through rule-based analysis and manual classification.

• The root-trigger correctness rate is computed based on the root of a node. It is the percentage
of events whose roots in the (constructed) TRG are correct with respect to the ground truth.
The metrics allow the existence of one event having multiple paths to the same root in a
TRG, which applies to both rule- and learning-based approaches.

4.6.3 Detection Accuracy on Dataset I

We present our evaluation results of learning-based approaches on the dataset I in this section.

Accuracy of Pairwise Triggering Relations. We present our experimental findings using the
learning-based approach from this subsection. Table 4.7 shows a high prediction accuracy rate for
pairwise triggering relations. These results indicate the effectiveness of our binary classification
approach.

2SVM has a polynomial kernel function with a degree of 2.
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Table 4.7: Pairwise classification results of train-n-test for four datasets.

Dataset
# of Pairs Cost Naive Bayes Bayesian Network SVM

in Test Sets Matrix Prec. Recall Prec. Recall Prec. Recall

I 3,318,328
[
0, 1
10, 0

]
0.954 0.996 0.956 0.996 0.958 0.997

II 693,903
[
0, 1
1, 0

]
0.959 0.998 1.000 1.000 1.000 1.000

III 25,694,154
[
0, 1
30, 0

]
0.996 0.971 0.996 0.984 0.996 0.965

IV 1,191,926,877
[
0, 1
3, 0

]
0.995 0.986 0.997 0.998 0.998 0.999

Note: Results are rounded before reporting. Prec. stands for precision in the pairwise classification.

We vary the cost matrices and compute the pairwise accuracy rates of the three classifiers. The
results are shown in Figure 4.4a. The accuracy rate is consistently high for naive Bayes classi-
fier, despite the changes of cost matrices. Bayesian Network and SVM respond differently to the
changes of penalty values in cost matrices. In Table 4.7, we report the accuracy results under the
cost matrix of

[
0, 1
10, 0

]
. This matrix gives 10 units of penalty to a false negative and 1 unit of penalty

to a false positive for the pairwise classification.

[
0 1

1 0

] [
0 1

5 0

] [
0 1

10 0

] [
0 1

30 0

] [
0 1

50 0

] [
0 1

100 0

]

Cost Matrix

99.60

99.65

99.70

99.75

99.80

P
ai

rw
is

e
A

cc
ur

ac
y

(%
)

Naive Bayes Bayesian Network SVM

(a)

[
0 1

1 0

] [
0 1

5 0

] [
0 1

10 0

] [
0 1

30 0

] [
0 1

50 0

] [
0 1

100 0

]

Cost Matrix

94

95

96

97

98

99

100

R
oo

t-t
rig

ge
rC

or
re

ct
ne

ss
(%

)

Naive Bayes Bayesian Network SVM

(b)

Figure 4.4: Accuracy and correctness results under various cost matrix conditions for datasets I.
The results of pairwise accuracy are shown in (a). The results of root-trigger correctness are shown
in (b).

Correctness of Root Triggers. The purpose of this analysis is to identify the reasons for wrong
predictions of root triggers. Running the root finding algorithm (in §4.4) on the predicted trigger-
ing relations, we obtain the root-triggers of all events and compare them with the ground truth.
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Figure 4.4b shows the correctness of root-trigger analysis under different settings (classifier and
cost matrices). The naive Bayes and Bayesian network classifiers yield nearly 100% accuracy of
finding the root triggers, both of which are not very sensitive to the cost matrices. In contrast, the
accuracy of SVM increases significantly with increased false negative penalty in the cost matrix.
In Table 4.8, we summarize the results of root trigger correctness for dataset I. Our prediction of
events’ root triggers is accurate. It has a very small error rate, as low as 0.06%. These errors
in finding root triggers generate false alerts. Wrong root triggers are mostly because of missing
attributes in the original data or late-arriving requests. We further analyze false alerts later.

Table 4.8: Correctness of root triggers in Dataset I.

Naive Bayes Bayesian Network SVM

Cost Matrix
[
0, 1
10, 0

] [
0, 1
10, 0

] [
0, 1

100, 0

]

Correct (case a-c) 99.94% 99.94% 99.37%
Wrong (case d-f) 0.00% 0.00% 0.28%
Wrong (case g) 0.06% 0.06% 0.35%

Note: Cases (a-g) refer to the various predicted root-trigger out-
comes in Figure 4.2 in §4.4.

Detection of Malicious Traffic in Dataset I. As defined in §4.4, vagabond events are those that do
not have any valid user events as their root triggers. There are total 1.2% vagabond HTTP requests
in dataset I. Some of them are malicious traffic to known blacklisted websites. Our analysis finds
in dataset I that among these vagabond events, there are 169 suspicious requests sent to 36 distinct
domains. Manual inspection reveals that these requests are to tracking sites, malware-hosting
or blacklisted sites, and aggressive adware. They are partly due to users visiting compromised
websites. For example, some requests track the user’s cookies and send back to remote hosts
with known blacklisted sites (e.g., 2o7.net, imrworldwide.com). We analyze the geographic
locations of the malicious servers based on their IP addresses. All of them locate in the US, except
one IP located in Netherlands. Some of the vagabond requests are false alerts, details of which are
given next.

False Alerts. In our model, false alerts refer to the network requests that are vagabond requests
(i.e., requests without proper triggers), but are legitimate (benign). False alerts in dataset I are due
to four main reasons:

• Automatic and periodic system and application updates that occur without user triggers. In
dataset I there are 157 update requests that are sent to 13 well-known legitimate domains.
Whitelisting can be used to eliminate these alerts.
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• Missing or incomplete attributes in the original data due to server configuration, e.g., redi-
rection without properly setting the referrer field. There are 244 misconfigured requests that
are sent to 38 different domains, usually image/video hosting websites.

• Unconventional attribute values, e.g., requests to googlesyndication.com (for Google
Map) usually have long referrers that our prototype does not expect.

• Requests sent out much later than their parent request trigger, e.g., requests for bookmark
icons.

Reducing false alerts can be achieved through more sophisticated inference methods under incom-
plete information, which will be investigated in our future work.

4.6.4 Detection Accuracy on Dataset II

The goal of the experiment on dataset II is to find the triggering relation in traffic with mixed types,
such as DNS and HTTP requests.

Pairwise Classification Accuracy. The pairwise classification results on dataset II are presented in
Table 4.7. All three methods give high pairwise classification accuracy, confirming our method’s
ability to discover triggering relations in mixed traffic types. Bayesian network and SVM yield
better results than naive Bayes classifier, indicating that there are dependencies among attributes.
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Figure 4.5: Accuracy and correctness results under various cost matrix conditions for datasets II.
The results of pairwise accuracy are shown in (a). The results of root-trigger correctness are shown
in (b).
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The pairwise classification accuracy under various cost matrices is shown in Figure 4.5a. Bayesian
network and SVM consistently give high classification accuracy. In contrast, the performance of
naive Bayes classifier decreases, as the cost matrix penalizes FNs more than FPs. We highlight the
pairwise classification accuracy results under the cost matrix

[
0, 1
1, 0

]
in Table 4.7.

Correctness of Root Triggers. We analyze the root-trigger accuracy for dataset II, and show
the results in Figure 4.5b. The root-trigger accuracy is high when using all three classifiers, with
Bayesian network and SVM outperform the naive Bayes. We highlight the root-trigger correctness
results under the cost matrix of

[
0, 1
1, 0

]
in Table 4.9.

Table 4.9: Correctness of root triggers on Dataset II.

Naive Bayes Bayesian Network SVM

Cost Matrix
[
0, 1
1, 0

] [
0, 1
1, 0

] [
0, 1
1, 0

]

Correct (case a-c) 98.44% 100.00% 100.00%
Wrong (case d-f) 1.37% 0.00% 0.00%
Wrong (case g) 0.19% 0.00% 0.00%

Note: Cases (a-g) refer to the various predicted root-trigger outcomes
in Figure 4.2 in §4.4.

4.6.5 Detection Accuracy on Datasets III

Dataset III (DARPA dataset) contains the network traffic collected from multiple subnets. We
focus on three hosts that are compromised by attackers and report the results by weighting the
number of requests on each host.

Pairwise Classification Accuracy. Results in Table 4.7 show a high prediction accuracy rate for
pairwise triggering relations. The precision results are all above 0.99, while the recalls vary. By
investigating the dataset, we found that the major reason of false positives is due to the change of
protocols in one TCP session. Packets that have triggering relations with others usually share the
same network protocol. However in some rare cases, a packet using protocol A may trigger the
other one using protocol B, especially when protocol A is a general one (e.g., TCP) and protocol B
is a specific one (e.g., TELNET, SMTP and RSH protocols). A possible solution is to use features
(in a vector) to characterize the change of protocols in a finer granularity, so that the classifiers can
learn the patterns.

According to Figure 4.6a, the Bayesian network classifier yields the highest pairwise accuracy
among the three tools and it achieves the best accuracy rate using the cost matrix
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30, 0

]
. For the
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Figure 4.6: Accuracy and correctness results under various cost matrix conditions for datasets III.
The results of pairwise accuracy are shown in (a). The results of root-trigger correctness are shown
in (b).

two other classifiers, the pairwise accuracy results decline as the penalty of false negatives goes
larger.

Correctness of Root Triggers. We run the root finding algorithm on dataset III to infer the root-
triggers for each packet. Results show that the Bayesian network and SVM achieve better accuracy
in finding the root-triggers, while the naive Bayesian classifier does not present a good prediction
result that is mainly due to the dependence of features in dataset III. Shown in Figure 4.6b, the
high root-trigger correctness results occur when using the cost matrices

[
0, 1
50, 0

]
,
[
0, 1
70, 0

]
and

[
0, 1
90, 0

]
.

Further, we find that the results of the root-trigger prediction are not consistent with the pairwise
accuracy results. In other words, the low pairwise accuracy results do not affect the result of
root-trigger prediction, especially when increasing the penalty of false negatives in cost matrices.
The reason is that the results of pairwise classification may be redundant or inaccurate, in terms of
inferring the root-triggers. Therefore, as long as an event can be traced back to its root according to
the predicted classification results, the classifier is accurate in terms of the root-trigger correctness.

We further introduce a new policy for detecting the malicious root-triggers, after finding the root-
triggers using Algorithm 3. The policy is a heuristic one and based on our observations on dataset
III. We highlight the high-risk protocols based on their frequencies and patterns of occurrence. In
this policy, we found that network packets via Portmap protocol (port=111) immediately followed
(< 0.1 second) by the Sadmind protocol (port=32773) are malicious, which can be regarded as the
period of infection. Besides, we discovered that the Portmap and Sadmind protocols occurred
three times in a short period (< 10 seconds) and the packets from an external IP (202.77.162.213)
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after each period are related to malicious activities (e.g., remote buffer overflow for rooting shell).
This experiment suggests that data-specific security policies are more effective than general pur-
pose ones. We show our model could be integrated with refined policies to detect malicious activ-
ities in the early age.

4.6.6 Detection Accuracy on Datasets IV

For dataset IV, the goal of the experiment is to find the triggering relationship on a large scale
of data. The dataset contains both inbound and outbound TCP packets. The precision and re-
call results are given in Table 4.7. All three classifiers yield high pairwise accuracy rates, with
the Bayesian network (99.72%) and SVM (99.82%) outperforming the naive Bayes classifier
(98.92%). Performance results are reported in §4.6.9.

4.6.7 Evaluation of Stealthy Malware Activities

To test the effectiveness of rule- and learning-based methods, we assess our solution on several
pieces of proof-of-concept and real-world malware.

Malicious Browser Extension. We write a proof-of-concept malicious Firefox extension, which is
a piece of password-stealing spyware. The malware sends the username and password when a user
clicks on the Submit button in the browser. This spyware is similar to the existing spyware such
as FormSpy and FFsniff. A victim user clicks the Submit to log on to various email services
and Internet forums. The spyware requests, which contain the username and password in the
HTTP request (/query?id=user id&ps=password), are sent to its destination host. With
our triggering relation model and root-trigger policy, all malicious HTTP requests are detected.
However, the default Windows Firewall does not alert the data leaks.

Data Exfiltrating Malware. We write another proof-of-concept data-exfiltrating malware. This
malware runs as a stand-alone process, similar to the Pony bot [4]. It sends out the HTTP GET

or POST requests with system information to remote servers. The malware is programmed to
transmit its payload right after the occurrence of a user event on the host, attempting to hide its
communication among legitimate outbound traffic. The malicious communication may be a single
request or a series of HTTP requests. Our approaches successfully detect the network activities of
the malware in that the malicious outbound requests do not have valid triggering relations, i.e., the
requests lack of any user event as the root-trigger.
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Detection of real-world malware. We find and investigate several pieces of real world malware,
as well as the software bugs that may trigger HTTP requests.3 We obtain the malicious requests
by running the malware or synthesizing the traffic on a controlled virtual machine. To evaluate the
capability of our traffic dependence analysis, we overlay the malicious traces to the normal traffic
in dataset I. The malicious software is summarized below.

• Apache Qpid 0.30 Vulnerability: Remote attackers can trigger outgoing HTTP connections
by a crafted message, due to the vulnerability in its XML exchange functionality. (CVE-
2014-3629)

• Microsoft CryptoAPI Design Bug: Attackers can trigger HTTP requests due to a design
bug in X.509 certificate chain validation. (CVE-2013-3870)

• Zend Framework vulnerability: It allows attackers to open files and trigger HTTP requests
to leak information, due to the misuse of the PHP XML parser. (CVE-2012-5657)

• Linux/Cdorked.A: The servers affected by this backdoor redirect clients to a malicious
website hosting a Blackhole exploit kit. After a series of redirects, a piece of malware is
downloaded on the victim’s computer via a GET request.

• MorXBrute Password Cracker: It is an HTTP dictionary-based password cracking tool. It
supports users to customize their payloads to any specific HTTP software or websites. (A
password cracker)

All the network activities due to malware or software bug are detected as vagabonds. These packets
are either GET or POST requests. We run our solution on this dataset that the benign requests are
interleaved with the malicious ones. Both rule- and learning-based approaches can successfully
detect the malicious requests, as they are not associated with any legitimate user’s event or benign
traffic, per the root-trigger security policy.

To detect the malware, most current solutions adopt the signature-based scanning, which requires
the known of the malicious signatures. In our experiment, we collected the malicious/unauthorized
network requests on a controlled virtual machine. We note that only a small portion (< 9%) of
requests sent to malicious host is reported by the Windows Firewall. These requests are triggered
due to the server backdoor vulnerability (e.g., Linux/Cdorked.A). Most malicious requests are not
reported and blocked. Therefore, we speculate that the blacklist in Windows Firewall is limited
and the malicious domains are ever-changing. In our solution, we detect the malware’s behaviors
regardless the source code and functionality of the malicious software. Therefore, our solution is
good to identify zero-day attacks that trigger unintentional network requests.

3Most samples are found at packetstormsecurity.com.

packetstormsecurity.com
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DNS Bot Detection. Botnet command and control channel using DNS tunneling [7] is extremely
stealthy and difficult to detect [143]. We write a proof-of-concept bot that communicates with
its bot master by tunneling command and control messages in DNS traffic. The bot generates
carefully crafted outbound DNS queries whose payload contains encoded data, e.g., a DNS request
to d1js21szq85hyn.cloudfront.net. We overlay the bot queries with a 2-hour DNS-HTTP
traffic dataset, and then analyzed using our learning-based solution. Our evaluation confirms that
our method successfully recognizes all the bot DNS queries as anomalies. These DNS queries do
not have valid root-triggers.

4.6.8 Detection Accuracy of Rule-based Approach

The rule-based approach needs non-trivial human efforts to generate rules and algorithms. To
compare with the results of our learning-based approach in §4.6.3, we present our evaluation of the
rule-based solution on the dataset I. We infer the triggering relations by running the TRD algorithm
(Algorithm 1) as a baseline method.

We calculate the percentage of requests whose triggering relations are inferred by IsRoot, IsChild,
and IsSibling, respectively. The results in Table 4.10 show that most of the dependent relations
(87.4%) are inferred by the IsChild procedure. Because the heuristic rules are generated based
on the definition of triggering relation, the relations found by the TRD algorithm are all correct.

Table 4.10: Percentages of triggering relations inferred by
different subroutines of rule-based TRD on Dataset I.

Category
Triggering relation discovery (TRD) TR not

foundIsRoot IsChild IsSibling Total

Percentage 1.9% 87.4% 8.6% 97.9% 2.1%

We inspected the requests that are missing triggering relation (2.1% in Table 4.10) based on the
ground truth. We find that the precision of finding vagabond is about 60%, while the recall is 100%.
The low precision is mainly due to the failure of finding triggering relations for some corner cases
on the diverse and complex HTTP traffic data (e.g., heavy use of AJAX technique results in late-
arriving packets, and missing referrer information in request headers4). The recall is 100% because
all malicious requests are flagged vagabonds by our TRD algorithm.

The root-trigger correctness of rule-based approach is 98.72%, which is less than that of the
learning-based one (99.94% in Table 4.8). In the results obtained from the rule-based method,

4Depending on the version of the browser and JavaScript engine, the referrer information in the request header may
be suppressed [14].
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most wrong root-trigger cases are due to the missing triggering relation for corners cases. One
can always obtain better results by a hand-tuned algorithm, but this requires significant time and
efforts from the domain experts. In contrast, the learning-based approach enables the triggering
relation inference by using the pairwise features, which can precisely describe the corner cases
from multiple dimensions.

4.6.9 Performance of Rule-based and Learning-based Approaches

All runtime results are obtained on a machine with Intel i5-3320 and 16GB RAM. First, we mea-
sure the runtime on the evaluation of dataset I to compare the rule- and learning-based approaches.
Results show that it takes about 2.68 seconds to run TRD algorithm per 1000 requests, while it
takes about 0.30 seconds to classify and infer the root-trigger per 1000 requests using a Bayesian
network classifier.

Performance breakdown of learning-based approaches. We further investigate the performance
of all processing operations across three classifiers. For each dataset, we report the runtime of
Pairing, Training, Classification, and the root finding algorithm. The runtime of each operation is
averaged from five runs and reported in Table 4.11. Standard deviations are negligible and not
shown.

Table 4.11: Averaged performance (in seconds) of Pairing, Training,
Classification, and root finding algorithm.

Data Pairing
Training Classification Root

NB BN SVM NB BN SVM Finding

I 965 0.8 1.9 5.9 15.9 14.8 13.2 1.6
II 603 1.7 2.1 10.4 3.2 2.8 5.1 0.6
III 3218 14.8 16.0 39.7 225.5 230.0 268.0 18.9
IV 7633 16.3 19.8 245.6 411.9 402.6 426.9 –

Note: NB and BN stand for Naive Bayes and Bayesian Network classifiers,
respectively. Pairing time includes feature extraction.

Shown in Table 4.11, the Training, Classification, and root finding algorithm are fast. The Pairing
operation is the most time-consuming task in our solution. To extract the pairwise features on 42
days of a server’s TCP data (dataset IV), it takes as long as 2 hours to generate the pairs from 3
million TCP messages. Our experiments have determined that on a single day, at most 200MB of
pairwise data can be generated from a server’s TCP packet headers. As for the processing time,
generating the daily pairwise data takes only 3 minutes on average, indicating that our method is
efficient for practical use.
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4.6.10 Summary of Evaluations

We summarize our findings below.

• Bayesian network classifier gives the highest pairwise accuracy rate among all datasets. It
outperforms the naive Bayes classifier, indicating the existence of dependencies in pairwise
features. The accuracy can be improved by strategically defining the cost matrix. Both BN
classifier and SVM yield high pairwise accuracy rates on all datasets, while SVM has higher
runtime overhead than BN in general.

• Precision and recall metrics are more sensitive to the quality of the classification results than
the pairwise accuracy metric. The fundamental reason for this difference is the sparsity of
the triggering relations, which results in different sizes of the denominators in these metrics.
The detection accuracy can be improved by strategically defining the cost matrix.

• Our causality analysis successfully reveals all the outbound traffic to 36 malicious domains,
i.e., with zero false negative rate. Our solution also detects the stealthy network activities
from our proof-of-concept browser spyware, DNS bot, stand-alone data-exfiltrating mal-
ware, as well as several real-world vulnerabilities.

• The rule-based algorithm is inferior to the machine learning classification, in that the results
show a low precision rate in finding vagabond requests. The coverage of various cases in
TRD algorithm is crucial to determine the triggering relations in complex scenarios, so one
needs manual efforts to generate a well-designed algorithm to obtain equivalent good results
as the learning-based method does.

• With the proof of evaluations on datasets III and IV, our triggering relation model can be
generalized to the events on the transport layer. The rationale of triggering relationship for
a particular type of events determines the pairwise features. In the DARPA data (dataset
III), we show the potential use of our model with other mining approaches/protocols for
analyzing complex cases.

• Limitations. In our optimized learning-based prototype, Pairing operation (for extracting
pairwise features) has high computational overhead. This overhead is due to the quadratic
complexity in pairing. Heuristics for improving the pairing efficiency may result in de-
creased analysis accuracy. We will investigate this trade-off in our future work.
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4.7 Summary: Host-based Triggering Relation Discovery

Analyzing the triggering relation between network traffic and user activities has not been system-
atically investigated as a general approach for anomaly detection. Compared with the conventional
signature-based and counting-based detection approaches, our traffic dependence model provides
the semantic-aware security analysis. The analysis approach exploring request-level traffic struc-
tures and semantic triggering relations is new.

The proposed triggering relation graph extracts and models the causal relations between observed
events and their triggers. Triggering relations exist in different types of network traffic. These
discovered relations produce structural and contextual information for reasoning and justifying
the occurrences of system and network behavior patterns. Moreover, they help one understand
the context of network communications and identify the security threats. The advantage of our
approach is the ability to provide proactive system defenses.

In this chapter, we describe the applications of our TRG model in solving challenging network
security problems, such as stealthy malware detection. We designed, developed, and compared
both rule- and learning-based approaches for triggering relation discovery. Machine learning ap-
proaches enable us to cover a high dimension of features, which cannot be realized by simple
rule-based approaches. In the learning-based approach, the pairing operation is unique and ex-
tracts the pairwise features, which make the binary classification feasible in discovering triggering
relation among network requests. With a specific user intension based policy, we leveraged TRG
as a tool to identify the potential threats.

We performed extensive experimental evaluation on our host-based solution. Our results indicate
the feasibility of enforcing the network traffic dependencies. Our evaluation on 10+ GB data
(real-world and DARPA datasets) shows a high accuracy of the triggering relation prediction using
the learning-based classification. Experimental results confirm the effectiveness of our traffic-
reasoning technique against browser spyware, DNS bots, and data exfiltrating malware. For future
work, we plan to design more complex security definitions and policies for utilizing the triggering
relation graph to detect network incidents.



Chapter 5

Android-based Network Anomaly Detection
via Triggering Relation Discovery

Malicious Android applications pose serious threats to mobile security. They threaten the data
confidentiality and system integrity on Android devices. Code obfuscation is commonly seen in
malicious apps, therefore monitoring runtime activities serves as an important way to analyze the
dynamic app behaviors. In this chapter, we utilize the triggering relation model for dynamically
analyzing network traffic on Android devices.

The chapter is organized as follows. We describe the motivations and an overview of our approach
in the context of mobile security in §5.1. The new challenges on Android platforms and our design
goal are given in §5.2. We present the details of our dependence analysis approach in §5.3. To label
the triggering relation on general apps, we introduce a delay inject technique in §5.4. We conduct
extensive evaluations on our solution and present the results in §5.5. §5.6 concludes the chapter.

5.1 Motivation and Overview

The openness of Android application development mechanism poses security challenges to smart-
phone users. Malicious apps (malware) may be created by repackaging popular apps. At runtime,
they may directly fetch and run code on-the-fly without the user’s awareness [66]. Thereafter,
malicious apps may spy on the victim users, stealthily collect and exfiltrate user’s information.

Existing static analysis solutions inspect the source code, binaries or call sequences for anoma-
lies [19, 24, 63, 95, 148, 153]. For example, Drebin [24] extracts features including APIs, permis-
sions, and app components to characterize and classify apps. SCSDroid [95] identifies malicious
apps by extracting subsequences of system calls. ViewDroid [153] detects repackaging apps by

57



58

analyzing the bytecode of Android apps. However, dynamic code loading, Java reflection-based
method invocation, data encryption, and self-verification of signatures are commonly seen in the
malware code [52, 147]. These code obfuscation techniques make static analysis based detection
challenging. Dynamic analysis, as a complementary to the static analysis, detects the runtime be-
haviors of the malicious apps. For example, TaintDroid [51] is a solution to monitor and verify the
sensitive information flows through the apps, but it is infeasible to learn the origin of sensitive data
leaking (e.g., triggered by users or malicious code fetching from a remote host). Besides, as we
treat the apps as blackbox, our solution is lightweight and low overhead, as opposed to monitoring
the apps as whitebox in TaintDroid.

An important technical enabler of our solution is the ability to discover the triggering relation of
pairs of requests. We refer to it as the pairwise triggering relation discovery. Pairwise relations
are used to construct the full triggering relation graph. The graph depicts the causality of network
requests and allows one to quickly identify the root triggers of observed events. We utilize learning-
based classifiers to predict the pairwise relationship between two network requests. Thereafter, we
classify the root triggers to identify malicious requests based on their dependency features. The
new capability of our solution is to distinguish malicious root triggers from legitimate ones. It
allows us to detect the stealthy malware activities that may not be detected by existing traffic
profiling methods [48, 137, 146].

Our work is designed to fill the gap between dynamic analysis and network anomaly detection on
Android. The dependence model inferring the relation of network requests aims at monitoring the
runtime network behaviors and reasoning them based on the user’s intention.

Our contributions are summarized as follows.

• We present a two-stage learning-based solution to detect the malicious network activities.
The discovery of triggering relations on pairwise network events is unique and enables us
to construct a triggering relation graph. Our pairing operation is improved with an adaptive
window technique. Then we classify the root-triggers to identify the abnormal requests.

• We conduct experiments based on 14GB real-world network and system data. The results
show that the triggering relations of network traffic on Android can be inferred at the accu-
racy of 96.8% to 98.2%.

• Without knowing any priori knowledge, our framework enables the detection of malicious
requests sent from the newly released apps. Results show that we detect 99.1% malicious
requests from all malicious apps. We identify all 12 malicious apps that behave like Trojan,
spyware, or bots. In comparison, only one is reported by our organization IDS (FireEye).

Our results show that our detection method is useful for identifying unauthorized network activities
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sent from the malicious apps. The significance of our work is that it provides insights of the
network traffic dependency and demonstrates the use of structural and semantic information in
reasoning about network behaviors and detecting stealthy anomalies.

5.2 Design Goals

In this chapter, we aim at identifying malicious apps by analyzing their dynamic behaviors, specifi-
cally the network traffic. Our goal is to profile the legitimacy of the mobile traffic pattern of benign
apps, and thus to detect the malicious network requests that are sent without user’s awareness.

We utilize the proposed triggering relation model (§3) to formalize the causal relations of app-
generated network requests in Android. The model depicts the dependency of network events and
explains how one triggers the other. The dependencies and semantic information of requests are
useful for human experts’ cognition, reasoning, and decision making in cyber security. We use the
dependency knowledge to determine whether a network request is triggered by legitimate causes.

To detect malicious requests on mobile devices is challenging, as the diverse network traffic
from different types of apps (e.g., irregular requests without appropriate referrer in the header)
and frequently-generated notification. Existing solutions either reason about the dependency us-
ing heuristic algorithms [141] or limit the causality analysis on one specific application (e.g.,
browsers [107]), which cannot achieve our goal to dynamically analyze network behaviors on
Android.

In this section, we discuss the challenges of extracting network traffic dependency on Android
devices (§5.2.1) and describe the overview of our analysis approach (§5.2.2).

5.2.1 New Challenges for Triggering Relation Discovery on Mobile Devices

The problem of detecting malicious requests on mobile devices is challenging. We summarize the
technical difficulties on the Android platform as follows.

• Lack of referrer. In our study, 83% network traffic sent from Android device is gener-
ated by non-browser apps. The app developers create diverse apps that communicate with
the remote servers via HTTP protocol. However, the HTTP requests sent from non-browser
apps rarely contain correct and meaningful referrers. Some apps attach unified referrer infor-
mation for all outbound requests. Therefore, existing solutions including the referrer-based
inference [141] or the instrumented browser [107] do not work for the general apps.
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• Diverse network traffic from apps. Compared with browser-generated traffic, requests
sent from apps have varying patterns. How to use a unified framework to infer the trigger-
ing relationship has not been studied yet. Processing massive data also demands scalable
solutions.

• Automatic notifications and updates. Mobile devices constantly alert users with notifi-
cations, resulting in plentiful network requests in the background. The tradition whitelist
generated by human experts is no longer adequate. How to distinguish benign updates from
stealthy malicious requests is challenging. Properly handling the automatic notifications is
crucial in achieving a high accuracy and low false positives.

We infer triggering relations by analyzing how the delays are propagated among the network
requests of an app. As a result, we discover the dependency without requiring the referrer in-
formation. We also design a learning-based approach to classifying the triggering relationship of
requests, which is scalable and suitable for all types of Android apps. We build the TRG based on
classification results. The graph offers rich structural and context-aware features that are further
used to distinguish the automatically generated notifications and malicious requests.

Our model detects the malicious behaviors by discovering the dependency of network requests on
Android devices. Shown in Figure 5.1, the behaviors of malware include the unauthorized network
activities, e.g., stealthy outbound requests without user’s awareness, piggyback requests for updat-
ing apps with malicious code, and other types of out-of-order requests. These behaviors existing
in a wide range of malware families cause sensitive information leaking and system abusing, e.g.,
repackage apps, drive-by download apps, and Android bots (see §3.3).

…
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Figure 5.1: Our TRG discovery aims to detect stealthy outbound network activities from malicious
apps in Android.
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Our model targets at the stealthy network activities via HTTP, because HTTP is the protocol of
choice for most app developers to implement communication with remote servers [146] and is
hardly blocked by anti-virus tools. Repackaged apps and drive-by download attacks are the com-
mon initial infection vectors [161]. After the malicious apps are installed, the requests sent to
remote hosts could leak user’s information or conduct bot activities for profits. Our proposed so-
lution can detect these types of activities without knowing any signatures of the malware, and thus
applicable to detect the new (zero-day) malicious apps. Trivial engineering on existing malicious
apps cannot bypass the detection, as our solution identifies the requests without benign triggers,
and is not based on any known malicious code or sensitive APIs.

We target at the malicious apps running on the user-space. Therefore, malware with root access
is not in our threat model. We trust the system logs and keylogger apps to infer the triggering
relationship and root-triggers.

5.2.2 Overview of Our Approach

As explained in §3, the triggering relation graph is composed of network events and the edges that
link them. The problem of triggering relation discovery on a set of network events can be trans-
formed into inferring the triggering relations of pairs of events, which is defined as the pairwise
triggering relation. Given a sequence of network requests R = {r1, r2, . . . , rn}, the purpose of
pairwise comparison is to generate a set of pairs P = {P (ri, rj)}, where 1 ≤ i < j ≤ n, ri
and rj have a high likelihood to have a triggering relation. The pairwise comparison method has
been proposed to solve the general relation discovery problem [64, 81, 157]. In this work, we
further advance it in the Android context by improving the pairing efficiency and the multinomial
classification.

Utilizing predicted results from the classification, we build the TRG G = {T1, T2, . . . , Tm}, each
Ti is a tree rooted at request rti . We classify the root-triggers RT = {rti} (1 ≤ i ≤ m), based on
the extracted features from TRG G. The root-trigger request rti determines the legitimacy of each
tree, i.e., if it is generated from a benign app, the entire tree Ti is legitimate. The anomalies are the
requests of trees that are not triggered by users, nor belong to the automatic notifications/updates
from benign apps.

An overview of workflow is shown in Figure 5.2. Our approach requires the data labeling (in
training phase) based on the requests R, details of which are given in §5.4.

The main operations in our analysis are pairing, TR analysis and detection. The first two operations
are designed to model the triggering relations and build a TRG. Both TR analysis and detection
include training and testing, as the standard operations for the machine learning approach. Specif-
ically, we adopt a multinomial classification in TR analysis and use a binary classifier in detection.
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Figure 5.2: The workflow of our triggering relation discovery based malware detection.

A) Pairing takes the R as an input and outputs a set of paired requests P = {P (ri, rj)}. (§5.3.1)

B) TR analysis takes the predicted pairs P as inputs and outputs a constructed TRG G. (§5.3.2)

C) Detection takes a TRG G and its root-trigger set RT as inputs. It extracts features of RT and
builds classifications to predict the legitimacy of root-triggers. (§5.3.3)

5.3 Triggering Relation Modeling and Detection

We describe our triggering relation modeling phase in this section. The goal of this modeling is to
build a complete and accurate TRG for later detection phase.

We introduce the multi-class to describe the structural relations of two requests ri and rj: (1)
parent-child: ri → rj , (2) sibling: ri and rj have the same parent (i.e., rk → ri and
rk → rj), (3) same-tree: ri and rj are situated on the same tree (ri ∈ Ti and rj ∈ Ti) without
parent-child and sibling relations, and (4) no-relation: ri and rj on two different trees.
The quad-class offers rich information to identify the relations for requests in TRG. Figure 5.3
illustrates how we generate pairs from a sample tree using the quad-class labeling and how the
quad-class relations determine the pattern of a tree in TRG.

5.3.1 Pairwise Feature Extraction

To solve the pairwise triggering relation discovery, one needs to make pairs for network requests
that may have a triggering relationship. The pairing operation is performed on any two requests
ri and rj in R for whose time difference is less than a threshold τ . Let the request ri have p
attributes and each is denoted as ri.attr, attr ∈ {time, IP, port, host, ..., URL}. Then, the pairing
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Figure 5.3: A sample tree (a) and its pairing results (b). In (a), nodes and edges denote the network
requests and their triggering relations respectively.

operation is performed on every attribute of the requests. The pairwise comparison can be written
as P (ri, rj) = {f1(ai.time, aj.time), . . . , fp(ai.URL, aj.URL)}, where fk is the pairing function
for the k-th attribute. Shown in Table 5.1, different types of attributes require different pairing
strategies (fk). Specifically, string type of attributes usually contains rich semantic information.
Therefore, we utilize the normalized edit distance to compute the similarity of two string fields.

Table 5.1: Pairing functions used for different attribute types.

Attribute Pairwise Function (fk) Example(s)

Numerical Compute the difference. Timestamp.
Nominal (Sub)string/equality test. Protocol, File type.

String String similarity comparison. Host, request URL.
Composite Comparison of sub-attributes. IP address.

Adaptive Pairing. To avoid the O(n2) complexity of pairing n requests, we only analyze network
requests whose timestamps are within a small time window. In our prototype, we calculate the
threshold using the Chebyshev’s inequality. Let d(i,j) be the time difference between a pair of
requests ri and rj that have a triggering relationship. During the learning phase, µ and σ2, the
mean and standard deviation (SD) of d(i,j) can be estimated.

Pr(|d(i,j) − µ| ≥ 10 ∗ σ) ≤ 0.01 (5.1)

As shown in Equation 5.1, we obtain that the probability of the difference between d(i,j) and µ
exceeds 10 ∗ σ is no greater than 1%. The Chebyshev’s inequality offers an upper bound on the
probability of d(i,j), regardless of its distribution. The adaptive pairing window (τ = µ + 10 ∗ σ)
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outperforms the predefined and fixed threshold proposed in [156, 157], as it is difficult to find a
fixed value on mobile devices due to the diverse network behaviors of apps.

In our solution, we calculate the moving average as the µ and its corresponding σ2 in Equation 5.1.
The moving average smooths the window size, as the network data within a small time interval
may fluctuate. The diurnal patterns for mobile users can be adjusted by varying the time windows
size (e.g., last day, last week, etc). Later, we confirm that our adaptive pairing using 3-day moving
average guarantees the coverage of dependency pairs by 99%.

5.3.2 Quad-class Classification and TRG Construction

In the TR analysis operation, we train classifiers to predict triggering relations on pairs P =

{P (i, j)|i < j}. The predicted results are in the form of (ri, rj) → lij , where lij is one of the
relations in the quad-class. Then, machine learning classifiers (e.g. decision tree-based, Bayesian-
based) can be applied on the pairwise data P.

The classification results of pairwise comparisons serve as the source for constructing the TRG.
Essentially, this operation is the reverse process of Figure 5.3. We analyze three types of relation-
ship: parent-child, sibling, and same-tree and assign weights wp, ws, and wt to them,
respectively.1 The purpose of the weights to construct the TRG based on the classified pairwise
triggering relations. Given ri and rj , we define w(ri,rj) in Equation 5.2 as a score of the pair (ri, rj),
which is the summation of the weights that indicate their triggering relationship.

w(ri,rj) =
∑

w





wp, if (ri, rj)→ parent-child.

ws, if (ri, rk)→ parent-child

and (rk, rj)→ sibling.

wt, if (ri, rj)→ same-tree.

(5.2)

We show the procedure to calculate the weight for the classified pair (ri, rj) in Algorithm 4. The
inputs of Algorithm 4 are the predicted results P and the weights (wp, ws, and wt). In lines 6-9,
there may be multiple triggering candidates (parents) for one request. Thus, we update the weights
for each node of its parents (denoted by Parent(ri)). The output of Algorithm 4 is a dictionary of
keys D, which contains the calculated weights of pairs that (may) have triggering relationship.

Building a TRG from D is equivalent to finding the maximal spanning tree in a graph. In our
approach, we adopt Prim’s algorithm, which suggests starting from one vertex and selects the

1In our design, the weights are calculated using multivariable linear regression.
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Algorithm 4 Triggering Relation Weights Calculation
Input: Requests R = {r1, r2, . . . , rn}, classified pairs P = {(ri, rj)→ pij} (1 ≤ i < j ≤ n), and weights

wp, ws, wt.
Output: A dictionary of keys D = {(ri, rj) = w(ri,rj)}, where ri and rj may have triggering relationship

according to the classification, and its weight is w(ri,rj).
1: define D to store the weight w(ri,rj) for the edge ri → rj
2: for each pair (ri, rj)→ pij ∈ P do
3: if pij = parent-child relation then
4: weight w(ri,rj) += wp, and update w(ri,rj) in D
5: else if pij = sibling relation then
6: Parent(ri)← ri’s trigger(s) according to P
7: for rp in Parent(ri) do
8: weight w(rp,rj) += ws, and update w(ri,rj) in D
9: end for

10: else if pij = same-tree relation then
11: Root(ri)← ri’s root request(s) according to P
12: for each rr in Root(ri) do
13: weight w(rr, rj) += wt, and update w(ri,rj) in D
14: end for
15: end if
16: end for
17: return D

highest weight from the adjacent neighbors.2 Prim’s algorithm fits our needs of starting from
known root-triggers. The prerequisite in Prim’s algorithm is the weight calculation. During the
process of selecting the largest weight in Prim’s algorithm, there may be equal weights in D. We
design rules to select the best triggering parent for a given request from a group of candidates
whose weights are equal, i.e., w(ri,rk) = w(rj ,rk). The following rules are presented in the order of
the precedence.

Rule 1) If ri ∈ Ti, rj ∈ Tj , and rti .time > rtj .time, then ri → rk. (The rule is in favor of the
request on the most recent dependency tree.)

Rule 2) If ri, rj ∈ Ti, ri.level < rj .level, then ri → rk. (The rule is in favor of the request on
upper level of the tree.)

Rule 3) If ri, rj ∈ Ti, ri.level = rj .level, ri.time > rj .time, then ri → rk. (The rule is in
favor of the most recent requests on the same level of the tree.)

2Prim’s algorithm is usually used to find the minimal spanning tree. However in our scenario, the larger weights
mean the higher possibility to have triggering relationship. Therefore, we find the maximal spanning tree for G. The
same situation applies when using Kruskal’s algorithm.
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We make these design choices based on the empirical experience and domain knowledge of the An-
droid network traffic. Prim’s algorithm outputs the TRG G by picking the best candidate trigger
from the equal-weight candidates. As the classification results may contain redundant or con-
flicting information, it is indispensable to solve the tie-breaking of weights. Wrong triggering
relationship results in the wrong root-trigger, which causes the false positives of malware detec-
tion.

Table 5.2: The triggering relations are built from the predicted
results. The tie-break column shows the rule to resolve ties.

# Predicted results w(ri,rj) Tie-break Built TR

(1) (r1, r2)→ p-c wp + ws — r1 → r2
(2) (r1, r3)→ p-c wp + ws

}
No tie. r1 → r3(3) (r2, r3)→ sib 0

(4) (r3, r4)→ p-c wp — r3 → r4
(5) (r3, r5)→ p-c wp

}
r3 is on upper

r3 → r5(6) (r4, r5)→ p-c wp level than r4.

Note: p-c and sib denote the parent-child and sibling

relations, respectively. w(ri, rj) shows the calculated weights using
Algorithm 4.

We illustrate our TRG construction using an example in Table 5.2. First, we calculate the weights
by parsing the predicted results. According to formulas (1-3), we observe that r1 has parent-child
relation with r2 and r3. Furthermore, the knowledge from formula (3) is redundant, only formulas
(1-2) are enough to deduce the triggering relations. In the latter formulas (4-6), the parent of
request r5 has two candidates r3 and r4 based on the calculated weights. We resolve this conflict
by using our tie-breaking rules.

The complexity of Algorithms 4 is O(|P|2). Due to the sparse triggering relations in a TRG (i.e.,
|node| ≈ |edge|), the complexity of Prim’s algorithm is O(n ∗ log(n)), where n is the number of
requests in R.

5.3.3 Detection on Root-triggers

In the detection phase, we identify the root triggers RT for each network request based on the
constructed TRG G = {T1, T2, . . . , Tm}. Most requests are directly or indirectly triggered by the
legitimate user’s inputs (UT). However, there may exist requests that cannot be linked with any
user’s activities, e.g., notification requests from benign apps (AT), malicious requests from the
malware (MT). Therefore, RT can be formalized as the disjoint sets of the three.
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RT = {UT ∪ AT ∪MT} (5.3)

In our design, we use binary classifiers to detect the malicious requests (MT) in two steps: (1) In
a clean/labeled dataset, we distinguish automatic notifications or update requests (AT) from other
benign ones (UT). Based on the AT set, we can generate a whitelist for facilitating the future
detection. (2) In a real-world dataset, we filter out the requests that belong to the whitelist, and
then differentiate the malicious requests (MT) from the benign ones (UT).

For a given root-trigger rt ∈ RT, we extract features as described in Table 5.3. We train and clas-
sify the data using common supervised machine learning classifiers (e.g., random forest, logistic
regression). The output of the classification in detection is the partition of RT.

Table 5.3: Features extracted for the detection operation.

Type Feature Definition / Description

F1

F1 describes the number of similar requests in the
previous user-triggered trees.
f(rt) = |r|, where r ∈ UT, rt.time− r.time ≤ τ∗ †,
fu(ar.attr, art .attr) ≤ τu ‡

F2

F2 describes the number of similar requests in the
previous non-user-triggered trees.
f(rt) = |r|, where r ∈ {AT ∪MT}, rt.time− r.time ≤ τ∗ †

fu(ar.attr, art .attr) ≤ τu ‡

F3

F3 describes the statistics from the previous user-
triggered trees in G.
f(rt) = |r|, where r ∈ UT, rt.time− r.time ≤ τ∗ †

F4

F4 describes the temporal relation of rt and previous
events. E.g., up is the most recent user event prior to rt,
then f(rt) = |rt.time− up.time|.

† τ∗ is a time threshold used in feature extraction (not the τ for pair-
ing). τ∗ could be 1 second, 1 minute, 1 hour, 12 hours and etc.
‡ fu is the function to compute the similarity between attributes.
ar.attr denotes a request r’s (semantic) features, e.g., Host,
Referrer, request URL and destination IP.

In this operation, the dependency-based feature set FD = {F1,F2,F3,F4} contain the rich se-
mantic and structural information of G. The design of FD features is based on our empirical
observation on the malicious and benign requests. Mobile users frequently visit websites and
some benign requests are cached to save the bandwidth. Therefore, the newly generated requests
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may miss legitimate referrers due to caching and F1 features are extracted to characterize them as
benign. Because Android apps may pull notifications from the remote servers periodically, the IP,
host and referrer information of the notifications have usually seen before. F2 features are used
to characterize the automatically-generated benign requests. F3 and F4 features are designed to
quantify the pattern of UT in G. The heuristics behind these features is that: 1) requests are usually
sent during the highly interactive periods; 2) user-trigger requests are inclined to be sent immedi-
ately after the user’s actions, while the idle between two root-trigger requests is a noticeably long
interval.

Retraining. To better use the model, one can generate a whitelist based on the classified results
(e.g., AT). In the later detection, our approach saves the processing power and improves the accu-
racy by removing the confirmed benign requests. This stage may require human efforts to verify
the whitelist entries before retraining, as shown in Figure 5.2.

5.3.4 Security Analysis and Limitations

Our dependence analysis model aims at analyzing the network activities of Android devices, while
it has certain limitations and possible evasions. Our discussions are as follows.

• Non-HTTP protocol. Our solution targets at the stealthy network activities via HTTP, be-
cause HTTP is the protocol of choice for most app developers to implement communication
with remote servers [146] and is hardly blocked by anti-virus tools. By combining other
security tools and policies, one can set up firewall rules for apps that use other protocols.

• Data authenticity. The attacker may forge the user and system events so that the malicious
requests have triggers. Advanced techniques (e.g., [20, 104, 113]) can be used to ensure the
authenticity of the user inputs and system events.

• Rooting device. Our prototype requires rooted mobile devices and the monitored apps run in
the user-space. This requirement may reduce the usability for non-tech savvy users.

• Encrypted traffic. For encrypted network activities sent via HTTPS, one might adopt an
authorized proxy to decrypt and analyze the traffic. This method requires the device to
install a self-signed CA to encrypt the network packets [117].

5.4 Labeling Triggering Relations on Mobile Data

A technical challenge in our work is the lack of readily available labeled data, i.e., network events
with labeled triggering relations. We spend a substantial amount of effort designing methods to
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label the triggering relation of general apps. We present an approach for inferring the dependencies
based on the timing perturbation, which delays one request and see if others would be affected. The
rationale behind this approach is that the delay of an individual request will be propagated to the
requests that are triggered by it.

In this section, we elaborate the approach to labeling the triggering relations (data labeling opera-
tion in Figure 5.2). This process is time-consuming and needs lots of human efforts. Therefore, the
time perturbation method is suitable for generating rules on small-scale data, which fits the needs
of labeling and training purposes. In comparison, our learning-based approach described in §5.3
can be used for analyzing and testing on large-scale data.

5.4.1 Triggering Relation Discovery with Timing Perturbation

To begin with, we first review the major temporal factors when sending out requests from an app
on a mobile device. Given two requests ri and rj , where ri triggers rj , the time difference d(i,j)
can be decomposed to several components: (1) DNS query time to obtain the IP address, (2) TCP
connection time and one RTT (round-trip time), (3) network delays (e.g. queuing delay), and (4)
processing time at both server and client sides.

Any of the factors may impact the discovery of triggering relation for general Android apps. As
we have limited visibility into the network- and server-side factors, we use the time sequence of
outbound packets to estimate the causality by creating temporal perturbations. We use the time
sequence of outbound packets to estimate the triggering relations by creating temporal perturba-
tions. To distinguish the artificially-generated delays from other factors and random noise, we
take advantage the statistical tests to achieve high levels of confidence. Our dependence analysis
and Rippler [152] operate at different levels of granularity: we detect dependencies at the level of
outbound requests, while Rippler works at the level of network services.

Our dependency inference consists of three steps. In step (i), we record R = {r1, r2, . . . , rn},
a series of network traffic generated from one app. The list R serves as a baseline, where the
elements in R are ordered by their timestamps. In step (ii), we re-act the scenario and delay t
milliseconds for each object in R. This step is based on the fact that rj is a dependent of ri, if and
only if rj is not loaded until ri is fetched. For step (i) and each iteration in step (ii), we perform m

times to obtain m observations.

In step (iii), we apply statistical tests to the m observations for identifying the triggering relations.
We define X(j,i) as the variable for the outbound timestamp of j-th packet when the i-th packet
is delayed (i = 0, for the baseline in Figure 5.4). We denote µ(j,i) and σ(j,i) as the mean and SD
of X(j,i). Because the delay injection is independent of each iteration and the samples are from
a normal distribution, we adopt the two-sample pooled t-test [124] to figure out whether the j-th
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Figure 5.4: We infer the triggering relation of requests using the timing perturbation and incremen-
tally build the TRG. The dashed lines denote the intermediate results and the solid lines denote the
finalized triggering relationship.

packet is affected by the i-th packet. The null hypothesis is H0 : µ(j,0) = µ(j,i). We report the
j-th packet is a dependent of the i-th packet, once the statistical test rejects H0. The TRG can be
incrementally built based on the finding of dependency from temporal perturbations, as shown in
Figure 5.4.

We assume the requests R are not changed during our study. However, we do observe some
requests from an app may slightly differ between the iterations. Therefore, we compute the edit
distance and regard two URLs identical if the similarity is less than a threshold. Furthermore, we
confirm such a discrepancy rarely transforms the TRG to a different one.

5.4.2 Root-trigger Identification

To find the root-trigger is an essential task in identifying the normalcy of the requests, as the
requests triggered by the root remain the same legitimacy in our model.

In our solution, we take advantage of the Android system debug logs (Logcat) and the KidLogger
app [9] to accurately infer the root-triggers. The Logcat serves as a default means to view the sys-
tem debug outputs, and thus can be used to identify if the request is triggered by user’s requests
or by system/software updates. We focus on the logging levels information and debug, as
they provide information of the utilization, callers, and callees. The KidLogger app is designed
to monitor and track on the Android system as a parental control tool. We obtain the following
information by processing the Logcat and KidLogger data.
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• Based on the logs from Logcat, ActivityManager is a major class that interacts with
overall activities running on the Android device. It provides the information about when a
particular service is awake and invokes network connections. We identify the notification
requests by parsing the ActivityManager logs.

• When users interact with an app, debug logs reveal details on when and how the app re-
sponses. Integrated with the information from Kidlogger, we determine the foreground
apps. Then, we correlate the root-trigger request with the closest user’s activity prior to it.

5.5 Evaluation and Results

We implement a prototype to analyze the real-world network traffic on an Android device. Based
on the collected data, we conducted extensive tests on our proposed dependence analysis solution.
The questions we seek to answer are:

• How accurate is the prediction for triggering relations? (§5.5.4, §5.5.6)

• How accurate is the classification for detecting the notifications and malicious requests?
(§5.5.5, §5.5.7)

• Can it detect new malicious Android apps? (§5.5.7)

• Is our approach scalable for analyzing real-world data? What is the performance of our
approach? (§5.5.8)

5.5.1 Implementation

Our prototype implements all parts of the dependence discovery and detection system. The data
are processed on a Linux machine with Intel i5-3320 and 16GB RAM.

Data collection and preprocessing. We root an Android device and install PythonForAndroid
to run Python code. We use tcpdump to collect HTTP requests whose headers contain valid
GET or POST request. To log the user’s events, we write scripts to continuously monitor the files
from /data/input/event[0-7]. We use ps and netstat commands to collect the process
information and associate the network requests with a process. The collection and preprocessing
are implemented with 1,400 lines of code in Python, C, and Bash.

Pairing and classification. We implemented the pairing, TR analysis and feature extraction for
detection in Java using the Weka library with 1,200 lines of code. To build the TRG, we wrote 800
lines code in Python.
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5.5.2 Experimental Dataset

The experimental data are obtained from a Nexus 7 tablet. The device, equipped with our data col-
lecting code, is given to a graduate student of a university for regular daily use. The device comes
with 28 bundled apps, and then we installed 36 popular apps via the official Android store [12].
We first collected the network and system logs for a continuous 72-day period. These 64 apps are
regarded as benign and do not conduct malicious activities. Thereafter, we installed 24 malicious
apps and collected data for 22 days. The malicious apps include repackaged apps that covertly
fetch advertisement requests, drive-by download apps that install other apps when running, and
spy apps that keep sending out host and user’s sensitive information (e.g., bookkeeping). The total
dataset is 14 GB.

Experiment setup. We conduct two experiments.

• Dataset I: We apply our approach on clean data only. The purpose is to evaluate its ability to
recognize the automatically-generated notifications and updates from other benign requests.

• Dataset II: With the full dataset, we randomly insert the malicious data (by day) into the
benign data and evaluate the effectiveness of our approach.

Dependency labeling of training data. We infer the triggering relation of browser-generated
HTTP requests, according to a referrer-based method, which achieves nearly 100% accuracy [157].
To label the dependency of network traffic that comes from non-browser apps, we first installed the
apps in the Android emulator. We set up a proxy and route the packets to a Linux host as a single
point to control the outbound traffic from the emulator. On the proxy, we use netem to delay the
traversing packets by adding the queuing delays, according to the scheme mentioned in §5.4. We
select 15 popular apps and run the timing perturbation approach. We generate heuristic rules to
label all the triggering relations, based on the learned patterns and domain knowledge. Examples
are listed in Table 5.4, for given two requests ri and rj (ri proceeds rj), and a threshold τ .

With our hand-tuned rules, we discover the triggering relation for 86.1% of HTTP requests. The
rest of the requests are labeled with the timing perturbation method.

5.5.3 Accuracy and Security Metrics

We apply three classifiers3, namely random forest (R-F), C4.5 algorithm (C45), and logistic re-
gression (LOG) in both triggering relation modeling and detection phases (in Figure 5.2). The
operations are evaluated using the following metrics.

3These three classifiers are selected according to the 10-fold cross validation.
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Table 5.4: The examples of summarized triggering relation rules using the time injection
method. The attributes of request are extracted from packet headers and system events. fsim is
used to compare the similarity of two string fields.

No. Rules (to decide that ri → rj , i.e., ri and rj have triggering relationship.) Related Apps

1 ri.time - rj .time ≤ τ ∧ (ri.PID = rj .PID ∨ ri.program = rj .program) ∧ ri.host = rj .referrer. Traffic sent from browser apps.

2
ri.time - rj .time ≤ τ ∧ ri.program = rj .program ∧ rj .type = POST ∧ ri.host = rj .host Traffic sent from news, social,
∧ rj .referrer = null. or education apps.

3
ri.time - rj .time ≤ τ ∧ ri.program = rj .program ∧ fsim(ri.host, rj .host) = true Traffic sent from news, media,
∧ (ri.referrer = rj .referrer ∨ rj .referrer = null). or education apps.

4
ri.time - rj .time ≤ τ ∧ ri.program = rj .program ∧ ri.destinationIP = rj .destinationIP Traffic sent from news or
∧ fsim(ri.host, rj .host) = true ∧ ri.program = rj .XRequestWith. media apps (using AJAX).

• Pairing coverage (PC). This metric is to evaluate if the (potential) triggering relation ri → rj
(i < j) are paired using the adaptive pairwise window (size = τ ).

PC =
|∀ri, rj ∈ R, s.t. ri → rj, d(i,j) ≤ τ |

|∀ri, rj ∈ R, s.t. ri → rj|
(5.4)

• TR accuracy (TRA): For each request r ∈ R, we calculate the ratio of the number of
requests correctly identified its trigger to the total number of requests, based on the ground
truth. The metric evaluates the effectiveness of the classifiers.

TRA =
|∀rj,∃ri ∈ G, s.t. ri → rj|
|∀rj,∃ri ∈ R, s.t. ri → rj|

(5.5)

• Precision, Recall, F-score: False negatives (FN) are the malicious requests being detected
as benign ones. False positives (FP) are the benign requests being detected as malicious
ones. We use the conventional metrics: i) false positive rate (FPR) and false negative rate
(FNR), ii) precision and recall, and iii) F-score (the harmonic mean of precision and recall).

5.5.4 TR Analysis on Dataset I

Pairing. We calculate the adaptive pairing windows size for dataset I using the 3-day moving
average value and standard deviation (SD). The pairing window size for each sampling day is
shown in Figure 5.5. We observe that the average of the time difference d(i,j) is stable, though
the SD fluctuates a lot. Therefore, we have a fluctuating adaptive pairing window size for each
sampling day. We spot that the pairing window size is increased from the 51st to 53rd days. This
prolonged window is due to a plural of AJAX calls from a browser app (Chrome). We confirm
that the pairing coverage is nearly 100% and only a few dependent pairs are missed due to their
extremely long delays. The high pairing coverage is guaranteed as explained in §5.3.1.
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Figure 5.5: The adaptive pairing window size and its coverage rate for each sampling day on
dataset I.

We find that parent-child, sibling, and same-tree relations account for 3%, 19% and 15%
of the total number of pairs.4 The rest of the pairs (62%) are labeled as no-relation.

Triggering Relation Modeling. We vary the sizes of training and test data using i ∈ [1, 5, 10, 15, 20],
i.e., we train the data for i continuous day(s) and test the data in the following i continuous day(s).
Averaged results are reported until the data on the last day of dataset I is tested. We show the TR
accuracy rates in Figure 5.6.
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Figure 5.6: The TR accuracy of dataset I.

All three classifiers achieve the higher TR accuracy using larger training datasets. The C4.5 algo-
rithm outperforms the other two in all settings and it achieves the best TR accuracy at 96.8%. For

4The number of sibling relation is greater than that of same-tree, which is due to the shallow tree structure
formed by the Android network requests.
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the wrongly predicted cases, we found that there are two main reasons that cause misclassification.

• When users view multiple similar webpages (e.g. price comparison on shopping sites), sim-
ilar requests are sent to the same host from different tabs on browser apps. These requests
are likely to be predicted to wrong triggers, because users may switch the tabs frequently
and shortly. As this only happens on browser apps, a finer-granularity solution on tab-level
events can reduce the wrong predictions.

• Some requests from the news apps tend to have a long delay between push notifications. The
unconventionally long delay hinders the inference of triggering relations. A possible solution
is to preprocess the time differences using advance techniques (e.g., log transformations).

5.5.5 Recognition of Auto-generated Traffic

The purpose of this experiment is to evaluate our ability to recognize the automatically-generated
notifications and updates from other benign requests. This experiment helps us further reduce
false positive (false alerts). We evaluate the classification based on the results of running the C4.5
algorithm in §5.5.4.

1-day 5-day 10-day 15-day 20-day
Training size (days)

0.88
0.90
0.92
0.94
0.96
0.98

F-
Sc

or
e 

of
 c

la
ss

fic
at

io
n

on
 u

pd
at

e 
re

qu
es

ts

C4.5 Algorithm
Random Forest
Logistic Regression

Figure 5.7: The F-scores of classifying root-trigger requests on dataset I.

In Figure 5.7, we plot the F-score of the three classifiers on classifying the update requests. The
random forest classifier outperforms the other two classifiers and it maintains a relatively high and
steady accuracy. A peak is observed in all classifiers, and the F-score reaches its highest value using
10-day training size. This phenomenon is due to the constant changes of app and user behaviors.
Therefore, the size of training windows is a trade-off between prediction accuracy and coverage.
The prolonged training windows are not effective in characterizing the root-triggers from recently
active apps.
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Whitelist generation. We generate a list of HTTP entries that belong to the auto-generated noti-
fications and benign update requests. The entires are presented as a 4-tuple (host, destination IP,
request type and program5). We label 28 distinct entries in the training data. These entries belong
to 6 apps. The random forest classifier identifies 41 new entries from the testing data (52-day data)
that can be added to the whitelist. In the later detection, the requests that match the whitelisted
entires can be marked as benign to reduce the false positives.

FP and FN analysis. For all classifiers, the false positive rate ranges from 1.4% to 2.9%. False pos-
itives are mostly due to that the benign apps occasionally send out statistical data for advertisement.
For example, a social app sends POST requests to www.google-analytics.com/collect.

The update requests sent to a popular third party host may be classified as false negative. For ex-
ample, a weather app sometimes fetches metadata files (json or xml) from s3.amazonaws.com,
which counts as FNs.

5.5.6 TR Analysis on Dataset II

We run the TR Analysis on the dataset II by varying the training sizes and plot the results in
Figure 5.8. All TR accuracy results are above 96.0% for training data that are greater than 5 days.
The differences of TR accuracy are less than 1.0% for three classifiers when using 15-day and
20-day training data. The accuracy results in Figure 5.8 demonstrate the same pattern as the plots
in Figure 5.6. The results converge to a high accuracy, which shows it is feasible to use a small
dataset in testing the real-world (mixed benign and malicious) Android network traffic.

1-day 5-day 10-day 15-day 20-day
Training size (days)

93.5%
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Figure 5.8: The TR accuracy of dataset II.

5The request type specifies the GET or POST requests. The program is identified using the PID and PPID (parent
PID) information generated from the netstat and ps commands.
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5.5.7 Detection of Malicious Requests

The purpose of this experiment is to evaluate the effectiveness of the constructed TRG in detecting
malware activities. We first remove the notifications and update requests based on the whitelisting
created in §5.5.5. Thereafter, we run the binary classifiers on the root-triggers of the constructed
TRG (training size is 10-day). Shown in Table 5.5, both tree-based classifiers (C45 and R-F)
achieve the better prediction accuracy (F-scores) than the logistic regression (LOG).

Table 5.5: Detection accuracy results of three classifiers on Dataset II (sorted by F-scores).

Classifier FPR FNR Precision Recall F-score

C45 5.2% 0.6% 0.991 0.994 0.993
R-F 0.7% 3.6% 0.999 0.964 0.981
Log 8.1% 27.8% 0.980 0.722 0.832

We label 12 malicious apps, including adware, Trojan and drive-by download apps. We suc-
cessfully detect 12 newly installed malicious apps throughout the detection. A summary of the
detected malicious apps is listed in Table 5.6. Our solution provides a high accuracy in detecting
both existing malware families and new ones of all types. For the known malware variants, e.g.
wbfire.facts and com.crazyapps families, our solution detects them as they send requests to
fetch advertisements or conduct bot activities. During the study, our organization IDS (FireEye)
only reported the malware activities from the com.crazyapps.angry.birds and classified it
as Trojan.Android.Plankton. FireEye fails to detect other malware in our experiment.

The malicious apps we detected cover a wide range of adware, Trojan, bots, spyware and drive-by
download attack. For example, a game app (com.Punda.Free) generates a shortcut link icon to
ad.leadboltapps.net/show app icon on the Android desktop once it is installed. It issues
GET and POST requests to ad.leadboltapps.net. A bot app (com.gfgfgg.dsdf), pretending
to offer optimization tools for Android, actively sends out POST requests to send.cxpts.com ev-
ery 5 minutes in the background. Results show that our solution successfully identifies all malware
by flagging more than 99.1% their outbound requests. Our method does not have any assumptions
on the type of apps or what code obfuscation techniques used in malware.

Comparison with existing solutions. Existing solutions on detecting malicious URLs and do-
mains use temporal, lexical and host-based features from the root-trigger requests [32, 99]. We
confirm that the same classifiers, solely using these features, fail to identify 3.3%-4.9% malicious
requests and cannot detect four malicious apps in Dataset II.

FP and FN analysis. Based on the detection using C4.5 algorithm classifier, we find that the FPs
(54 requests) are mostly due to the redirected traffic to some well-known domain servers. E.g.,
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Table 5.6: The package name and communication server of malicious apps
in our testing set of dataset II.

ID Package Name Communication Server

Adware
1 com.allen.txtjjsz gw.youmi.net

2 com.chenyx.tiltmazs ade.wooboo.com.cn

3 com.zxcalendar.chapp api.is.apmob.cn

4 wbfire.facts family media.admob.com

5 com.ctinfotech.snake media.admob.com

Trojan/Backdoor/Bots/Spyware
6 com.crazyapps family searchwebmobile.com

7† com.gfgfgg.dsdf send.cxpts.com

8‡ com.gucdxjdl.batterysaver send.cxpts.com

9 com.GoldDream.TingTing06i lebar.gicp.net

10 com.qnuou.game lebar.gicp.net

11 com.wing.qingshongxry static2.ad.anzhi.com

Drive-by download/Update attack
7† com.gfgfgg.dsdf subscription.teebik.com

8‡ com.gucdxjdl.batterysaver au.umeng.com

12 com.Punda.Free ad.leadboltapps.net

†, ‡: Both apps exhibit malicious behaviors in two categories.

when a malicious app fetches a list of apps in its WebView for luring users to download, some
requests are sent to lh3.ggpht.com for retrieving images. There requests are FPs, because the
domain is benign. Other FPs may be due to the uncommon domain names and unconventionally
long request strings. FNs (22 requests) are mainly sent by spyware or Trojan. The false nega-
tive rate is relatively low, e.g., among 100 POST requests sent to api.is.apmob.cn, only 2 are
identified as benign.

5.5.8 Performance

We evaluate the performance regarding: i) the pairing efficiency for using our pairing algorithm
and a baseline, and ii) the running time of testing on pairwise comparisons and mining on root-
triggers. We obtain the performance results by averaging the running time over 5 rounds.

Pairing efficiency. The baseline pairing operation was proposed in [157], which uses a fixed
time threshold as pairing window and an efficient pairing algorithm to pre-screen the data before
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pairing. It takes 185 and 121 seconds to use the baseline algorithm and ours respectively, for
pairing all requests in our dataset. Our algorithm improves at least 30% pairing performance.

TR analysis and detection. In Table 5.7, we report the runtime of each operation in our prototype.
The performance of the classifiers is consistent for both datasets in each operation. The training
time is a dominant factor of the total running time for all classifiers.

Table 5.7: The performance of each operation is shown. The
results are calculated in seconds per 1000 records.

Operation Dataset Runtime: training + test (seconds)

Pairing
I 0.064
II 0.087

C45 R-F LOG

TR I 0.13+1.9e-3 0.16+2.3e-3 1.65+6.8e-3
analysis II 0.18+2.3e-3 0.19+3.1e-3 1.66+7.2e-3

Detection
I 0.05+8.2e-3 0.07+9.7e-3 0.21+1.2e-2
II 0.03+1.1e-3 0.03+2.0e-3 0.17+4.8e-3

Note: The runtime includes both training and testing in TR analysis
and detection operations.

In both TR analysis and detection operation, C4.5 algorithm takes the least time. The random for-
est classification is slightly slower than C4.5 algorithm, while logistic regression takes the longest
time. Overall, the running time of detection is less than that of TR analysis using the same classi-
fiers. The total runtime of the detection operation is significantly less than that of the TR analysis,
as the size of RT is much less than that of |P|, i.e., |RT| � |P|.

Summary. We highlight our findings below.

• The decision tree-based classifiers (R-F and C45) yield the best TR accuracy and runtime.
Our approach to discovering the triggering relation is scalable and does not require training
on the entire data.
• The C4.5 algorithm and random forest classifiers give high precision and recall on identify-

ing the benign notifications and malicious requests. The false positive rate is 0.7% using the
random forest classifier.
• We successfully reveal 12 new malicious apps by flagging 99.1% of their stealthy network

activities with remote hosts. We confirm the detection capability of our approach by pin-
pointing the sparse anomalies out of voluminous traffic data.



80

5.6 Summary: Triggering Relation Discovery on Android

In this chapter, we describe an Android malware detection technique that analyzes the dependency
of network traffic on mobile devices. Our analysis explores the request-level traffic dependence
and reasons about the root-triggers for all HTTP requests sent from the device.

Our approach provides the precise and structural information of dependency inference, comparing
to the existing binary classification (e.g., email spam detection). We detect the stealth malware
activities by using the features from the constructed TRG. Malicious requests are identified due
to the lack of dependency with legitimate triggers. The detection is based on the policies that
malicious requests are the lack of dependency with legitimate ones and cannot be categorized to
the whitelist.

Our prototype is evaluated on 14GB network traffic data and system logs collected from an Android
tablet. Experimental results show that our solution achieves a high accuracy (99.1%) in detecting
malicious requests sent from new (zero-day) Android malware.

In this work, we make a step to fill the gap between dynamic analysis and network anomaly detec-
tion on Android. We show our detection method is scalable and achieves a high detection rate with
dependency-based features. Our study makes an important step in addressing the significance of
using dependency knowledge in the detection of the malicious requests.



Chapter 6

Traffic Dependence Visualization for
Security

In this chapter, we design a tool, ReView, to assist the analysis of host-based network data based on
the traffic dependence.1 Our visual representation improves the sensemaking process for security
and can increase the productivity for security analysts.

The chapter is organized as follows. We describe the motivations and specific problems on the
security visualization work in §6.1. The visualization design and implementation details are pre-
sented in §6.2 and §6.3, respectively. A case study is given to demonstrate how a security analyst
uses our tool in §6.4. We conduct a user study to evaluate our tool in §6.5. §6.6 concludes the
chapter.

6.1 Motivation and Problem Statement

This chapter addresses the issue of visualizing the network traffic causality. We aim to design a
visualization tool to facilitate the process of identifying anomalous network traffic.

The recently proposed detection method advances the analysis of network traffic by inferring the
semantic and logical relations [157]. Its unique advantage is the capability of reasoning about
the dependency of network data and thus detecting new stealthy malware activities. The analysis
provides automatic anomaly detection in the observed network activities through the probabilistic
reasoning of the causal relations in traffic. By pinpointing abnormal network events that lack of
valid triggers, it can detect malware activities on an infected machine (e.g., making command-

1The content of this chapter is mainly based on our paper [155].
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and-control communications with its controller). The triggers include legitimate user events and
benign network packets. In this work, we design a visualization tool to facilitate the understanding
of host-based network traffic and enhance the sensemaking process for security analysts.

Sensemaking is an analysis process including the tasks of investigating the complex data, explor-
ing their connections, and gaining insights [54]. The dependencies and semantic information of
requests are useful for human experts’ cognition, reasoning, decision making in cyber security [53].
Our visual representation improves the sensemaking process for security and can increase the pro-
ductivity for analysts.

Many existing network security visualization tools provide graphic user interfaces for Intrusion
Detection Systems logs (e.g., Snort) [35, 42, 89, 126]. IDS alerts are organized in a log-type
structure, where each alert entry indicates a potential intrusion threat. However, very few existing
work provides the visualization of the underlying relationship among network events, with one
notable exception Portall [58]. Portall visualizes the correlation of host processes and network
activities. Our request-level traffic causal relations are much more fine-grained than the process-
level correlation in [58]. Thus, new visual representation approaches are needed for displaying the
structural information.

Several visual representation techniques [76, 88, 122] have been proposed to visualize the de-
pendency structures. However, these general techniques on visualizing hierarchy or dependence
cannot be directly applied to our traffic dependence data. The reason is our unique space efficiency
requirement, that is, how to optimally utilize the screen space for displaying the causal relations of
a massive amount of network traffic.

6.1.1 Visual Locality

The triggering relation graph (§3) is built on the application layer packets and used to find all
triggering relations to understand how a user interacts with applications and how applications re-
spond to the user by sending out network requests. Therefore, it reveals the logical structure of the
requests, which can be used to detect abnormal network activities originated from the host.

There is no existing tool to display the triggering relation graph. A straightforward approach for
displaying host-based traffic dependence is shown in Figure 6.1a. This visual representation ar-
ranges network requests using a forest-like layout based on their causal relations; the timeline may
be extended horizontally when newer network events are added. Because this layout is intuitive,
it has been used for illustrating relations among network events [92, 157]. However, this forest-
like layout (Figure 6.1a) does not use the display space efficiently. The length of traffic causality
structure grows fast, making it difficult to view related events that are temporally far apart.
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Figure 6.1: Schematic drawing of traffic causality for outbound network requests on a computer.
Nodes are indexed by their relative occurrence time.

Although rare, we observe that network requests that occur 15 minutes apart may have causal
relations. In addition, the requests with causality do not necessarily situate close according to the
time, as illustrated in Figure 6.1b (H15-H18). The crossed edges make the TRG messy and hard to
analyze.

Definition 6.1.1 (High visual locality). Items having logical relations are placed close to each
other on display.

In our context, we define high visual locality as our primary goal to optimize our visualization
designs. This concept requires the arrangement of requests with causality that enables analysts to
identify malicious requests with ease. It enables analysts to easily identify related requests. To
meet this requirement, our design prioritizes the causality that clusters nodes around their root-
triggers and forms trees separately. Within each tree, the nodes are organized by their temporal
and other logical information.

In our security model, we consider two types of stealthy malicious network traffic.

• Network requests without valid root triggers are referred to as vagabond (H29 in Figure 6.1c).
• Network requests sent to malicious hosts with valid referrer information are referred to as

grafted (H26-H28 in Figure 6.1c).
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The vagabond requests, without legitimate root causes, are likely raised due to stealthy malware
activities. The grafted requests take place when the servers are misconfigured or compromised,
and thus are hard to formalize rules to identify. Blocking the malware network activities effectively
isolates the malware, such as spyware exfiltrating sensitive information through outbound traffic.
Our TRG model is general and needs no priori knowledge about a particular malware class.

6.1.2 Analysis Using All Triggering Relations

One of the design choices for visualizing TRG is whether or not to display all the discovered trig-
gering relations. A simple visual representation is only to display vagabond requests, i.e., abnormal
network events. However, analysts may neglect some attacks by viewing this type of display, be-
cause suspicious requests could be hidden from legitimate ones (i.e., the grafted requests). For
example, a common attack on web servers is to exploit web vulnerabilities (e.g., SQL injection,
cross site scripting, format string injection [59]). After the servers are compromised, attackers can
modify the websites by injecting malicious codes, then the clients get infected when they visit the
websites. In a recent example, Yahoo’s European servers were attacked by malware in January
2014. The infected servers sent out the “exploit kit” to the clients who visited Yahoo’s webpages
during the infection [10].

These grafted requests are often of the JavaScript type with long and obfuscated request strings
in URLs, because JavaScript requests have handy and advanced functions to be leveraged by at-
tackers. Domain experts have to reason about the legitimacy by integrating with other information
(e.g., system logs). It costs security administrators a significant amount of time to figure out the
components of a website that got malicious code inserted, let alone finding the origin of infected
points [30].

Our TRG model provides a good visual representation for a host-based overview. The grafted re-
quests, sent by compromised servers, can be identified by their deeper levels in TRG, late-arriving
timestamps, and unusual host domains. Therefore, the analysts need to leverage the inner logic
to infer the legitimacy of requests, which makes the displaying of all triggering relations more
desirable.2

6.1.3 Contributions

In this chapter, we introduce ReView, a visual analytic tool, which enhances the sensemaking pro-
cess for network traffic analysis with human-perceptible visual representations. Our visualization

2It is worthy pointing out that we focus on the network request rather than the packet, as the packet might not carry
enough semantic information for analyzing its dependency and one request might cross multiple packets.
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tool takes as input the network requests and their dependency information. It provides an inter-
active graphic interface for users. We leverage a unique design that allows the optimal usage of
the screen for displaying network events. Our tool can be used by individuals or organizations for
protecting their computers. For example, it can be used by security analysts to monitor network
traffic, examine traffic anomalies, perform forensic analysis on the network incidents.

Our contribution is twofold.

• We develop a visualization tool for security analysts to efficiently display the network traf-
fic dependency. This tool has a visual locality feature that can optimize the displaying of
structured data. The visual representation is a radial layout based on a curved timeline.
Compared with the straightforward axial layout, our design maximizes the use of the screen
by bending the timeline into a circle, which achieves high visual locality and extensibility.

• We conduct a user study to evaluate our system with 10 participants and real-world network
traffic. Results of the study show that our tool is well suited for security analysts to perform
manual inspection and analysis on network events based on their causal relations.

6.2 Visualization Design

Our design for the visualization tool is based on characteristics of traffic triggering relations. We
run a pilot study that contains 12MB network data (10-hour HTTP traffic on a host, 45000+ re-
quests) to investigate the characteristics of traffic dependency. We summarize our findings as
follows.

Wide-and-shallow trees. The nodes on the top three levels in TRG account for above 90% of the
total amount. There are respectively 68% and 21% of requests on the second and third levels, so the
trees are extremely wide at their top levels. Besides, 99.7% of trees in TRG have less than 6 levels,
while there is only 0.3% of trees whose depth is 7 to 9 levels, which illustrates the shallowness of
the trees.

Temporally adjacent events. We further check the time difference between any two requests
that have a triggering relationship. Statistics shows that about 93% of HTTP requests trigger their
dependencies within 3 minutes. If the time window is enlarged to 15 minutes, then 99.8% of HTTP
requests and their dependencies are included. Therefore, the HTTP requests with dependents are
temporally close to each other, despite some rare cases.

Sparsity of vagabonds. The vagabond requests are classified into two groups. Malicious and mis-
configured packets represent 0.3% and 0.5% respectively of the total number of nodes. Malicious
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requests are sent when a user visits a compromised website or the host is infected by malware. Mis-
configured requests are not sent to malicious hosts but contain some missing fields in the request
header.

Automatic update requests. The updates are the legitimate requests sent to upgrade the system
or software periodically, without user interaction. In our design, we maintain a list of known
programs and their official domains to reduce the false alarms (e.g., Java Update Checker and
its domains javadl-esd.sun.com and javadl.oracle.com).

6.2.1 Design Goals

Based on the findings from the pilot study, we highlight our design goals as follows.

• High visual locality. The design should meet the visual locality requirement, so that the
nodes having logical relation should be placed close to each other. In addition, the nodes on
each level need to be explicitly displayed and chronologically ordered.

• Scalability. The network requests are intensively clustered along the time, so are their de-
pendencies. A condensed view is needed to reduce the redundancy of the benign requests.
An adjustable time window should be added to limit the size of rendering voluminous nodes
at one time.

• In-depth & on-demand knowledge display. The overview representation should aim at
presenting the causal relations, meanwhile minimizing the display of the detailed informa-
tion for each request. Additional options can reveal the details of different levels, as re-
quested by users.

Our design aims to visualize the traffic dependency of network requests by meeting the high visual
locality principle, so users can identify and analyze the anomalies with ease. We utilize a radial
design for displaying traffic triggering relations. This design has a curved timeline that is centered
on the display, and the radiating branches represent network events and their trigger relations.
The advantage of this view design is that it maximizes the utilization of the display screen. It is
more convenient for users to interact with this view than a conventional straight timeline view. We
further provide a condensed view to simplify the display by merging the trivial nodes. In addition,
our design uses a heatmap to show the distribution of the requests over time and store original logs
in each color-coded tile.

javadl-esd.sun.com
javadl.oracle.com
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6.2.2 Visual Locality Design for Analysts

We design a radial layout to display the traffic dependency with high visual locality. A straight-
forward visualization of TRG would be an axial layout in Figure 6.2a. However, it is not suitable
for visualizing large-scale traffic dependencies. This layout is not efficient at displaying hierarchy
structures, as the tree structure spans unilaterally and leads to much unused space. In addition, the
length of the forests grows as the data size increases. Users have to scroll up and down for brows-
ing and searching. In the radial layout shown in Figure 6.2b, we arrange the nodes in a clockwise
manner. In this design, timeline defines the positive direction and the start point is at 12 o’clock
position, which is consistent with an analog clock and intuitive to users.

(a) Axial layout. (b) Radial layout.

Time Line

Level Line

HTTP Request

User Event

Triggering 
Relation

Figure 6.2: Schematic diagrams of two visualization designs for the structured network data.

Our prototype arranges the nodes and allocates the space of the radial layout as follows.

(1) We sort the root-triggers by their timestamps and plot them in the innermost ring. We cluster
the nodes under their root-triggers. Clustering nodes in each tree guarantees no cross edges in
the display.

(2) The rendering space is allocated in proportion to the number of nodes on its second level,
rather than the timespan of the tree in TRG. The time spans of each tree in TRG may overlap.
Requests from different trees may arrive simultaneously. Our layout, based on indexing nodes,
eliminates the overlapping issue.

(3) We render the nodes by their levels. The level lines are used to align the nodes on the same
level. The nodes on the same level are lined up on the concentric arcs. The innermost ring is
used to place the user inputs, and is divided into sectors whose angles correspond to the sizes
of its dependent nodes.
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In our design, the trees in TRG are plotted in the sequence of root-triggers’ temporal relation, so
that none of the tree is overlapped or has crossing edges. Our solution conforms to the visual
locality principle so that nodes with causalities are placed together without bringing in mess.

Our design maximizes the usage of display space. The radial layout presents hierarchies of events
in concentric rings, so it fully utilizes the screen by bending the level lines into circles. Users using
the conventional axial layout need to scroll twice more than our design, to see the entire graph.
Additionally, by concentrating nodes at the center of the screen, the radial layout enables users to
easily manipulate the display. The usability is evaluated in §6.5.

6.2.3 Interactive Heatmap

Heatmap is a graphical data presentation approach where each value in the matrix is color-coded.
Our design is composed of LogMap, an instance of Heatmap (see Figure 6.4). The LogMap reveals
the density information of the network requests. It provides an overview of the request distribution
over the observed period. LogMap navigates users to start an analysis by focusing on particular
grids (e.g., grids with dark colors). Additionally, security analysts often resort to the original logs
for more details. Therefore in our design, the LogMap supports users to access the original logs by
clicking on the colored tiles in the heatmap.

The LogMap divides the timeline into fixed windows (e.g., one minute) and organizes network
events of each window into a sub-block. In our design, there are sixty tiles in a sub-block, which
represents sixty seconds. The color coding in each tile corresponds to the number of requests. The
LogMap accommodates different levels of granularity in time, e.g., seconds, minutes, hours, etc.

6.2.4 Condensed View to Distill Information

According to our pilot study, more than 90% of network requests are situated on the top three levels
in the TRG. To avoid visual clutter, we provide a condensed view for security analysts. We design
a condensing algorithm to merge the nodes that meet all the following criteria.

• Legitimate requests that are of the same type;

• Requests that are on the same level in the TRG;

• Requests that are the leaf nodes in the TRG.

The condensing algorithm iterates a list of chronologically sorted requests and outputs a list of
condensed nodes. We use an auxiliary dictionary to store each newly generated node and a list
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of requests being condensed. In the algorithm, we only merge the benign requests, so as to avoid
losing any information of abnormal requests. Our condensing algorithm does not merge the nodes
on the different (sub)trees, which guarantees that the dependency structure in a TRG is preserved.
Therefore, the condensed views are compatible to the original radial and axial layouts.

We categorize the HTTP requests into six types, which are web, CSS, JavaScript, multimedia, data,
and others. Around 50% of browser-generated HTTP requests are used to fetch the multimedia
objects (e.g., image or streaming data) in our pilot study. Unlike JavaScript objects, these requests
to obtain static files do not trigger further HTTP traffic.

To assess the effectiveness of the condensing algorithm for reducing the redundancy and empha-
sizing the anomalies, we test our tool on the pilot study dataset. Shown in Table 6.1, we compare
the number of nodes in both original and condensed views. Compression ratio is defined to eval-
uate the effectiveness of the algorithm. The root-triggers are on the first level, and thus cannot be
compressed. There are 68% of total requests situated on the second level, and 87.5% of them are
merged, which significantly saves space. Overall, the total compression ratio is 82.2%. Multimedia
requests mostly serve as leaf nodes and can be compressed as much as 91%. Compared with the
original view, our condensed view significantly reduces the redundancy of displaying leaf nodes.
Therefore, it helps users identify abnormal nodes due to its visually salient.

Table 6.1: The number of HTTP requests on each level in the
Triggering Relation Graph for original and condensed views.

Level # of nodes in # of nodes in Compression
in TRG original view (n) condensed view (c) ratio (1− c

n )

1 1158 1158 0.0%
2 31242 3913 87.5%
3 9725 2190 77.5%
4 2753 644 76.6%
5 835 225 73.1%
6 201 49 75.6%

7 - 9 74 24 67.6%
Total 45988 8203 82.2%

6.3 Prototype Implementation

We build ReView, a visualization tool for viewing and analyzing the triggering relations for net-
work requests. It is designed based on the three-tier architecture and implemented as a web-based
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tool. The workflow is illustrated in Figure 6.3. The back-end consumes the raw data and focuses
on reasoning. The front-end displays the hierarchy structure for users to analyze.

Logic Tier Presentation TierData Tier

Reasoning 
Engine

Visualization
Engine

Displaying

Filtering

Highlight 
(node, path)

Statistics

Condensed 
Data Parser

Data Storage

Network 
Traffic Log

User Input 
Log

Triggering 
Relation 

Inference

Hierarchical data

Condensed dataVulnerability 
Database

Figure 6.3: The workflow of ReView.

Data tier. ReView takes the user events (e.g., clicking on a hyperlink of a webpage) and the
outbound HTTP requests as inputs. The network requests are recorded by leveraging the libpcap
library. The features of an HTTP request include its timestamp, process ID, source and destination
IP address, and request semantic information (e.g., HTTP host domain and referrer). The inputs of
the prototype, including the raw data of user inputs and network requests, are saved in a database.
In the data tier, we add a customized vulnerability database, which is composed of several
known blacklists and feeds [11, 15, 18], to facilitate the process of identifying the suspicious
requests. However, solely relying on the blacklists is not sufficient because of the ever-changing
malware variants and malicious domains.

Logic tier. In the reasoning engine, our tool infers the triggering relations by leveraging a
machine learning-based solution proposed in [157]. It discoveries vagabond request that are not
generated by any user actions. The benign requests that are periodically sent to known websites
for upgrading can be easily summarized and filtered out as system/software updates. To further
categorize the vagabond requests, we employ both whitelist and blacklist. In ReView, a whitelist is
created according to the Alexa top 1000 sites [1], so that the vagabonds that are to these websites
can be recognized as misconfigured requests, rather than malicious. Finally, we build a customized
blacklist by integrating the source data from several vulnerability databases and feeds [11, 15, 18],
based on which we flag the vagabond requests as malicious.

Presentation tier. The rendering in ReView uses D3 [5], which is a JavaScript library for data
visualization. The layout of ReView is shown in Figure 6.4. Our design contains two major
components, main display and heatmap panels.

On the main display panel, we show the optimized visualizations of hierarchical structure using the
radial layout. The user inputs are placed in the innermost ring. The HTTP requests are situated on
the second and later levels. On the right hand side, a draggable control panel is composed of five
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tabs that are used to manipulate the layout options, query the source data, highlight the nodes, and
show the statistics. Our tool supports path highlighting for exploratory analysis. The path from
a selected node to its root-trigger can be highlighted, which helps security analysts identify the
logic chain of the nodes, understand why the request is triggered and find the common ancestors
for multiple nodes. Our tool aims at presenting the causal relations, meanwhile minimizing the
display of the detailed information for each request. In ReView, there are three ways to display
the HTTP request information: i) using the Popup when a mouse hovers over a node; ii) reading
the information at InfoTab after clicking a node; and iii) loading the complete information in
a separate LogWindow. These options can reveal the details of different levels, as requested by
users.

On the heatmap panel, the LogMap reveals the traffic patterns, which is complementary to the
main panel. Each tile in LogMap represents one second and is colored on a green scale based on
the number of requests in this second. The tile with a red frame indicates that at least one vagabond
HTTP request is observed during its time window. A separate window that displays the original
logs is shown when a colored tile is clicked.

①

② ③
④⑤

⑥

① Main Display (radial 
layout, condensed view)

② Legend 
③ Control Panel (showing        

the InfoTab)
④ Popup showing basic 

info.
⑤ Path highlighting
⑥ LogMap

Figure 6.4: A screen layout of ReView.

Data integrity. In this work, we consider application-level malicious requests, so the kernel-level
system data (e.g., keyboard and mouse events) are assumed to be trustworthy. To prevent the
forgery of user inputs, advanced keystroke integrity solutions such as [71, 128] can be incorporated
in our work to further improve system-data assurance.
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6.4 Case Study

We describe how a security analyst, Alex, utilizes ReView to detect anomalies in a 4-hour-long
traffic with 22,000+ HTTP outbound requests.

(1) Choose visualization options: Alex selects the condensed radial layout for viewing the hi-
erarchy structure of network requests. ReView reduces the total number of displaying nodes
from 22,000+ to 3,771, which significantly mitigates the performance burden and reduces the
unnecessary displaying mess.

(2) Filter and highlight: Alex is interested in querying and highlighting the abnormal nodes, so
he clicks the FilterTab and selects the filtering options (e.g., by legitimacy, request type or
host domain). The vagabond nodes are highlighted with colors. Our tool filters out 42 update
requests. Also, ReView highlights 225 vagaboud requests and their dependents, which send to
60 distinct domains.

To narrow down to a specific period, Alex displays the traffic data up to 30 minutes for each
time by using a sliding window. In the first window of 30 minutes, he finds that there are 17
vagabond requests highlighted by ReView.

(3) Investigate vagabond requests: Alex clicks on one vagabond node that is highlighted in red.
By reading the detailed information from the InfoTab, Alice finds that this request is sent to
gighippo.com and its referrer is null. He then notices that its domain name is on ZeuS

blocklist [18] and its Alexa global rank is beyond 5 million.

(4) Investigate suspicious grafted requests: Alex spots a request situated on the 7th level of the
TRG. By conducting a further investigation, he finds out that the request is sent to a suspicious
host (ziffdavisglobal.112.2o7.net) with an irregularly long request URL string
(length=1309). After checking the vulnerability database and online resources (e.g. Web of

Trust), Alex confirms that the request is not sent to a trustworthy host, so it should be blocked.

(5) Make security decision: Alex mainly examines four attributes: IP address, host domain,
existing blacklists, and the triggering relation (computed by the reasoning engine). By
repeating the first four steps, he makes a quick-yet-accurate security decision on the legitimacy
of the 4-hour-long network traffic.

Alex finds out 94 (out of 225) requests belong to adware, spyware and tracking-site traffic.
The rest (131 out of 225) requests are sent to known servers, but they contain missing values
in their headers that may be due to misconfiguration of the servers. Last, he identifies two
scenarios of grafted requests (12 requests in total).

gighippo.com
ziffdavisglobal.112.2o7.net
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Our tool provides an interactive visual display for the network requests on a host. In Figure 6.5
(zone A), we demonstrate a scenario of grafted requests using an exemplary case. These requests
are usually situated in exceptional deep levels and expanded to deeper levels. In addition, these
requests are of JavaScript type with long request strings in their URLs. The JavaScript

requests provide handy and advanced functions to be used by attackers, which is difficult to be
detected by rules. With the help of ReView, the trees in TRG that have an exceptional depth and
late-arriving JavaScript requests are caught more attentions to security analysts.

Vagabond requests, detected by the reasoning engine, are shown in Figure 6.5 (zones B and
C). We find an interesting pattern that two similar abnormal requests are sent out after a certain
website is visited. The website hosts may be compromised by malware or due to misconfiguration.

Besides the triggering relationship of requests, analysts can reason about the legitimacy by review-
ing the URL and integrating with other information (e.g., system logs) using our tool. A poten-
tial limitation of condensed view is when the redundant leaf nodes are merged, so that malicious
grafted nodes could be hidden.

A

B

C

Figure 6.5: A Screenshot to show two types of abnormal requests in ReView. Zone A refers to the
grafted requests. Zones B and C refer to the vagabond requests.

In the above case study, we elaborate the process of using ReView to analyze the network logs and
make security decisions. It is not only convenient but also accurate by using our tool, comparing
to the conventional way that human experts have to write queries and compare logs side by side.
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More discussion. We regard ReView as a forensics tool. It has three major uses: i) to help analysts
understand the network dependency, ii) to find new traffic patterns, and iii) to recognize/prevent the
attacks in the future. In the workflow, security analysts, at the end of the “analysis loop”, can treat
our tool’s output as actionable intelligence. To further accommodate the analysts, one possible
future work direction would be to extend our tool with visual analytics capabilities. Our long-term
vision is to enable the analysts to steer the reasoning engine, thus bringing the human input back
into the loop.

6.5 User Study

We carried out a user study with ten participants, and all of them have at least four years of ex-
perience working with computers. Their specialties include system/network security, high perfor-
mance computing and human computer interaction. As our tool is to visualize the network requests
for security purposes, it is not built for the average users. We target users with computer science
knowledge and people who are curious about, or care about, the computer security. In this user
study, we investigate: i) the user’s preference, and the trade-off between a neat view of condensed
data and a complete view of all triggering relations, and ii) how our tool can direct users to analyze
the suspicious requests.

We conducted the study in a computer science laboratory at a university. A 15-minute tutorial was
given to the participants to introduce the functionalities of ReView. We directed the tutorial using a
7-page slide presentation, so that every participant got the equivalent level of details. In the study,
participants were asked to finish 10 questions that include the tasks of analyzing logs and the user
preference of different visualization options. Questions 1-5 refer to the tasks of analyzing logs that
are usually done by security analysts. Questions 6-10 ask about the user preference of different
visualization options. The tasks are generated and selected by the researchers and domain experts,
based on whether or not the task would naturally occur in the analysis of the network traffic logs.
We list the 10 questions as follows.

Q1 Please list the HTTP header information of 3 root-triggers requests.
Q2 How many levels of requests in this graph? Judging from the graph, what other insights do

you find?
Q3 Please specify the number of each type of vagabond requests in the graph.
Q4 Choose one example of each vagabond type and list all relevant information obtained from the

tool.
Q5 Please find the first malicious request, could you specify the host domain and infer the reason

why it is sent?
Q6 Which way do you use more often to analyze the logs, the log view or the graphic view, and
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why?
Q7 Which one you like to use, the axial layout or the radial layout, and why?
Q8 Is the condensed view a good way to trim the original view, and why?
Q9 Which way you like to browse request information, using the popup window, InfoTab or

LogWindow, and why?
Q10 Do you think the LogMap is useful in your analysis? What did you find through the LogMap?

The data used in the user study was obtained from a graduate student’s laptop. We collected both
HTTP traces and user’s inputs (keyboard and mouse events) for a 30-minute session.3 The test
data contains a total of 3724 HTTP requests, including 24 update requests and 33 vagabonds (12
abnormal and 21 misconfigured requests).

6.5.1 Analysis of User Preference

Popup

Graphic view

Radial layout

Condensed view

InfoTab

Useful

Log view

Axial layout

Original view

Log window

Not useful

0 2 4 6 8 10

Graphic vs. Log

Radial vs. Axial

Condensed vs.
Original

In-depth Info.
Display

Usability of the
LogMap

Figure 6.6: The breakdown of results on user preference in the user study.

Figure 6.6 presents a brief summary about user’s preferences of major features in ReView. All
ten participants correctly identified root-triggers, the first level of network requests, and answered
the exact maximum level of requests. Based on results shown in Figure 6.6, nine participants
indicated that they preferred visualizations over traditional network logs (for Q6). They agreed on
the fact that the provided visualizations in ReView summarize the network data, compared with
the overwhelming information in raw logs. Using ReView, users can quickly understand and make
use of the structure of network causal relationship for security analysis.

An Easily Perceptible Representation. The proposed visual representations in ReView can be
easily perceived and interpreted by users. Participants can relatively quickly understand and make

3The average time that global Internet users spend online is about 30 minutes, according to report [8].
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use of the structure of network causal relationship for some basic analysis with a 15-minute demon-
stration, because all ten participants correctly identified root-triggers, the first level of network
requests (for Q1), and answered the exact maximum level of requests (for Q2). Additionally, vi-
sualizations in ReView provide better representations to efficiently summarize key features of the
network traffic data, compared with traditional network logs. Last, eight out of ten participants
liked LogMap (for Q10). Six of them explained the reason for their preferences as that LogMap
conveyed the density of packets over time, and the other two thought that LogMap presented the
request patterns in an easily perceptible manner.

An Efficient Navigator from Three Levels. ReView effectively navigates users among a large
amount of network requests through different levels of abstractions: network traffics causality (ra-
dial and axial views), aggregated network requests (condensed view), and network traffics density
(LogMap).

Both radial and axial layouts present the structure of network requests causality, but they implicitly
emphasize two different aspects: space usage and time order. Eight participants preferred the radial
layout and five of them mentioned that they did not need to scroll the mouse to explore network
causal relations (for Q7). Two participants who preferred the axial layout with the reason that the
timeline in this view was more salient and easy to understand, which suggests that they explored
traffic causal relations by following the time order. In addition, the condensed views more explic-
itly convey the structure of network traffic causality, compared with the original ones (for Q8).
Supported evidence comes from the feedback of nine participants who preferred condensed views.
They agreed that condensed views simplified representations by avoiding unnecessary information
(e.g., benign requests). One participant who preferred the original views also admitted that con-
densed views were neat, but he still chose original views in case of missing necessary information.
Lastly, LogMap enables users to examine network requests by their density with supportive evi-
dence from the feedback of eight participants. With three-level navigations, ReView potentially
allows users to perform analysis by their preferences.

6.5.2 Analysis of Suspicious Requests

ReView efficiently directs users to suspicious network requests (for Q3). Nine participants iden-
tified the exact number of vagabond requests (33 nodes in total). The other one participant mis-
understood the task and counted the vagabonds on the first level. All participants correctly listed
detailed information of examples corresponding to each type of the vagabond. They were able to
distinguish among different types of vagabond requests by digesting the request information using
our tool.

With some domain knowledge, participants can infer reasons for the occurrences of malicious re-
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quests (for Q4 and Q5). For example, eight participants answered that the first malicious request
was sent to spi.domainsponsor.com and the domain was blacklisted as spyware. By re-
viewing its long URL string, participants found out that the request URL contains some substrings
with semantic meanings, such as migTrackDataExt and migAgencyId. Therefore, they spec-
ulated the outbound request is used to leak host information. Users also found that the display of
triggering relations for all requests benefits the analysis of malicious ones. For example, partici-
pant #9 pointed out that a similar vagabond request is sent out after a website is visited twice, so
the website hosts may be compromised by malware or due to misconfiguration.

LogMap also helps to direct users to potentially suspicious network traffics with color coding of
the frame for each grid. Participants #4, #7 and #10 regarded this as an important factor as to why
they preferred LogMap. They used the tool to find out that the update requests were often sent out
during the idle time, while abnormal ones were sent out along with some legitimate requests.

Summary. ReView benefits network traffic analysis from three aspects. With high visual locality,
the proposed visual representations in ReView are used without much cognitive effort for train-
ing. Three levels of abstractions about network traffic provide more options for users to perform
their analysis. Following network traffic causality and semantic meanings of the color coding,
participants used our tool to successfully identify malicious network activities.

6.6 Summary: Visualization for Network Traffic Dependence
Analysis

Discovering traffic dependency has been shown to be an effective way to analyze network activities
and identify malicious events. We introduced a new concept of high visual locality and developed
ReView, a visualization tool that maximizes the usage of a screen and helps security analysts better
utilize network traffic dependency. In our design, we adopted a radial layout that supports to high
visual locality and further optimized the display using a condensing algorithm.

ReView serves as an integrated solution for security analysts to accurately pinpoint anomalous
network events and perform further investigation. Our user study and case study confirm that
our tool provides easily perceptible representations to help interpret network traffic causality and
enhance security analysis with multiple levels of network information.

spi.domainsponsor.com


Chapter 7

Conclusion and Future Work

In this chapter, we conclude this dissertation by summarizing our contributions and discussing
directions for future work.

7.1 Conclusion

Correlating events to find dependency is a commonly used approach in reasoning events [21, 22]
and detecting attacks [36, 60]. This dissertation studies the triggering relation discovery and its
security applications in network security and Android malware detection. The work is motivated
by the need of fine-grained analysis and enforcement of dependencies on network events. We
introduce the generalization of triggering relation model and give several security applications in
detecting the host-based malicious applications, software flaws, and Android malware.

In our dependence analysis, the triggering relation graph is an acyclic, expandable and sparse
graph. The inferred dependency in a triggering relation graph illustrates the logic chains of the
network requests and can be used to reveal the origin of the malicious activities.

We describe a rule-based approach for building a TRG. The triggering relation discovery algorithm
incrementally inserts a new network event with unknown dependency to a well-formed TRG. The
algorithm is generated based on empirically derived rules. Additionally, in our prototype, we
instrument the browser with the header-authentication capability to ensure the integrity of collected
HTTP header information.

A learning-based approach is proposed for processing general types of network traffic. The unique
contribution of the machine learning method is to convert the general dependence discovery into
the pairwise triggering relation problem. Thereafter, we design a novel pairing operation that pro-
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duces pairwise features, so that the discovery problem can be efficiently solved using classification
tools. We designed, developed, and compared both rule- and learning-based approaches for trig-
gering relation discovery. We conduct several evaluations on our host-based solution using 10+ GB
real-world and DARPA datasets. Results indicate a high accuracy of the triggering relation pre-
diction using the learning-based classification. Additionally, we confirm that our traffic-reasoning
technique is effective in detecting browser spyware, DNS bots, and data exfiltrating malware.

We extend our solution on mobile devices for analyzing the dependency of mobile network traf-
fic. Our analysis explores the request-level mobile traffic and provides the precise and structural
information of dependency inference. We adopt the two-stage learning-based solution to detect
the malicious root-triggers. The dependency-based features, extracted from the constructed TRG,
effectively distinguish the malicious root-triggers from the benign ones. The detection is based on
the policies that malicious requests are the lack of dependency with legitimate ones and cannot be
categorized to the whitelist. We conduct our evaluation on 14GB network traffic data and system
logs collected from an Android tablet. Our evaluation results show that our solution achieves a
high accuracy (99.1%) in detecting requests sent from the malicious apps.

We design and develop a visualization tool for visually analyzing malware activities. Our tool
provides high visual locality for events that are logically related. In our design of the prototype,
we adopt a radial layout and further optimized the display using condensing rules. We conduct a
user study and results show that participants used our tool can easily identify malicious network
activities with the semantic meanings of the color coding.

In this dissertation, we make a step to fill the gap between dynamic analysis and network anomaly
detection on Android. Malicious requests are identified due to the lack of dependency with legit-
imate triggers. Our work focusing on the dynamic interactions between the user and application
lends a novel security methodology that is not limited to the ever-changing anomalous patterns.
We successfully demonstrated the use of triggering relation discovery for identifying suspicious
requests both on hosts and mobile devices.

7.2 Research Directions and Future Work

We envision to extend our work presented in this dissertation in two directions.

Generalization. A generalization of our solution can be done by deriving policies and analyzing
complicated network applications (e.g., online games that heavily involve user interactions) for
anomaly detection purposes. Our long-term vision is to systematically investigate the design and
use of complex policies involving the TRG for network assurance. As part of future work, we
also plan to add intelligent filters (e.g., using episode mining or graph mining) to find interesting
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patterns and novel attacks.

Usable and deployable solution. One future work direction is to deploy our dependence analysis
solution for practical use. We plan to extend our solution for real-time triggering relation inference
and online detection. Besides, an advanced online supervised learning algorithm for training the
triggering relation model is desirable to improve the efficiency and usability. Also, how to adopt
our solution to a large-scale network (e.g. LAN) needs more research efforts before the enterprise-
wide deployment. Last, a graphic user interface for demonstrating the network stack and complex
security policies can significantly help security administrators to investigate network incidents.
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