
Strengthening MT6D Defenses with Darknet and Honeypot

Capabilities

Dileep Kumar Basam

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Engineering

Joseph G. Tront, Chair

Randolph C. Marchany

J. Scot Ransbottom

November 13, 2015

Blacksburg, Virginia

Keywords: Moving Target Defense, MT6D, Honeypot, Dionaea, Darknet, IPv6

Copyright 2015, Dileep Kumar Basam

Strengthening MT6D Defenses with Darknet and Honeypot Capabilities

Dileep Kumar Basam

(ABSTRACT)

With the ever increasing adoption of IPv6, there has been a growing concern for security and

privacy of IPv6 networks. Mechanisms like the Moving Target IPv6 Defense (MT6D) lever-

age the immense address space available with the new 128-bit addressing scheme to improve

security and privacy of IPv6 networks. MT6D allows participating hosts to hop onto new

addresses, that are cryptographically computed, without any disruption to ongoing conver-

sations. However, there is no feedback mechanism in the current MT6D implementation to

substantiate the core strength of the scheme i.e., to find an attacker attempting to discover

and target any MT6D addresses.

This thesis proposes a method to monitor the intruder activity targeting the relinquished

addresses to extract information for reinforcing the defenses of the MT6D scheme. Our

solution identifies and acquires IPv6 addresses that are being discarded by MT6D hosts

on a local network, in addition to monitoring and visualizing the incoming traffic on these

addresses. This is essentially equivalent to forming a darknet out of the discarded MT6D

addresses. The solution’s architecture also includes an ability to deploy a virtual (LXC-

based) honeypot on-demand, based on any interesting traffic pattern observed on a discarded

address.

With this solution in place, we can become cognizant of an attacker trailing an MT6D-

host along the address changes, as well as understanding the composition of attack traffic

hitting the discarded MT6D addresses. With the honeypot deployment capabilities, the

solution can take the conversation forward with the attacker to collect more information

on attacker methods and delay further tracking attempts. The solution architecture also

allows an MT6D host to query the solution database for network activity on its relinquished

addresses as a JavaScript Object Notation (JSON) object. This feature allows the MT6D

host to identify any suspicious activity on its discarded addresses and strengthen the MT6D

scheme parameters accordingly. We have built a proof-of-concept for the proposed solution

and analyzed the solution’s feasibility and scalability.

iii

Acknowledgments

I want to thank my committee members Dr. Joseph G. Tront, Dr. J. Scot Ransbottom,

and Prof. Randy Marchany for their guidance and mentorship along this path. I also thank

Chris Morrell, Reese Moore, Mike Cantrell, Dr. David Raymond and everyone in the IT

Security Office and Lab, for their support.

I thank my grandmother Rukminamma, my parents Annapurna and Nageswara Rao Basam

and my brothers Dinesh, Ram and Lakshman for their continued love and encouragement

over the years. I also thank my wife, Sirisha, for her patience, understanding and compan-

ionship.

iv

Contents

1 Introduction 1

1.1 Problem Statement and Proposal . 2

1.1.1 Problem Statement . 2

1.1.2 Threat Model and Assumptions . 3

1.1.3 Challenge . 3

1.1.4 Proposal . 3

1.2 Goals . 5

1.3 Structure of Thesis . 5

2 Background 7

2.1 IPv6 . 7

2.1.1 Neighbor Discovery in IPv6 . 8

v

Address Resolution through NS and NA messages 10

Duplicate Address Detection (DAD) 10

2.1.2 MLD . 11

2.1.3 Moving Target IPv6 Defense(MT6D) 13

2.1.4 Dionaea . 14

2.1.5 DionaeaFR . 14

2.1.6 LXC . 15

2.1.7 Other components used in building the Solution 15

Scapy, Pcapy, Impacket and Pyroute2 15

Wireshark . 16

MongoDB and PyMongo . 16

D3.js . 16

Dstat . 17

3 Related Work 18

3.1 Darknets a.k.a Network Telescopes . 18

3.2 Honeypots and Honeynets . 19

vi

4 Approach and Pre-work 23

4.1 Approach . 23

4.2 Pre-work experiments on address migration 26

4.2.1 Concept of disabling DAD . 27

4.2.2 Concept of Forced NA for quick address acquisition 29

5 Testbed and Implementation 30

5.1 Testbed . 30

5.2 Implementation . 32

6 Evaluation 38

6.1 Experiments and Results . 39

6.1.1 Test Scenario . 39

6.1.2 Observations on interruption window 41

6.1.3 Observations on CPU and memory overheads 42

6.1.4 How can a MT6D node leverage our solution 45

7 Conclusion and Future Work 55

7.1 Conclusion . 55

vii

7.2 Future Work . 57

A Python script on CentralNode 61

A.1 CentralNode.py . 61

B Shell and Python scripts for honeypot-host 80

B.1 createHpots.sh . 80

B.2 deployHpots.sh . 81

B.3 HoneypotHost.py . 81

C Webserver and visualization code 86

C.1 server.js . 86

C.2 routes.js . 87

C.3 index.html . 89

C.4 index.js . 90

Bibliography 100

viii

List of Figures

2.1 IPv6 adoption statistics among Google users [8]. [Google. Ipv6 adoption

statistics among google users. http://www.google.com/intl/en/ipv6/statistics.html.

Used under fair use, 2015.] . 8

2.2 IPv6 header format[IPv6 Header.

https://commons.wikimedia.org/wiki/File:Ipv6 header.svg. Used under GNU

Free Documentation License.] . 9

2.3 IPv6 address composition . 9

2.4 Wireshark capture dissection of a Neighbor Solicit (NS) message 11

2.5 Wireshark capture dissecting a MLD message 12

ix

2.6 Moving Target IPv6 Defense[11] [Stephen Groat, Matthew Dunlop, W. Ur-

banksi, Randy Marchany, and Joseph Tront. Using an ipv6 moving tar-

get defense to protect the smart grid. In Innovative Smart Grid Technolo-

gies (ISGT), 2012 IEEE PES, pages 1-7, Jan 2012. doi: 10.1109/ISGT.

2012.6175633. Used under fair use, 2015.] . 13

4.1 Wireshark capture showing initial ICMP pingflood hitting MT6D-host . . . 28

4.2 Wireshark capture showing ICMP pingflood hitting the CN indicating suc-

cessful address transition . 28

5.1 Block diagram of test setup . 31

5.2 Solution architecture . 32

5.3 CN’s packet processing algorithm . 33

5.4 Flow Diagram - sequence of messages exchanged between various components 36

6.1 MT6D view depicting addresses spawned by a MT6D host 46

6.2 ICMP pingflood traffic from simulated attacker on a remote Internet connec-

tion at 50ms interval . 47

6.3 Wireshark capture showing packets hitting CN before the IP address migra-

tion . 48

6.4 MT6D view of incoming traffic hitting the CN visualized 49

x

6.5 Attacker-view of incoming traffic hitting the CN visualized 50

6.6 Nmap script to send test traffic on various services to a deployed honeypot . 51

6.7 DionaeaFR console showing deployed honeypot connection statistics 52

6.8 Chart giving out Hold-packet counts and packet-loss observed by an attacker

during one of the 10-honeypot deployment trials involving sending an ICMP

echo request every 50ms i.e., rate of 20 packets/second 53

6.9 Memory and CPU loading characteristics for the scenario of 1 honeypot-

container hotspare and subsequent deployment 53

6.10 Memory and CPU loading characteristics for the scenario of 5 honeypot-

container hotspares and subsequent deployment 54

6.11 Memory and CPU loading characteristics for the scenario of 10 honeypot-

container hotspares and subsequent deployment 54

xi

Chapter 1

Introduction

Many cybersecurity attacks start with reconnaissance that involves passive monitoring of

target network traffic and further network scanning to find potential victims with vulnerable

services. Unfortunately, IPv4’s address space is so small that the state-of-the-art attacker

tools can scan a whole class-C subnet in about 4 minutes[1]. Even if hosts dynamically change

addresses in IPv4, the limited address space and ease of scanning makes it easy to track the

host across address changes for exploitation. Therefore IPv4 networks are vulnerable to

network-correlation and reconnaissance attacks.

IPv6[2] with it’s 128-bit address size offers a larger address pool, making reconnaissance

attacks harder. An IPv6 enabled host can use either Dynamic Host Configuration Proto-

col (DHCP)[3] or Stateless Address Auto-Configuration (SLAAC)[4] protocol to acquire a

routable IP address. In SLAAC, the host’s physical MAC address forms the basis of the IPv6

1

Dileep Kumar Basam Chapter 1. Introduction 2

address. The 48-bit MAC address contributes to the 64-bit interface-identifier(IID) portion

of the IPv6 address. This mechanism poses privacy concerns, as a host can be tracked across

address-hops using the IID portion that remains constant during the address changes. Even

though the larger address space mitigates the threat vector of reconnaissance, static IPv6

addresses are still vulnerable to network-correlation attacks and the use of SLAAC approach

opens up privacy concerns.

MT6D[5][6] addresses the above issues by taking advantage of the vast address space available

in IPv6 to allow hosts to periodically change their network identity without interruption

to the ongoing conversations. The address morphing behavior denies any advantage to an

attacker passively monitoring target network traffic and increases the work-factor for him/her

to compute the host’s next address in order to be able to exploit the host. The concept of

MT6D is discussed in greater detail in Section 2.1.3.

1.1 Problem Statement and Proposal

1.1.1 Problem Statement

Nodes participating in MT6D periodically relinquish IP addresses and hop on to new ad-

dresses. This address-hopping trait of MT6D improves the security and privacy of IPv6

networks, however, there is no feedback-mechanism in the current implementation i.e., a

node engaged in a MT6D conversation have no means of realizing if there is an attacker

Dileep Kumar Basam Chapter 1. Introduction 3

uncovering its MT6D addresses and trailing the MT6D node along its address hops.

1.1.2 Threat Model and Assumptions

We assume a threat model involving an an attacker with infinite resources (compute cycles

and time), with an ability to brute-force the scheme parameters e.g., the secret-key involved

in address-computation (hashing scheme), to discover the MT6D addresses. But the attacker

validating these uncovered MT6D addresses will generate some traffic, leaving a trail of

his/her activity on these discarded MT6D addresses.

1.1.3 Challenge

• To come up with a mechanism to use relinquished MT6D addresses in order to discover

any anomalies, and gather intelligence on attacker methods

• To build a proof-of-concept solution to impart darknet and honeypot capabilities to

MT6D scheme

1.1.4 Proposal

Our approach to solve this problem is to design a solution that identifies and acquires the ad-

dresses discarded by the MT6D hosts and enumerating incoming traffic on these relinquished

addresses in addition to providing the ability to deploy a virtual container-based honeypot

Dileep Kumar Basam Chapter 1. Introduction 4

configured with a specific discarded address upon detecting a suspicious traffic pattern. Our

approach[7] includes building a Central-Node (CN) that passively listens to local-link traffic

in promiscuous mode, identifying and acquiring discarded addresses by MT6D nodes and

performing traffic enumeration on these addresses. The CN uses typical IPv6 neighbor dis-

covery protocol (NDP) messages like Neighbor Solicit (NS) and Multicast Listener Discovery

(MLD) messages to re-construct who is relinquishing which addresses and when to acquire

them. We discuss the dissection of NS and MLD messages and how they can be used in the

solution for identification and acquisition of discarded addresses in Section 2.

The solution’s ability to deploy a honeypot tied to a discarded MT6D address of interest

can potentially take up the conversation forward with the attacker to gather intelligence on

attacker methods besides collecting attack traffic samples for further analysis. The solution

also allows an MT6D node to query the database for incoming traffic on it’s discarded

addresses, thus giving the MT6D node the ability to analyze the activity to identify malicious

traffic or an attacker persistently trailing on its discarded addresses, to change the scheme

parameters e.g., move to a stronger secret key or a faster hopping interval to evade the

attacker. Such a solution equipping MT6D with darknet and honeypot capabilities will

serve as a feedback mechanism to strengthen defenses for the involved MT6D hosts along

their address hopping journey.

Dileep Kumar Basam Chapter 1. Introduction 5

1.2 Goals

In this thesis, we seek to impart darknet and honeypot capabilities to Moving Target IPv6

Defense (MT6D) in order to provide a feedback-mechanism for evaluating the strengths of

MT6D scheme by analyzing the activity on discarded addresses. Among the goals of this

effort, the first goal is to implement the Central-Node (CN) logic, comprised of traffic-parsing,

address-acquisition, traffic enumeration, analysis, and visualization modules. A second goal

is to implement the database-integration in to Central-Node along with developing a way

to build web-server to offer real-time visualization of the local MT6D addresses that are

being relinquished and incoming traffic on these discarded addresses. Our next goal is

to implement a capability of deploying honeypot-service on a virtual-container on-demand

bound to a discarded MT6D address of interest with minimal interruption observable to an

attacker. Lastly, we want to analyze the feasibility and scalability of the proposed solution

by analyzing the the CPU and memory overhead trends while scaling to multiple honeypot-

containers.

1.3 Structure of Thesis

This thesis is organized by first discussing the background in Chapter 2. A survey on related

work is provided in Chapter 3. We describe our approach and pre-work experiments in

Chapter 4. Then we explain our testbed and implementation details in Chapter 5. The

results of our evaluation and observations are reported in Chapter 6. Finally, in Chapter 7

Dileep Kumar Basam Chapter 1. Introduction 6

we provide our conclusions and directions for future work.

Chapter 2

Background

In this chapter we will present background on IPv6, Neighbor Discovery Protocol (NDP),

and other components that were used in building the proposed solution.

2.1 IPv6

On 24 September 2015, the American Registry for Internet Numbers (ARIN) announced

that it allocated the final IPv4 address blocks in its free pool and the IPv4 address space

is completely exhausted. The IPv6 protocol by design overcomes the address exhaustion

limitation with its address length of 128 bits. This new address size allows for 2128 possible

addresses, approximately 7.92X1028 addresses for every possible IPv4 address. This has

been a driving force behind IPv6 adoption and the trend can be witnessed in the Figure 2.1,

which depicts IPv6 adoption statistics among Google users.

7

Dileep Kumar Basam Chapter 2. Background 8

Figure 2.1: IPv6 adoption statistics among Google users [8]. [Google. Ipv6 adoption statistics
among google users. http://www.google.com/intl/en/ipv6/statistics.html. Used under fair
use, 2015.]

To understand IPv6 address design, Figure 2.2 depicts various IPv6 header fields and we

can observe that the IPv6 address field is designed for 128-bit length. As shown in Figure

2.3, each IPv6 address is made up of subnet and interface-identifier(IID) portions of 64 bits

each.

2.1.1 Neighbor Discovery in IPv6

The process of Neighbor Discovery (ND)[9] in IPv6, replaces Address Resolution Protocol

(ARP) in solving the problem of discovering other nodes on the local link. It also has a

mechanism to discover local routers on the network. Neighbor Discovery Protocol (NDP)

Dileep Kumar Basam Chapter 2. Background 9

Figure 2.2: IPv6 header format[IPv6 Header.
https://commons.wikimedia.org/wiki/File:Ipv6 header.svg. Used under GNU Free Docu-
mentation License.]

Figure 2.3: IPv6 address composition

can also facilitate duplicate address detection, and can redirect nodes to another router

when needed. The following sections explain address resolution and Duplicate Address De-

tection(DAD) mechanisms in more detail.

Dileep Kumar Basam Chapter 2. Background 10

Address Resolution through NS and NA messages

An IPv6 host uses Internet Control Message Protocol Version 6 (ICMPv6) messages like

Neighbor Solicit (NS) and Neighbor Advertisement (NA) to accomplish neighbor discovery.

An IPv6 host sends a Neighbor Solicitation (NS) message to a multicast address as specified

by the target address to learn the link-layer address of another node on local link. The target

node which should be listening to the multicast address, upon receiving the solicitation,

should reply with a Neighbor Advertisement (NA) message. NA message includes flags like

the override (ovr) flag, to tell the receiver to replace any information that the recipient

(which may be a local router) may already have in it’s routing cache.

Figure 2.4 shows a Wireshark capture dissection of a Neighbor Solicit (NS) message. NS mes-

sage is an ICMPv6 message with payload consisting of fields like ’target-address’ containing

the IPv6 address that the host is interested in discovering/acquiring and ’Source link-layer

address’ that has a corresponding MAC address. As you can observe in Figure 2.4 the IPv6

host with address 2001:468:c80:c111:a693:bdfa:3b28:3a12 is sending out the concerned NS

message with the target IPv6 address, 2001:468:c80:c111:9c29:f227:6717:a2b7, to be acquired

along with the MAC address, 00:50:56:96:ac:7e, associated with the target IPv6 address.

Duplicate Address Detection (DAD)

DAD is built into IPv6 as part of its address acquisition mechanism. When a node comes

up on a network and wants to be assigned a new address, it must first validate that no other

Dileep Kumar Basam Chapter 2. Background 11

Figure 2.4: Wireshark capture dissection of a Neighbor Solicit (NS) message

node on the local-link uses this particular address. In other words, the node should ensure

that there is no other host with a duplicate of this IP address already live on the network.

This is accomplished by sending out a series of NS messages and looking for NA replies. If

some other node is already using the address, that node will send a NA message as a reply.

Upon seeing a NA message, the first host must select a new tentative address and repeat

the process. If no other host replies with a NA, the first host is free to use the address of

concern.

2.1.2 MLD

MLD stands for Multicast Listener Discovery. We leverage MLD messages in order to identify

the time instant a host acquires or relinquishes an IPv6 address. MLD is used by an IPv6

host to indicate specifically which multicast addresses are of interest to listen on. Each MLD

message consists of a set of records, with each record containing an IPv6 multicast address.

Each message will have records that are segregated based on filter mode.The filter mode

Dileep Kumar Basam Chapter 2. Background 12

can be either INCLUDE or EXCLUDE. In INCLUDE mode, reception of packets sent to

the specified multicast address is enabled only from the source addresses listed in the source

list. In EXCLUDE mode, reception of packets sent to the given multicast address is enabled

from all source addresses except those listed in the source list.

Whenever an IPv6 host acquires a new address, it will send out a MLD message with mul-

ticast address record containing last three-octets of acquired address prefixed with ff02::1:ff

with the EXCLUDE filter-label. Similarly when a node relinquishes an IP address, it sends

out an MLD message with the relevant multicast address record under INCLUDE filter-

label[10].

Figure 2.5 shows Wireshark capture dissection of a MLD message. We can observe from

ICMPv6’s payload consisting of multicast address records with include and exclude labels and

infer that the host at IPv6 address fe80::250:56ff:fe96:871d is dropping two IPv6 addresses

with (last 3-byte) suffixes 45:42d0 and 22:bee5, and has acquired an IPv6 adddress with

suffix da:6ad2.

Figure 2.5: Wireshark capture dissecting a MLD message

Dileep Kumar Basam Chapter 2. Background 13

2.1.3 Moving Target IPv6 Defense(MT6D)

Moving Target IPv6 Defense[5][6] is a technique that aims to prevent attackers from cor-

relating network traffic, to probe, or to pinpoint a host for exploitation. Instead of having

static addresses that allow attackers to easily target and exploit systems, employing a moving

target defense system involves nodes periodically hopping to new addresses while dumping

the old addresses. This achieves an effect similar to frequency hopping in radio networks, for

an attacker passively listening to the conversation of two MT6D hosts will see multiple hosts

communicating to each other rather than a pair of hosts as shown in figure 2.6. This kind

of consistent address changing behavior gives additional security at the network layer, as the

attacker needs to start with reconnaissance all over again and re-acquire the target host. The

MT6D protocol changes IP addresses for communicating hosts in synchronization. MT6D

achieves synchronization between the involved nodes by having both ends of a communica-

tion pair compute both their own IP-address and their remote-peer’s IP address during the

Figure 2.6: Moving Target IPv6 Defense[11] [Stephen Groat, Matthew Dunlop, W. Urbanksi,
Randy Marchany, and Joseph Tront. Using an ipv6 moving target defense to protect the
smart grid. In Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES, pages 1-7, Jan
2012. doi: 10.1109/ISGT. 2012.6175633. Used under fair use, 2015.]

Dileep Kumar Basam Chapter 2. Background 14

particular time window ‘t’. The scheme involves computation of the Interface-Identifier part

of the address i.e., IID′ extracted from first 64 bits from a hash-digest (H) of concatenated

string made of a symmetric Secret Key (SK), initial IID, and current time window ‘t’.

IID′ = H[IID initial||SK||t]0→63

2.1.4 Dionaea

Dionaea is a low-interaction honeypot offering IPv6 support with an ability to capture mal-

ware in addition to logging suspicious traffic. Dionaea offers flexibility to configure services

and interfaces to listen on. Dionaea uses Sqlite as the backend database allowing custom

queries to be made to extract interesting information from logs stored in the database[12].

2.1.5 DionaeaFR

DionaeaFR is an open-source library that offers front-end visualization of Dionaea’s logs that

are stored in the sqlite database. DionaeaFR’s web-server is implemented in Python and

Django framework. This front-end console allows retrieving statistics of traffic hitting the

honeypot in addition to offering a way to download attack traffic samples e.g., malware[13].

Dileep Kumar Basam Chapter 2. Background 15

2.1.6 LXC

LXC is a light-weight virtualization technology that relies on isolated userspaces to create

virtual containers that share same kernel. LXC uses Linux kernel features like namespaces,

Chroots, CGroups etc., to isolate the container processes. LXC differs from the concept of

standard virtual-machines (VM) by sharing the same kernel and underlying hardware which

obviates the need for a hypervisor[14].

2.1.7 Other components used in building the Solution

Scapy, Pcapy, Impacket and Pyroute2

Scapy is a Python module for packet crafting and manipulation tool for computer networks,

written in Python by Philippe Biondi. We used scapy during the experiments to simulate

attacker (probing) traffic by forging packets and also for crafting forced Neighbor Advertise-

ments (NA) packets for expediting the address take over[15].

Pcapy is another Python extension module that interfaces with the libpcap packet capture

library to capture packets on the network. We used it for capturing incoming packets on the

acquired addresses on the central node (CN).

Impacket is a collection of Python classes to decode the raw network traffic in terms of

protocols. We used Impacket along with Pcapy to parse the raw network traffic to glean

the IP address and Port numbers for both developing IP-MAC associations and Traffic

Dileep Kumar Basam Chapter 2. Background 16

enumeration on the acquired addresses.

Pyroute2 is a Python netlink and Linux network configuration library. We used it to bind

the IP addresses to the Linux host.

Wireshark

Wireshark is a popular packet capture and analysis tool. We used Wireshark extensively

in pre-work experiments to analyze captures in order to understand the address transition

times and packet loss involved during the address take-over[16].

MongoDB and PyMongo

MongoDB is a NoSQL database, that stores each record in the database as a JSON object

thus deviating from SQL’s traditional table-based relational database structure. A typical

Mongo database is composed of collections and each collection is made up of set of docu-

ments/records.

PyMongo is a Python library that acts as an application programming interface (API) to

interact with MongoDB from Python code.

D3.js

D3.js is a JavaScript library that leverages HTML, SVG and CSS to produce complex visu-

alizations on a web browser. We forked an existing repository of a radial-diagram(a kind of

Dileep Kumar Basam Chapter 2. Background 17

D3.js visualization) and adapted it for building the visualization module[17] [18].

Dstat

Dstat is a free tool that combines vmstat, iostat, netstat and ifstat to view system resources

in real-time. The tool is used in this work to collect real-time CPU (usr/sys) and free-memory

(RAM) statistics during the experiments[19].

This chapter presented background on IPv6, MT6D, and components like Dionaea, LXC

and various python Libraries etc., used in building the solution. The next section presents

details on the related work and how our work extends the prior art in this area.

Chapter 3

Related Work

There has been lot of past work in the area of designing darknets, honeypots, honey-nets

and leveraging these implementations for collecting information about attacker and attack

techniques. Finally, we will describe how work presented in this thesis extends the previous

research.

3.1 Darknets a.k.a Network Telescopes

As per [20], “A darknet is an advertised and routed portion of Internet address space that

contains no advertised services”. Therefore any traffic that is incoming on a darknet is

deemed illegitimate. Darknets have been leveraged in IPv4 networks to uncover malicious

traffic and malware trends. Work by Ronan et al.,[20] created the first IPv6 darknet to

detect the backscatter present on the IPv6 Internet and they also studied how this traffic

18

Dileep Kumar Basam Chapter 3. Related Work 19

analysis differs from that of the IPv4 Internet.

In a similar effort, Researchers at UCSD came up with a Network Telescope, a globally

routed /8 IPv4 subnet with a few provider allocated addresses. This network carries al-

most no legitimate traffic. After discarding the legitimate traffic from the incoming packets,

the remaining data represent a continuous view of anomalous unsolicited traffic, or Internet

Background Radiation (IBR). It was pointed out that IBR or the backscatter may have

sources in spoofed source denial-of-service attacks, Internet worms and viruses, scanning of

address space by attackers or malware looking for vulnerable targets, and various misconfig-

urations. [21]. For example a /24 network telescope was used for Conficker analysis, where

the research team [22] analyzed dataset of some 16 million packets targeting port 445/tcp

in the South African IP address space. This is followed by a detailed analysis of the packet

characteristics observed, including size and TTL and intricacies of observed target selection

and the flaw in the Conficker worm’s propagation algorithm.

3.2 Honeypots and Honeynets

A honeypot is a security resource that delivers insights by getting probed, attacked, or

compromised by malicious entities [23] and subsequently reporting the characteristics of the

attack. Honeypots are classified as either low or high interaction based on their designed level

of interaction with the potential attacker. Low-interaction honeypots, as their name suggests,

are often limited by the degree of interaction. Examples of low interaction honeypots include

Dileep Kumar Basam Chapter 3. Related Work 20

Honeyd, Dionaea, etc. On the other hand high-interaction honeypots support complex be-

havior by emulating a real operating system with full suite of applications. High-interaction

honeypots carry more risk by allowing full compromise by the attacker. Honeypots have no

legitimate production use for incoming traffic, so in theory any traffic hitting a honeypot

can be deemed suspicious and warrant inspection.

On the other hand, a honeynet is a basic network of commonly used operating systems, such

as Red Hat Linux or Windows NT in their default configurations. Despite not broadcasting

the identity of the Honeynet, nor luring attackers, it collects illegitimate incoming traffic

which is further investigated[24].

Kuwatly’s work [25] discusses a dynamic honeypot solution built from the fingerprinting tool

(p0f) and Nmap to dynamically configure and leverage Honeyd-based emulated virtual hosts

and a physical high-interaction honeypot cluster to capture and analyze attacker traffic.

Hecker et al.’s paper [26] proposes a solution that uses nmap for fingerprinting the local

network (topology, hosts, ports, etc.) and honeyd-configuration manager for dynamically

building honeypots.

Kishimoto et al.’s work [27] on dynamic honeypot commissioning involves detection of in-

coming address scans targeting an unallocated IP address. Research work done by [27] on

commissioning honeypots based on incoming address scans, shows that disabling Duplicate

Address Detection (DAD) makes the address acquisition faster. During the pre-work tests,

we analyzed the relevant network captures and found that we can significantly reduce the

delay further by enabling a node to pro-actively claim ownership of the acquired address

Dileep Kumar Basam Chapter 3. Related Work 21

without waiting for NS messages from Router. More details are presented in the section

4.2. Hieb [28] employs dynamic honeypots and monitoring network activity of deployed

honeypots to setup anomaly-based intrusion detection for the network. Brzeczko’s work [29]

on Turnkey Honeynet framework involved automatic commissioning of Honeypots (Dionaea,

Kippo, Glastopf) depending on the composition of live attack traffic.

Memaris[30] builds a virtual honeynet and compares LXC virtualisation with other virtu-

alisation methods including VMware, VirtualBox and KVM and concluded that the LXC

approach provides better performance. Work by Pisarcik et al., [31] on Distributed Virtual

Honeynets framework talks about a master control center and a network of high-interaction

virtual honeynets based on OpenVZ and LXC virtualization.

Previous research work in this area involved creating Darknets, Network Telescopes and

Honeynets, with no advertised services and listen for illegitimate traffic. There are no cur-

rent implementations adapting such a scheme to moving target defense schemes like MT6D.

Also unlike a static darknet that passively listens on unallocated address space, our solution

is dynamic as it learns IP-address and MAC address associations from live network traffic

to actively acquire the addresses being purged in order to gather intelligence on attacker

methods. Work presented in this thesis[7][32] also extends the related work discussed above

in terms of a full IPv6 implementation framework of on-demand honeypot commissioning

using Linux-containers (LXC) in addition to proposing a method to leverage such a solu-

tion to fortify MT6D defenses. This solution presents a simplified visualization of attacker

traffic by ignoring the MT6D nodes that don’t have interesting incoming traffic to enable

Dileep Kumar Basam Chapter 3. Related Work 22

an uncluttered view of the suspicious traffic. This work also presents a memory and CPU

overhead analyses of the proposed solution while scaling to multiple honeypot-containers.

Chapter 4

Approach and Pre-work

4.1 Approach

The central idea of the research effort is to devise a mechanism for the nodes on an MT6D

network to gather intelligence on attacker methods by watching for suspicious traffic on

relinquished MT6D addresses. To develop a system that can acquire the addresses being

released by MT6D nodes, a straight-forward approach is to have all of the keying material

(secret keys being used by MT6D nodes for address generation) and other parameters like

the IID for all the participating nodes hosted on the CN. This makes the CN capable of

computing the next address hop for any MT6D node on the network. But this idea may

invite an inherent vulnerability as such a hosting server would become a single point of failure.

To avoid this, we developed an alternate approach after analyzing the network traces. Our

23

Dileep Kumar Basam Chapter 4. Approach and Pre-work 24

novel approach uses NDP and MLD message traffic that is common to any node running on

a IPv6 network.

To implement such a scheme, as shown in figure 5.1, we have a MT6D-host that periodically

hops onto new addresses while relinquishing old addresses. A Central-Node (CN) passively

listens to the network traffic in promiscuous mode to parse the NS and MLD messages from

MT6D hosts to populate a database collection of who’s relinquishing what address, identi-

fying the right time-instant to acquire these discarded addresses and subsequently binding

these addresses to its local network interface. After the CN binds these discarded addresses

to its network interface, it analyzes the incoming traffic on these discarded addresses and

may place a request to the honeypot-host for a honeypot-container to be deployed on a spe-

cific IPv6 address. The challenge is to migrate the IP address from the CN to virtual LXC

container on the honeypot-host (honeypot-container) with minimal interruption observable

to an external attacker who is sending the traffic to the discarded address. The steps in-

volved in this process are unbinding a specific IP address on the CN, binding this address

on honeypot-container, and finally invoking and binding Dionaea and DionaeaFR services

to this IP address on the honeypot-container.

We propose an efficient and quick approach for honeypot deployment by maintaining hot-

spares of honeypot-containers. To facilitate the hot-spares approach, we packaged an LXC

container with all prerequisites such as Dionaea, DionaeaFR, and supporting python libraries

to act as a honeypot LXC-template. The honeypot-commissioning-module on honeypot-host

clones a fixed number of containers from the honeypot LXC-template in advance and main-

Dileep Kumar Basam Chapter 4. Approach and Pre-work 25

tains a list of available containers. By keeping honeypot-containers waiting in a queue,

deploying a honeypot configured with a target IPv6 address requires that the only config-

uration needed on the container-side is binding the IP address to the network interface of

an available container and starting Dionaea honeypot and DionaeaFR (management web-

server) services. This minimal configuration requirement ensures minimal delay in bringing

up honeypot service bound to the desired IPv6 address.

In order to minimize the interruption window observable by an attacker during the migration

of IP address from CN to honeypot-container, we followed the approach of holding the

address for a fixed-period after receiving the message that a honeypot is being deployed

from the honeypot-host. For a smoother IP transition from CN to the honeypot-container,

based on our initial tests, we implemented the heuristic of CN holding the address for one

second. This address-holding-period compensates for the time it takes the IP address to be

bound on container’s network interface and to start Dionaea and DionaeaFR services on the

honeypot-container.

We went with the approach of using the honeypot-host instead of running a honeypot service

on the Central-Node(CN) itself for two reasons. First, running honeypot on the CN may

not be a secure approach as the Central-Node (CN) not only maintains a database of the

discarded addresses, but also actively collects the addresses that are currently active on

MT6D hosts from the parsing of NS and MLD messages. Secondly, a design including a

dedicated honeypot host with its own database allows flexibility for such a honeypot-host

running virtual machines with vulnerable-services to sit in a segregated zone like a DMZ

Dileep Kumar Basam Chapter 4. Approach and Pre-work 26

in the future while its partner Central-Node can still be on the local-network with MT6D

nodes.

Even though we used a low-interaction honeypot, Dionaea, for experiments, by the virtue of

using LXC containers in our solution, the solution allows high-interaction honeypot deploy-

ment on the container. So we are not limited to emulated services or virtual hosts in future

experiments.

For a solution that involves learning and acquiring addresses from MT6D nodes on local-

link, it is crucial to understand whether a host can acquire these addresses without major

delays. If there were to be a delay, incoming traffic from a potential attacker may get lost in

transit and this interruption may give cues to the attacker about the IP address migration.

To achieve this, we conducted initial experiments to demonstrate faster address migration of

IP address from one machine to another through the concepts of disabling DAD and forced

Neighbor-Advertisement to the local router. We present this experiments in the next section

on pre-work experiments.

4.2 Pre-work experiments on address migration

We ran experiments to test address migration times, or the time it takes for CN to identify

(through parsing of NS/MLD conversations) and acquire a MT6D discarded address. Some

of the observations from these experiments were used for faster address transition between

the Central-Node and deployed honeypot-container for a minimal interruption window to an

Dileep Kumar Basam Chapter 4. Approach and Pre-work 27

external attacker.

For this test, we generated a continuous ICMP pingflood from a machine on a remote Internet

connection, targeting the MT6D node’s current address. After the stipulated address change

interval when the MT6D node relinquishes this address, the CN tries to acquire it by binding

the address to local network interface and sending a (Scapy) crafted packet advertising to the

local router reflecting the new owner. In the following sections we will review the significance

of Duplicate Address Detection (DAD) and forced neighbor-advertisement (NA) in speeding

up the address acquisition process.

4.2.1 Concept of disabling DAD

As per work done by [27] in typical IPv6 address acquisition, a host must perform DAD in

order to make sure it is not going to use an already-in-use address, but their honeypot system

skips DAD and hands it off to address-management-system. For the solution presented in

this work, the CN doesn’t need to perform DAD as the address was in use by one of the

legitimate MT6D nodes and the functionality of DAD would have been completed by the

MT6D node during the address acquisition phase.

For the address takeover with DAD disabled on the CN, we observed that the onus being

pushed on to the local router to send a NS message to solicit the new owner of the address to

be able to route incoming pingflood traffic. Only when the router gets hit with traffic destined

to the address of concern will the router send out a NS message seeking the address owner. In

Dileep Kumar Basam Chapter 4. Approach and Pre-work 28

(a)

Figure 4.1: Wireshark capture showing initial ICMP pingflood hitting MT6D-host

(a)

Figure 4.2: Wireshark capture showing ICMP pingflood hitting the CN indicating successful
address transition

response to the NS message, the CN sends out a NA message claiming the address. Once the

local router receives the NA message, it updates its routing table entries to reflect the address

transition. Any packets that arrive during this owner-finding transition get dropped at the

router. This can be observed in the Wireshark packet captures on MT6D-host and CN shown

in figures 4.1 and 4.2. In figure 4.1 we can see the pingflood from a machine on Internet

(External pinghost) hitting the MT6D node (pc2 44.local) initially, and in figure 4.2 the

pingflood traffic moves on to the CN(pc2 44.local) once CN completes address acquisition.

As we can observe, one ICMP packet with sequence number 36883 is getting dropped at

the local-router during the process of finding the new address owner (router sending out NS

message seeking address-owner and waiting for NA reply). We identified a way to further

optimize this mechanism by eliminating the need for the router to send out NS messages in

the process of seeking new address-owner. We discuss the solution in the following section.

Dileep Kumar Basam Chapter 4. Approach and Pre-work 29

4.2.2 Concept of Forced NA for quick address acquisition

Once we understood that the address hand-off delay lies with router waiting on an NA reply

from the new address owner (the CN) to establish the updated routing table entry, we sped

up the process by having the CN craft the NA packet soon after the address binding and send

it to local-router in an unsolicited manner. This forced NA message pro-actively advertises

the new address that has been assigned to the local-router. The router, upon seeing a NA

message with Override (ovr) flag set, updates its routing table entries to reflect the CN as

the new address-owner, completing the address takeover.

In this chapter we have discussed our approach in designing the solution and pre-work

experiments that were performed to evaluate mechanisms for faster address migration from

one host to another host. We present the details on testbed used in our experiments along

with solution architecture and implementation details in the next section.

Chapter 5

Testbed and Implementation

5.1 Testbed

The test setup as shown in Figure 5.1 involves three Linux desktops running the Ubuntu

12.04 operating system connected to a layer-2 switch with an uplink to the university network

router. Virginia Tech has fully operational production IPv6 network. The MT6D host peri-

odically acquires new addresses while relinquishing old addresses. The Central-Node (CN)

identifies and acquires the discarded addresses on the local network and is also responsible

for performing traffic enumeration, analysis, and visualization. Third Linux machine is the

honeypot-host system that is installed with LXC software to support on-demand creation of

containers to act as individual honeypots. To set context for the memory and CPU overhead

analyses in section 6, the honeypot-host system is a Dell Optiplex Desktop running 64-bit

30

Dileep Kumar Basam Chapter 5. Testbed and Implementation 31

Figure 5.1: Block diagram of test setup

12.04 Ubuntu operating system installed with Intel Core-2 6700 2.66GHz CPU, 4GB RAM

and 80GB of secondary memory.

Figure 5.2 depicts the architecture of our solution. The solution consists of Central-Node

(CN) block integrated with the database (MongoDB) and web-server (Node.js) modules

for inter-module communication and real-time visualizations. The honeypot-host block is

implemented with on-demand honeypot deployment capability integrated with its dedicated

(MongoDB) database.

In this section we have discussed the solution architecture and testbed to accomplish the

goals of imparting darknet and honeypot deployment capabilities to MT6D networks. In the

next section we discuss more details on the implementation specifics and various components

Dileep Kumar Basam Chapter 5. Testbed and Implementation 32

Figure 5.2: Solution architecture

of the solution. The implementation involves building the Central-Node(CN) and honeypot-

host blocks. Each of these blocks is integrated with a dedicated database, so that one module

can communicate its output to another module through the database.

5.2 Implementation

The CN includes traffic-parsing, address-acquisition, enumeration, analysis, and visualization

modules. The CN uses Pcapy and Impacket libraries in its traffic-parsing module to listen

to neighbor discovery (NS and MLD messages) conversations of all MT6D nodes on local

link to learn the addresses that are being relinquished by the MT6D nodes and stores these

associations in a database. It employs the Pyroute library in address-acquisition module to

acquire and bind these learned addresses to local host and Scapy to send out a forced NA

claiming ownership of the bound address as an unicast to the local-router. The Central-

Node’s traffic-enumeration module uses the same Pcapy and Impacket libraries to parse

the incoming traffic on these acquired addresses and does traffic enumeration (Source IP

Dileep Kumar Basam Chapter 5. Testbed and Implementation 33

address, Destination Port, Packet Count), storing this data in the form of a native python

dictionary. These python-dictionaries holding enumerated traffic data get converted to JSON

objects for facilitating the visualizations. A node.js web-server has been built on the CN to

offer visualizations based on real-time traffic (MT6D addresses that are being spawned and

incoming traffic on acquired addresses). The visualized data offers two views, MT6D view

and attacker view (figures 6.1, 6.4, 6.5), allowing an administrator to see whether an attacker

is able to trail the MT6D node along the spawned addresses. One can also look at the port-

number and packet-count of the incoming data from the attacker on the visualization to

understand the composition of the incoming traffic. The algorithm in figure 5.3 explains

the intricacies of traffic-parsing and enumeration modules of the CN.

Figure 5.3: CN’s packet processing algorithm

Dileep Kumar Basam Chapter 5. Testbed and Implementation 34

We also had to build some intelligence in to the Central-Node for an efficient implementation.

We had to ensure that the CN doesn’t learn IP-MAC associations and relinquished addresses

from itself, as the CN itself may be dropping and acquiring temporary IPv6 addresses. We

don’t want these addresses to create any confusion during the neighbor table look-ups for

retrieving the full IP address for the multicast record suffix parsed from the MLD message.

The CN also doesn’t learn from the local Router’s NS messages, because the router might

be broadcasting the NS messages to see who owns a particular address, while finding a route

to that address and not to claim ownership of the concerned address. We also included code

that corroborates the MAC address the IP was learned from, to ensure better accuracy while

matching the multicast address suffix to retrieve the full IP address from the neighbor table.

The honeypot-host block includes the honeypot-commissioning module, the LXC, and a

database. The honeypot-host database hosts two collections, hpot requested collection and

hpot deployed collections, for exchanging information on addresses on which the honeypot is

being requested or deployed. Figure 5.4 depicts the flow-diagram that explains the sequence

of messages exchanged between the blocks and actions performed during the operation. Step

1 involves the CN listening to and parsing local-link NS/MLD messages to keep a list of

MT6D addresses being relinquished on the local network. In Step 2, upon seeing an MT6D

node relinquish an address, the CN assigns the address to itself to facilitate traffic enumer-

ation on this address. In Step 3, we have interesting incoming traffic hitting a discarded

MT6D address (IPv6-address-of-interest) that is currently bound to the CN. Step 4 involves

the CN requesting that a honeypot be deployed on a specific IPv6 address by writing the

Dileep Kumar Basam Chapter 5. Testbed and Implementation 35

IPv6-address-of-interest to hpot requested collection on honeypot-host’s database. In Step 5,

the honeypot-host periodically checks hpot requested collection, retrieves the IPv6-address-

of-interest, and acknowledges the CN by writing the IP address to hpot deployed collection

in honeypot-host database.

In Steps 6 & 7, the CN continually checks for records in hpot deployed collection and upon

finding a record the CN waits for a fixed time (the address-holding-period) and unbinds the

address retrieved from hpot deployed collection’s record. In the mean-time, as shown in the

Step 8, the honeypot-host checks for an available spare LXC container in the queue and

invokes a shell-script to run lxc-attach commands to bind the IP-address on which honeypot

is requested to the container’s network interface, starts the Dionaea service to bind the

honeypot service to the newly assigned IPv6 address and run the python web-server for

launching the DionaeaFR front-end console. To speed up the address binding process, as

specified in previous research effort [7] we disable Duplicate-Address-Detection (DAD) and

use the concept of a forced Neighbor Advertisement (NA) thus advertising the new IPv6

address with the container’s mac-address to the local router for quick address-acquisition.

This completes the deployment of a honeypot tied to a desired IPv6 address and all future

attacker traffic hits the honeypot-container.

The MT6D view visualizations (Figures 6.1 and 6.4) show each MT6D host represented

by its mac address and all the addresses relinquished by each MT6D host and incoming

traffic on each of these spawned addresses by source IP address and Protocol. To simplify

visualization of incoming traffic without getting cluttered by new addresses that are being

Dileep Kumar Basam Chapter 5. Testbed and Implementation 36

discarded by MT6D nodes and to observe the incoming traffic from the attacker perspective,

the attacker view visualization (as shown in Figure 6.5) view would show Source IP (potential

Figure 5.4: Flow Diagram - sequence of messages exchanged between various components

Dileep Kumar Basam Chapter 5. Testbed and Implementation 37

attacker) of incoming traffic at its root and the visualization would then branch from each of

these source-IPs of incoming traffic to a MT6D mac address and then branching to MT6D

IPv6 addresses and incoming traffic composition in terms of protocol and port numbers and

corresponding packet-counts.

In this chapter we have discussed how we implemented various components of the proposed

solution and explained how information flows between different modules. The next section

presents evaluation of the solution in terms of our observations and results.

Chapter 6

Evaluation

Our solution at its heart involves efficiently spinning up honeypot-containers on the honeypot-

host in addition to efficiently migrating the IP address from the Central-Node to a honeypot-

container on the honeypot-host. To characterize such a solution, we will evaluate it in terms

of interruption window observable by an attacker, as well as CPU and memory overheads.

The interruption window observable to an attacker is a critical factor for the judging the

feasibility of the solution, since the duration of interruption window may offer a cue to the

attacker about migration of his/her traffic from one machine (the victim) to another(the hon-

eypot). CPU and memory overhead analyses offer valuable insights in to scalability of the

the solution i.e., the number of honeypot-containers that can be accommodated for a specific

honeypot-host system(CPU and memory) configuration. We will also discuss a mechanism

for MT6D nodes to leverage our solution. In this section we will explain the methodology of

the testing and present our results.

38

Dileep Kumar Basam Chapter 6. Evaluation 39

6.1 Experiments and Results

6.1.1 Test Scenario

We first present a particular instance of potential attack-traffic hitting a discarded MT6D ad-

dress and launch a honeypot-service bound to the specific address on an LXC container and

supporting traffic visualizations. We then present results detailing the address-migration win-

dow times in terms of hold-packet-count and lost-packet-count for a ten honeypot-container

deployment trial. We also present our observations from CPU and memory overhead analy-

ses for single, five, and ten honeypot-container deployment trials. Hold-packet-count refers

to the number of packets still hitting the Central-Node since the trigger that deploys the

honeypot i.e., the first ICMP probe hitting the CN. Lost-Packet-Count refers to the num-

ber of packets lost as seen by the attacker during the migration of an IP address to the

honeypot-container from the CN.

The experiment starts with an MT6D host with mac address 00:24:e8:42:c4:7a spinning off

new addresses while dropping its old addresses. The CN listens to MT6D host’s NS and

MLD messages and parses them to identify and acquire the addresses that are being dis-

carded by the MT6D host and visualizes the incoming traffic on these discarded addresses.

Figure 6.1 shows the first level of a MT6D view visualization with the MT6D host repre-

sented by its mac address,00:24:e8:42:c4:7a, at the center, with each newly generated MT6D

address (e.g., 2001:468:c80:c111:8c23:9665:ae9a:c757) represented by the last 64 bytes (e.g.,

8c23:9665:ae9a:c757). The /64 subnet prefix remains the same i.e., 2001:468:0c80:c111 for

Dileep Kumar Basam Chapter 6. Evaluation 40

all the MT6D address children nodes.

The next step involves sending ICMP echo probes(simulated attack traffic) every 50ms from

the machine (at 2601:5c0:c000:773e:1565:8df2:1408:2077) on a remote Internet connection to

a particular discarded MT6D address, 2001:468:c80:c111:8c23:9665:ae9a:c757, that is now

assigned to the Central-Node (CN). The first ICMP echo request packet serves as a trigger

(as per configuration in the traffic enumeration and analysis module) for the CN to flag

this activity and request a honeypot be deployed on this specific address. The CN sends a

‘honeypot-requested’ message with the address information to the honeypot-host database.

The honeypot-commissioning-module retrieves the ’honeypot-requested’ message, acknowl-

edges the CN with a ’honeypot-deployed’ message, picks the IP address, and looks up the

container-queue for an available honeypot-container. The honeypot-commissioning-module

identifies an available container (in this case ’hpot-container1’) and assigns the IPv6 address

under attack, 2001:468:c80:c111:8c23:9665:ae9a:c757, to the local network interface of the

honeypot-container and starts the Dionaea service and DionaeaFR python web-server on

the container.

Figure 6.2 shows an ICMP ping (sending ICMP echo request probe every 50ms) results

as seen by the attacker. Figure 6.3 shows the Wireshark capture running on the CN to

identify the point when CN stops responding to the ICMP echo request packets incoming

on the IPv6-address-of-interest indicating the unbinding. Figure 6.4 presents a second-level

MT6D view visualization of incoming attack traffic, showing an MT6D host with MAC

address 00:24:e8:42:c4:7a receiving ICMP traffic of type 0x80 and a count of 24, on a

Dileep Kumar Basam Chapter 6. Evaluation 41

specific discarded address 8c23:9665:ae9a:c757 from an attacker at address 2601:5c0:c000

:773e:1565:8df2:1408:2077. Figure 6.5 presents attacker-view visualization depicting an at-

tacker at address 2601:5c0:c000:773e:1565:8df2:1408:2077 sending traffic to MT6D host with

MAC address 00:24:e8:42:c4:7a on a particular spawned MT6D address i.e., 8c23:9665:ae9a:

c757 and the traffic composition is ICMP Type 0x80 and Code 0x00 (ICMP echo request)

with a count of 24. MT6D view and attacker view present the visualization of the same

traffic from two perspectives, the former shows the MT6D host at the center whereas the

attacker view puts the attacker-address at the center of the visualization and plots MT6D

hosts that are getting hit from that specific attacker-address.

6.1.2 Observations on interruption window

From Figures 6.2, 6.3, 6.4 and 6.5 we can infer that the first 24 ICMP echo request (ICMP

type=0x80 and code = 0) packets with sequence ids till ‘24’, hit the CN and one ICMP echo

request packet with sequence id ‘25’ was lost, while packets (with sequence ids from ‘26’, ‘27’

....) were routed to honeypot-container resulting in subsequent ICMP echo replies in figure

6.2 indicating successful IP address transition from CN to honeypot-container.

To verify the address-transition and Dionaea service binding we used a nmap NSE auth-

spoof (generally used for testing authentication servers for malware infection) script as

shown in Figure 6.6 to generate test-traffic on various ports targeting address of interest

i.e., 2001:468:c80:c111:8c23:9665:ae9a:c757. Figure 6.7 shows the DionaeaFR console dis-

Dileep Kumar Basam Chapter 6. Evaluation 42

playing incoming connections for the address 2001:468:c80:c111:8c23:9665:ae9a:c757 on ports

HTTPD, SMB, SIP, etc.

Figure 6.8 shows the hold-packet-counts and lost-packet-counts for the 10-honeypot deploy-

ment trial. We can also observe the IP address migration from the Central-Node to the

honeypot-container on honeypot-host involves loss of one packet or none, from the perspec-

tive of an attacker probing a discarded MT6D address with an ICMP echo request packet

every 50ms. From the Wireshark packet captures, we attribute this packet-loss i.e., un-

responsive ICMP echo requests, to the router on Virginia Tech production network either

routing the packet to the Central-Node (CN) even though the IP address has been migrated

to the honeypot-container or the router forwarding the packet to honeypot-container while

the container is still in the process of binding the address to its network interface. In ei-

ther cases, even though the packet makes it to CN or the honeypot-container depending on

routing-table entry, neither of them can respond with ICMP echo reply as the address is not

active on their respective network interfaces.

6.1.3 Observations on CPU and memory overheads

Figures 6.9, 6.10 & 6.11 show CPU and memory (RAM) loading characteristics for three

independent trials of single honeypot-container, five honeypot-container and ten honeypot-

container deployment. CPU time comprises of Usr-CPU and Sys-CPU. Usr-CPU is CPU time

spent in user-mode outside Kernel code and Sys-CPU is the CPU time spent in the kernel

Dileep Kumar Basam Chapter 6. Evaluation 43

within the process handling system calls and other kernel-space events. We observed that

the trend of memory consumption with honeypot-service being deployed on each container is

proportionally-linear (˜125MB for each honeypot-container launch) while CPU consumption

peaks temporarily and then remains constant. The baseline free-memory consumption for

the honeypot-host after a clean reboot was observed to be around 3025 MegaBytes. The

baseline CPU consumption was observed to be nominal. From the observed memory and

CPU consumption trend we substantiate the virtue of using the hot-spare LXC containers

approach as the containers waiting as spares place nominal load on system resources and only

request resources, Memory and CPU, on-demand when we invoke Dionaea and DionaeaFR

management-server services on the container.

Figure 6.9 shows memory and CPU consumption for a single honeypot-container experi-

ment. From the origin until the point ‘A’ on the free-memory curve represents the memory

consumption on machine serving as baseline. At epoch time ˜1443048570, the LXC con-

tainer ‘hpot-container1’ is cloned from honeypot-LXC-template and the ‘hpot-container1’ is

started and lies waiting as hot-spare in the queue. We can observe a drop in free-memory at

point ‘A’. At epoch time ˜1443048801, the honeypot-commissioning-module runs a script to

bind the requested IPv6 address, start the Dionaea service and, start the DionaeaFR python

web-server on container ‘hpot-container1’. This step brings up Dionaea service bound to

desired IP address on ‘hpot-container1’. We can observe a significant drop (˜125 MB) in

free-memory at point ‘B’ on the curve in response to Dionaea and DionaeaFR service invo-

cation. We can also observe the CPU (Usr and Sys CPU) consumption spike to a peak value

Dileep Kumar Basam Chapter 6. Evaluation 44

at the time-instant corresponding to point ‘B’ i.e., at the launch of honeypot-services on the

virtual-container, and subsequently remain constant.

Figure 6.10 depicts the CPU and memory consumption trend for a five honeypot-container

trial. From origin until the point ‘A’ on the free-memory curve represents the baseline

memory consumption. At epoch time ˜1443023165 five containers (‘hpot-container1’, ‘hpot-

container2’...‘hpot-container5’) are cloned from honeypot-LXC-template, started and lie

waiting as hot-spares. At epoch times corresponding to points ‘B’, ‘C’, ‘D’, ‘E’, and ‘F’

on the free-memory curve represent the drops in available-memory corresponding to instants

of binding requested IP address and firing the Dionaea service and DionaeaFR web-server

on each LXC honeypot-container. We can also observe the CPU consumption spike to peak

value at the time-instants corresponding to points ‘B’, ‘C’, ‘D’, ‘E’, and ‘F’ i.e., at the launch

of honeypot-services on the virtual-containers, and subsequently lie constant.

Figure 6.11 shows similar memory consumption behavior for a ten honeypot-deployment

trial, at epoch time corresponding to point ’A’ i.e., ˜1443029196, ten containers (‘hpot-

container1’, ‘hpot-container2’...‘hpot-container10’) are cloned, started and lie waiting in hot-

spares queue. Epoch times corresponding to points ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, and

‘K’ on the free-memory curve correspond to IP address binding and invocation of Dionaea

services. We can also observe the CPU consumption spike to peak value at the time-instants

corresponding to points ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, and ‘K’ i.e., at the launch of

honeypot-services on the virtual-containers, and subsequently remain constant.

Dileep Kumar Basam Chapter 6. Evaluation 45

6.1.4 How can a MT6D node leverage our solution

The MT6D nodes can consume the CN’s intelligence on attacker-activity using the solution’s

Mongo database API. The JSON object responsible for Figure 6.5, the attacker-view visu-

alization, can be queried from the CN’s database by any MT6D host to detect a trailing

attacker by identifying all the attacker-address nodes that have its (MT6D host’s) MAC

address as child node. In this case the MT6D host with the MAC address 00:24:e8:42:c4:7a

can analyze the JSON object responsible for the Figure 6.5 to understand its MAC address

is a child node for the attacker address 2601:5c0:c000:773e:1565:8df2:1408:2077 and among

its relinquished addresses particularly MT6D addresses ending with 8c23:9665:ae9a:c757 and

f8a1:cc15:e13c:7d9d were hit with ICMP echo request traffic. Based on the attack traffic-

composition, the MT6D host can communicate to its MT6D partner and change their scheme

parameters (e.g., stronger secret-key and faster hopping-interval) to evade any trailing at-

tackers.

With this solution in place, nodes participating in MT6D nodes can uncover any suspi-

cious activity on their relinquished addresses and be able to use it in fine-tuning the scheme

parameters. The solution’s traffic enumeration and honeypot deployment capabilities offer

insights in to attacker methods. In this chapter we evaluated our solution in terms of inter-

ruption window observable to an attacker, CPU and memory overhead analyses in addition

to discussing a mechanism to offer gathered intelligence on relinquished addresses to MT6D

nodes through an JSON API. In the next chapter we will conclude our findings and provide

directions for future work.

Dileep Kumar Basam Chapter 6. Evaluation 46

F
ig

u
re

6.
1:

M
T

6D
v
ie

w
d
ep

ic
ti

n
g

ad
d
re

ss
es

sp
aw

n
ed

b
y

a
M

T
6D

h
os

t

Dileep Kumar Basam Chapter 6. Evaluation 47

F
ig

u
re

6.
2:

IC
M

P
p
in

gfl
o
o
d

tr
affi

c
fr

om
si

m
u
la

te
d

at
ta

ck
er

on
a

re
m

ot
e

In
te

rn
et

co
n
n
ec

ti
on

at
50

m
s

in
te

rv
al

Dileep Kumar Basam Chapter 6. Evaluation 48

F
ig

u
re

6.
3:

W
ir

es
h
ar

k
ca

p
tu

re
sh

ow
in

g
p
ac

ke
ts

h
it

ti
n
g

C
N

b
ef

or
e

th
e

IP
ad

d
re

ss
m

ig
ra

ti
on

Dileep Kumar Basam Chapter 6. Evaluation 49

F
ig

u
re

6.
4:

M
T

6D
v
ie

w
of

in
co

m
in

g
tr

affi
c

h
it

ti
n
g

th
e

C
N

v
is

u
al

iz
ed

Dileep Kumar Basam Chapter 6. Evaluation 50

F
ig

u
re

6.
5:

A
tt

ac
ke

r-
v
ie

w
of

in
co

m
in

g
tr

affi
c

h
it

ti
n
g

th
e

C
N

v
is

u
al

iz
ed

Dileep Kumar Basam Chapter 6. Evaluation 51

F
ig

u
re

6.
6:

N
m

ap
sc

ri
p
t

to
se

n
d

te
st

tr
affi

c
on

va
ri

ou
s

se
rv

ic
es

to
a

d
ep

lo
ye

d
h
on

ey
p

ot

Dileep Kumar Basam Chapter 6. Evaluation 52

F
ig

u
re

6.
7:

D
io

n
ae

aF
R

co
n
so

le
sh

ow
in

g
d
ep

lo
ye

d
h
on

ey
p

ot
co

n
n
ec

ti
on

st
at

is
ti

cs

Dileep Kumar Basam Chapter 6. Evaluation 53

Figure 6.8: Chart giving out Hold-packet counts and packet-loss observed by an attacker
during one of the 10-honeypot deployment trials involving sending an ICMP echo request
every 50ms i.e., rate of 20 packets/second

Figure 6.9: Memory and CPU loading characteristics for the scenario of 1 honeypot-container
hotspare and subsequent deployment

Dileep Kumar Basam Chapter 6. Evaluation 54

Figure 6.10: Memory and CPU loading characteristics for the scenario of 5 honeypot-
container hotspares and subsequent deployment

Figure 6.11: Memory and CPU loading characteristics for the scenario of 10 honeypot-
container hotspares and subsequent deployment

Chapter 7

Conclusion and Future Work

We started by providing background on IPv6, Moving Target IPv6 Defense (MT6D) and

it’s extant threat vectors. In this work we developed a solution using darknet and honeypot

capabilities to strengthen defenses of MT6D networks. By analyzing the activity on relin-

quished addresses, the proposed solution delivers valuable clues on attack traffic composition

and attacker’s methods for further analysis. We have reported our results and in this section

we conclude our findings and observations.

7.1 Conclusion

The implemented solution offers two visualization views, MT6D-view and attacker-view.

MT6D-view displays nodes representing discarded addresses from all MT6D hosts in a lo-

cal network and their corresponding incoming traffic. Attacker-view displays nodes corre-

55

Dileep Kumar Basam Chapter 7. Conclusion and Future Work 56

sponding to attackers addresses sending traffic and those specific MT6D hosts and discarded

addresses that are receiving attack traffic. As we can observe from figures 6.4 and 6.5 at-

tacker view simplifies the visualization over MT6D view by the virtue of ignoring MT6D

nodes with no interesting traffic. MT6D nodes with no incoming traffic no longer appear on

the visualization, thus resulting in less-cluttered visualization of interesting activity. This

paves way for visualizing suspicious activity on large MT6D networks without getting bur-

dened by the periodic address-hopping activity.

The solution with database-integration also allows any MT6D node to query for traffic

activity on its discarded MT6D addresses as a JSON object. This can be integrated as a

feedback mechanism into work that our fellow researchers Morrell et al., are doing in the

area of MT6D Client-Server stack in terms of an MT6D Server looking up suspicious activity

on discarded addresses and communicating new MT6D scheme parameters such as longer

secret-key or faster address hopping interval to its MT6D client[33].

We evaluated the capability of dynamically deploying a LXC container-based honeypot upon

detecting suspicious activity on discarded MT6D addresses. The evaluation included inter-

ruption observable to an external attacker, CPU and memory overhead analyses to demon-

strate the feasibility and scalablility of such a solution. From our tests, we observed that

the interruption observable to an attacker is one packet or none during the migration of the

IPv6 address from the Central-Node to the honeypot-container. We also observed that the

trend of the memory consumption with number of honeypot-containers being deployed to

be proportionally-linear while CPU consumption peaks to a value and stays constant during

Dileep Kumar Basam Chapter 7. Conclusion and Future Work 57

the launch of the honeypot-service on each container. This supports the argument that the

presented solution in this effort is scalable provided that the memory and compute resources

can be catered by the underlying honeypot-host hardware.

Previous work done by Morrell et al.[34] showed that a server can successfully bind up

to 60000 randomly generated addresses, with each bound address communicating to an

individual client. Based on these observations, the Central-Node (CN) should be able to

bind and listen on a large number of discarded MT6D addresses. We would also like to point

out the solution’s honeypot-deployment ability is unaffected by the number of MT6D nodes

on network, as the incoming traffic enumeration and analysis is delegated to the Central-

Node(CN), and the honeypot-host resources are engaged only when the CN matches incoming

traffic with a configured attack-traffic signature.

7.2 Future Work

Future work should include CPU and memory overhead analyses of the solution under com-

plex attack scenarios and evaluation of the solution’s performance (IP-address migration

times and packet-loss observable to attacker) with the honeypot-host sitting in a segregated

environment like a DMZ. It is also important to perform overhead analysis on network de-

vices, as such a solution grabbing discarded addresses on a complex MT6D network would

place overhead on the router in terms of persistent routing table entries. Future work can

also include enhancing the solution with a new feature that would reclaim active honeypot-

Dileep Kumar Basam Chapter 7. Conclusion and Future Work 58

containers based on no or low-priority incoming attacker traffic hitting a deployed honeypot-

container.

Appendices

59

Dileep Kumar Basam Appendices 60

Please note that the code was edited to fit page boundaries and may not be in executable

state.

Appendix A

Python script on CentralNode

A.1 CentralNode.py

#!/usr/bin/python

from pyroute2 import IPRoute

from scapy.all import *

import pcapy

from impacket.ImpactDecoder import *

import re, json

from pymongo import *

import ipaddr, time, threading, ast

#all byte values in HEX

61

Dileep Kumar Basam Python script on CentralNode 62

TYPE_MLD_HEX = ’8f’

TYPE_NS_HEX = ’87’

INCLUDE_CODE=’03’

EXCLUDE_CODE=’04’

ICMPV6_CODE = ’3a’

TCP_CODE = ’06’

UDP_CODE = ’17’

ICMP_CODE = ’80’

TCP_CODE = ’81’

ROUTER_INTERNAL_IF = ’fe80::2d0:1ff:fea6:c800’

LOCAL_SUBNET = ’2001:0468:0c80’

SELF_MAC = ’b8:ac:6f:8b:35:fb’

ROUTER_MAC = ’00:d0:01:a6:c8:00’

CONT1_MAC = ’00:16:3e:65:26:76’

CONT2_MAC = ’00:16:3e:75:01:14’

CONT3_MAC = ’00:16:3e:c6:55:61’

CONT4_MAC = ’00:16:3e:e3:7d:37’

CONT5_MAC = ’00:16:3e:67:db:e3’

CONT6_MAC = ’00:16:3e:9f:c2:dc’

CONT7_MAC = ’00:16:3e:bf:42:d3’

CONT8_MAC = ’00:16:3e:13:4f:20’

Dileep Kumar Basam Python script on CentralNode 63

CONT9_MAC = ’00:16:3e:bc:78:75’

CONT10_MAC = ’00:16:3e:76:5d:07’

HONEYPOT_DB = ’[2001:468:c80:c111:dbdb:dbdb:dbdb:dbdb]’

flag = 0

assigned = dict() #dictionary for acquired MT6D-discarded-addresses

neighbor = dict() #dictionary for IP <- -> MAC association

neighbor_backup = dict() #back-up data-structure for ’neighbor’

ipr = IPRoute()

pcapy.findalldevs()

max_bytes = 1024

promiscuous = False

read_timeout = 100 # in milliseconds

pc = pcapy.open_live("eth0", max_bytes, \

promiscuous, read_timeout)

pc.setfilter(’ip6’)

dev = ipr.link_lookup(ifname=’eth0’)[0]

#Instantiating MongoClient for local i.e., CentralNode database

client = MongoClient(’localhost’, 27017)

db = client.omni_database

neighbor_collection = db.neighbor_collection

assigned_collection = db.assigned_collection

Dileep Kumar Basam Python script on CentralNode 64

mt6dView_collection = db.mt6dView_collection

attackerView_collection = db.attackerView_collection

#Instantiating MongoClient for remote i.e., Honeypot-host database

remoteClient = MongoClient(HONEYPOT_DB, 27017)

remoteDb = remoteClient.hpot

hpot_requested = remoteDb.hpot_requested

hpot_deployed = remoteDb.hpot_deployed

hpot = {’ip’ : []}

already_unbinded = []

countt = 0

#Function that performs real-time Traffic-Parsing,

#Enumeration and Address acquisition operations

def packet_processing(hdr, data):

packet = EthDecoder().decode(data)

str_pkt= str(packet)

src_mac = str_pkt[7:24].split(’ ’)[0]

regex = re.compile(’Source address: (.*)’)

m= regex.search(str_pkt)

if m:

src_addr = str(m.group(1)).lower()

src_addr = ipaddr.IPv6Address(src_addr).exploded

Dileep Kumar Basam Python script on CentralNode 65

regex = re.compile(’Destination address: (.*)’)

m= regex.search(str_pkt)

if m:

dest_addr = str(m.group(1)).lower()

dest_addr = ipaddr.IPv6Address(dest_addr).exploded

regex = re.compile(’Next header: (.*)’)

m= regex.search(str_pkt)

if m:

nxt_hdr = str(m.group(1))

regex = re.compile(’.*-> (.*)’)

m= regex.search(str(packet.child().child()))

if m:

dst_port = str(m.group(1))

payload = ’’.join(’%02x’ % ord(b) \

for b in packet.child().get_data_as_string())

code = payload[0:2]

#Checking for Neighbor Solicit packets

if (code == TYPE_NS_HEX and (src_mac!=SELF_MAC) \

and (src_mac!=ROUTER_MAC)):

line = payload[16:48]

arr = [line[i:i+4] for i in range(0, len(line), 4)]

Dileep Kumar Basam Python script on CentralNode 66

addrezz = ’:’.join(arr)

if (addrezz not in neighbor) and (’fe80’ not in addrezz):

neighbor[addrezz]=src_mac

neighbor_backup[addrezz]=src_mac

elif (code == ICMPV6_CODE and (src_mac!=SELF_MAC)):

#Checking for MLD Packets and their Include and Exclude labels

if payload[16:18] == TYPE_MLD_HEX:

index = 32

while True:

if payload[index:index+2]== EXCLUDE_CODE:

break

elif payload[index:index+2]== INCLUDE_CODE:

line = payload[index+8:index+8+32]

arr = [line[i:i+4] for i in range(0, len(line), 4)]

addrezz = ’:’.join(arr)

addrezz = addrezz[index:index+8]

if index+40 < len(payload):

index=index+40

else:

break

regex = re.compile(’[a-z0-9:]{32}’+addrezz+’$’)

Dileep Kumar Basam Python script on CentralNode 67

#Logic for finding the full IPv6 address

#from observed prefix in MLD using

#IP <--> MAC associations stored in ’neighbor’

new = [x for x in neighbor.keys() if regex.match(x)]

found_addr = ’’

try:

if len(new)>0:

for item in new:

if neighbor[item]==src_mac:

found_addr = item

del neighbor[found_addr]

break

#MAC address corroboration logic

if found_addr== ’’:

print ’Exception - MAC address Mismatch’

break

#Store the discarded-MT6D address in

#’found_addr’ in ’assigned’ dictionary

if found_addr not in assigned.keys():

assigned[found_addr]={}

#Acquire the IP address

Dileep Kumar Basam Python script on CentralNode 68

#Bind it to the local network interface

ipr.addr(’add’,dev,address=found_addr,mask=64)

print addrezz+’Prefix found in neighbor_list and \

about to advertize : ’+found_addr,

#send a forced NA to the local router

#for a quicker routing-table update

sendNA(SELF_MAC)

#Update the database collections with the new dictionaries

try:

neighbor_collection.remove({})

assigned_collection.remove({})

Temp1_insert_id = neighbor_collection.insert_one(neighbor_backup)\

.inserted_id

Temp2_insert_id = assigned_collection.insert_one(assigned)\

.inserted_id

except:

’Exception in connecting to the Database’

else:

break

except:

print ’Exception in assigning this address’+found_addr

Dileep Kumar Basam Python script on CentralNode 69

#Attack Traffic enumeration part for TCP/UDP

#and ICMP packets on acquired addresses coming

#from non-local subnets

elif nxt_hdr == TCP_CODE and (LOCAL_SUBNET not in src_addr):

port = ’TCP_’+dst_port

if (dest_addr in assigned.keys()):

if src_addr not in assigned[dest_addr].keys():

assigned[dest_addr][src_addr]={}

if port in assigned[dest_addr][src_addr]:

assigned[dest_addr][src_addr][port]+=1

else:

assigned[dest_addr][src_addr][port]=1

elif nxt_hdr == UDP_CODE and \

(LOCAL_SUBNET not in src_addr):

port = ’UDP_’+dst_port

if (dest_addr in assigned.keys()):

if src_addr not in assigned[dest_addr].keys():

assigned[dest_addr][src_addr]={}

if port in assigned[dest_addr][src_addr]:

assigned[dest_addr][src_addr][port]+=1

else:

Dileep Kumar Basam Python script on CentralNode 70

assigned[dest_addr][src_addr][port]=1

elif code==ICMP_CODE1 or code==ICMP_CODE2 and \

(LOCAL_SUBNET not in src_addr):

port = ’ICMP_Type_Code’+payload[0:4]

if (dest_addr in assigned.keys()):

if src_addr not in assigned[dest_addr].keys():

assigned[dest_addr][src_addr]={}

if port in assigned[dest_addr][src_addr]:

assigned[dest_addr][src_addr][port]+=1

else:

assigned[dest_addr][src_addr][port]=1

#Function that converts native python dictionaries

#in to JSON parent-child objects for D3.js visualization

def dictToJSONConverter_dbUpdate():

threading.Timer(1, dictToJSONConverter_dbUpdate).start ()

#MT6D View JSON object preparation

try:

for item in assigned.keys():

if item ==’_id’:

del assigned[item]

jsonList=[]

Dileep Kumar Basam Python script on CentralNode 71

count1=count2=count3=0

for item1 in assigned.keys():

pos1=pos2=pos3=0

count=count1-1

flag=0

while count>=0:

if jsonList[count][’name’]==neighbor_backup[item1]:

flag=1

pos1=count

break

else:

count=count-1

if flag==0:

jsonList.append({})

jsonList[count1][’name’]=neighbor_backup[item1]

jsonList[count1][’parent’]=’root’

jsonList[count1][’children’]=[]

jsonList[count1][’children’].append({})

jsonList[count1][’children’][0][’name’]=item1

jsonList[count1][’children’][0][’parent’]=neighbor_backup[item1]

jsonList[count1][’children’][0][’children’]=[]

Dileep Kumar Basam Python script on CentralNode 72

count2=0

for item2 in assigned[item1].keys():

jsonList[count1][’children’][0][’children’].append({})

jsonList[count1][’children’][0][’children’][count2][’name’]=item2

jsonList[count1][’children’][0][’children’][count2][’parent’]=item1

jsonList[count1][’children’][0][’children’][count2][’children’]=[]

count2=count2+1

count3=0

for item3 in assigned[item1][item2].keys():

jsonDict={}

jsonDict[’name’]=item3+’->’+str(assigned[item1][item2][item3])

jsonDict[’parent’]=item2

jsonList[count1][’children’][0][’children’][count2-1][’children’]\

.append(jsonDict)

count1=count1+1

elif flag==1:

jsonList[pos1][’children’].append({})

pos2= len(jsonList[pos1][’children’])-1

jsonList[pos1][’children’][pos2][’name’]=item1

jsonList[pos1][’children’][pos2][’parent’]=neighbor_backup[item1]

jsonList[pos1][’children’][pos2][’children’]=[]

Dileep Kumar Basam Python script on CentralNode 73

for item2 in assigned[item1].keys():

jsonList[pos1][’children’][pos2][’children’].append({})

pos3=len(jsonList[pos1][’children’][pos2][’children’])-1

jsonList[pos1][’children’][pos2][’children’][pos3][’name’]=item2

jsonList[pos1][’children’][pos2][’children’][pos3][’parent’]=item1

jsonList[pos1][’children’][pos2][’children’][pos3][’children’]=[]

for item3 in assigned[item1][item2].keys():

jsonDict={}

jsonDict[’name’]=item3+’->’+str(assigned[item1][item2][item3])

jsonDict[’parent’]=item2

jsonList[pos1][’children’][pos2][’children’][pos3][’children’]\

.append(jsonDict)

pubs = { "name" : "root", "parent" : "null", "children" :\

ast.literal_eval(json.dumps(jsonList)) }

mt6dView_collection.remove({})

Temp3_insert_id = mt6dView_collection.insert_one(pubs).inserted_id

dict = {}

for item in assigned.keys():

for key,value in assigned[item].iteritems():

if key not in dict.keys():

dict[key] = {neighbor_backup[item] : {item : assigned[item][key]}}

Dileep Kumar Basam Python script on CentralNode 74

else:

if neighbor_backup[item] in dict[key].keys():

dict[key][neighbor_backup[item]].update({item : assigned[item][key]})

else:

dict[key].update({neighbor_backup[item] : \

{item : assigned[item][key]}})

#Attacker View JSON object preparation

jsonDict = {"name" : "root", "parent" : "null", "children" : []}

pos1=0;pos2=0;pos3=0

for item in dict.keys():

pos2=0

jsonDict["children"].\

append({"name" : item, "parent" : "root", "children" : [] })

for item2 in dict[item].keys():

pos3=0

jsonDict["children"][pos1]["children"].\

append({"name" : item2, "parent" : item, "children" : [] })

for item3 in dict[item][item2].keys():

jsonDict["children"][pos1]["children"][pos2]["children"]\

.append({"name" : item3, \

"parent" : item2, "children" : [] })

Dileep Kumar Basam Python script on CentralNode 75

for item4 in dict[item][item2][item3].keys():

jsonDict["children"][pos1]["children"][pos2]["children"][pos3]["children"]\

.append({"name" : item4 + ’->’ \

+str(dict[item][item2][item3][item4]), "parent" : item3})

pos3=pos3+1

pos2=pos2+1

pos1=pos1+1

attackerView_collection.remove({})

Temp4_insert_id = attackerView_collection.insert_one(jsonDict).\

inserted_id

hpot_requested.remove({})

for item in jsonDict["children"]:

for item2 in item["children"]:

for item3 in item2["children"]:

for item4 in item3["children"]:

#To configure ICMP ping traffic on a discarded address

#as trigger for deploying a honeypot

on that discarded address

if ’ICMP’ in item4[’name’]:

if (item4[’parent’] not in hpot[’ip’]):

hpot[’ip’].append(item4[’parent’])

Dileep Kumar Basam Python script on CentralNode 76

#Requesting honeypot to be deployed on \

#a specific discarded-MT6D address

Temp5_insert_id = hpot_requested.insert_one(hpot).\

inserted_id

except:

pass

#Invoking function dictToJSONConverter_dbUpdate

dictToJSONConverter_dbUpdate()

#forcedNeighborAdvtThread to send a series of

#forced Neighbor Advertisement packets to router

#for quicker routing table update

def fakeNeighborAdvt(ip, countl):

i = 0

while i < 50:

ip = str(ip)

print ip

if countl == 0:

sendNA(ip,CONT1_MAC)

elif countl == 1:

sendNA(ip,CONT2_MAC)

elif countl == 2:

Dileep Kumar Basam Python script on CentralNode 77

sendNA(ip,CONT3_MAC)

elif countl == 3:

sendNA(ip,CONT4_MAC)

elif countl == 4:

sendNA(ip,CONT5_MAC)

elif countl == 5:

sendNA(ip,CONT6_MAC)

elif countl == 6:

sendNA(ip,CONT7_MAC)

elif countl == 7:

sendNA(ip,CONT8_MAC)

elif countl == 8:

sendNA(ip,CONT9_MAC)

elif countl == 9:

sendNA(ip,CONT10_MAC)

i=i+1

#Scapy code for crafting a IPv6 Neighbor advertisement

#with desired link local address and ip address to the

def sendNA(ip,CONT_MAC):

send(IPv6(dst=ROUTER_INTERNAL_IF,src=ip)/\

ICMPv6ND_NA(type=136,tgt=ip,O=1,R=0)/\

Dileep Kumar Basam Python script on CentralNode 78

ICMPv6NDOptDstLLAddr(lladdr=CONT_MAC))

#Function checkForDeployedHpots for looking up

#IPv6 addresses that are being processed by honeypot-host

def checkForDeployedHpots():

global countt

global already_unbinded

threading.Timer(0.1, checkForDeployedHpots).start ()

cursor = hpot_deployed.find({},{’_id’ : 0})

for doc in cursor:

if (len(already_unbinded) == 0 or \

str(doc[’ip’]).strip() != already_unbinded[-1].strip()):

hpot_deployed.remove({})

sleep(1)#Address-Holding-Period

if len(already_unbinded) > 0:

print already_unbinded[-1]

try:

print doc[’ip’]

except:

pass

already_unbinded.append(str(doc[’ip’]))

#Invoking forcedNeighborAdvtThread to send a series of

Dileep Kumar Basam Python script on CentralNode 79

#forced Neighbor Advertisement packets to router

#for quicker routing table update

forcedNeighborAdvtThread = threading.\

Thread(target=fakeNeighborAdvt, args=[doc[’ip’], countt])

forcedNeighborAdvtThread .start()

try:

ipr.addr(’delete’,dev,address=doc[’ip’],mask=64)

countt=countt+1

except:

pass

#Invoking checkForDeployedHpots function

checkForDeployedHpots()

packet_limit=-1

#Inovking packet_processing function

#packet_limt = -1 runs the packet_processing

#function in infinite loop

pc.loop(packet_limit, packet_processing)

Appendix B

Shell and Python scripts for

honeypot-host

B.1 createHpots.sh

#! /bin/bash

name=$1

ip_internal=$2

sudo -S lxc-clone -o hpot -n $name

sudo lxc-start -d -n $name

sudo lxc-attach -q -n $name -- /sbin/route -A\

inet6 add 2001:468:c80:c111::/64 dev eth0

80

Dileep Kumar Basam Shell and Python scripts for honeypot-host 81

sudo lxc-attach -n $name -- /sbin/ifconfig > $name.txt

sudo lxc-attach -q -n $name -- /sbin/ip addr add $ip_internal/24 dev eth0

B.2 deployHpots.sh

#! /bin/bash

name=$1

ip=$2

sudo lxc-attach -n $name -- /sbin/ip -6 \

addr add $ip/64 dev eth0

sudo lxc-attach -n $name -- /sbin/ifconfig

sudo lxc-attach -n $name -- /usr/bin/dionaea -c \

/etc/dionaea/dionaea.conf -w /var/dionaea \

-u nobody -g nogroup -D

sudo lxc-attach -q -n $name -- /bin/sh -c \

"cd /opt && /usr/bin/python /opt/DionaeaFR/manage.py \

runserver 0.0.0.0:8000"

B.3 HoneypotHost.py

#!/usr/bin/python

Dileep Kumar Basam Shell and Python scripts for honeypot-host 82

from time import *

import threading

import subprocess

from pymongo import*

import re, mmap

#Instantiating MongoClient and Collections

client = MongoClient(’10.0.3.217’, 27017)

db = client.hpot

hpot_requested = db.hpot_requested

hpot_deployed = db.hpot_deployed

hpot_being_deployed = db.hpot_being_deployed

ui_panel = db.ui_panel

hpot_macs = db.hpot_macs

hpotAvlbl = []

hpotAvlbl = [’hpot_img’+str(x) for x in range(1,11)]

being_deployed = []

ui_panel_arr = []

deployed = {}

#createSpares function that invokes a shell script

#to create desired number of LXC containers

#and gather IPv4 addresses that were assigned to each container

Dileep Kumar Basam Shell and Python scripts for honeypot-host 83

#the createHpot.sh starts the contianers

#and these containers lie waiting as hot-spares

def createSpares():

ip_internal=’10.0.3.’+str(100+int(re.findall(r’\d+’, item)[0]))

for hpot_name in hpotAvlbl:

#Invoking createHpot.sh shell script

subprocess.check_call([’/home/pc5/Desktop/createHpot.sh’,hpot_name,ip_internal])

#Inovking createSpares Function

createSpares()

#checkHpotRequests keeps checking the honeypot-host database’s

#hpot_requested collection and invokes deployHpot.sh shell script

#to invoke Dionaea and DionaeaFR services on the lxc-container

def checkHpotRequests():

threading.Timer(0.1, checkHpotRequests).start()

cursor = hpot_requested.find({},{’_id’:0})

for doc in cursor:

for ip in doc[’ip’]:

if ip not in being_deployed:

print ’got this ip as request for hpot’+ip

being_deployed.append(ip)

#hpotName = pop the first element of the hpotNames

Dileep Kumar Basam Shell and Python scripts for honeypot-host 84

try:

name = hpotAvlbl.pop(0)

print ’deploying ’+name

deployed = {’ip’ : ip}

hpot_deployed.remove({})

hpot_deployed.insert_one(deployed)

#Invoking deployHpot.sh shell script

subprocess.check_call([’/home/pc5/Desktop/deployHpot.sh’,name, ip])

#extracting the internal IPv4 address from the text-file dump

#and populate a dictionary with hpot-container name and its IPv4 address

#to be able to launch DionaeaFR console from that IPv4 address

with open(’/home/pc5/Desktop/’+name+’.txt’,’r+’) as f:

data = mmap.mmap(f.fileno(),0)

mo=re.search(’10.0.3.(.{1,3})’, data)

if mo:

new_dict = {name : [ip, ’10.0.3.’+mo.group(1).strip()]}

ui_panel_arr.append(new_dict)

print ui_panel_arr

ui_panel.remove({})

ui_panel.insert_one({’root’ : ui_panel_arr})

except:

Dileep Kumar Basam Shell and Python scripts for honeypot-host 85

#Running out of honeypot-container hot-spares

print ’no hpot-containers available’

#Invoking function checkHpotRequests for \

continually checking for honeypot-deployment requests from CentralNode

checkHpotRequests()

Appendix C

Webserver and visualization code

C.1 server.js

//server.js: web-server in Node.js

var path = require(’path’),

express = require(’express’),

app = express(),

bodyParser = require(’body-parser’),

request = require(’request’);

//Enabling bodyParser module for parsing POST requests

app.use(bodyParser.urlencoded({ extended : true}));

app.use(bodyParser.json());

86

Dileep Kumar Basam Webserver and visualization code 87

//Setting directory to enable server find necessary files

app.use(express.static(path.join(__dirname, ’public’)));

//Importing routes file and registering the routes

var routes = require(’./routes/index.js’);

app.use(’/’, routes);

//Catching any missed exceptions

process.on(’uncaughtException’, function (err) {

console.log(err);

});

//Starting the SERVER

app.listen(3000).timeout = 500000;

console.log(’Starting Server on port : 3000 ’);

C.2 routes.js

/**@routes.js: Server-Side Application logic besides handling Routes in Node.js */

var express = require(’express’),

router = express.Router(),

bodyParser = require(’body-parser’),

request = require(’request’),

MongoClient = require(’mongodb’).MongoClient;

Dileep Kumar Basam Webserver and visualization code 88

//Logging a message on any incoming request

router.use(function(req,res,next){

console.log(’Incoming.. !!’);

next();

});

//Routes to handle incoming GET and POST requests

//Route for root folder /

router.get(’/mt6d_view’, function(req,res) {

res.sendfile(’public/index.html’);

});

router.get(’/attacker_view’, function(req,res) {

res.sendfile(’public/index_att.html’);

});

router.get(’/omni_database/mt6dView_collection/’, function(req,res) {

MongoClient.connect(’mongodb://localhost:27017/omni_database’,\

function(err, db){

if(err) throw err;

var cursor = db.collection(’mt6dView_collection’)\

.find({}, {’_id’ : 0}).toArray(function(err, docs){

if(err) throw err;

res.json(docs);

Dileep Kumar Basam Webserver and visualization code 89

db.close();

});

});

});

router.get(’/omni_database/attackerView_collection/’, function(req,res) {

MongoClient.connect(’mongodb://localhost:27017/omni_database’, function(err, db){

if(err) throw err;

var cursor = db.collection(’attackerView_collection’)\

.find({}, {’_id’ : 0}).toArray(function(err, docs)\

{

if(err) throw err;

res.json(docs);

db.close();

});

});

});

module.exports = router;

C.3 index.html

<!DOCTYPE html>

Dileep Kumar Basam Webserver and visualization code 90

<html >

<head>

<meta charset="UTF-8">

<meta http-equiv="refresh" content="35">

<title>MT6DView/AttackerView Visualizer</title>

<link rel="stylesheet" href="css/style.css">

</head>

<body>

<script type="text/javascript" src="//

cdnjs.cloudflare.com/ajax/libs/d3/3.3.10/d3.min.js"></script>

<script type="text/javascript" src="//

cdnjs.cloudflare.com/ajax/libs/jquery/3.0.0-alpha1/jquery.min.js"></script>

<script src="js/index.js"></script>

</body>

</html>

C.4 index.js

This code is an adaptation of [17] D3.js repository

var vizUrl = ’omni_database/mt6dView_collection/’;

//var vizUrl = ’omni_database/attackerView_collection/’;

Dileep Kumar Basam Webserver and visualization code 91

#Preparing an Ajax request

var xmlHttp = new XMLHttpRequest();

xmlHttp.open(’GET’, vizUrl, false);

xmlHttp.send(null);

var jsonObject = JSON.parse(xmlHttp.responseText);

jsonObject = jsonObject[0];

var diameter = 2600;

var margin = {top: 20, right: 120, bottom: 20, left: 120},

width = diameter,

height = diameter;

var i = 0,

duration = 350,

root;

var div = d3.select("body").append("div")

.attr("class", "tooltip")

.style("opacity", 1e-6);

var tree = d3.layout.tree()

.size([360, diameter / 2 - 80])

.separation(function(a, b)

{ return (a.parent == b.parent ? 1 : 1) / a.depth; });

var diagonal = d3.svg.diagonal.radial()

Dileep Kumar Basam Webserver and visualization code 92

.projection(function(d)

{ return [d.y, d.x / 180 * Math.PI]; });

var svg = d3.select("body").append("svg")

.attr("width", width)

.attr("height", height)

.append("g")

.attr("transform", \

"translate(" + diameter / 2 + "," + diameter / 2 + ")");

root = jsonObject;

root.x0 = height / 2;

root.y0 = 3;

update(root);

d3.select(self.frameElement).\

style("height", "1600px");

function update(source) {

// Compute the new tree layout.

var nodes = tree.nodes(root),

links = tree.links(nodes);

// Normalize for fixed-depth. \

//fixed depth confines to smaller size.

//(*130) changes the size

Dileep Kumar Basam Webserver and visualization code 93

nodes.forEach(function(d) { d.y = d.depth * 220; });

// Update the nodes

var node = svg.selectAll("g.node")

.data(nodes, function(d) \

{ return d.id || (d.id = ++i); });

// Enter any new nodes at the parent’s previous position.

var nodeEnter = node.enter().append("g")

.attr("class", "node")

.attr("transform", function(d) { return "rotate(" \

+ (d.x - 90) + ")translate(" + d.y + ")"; })

.on("click", click)

.on("mouseover", onMouseOver)

nodeEnter.append("circle")

.attr("r", 1e-6)

.style("fill", function(d)

{ return d._children ? "DarkSalmon" : "#fff"; });

nodeEnter.append("text")

.attr("x", 10)

.attr("y", 10)

.attr("dy", ".35em")

.attr("text-anchor", "middle")

Dileep Kumar Basam Webserver and visualization code 94

.attr("transform", function(d)

{ return d.x < 180 ? "translate(0)" : "rotate(180)translate(-" + \

(d.name.length * 20) + ")"; })

.attr("pointer-events", "none")

.text(function(d) { if (d.name.length == 39 \

&& d.name.substring(0,20) == ’2001:0468:0c80:c111:’)

{ return d.name.substring(20,39);} return d.name; })

.style("fill-opacity", 1e-6)

.style("font", "13px sans-serif");

// Transition nodes to their new position.

var nodeUpdate = node.transition()

.duration(duration)

.attr("transform", function(d) { return "rotate(" + \

(d.x - 90) + ")translate(" + d.y + ")"; })

nodeUpdate.select("circle")

.attr("r", 4)

.style("fill", function(d) { return d._children ? "black" : "#fff"; });

nodeUpdate.select("text")

.style("fill-opacity", 1)

.attr("transform", function(d) { return d.x < 180 ?\

"translate(0)" : "rotate(180)translate(-" +\

Dileep Kumar Basam Webserver and visualization code 95

(d.name.length + 75) + ")"; });

var nodeExit = node.exit().transition()

.duration(duration)

.remove();

nodeExit.select("circle")

.attr("r", 1e-6);

nodeExit.select("text")

.style("fill-opacity", 1e-6);

// Update the links

var link = svg.selectAll("path.link")

.data(links, function(d) { return d.target.id; });

link.enter().insert("path", "g")

.attr("class", "link")

.attr("d", function(d) {

var o = {x: source.x0, y: source.y0};

return diagonal({source: o, target:o});

});

// Transition links to their new position.

link.transition()

.duration(duration)

.attr("d", diagonal);

Dileep Kumar Basam Webserver and visualization code 96

// Transition exiting nodes to the parent’s new position.

link.exit().transition()

.duration(duration)

.attr("d", function(d) {

var o = {x: source.x, y: source.y};

return diagonal({source: o, target: o});

})

.remove();

// Stash the old positions for transition.

nodes.forEach(function(d) {

d.x0 = d.x;

d.y0 = d.y;

});

}

// Toggle children on click.

function click(d) {

if (d.children) {

d._children = d.children;

d.children = null;

} else {

d.children = d._children;

Dileep Kumar Basam Webserver and visualization code 97

d._children = null;

}

update(d);

}

// Collapse nodes

function collapse(d) {

if (d.children) {

d._children = d.children;

d._children.forEach(collapse);

d.children = null;

}

}

node.append("circle")

.on("mouseover", mouseover)

.on("mousemove", function(d){mousemove(d);})

.on("mouseout", mouseout)

.attr("fill","red")

.attr("r", 5.5);

node.append("text")

.attr("dx", 8)

.attr("dy", 3)

Dileep Kumar Basam Webserver and visualization code 98

.text(function(d) { return d.name; })

function onMouseOver(d)

{

if (d.parent)

{

d3.select(this).select("circle").attr("r", 7);

d3.select(this).select("text").attr("x", 20)

d3.select(this).select("text").attr("y", 30)

d3.select(this).select("text").style("font", \

"20px sans-serif");

d3.select(this).select("text").\

style("fill-opacity", 1.0);

d3.select(this).select("text").\

style("font-weight", "bold");

}

printNodeInfo(d);

}

function onMouseOut(d)

{

if (d.parent)

{

Dileep Kumar Basam Webserver and visualization code 99

d3.select(this).select("circle").attr("r", 4);

d3.select(this).select("text").attr("x", 10)

d3.select(this).select("text").attr("y", 10)

d3.select(this).select("text").style("font", \

"13px sans-serif");

d3.select(this).select("text").style("fill-opacity",1.0);

d3.select(this).select("text").style("font-weight", "none");

}

printNodeInfo(d);

}

Bibliography

[1] Mat Ford. New internet security and privacy models enabled by ipv6. pages 2–5. IEEE,

2005.

[2] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC

2460 (Draft Standard), December 1998. URL http://www.ietf.org/rfc/rfc2460.

txt. Updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946.

[3] D. Hankins and T. Mrugalski. Dynamic Host Configuration Protocol for IPv6

(DHCPv6) Option for Dual-Stack Lite. RFC 6334 (Proposed Standard), August 2011.

URL http://www.ietf.org/rfc/rfc6334.txt.

[4] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autoconfiguration. RFC

4862 (Draft Standard), September 2007. URL http://www.ietf.org/rfc/rfc4862.

txt.

[5] Matthew Dunlop, Stephen Groat, William Urbanski, Randy Marchany, and Joseph

Tront. Mt6d: A moving target ipv6 defense. In Military Communications Conference,

2011-Milcom 2011, pages 1321–1326. IEEE, 2011.

100

Dileep Kumar Basam Bibliography 101

[6] Matthew Dunlop, Stephen Groat, William Urbanski, Randy Marchany, and Joseph

Tront. The blind man’s bluff approach to security using ipv6. Security & Privacy,

IEEE, 10(4):35–43, 2012.

[7] Dileep Basam, Randy Marchany, and Joseph G Tront. Attention: moving target defense

networks, how well are you moving? In Proceedings of the 12th ACM International

Conference on Computing Frontiers, page 54. ACM, 2015.

[8] Google. Ipv6 adoption statistics among google users. see

http://www.google.com/intl/en/ipv6/statistics.html, 2015.

[9] T. Narten, E. Nordmark, and W. Simpson. Neighbor Discovery for IP Version 6

(IPv6). RFC 2461 (Draft Standard), December 1998. URL http://www.ietf.org/

rfc/rfc2461.txt. Obsoleted by RFC 4861, updated by RFC 4311.

[10] R. Vida and L. Costa. Multicast Listener Discovery Version 2 (MLDv2) for IPv6. RFC

3810 (Proposed Standard), June 2004. URL http://www.ietf.org/rfc/rfc3810.txt.

Updated by RFC 4604.

[11] Stephen Groat, Matthew Dunlop, W. Urbanksi, Randy Marchany, and Joseph Tront.

Using an ipv6 moving target defense to protect the smart grid. In Innovative Smart

Grid Technologies (ISGT), 2012 IEEE PES, pages 1–7, Jan 2012. doi: 10.1109/ISGT.

2012.6175633.

[12] The Honeynet Project’s 2009 Google Summer of code. Dionaea. see

http://dionaea.carnivore.it/, 2009.

Dileep Kumar Basam Bibliography 102

[13] Ruben Espadas. Dionaeafr. see https://github.com/rubenespadas/DionaeaFR, 2014.

[14] Canonical. Lxc. see https://linuxcontainers.org/lxc, 2015.

[15] Philippe Biondi. Scapy. see http://www. secdev. org/projects/scapy, 2011.

[16] Gerald Combs et al. Wireshark. Web page: http://www. wireshark. org/last modified,

pages 12–02, 2007.

[17] Anon Captain. Visualization code base. Lxc. see http://www.codepen.io/anon, 2014.

[18] Michael Bostock. D3. js. Data Driven Documents, 2012.

[19] Dag Wieers. Dstat. see http://dag.wiee.rs/home-made/dstat/, 2013.

[20] Matthew Ford, Jonathan Stevens, and John Ronan. Initial results from an ipv6 dark-

net13. In Internet Surveillance and Protection, 2006. ICISP’06. International Confer-

ence on, pages 13–13. IEEE, 2006.

[21] David Moore, Colleen Shannon, Geoffrey M Voelker, and Stefan Savage. Network tele-

scopes: Technical report. Department of Computer Science and Engineering, University

of California, San Diego, 2004.

[22] Barry Irwin. A network telescope perspective of the conficker outbreak. In Information

Security for South Africa (ISSA), 2012, pages 1–8. IEEE, 2012.

[23] Lance Spitzner. Honeypots: Catching the insider threat. In Computer Security Appli-

cations Conference, 2003. Proceedings. 19th Annual, pages 170–179. IEEE, 2003.

Dileep Kumar Basam Bibliography 103

[24] H PROJEC. Know your enemy: Statistics, 2002.

[25] Iyad Kuwatly, Malek Sraj, Zaid Al Masri, and Hassan Artail. A dynamic honeypot

design for intrusion detection. In Pervasive Services, 2004. ICPS 2004. IEEE/ACS

International Conference on, pages 95–104. IEEE, 2004.

[26] Christopher Hecker, Kara L Nance, and Brian Hay. Dynamic honeypot construction. In

10th Colloquium for Information Systems Security Education, University of Maryland,

USA. Citeseer, 2006.

[27] Kazuya Kishimoto, Kazuya Ohira, Yoshio Yamaguchi, Hirofumi Yamaki, and Hiroki

Takakura. An adaptive honeypot system to capture ipv6 address scans. In Cyber Security

(CyberSecurity), 2012 International Conference on, pages 165–172. IEEE, 2012.

[28] Jeff Hieb and James H Graham. Anomaly Based Intrusion Detection for Network Mon-

itoring Using a Dynamic Honeypot. PhD thesis, University of Louisville, 2004.

[29] Albert Walter Brzeczko. Scalable framework for turn-key honeynet deployment. 2014.

[30] Nogol Memari and Shaiful Jahari Hashim Khairulmizam Samsudin. Design of a virtual

hybrid honeynet based on lxc virtualisation for enhanced network security. EDITORIAL

BOARD, page 120, 2014.

[31] Pavol Sokol and P Pisarcik. Digital evidence in virtual honeynets based on operating

system level virtualization. Proceedings of the Security and Protection of Information,

pages 22–24, 2013.

Dileep Kumar Basam Bibliography 104

[32] Dileep Basam, J Scot Ransbottom, Randy Marchany, and Joseph G Tront. Strength-

ening mt6d defenses with honeypot capabilities. Journal of Electrical and Computer

Engineering [Special Issue: System and Network Security], 2015.

[33] Christopher Morrell, Reese Moore, Randy Marchany, and Joseph G. Tront. Dht

blind rendezvous for session establishment in network layer moving target defenses.

In Proceedings of the Second ACM Workshop on Moving Target Defense, MTD ’15,

pages 77–84, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3823-3. doi:

10.1145/2808475.2808477. URL http://doi.acm.org/10.1145/2808475.2808477.

[34] C. Morrell, J.S. Ransbottom, R. Marchany, and J.G. Tront. Scaling ipv6 address bind-

ings in support of a moving target defense. In Internet Technology and Secured Transac-

tions (ICITST), 2014 9th International Conference for, pages 440–445, Dec 2014. doi:

10.1109/ICITST.2014.7038852.

