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Modeling and Twitter-based Surveillance of Smoking Contagion

Gaurav Tuli

(ABSTRACT)

Nicotine, in the form of cigarette smoking, chewing tobacco, and most recently as vapor
smoking, is one of the most heavily used addictive drugs in the world. Since smoking
imposes a significant health-care and economic burden on the population, there have been
sustained and significant efforts for the past several decades to control it. However, smoking
epidemic is a complex and “policy-resistant” problem that has proven difficult to control.
Despite the known importance of social networks in the smoking epidemic, there has been
no network-centric intervention available for controlling the smoking epidemic yet.

The long-term goal of this work is the development and implementation of an environment
needed for developing network-centric interventions for controlling the smoking contagion.
In order to develop such an environment we essentially need: an operationalized model of
smoking that can be simulated; to determine the role of online social networks on smoking
behavior; and actual methods to perform network-centric interventions. The objective of this
thesis is to take first steps in all these categories. We perform Twitter-based surveillance
of smoking-related tweets, and use mathematical modeling and simulation techniques to
achieve our objective.

Specifically, we use Twitter data to: infer sentiments on smoking and electronic cigarettes; es-
timate the proportion of user population that gets exposed to smoking-related messaging that
is underage; and identify statistically anomalous clusters of counties where people discuss
about electronic cigarette a lot more than expected. In other work, we employ mathemat-
ical modeling and simulation approach to study how different factors such as addictiveness
and peer-influence together contribute to smoking behavior diffusion, and also develop two
methods to stymie social contagion. This lead to a total of four smoking contagion-related
studies. These studies are just a first step towards the development of a network-centric
intervention environment for controlling smoking contagion, and also to show that such an
environment is realizable.

This work was partially supported by Defense Threat Reduction Agency’s CNIMS grant
HDTRA1-11-D-0016-0001, by Department of Energy grant DE-SC0003957, by National In-
stitutes of Health’s MIDAS grant 5U01GM070694-11, and by National Science Foundation’s
NetSE grant CNS-1011769.
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Chapter 1

Introduction

1.1 Background

Nicotine, in the form of tobacco smoking, chewing tobacco, and most recently in the form
of vapors, is one of the most heavily used addictive drugs [139], and the leading preventable
cause of disease, disability, and death across the globe [198]. Nearly six million deaths are
associated with tobacco use each year globally — more than five million are due to the direct
tobacco use and around 0.6 million are the result of breathing second-hand smoke [199]. Some
regions in the world are more heavily affected by smoking epidemic than the others [64].
Although the bigger proportion of smoker population resides in the developing countries,
WHO recent report shows that the 16% of the total mortality in both Americas and European
region (highest in the world) are associated with tobacco use [198]. Smoking also imposes a
significant health-care and economic burden on the population. In the United States, these
burdens are estimated at $97 billion in productivity losses from premature death, and $96
billion in health-care expenditures annually [52].

To control this epidemic, there have been sustained and significant efforts for past several
decades world wide [91, 141]. The countries are coming together [156], and as well working
independently [55] to systematically curb the use of tobacco and overall practice of smoking.
Most of these efforts are focused to protect adolescents from smoking initiation due to their
vulnerability and known bad effects of nicotine on the developing brain [117, 163]. Despite
these efforts, smoking prevalence among youth and adult smokers has declined very slowly.
In the United States, it has only declined from 45% to 21% in the past 45 years [56,62].

Controlling the smoking epidemic has become even more challenging due to social media

1
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and introduction of new smoking products, such as electronic cigarette and hookah. In
the age of Web 2.0, the online and offline social worlds of adolescents are merging at the
highest rate. About 75% of the teens on Internet use social media (such as social networking
sites, micro-blogging sites, forums etc) to connect and communicate with their friends [114].
Social media platform such as Twitter is becoming a venue were people talk and share
about their smoking-related activities, and also get exposed to pro-smoking advertisements
[85, 130]. Therefore due to such heavy smoking-related activity sharing and the current
laxity in the restrictions on internet-based marketing, many of the users of these services
may get heavily exposed to smoking-related messaging. Similarly, introduction of the novel
smoking products in the market has been alluring the population to smoking initiation. For
example, nicotine consumption via electronic cigarette and other vaping devices (henceforth
collectively denoted as e-cig) has become three times more popular among adolescents within
the last few years [23]. The strong evidence of their popularity has also been found in many
survey studies [45].

These consideration provide us ample motivation to study the complex phenomenon of smok-
ing contagion in more details. The initiation, continuation, and cessation of smoking has
been reported to depend on multiple factors. Various studies have shown a strong corre-
lations of smoking behavior, at least among adolescents and young adults, with three key
factors: peer-influence, addictiveness, and exposure to pro- and anti-smoking marketing.
Considering these factors, the tobacco control efforts by the governmental agencies generally
aim for a broad impact either through policies changes (such as lowering nicotine levels or
increasing taxes) or through public health campaigns (such as via television, print media,
etc). There is also a big body of research in understanding the role of social networks in
the spread of smoking behavior and their importance is well established. However, there has
been no work reported so far for developing an environment for implementing network-centric
interventions for controlling the smoking epidemic.

1.2 Thesis Overview and Contributions

The long-term goal of this work is the development and implementation of an environment
needed for developing network-centric interventions for controlling the smoking epidemic.
In order to develop such an environment we essentially need three main components: (1)
surveillance tools and techniques to determine the role of online social networks on smoking
behavior, (2) an operationalized model of smoking that can be simulated, and (3) actual
methods to perform network-centric interventions. The objective of this thesis is to take first
steps in all these categories. An illustration of long-term and achieved goals of this thesis are
presented in Figure 1.1. We perform Twitter-based surveillance of smoking-related tweets,
and use mathematical modeling and simulation techniques to achieve our objective.

Specifically, we take a data-driven machine learning approach and used Twitter data: to
estimate the proportion of user population that gets exposed to smoking-related messaging
that is underage, to infer sentiments on smoking and electronic cigarettes, and to identify
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Figure 1.1: Long-term goals and overall contribution of the thesis

statistically anomalous clusters of counties where people discuss about electronic cigarette
a lot more than expected. We present the details of a pipeline of software components that
we built to perform Twitter-based surveillance studies for the thesis in the next section.

In other work, we employ mathematical modeling and simulation approach to study how dif-
ferent factors, such as addictiveness and peer-influence together contribute towards smoking
behavior diffusion, and also develop two methods to stymie social contagion. This lead to
a total of four smoking contagion-related studies — two Twitter-based surveillance studies,
and two contagion modeling and simulation-based studies. These studies are just a first
step towards the development of a network-centric intervention environment for controlling
smoking contagion, and also to show that such an environment is realizable. I will discuss
each of these studies and main contributions in brief next. A detail list of contributions of
each study is presented in their respective chapters.

In our first Twitter-based surveillance studies, we focus on the adolescent Twitter users and
investigate their exposure to smoking-related messaging. Since smoking is a social contagion
that spreads through social fabric, understanding the effect of online social world on its
diffusion is an important problem. Twitter is a extremely suited platform for such a study
because teens’ Twitter use has grown three folds in the past three years and tweets of 76%
teen users are publicly available [114, 123]. In this study, we employ machine learning tools
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and techniques to first identify pro-smoking and pro-marijuana tweets sent on Twitter. We
then identify the users who get exposed to these tweets and infer their age group using
supervised learning with Twitter data. Finally, we estimate the exposure rate for under age
18 users to smoking-related tweets employing a technique from the literature. Our analysis
shows that smoking-related messages on Twitter are overwhelmingly pro-smoking, and also
that a significant number of adolescent users receive and read multiple of these messages.
However, a further study is needed to quantify the effect of pro-smoking messages on smoking
initiation and continuation.

In the next study, we focus on electronic cigarette-related tweets to identify and analyze their
hot-spots in the United states. A hot-spot of e-cig tweets can be defined as a statistically
anomalous cluster of e-cig tweets in space and time i.e., a cluster that observe way more
number of tweets than expected. Given the sudden multi-fold rise in the popularity of e-
cig, it is important to identify the most active clusters of e-cig tweets and understand the
sentiments and age-group they are composed of. We used spatiotemporal scanning [105] of
non-commercial geo-tagged e-cig tweets to identify these clusters. This required us to first
identify the non-commercial e-cig tweets in the US, and then to perform spatiotemporal scan
statistics using the spatial location and time stamp of the tweets to obtain the anomalous
clusters across space and time. At last, we analyze the sentiments of the tweets and age-
group of the users inside these anomalous clusters. We again used machine learning tools
and techniques to perform most of the tasks in the study. The results from this study suggest
that three quarters of the e-cig tweet spatiotemporal hot-spots contain more pro-ecig tweets
and more under-18 users as compared to the national averages of the same. Majority of
these hot-spots are located on the west coast in the US.

The third study was designed to investigate the combined effect of peer-influence and ad-
dictive nature of tobacco smoking on the prevalence of smoking. Both peer-influence and
addictiveness of smoking have been reported to have a big impact on smoking contagion. We
study the effect of both the factors together by first developing a model that represents the
addictivness of smoking behavior at individual level, and then performing an agent-based
simulation of the model on a social network to replicate the effect of peer-influence. We
represent population as network for the simulation study, where nodes represent individuals
and edges corresponds to pairwise interactions. The simulation study of the proposed model
was performed on a time-varying social network of a heavily cited longitudinal study in pub-
lic health literature — the Framingham Heart Study [49]. The results from the study show
the presence of the two different societal thresholds to start and stop the smoking epidemic.
This finding may explain the slow decline of smoking prevalence in the population. We also
able to produce a qualitatively matching smoking prevalence curve using our model.

In the fourth and final study, we investigate a well-motivated problem of social contagion
blocking. The literature on smoking contagion has shown that communities and connections
play a very important role. For example, Christakis et al. [30] found that individuals start
and stop smoking in groups, and also it is well established that some ties (or edges) are
more important with respect to smoking initiation and cessation. Therefore, we investigate
two primary themes for blocking social contagion in our study: (a) use community structure
to contain a social contagion at community boundaries, and (b) consider weighted edges
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in developing the technique to stymie the contagion. However, in the view of the non-
approximability results we develop a set of heuristics for blocking the social contagions. The
devised community-based blocking heuristic is hybrid in nature i.e., it uses both network
structure (a proactive measure) and contagion dynamics (a reactive measure) to identify the
critical nodes in the network. The edge-based blocking heuristic consider weights on edges
in the network and a given budget to identify a critical edge set that leads to a small spread
size. The heuristics are evaluated utilizing a rigorous set of computational (simulation)
experiments of blocking the contagion propagation on the social networks from the literature
. The selected social networks are at least five times greater in terms of numbers of nodes
and an order of magnitude greater in numbers of edges than those used in previous contagion
blocking studies.

1.3 Pipeline for Twitter-based Surveillance Studies

Another technical contribution of this work is a pipeline of the software components that were
developed and used to perform the smoking-related surveillance studies on Twitter data. We
built various components to handle all necessary steps, from data gathering through result
visualization. Putting these components together gives us a pipeline that can be easily
modified to perform surveillance studies on the data from any other social media platforms,
or to accommodate semi-supervised or unsupervised learning tasks.

An illustration of the pipeline is shown in Figure 1.2. We briefly discuss the components of
this pipeline in this section. The presented pipeline shows the steps involved in the supervised
learning tasks for Twitter-based studies performed for this thesis.

1. Data Ingestion and Archiving

The first component of the pipeline takes care of gathering and storing the data from
the social media platforms for later use. It is one of the simplest yet most challenging
task given the velocity, dynamicity, and volume of the data that can be generated by
the social media platforms. Therefore, we need a smarter way to query and collect
the data. For example, if we are gathering Twitter or Facebook data, and our data
collecting queries are not properly formed, Terabytes of irrelevant data can be pushed
into the system. Similarly, the whole system may fail if there is a sudden eruption of
posts in certain area due to an unexpected event. Hence, the data should be gathered
in small chunks using project-specific queries, and the system should be scalable and
resilient to handle an unexpected volume of incoming data.

We have gathered different types of data from Twitter using their APIs. It includes
tweet data, user data or URL data. The tweet data is the tweet text along with various
types of metadata; the user data consist of user details, such as user id, screen name,
friends count, follower count etc.; and the URL data is mainly the information about
the shared URL in the tweets. Based on a project requirement, we specifically collect:
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Figure 1.2: An illustration of the pipeline used in the Twitter-based surveillance studies in
the thesis

tweets containing a set of keywords, or the timeline tweets of a set of users, or we can
only collect personal or network information about a set of users.

The gathered data then gets archived in a way that is easy to access, that minimizes
the memory footprint, and that expedites searching the data. The non-relational or
NoSQL databases are well suited for storing social media data. They are often a good
choice for storing tweets because they offer very quick write speeds, fast querying,
and can easily distribute large data sets across a cluster of servers for parallel pro-
cessing. NoSQL databases are also known for their ability to scale easily, which is
very important for a system that need to store and handle an unexpected incoming
data. MongoDB is most widely used and most recommended NoSQL databases. It is
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a document-based database that uses documents instead of records in tables to store
data. These documents look just like JSON objects with key-value pairs.

2. Classifier Training

The next component is the most important part for the supervised learning pipeline.
The primary goal of this pipeline is to learn the weights of the various features of
the data and apply this learning to infer/predict the labels for the new data. This
component has the following three sub-components.

a. Label training data: First, we select the specific data about tweet or user profile
from the Twitter data repository based on our application requirement. In our two
Twitter-based studies, we used a combination of: tweet text, tweet posted date, user
timeline tweet counts, user location, user language, profile creation date, and user
friend and follower lists and counts.

Next, we obtain the ground truth data (also called gold standard data) for the supervised-
learning task. It is a set of data points for which we already know labels. These labels
can either be already known or provided, or obtain using manual curation, or can
be inferred using any other provided data (e.g,. inferred flu case count per county
using over-the-counter medicine purchase records). We obtained the labeled data via
in-house and Amazon Mechanical Turk-based manual curation.

The labeled dataset is divided into two parts, and separately used for classifier training
and testing. The majority (usually, 80-90%) of the labeled data is used for training
the classifier, and the remaining portion is used for evaluating the performance of the
classifier.

b. Preprocessing data: If we are dealing with tweet text, then cleaning (e.g., removing
non-ASCII characters) and preprocessing become essential given the expected vari-
ability and informality in tweet text. The preprocessing involves natural language
processing (NLP), such as: removing stop words, correcting colloquial words, removing
repeating characters, spelling correction, performing lemmatization etc. We also infer
the language of the tweet since we focus primarily on English language tweets in our
studies.

Figure 1.3 presents an example of various NLP tasks that are usually performed on a
tweet text. The underlined text at each step shows the replaced words from the previous
step. As shown in the figure, first the colloquial words are replaced with English
dictionary equivalent words. Next, the repeating characters were removed followed by
spell check and punctuation removal. Finally the lemmatization is performed on each
word followed by language detection and stop-word removal. We utilized a combination
of in-house tools and standard NLP libraries for performing such tasks.

c. Feature extraction: The next important step is extracting the features from data.
Features are the basic properties of a data point that may help the machine-learning
algorithms differentiate them. Examples of tweet features include: words in the tweet
(also know as bag-of-words), tweet length, word length, number of repeated punc-
tuation, number of alphanumeric lengthening, number of hashtags and URLs used,
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Figure 1.3: An example of tweet Natural Language Processing tasks

language of the tweet. Similarly, we can also gather user-specific features if the appli-
cation requires it. These features may include: screen name, profile description, friends
count, follower count, or total tweet counts.

Please note that the sequence of the NLP tasks is also very important to obtain the
correct values for the features. For example, counting and removing repeating char-
acters should be performed before the spell check, and language detection should be
performed before the stop words removal because we use stop words present in a tweet
for language detection.

3. Classifier Testing and Evaluation

Once an initial (mostly big) set of features is extracted, test set tweets are used for as-
sessing the performance of a classifier. Most of the classifiers are already implemented
and available via standard machine learning libraries. This pipeline component eval-
uates a set of available classifiers. A classifier is evaluated based on how correctly it
identifies the labels for the test dataset. The evaluation of a classifier is usually based
on a performance metric that may include: accuracy, precision, recall, and F1 scores.
Each classifier can also be checked for overfitting and underfitting at this point. The
internal parameters of the classifiers can also be tuned for further performance gain.

Please also note that only important features should be kept for learning, and the
features not helping a lot should be discarded. Importance of the features can simply
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be gauged by removing them one-by-one and noting the relative difference in the test
results. If removing a feature reduces the performance of a classifier very much then
it should be considered, otherwise it should be discarded.

The output of this pipeline component is a selected and configured classifier that will
be used to infer the labels of unlabeled Twitter data.

4. Unlabeled Data Feature Extraction

This component takes filtered, unlabeled Twitter data and produces features that can
be used by the selected classifier to infer the labels for these tweets. By filtered data
we mean a specific type of data (e.g., tweet text or user name) from the Twitter data
repository. Note that most of the tasks performed with unlabeled data at this step are
in parallel with the tasks performed at Component 2 with the labeled dataset.

a. Preprocessing data: Same as before, the data is first cleaned to get remove unread-
able, non-ASCII characters. Next, the cleaned Twitter data is provided for natural
language processing. Again, a set of available NLP tools and in-house tools are used
for this purpose. However, all the cleaning and preprocessing of the data should be per-
formed exactly in same manner as it was performed at Component 2 with the labeled
dataset.

b. Feature extraction: Next, the features from the the Twitter data will be extracted.
However unlike Component 2, only the selected feature set that was identified as most
useful in Component 3 will be extracted. Again, the process of feature extraction
should match exactly that performed in Component 2.

Figure 1.4: A web-based interactive tweet visualization tool used in our Twitter-based
surveillance studies
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5. Data Labeling and Visualize Results

This is the final component of the pipeline. It combines all the efforts together to gen-
erate the labels for the unlabeled data, and help analyze the results. This component
takes the selected classifiers, the labeled dataset, and features of the unlabeled dataset
as inputs, and produces labels for the unlabeled Twitter Data.

The generated labels can be further analyzed using simple charts and graphs, or via
specifically designed visualization tools. An example of a visualization tool is shown in
Figure 1.4. It is a web-based, interactive visualization tool that we developed and used
in various Tweet-based studies. This tool renders tweets on maps using the latitude
and longitude of the tweets. It uses different markers for different types of tweets to
provide better visual cues, and allows to interactively visualize the tweet-level details.
This tool also provides a feature to filter and study the tweets of a particular type, and
allows to focus on the tweets from a selected geographical region.

1.4 Document Structure

The remaining manuscript is structured in the following way. In next chapter (Chapter
2), we present the motivation for this thesis. This chapter first provides a commentary on
various studies from the literature that has explored the role of social networks in smoking
initiation and smoking cessation, and then present our idea of building an environment for
network-centric intervention for smoking contagion. Chapter 3 covers a wide variety of other
related topics ranging from smoking epidemic and its control, to the interplay between social
networks and health, to Twitter-based public health surveillance, and to social contagion
modeling and behavior spread research.

Next, we will discuss each of the four studies in a separate chapter. Each of these chapters
contain their own sections on the study-related background and motivation, methodology,
results, contributions, and discussion.

In Chapter 4 and Chapter 5, we will discuss the two Twitter-based smoking surveillance
studies. Both the studies are data-heavy, therefore we will first explain the data gathering
and basic statistics of the data followed by feature extraction process, evaluation process of
the classifiers, and the analysis of the results. Although the focus of these two Twitter-based
studies is smoking-related messaging, the primary research questions that we addressed, and
hence the type of data gathered and process of analysis were very different.

Next, we discuss the two contagion modeling and simulation studies. In Chapter 6, we
introduce the individual-level structured resistance model of smoking addiction. This chapter
first talks about the idea of modeling the addictive nature of the smoking behavior utilizing
disease diffusion models in epidemiology, followed by the proposed model, simulation study
setup and results. The Chapter 7, is organized little differently. We will first discuss the
community-based blocking problem and our heuristics followed by the edge-based blocking
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study and proposed heuristics. In both of these studies, we evaluate our developed heuristics
by performing simulations of contagion propagation on social networks from the literature.

In the last chapter (Chapter 8), we provide a high-level discussion on the achieved goals
and the future directions of the presented work. We discuss the potential extensions of our
work in each of the three components needed for developing network-centric interventions
for controlling the smoking epidemic.



Chapter 2

Motivation and Thesis Direction

2.1 The Role of Social Networks in Smoking Epidemic

The role of social networks in smoking initiation, continuation, cessation, and relapse has
been examined by numerous studies. In this section, we briefly discuss some of these studies
and their findings related to the effects of networks on smoking epidemic. The motive of this
section is to review the efforts made to understand the importance of the social networks in
the smoking epidemic.

Most of these studies were purely data-driven, where the correlation between the smoking
status of an individual and various social network factors is gauged and analyzed. A primary
theme for capturing the effect of networks on smoking contagion has been to record, analyze,
and report the smoking behavior of the individuals with respect to the smoking behavior
of their immediate social network neighbors. Another approach used in these studies was
to perform social network analysis to determine whether, for example, the social status (or
popularity) of an individual is associated with his/her smoking behavior. Next, we will
discuss some of the studies in more detail.

2.1.1 Effect of Networks on Smoking Initiation and Continuation

The main focus of almost all the efforts in this area is to understand the effect of social
factors, including social networks, on adolescent smoking initiation and experimentation.
A set of studies from late 1990s found that adolescents whose parents, siblings, or friends

12
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smoke are at increased risk of picking up smoking compared to their peers whose social
network members do not smoke [89, 90, 142, 182]. Some evidence also suggests that new
adolescents smokers are more likely to obtain their cigarettes from social network members
who smoke [155]. Hence, adolescents whose social network members are smokers may have
greater access to cigarettes, which could lead to regular smoking. It was also found that the
smoking behavior of the members of social network is also one of the important determinants
of the age of smoking initiation [180].

A study also examined the effect of both social bonding and ethnicity on adolescent smoking
initiation [43]. The authors of this study found that social bonding was highly correlated
with early age smoking initiation in African American adolescents as compared to their white
counterparts. They also found that less exposure to pro-smoking social influences accounted
for the lower rates of smoking at age 18 years for African Americans relative to Whites.
These findings suggest that effect of social factors on smoking initiation varies based on
ethnicity.

The relative effect of peer influence and peer selection on adolescent smoking and smoking
susceptibility was analyzed in a study by Hall and Valente [74]. They reported that peers
both impact smoking behavior and influence the development of friendship networks. They
also found a direct effect of friendship selection made a year ago on the smoking and smoking
susceptibility of the students. Hence, social network formed in the past can slowly but
steadily impact risk-taking behavior, such as smoking, in adolescents.

Several studies have examined the effect of position of the individual in the social network
on smoking behavior. In one of such study, Alexander et al. analyzed the associations of
the peer social status (or popularity), best friend who smokes, and prevalence of smoking
in the school on adolescents’ current smoking behavior [5]. The study reported that the
effect of popularity on smoking behavior is propositional to the smoking prevalence in the
school. That means that the popular adolescents in schools with high (low) smoking rates
are more (less) likely to be cigarette smokers than their less popular classmates. Also, the
risk of current smoking was found significantly associated with the increasing rates of school
smoking prevalence. This risk was also associated with having a peer network in which half
the members smoked and one or two best friends smoked.

Another similar study found a very interesting result that both popular and isolated youth
were likely to smoke cigarettes [187]. Authors of this study assert that since popular ado-
lescents are well connected in school, they may be disproportionately exposed to the pro-
smoking peer influences, whereas the isolated youth likely to make smoker friends outside
of school. In this study, the popularity association with smoking susceptibility was found
strongest for non-white boys, but they did not find enough evidence of interactions between
popularity and gender.

Furthermore, a study analyzed the contribution of popularity in addition to other peer
variables such as embeddedness in friendships and friendship quality to adolescent smoking
involvement [46]. The authors found that the relationship between popularity and smoking
involvement was negatively moderated by the smoking behavior of adolescents friends. This
finding suggests that being less well known in adolescent networks and having a higher
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proportion of friends who smoke relates to more smoking among adolescents.

In a more recent and rigorous analysis, Lakon et al. analyzed the relationship of the past
month cigarette smoking with individual and classroom network indicators and a set of peer
influence processes [108]. They also attempted to capture more dimensions of the construct
of smoking related peer influences arising from friends both inside and outside of adolescents’
schools. They utilized social network analysis and modeling to analyze the peer influence
related to adolescents smoking uptake through three influence processes: 1) best friends’
smoking behavior whose nominations were not restricted to school; 2) classroom best friend
network smoking behavior; and 3) own perceived normative beliefs of their friends about
drug use. The study reported that both in-degree centrality and being socially integrated in
networks relates to more past month cigarette smoking. The study also finds some modest
evidence that the peer influence from the best friend networks moderated the relationship
between the reciprocity of ties and past month cigarette smoking behavior [108].

2.1.2 Effect of Networks on Smoking Cessation and Relapse

Similar to smoking initiation, the effect of social networks on smoking cessation has been well
studied and understood. Many observational studies corroborated a strong importance of
social support in the positive outcomes of smoking cessation and other health behaviors. In
a study both higher levels of positive support and connectedness were found to be associated
with smoking cessation efforts and relapse prevention [34]. Partner facilitation also emerged
as the primary predictor of smoking cessation maintenance in a study that focused on newly
abstinent females [35].

Another study assessed the role of three kinds of social support factors in smoking cessation
and maintenance: support from a partner pertinent to quitting, perceptions of the availability
of general support resources, and the presence of smokers in social networks [126]. The
authors found that high levels of partner support and of the perceived availability of general
support were associated with both cessation and with short-term maintenance of abstinence.
The presence of smokers in the social network, on the other hand, was a hindrance to cessation
maintenance, and was also the main differentiating factor between people who relapse and
who stay long-term abstainers. The study also revealed that having a spouse who smokes
or who is critical of attempts at cessation works as a barrier to cessation and abstinence
maintenance.

In parallel to the previous results, a study by Chen et al. also found that being married
to a nonsmoker and having less proportion of friends who are smokers are associated with
cigarette smoking cessation [27]. A similar study in the United Kingdom around the same
time by West et al. also found positive association of pressure from partner with attempts
to quit smoking [196]. However, the same was not found to be significantly associated with
successful attempts to quit smoking in this study.

Christakis and Fowler, later in 2008, again corroborated that the smoking status of friends,
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spouse, and neighbors as well as education level affects both smoking initiation and cessation
of individuals [30]. This study also revealed that although the overall prevalence of smoking
decreased over time, those who remained smokers formed a group with each other and had
few social ties with the non-smokers. The authors concluded that social niches emerge in
the network with social norms that lead to the decision to quit or to continue smoking in
groups. Using social network analysis they have also shown that individuals start and stop
smoking in groups. Hence in order to maximize the cessation and abstinence maintenance,
the social network effects should be leveraged rightly.

The effect of the social network on relapse has been noted in a recent study. Nguyen and
Kohorn performed a survey study of women in postpartum hospital stay who quit smoking
while pregnant to understand the reason for the high relapse rate in women smokers after
pregnancy [135]. The authors reported that being enmeshed in a social network with promi-
nent smoking norms and the risk of changing their relationships with smoker friends were
among the top reasons for the relapse of smoking behavior after the baby was delivered.
All the participants of the study emphasized the importance of their relationship with other
smokers and the impending risk of losing the friendships if they quit smoking. The authors
also suggested the development of a more targeted network-centric interventions to reduce
postpartum smoking relapse.

In order to significantly increase the reach and efficacy of smoking cessation programs in the
population, various web-based cessation programs have also been designed and evaluated
[17, 112, 113, 168]. Given the known association of smoking cessation with social support,
majority of such programs focus on social influence and information transfer via an online
support group (or social network). QuitNet is one of the most popular and successful such
online social networks focused on smoking cessation [32,67]. It has attracted a large amount
of users and provided various services to support them in quitting. QuitNet’s community
feature allows multiple forms of social support. Users can also communicate through private
e-mails or via one-to-many messaging in the forums. The success of QuitNet has lead to
a more serious discussions to improve and develop such web-based smoking intervention
programs [33].

2.2 Network-centric Interventions for Smoking Epidemic

The sustained efforts and initial findings presented in the previous section show that the
social networks have been helping in fighting the smoking epidemic. They work through
multiple mechanisms, such as social support, social influence, information sharing, and the
transmission of social norms. This suggest us that applying these mechanisms systematically
might further bring down the smoking prevalence and significantly reduce the number of new
adolescent smokers in the population.

Motivated by this, the long-term goal of this thesis is the development and implementation
of an environment needed for developing network-centric interventions for controlling the
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smoking epidemic. In order to develop such an environment we mainly need three compo-
nents that are discussed next. The objective of this work is to take first few steps in all these
categories, and also to show that such an environment is realizable.

First, we need an operationalized model of smoking that can be simulated. There is no
model of smoking epidemic yet that takes into account various smoking-related social and
demographic factors. Such a model can be used in simulation studies to measure, tune,
and demonstrate the efficacy of network-based interventions for smoking contagion. Epi-
demiological studies rely on such a formulations of the contagions diseases to understand
and communicate the findings. Hence, such a model for smoking contagion will not only
make the efforts more visible and studies more understandable, but will also provide the
foundation for conducting more regress smoking intervention simulation studies.

Next, we need to be able to quantify the effect of online social networks on the smoking
epidemic. All the previous smoking-related studies (discussed in the previous section) con-
sidered social exposure and bonding via only face-to-face friendship and social ties. However,
the sudden outburst and adoption of online social media platforms, especially by adolescents,
have given rise to the new fronts for smoking-related exposure, expressions, and reciprocity.
Hence, smoking-related studies performed on social media platforms are pivotal for devising
and implementing the network-centric smoking intervention techniques. Example of such
studies may include: quantifying the smoking-related exposure on the new social media
platforms, capturing the sentiments towards smoking and new products using the users’ ac-
tivities, and performing surveillance studies related to smoking epidemic on these platforms.

Lastly and most importantly, we also need the actual methods that will implement the
devised network-centric interventions in the population. An interventions can be applied
at different levels (or units) in a social network. For example, an intervention can be im-
plemented at node-, edge- or community-level. Designing methods to operate at different
intervention levels, and measuring and comparing their efficacy is extremely important to
identify the most suitable network-centric interventions for smoking epidemic for a given
situation.

In this thesis, we have taken a first step in all these three categories. We have laid few
foundation stones for developing an environment that can help in: modeling social contagion,
performing surveillance studies on social media, and devising and evaluating intervention
techniques for dealing with smoking contagion.



Chapter 3

Literature Review

3.1 The Smoking Epidemic

The smoking epidemic is a complex phenomenon. Many factors contribute toward its ini-
tiation, continuation, and cessation. Some of the major factors that have been studied in
depth include: age and gender: age and gender [71, 133, 143]; education and socio-economic
status [80,133,200]; peer- and familial-influence [30,63,65,82]; chemical dependence [13,101];
exposure and accessibility [79, 92, 124, 152, 166]; and price and policies [12, 21, 87, 122, 129].
Next, we will discuss in more details about the effect of smoking on adolescents, its addic-
tivity in general, and efforts by government agencies to curb its prevalence.

Among all the age groups, adolescents and young adults have been reported as most vul-
nerable to the smoking epidemic [199]. Of adults who smoke, 88% report that they started
smoking before the age of 18 [184]. Being at a critical transitional phase in their lives with
frequently changing social relationships with family and peers, teens become most vulnerable
to tobacco use and other risky health behaviors [36, 95]. In order to understand and curb
the various factors contributing towards the smoking epidemic, a large body of work is con-
centrates solely on tobacco usage by adolescents and young adults. Adolescent smoking has
shown strong associations with peer- and familial-influence [188,191], social contexts and po-
sition in network structure [107,108,163], tobacco outlet density [118], and smoking-related
behavior exposure from advertisements or movies [37,38].

Like any other addictive drug, cigarette smoking behavior becomes compulsive and difficult
to cease even after people discover the substantial health benefits of quitting [136]. A study
shows that 35 million smokers in the US express a desire for quitting smoking each year,
but more than 85 percent of those who try to quit on their own relapse within a week [140].

17
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There has been substantial and consistent efforts by governmental organizations to reduce
the smoking prevalence in the population — mainly by policy changes to bring about public
health interventions. Effective public health interventions include: raising the price of to-
bacco products [115,173]; smoke-free policies [50,156,197]; counter-marketing campaigns [15];
advertising restrictions [159]; access to treatment for tobacco use through insurance cover-
age [51]; and comprehensive approaches to prevent children and adolescents from accessing
tobacco products.

3.2 Social Contagion Modeling and Network-based Stud-

ies on Behavior Spread

A contagion is any entity that can spread through a population. The basis of social contagion
dictates that ideas, rumors, protests, information, and even behaviors can spread through a
population in a way that is similar to the spread of infectious diseases spread [66, 72, 185].
In network-based contagion modeling, a population is treated as a network, where nodes
represent people or other types of agents, and edges represent pairwise interactions among
agents. Hence, nodes influence their distance-1 neighbors through their common edges [42].
Each node can be in one of two states, 0 (respectively, 1) meaning that a node does not
(does) possess a contagion. If a node possesses a contagion, we implicitly assume that it is
willing to pass it on.

In sociology, the models of contagion propagation for types of contagions discussed above are
predominantly progressive models [69, 97, 164, 194]. Such models allow a node to transition
only from state 0 to state 1; the transition from 1 to 0 is not permitted. The influence of
contagion upon coming in contact with neighbors in the opposite state, is mainly largely
captured using two basic models. First, the independent cascade model that specifies that
each neighbor v of a node u will get one chance to infect u, after which v no longer remains
influential on u [97]. Second, the linear threshold model that captures neighborhood influence
in such a way that node transitions will occur only if a minimum threshold number or
proportion of its neighbors already possess the contagion [70].

There are two main variants of this generic threshold-based model. When all nodes in a
network require interaction with only one infected neighbor (or threshold = 1) to contract
a contagion, the contagion is called simple contagion. Whereas, the contagion in called
complex if at least one node in the network requires interaction with more than one infected
node (or threshold ≥ 1) [25]. This delineation has large impacts on population dynamics
and on algorithms for controlling contagion processes [25,103].

The spread of human behavior has also been studied as a contagion spread problem. Tra-
ditionally, observational studies are employed to understand the spread of human behavior
through face-to-face social networks. This methodology mainly uses data from longitudinal
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studies such as the Framingham Heart Study [49], and the Adolescent Health study [76]
etc, and employ statistical techniques to analyze various factors that can affect the behavior
spread. A wide variety of behavior spreads have been studied using such a methodology,
including smoking [30,195], alcohol consumption [158], health screening [96], drug use [125],
and food consumption [144]. At the same time, there have been some attempts to perform
experimental studies to measure the causal effect of social influence online [24, 58, 161], and
to use online social networks to study and influence real-world behaviors [20,44,111,174].

Since contagions are mostly undesirable, controlling them is a well-motivated and important
problem [119, 186]. The majority of early work (e.g., [4]) used node removal techniques
to block contagion transmission in network representations of populations. Deleting nodes
from a network removes pathways through which a contagion can travel, thus inhibiting its
diffusion. More recently (e.g., [172]), edge removal methods have been studied. There are
many situations in which edge removal is a more pragmatic alternative than node removal.
For example, in Twitter, person A1 may stop following person A2, thereby removing that
tie of interaction; it is most often unrealistic to remove A1 from Twitter. Similarly, political
regimes may have the resources to remove or isolate individuals [171], but this approach has
costs [165] and may not be politically viable.

3.3 Social Network, Health, and Social Media

Health has been studied in the context of social networks in numerous studies spanning
multiple decades. As discussed by Berkman et al., social networks can affect human health
through a variety of mechanisms, including: social influence (via norms and social control);
social support; person to-person contacts; and access to information [14]. Network-based
studies in the recent past (discussed in section 3.2) have also improved our understanding
of how social networks influence the collective dynamics of health behavior. We should
note that the effect of social network ties can be both protective and deleterious on health.
For example, social influences are a primary factor in the adoption of healthy behaviors,
such as compliance with diet and nutrition programs, maintenance of exercise routines, and
adherence to preventive screening recommendations. On the other hand, social network
effects can also lead to risky health behaviors, such as contracting a deadly disease, adoption
of tobacco or other addictive substances, and indulgence in eating junk food.

Social media has become an integral part of day-to-day life among teens and young adults
who are the most active groups of users on the Internet. Trends over the last decade in
the United States show that teens have been consistently surpassing other age groups in
Internet usage by a large margin [114]. Moreover, around three-quarters of the teens who
go online also use social networking sites, Twitter, forums, or other blogging websites. Chou
et al. performed an empirical study to identify the sociodemographic and health-related
factors associated with social media users in the United States [28]. They found that among
the population with Internet access, social media is popular independent of background,
ethnicity, education, or acess to health care. Because it has such a high prevalence among
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the population, social media is an attractive venue for research related to public health.

Social media is also transforming the public health landscape by providing valuable resources
for health communication, online support groups, coaching for weight loss and smoking ces-
sation, and health-related surveillance. Health information dissemination has now become
more interactive and electronic, allowing both organizations and individuals to create, share
and evaluate health-related information quickly [41,162]. Social media also helps in creating
well-connected health-consumer-centric communications networks, where users can share in-
formation, provide suggestions, and consult and post online rankings and reviews of health
providers, hospitals, and drugs [8, 59, 170]. However, user-generated health-related infor-
mation, reviews, and comments can sometimes be biased or influence-driven sometimes.
Therefore, the consumers of such information should be wary and authorities should take
preventive measures to limit the spread of ”popular” but erroneous items online [151].

Support groups and peer-counseling have also extended into the virtual world. Coaching,
abstention and emphathetic interaction between members are now mainly delivered using
web-based tools. For example, web-based smoking cessation programs by QuitNet, Free and
others provide status updates and peer-to-peer messaging to offer newly abstaining smokers
support from members with years of abstention experience [31, 154]. Similarly, the health
care industry is also slowly embracing the social media approaches [29]. For example, a
primary care practice unit called Hello Health uses video chat, Twitter, and other Web 2.0
tools to check their patients and to communicate with them [77].

3.4 Twitter-based Public Health Surveillance

Social media platforms, especially Twitter, are rapidly becoming a key source for public
health surveillance. The accessibility of vast amounts of freely available user-generated
data that can be automatically collected and analyzed has made Twitter a significant ob-
ject of study for health-related behaviors. Twitter has been used for various health-related
surveillance studies, including: real-time monitoring of infectious disease [110]; understand-
ing health behavior sentiments [160]; and analyzing sentiments toward emerging tobacco
products [130]. A significant proportion of this work also looks at predicting health and
emotional issues from Tweets and other behavior indicators such as depression [40] and
post-partum depression [39].

Signals from Twitter has also been used for improving influenza forecasting. Paul et al.
have demonstrated that influenza surveillance signals from Twitter can significantly improve
forecasting [145]. They also found that Twitter data provides better forecasts as compared
to Google Flu Trends data, hence validating the use of social media data sources for influence
surveillance and forecasting. In a separate study, the same group presented an approach for
distinguishing actual flu reporting tweets from concerned awareness-related tweets in order
to improve the quality of influenza surveillance using Twitter [109]. Twitter data has also
been used for examining flu trends at city level. Nagar et al., for example, used geotagged
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tweets from New York City and validated the temporal predictability of daily tweets for
emergency department visits for influenza-like illness [131].

A number of Twitter-based smoking-related surveillance studies have been reported in the
literature. For example, Myslin et al. analyzed the content and sentiments of around 7,000
tweets using machine learning techniques [130]. They found a high prevalence of positive
sentiments toward e-cig and other emerging tobacco products in the tweets, and also that
in general sentiments about smoking were largely positive. Some of the studies have mainly
focused on e-cig marketing on Twitter. Huang et al., for example, examined all e-cig-related
tweets over two months and found that 90% of the tweets they gathered were commercial [85].
In addition, most of these tweets claimed health and smoking-cessation benefits.

Another set of studies analyzed the content of e-cig retail websites and performed surveys to
measure online exposure of smoking-related messaging and advertisements. Grana et al., for
example, gathered and examined the content of e-cig retail websites [68]. Similar to other
studies, they found health-related benefits along with claims of enhancing social status by
e-cig usage. Emery et al., on a different front, used an online survey of adults to analyze
e-cig awareness, use, and information sharing and searching [45]. They found 86% of the
subjects were aware of e-cigs, and that the tobacco users were twice as likely as non-users
to have seen or heard information about e-cigs. In their study, Twitter was found to be a
medium that is used by regular e-cig users 17% of the time for sharing and 9% of the time
for searching e-cig related information.

A few studies have also assessed Twitter social networks revolving around smoking. For
instance, Prochaska et al focused on smoking cessation messages [149]. They found the
existence of several social networks revolving around smoking cessation; however, several of
the accounts were non-active and the content of the messages was not consistent with clinical
guidelines.



Chapter 4

Exposure of a vulnerable population

to smoking-related tweets

4.1 Introduction

Tobacco use is the leading preventable cause of death in the United States, as per the CDC.
The economic costs of tobacco use are estimated to run in the hundreds of billions of dollars
every year, due to lost productivity and increased health care expenditures. Adolescence is
the highest risk period for smoking initiation. Of adults who smoke, 88% report that they
started smoking before age 18 [184]. According to the FDA’s Center for Tobacco Products1,
each day in the US, 3300 kids under the age of 18 years smoke their first cigarette, and 700
kids become daily smokers.

With the recent legalization of medical and recreational marijuana use in various US states,
there is also a need for understanding usage patterns and factors that influence initiation of
marijuana use.

There are many factors associated with youth smoking initiation. Studies have shown that
the smoking status of social network members and pro-tobacco marketing are both important
determinants of the age of smoking initiation [180]. In the age of Web 2.0, the online and
offline social worlds of adolescents are merging at the highest rate - about 75% of teens on the
Internet use social media (such as social networking sites, micro-blogging sites, forums etc) to
connect and communicate with their friends [114]. Since smoking is a social contagion that

1http://www.fda.gov/TobaccoProducts/ProtectingKidsfromTobacco
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spreads through social fabric, understanding the effect of online social world on its diffusion
is an important problem.

Tobacco marketing is heavily restricted in the U.S., to which the tobacco companies have
responded by turning to novel forms of marketing to circumvent these restrictions [6, 78].
Restrictions are comparatively lax on Internet-based marketing so far, partly due to the
relative anonymity afforded by the medium. This offers tobacco marketers a powerful
means of circumventing current marketing restrictions intended to protect public health
from tobacco-related disease. Several studies have shown that the Internet is being utilized
as a “below the line” medium for exposing adolescents and young adults to tobacco pro-
motions [57, 60, 147, 192]. However, it may also be possible to use anti-tobacco messaging
to reduce receptivity to tobacco use [181]. In addition, there are strict restrictions on mar-
ijuana marketing in Colorado, including social media-based marketing. However, exposure
to marijuana-related messages, even if they are not direct marketing messages, may have the
effect of normalizing marijuana use.

Similarly, the presence of large-volumes of smoking-related messaging has the effect of coun-
tering the denormalizing strategy of tobacco control, even if the messages are not promoting
specific brands of tobacco. The promotion of marijuana use has a normalizing effect for
tobacco use as well. Nearly 60% of current and former tobacco users report marijuana use as
well, and 90% of people who have ever used cannabis report having used tobacco as well [2].

Twitter is an interesting platform for such a study because teen Twitter use has grown
three-fold in the past three years and the tweets of 76% of teen users are publicly available
[114, 123]. Small-scale studies of smoking-related messages on Twitter have shown there
is a high prevalence of positive sentiment [130] and, more generally, that Twitter can be
used for tobacco surveillance in ways similar to how it is being used for infectious disease
surveillance [110,160]. However, there hasn’t been a large-scale study of the volumes of pro-
and anti-tobacco and pro- and anti-marijuana messaging on Twitter.

In the present work, we investigate the exposure of teens to smoking-related messaging on
Twitter. We collected tweets corresponding to smoking-related keywords over a period of ten
months to quantify the extent of smoking-related messaging. We train classifiers to discard
the irrelevant tweets, and then categorize the remaining tweets into four classes: pro- and
anti-tobacco, and pro- and anti-marijuana. We treat neutral tweets as pro-smoking because,
as mentioned above, they have a normalizing effect that increases the likelihood of smoking
initiation among non-smokers. We also train classifiers to identify the age group of Twitter
users who are being exposed to these Tweets (and are also generating them). We focus on
whether these users are over or under 18 years of age. Finally, we use a model of Twitter
user behavior to estimate how many of these tweets are likely to be actually read [84].
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Summary of results

We estimate that, in our data set, 69.2% of the tobacco-related tweets are pro-tobacco, and
94.3% of the marijuana-related tweets are pro-marijuana. We focus on 10 heavily tweeting
“key” users for a deeper analysis. We extract a random subset of their followers (N = 736)
and a random subset of the followers of those followers, termed second-degree followers
(N = 922). We find that 36% of the first-degree followers and 33.5% of the second-degree
followers are predicted to be under 18 years of age. We estimate that the first-degree followers
are reading a median of 2.22 pro-tobacco and 3.36 pro-marijuana tweets/day from the key
users, compared with only 0.39 anti-tobacco and 0.0 anti-marijuana tweets/day.

The rest of this chapter is organized as follows. We begin by describing our data set of
smoking-related tweets. After that we present results from training classifiers to categorize
these tweets into the four categories mentioned above. Then we describe how we generated
a data set to infer the age of Twitter users from their tweet content, and present results
of training classifiers. After that we describe the use of a stochastic model of Twitter user
behavior to infer the rate at which a sample of users from our data set are reading smoking-
related tweets.

4.2 Materials and Methods

4.2.1 Tweet classification

Description of data set

We gathered 1% of publicly available tweets matching the following keywords: smoke, smok-
ing, cig, tobacco, and marlboro through the Twitter API. Note that ”cig” would match
cigarette, cigar, ciggy etc. as well. Tweets have been gathered continuously from March 1,
2013 to Jan 30, 2014. This gives us a collection of 106,127,613 tweets. Fig. 4.1 shows the
overall counts of tweets, retweets, and unique IDs on each day.

On average, we received 315,856 tweets/day from 266,966.83 unique user IDs, of which
121,676.49 tweets were retweets. The maximum number of tweets on a given day were
received on April 20, 2013 (seen as the highest spike in Fig. 4.1), which is a counterculture
holiday in North America to celebrate cannabis consumption. The other main spike in Fig.
4.1 is seen on March 13, 2013, which was “no smoking day” in the UK.
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Figure 4.1: Overall counts of tweets, retweets, and unique IDs over time.

Categorizing tweets

We divide the tweet classification problem into a hierarchy of classification tasks as illustrated
in Fig. 4.2. First we separate out irrelevant tweets from the relevant tweets (Task 1), then
we identify tobacco-related vs marijuana-related tweets found in the relevant class (Task 2),
and finally label pro- and anti- tweets in both tobacco (Task 3) and marijuana (Task 4)
tweets sub-classes.

All tweets

Relevant Irrelevant

Tobacco Marijuana

AntiPro Pro Anti

Figure 4.2: The hierarchy of classification tasks.

We evaluated four different learning algorithms for each of the four tasks using 10-fold cross-
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Table 4.1: Sample tweets per label. PTT: pro-tobacco tweets, ATT: anti-tobacco tweets,
PMT: pro-marijuana tweets, AMT: anti-marijuana tweets, and IRT: irrelevant tweets

Label
(Total)

Example Tweets

PTT
(1227)

- I smoke to clear my mind..
- More Doctors Smoke Camels Than Any Other Cigarette -
http://t.co/PCiUSX5U3l

ATT
(957)

- RT @user 1: Don’t smoke cigarettes; there are cooler ways
to die.
- I do wish I had never started smoking kinda

PMT
(1173)

- RT @user 2: We smoke dope all day all night
- Look like Barbie, smoke like Marley...

AMT
(154)

- 7 years in jail for smoking weed here ???? Shit ain’t fun
- I’m so glad I don’t smoke weed lol they tripping

IRT
(489)

- I smell fire smoke again . .
- These firefighters are smoking hot lol

validation on 4000 hand-annotated random tweets. The tweets were first hand-labeled into
five classes based on only text i.e., we did not consider hyperlinks, emoticons or sarcasm
while labeling the tweets. A sample of tweets and number of tweets per label class are shown
in Table 4.1. Standard implementations of the learning algorithms, from the NLTK and
Scikit-learn Python libraries, were employed [146], and randomly selected training(90%) and
testing (10%) data sets were used per fold for the evaluation.

Each classification task uses bag-of-words as features that were gathered after pre-processing
the tweets using standard NLP tools. The pre-processing involved (in sequence): removing
hyperlinks, hashtags, and mentions, correcting colloquial words, removing repeating char-
acters, spelling correction, removal of punctuation, performing lemmatization, and finally
removing stop-words. We also accounted for overfitting and imbalanced data classes by
tuning the classifier parameters.

A comparison between the accuracy of the four classifiers for the tweet classification tasks
is shown in Table 4.2.a. We see that SVMs outperformed both Näıve Bayes (NB) and Max-
imum Entropy classifiers (MaxEnt), and that SVMs with linear kernel performing slightly
better than the rbf kernel on all the four classification tasks. The aggregated accuracy
for the tobacco-related tweet classification was 63.4% and that for marijuana was 72.3%.
The average precision and recall values for each task using the selected SVM-lin classifier
is presented in Table 4.2.b. All values but recall for irrelevant and anti-marijuana tweets
are decent. Once reason for the low recall in these classes could be the limited number of
hand-labeled tweets in these categories.

Using the trained SVM-linear classifiers, we found that around 68% of the total 106 Million
collected tweets were tobacco related, and that more than 69% of this fraction were pro-
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Table 4.2: a) Classifiers’ accuracy comparison for hierarchical tweet classification tasks 1
through 4 using bag-of-words features. b) Average precision, recall, and F1-score using the
selected SVM-lin classifiers for the two classes Cl-1 and Cl-2, in each of 4 tasks. Task 1 is
relevant vs. irrelevant, Task 2 is tobacco vs. marijuana, Task 3 is pro- vs. anti-tobacco, and
Task 4 is pro- vs. anti-marijuana.

Classifier
NB ME SVM-lin SVM-rbf

1
Min 0.870 0.870 0.880 0.873
Max 0.913 0.915 0.930 0.925
Avg 0.888 0.891 0.900 0.898

2
Min 0.817 0.831 0.869 0.871
Max 0.863 0.874 0.920 0.923
Avg 0.843 0.858 0.899 0.893

3
Min 0.734 0.757 0.752 0.729
Max 0.803 0.803 0.807 0.812
Avg 0.767 0.778 0.783 0.771

4
Min 0.856 0.795 0.841 0.841
Max 0.902 0.894 0.924 0.932
Avg 0.876 0.839 0.894 0.881

(a)

SVM-lin
Precision Recall F1

1
Cl-1 0.901 0.995 0.945
Cl-2 0.859 0.221 0.348

2
Cl-1 0.883 0.967 0.923
Cl-2 0.935 0.790 0.855

3
Cl-1 0.805 0.812 0.808
Cl-2 0.756 0.745 0.750

4
Cl-1 0.912 0.974 0.942
Cl-2 0.590 0.286 0.377

(b)

tobacco tweets. Marijuana-related tweets were around 94% pro-marijuana. The summary
of the results is shown in Table 4.3, and the per-month distribution of the relevant tweets in
the four classes is shown in Figure 4.3.

4.2.2 Identifying the exposed population

To identify the Twitter users that get exposed to such smoking related tweets, we explored
the follower network of users who heavily and regularly sent the smoking related tweets.
We used Twitter API and extracted a large subset of the followers (upto two degree-of-
separation) and their timeline tweets. Due to Twitter’s stringent data limits, we employed

Table 4.3: Summary of classification results for smoking-related tweets. Counts and fractions
of tweet in each class. RvI: Relevant vs. Irrelevant, TvM: Tobacco vs. Marijuana, PTvAT:
Pro- vs. Anti-Tobacco, PMvAM: Pro- vs. Anti-Marijuana.

Categories Class 1 count(%) Class 2 count(%)
RvI 99,212,819 (93.5) 6,914,507 (6.5)
TvM 67,306,393 (67.8) 31,906,426 (32.2)

PTvAT 46,591,523 (69.2) 20,714,870 (30.8)
PMvAM 30,087,140 (94.3) 1,819,286 (5.7)
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Figure 4.3: Number of smoking-related tweets per month in the four classes.

the following technique to extract the follower network and timeline tweets:-

(i) First, we identified 100 key users who consistently tweet heavily about smoking using
the gathered tweets from March 01 to May 31, 2013 (window 1 ).

(ii) Then we started extracting the follower network of these users until two degree-of-
separation i.e, their followers and followers of their followers. We could extract follower
network of only 84 key users from window 1 because some of the accounts were suspended,
protected, or had no followers. Also, we extracted at most 25,000 followers per user for
both the hops due to rate limits.

(iii) Towards the end of the tweet collection process, we again identified 100 top tweeters
using tweets from Sept 01 to Nov 30, 2013 (window 2 ), and found 15 key users that are
common between window 1 and window 2. We assume that these users were consistently
tweeting throughout the tweet collection period and therefore their followers are the one
who got exposed to smoking-related tweets the most.

(iv) We then randomly selected 1000 heavily tweeting (i.e.,users with at least 3200 timeline
tweets) direct followers or also known as one-degree-of-separation (1-DoS) followers of the
key users out of total 43,788 extracted followers. However in manual verification of the
key users later, we found that five profiles were either bots or heavy non-english tweeters.
Removing the followers of these users left us with 828 1-DoS followers out of total 36,396.
Similarly, we randomly selected 1000 heavily tweeting two-degree-of-separation (or 2-DoS)
followers out of total 1,849,181 unique followers of 828 1-DoS followers.

(v) Finally, we downloaded upto 3200 most recent tweets from the Twitter timeline of the
selected 1-DoS and 2-DoS followers of the key users for inferring their age as discussed in
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Table 4.4: Tweet categories for the ten selected key users. Note that rows may not sum to
100 because percentage of irrelevant tweets are not shown. The maximum in each row is
bolded.

Tobacco Marijuana
Pro % Anti % Pro % Anti %

User 1 36.84 6.32 55.79 0.0
User 2 54.51 7.7 5.38 0.13
User 3 61.14 15.39 3.83 0.0
User 4 2.39 0.34 93.86 1.71
User 5 27.1 4.8 67.63 0.0
User 6 59.2 18.68 2.98 0.08
User 7 12.57 83.86 2.75 0.03
User 8 57.08 31.32 1.11 0.0
User 9 29.05 60.4 3.71 0.39
User 10 45.62 41.63 3.42 0.18

the next section.

We also used the trained classifiers from the previous section to classify the tweeting behav-
ior of the ten selected key users. For each of them, we give the fraction of their tweets that
are pro- and anti-tobacco and marijuana in Table 4.4. Note that, in keeping with recom-
mendations for ethical social media research [157], we have suppressed the user names. We
find that, of the 10 key users, five are pre-dominantly pro-tobacco, two are pre-dominantly
anti-tobacco, and three are pre-dominantly anti-marijuana.

4.2.3 Identifying the vulnerable population

The aim of the present work is to investigate the exposure of adolescents under the age 18
to smoking-related messaging over Twitter. The Twitter user profile is quite limited, only
containing fields for name, location, website, and description. Some users may choose to
reveal their age in the description, but in general we have to resort to inference methods to
identify age. Various approaches have been tried for this problem [3,134,150].

We employed an approach that make use of only tweets to infer the age of the users. Our
technique focuses only on English tweets by a user, and infer user age into under18 and
over18 age-group classes. The under18 class includes users from ages 11 to 17 inclusive, and
the over18 class comprises of users from ages 18 to 50 inclusive. The various steps involves
in this process are presented next.
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(a) Happy Birthday to Me Tweets (b) Valid Tweets per Users

Figure 4.4: Frequency distributions of: (a) HBTM tweets for ages 11 to 50, and (b) valid
tweets across all users.

Collecting tweet corpus for age classification

Similar to [3], we searched for tweets matching two templates using Twitter’s search API:
“happy Nth birthday to me” and “happy birthday to me #N”, where N was replaced
successively with numbers 11 through 50. This gave us 368 unique English speaking users
in under18 class, and 1037 users in over18 class. We collectively call these users “Happy
Birthday to Me” (or HBTM ) users. A distribution of HBTM users is shown in Figure 4.4.a.
The histogram shows that users from ages 16 to 23 wished themselves birthday on Twitter
more often compared to other age groups, and that the maximum number of users were
returned for age 21. We also observe local peaks at the ages 30, 40 and 50.

For each of these HBTM users, we downloaded up to 3200 most recent tweets from their
Twitter timeline. Each user is now represented by a collection of its timeline tweets, and can
further be used as a training instance for supervised learning to infer the age of the other
Twitter users as discussed next.

Age related feature extraction

For the classification, we first filter the tweets (and consequently users) that are suitable for
the learning process and then gather the features from these tweets to infer the age-group
labels. A tweet is valid for learning only if it is in English, and contains one stop word and
two regular words. Stop words are needed to identify language of a tweet, and regular words
helps in feature extraction. Since we focus on English tweets, we remove all non-english
language tweets.
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Table 4.5: Numeric features captured from the timeline tweets. For the first seven features,
we also took the mean across non-zero instances.

Numeric Feat Description

urls avg num of times urls used
hashtags avg num of times hashtags used
mentions avg num of times mentions used

contractions avg num of times word contractions used
repPuncts avg num of times repeated punctuation used
anLengths avg num of times alpha-numeric lengthing used

spellMistakes avg num of time spelling mistakes were made
avgWordLeng avg word length

words avg num of words used (i.e., tweet length)
tweetsPerDay avg num of tweets per day

A frequencty distribution of valid timeline tweets for all the extracted HBTM users is shown
in Figure 4.4.b. Although the frequency of valid timeline tweets is maximum for 2200-2399
bucket, we choose to consider only 150 valid tweets out of 400 most recent timeline tweets per
users for feature extraction. It is because age is a dynamic characteristic of an individual that
changes over time, and very old tweets might not be a good representatives of the current
age of a user. We also trained and compared the classifiers (discussed in next subsection)
using 100 and 200 valid tweets but the performance was best with 150 valid tweets. We did
not consider the users with less than 150 valid tweets. Discarding such users left us with 167
under18 and 621 over18 users for the training purposes.

We processed the valid tweets to count and remove: urls, hashtags, mentions, alphanumeric
lengthnings, word contractions, repeated punctuation, and stop words. The spelling mistakes
were also counted but were not corrected in order to preserve the word selection behavior
of the users. By doing this, we gathered 17 numeric features per user and 32,421 bag-of-
words in total to construct the training and testing data for the supervised learning. A list
of numeric features and their brief description is shown in Table 4.5. These features were
obtained by first adding them across all the 150 valid tweets of a user and then taking mean.
For the first seven features, we also computed the mean only over the tweets in which that
particular feature was used at least once (later shown with prefix nz ). The mean over all
tweets captures the tendency of a user to use a feature, where as mean over only non-zero
instances measures the frequency of a feature when used.

Age classifier evaluation

We evaluated SVM and Random Forest classifiers using 10-fold cross-validation on the bag-
of-words (BoW) and numeric features separately. We also employed a classifier stacking
technique similar to [150] in order to combine the two types of features. A standard imple-
mentation of the algorithms from the Scikit-learn Python libraries were used [146]. Since
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the data in the two age classes is unbalanced, we again performed the evaluation with a
wide range of classifier parameters. We selected the parameter set that gave us a balanced
classifier i.e., a classifier with reasonably good accuracy, less overfitting and high precision
and recall for the smaller data class.

The evaluation results for age-classification are shown in Table 4.6. We have only compared
the average results for a balanced classifier for each classifier-feature set combination. Results
show that SVM classifiers with linear kernel again outperformed random forest classifiers
using both BoW and numeric feature set. However, stacking the two selected balanced
classifiers did not further improve the results. The exact same values for the the classifier
with BoW and stacked features show us that numeric features did not contribute enough for
the age inference.

Lists of top five most informative features for age classification identified by the selected
classifiers using bag-of-words(BoW) and numeric features are shown in Table 4.7. The most
informative words show the clear difference in the word selection by the two age-groups.
Under18 users, for example, talk more about school and use words such as cute, hate etc
more often than then their counter part. Similarly, the over18 age-group users talk more
about work, class, drinking etc more often then the under18.

Also, the most important numeric features of the two age-groups in the Table 4.7 suggest
that users in under18 class use similar number of urls, word contraction, and mentions on
average per tweet as compared to over18 class users. On the other hand for the over18
class, number of hastags used, word length, and number of words used on average per tweet

Table 4.6: A summary of accuracy of the balanced results for two classifiers using bag-
of-words (BoW), numeric and stacked features. Acc. Train and Acc. Test are the average
accuracy on training and testing data respectively. Prec. Under18 and Rec. Under18 denote
the average precision and recall values for the class Under18. We see that SVM with a linear
kernel perform the best for both type of feature. However, stacking the continuous features
did not help in further improving the results.

Classifier
SVM-lin randForest

BoW
Acc. Train 0.951 0.965
Acc. Test 0.848 0.780

Prec. Under18 0.627 0.404
Rec. Under18 0.631 0.117

Numeric
Acc. Train 0.757 0.965
Acc. Test 0.728 0.711

Prec. Under18 0.303 0.286
Rec. Under18 0.230 0.248

Stacked
Acc. Train 0.951
Acc. Test 0.848

Prec. Under18 0.627
Rec. Under18 0.631
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Table 4.7: First five most informative bag-of-word (BoW) and numeric features used by
trained SVM-lin classifier to infer age of twitter users in under 18 and over 18 age-groups.
The prefix nz in numeric features represents the feature where the mean was taken only
over the tweets in which that feature was used at least once.

under 18 over 18
BoW

school work
cute class
hate drink

actually keep
justin senior

Numeric
nz urls hashtags

contractions avgWordLength
nz mentions words
nz repPuncts nz anLengths
repPuncts anLengths

Table 4.8: Summary of age classification results for exposed population. 1-DoS and 2-DoS
are the selected one- and two- degree of separation followers of the key users.

Twitter
Users

under
18

count(%)

over 18
count(%)

Total

1-DoS
Follower

265
(36.0)

471
(64.0)

736

2-DoS
Follower

309
(33.5)

613
(66.5)

922

proved to be better identifiers. Also more interestingly, under18 users on average tend
to use repeated punctuation in their tweets in similar fashion, whereas pattern of using
alphanumeric lengthening in tweets on average is similar for over18 users.

Infer exposed followers’ age

The selected classifier was used to infer the age of the one- and two-degree of separation
followers of the key users. We ran the classifier on the timeline tweets of the exposed
population of 1-DoS and 2-DoS that we discussed in the Section 4.2.2. The results of the
age-classification are presented in Table 4.8. We found that a substantial fraction of both 1-
DoS (36%) and 2-DoS (33.5%)followers of the key users are under age 18. We could infer the
age of only 736 out of 828 1-DoS and 922 out of 1000 2-DoS followers because the remaining
users did not have 150 valid tweets in their 400 most recent timeline tweets.
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4.2.4 Modeling tweet reading behavior

To model user behavior, we follow the work of Hogg et al. [84]. Their stochastic model
assumes that a Twitter user is in one of four states: away from Twitter (Away), visiting
Twitter (V isit), reading tweets (Read), or responding to tweets by retweeting, replying, etc.
(Respond).

We wish to estimate the rate at which a user, u, sees tweets from a chosen “key user”. We
refer to this as the exposure rate.

We will proceed as follows. We will estimate the probability that the user u has received
L more tweets after the key user’s tweet when u actually checks his Twitter feed. We will
use an estimate of the probability that u reads past the Lth tweet in his feed to obtain our
required exposure rate. This model is illustrated in Figure 4.5.

The rate at which a user, u, receives tweets from his friends is, on average,

R(u) = Nf (u)R′f (u),

where Nf (u) is the number of friends of u, and R′f (u) is the average tweet rate of u’s friends.
Calculating R′f (u) would require obtaining the tweets of all the friends of each user u, which is
very time-consuming due to Twitter’s rate limitations. Therefore, following [84], we estimate
R(u) as,

R(u) = Nf (u)R′,

User u

Key 
user

Other friends (followees) of u 

Tweets received by u:
Tweet 1
Tweet 2
...
Tweet L
Tweet from key user

Figure 4.5: Tweet reading model. To estimate the rate at which user u reads tweets from
the key user, we have to account for the tweets arriving from other friends (followees) of u.
If there are L tweets that have arrived after the key user’s tweet, before u checks his Twitter
feed, we need to estimate the probability that u will read past L tweets to see the key user’s
tweet.
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where R′ is a measure of the average tweet rate of all users. The tweet rate distribution
is heavy-tailed, as shown in Figure 4.6.a, so we use the median and not the mean. In the
dataset considered, we obtain R′ = 12.0877 tweets/day.

Next we need to estimate the number of times user u checks his Twitter feed each day, i.e.,
his visit rate. Conservatively, we assume that this is just R′(u), the rate at which u tweets.
In practice, it is possible that a user checks his Twitter feed sometimes without sending out
a tweet, and also that he sometimes sends out a tweet without reading any tweets in his
timeline. Since we don’t have any information available about the rates of these behaviors,
we use R′(u) for u’s visit rate.

Suppose that when user u checks his Twitter feed, he has received a tweet from a key user,
followed by L more tweets. The probability that the key user’s tweet is read by u can be
written as [84],

Pread(u) =
∑
L

Prec(L|u)Pview(L), (4.1)

where Prec(L|u) is the probability that user u receives L more tweets after the tweet from
the key user, and Pview(L) is the probability that u goes past L items in his feed.

Hogg et al. [84] approximate Prec(L|u) as a competition between two Poisson processes with
constant rates: one process corresponding to the random arrivals of tweets into user u’s
timeline, and the other corresponding to u’s random visits. The first Poisson process has
rate R(u). Since we are assuming that the rate at which u visits Twitter is the same as his
rate of tweeting, the second Poisson process has rate R′(u). User u will see L tweets in his
Twitter feed on his next visit if the first Poisson process has L “arrivals” before the second
Poisson process has one arrival.

This is a straightforward question. It is solved by merging the two processes into one with
rate R(u) + R′(u). The probability that the next arrival is from the first Poisson process is
given by

p1 =
R(u)

R(u) +R′(u)
. (4.2)

Now the probability of seeing L tweets before the next visit is the same as seeing L “successes”
before the first failure, i.e., a geometric distribution. Therefore,

Prec(L|u) = pL1 (1− p1).

The mean of this distribution is p1/(1− p1), which is equivalent to R(u)/R′(u). This makes
intuitive sense, because we expect that, on average, the rate at which tweets “accumulate”
in the Twitter feed of user u is the ratio of the rate at which the tweets arrive and the rate
at which u checks his Twitter feed.

To estimate the second term in equation 4.1, Pview(L), Hogg et al. reference the “law of
surfing” [18], which says that the probability a user views m items in a list before stopping
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Figure 4.6: (a) The distribution of tweet rates per user. (b) The probability distribution
that a user will read beyond L tweets in his Twitter feed [18, 83, 84]. (c,d) Estimated tweet
exposure distributions in tweets/day for under 18 first-degree followers of the key users to
pro-tobacco and pro-marijuana tweets. Exposure rates are binned by rounding to the nearest
integer.

has an inverse Gaussian distribution,

P (m) = e
−λ(m−µ)2

2mµ2

√
λ

2πm3
.

We need the fraction of users who view at least L + 1 tweets, for which we have to take
the complementary cumulative distribution of P (m), which is also known as the survival
function. The parameters are chosen to be µ = λ = 14, based on [83, 84]. The resulting
probability distribution is shown in Figure 4.6.b.

We can now combine the results using equation 4.1 to compute an estimate of the probability
that user u will read a key user’s tweet. As an example, suppose that u has 99 friends who
tweet at average rate R′ = 12.0877 tweets/day, and that u himself tweets at the same rate,
which means R′(u) = 12.0877 visits/day. In this case we get, from equation 4.2, p1 = 0.99.
Plugging everything into equation 4.1 gives us Pread(u) = 0.128. This means that even
with 98 competing tweeters, a key user’s tweets will be read by an average follower with
probability 0.128.
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Table 4.9: Estimated number of tweets of the key users read by their first degree followers
in each category per day. “All” refers to the entire set of selected first-degree followers,
ignoring those whose accounts are protected or have been suspended. “Under 18” refers to
those first-degree followers whom we have classified as being under 18 years of age.

Tobacco Marijuana
Pro Anti Pro Anti

All
Mean 4.27 0.74 6.41 0.0002
Stdev 5.97 1.02 9.06 0.002
Median 2.38 0.41 3.54 0.0

Under 18
Mean 4.67 0.81 7.06 0.0003
Stdev 6.71 1.15 10.17 0.004
Median 2.22 0.39 3.36 0.0

Next we combine the results from the preceding sections to estimate the rate at which users
who are under 18 years of age are seeing pro-tobacco and pro-marijuana tweets.

4.3 Combining the Results

For each user, u, who is a follower of one of our 10 selected “key users”, we estimate the
probability that they read a tweet from the key user in one day. In equation 4.2, we replace
R(u) with Nf (u)R′−R(ukey), where R(ukey) is the tweet rate of the key user that u follows.
Then we calculate Pread(u) as in the example in the previous section. Multiplying Pread(u)
by the corresponding key user’s tweet rate gives us the estimated average number of tweets
by the key user that u reads in a day.

However, not all of the key users’ tweets are relevant. Some are not tobacco or marijuana-
related. Therefore in each case, we multiply the key user’s tweet rate by the fraction of their
tweets that are pro- and anti-tobacco and marijuana. Taking the mean across all first-degree
followers gives the mean exposure rate to each category of tweet for first-degree followers of
the key users.

We do the same calculations for just the first degree followers of the key users. The results
for both sets of users are summarized in Table 4.9.

The standard deviations in Table 4.9 are so high because the distributions are skewed to
the right (i.e., heavy tailed), as shown in Figures 4.6.c and 4.6.d. Also note that these are
the estimates of the exposure to just the tweets from the key users. Other followees of the
first-degree followers may also be tweeting about tobacco and marijuana. Thus the estimates
in Table 4.9 are under-estimates of the actual exposure rates of the first-degree followers to
tobacco and marijuana-related tweets.
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4.4 Contributions and Discussion

Our contributions are listed below. This study is under review for publication in a journal
[177].

In this work we analyzed a large data set of tweets obtained through the Twitter API
over the period March 1, 2013 to Jan 19, 2014. We trained machine learning classifiers
to categorize the tweets into pro- and anti-tobacco and marijuana categories. We found
that tobacco-related tweets tend to be somewhat pro-tobacco: 69.2%. We also found that
marijuana-related tweets are overwhelmingly pro-marijuana: 94.3%. One caveat to note here
is that the set of keywords we chose could skew these numbers. In particular, there are many
slang words associated with marijuana, which were not included in our search terms. Doing
a more comprehensive search and analysis of the resulting data is an important direction for
future work.

We chose 10 heavily tweeting “key users” to focus on for detailed analysis. We crawled
their follower network to two degrees of separation and selected a random subset of their
first-degree and second-degree followers.

To identify underage Twitter users, we created a different data set by search for “happy
birthday” tweets. Using this data set, we trained machine learning classifiers to predict
whether a user is over or under 18 years of age based on their tweet content. This trained
classifier was then used to classify the previously selected followers. We found that 36% of
the first-degree and 33.5% of the second-degree followers are predicted to be under 18 years
of age. This means that a significant number of adolescents are being exposed to pro-tobacco
and pro-marijuana messaging on Twitter, which could be a cause for concern.

Quantifying the extent to which online exposure to pro-tobacco and pro-marijuana messaging
effects smoking initiation and maintenance is an open question. In particular, a study like
ours needs to be supplemented with a survey designed to elicit information about the effects
of social media messaging on smoking behavior. This is an important direction for future
research.

Finally, we used the model of Hogg et al. [84] to estimate the number of tweets in each
category that the first-degree followers of the key users might be reading. Since the distribu-
tions are heavy-tailed, we suggest that the median is the most meaningful estimate. We find
that underage first-degree followers are exposed to a median of 2.22 pro-tobacco tweets/day
and 3.36 pro-marijuana tweets/day. Once again, this number is skewed by our choice of key
users, though only to an extent. We chose the most heavily tweeting and persistent key users
for our analysis, so the numbers we have calculated are representative of the most common
exposure. Another caveat here is that these number are an under-estimate. This is because
we don’t know how many other followees of these users are also tweeting about tobacco and
marijuana use.

Overall, we have shown how to address an important public health question through ma-
chine learning-based analytics of Twitter data. Tobacco and marijuana use are complex
phenomena, affected by many factors. Efforts to limit the initiation of underage populations
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into these behaviors need to take a multi-pronged approach. Our study suggests that under-
standing and regulating social media may be an important part of this approach, given the
extent of pro-tobacco and pro-marijuana messaging to found, and the significant presence
of underage populations on social media, in positions where they can be heavily exposed to
these messages.



Chapter 5

Find and Analyze the Hotspots of

Electronic Cigarette-related Tweets

5.1 Introduction and Motivation

Electronic cigarettes and other vaping devices (referred to as e-cig hereafter) are battery
powered devices that deliver nicotine in the form of heated vapor. These devices are collec-
tively called electronic nicotine delivery systems (or ENDS). The popularity and use of these
products have grown enormously in the past few years. For example, King et al. found that
e-cig awareness and use have doubled among adults between 2010 and 2013 [100]. Morover,
the Center for Disease Control and Prevention (CDC) has reported that e-cig use tripled
among middle and high school students between 2013 and 2014 [23].

Given the sudden multi-fold rise in the popularity of e-cig, it is important to identify spatially
the regions where they are most activvely used. In this study, we used e-cig-related tweets
to identify and analyze e-cig hotspots in the United States. A hot-spot of e-cig tweets can
be defined as a statistically anomalous cluster in space and time where considerably higher
numbers of e-cig tweets are observed than expected. High e-cig related activities on Twitter,
such as e-cig information searching and sharing and heavy e-cig marketing and promotion,
makes Twitter a very good platform for an e-cig surveillance study.

We used spatiotemporal scanning [105] of non-commercial geotagged e-cig tweets to identify
these clusters. This required us to first identify the non-commercial e-cig tweets in the US
and then to perform a spatiotemporal analysis using the spatial location and time stamp of

40
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the tweets to identify the anomalous clusters across space and time. Using machine learning
tools and techniques, we also analyzed the sentiments of the tweets and the age group of the
users within these anomalous clusters.

Spatial scan statistics is widely used across many disciplines to identify anomalous clusters.
It is used heavily in the surviallance of diseases such as: respiratory infectious [128]; food-
and water-borne diseases [121]; sexually transmitted diseases [81]; vector-borne diseases [61];
and cancer [73]. It is also used for spatiotemporal analysis in, for example, studies related
to: suicide [93]; natural disaster [167]; criminology [202]; forestry [48], and history and
archeology [193]. Most recently, Twitter data has been used for examining flu trends at
the city level using spatiotemporal scanning. Nagar et al used geotagged tweets from New
York City, and validated the temporal predictability of daily tweets for visit to emergency
departments for influenza-like illness [131].

A few Twitter-based e-cig surveillance studies have been reported in the literature. For
example, Myslin et al. analyzed the content and sentiments of around 7,000 tweets using
machine learning techniques [130]. They found a high prevalence of positive sentiments to-
ward e-cig and hookah and also that sentiments were largely positive about smoking itself.
Some of the studies have focused mainly on e-cig marketing on Twitter. Huang et al., for
example, examined all e-cig-related tweets over a two-month period and found that 90%
of these tweets were commercial [85]. They discovered that the tweets were not only over-
whelmingly commercial, but also that most of them claimed health and smoking-cessation
benefits. Grana et al. gathered and examined the content of e-cig retail websites [68] and
found similar health-related benefits listed on the websites. Emery et al., on a different front,
used an online survey of adults to analyze e-cig awareness, use, and information sharing and
searching [45]. They found that 86% of the subjects were aware of e-cig, and that tobacco
users were twice as likely as non-users to have seen or heard information about e-cig. In
their study, Twitter was also found to be a medium that is used by regular e-cig users 17%
of the time for sharing and 9% of the time for searching e-cig related information.

Unlike previous Twitter-surveillance studies on e-cig that either looked at small datasets
or were focused on commercial tweets, we analyzed a reasonably large number of non-
commercial geotagged e-cig tweets from the United States spanning two years. As these
tweets were geotagged by users, our dataset was especially suited to spatial analysis. None
of the previous e-cig studies have conducted a spatial analysis using Twitter data. The results
from this study suggest that three-quarters of the spatiotemporal hotspots for e-cig tweet
contain more pro-ecig tweets and more under-18 users compared to the national averages.
Also, the majority of these hot-spots are located on the west coast of the US.
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5.2 Materials and Methods

5.2.1 Description of the Dataset

Using the Twitter Streaming API, we collected tweets containing geographic metadata. This
search was capped by Twitter’s API limit of 1% of total tweet bandwidth. A tweet contains
geographic metadata when either a users explicitly specify the tweet location using a mobile
device or mentions about a place in the tweet. The date range used for this analysis was
October 15, 2012 to October 15, 2014.

We filtered this dataset further using the following e-cig related keywords: e-cig, electronic
cig, vape, vaping, and ehookah. This gave us a total 83,708 e-cig-related tweets, among which
62,894 tweets fell within continental US bounding box. The distribution of the filtered tweets
over time is shown in Figure 5.1. A rise in the number of tweets can be observed over the 24
months with a global maximum in May, 2014. We believe that this increase is due to both
an increase in popularity of e-cig and a changed data collection technique.

Figure 5.1: Overall counts of geotagged e-cig tweets per month.
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5.2.2 Identifying Non-commercial E-cig Tweets

Our focus is on non-commercial tweets alone because they allow us to study the sentiment
and population of the general public tweeting about e-cig. As previous studies have found
that the majority of e-cig tweets are commercial [85], an important step was to identify
non-commercial tweets from the collected e-cig tweets. We employed supervised learning
techniques to identify the non-commercial tweets in the collected dataset.

Training data

First, we replaced the hyperlinks in the tweets with the hyperlink information using a com-
bination of domain name, user name, and photo tags. The following format was used:

a) A photo sharing using a hyperlink is represented using the “<photo>” tag, such as
[<instagram.com><photo>] if an Instagram picture was shared.

b) Hyperlinks leading to domain “twitter.com” may contain users’ screen name or both
screen name and photo id. Such hyperlinks are represented as [<twitter.com><userScreenName>]
or [<twitter.com><userScreenName><photo>].

c) Only the domain name is mentioned for the hyperlinks for which no other information
could be inferred.

d) The tag “<urlError >” was used when a domain name was unable to be retrieved from
the hyperlink. We used LongURL API to obtain the hyperlink information [120].

Next, we chose 5,000 random e-cig tweets and had these labeled on Amazon mechanical turk
(AMT). The scorers were instructed to label the tweets based on the text and the hyperlink
information where this was present. A tweet could be labeled in one of three categories:
commercial, non-commercial, and irrelevant. A commercial tweet is a tweet that contains
promotional text related to e-cigarette or other vaping products or a tweet that appears
to be from a commercial website; a non-commercial tweet shares personal liking, disliking,
experiences, habits, and current activities related to e-cig; and the irrelevant class contains
tweets that are not about e-cig, tweets with not enough information for labeling, or tweets
that are not in English.

The average agreement between two scorers for the given labeling task was 83%. This gave
us 292 commercial, 3,744 non-commercial, and 114 irrelevant tweets. A sample of tweets per
label class are shown in Table 5.1. Since we are interested in the non-commercial tweets,
we merged the commercial and irrelevant classes into a single class (merged-irrelevant) for
training the classifiers. This merging gave us more balanced training data for the binary
classification task.
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E-cig related feature extraction

We gathered features for classifier training by pre-processing the tweets using standard NLP
tools and counting various entities in the tweets. First, the URL information tags were
converted into strings based on tag types to make them more machine readable. For ex-
ample, tags [<instagram.com><photo>] and [<twitter.com><userScreenName><photo>]
were converted into strings domainame photo and domainame username photo respectively.
We then removed the ‘#’ character from the hashtags but preserved the hashtag string and
fully removed the mentions from the text. We also counted the number of occurrences of
urls, hashtags, and mentions in a tweet, and appended strings in the text to note one or
more occurrences. For example, presence of a single hashtag in the tweet was noted using
hasone hashtag, while more than one mention was noted using hasmore mentions.

We also identified the presence of self and other words in the tweets using the word list
presented in [109], and noted this by appending has self or has other to the tweet. Finally,
we modified the tweet text by correcting: alphanumeric lengthnings, word contractions, and
repeated punctuation, as well as removing the stop words. We then created uni-, bi- and
tri-grams from all these gathered features, and selected 15,000 of the most useful n-grams
for analyzing and evaluating the classifiers. We identified the non-English tweets using stop
words and discarded these because our focus in this study is only on English tweets.

Table 5.1: Sample e-cig tweets per label. comm-ecig: commercial e-cig tweets, ncom-ecig:
non-commercial e-cig tweets, and irr-ecig: irrelevant e-cig tweets.

Label
(Total)

Example Tweets

comm-ecig
(292)

- Don’t cut yourself short in this vape lyfe! COMING
SOON! FIRST OFFICIAL E LIQUID/E JUICE [<insta-
gram.com><photo>]
- Do you think E-cigarettes are effective? Find out the pop-
ular votes [<www.tellwut.com>] @user 1

ncom-ecig
(3744)

- Smoking an e-cig while walking in a mall #areuretarded
#ulookit
- I’m at The Daily Vape [<www.swarmapp.com><photo>]
- @user 2 vape me

irr-ecig
(114)

- E-cigarette
- Kopi biskuit vaping,tiap pagi begini sarapan nya,seminggu
paling tipes - - (at CIMB NIAGA) [<urlError><photo>]
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Table 5.2: Some of the most informative features used by the trained SVM-lin classifier to
label non-commercial and merged-irrelevant tweets. The merged-irrelevant class consists of
tweets from commercial and irrelevant classes.

non-commercial merged-irrelevant
hasone url hasmore mentions kedai (means shop in Malay)
ban has other hasone url hasone mention
domainame username photo vape hahaha
domainame has self vape hose
vaping free

Classifier evaluation

A set of SVM classifiers was evaluated for the binary classification task — non-commercial
vs merged-irrelevant— using 10-fold cross-validation and randomly selected training(90%)
and testing (10%) data for each fold. A standard implementation of the algorithms from the
Scikit-learn Python library was used [146]. As the data in the two classes was unbalanced,
we performed the evaluation with a wide range of classifier parameters and selected the
parameter set that gave us a balanced classifier. A balanced classifier is a classifier that give
us reasonably good accuracy, less overfitting, and high precision and recall for both data
classes.

Using this process, we selected an SVM classifier with a linear kernel for the given classifi-
cation task. This classifier gave us average accuracy of 0.919. Average precision, recall, and
F1 score for the non-commercial class (merged-irrelevant class) were 0.956 (0.543), 0.955
(0.539), and 0.955 (0.535), respectively. A set of the most informative features used by this
classifier to distinguish the two classes is shown in Table 5.2.

The features in the two classes are very different from each other. The most informative
features for the non-commercial class, such as “hasone url hasmore mentions” and “do-
mainame username photo”, suggest that a single URL along with more than one mention
in a tweet, as well as a shared Twitter picture in a tweet, are good identifiers of a non-
commercial e-cig tweets. A user talking about herself (captured using has self ), and words
such as “ban” and “vaping” are also very informative for labeling this class. We verified our
data and found that there are many non-commercial tweets where a user share a picture with
other users using mobile phone applications such as Swarm [169] or Instagram [88]. Swarm
also allows users to check in at places and share their location on social media.

The informative features for the merged-irrelevant class suggest that features such as the
trigram “has other hasone url hasone mention” and the words “kedai” and “free” are the
good identifiers of this class. If we observe closely, the tri-grams and the words exhibit the
essence of advertising tweets: the tweets address other users (captured by feature has other);
company’s products are promoted by sharing its URL (hasone url)and Twitter handle (ha-
sone mention); and the deals and promotions (free) are shared. The feature “kedai”, mean-
ing shop in Malay, is a good identifier of commercial (non-English) tweets.
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Figure 5.2: Non-commercial e-cig tweets and unique users over four-week time windows.
Total 54,597 tweets and 41,593 unique users.

Non-commercial e-cig tweets in the US

For unlabeled e-cig tweets, as with the training data we replaced the hyperlinks with the
appropriate tags and preprocessed them to obtain various features. Using the selected clas-
sifier on this dataset, we found that 54,597 (87%) of the e-cig tweets from the continental
US were non-commercial. We aggregated the tweets in four-week windows and plotted them
along with unique users in Figure 5.2. A total of 41,593 unique users posted these tweets. In
order to adjust the day-of-week effect, we aggregated daily data into weeks and then clubed
these into groups of four to obtain non-overlapping, month-equivalent time windows for the
analysis.

5.2.3 Spatiotemporal Scan of Non-commercial E-cig Tweets

The next important step in our study was to identify the statistically significant anomalous
clusters (or hotspots) of non-commercial e-cig tweets in the US. We used spatial scan statistics
for this purpose. This technique is widely used in epidemiology for disease surviallance
studies to monitor or detect specific diseases as discussed earlier.

Detection of anomalous spatial clusters involves a series of steps, beginning with obtaining
case counts and population-at-risk data for a set of spatial locations and then performing
randomization testing to identify statistically significant clusters of these locations. A brief
overview of these steps can be found in [132]. These steps are based on the spatial scan
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statistics approach of Kulldorff [105].

Obtaining case counts and population-at-risk

In a disease surveillance study of, for example, influenxa-like illness the case counts are
obtained by collecting the number of doctor visits for influenza-like illness per county or zip
code after every given time window. Similarly, the population-at-risk are the individuals in
the county or zip code who have the potential to contract the flu in the given time period.
For our study, the number of unique users tweeting about e-cig from a particular county is
equivalent to the case count, and the individuals who have the potential to tweet about e-cig
from that county are equivalent of the population-at-risk.

We calculated the case counts and population-at-risk for each county per four-week time
window (hereafter referred to as a time window). Only tweets that fell within the continental
US bounding box, and where country code equaled “US” and language code equaled “en”
were used. The population centroids of each county [183] were treated as a spatial points at
which spatial scanning was later performed.

The e-cig tweet case counts were obtained by aggregating e-cig tweets at county level for each
time window in the following way. First, we identified which county each tweet belonged to
using the tweet’s geo-coordinates and county polygons. Next, we assigned the unique user
count of these tweets per county to the population centroid of each county. This is equivalent
to obtaining the number of unique disease cases per county for four-week period. Since we
needed a set of spatial points to perform the scan statistics, the counts were assigned to the
population centroids.

The population-at-risk count were obtained by sampling all the HealthMap geotagged tweets
time window by time window. We first collected a random 2% sample of the HealthMap
geotagged tweet data and then calculated the population-at-risk per county using the the
same approach as when computing e-cig tweet case counts. We gathered a total of 20,323,775
tweets and 8,384,647 unique users by sampling the data for the study period. The distribution
of the tweets and users is shown in Figure 5.3.

Model of data and score function

The discrete Poisson model [105] was used for the spatiotemporal analysis of e-cig tweet
clusters. With this model, the number of cases at each spatial point is Poisson-distributed.
This means that under the null hypothesis the disease rate is uniform everywhere and that
the number of cases at each spatial point is proportional to the population-at-risk at this
point. Therefore, the goal of scan statistics is to find the spatial points (or clusters of spatial
points) S where the disease rate is higher inside than outside.

We adopted the most common hypothesis testings approach that was also used in [132]. As
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Figure 5.3: Two percent random sample of all HealthMap geotagged tweet from continental
US per four-week time windows. Total 20,323,775 tweets and 8,384,647 unique users.

per this approach, we first compute a score F(S) for each spatial point S using the likelihood
ratio with the maximum likelihood estimates of any free parameters, and then calculating the
statistical significance of clusters by randomization testing using a large number of replicas
of the data.

5.2.4 Analysis of anomalous spatiotemporal clusters

After identifying the statistically anomalous cluster, the next step was to analyze these with
respect to pro-e-cig sentiments and users in the under-18 age group. We used supervised
machine learning techniques to perform the sentiment analysis of the tweets and to infer the
users’ age. The process to identify the pro-e-cig sentiment is discussed next.

Identifing pro-e-cig sentiments in non-commercial tweets

Training data
We selected all 3,744 hand-labeled non-commercial e-cig tweets from the previous AMT task
and had these labeled as pro-ecig, anti-ecig, and notSure-ecig on AMT. The pro-ecig tweets
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Table 5.3: Sample non-commercial e-cig tweets per sentiment labeling classes: pro-ecig,
anti-ecig, and notSure-ecig.

Label
(Total)

Example Tweets

pro-ecig
(1929)

- E-cig till it dies!
- I’m at GASPANIC bar And Restaurant / THE VAPE
SHACK[<www.swarmapp.com>]
- LAME @user 1: I think I really lost my vape pen. This sucks.

anti-ecig
(307)

- I will never understand why people smoke pot/ vape.
- Kid in front of me at graduation is wearing a baseball hat with a tassel
and smoking an e-cigarette. WORST.

notSure-ecig
(343)

- I just experienced the weirdest talk about electronic cigarettes
- my mom is sitting here smoking an e-cigarette in the middle of the
airport and everyone’s staring.
- vape pens are stupid af but they’re so addicting

are the tweets that show a positive opinion, sentiment, or experience about e-cig, and also
the tweets that share and/or support the activities associated with e-cig usage. The anti-
ecig tweets are the tweets that opposes, discourages, or does not support e-ciga usage. The
category notSure-ecig includes all the tweets where identifying the polarity of opinion about
the e-cig usage is difficult. This can be the case where the content of a tweet is insufficient to
make a call on its polarity, or where a tweet contains both positive and negative sentiments.

The average agreement between the pairs of scorers for the given labeling task was 69%. The
labeling gave us 1,929 pro-ecig, 307 anti-ecig, and 343 notSure-ecig tweets. There were 1,165
tweets for which no-agreement was found between the scorers. A sample of tweets per label
class are shown in Table 5.3. As we are interested in analyzing the anomalous e-cig tweet
clusters with respect to pro-ecig tweets, we merged the anti-ecig and notSure-ecig classes
into a single class (merged-other) for training the classifiers similar to the last time. This
merging also helped us in balancing the training data to an extent for the binary classifica-
tion task.

Feature extraction and classifier evaluation
The tweet preprocessing and features extraction process for this supervised learning task was
very similar to that discussed in Section 5.2.2. We appended the hashtag string and URL
information strings; the number of occurrences of urls, hashtags, and mentions was noted; the
presence of self and other words was captured; and also the text of the tweetswas modified
in the same way as before. However, in addition to these features, we also extracted positive
and negative emoticons in the tweets using the emoticon library similar to the one presented
in [1]. The presence of positive and negative emoticons was noted using has emotpos and
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Table 5.4: Some of the most informative features used by the trained SVM-lin classifier
to label pro-ecig and merged-other tweets. The merged-other class consists of tweets from
anti-ecig and notSure-ecig classes.

pro-ecig merged-other
has self has other
vaping cigarettes
love hate
has emotpos gay
quit smoking ban
domainame username photo wonder

has emotneg respectively.

Using these features, we evaluated a set of SVM classifiers for this binary classification task.
The 10-fold cross-validation and parameter tweaking was performed in the same manner as
discussed in section 5.2.2. Using this process, we selected an SVM classifier with average
accuracy of 0.798. Average precision, recall, and F1 score for the pro-ecig (merged-other)
class using this classifier were 0.847 (0.622), 0.892 (0.525), and 0.868 (0.565), respectively.

Some of the most informative features used by the classifier to distinguish between the two
classes are shown in Table 5.4. There is a visible difference in the type of words used in
the tweets of the two classes. For example, “vaping”, “love”, and “quit smoking” are good
identifiers of the pro-ecig class, whereas words, such as “hate”, “gay”, “ban”, and “wonder”
identify well the merged-other class well. Similarly, more tweets where people talk about
themselves (has self ) or use positive emoticons (has emotpos) tend to belong to the pro-ecig
class, whereas tweets that refer to other people (has other) tend to be from the merged-other
class.

Age-group inference of the users

In order to infer the users’ age group, we used the technique discussed in [177]. The classifiers
were trained and evaluted using the features collected from the 150 “valid” tweets from the
most recent 400 timeline tweets of users who tweeted “happy Nth birthday to me” or “happy
birthday to me #N”, where N was their age. The average accuracy of the classifier was 0.848,
and the average precision and recall for identifying the under-18 class was 0.627 and 0.631
respectively. Please refer to [177] for more details.
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Figure 5.4: Anomalous clusters on west coast of the United States. A circle in the map
represents the presence of multiple counties in a cluster. Top five cluster are denoted using
arrows.

5.3 Results

5.3.1 Anomalous clusters

We performed spatiotemporal retrospective analysis of the e-cig tweet clusters using SaTScan
[106]. The scan was performed using cylindrical windows with a circular geographic base
and with height corresponding to time. For each spatial point at center, the size of the
circular geographical window varied between zero and either a 50 Km radius or upto 10%
of the population-at-risk, whichever reached first. Similarly, the height of the cylinder i.e.,
temporal window size, was varied between one and five time windows (i.e., from 4 to 20
weeks). The statistical significance of the spatiotemporal clusters was computed using the
Monte Carlo randomization testing with 999 data replicates.
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A list of the top-twenty clusters arranged in non-increasing log-likelihood ratio is presented
in Table 5.5. A cluster may consist of multiple adjacent counties not exceeding 50km radius
and may spread across one to five consecutive time windows denoted by “Start-End” time,
Also, a county name is shown for each cluster for spatial reference. The majority of these
clusters is located on the west coast of the United States, as can be seen in Figure 5.4. We
did not consider clusters with less than 50 case counts in our analysis.

The case counts and population-at-risk counts used by SaTScan for analysis are also shown
in the table. Note that the case counts and population-at-risk counts were computed by
identifying the unique users of tweets for each county. The counts shown in the table are the
aggregated counts per cluster using the counts of each county that belong to that cluster.
The last two columns show the total e-cig tweets and unique users per cluster. We analyzed
the clusters by classifying these tweets and users into various classes. The analysis results
are presented next.

Table 5.5: Top twenty statistically significant spatiotemporal anomalous clusters. A cluster
may comprise of multiple adjacent counties and multiple time windows as per the parameter
set used with SaTScan. One time window is four week.

Id
County(or one of

the counties)

Counties
in the
cluster

Start-
End
time

Pop-
at-risk
count

Case
count

Total
e-cig

tweets

Total
unique
users

1 Los Angeles, CA 1 18-22 13779 881 1219 764
2 Orange, CA 1 21-25 3756 439 586 373
3 King, WA 4 21-25 3867 387 546 314
4 Alameda, CA 5 21-25 6471 547 925 470
5 Riverside, CA 1 22-26 2363 224 317 181
6 Multnomah, OR 3 20-24 1735 202 303 164
7 Erie, NY 2 18-22 1688 163 219 138
8 Fresno, CA 2 20-24 4520 440 571 395
9 Clark, NV 1 10-14 3227 162 215 137
10 Hennepin, MN 8 17-21 3544 213 266 187
11 San Diego, CA 1 21-25 3473 269 352 230
12 San Joaquin, CA 1 18-22 619 76 111 64
13 Ventura, CA 1 21-25 868 104 114 95
14 San Bernardino, CA 1 22-26 2360 184 251 151
15 Hidalgo, TX 2 19-23 740 85 110 72
16 Collin, TX 3 17-21 1970 133 152 117
17 Davis, UT 4 20-24 1481 125 149 104
18 Kittitas, WA 1 20-24 978 116 161 102
19 Placer, CA 2 15-19 1558 92 110 76
20 Aransas, TX 4 19-23 665 68 80 61
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5.3.2 Analysis with respect to pro-ecig sentiments

Next, we considered the tweets that belonged to these clusters and analyzed their sentiments.
For each cluster, we used the classifier discussed in section 5.2.4 to label the e-cig tweets into
pro-ecig and merged-other classes. There were a total of 6,757 e-cig tweets from the top
twenty anomalous clusters. Figure 5.5 shows the fraction of e-cig tweets that was found to
be pro-ecig for each cluster. We also inferred the sentiments of all the e-cig tweets together
and found that the national average of the fraction was 0.777. Results show that 15 out of
20 clusters contains tweets that were above the national average rate in terms of of pro-ecig
sentiments.

5.3.3 Analysis with respect to users under age 18

As with the tweets, the users of these cluster were analyzed with respect to their age. We
used the age classifier briefly discussed in Section 5.2.4 to infer the age group of e-cig tweet
users in these clusters. We inferred the age group of a total of 4,195 unique users, and
plotted the fraction of users aged under-18 for the clusters as shown in the Figure 5.6. We
also identified the unique users from all the e-cig tweets and inferred their age group. The
national average fraction of unique e-cig tweet users in the under-18 class was 0.19. Again,
15 out of 20 clusters were found to be have more than the national average fraction of users
under age 18.

5.4 Discussion and Contributions

The contributions and future directions of this study are listed below. This study is under
preparation for submission to a journal [176].

In this work, we analyzed a large data set of geotagged e-cig-related tweets obtained over two
years from October 15, 2012 to October 15, 2014. We trained machine learning classifiers
to first filter non-commercial tweets from the dataset. We found that more than 87% of the
collected e-cig tweets were non-commercial. The overwhelming presence of non-commercial
tweets in the dataset can be attributed to the type of e-cig tweet used in the study. We
think the data make sense because tweets are usually geotagged by non-commercial Twitter
users but not by an advertiser or a business account.

We combined spatiotemporal scan statistics and machine learning tools and techniques to
infer the age of users and the sentiments of tweets from the highly active clusters of e-cig
tweets in space and time. To our knowledge, this is the first study of its kind to analyze the
hotspots of e-cig-related messaging in social media. It is important to note that we chose a
generic set of keywords representing e-cig-related used in the study may be a small subset
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Figure 5.5: Fraction of e-cig tweets that are pro-ecig for each anomalous cluster. The
clusters are arranged in increasing order of this fraction. Each cluster is denoted using a
representative county name and number of counties it consists of, if it is more than one.

of all the e-cig-related communication over Twitter. Our results should be read carefully
considering this caveat.

A potential extension would be to study the relationship between exposure to messages
related to e-cig and related products and adoption and continuing use of these products. Both
e-cig-related messaging and exposure to such messaging can impact smoking behavior and
vice versa. To address this, a survey-based study should be performed primarily focusing on
the younger population. Asking questions about new smoking products will be very helpful
in understating and validating e-cig popularity in the identified hotspot communities.



Gaurav Tuli Chapter 5. Find and analyze the hotspots of electronic... 55

Figure 5.6: Fraction of e-cig tweet users that are labeled under-18 for each anomalous cluster.
The clusters are arranged in increasing order of this fraction. Each cluster is denoted using
a representative county name and number of counties it consists of, if it is more than one.



Chapter 6

Combined Effect of Addiction

Dynamics and Peer Influence on

Smoking Epidemic

6.1 Introduction

Nicotine, in the form of cigarette smoking or chewing tobacco, is one of the most heavily
used addictive drugs, and the leading preventable cause of disease, disability, and death in
the U.S. [139]. It imposes a significant health-care burden on the population. The economic
costs of smoking in the United States are estimated at $193 billion annually ($97 billion in
productivity losses from premature death and $96 billion in health-care expenditures).

Like any other addictive drug, cigarette smoking behavior becomes compulsive and difficult
to cease even after knowing the substantial health benefits of quitting [137]. Recent studies
show that 35 million smokers express a desire for quitting smoking each year, but more than
85 percent of those who try to quit on their own relapse within a week [140]. Nevertheless,
despite sustained and significant efforts by governmental and non-governmental institutions,
smoking prevalence among youth and adult smokers has only declined slowly from 45% to
21% in the past 45 years [53,54,138] (see figure 6.1).

It has been repeatedly shown that smoking behavior is contagious, i.e., that peer influence
(including family members) is the strongest factor in both initiation and cessation of smoking

56
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[30, 63, 65, 82]. From an epidemiological viewpoint, the SIS model seems appropriate for
modeling the contagion of smoking behavior, since smokers who quit can relapse. Here,
the S state (which stands for “Susceptible”) corresponds to non-smokers and the I state
(“Infected”) stands for smokers. However, the slow decline of smoking prevalence is puzzling
from this perspective, as we shall discuss in the next section.

Our main contribution in this work is to introduce an extension to the SIS model, which we
call the structured resistance model, to account for the addictive nature of smoking behavior.
In this model we have multiple S and I states corresponding to increasing levels of addiction.
We present this model in section 7.1.4 and we present simulations with this model on the
Framingham Heart Study social network [49] in section 7.1.6. We end with a discussion of
the model and possible directions for future work.

Figure 6.1: Smoking prevalence has declined slowly over the course of four decades. Source:
CDC (http://www.cdc.gov/mmwr/pdf/other/su6001.pdf, p. 109).

6.2 Modeling the Smoking Epidemic

For the standard SIS model of epidemics, it is well known that there is an epidemic thresh-
old, βc, such that if the probability of infection is below βc, the only steady state is the
disease free state, while for values of the probability of infection above βc, the only steady
state corresponds to a finite fraction of the population being in the I state [19]. Figure 6.2
illustrates this scenario numerically. It can also be calculated analytically for some classes
of networks.

If we assume that the effect of anti-smoking efforts is to reduce the infectiousness of smoking,
then we would expect the prevalence of smoking to reduce fairly sharply, and to disappear
once the infectiousness becomes low enough. This expectation stands in contrast to the
reality depicted in figure 6.1, which shows that after much effort, the prevalence of smoking
has declined steadily, but very slowly over more than four decades.

This puzzling contrast suggests that the SIS model is not quite right for understanding the
contagion of smoking behavior. We argue that it misses the defining feature of smoking
behavior, which is that smoking is addictive. Therefore we need a new model.
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Figure 6.2: Bifurcation diagram for the SIS model.

6.3 The Structured Resistance Model

To model the dynamics of addictive behavior, we adapt a model developed by Reluga et
al. [153]. Their study investigates the dynamics of disease immunity. We invert its semantics
to model resistance to addictive behavior. This structured resistance model is shown in figure
6.3a. The multiple S states correspond to increasing levels of susceptibility to the behavior,
and the multiple I states correspond to increasing levels of addiction. Initially, an individual
starts out in state S1, and moves to state I1 upon adopting the behavior. The probability
of this transition is given by βσ1, where β is a multiplier on all S → I transitions and will
be taken to correspond to R0. The rate at which individuals quit, i.e., transition from an I
state to an S state, is given by the corresponding γi parameter. Crucially, since the behavior
is addictive, transitions from Ii only go to Sj>i. This means that when an individual quits,
his susceptibility level is at least as high (and possibly higher) than it was before, but never
lower. The probability of making the transition Ii → Sj>i is given by fij. The only way to
recover to a lower level of susceptibility is via the Sj → Sj−1 transitions, the probability of
which is given by gj. This is meant to model the fact that if an individual stays free of the
addictive behavior for a long time, his level of susceptibility can decrease.

For a fully mixed population, the state update equations can be written as follows [153]. for
j = 1, ..., n. We assume that g1 = gn+1 = 0, since these transitions correspond to states that
do not exist in the model.

Note that an individual makes an S → I transition only if one or more of his neighbors
are in an I state. However, an individual makes the Sj → Ij transition with probability
βσj, no matter which I state its neighbor is in. In other words, the contagion spreads from
individuals in I states to individuals in S states, but does not depend on the details of which
I states the spreaders are in. This is why we have an ITotal term in the equations instead of
terms for each of the I states.
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Figure 6.3: The structured resistance model is shown on the left. Some parameters are not
marked for clarity, but these correspond to the ones that are shown. See text for details. A
schematic of a backward bifurcation is shown on the right. The solid lines indicate stable
steady states and the dashed line indicates an unstable steady state.

From these equations, it can be shown that when the quantity,

Q = −σ1 −
n∑
j=2

βσ1
gj

(
σ1
γ1
− σj
γj

)(
1−

j−1∑
k=1

f1k

)
(6.1)

is positive and increasing in β, then the epidemic bifurcation is a backward bifurcation.
This means that the bifurcation looks like in figure 6.3b (the “threshold to start epidemic”).
There are actually multiple bifurcations and multiple steady states in this scenario. The
solid lines in figure 6.3b indicate the stable steady states and the dashed portion indicates
an unstable steady state.

The bifurcation diagram can be effectively divided into three regions. From R0 = 0 to the
“threshold to end epidemic”, there is only one stable steady state, which corresponds to
the entire population being in the susceptible state. In this range, the contagion does not
take off, no matter what the initial state may be. Similarly, from the “threshold to start
epidemic”, for higher values of R0, there is only one stable steady state, which corresponds
to the contagion becoming endemic, i.e. if even only very few individuals are initially in an
I state, a finite fraction will be in the I states in the long run. In between these two regions,
we have a region where there are two stable steady states and one unstable steady state. In
this region, if the initial state starts above the dashed curve, the population will move to
the upper steady state, while if it starts below the dashed curve, the population will move
to the lower steady state.

Practically, this means that for a new addictive behavior to become endemic in the popu-
lation, its “infectiousness” must be higher than the threshold to start the epidemic (which
is higher), but once it becomes endemic, for efforts to counter it to be successful, they must
succeed in reducing the infectiousness of the behavior to below the threshold to end the
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epidemic (which is lower). Intuitively, this means that significantly more effort might be
required to end the epidemic than expected.

The equations above describe the behavior of the model in a fully-mixed population, or
equivalently on a fully-connected network. In the next section, we do simulations to in-
vestigate the model on a more realistic network. Since we are interested in understanding
the decline in smoking prevalence over a period of decades, we use a dynamic network that
has been constructed from the Framingham Heart Study [49], which is a longitudinal study
spanning precisely that period.

6.4 Simulations

Since the increasing levels in the structured resistance model represent increasing levels of
susceptibility and addiction, we choose the probability of Si → Ii to be increasing with i,
and the recovery rates γi to be decreasing with i. The fij values, which control the Ii → Sj
transitions, are chosen to be zero when j < i, as mentioned earlier. The entire set of
parameters is shown in table 6.1. It turns out that any set of parameters chosen according

Table 6.1: Parameters for simulations with the structured resistance model.

Level,
i

Infection
probability, σi

Recovery rate,
γi

fi1, fi2, fi3
Resistance

waxing rate, gi
1 0.05 0.7 0.4, 0.4, 0.2 0.0
2 0.5 0.5 0.0, 0.7, 0.3 0.2
3 0.7 0.3 0.0, 0.0, 1.0 0.1

to these conditions will result in the model exhibiting a backward bifurcation. We can verify
this is the case by substituting these parameter values into equation 6.1.

We conduct simulations using the Framingham Heart Study (FHS) social network. The
FHS is a longitudinal study that gathered data on many health characteristics and health
behaviors. The social network is a time-varying network spanning the years 1971-2008 (i.e.,
starting with the “offspring cohort” of the FHS). The offspring cohort were recruited into the
study at an early age (the lowest age in the data is 5 years), thus giving us a network with
children and adolescents as well as adults. Edges in the network correspond to various social
and familial relationships. For the present work, we assume each edge to be an undirected
edge along which the contagion can spread in either direction. For each edge present in
the network, the data provides a start month and an end month. Thus edges are present
at different times and for different durations. The degree distribution for the union graph
(which assumes all the edges are present for all time) is shown in figure 6.4. The Framingham
Heart Study data has been used in other instances of the study of the spread of smoking [30].

The bifurcation diagram for the structured resistance model on the Framingham Heart Study
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Figure 6.4: The degree distribution of the Framingham Heart Study union graph. It is not
scale-free.

social network is shown in figure 6.5a, using the parameters in table 6.1. The diagram is
obtained by doing simulations with two different initial conditions. In the first condition, the
number of initial infections is very small, and in the other, the number of initial infections
is large. In the region where there are two stable steady states, the first initial condition
converges to the lower steady state and the second to the upper one. The lower threshold,
shown in blue, corresponds to the upper steady state, while the upper threshold, shown in
red, corresponds to the lower stationary state (the backward bifurcation). We see that there
is a large gap between the two thresholds, which suggests that once the behavior is endemic,
a large amount of effort is required (β has to be brought down a lot) to entirely eliminate
the behavior from the population. Note that the unstable equilibrium is not shown because
it is hard to determine numerically.

Figure 6.5b shows a sample epicurve obtained as follows. We initialize the population by
randomly setting 5% of the nodes to be in state I1 while the rest are in state S1. The value
of β is chosen to be 1.3, which is well above the upper threshold. We run the model until it
reaches a stationary state, which corresponds to about 42% of nodes in I states. Then β is
decreased slowly to simulate increasing awareness of the dangers of smoking and increased
resistance to initiation. This causes the proportion of nodes in I states to decrease along the
blue curve in the bifurcation diagram, which results in a slow decline in smoking prevalence.
The epicurve is plotted from this point on in figure 6.5b. This qualitatively matches the
empirical data reported by the CDC (figure 6.1).
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Figure 6.5: The bifurcation diagram for the structured resistance model on the Framingham
Heart Study social network is shown on the left. A sample epicurve is shown on the right,
which exhibits the slow decline in smoking prevalence as β is decreased after time step 120.
The green curve shows the average of the black curves (which show individual simulation
results).

6.5 Contributions and Discussion

We have presented a multi-level SIS model, called the structured resistance model, that
follows a set of rules to capture the dynamics of addictive behavior. Levels in the model
correspond to increasing susceptibility and addiction to a behavior. We performed an agent-
based simulation study using the proposed model on the social network of one of most heavily
cited study in public health community. The edges in the network were used to replicate the
peer influence for the diffusion of smoking behavior through the network. This model exhibits
a backward bifurcation, which suggests a possible reason for the slow decline of smoking
prevalence in the United States. Using simulations, we were able to numerically show the
presence of two different steady states. This study was published in a conference [178]

This basic model can be extended in various ways. There are factors other than peer influence
that affect smoking behavior, such as socioeconomic status and marital status [22], access
to cigarettes and exposure to advertising [79], and prices and policies [116]. Data about
all these factors can be included into an agent-based model driven by the basic structured
resistance model. Detailed synthetic information environments can be constructed by fusing
data about these behaviors with other data sets on demographics, locations, and activities
to build a complete picture of the ecology of a smoker [9].

Smoking is a complex, “policy-resistant” problem. We believe that mathematical model-
ing and simulation-based approaches are essential to understanding such systems and to
achieving lasting social benefits.



Chapter 7

Blocking smoking contagion

7.1 Community-based Blocking

7.1.1 Background and Motivation

A contagion is any entity that can spread through a population. Examples include online
and face-to-face information, innovations, emotions, Twitter tweets, and trust (e.g., [66,
72, 185]). There are many circumstances where halting contagion propagation is desirable,
including calming a mob [70], stopping the dissemination of leaked information [26], impeding
the spread of an ideology or opinion [201], squelching a mass movement, and interrupting
the communication of adversaries [7].

In this work, we study blocking of contagions such as joining a mass protest and rioting, as
well as those cited above, that spread according to a popular propagation model from the
sociology literature, the progressive threshold model [70, 97, 164, 194]. In this model, a
population is treated as a network, where nodes represent people or other types of agents, and
edges represent pairwise interactions among agents. Hence, nodes influence their distance-1
neighbors through their common edges. Each node can be in one of two states, 0 (respectively,
1) meaning that a node does not (does) possess a contagion. If a node possesses a contagion,
we implicitly assume that it is willing to pass it on. The model allows a node to transition
only from state 0 to state 1; the transition from 1 to 0 is not permitted. A node transitions
from state 0 to state 1 if at least a threshold θ number of its neighbors already possess
the contagion; hence, this model captures neighborhood influence. We call state 0 (1) the
unaffected (affected) state.

63
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Following [25], we investigate the contagion dynamics of two types of threshold systems. A
simple contagion is one in which θ = 1 for all nodes in the population, while a complex
contagion is one in which θ > 1 for at least one node. This delineation has large impacts
on population dynamics and on algorithms for controlling contagion processes [25,103].

7.1.2 Motivation for Our Approach

Node-based contagion blocking in the progressive threshold model consists of identifying
nodes—which we call critical or blocking nodes—whose states remain frozen at 0; they do
not transition to state 1. Thus, they do not assist their neighbors in transitioning to state 1.
This is equivalent to removing these nodes and their incident edges from a network. The
goal is to select as few nodes as possible in order to prevent as many nodes as possible from
reaching state 1. The motivation for selecting few nodes is that convincing (or forcing) a
node to remain in state 0 has a cost, and one seeks to minimize the cost of blocking.

We classify these node selection criteria as either proactive or reactive. Proactive meth-
ods identify critical nodes based solely on graph structure. Reactive methods take into
account network structure and the dynamics of the contagion process. Proactive methods
are attractive precisely because they do not depend on a particular dynamics model. Thus,
from the practical perspective of policy development, intervention planning can be done
without dynamics information. Reactive methods require more information to identify crit-
ical nodes, but it has been demonstrated that at least one reactive method is far better at
blocking complex contagion spread than several state-of-the-art proactive methods on three
well-known social networks [102]. Reactive methods may also require greater execution times
than proactive methods to compute sets of blocking nodes.

Based on these findings, we seek a hybrid method of specifying critical nodes that has the
advantage of being driven by network structure (i.e., is proactive), but incorporates contagion
dynamics to increase its effectiveness (reactive). Our approach is to break a network into
small clusters, with each node residing in exactly one cluster. Consistent with most working
definitions of a community, we assume that the nodes within a cluster are relatively well
connected and that the number of edges between clusters is relatively small. Because of
the anticipated larger number of internal edges, we further assume that a contagion will
propagate through a cluster relatively quickly and hence that we are unable to block it from
doing so. Consequently, we seek to contain a contagion at cluster (community) boundaries.
The edges that span clusters (i.e., external edges) and incident nodes are recorded. Seven
such edges are shown schematically in Figure 7.1; e.g., two are {v1, v5} and {v3, v8}. We then
apply reactive blocking methods to these boundary regions of communities. We describe the
reactive blocking method later (Section 7.1.5).

These ideas are summarized in Figure 7.2. The first two phases consider only graph topology;
no dynamics are involved. The third phase utilizes dynamics information. Note that this
approach also has the benefit that if the dynamics model changes, or multiple models must
be considered, the first two phases are executed only once for all models.



Gaurav Tuli Chapter 7. Community- and edge-based contagion blocking 65

Figure 7.1: Schematic of two clusters or communities C1 and C2, each containing a subset
of graph nodes, connected by the edges shown.

Cluster size is currently being investigated. Since each cluster that is seeded with a con-
tagion or that a contagion reaches is effectively sacrificed, the size of a cluster should be
small. The implications of “sacrificed nodes” are problem-specific and some applications
may only be able to tolerate the sacrificing of relatively smaller community sizes. In epi-
demiological studies, for example, virus outbreaks that reach 10% to 30% of a population are
routinely deemed significant, suggesting that these community sizes would not be acceptable
for blocking viruses. Ideally, cluster size would be a tunable parameter.

The point of this study is to summarize initial steps taken in the implementation of these
procedures. For example, computing clusters of scale-free networks is recognized as a diffi-
cult problem. In this work, we use one community detection method to segment scale-free
networks, and we do not adhere to our desired guideline of limiting all cluster sizes to some
specified S. That is part of future work. Using computed clusters, we complete phases 2
through 4 of Figure 7.2. We use simulation and a node-blocking scheme to perform these
tasks.

� Phase 1 : Decompose network G into clusters Ci of specified maximum size S.

� Phase 2 : For each pair of clusters (Ci, Cj), determine external edges ei,j = {vi, vj}
(i 6= j) spanning these communities and the incident nodes vi ∈ Ci and vj ∈ Cj.

� Phase 3 : For specified (i) outbreak locations (i.e., communities Ci) and (ii) contagion
dynamics model, use a scheme to block contagion propagation across these edges ei,j
and thereby select the critical nodes.

� Phase 4 : Evaluate the effectiveness of the critical nodes.

Figure 7.2: High-level approach to blocking contagion dynamics.
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7.1.3 Contributions

Our contributions are listed below. This study was published at an AAAI workshop [175].

1. A hybrid approach to complex contagion blocking. Our approach utilizes a fast
method [16] to identify communities or clusters in a graph. A critical node selection (CNS)
algorithm uses these results to target node selection at cluster boundaries, obviating the
need to analyze the entire graph.

2. Modular nature of approach. Our method is naturally customizable to evaluate
different dynamics models. Here, we demonstrate proof-of-concept using a classic threshold
model, but the the method can also be used for the independent cascade (IC) model [97].
As dynamics models change for a particular graph, clusters need not be recomputed; only a
CNS algorithm need be executed.

3. Comparisons of blocking among three networks. We apply the method to three
social networks from the literature, ranging up to 80000 nodes and 500000 edges. Seeding
of most of the clusters generated by the community detection method [16] produces lit-
tle contagion diffusion, or diffusion that can be readily blocked. However, there are some
larger communities that generate widespread diffusion. We investigate some of these larger
communities and show that large numbers of blocking nodes are required to halt diffusion,
particularly for simple contagions. We find for these networks that the difficulty in blocking
diffusion in large communities increases with increasing average degree dave, but that dave is
less important when threshold is small (e.g., θ = 1, 2). The ranking of networks in order of
ease (or difficulty) of blocking diffusion is not straight-forward because we observe crossover
behavior. For example, data for θ = 3 shows much less contagion propagation in Slash-
dot than in Facebook for smaller values of blocking nodes. However, to halt all diffusion,
Slashdot requires more blocking nodes.

Organization. The rest of the chapter is organized as follows. In Section 7.1.4, the modeling
approach is described; this is used in the simulations and the CNS algorithm. Section 7.2.2
contains related work. In Section 7.1.5, the CNS algorithm is overviewed. Section 7.1.6
contains our experimental results, and conclusions comprise Section 7.2.8.

7.1.4 Model of Contagion Dynamics

First we formalize the model we use for contagion dynamics. The model is implemented in
software to perform the simulations of this study. We give examples of contagion dynamics
and of blocking. Finally, we formalize the problem we are trying to solve: minimizing the
number of affected nodes.

We use discrete dynamical systems (e.g. [11]) to model contagion propagation on social
networks; i.e., the dynamics are discrete in time and discrete in node states. Let B denote
the Boolean domain {0,1}. A graph dynamical system (GDS) S over B is a triple
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S = (G,F ,W ), where

(a) G(V,E), an undirected graph with node set V and edge set E where n = |V | and
m = |E|, represents the underlying social network on which a contagion propagates,

(b) F = {f1, f2, . . . , fn} is a collection of functions in the system, with fi denoting the local
transition function associated with node vi, 1 ≤ i ≤ n, and

(c) W is the update scheme that specifies the execution sequence of the fi.

Each node of G has a state value from B. Each function fi specifies the local interaction
between node vi and its distance-1 (i.e., adjacent) neighbors in G. We use the convention that
a node is not a neighbor of itself, but it is not a consideration for the model employed here.
In this paper, function fi at node vi is a progressive threshold function, characterized
by a non-negative integer denoted by θi. The function fi is specified as follows:

(a) If the state of vi is 0, then

(i) fi is 1 if at least θi of vi’s neighbors are in state 1;

(ii) otherwise, the value of fi is 0.

(b) If the state of vi is 1, then fi is 1 for all combinations of inputs.

Thus, θi is called the threshold of vi and represents the minimum number of neighbors of
vi that must be in state 1 for vi to change from 0 to 1.

The update scheme we use throughout this work is the synchronous update scheme,
meaning that to compute the states of nodes at time t, all inputs to the fi (1 ≤ i ≤ n) are
quantities at time (t− 1). We provide an example momentarily to make this concrete, and
we note that there are other update schemes [11]. The synchronous update scheme means
that the GDS is a synchronous dynamical system (SyDS), and we use SyDS henceforth
to emphasize the synchronous update approach; i.e. S is an SyDS.

A configuration C(t) of an SyDS at any time is an n-vector (s1, s2, . . . , sn), where si ∈ B is
the state of vi. A single SyDS transition from one configuration to another can be expressed
by the following pseudocode, where each of the two steps is executed in parallel, but the
steps themselves are executed serially.

for each node vi do in parallel
(i) Compute the value of fi. Let s′i denote this value.
(ii) Update the state of vi to s′i.

end for

Critical Set Problem for a Threshold SyDS

We now state the problem that we are trying to solve, following [103].
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Small Critical Set (SCS)

Instance: An SyDS S over B, where each fi is a progressive threshold function; a set I of
seed nodes; and an upper bound β (i.e., budget) on the number of critical nodes.

Requirement: A critical set B with |B| ≤ β and of all subsets of V − I of size at most β, the
removal of B from V leads to the smallest number of affected nodes.

Note that this problem is the same as that implicitly addressed by a host of blocking papers
whether they use high degree approaches, centrality approaches, or others; i.e., the goal is to
minimize the number of nodes that acquire a contagion. This problem for simple contagions
is known to be NP-hard [47], and hence is also hard for complex contagions. It is shown
in [103] that it is NP-hard to obtain a ρ-approximation for complex contagions. Here, we
devise an approach for blocking complex contagions based on community structure.

7.1.5 Experimental Procedures

Our experimental procedures follow the approach given in Figure 7.2. In Phase 1, we use
the Louvain method [16] for computing communities. The output consists of (node ID,
community ID) pairs. In Phase 2, the graph G and the results from Phase 1 enable us to
easily identify all edges that span communities, such as those depicted in Figure 7.1; e.g.,
edge e2,6 = {v2, v6}. In Phase 3, we use the progressive threshold model, and for this work,
we take the thresholds of all nodes to be the same in a diffusion instance. This makes it
easier to discern threshold effects in results. Each diffusion instance takes all nodes in one
community as seed nodes. Dynamics are simulated for each seed set and for two time steps to
determine the nodes in neighboring communities that contract the contagion. For example,
in Figure 7.1, if all nodes of C1 are seeded, the simulation will identify the nodes in C2 that
get affected. This gives the edges that span communities and that transmit contagion. A
budget β on the number of critical nodes is specified. A node-based blocking algorithm is
used to compute the critical nodes from among all nodes affected at time 1. The diffusion
instance is then rerun, but now the critical nodes are incorporated and simulations are run
until a fixed point is reached. The final spread fraction; i.e., the total fraction of affected
nodes, is then computed. In Phase 4, we run all diffusion instances without critical nodes
until a fixed point is reached, so that we can evaluate the effectiveness of blocking nodes by
comparing spread fractions with and without critical nodes.

The covering-based blocking algorithm in [103] is used to compute critical nodes. Here, we
provide an example of how the algorithm works using Figure 7.1. Assume community C1

is seeded and all nodes vi have θi = 2. At t = 1 of a simulation, contagion spreads to a
neighboring community, C2, and v5, v7, and v8 are affected because each has at least two
neighbors in C1; v6 is not affected. At t = 2, v9, v10, and v11 are affected because each has
at least two neighbors in state 1. The CNS algorithm uses these data as inputs. If β ≥ 3,
the three nodes affected at t = 1 are identified as critical nodes and the covering algorithm
terminates.
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Consequently, to explore the CNS algorithm further, let us assume instead that β = 2. The
nodes affected at t = 1 are evaluated as to how they affect nodes at t = 2. The node that
contributes to the greatest number of nodes affected at t = 2 is selected as a critical node; ties
are broken arbitrarily. Both v5 and v7 contribute to three nodes (v9, v10, and v11). Assume
the algorithm selects v5 (at random). Now, with v5 as critical, nodes v9 and v10 cannot get
affected (they now only have v7 contributing to their possible transitions, so their thresholds
are not met and they will not transition to state 1). Now v7 and v8 contribute to the one
remaining affected node (v11). Again, since there is a tie, one node is selected at random, say
v8. The critical set B = {v5, v8}, with |B| ≤ β as required, will block signifcant contagion
propagation for all t > 1. The final spread size is the number of nodes in C1, which are seed
nodes, plus one, for v7; v7 gets affected and is not a blocking node. Note in this case that v7,
although contributing to the maximum number of affected nodes at t = 2, is not chosen as
critical. Obviously, there are cases, particularly when θ and β are small, where the critical
set will be insufficient to thwart all diffusion.

We briefly address the issue of other models beyond the deterministic progressive threshold
model studied here. The IC model [97] is a variant of a θ = 1 model. Therefore, one could
run deterministic θ = 1 dynamics to provide the requisite input data to the CNS algorithm.
With the computed blocking nodes, one could then simulate (stochastic) IC dynamics to
assess the efficacy of the blocking nodes in thwarting IC contagion propagation. This is
an example of how one strategy for determining blocking nodes can be used with multiple
dynamics models.

7.1.6 Experimental Results

Table 7.1 lists selected characteristics of the giant components of networks studied. Fig-
ure 7.3a provides degree distributions for the three networks. Table 7.2 lists the parameter
values used with the procedures described in Section 7.1.5. Threshold values as large as 10 are
easily justified, as thresholds of this magnitude were inferred from adolescent smoking data
(where peer influence is known to play a large role in smoking initiation in teenagers) [75,82].
It seems reasonable that in order to join a strike or demonstration against a government,
where one risks losing her job or imprisonment, thresholds may be even greater. Values of
β were chosen to investigate a range of behaviors.

Table 7.1: Networks used in experiments; n and m are numbers of nodes and edges, dave is
average degree, and nc is the number of communities determined using [16]; all correspond
to the giant component.

Networks n m dave nc
Enron [94] 33696 180811 10.7 183

Facebook [189] 63392 816886 25.8 56

Slashdot0902 [94] 82168 504230 12.3 376

Based on the example in Section 7.1.5, it is useful to know, for a given community Ci, how
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(a) (b)

Figure 7.3: (a) Degree distributions for the networks of this study. (b) For each of the 183
communities in the Enron network, the number of nodes in other communites adjacent to
the extenal edges of a community (i.e., number of external nodes) as a function of number
of nodes in a community.

Table 7.2: Parameters and values used in experiments.

Networks Threshold Val-
ues

Numbers of
Critical Nodes

Enron, Facebook,
Slashdot0902

1, 2, 3, 4, 5, 10 0, 10, 102, 103,
104

many nodes in other communities are adjacent to all external edges of Ci. These are the
external nodes. (In Figure 7.1, C1 has 4 external nodes, v5 through v8.) These data for
the Enron network are given in Figure 7.3b, where the abscissa is the number of nodes in a
community and the ordinate is the number of external nodes.

We will investigate particular communities in each network. These are listed in Table 7.3,
where n′ is the number of nodes in the community (and % of nodes is also given), and nen
and nee are the numbers of external nodes and edges.

Figure 7.4 contains four plots of Enron data with the same axes and legend, each correspond-
ing to a different number of critical nodes. In Figure 7.4a, β = 0. Consider the threshold-1
(abbreviated “thr=1”) curve. For this θ and β, 183 diffusion instances are simulated, one
diffusion instance for each community. Therefore, each curve in each plot is composed of 183
data points. The diffusion instance for community Ci means that all nodes for that commu-
nity are seed nodes, and all other nodes are initially in state 0. The final spread fraction is
computed for each diffusion instance, and then plotted in increasing numerical order. The
green curve for threshold-1 is horizontal at an ordinate of 1. This is because we are using
only the giant component of the Enron network and thus the graph is connected. So even
one seed node will result in a spread fraction of 1.0 when there are no blocking nodes; i.e., the
contagion will propagate through the network. For threshold-2, the curve has an ordinate
of zero until an abscissa value of about 0.73. At that point, the spread fraction increases to
about 0.6, and remains relatively constant thereafter. This means that for θ = 2, 73% or
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Table 7.3: Particular communities in the networks that are seeded and evaluated.

Networks Comm
ID

n′

(%)
nen nee

Enron 42 4715
(14%)

4066 21145

Enron 0 2042
(6%)

639 902

Facebook 6 17326
(27%)

17138 63775

Facebook 16 3663
(6%)

7704 13755

Slashdot0902 3 22269
(27%)

21526 113207

Slashdot0902 40 4954
(6%)

10350 23684

about 133 of the 183 communities generate very small spread sizes when seeded; about 27%
of communities produce significant contagion propagation. Overall, this plot indicates that a
smaller fraction of communities (e.g., < 0.3) generates appreciable diffusion. The number of
communities that can spread contagion decreases as θ increases. In successive plots, where
β increases to 10, 100, and 1000, there remains communities for all thresholds investigated
that produce appreciable spreading.

That 1000 critical nodes does not block all diffusion from a community is not surprising
in light of other work. It has been shown experimentally [103] that seeding just 10 to 20
well-connected nodes in realistic scale-free networks can require 1000 or more critical nodes
to completely halt all diffusion; i.e., prevent all unaffected nodes from becoming affected.
Here, the larger communities contain thousands of nodes that are seeds.

Data for Facebook and Slashdot are qualitatively similar to those in Figure 7.4. The takeaway
here is that contagions starting in the majority of communities can be readily blocked. How-
ever, diffusion starting from larger communities are much harder to block. Our procedures
must be refined to deal with these larger communities, which we now further investigate.

We examine two Enron communities in more detail that have very large and intermediate
connectivities to other communities. Community 42 (C42) has the greatest number of nodes
(4715), the second largest number of external edges (21145), and third largest number of
external nodes (4066). Community C0 is an intermediate sized community; see Table 7.3.
These communities were selected based on the data in Figure 7.3b. From this point forward,
the communities that we investigate are provided in Table 7.3.

Figure 7.5a depicts the spread fraction as a function of time for simulations where the nodes
of C42 are the seed nodes; there are no critical nodes. Increasing the threshold drives down
the spread size. This is a mechanism of retarding contagion propagation in itself. For
example, if an external agent can take action, or threaten to take action, with significant
adverse consequences for the nodes, then it may cause nodes to increase their thresholds
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(a) (b)

(c) (d)

Figure 7.4: Final spread fraction at the end of a simulation when all nodes of a community
are seeded. For the Enron network, there are 183 communities. Spread sizes are arranged
in increasing numerical order for each curve in each plot. Each curve corresponds to a
homogeneous threshold used for all nodes. The numbers of critical nodes in the plots are:
(a) zero, (b) 10, (c) 100, and (d) 1000.

(i.e., it may require greater influence to convince a node to acquire a contagion). Such an
example could be governments of countries with a history of imprisoning dissidents.

Figure 7.5b shows data for the same conditions, except that now β = 1000. All contagion
diffusion is stymied for θ ≥ 4 (the curves for θ = 4, 5 lay underneath the light blue curve for
θ = 10). The horizontal curve for θ = 10 corresponds to the size of C42.

Figure 7.6 depicts analogous data for the Facebook network, for Community 6 in Table 7.3.
With an average degree 2.5 times that of Enron, it more readily propagates complex conta-
gions.

Figure 7.7a shows the final spread fraction for C42 of the Enron network as a function of β
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(a) (b)

Figure 7.5: Spread size as a function of time in the Enron network when all nodes of the
largest community C42 are seeded: (a) no critical nodes and (b) β = 1000 critical nodes are
used. Each curve corresponds to all nodes possessing a single threshold.

and θ. It is clear that β = 1000 will halt θ = 4, 5, 10 complex contagions, but that more
than 1000 critical nodes are required to halt contagions with lesser thresholds. Figure 7.7b
shows analogous data for C0, a smaller community than C42. Now as few as 100 critical
nodes will halt complex contagions originating within C0, but simple contagions require
greater numbers of critical nodes. These data illustrate that the numbers of blocking nodes
required to halt diffusion decrease with increasing θ, and since assigning or converting nodes
to blocking nodes has a cost, taking into account complex contagion diffusion can reduce the
cost of blocking it, and can more effectively assign as blocking the β critical nodes.

In Figure 7.7 and in subsequent plots, nen provides an upper bound on β. This bound is
realized; i.e., β = nen, when all external nodes are set critical. In this case, no node beyond

(a) (b)

Figure 7.6: Spread size as a function of time in the Facebook network when all nodes of the
largest community C6 are seeded: (a) no critical nodes and (b) β = 1000 critical nodes are
used. Each curve corresponds to all nodes possessing a single threshold.
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(a) (b)

Figure 7.7: Final spread size as a function of the number of critical nodes and homogeneous
node threshold in the Enron network: (a)seeding of the largest community C42, and (b)
seeding of an intermediate-sized community C0.

the seed community can become affected.

Figure 7.8 provides analogous data for Facebook. Clearly, increasing average degree pushes
the curves up and to the right; i.e., for a given θ and β, the spread fractions are greater.
With Figure 7.8b, we can compare the numbers of critical nodes required to halt all diffusion
for θ = 1 and θ = 10. The data show that a factor of 77 more critical nodes are required to
halt simple contagions than θ = 10 contagions (at most 100 critical nodes will halt θ = 10
diffusion, but β = nen = 7704 nodes are required to halt θ = 1 diffusion).

Finally, Figure 7.9 provides data for thresholds 1, 3, and 10, for Enron (in green), Facebook
(in blue), and Slashdot (in red), for both large and intermediate community sizes. Generally,
Facebook is the most difficult to block and Enron the easiest. However, θ = 3 data in
Figure 7.9b shows a crossover of Facebook and Slashdot data. Slashdot produces smaller

(a) (b)

Figure 7.8: Final spread size as a function of the number of critical nodes and homogeneous
node threshold in the Facebook network: (a) seeding of the largest community C6, and (b)
seeding of an intermediate-sized community C16.
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(a) (b)

Figure 7.9: Final spread size as a function of the number of critical nodes and homogeneous
node threshold in three networks: (a) seeding of the largest communities, and (b) seeding of
intermediate-sized communities whose sizes are 6% of nodes.

spread fractions for β ≤ 100, but requires more critical nodes to block all diffusion.

7.1.7 Conclusion and Future Work

In this work we propose a method of blocking simple and complex contagions using a com-
bination of proactive and reactive methods. This combination first exploits graph structure
to segment a network and then targets cluster boundaries for computing critical nodes for
a particular dynamics model. We show differences in blocking behavior among three social
networks.

There are many avenues for future work. Of primary interest is to augment the current
community detection algorithm to obtain smaller clusters, which should enable blocking of
contagions with smaller numbers of critical nodes. We will also apply the method to larger
graphs.

7.2 Edge-based Blocking

7.2.1 Background and Motivation

Controlling contagions, such as false rumors, leaked information, or social unrest, by limiting
their spread is a well motivated and important problem [119, 186]. The majority of early
work (e.g., [4]) used node removal techniques to block contagion transmission in network
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representations of populations. Deleting nodes from a network removes pathways through
which a contagion can travel, thus inhibiting its diffusion. More recently (e.g., [172]), edge
removal methods have been studied, and edge-based blocking is the focus of this work.

There are many situations in which edge removal is a more pragmatic alternative than
node removal. For example, in Twitter, person A1 may stop following person A2, thereby
removing that tie of interaction; it is most often unrealistic to remove A1 from Twitter.
Similarly, political regimes may have the resources to remove or isolate individuals [171], but
this approach has costs [165] and may not be politically viable. Recent work [86] describes
how two opposing countries, C1 and C2, intervene to influence leaders of a third country C3.
This is, in effect, an attempt by each of C1 and C2 to sever the opposing country’s ties to
C3. From network considerations alone, edge removal is a more surgical approach than node
removal: removing one node v results in deleting d(v) edges, where d(v) is the degree of v.

7.2.2 Related Work

Table 7.4 provides a perspective on node- and edge-based classes of methods for stymieing
contagion propagation. Each class provides schemes based on graph structure, and on dy-
namics models. However, to our knowledge, no work exists on edge blocking techniques
that use both dynamics models and information on contagion outbreak locations to block
diffusion. This work fills that void.

Table 7.4: Sample studies on blocking contagions, showing how our work fills a void in
edge-based blocking methods.

Basis of Blocking Method Blocking
Nodes

Blocking
Edges

Graph Structure [4] [203]

Dynamics Models [148] [172]

Dynamics and
Initial Conditions

[103] Our work.

Most edge-blocking studies focus on simple contagions, using models that incorporate, for
example, independent cascade (IC) and variants of susceptible-infected-recovered (SIR) dy-
namics [148, 172, 203]. (A node [person] may contract a simple contagion through one
interaction with a person who already possesses it; this is a 1-threshold model. A complex
contagion requires interactions with at least two such people.) An exception is a study [99]
of the linear threshold (LT) model; however, that work contains no evaluation of the block-
ing method in terms of how its deleted edges reduce contagion spread. Here, we focus on
threshold-based models, which are well-motivated in the social science literature [25,70,194].
Evidence for the existence of progressive complex contagions—which is the type we model
here—continues to mount; e.g., through data mining of people’s behavior and evaluation of
social movements [66, 179]. (A progressive model [97] means that once a node contracts a
contagion, it remains with the node.) We study both simple and complex contagions, and
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show interesting differences between the two. We cite other references in relation to our
results, in subsequent sections.

7.2.3 Contributions

Below, we summarize our main contributions. For more theoretical results, please refer
to [104].

Heuristics. In view of the non-approximability result for the basic edge-based blocking
problem, we develop a practical edge-covering heuristic to block both simple and complex
contagions for directed, weighted and unweighted graphs. We also introduce a straight-
forward heuristic for weighted graphs. To evaluate our main heuristic, we perform computa-
tional experiments of contagion propagation on social networks from the literature that are
at least five times greater in terms of numbers of nodes and an order of magnitude greater in
numbers of edges than those used in previous studies. These networks are a detailed human
contact network of Montgomery County, Virginia and two Facebook networks. We compute
the numbers of nodes that contract a contagion (we call this the spread size) with and with-
out blocking edges. We provide what we believe are the first comparisons of state-of-the-art
edge-based blocking methods by comparing our results with those of other methods. In total,
we evaluate 12 combinations of networks and blocking heuristics, which to our knowledge is
the biggest study of its kind. Results show that our edge-covering method is more effective
in blocking simple and complex contagions, for both unweighted and weighted graphs.

Experiments. We provide a small set of experimental results to understand the behavior
and limitations of our edge covering heuristic. For example, we demonstrate how increasing
the number of seed nodes (i.e., nodes initially possessing a contagion) can increase the
probability of cascade (i.e., widespread diffusion) in the presence of blocking edges. We also
illustrate a somewhat surprising result of network structure effects: it can be much more
difficult to block contagions in a network with a far less average degree and a far less average
clustering coefficient.

Generalizability. Finally, the models we employ in this study are deterministic. However,
all theoretical and experimental results are also directly applicable to stochastic progressive
threshold models, where a node i contracts a contagion with some probability pi > 0 once
its threshold θi is met.

7.2.4 Weighted Edge Blocking Problem

In formulating the problems considered in this paper, we use terminology from the context of
information propagation in social networks. The problem statements can be readily extended
to other contexts. As mentioned earlier, we say that a node is affected if its final state is 1;
otherwise, the node is unaffected. We provide two formulations of the problem of blocking
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a contagion through edge removals.

In this formulation, we assume that each edge e has a nonnegative cost ce. If a set B of
edges is chosen as the blocking set, then the total cost cB of the blocking set is given by
cB =

∑
e∈B ce. This leads to the following problem where we seek to minimize the number

of new affected nodes subject to a budget on the blocking cost.

Small Weighted Critical Edge Set (SWCES)

Instance: A social network represented by the SyDS S = (G(V,E),F) over , with each
function f ∈ F being a threshold function; the set I of nodes which are initially in state 1
(i.e., the set of seed nodes); an upper bound β on the cost of the blocking set.

Requirement: A critical set B of edges with cB ≤ β such that among all edge subsets with
cost at most β, the removal of B leads to the smallest number of new affected nodes.

The SWCES problem was first formulated in [47] for the case of simple contagions, where
each node computes a 1-threshold function. They showed that the problem is NP-hard
and presented a bicriteria approximation that violates the budget by a constant factor and
approximates the number of new affected nodes by another constant factor. We consider
the problem for complex contagions where one or more nodes may have threshold values of
2 or more. We show that, if the budget constraint cannot be violated, the problem cannot
be approximated to within any factor ρ ≥ 1, unless P = NP.

7.2.5 Complexity of Weighted Edge Blocking

We will show the non-approximability result for the weighted edge blocking problem SWCES
for complex contagions. Throughout this section, we use the terms “blocking set” and
”critical set” synonymously.

As mentioned earlier, the problem was shown to be NP-hard for simple contagions in [47].
However, that proof relies on the fact that any blocking set of edges for simple contagions
must disconnect the graph. It is not difficult to see that the condition does not hold for
complex contagions. Therefore, the proof in [47] cannot be directly extended to the complex
contagion case.

Assuming that the bound β on the cost of the critical set cannot be violated, for any ρ ≥ 1,
there is no polynomial time ρ-approximation algorithm for the SWCES problem for complex
contagions, unless P = NP.

Proof Sketch: Suppose A is a ρ-approximation algorithm for the SWCES problem for
complex contagions for some ρ ≥ 1. Without loss of generality, we can assume that ρ is a
positive integer. We will show that A can be used to efficiently solve 3SAT, which is known
to be NP-hard [127].

Given an instance I of 3SAT, we construct an instance of SWCES as follows. We first
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describe how the the node and edge sets of the underlying graph G(V,E) are constructed.

Description of the node set V :

1. V has two special nodes a and b, which are the seed nodes; the initial states of all other
nodes are 0.

2. For each variable xi ∈ X,

(a) there are two nodes pi and qi, corresponding to the literals xi and xi respectively;
and

(b) there is a set Ri of ρn nodes.

3. For each clause Cj ∈ C,

(a) there is a node wj in V ; and

(b) there is a set Tj of ρn nodes.

Thus, V has a total of 2 + n(2 + ρn) +m(1 + ρn) = ρn2 + ρmn+ 2n+m+ 2 nodes.

Description of the edge set E:

1. For each i, 1 ≤ i ≤ n, the four edges {a, pi}, {a, qi}, {b, pi} and {b, qi} are in E. The
weight of each of these 4n edges is 1.

2. For each i, 1 ≤ i ≤ n, nodes pi and qi are joined to all the ρn nodes in Ri. The weight
of all these edges is n+ 1.

3. Consider each clause Cj (1 ≤ j ≤ m). Suppose Cj contains the three literals l1, l2 and
l3. Then node wj (corresponding to Cj) is joined to the nodes corresponding to the
three literals of Cj; further, wj is also joined to all the nodes of Tj. The weights of all
the edges introduced in this step is also n+ 1.

The threshold for each of the nodes w1, w2, . . ., wm is 3. The threshold for each node in⋃m
j=1 Tj is 1. The thresholds for all other nodes are 2. (Thus, the system models a complex

contagion.) The budget on the cost of the blocking set is chosen as n.

This completes the construction. It is easy to see that the construction can be carried out
in polynomial time.

Using this construction it is possible to prove that Algorithm A produces a blocking set of
cost at most n leading to at most ρn new affected nodes if and only if there is a solution
to the given instance of 3SAT. The first step is to show that when there is a satisfying
assignment for the 3SAT instance, there is a blocking set of cost n, which ensures that the
number of new affected nodes is n. Second, we show that when the 3SAT instance is not
satisfiable, then regardless of which blocking set B of cost at most n is chosen, the number
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of new affected nodes exceeds ρn. The detailed proof of both steps is available in the longer
version [104].

Therefore, by running A on the resulting instance of SWCES, and checking the number of
new affected nodes, we can decide whether or not the given instance of 3SAT is satisfiable.
Since A runs in polynomial time, the theorem follows.

The algorithm for the problem shown in Figure 7.10 can be implemented to run in O(|V |+
|E|) time.

The proof of the above proposition is available in the longer version [104].

7.2.6 Heuristics

In the experimental investigations of contagion blocking, the goal is to (approximately)
solve the SWCES Problem of Section 7.2.4. As described above, this problem is formally
hard, and no approximation algorithm possesses a non-trivial performance guarantee unless
P = NP. Therefore, we formulate a heuristic—the edge-covering heuristic (ECH)— to solve
the problem, and its implementation is used in Section 7.2.7.

The heuristic consists of two parts. In the first part, the dynamics are simulated on the
network, up to and including time T , according to the model of Section 7.1.4. The times at
which nodes become affected are recorded. Let Si be the set of all nodes that are affected
at time i, with S0 = I. These data, along with edge costs and blocking budget β, are used
to compute the blocking set B, subject to the cost constraint cB ≤ β, as described next.

The algorithm marches through the simulation time steps, and at each time i performs the
following computations in seeking a solution. First, it determines whether the total cost of
all edges used to transport contagion to affected nodes vj ∈ Si is less than β. If so, then these
edges constitute B. Otherwise, the necessary number of least cost edges required to save
each affected node is computed. This total cost is a node property, and nodes are arranged
in increasing order of these costs. These nodes are saved, in order, by removing the identified
minimum cost edges. At each time, either all nodes in Si are saved, or they are not. The
former eventuality is a solution. If the latter holds, the algorithm moves to the next time
i + 1 and repeats the computations. If no solution is found over all i, the solution at the
time with the least number of remaining affected nodes is chosen for B. The algorithm is
presented in Figure 7.10.
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Input: A SyDS S including the underlying graph G(V,E) and a threshold θj for each
node vj ∈ V ; a set I ⊂ V of seed nodes; a cost we for each edge e ∈ E; and a cost budget β

for blocking edges.

Output: A set B ⊆ E of edges such that the total cost cB of B is cB ≤ β, and whose
removal from E leads to a small number of affected nodes.

Steps of the Algorithm:

1. Simulate S for T time steps and store the computed sets Si of newly affected nodes at
time i; 1 ≤ i ≤ T .

2. For i = 1 to T − 1 do

(a) For each vj ∈ Si, compute Rji, the set of all edges used to transmit contagion to
vj. Let αj be the total cost of all edges in Rji.

(b) If
∑

vj∈Si αj ≤ β, then set B =
⋃
vj∈Si Rji and return the solution B.

(c) For each vj ∈ Si do the following. Compute ηj = max{|Rji| − θj + 1, 0}, the
number of edges incident on vj to block. Order the edges e ∈ Rji in increasing
cost we order. Compute the cost cj =

∑ηj
k=1wk of the ηj least-cost edges. Let Cj

be the ordered set of the ηj low cost edges.

(d) Order the Cj ⊂ E, for all vj ∈ Si, in increasing cost cj order. Break ties by giving
priority to greater degree nodes.

(e) Set B = ∅; set cB = 0; set the solution flag s = 1; set ls = 0 (the number of saved
nodes).

(f) For each Cj in increasing cost order do the following. If cj + cB ≤ β, set
cB = cB + cj; set B = B

⋃
Cj; and increment ls. Else continue to add the next

least cost edge e ∈ Cj to B and add we to cB until cB > β; reset the solution flag
s = 0; break out of the for loop of (2f).

(g) If s == 1 then return B. Else set the remainder hi = |Si| − ls; set Hi = B.

3. Determine the earliest time i at which hi is minimum; set B = Hi; and return B.

Figure 7.10: Details of the edge-covering heuristic (ECH) for the SWCES problem.
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7.2.7 Experimental Results

Networks

Giant components of the networks of this study are summarized in Table 7.5. These were
chosen for their ranges in traits; e.g., there is a 6× variation in average degree and an order
of magnitude difference in numbers of edges. They are also bigger by at least 5× in numbers
n of nodes, and more so in the numbers m of edges, compared to networks evaluated in other
edge blocking studies [98,99,172,203]. All networks are taken as undirected to foster greater
diffusion and hence to more stringently evaluate the blocking methods. Degree distributions
are given in Figure 7.11.

Network MONT-VA is a social contact network for Montgomery County, Virginia, which
is constructed from detailed data (including Census data, activity surveys, and geo-spatial
data) and models [10]. Individual agent movements are computed, from which are gener-
ated pairwise interactions at particular times and locations. Edge weights are durations of
pairwise interactions, in seconds.

FB-1 and FB-2 are two networks constructed using the Facebook data made available by
[190]. FB-1 is a friendship network of a subset of Facebook users, i.e., there is an edge
between two users if they are friends. This network is unweighted and undirected. FB-2 is
an interaction network that shows which user pair from FB-1 interacts via wall posts (during
the period Sep. 26, 2006 to Jan 22, 2009). It is also an undirected network but has the count
of wall posts between user pairs as edge weights.

Table 7.5: Network characteristics.

Network n m dave Cave k-core
for
seeds

MONT-VA 77,528 1,967,714 50.8 0.395 20

FB-1 63,392 816,886 25.8 0.222 20

FB-2 43,953 182,384 8.30 0.111 10

Experimental Procedures

Table 7.6 contains the parameters of our test procedures. We focus on small numbers ns
of seed nodes, small thresholds θ, and small values β of blocking edges because, as will be
demonstrated, unit changes in values can cause significant changes in results. Numbers of
blocking edges vary with networks, and hence we give a range.

Following [103], we take seed nodes from a high k-core subgraph of each network (which
is the subgraph in which all nodes have degree at least k) such that each seed set induces
a connected subgraph on the original network. An anchor seed node is first selected at
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Figure 7.11: Degree distributions of the three networks.

Table 7.6: Experimental parameters.

Networks ns θ β

MONT-
VA, FB-1,
FB-2

2, 3, 5,
10, 20

1, 2,
3, 5

{0, . . . , 1500}

random, and the seed set is randomly grown by adding nodes adjacent to current seeds.
Where possible, we select seeds from the 20-core to foster greater diffusion and thereby tax
the heuristics. However, FB-2 did not have a sufficiently sized 20-core so we used the largest
core possible (e.g., of about 3000 nodes) so that seed sets would have minimal or no overlap.
For each value of ns, we produced 100 different seed sets. We specify uniform (i.e., the
same) thresholds for all nodes in a simulation to make it easier to reason about results;
heterogeneous thresholds can be readily accommodated.

For a given (ns, θ) pair, 100 diffusion instances were simulated; one for each seed set. All
diffusion is taken to be deterministic. However, stochasticity enters through the selection
of seed node sets, as described above. Simulation results for β = 0 are fed into our ECH
blocking algorithm to compute blocking edges. We developed an MPI worker-pool-based
implementation such that 100 sets of blocking edges are typically computed in about one
minute (many take about 20 seconds) using 11 worker processes on Dell 6100 12-core compute
nodes with a Qlogic QDR Infiniband interconnect. Simulations are then repeated, but now
with the inclusion of blocking edges. We compare final spread sizes with and without blocking
edges to determine their effectiveness in thwarting contagion diffusion.

Note that for θ > 1, with no blocking edges, it is not a certainty that the contagion will reach
all nodes, or that any diffusion will take place at all. Consider ns = θ = 2. It is possible, and
indeed happens, that there is no node in the set V −I that is adjacent to both seed nodes. In
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(a) (b)

Figure 7.12: Data for the unweighted MONT-VA network, showing probability of cascade
pc versus β, for the (ns, θ) pairs in the plots: (a) ns = 2; (b) ns = 3. The threshold-1 data
for ETH and HDH are at pc = 1.0.

this situation, the contagion will not propagate. Hence, there is a probability of widespread
diffusion (i.e., of a cascade) pc that is predicated on the dynamics model, network, and initial
conditions. Effective blocking edges will significantly decrease the probability of a cascade
compared to β = 0 results; i.e., the goal of blocking edges is to make pc → 0.

Finally, we note that our results presented in Sections 7.2.7 and 7.2.7 apply to the case where
a node in state 0 transitions with probability < 1 when a threshold-number of neighbors are
affected. To see this, simply set the probability of transition to 1.0, and run this set of
procedures. A successful set of blocking nodes will also stop stochastic diffusion.

Comparison With Other Heuristics

We first briefly describe the other heuristics that we study along with our own. The epidemic
threshold-based heuristic (ETH) [172] computes the left and right eigenvectors corresponding
to the left and right maximum eigenvalues of the network adjacency matrix. Note that the
adjacency matrix may be unweighted (i.e., contain appropriate entries of 1.0), or may be
weighted. This yields a left eigenvector u and a right eigenvector w, and the weight of an
edge {i, j} is assigned the product u(i) · w(j). Edges with the greatest “eigenproduct” are
selected as blocking edges. The high degree heuristic (HDH) [203] computes the edge weight
as the product of the degrees of the two incident nodes. Greatest degree-product edges are
selected for blocking. Since HDH is not suited for graphs with edge weights, we use instead
for these networks a greedy algorithm that selects the blocking set B of maximum cardinality
such that cB ≤ β.

Figure 7.12 provides data for the unweighted MONT-VA network. Data for ECH are pro-
vided in blue while the those for ETH and HDH are shown in green. The left plot is for
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(a) (b)

Figure 7.13: Data for the unweighted FB-1 network, showing probability of cascade versus
β, for the (ns, θ) pairs in the plots: (a) ns = 2; (b) ns = 3. The ETH and HDH produce
pc = 1.0 for all conditions for ns = 3, and for threshold-1 for ns = 2.

ns = 2 while the right is for ns = 3, and the dashed (solid) curves are for threshold 1
(2). The ordinate is computed by noting how many of the 100 diffusion instances result in
wide-spread diffusion. (We will demonstrate later that it is clear whether or not widespread
diffusion occurs.) We use small seed sets to represent isolated outbreaks. Clearly, the ECH
is more effective at blocking diffusion than ETH and HDH, since it produces lesser pc values
(lower curves are better). For example, for (ns, θ) = (2, 2) in the left plot, β = 200 with
the ECH will completely block all diffusion (i.e., pc = 0), while ETH and HDH generate
pc = 0.94. ETH and HDH do not reduce the probability of cascade from that for the β = 0
case, and hence their data curves coincide.

Analogous data for the unweighted FB-1 network are provided in Figure 7.13 and again it
is apparent that our ECH is more effective in blocking contagion propagation. Data for the
weighted MONT-VA network and the weighted FB-2 networks are provided in Figures 7.14
and 7.15, respectively. Note that the abscissa label accounts for the total cost of blocking,
for weighted networks. Once again, we see the same outcome. In all of these cases, ETH
and HDH do not reduce the probability of a cascade from that for β = 0, so that pc remains
close to 1.0, while ECH, with a moderate number of blocking edges, halts all diffusion. The
results in these plots are representative of those for the space of conditions in Table 7.6.

Basic Behavior and Parametric Studies

We now turn to investigating the behavior of the ECH blocking method and network dy-
namics.

Figure 7.16 is produced by taking the final spread fraction for each diffusion instance of
a group of 100 instances—so the instances vary only in the composition of seed sets for a
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(a) (b)

Figure 7.14: Data for the weighted MONT-VA network, showing probability of cascade
versus β, for the (ns, θ) pairs in the plots: (a) ns = 2; (b) ns = 3. The ETH and HDH give
pc = 1.0 for threshold-1.

(a) (b)

Figure 7.15: Data for the weighted FB-2 network, showing probability of cascade versus β,
for the (ns, θ) pairs in the plots: (a) ns = 2; (b) ns = 3. The ETH and HDH give pc = 1.0
for threshold-1. ECH stops all diffusion with a β < 1000.

fixed ns—and arranging these spread fractions in non-decreasing numerical order. Sharp
transitions in the curves denote a sudden jump in the final spread size. From these data,
probabilities of cascades are computed. For example, the probability of cascade for (ns, θ) =
(3, 3) is 0.38 (because 62 of the 100 diffusion instances produce no diffusion). These are the
data used to compute pc in the previous section.

In Figure 7.17, pc is plotted against ns for θ = 3, 5 and β = 100. We converted FB-2 to
an unweighted graph to compare with FB-1 and MONT-VA. As expected, for a fixed θ, pc
increases as ns increases. However, there is a network structure effect in these data that is
seemingly counterintuitive. From inspection of Table 7.5, the average degree and clustering
coefficient are roughly twice as great for MONT-VA as for FB-1. Furthermore, for larger
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Figure 7.16: Simulation results for the unweighted MONT-VA network for (ns, θ) pairs (1,1),
(2,2), and (3,3). For each set of conditions, the final fractions of affected nodes are plotted
in increasing numerical order. The abscissa value at which each curve rises sharply gives the
probability of a cascade.

k-cores, in the range of k = 20 to 30, the sizes of the cores for MONT-VA are about 5×
those of FB-1, meaning that MONT-VA is more well-connected. With this information, it
is natural to expect that MONT-VA more effectively spreads contagion. Yet, Figure 7.17
shows the opposite result. The explanation, we contend, is contained in Figure 7.11. FB-1
has a group of nodes with greater degrees than those in MONT-VA, and these nodes can
drive contagion through the network. Thus, there are clearly network structure-dynamics
interactions that complicate making generalizations across networks.

7.2.8 Conclusions and Future Directions

We formulated an edge blocking problems and contrasted them with node-based ones. We
devised a heuristic for it and compared our heuristic to other methods from the literature
and demonstrated that it provides significantly improved blocking performance. Future
work includes additional complexity results for edge based schemes, and formulations of new
heuristics.
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Figure 7.17: Simulation results for three unweighted networks, for fixed values of threshold
3 (solid) and 5 (dashed) and β = 100. As seed set size increases, the probability of cascade
increases.



Chapter 8

Conclusions and Future Direction

In this chapter, we provide a high-level discussion on the achieved goals and the potential ex-
tensions of this thesis. The primary objective of this thesis is to take first step in developing
an environment for network-centric interventions for controlling the smoking epidemic. The
three main long-term goals to develop such an environment are: (1) determine the role of
online social networks on smoking behavior, (2) create an operationalized model of smoking
that can be simulated, and (3) devise actual methods to perform network-centric interven-
tions. We contributed towards each of these three long-term goals by performing four studies
— two Twitter-based surveillance studies, and two contagion modeling and simulation-based
studies. An illustration of the long-term and achieved goals, and the future direction in each
of the three main component of this thesis are shown in Figure 8.1. Next, we provide a
high-level discussion and future directions of the studies divided as per long-term goals.

We performed Twitter-based surveillance studies of smoking-related tweets in order to mea-
sure the role of online social networks on smoking epidemic. We built a pipeline of software
components to perform such surveillance studies. This pipeline handles all necessary steps,
from data gathering through result visualization for performing social media-based studies.
Then we utilized this pipeline to obtain Twitter data and estimated the exposed under-age
Twitter user population to smoking-related messaging. We also used the pipeline to capture
the Twitter users’ sentiments towards tobacco smoking and electronic cigarettes as well for
identifying highly active electronic cigarettes communities in the United States.

Through these studies, we have shown how to address important public health question
through machine learning-based analytics of Twitter data. Efforts to limit the smoking ini-
tiation of underage populations into these behaviors need to take a multi-pronged approach.
Our studies suggest that understanding and regulating social media may be an important
part of this approach. We also combined spatiotemporal scan statistics and machine learning
tools and techniques to infer the age of users and sentiments of tweets from the highly active
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Figure 8.1: Overview of the contributions and potential future directions of the thesis

clusters of e-cig tweets in space and time. To our knowledge, this is the first study of its
kind to analyze the hot-spot of e-cig related messaging over social media

A potential extension to this component can be a study the relationship between exposure
to smoking-related messaging over social media and change in smoking behavior. Both
smoking-related messaging and exposure to such messaging can impact smoking behavior
or vice verse. A survey-based study should be performed primarily focusing on the young
population that collects data on smoking behavior and social media usage, and then studies
the correlation between the two. Asking specific questions on new smoking-related products
such as e-cigs and e-hookahs will be very helpful in understating and validating the popularity
of e-cig and other new products in certain communities.

The pipeline of the software components can also be improved in various manners. Some
new features that can be added to the components of the pipeline are: allow on-the-fly
search terms inclusion and exclusion to easily obtain new posts/comments from social media,
provide full-text-search capability in the database that helps in performing a quick analytic
on the extracted and processed data, or include new visualization tools that provide both
aggregated and point data view of the social media posts on the map.
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We employed mathematical modeling and simulation approach to built a model of smoking
addictiveness at individual level. Our main contribution in this area is to introduce an
extension to a infectious disease contagion model (i.e., SIS model), to account for the
addictive nature of smoking behavior. We also study the effect of both addictiveness and
peer influence together by performing an agent-based simulation of the model on a social
network to replicate the effect of peer-influence. Overall, we showed that smoking epidemic
can be modeled and simulated as an infections disease epidemic with minor changes.

The model of smoking addictiveness can be extended to represent the complex phenomenon of
smoking contagion. Factors such as socioeconomic status, marital status, acess to cigarettes,
and prices and policies should be included to the model. Data about all these factors can
be included into an agent-based model driven by the presented model. Detailed synthetic
information environments can be constructed by fusing data about these behaviors with
other data sets on demographics, locations, and activities to build a complete picture of the
ecology of a smoker.

Lastly, we used contagion modeling and simulation approach to investigate a well-motivated
problem of social contagion blocking. In the light of findings from the literature that in-
dividuals start and stop smoking in groups, and that some edges are more important with
respect to smoking initiation and cessation, we develop two methods to stymie both simple
and complex (social) contagion. Our main contributions was that the community blocking
heuristic is hybrid in nature. Therefore, it is driven by network structure and also incor-
porates contagion dynamics when a contagion is spreading to increase its effectiveness. For
edge-based contagion blocking, we develop a practical edge-covering heuristic to block social
contagion on a wide variety of networks, i.e., directed, weighted, and unweighted graphs. To
evaluate our main heuristic, we perform computational experiments of contagion propaga-
tion on six social networks from the literature, some of which are five times greater in terms
of numbers of nodes and an order of magnitude greater in numbers of edges than those used
in previous studies.

The smoking contagion blocking needs to be studied more. The blocking techniques we
devised were applicable to a general form of social contagion. We need to develop methods
that are tailored specifically to smoking contagion. For this we need to gather community-by-
community better estimates of: active smokers, peer-influence, mode of influence, sentiments
towards existent and new smoking products, availability of such products etc. When such a
data gets fused with a more mature model of smoking contagion, we can devise more robust
network-centric interventions for controlling the smoking epidemic.
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