Dissertation/Master's Thesis Submission Form

Please print clearly in block letters

Personal Information

Last Name: Osterberg
First Name: Kristin
Middle Name or Initial: Linnea
Country (ies) of Citizenship: USA

Degree & Dissertation Information

Title of Dissertation/Thesis: Effect of a Probiotic Supplement on Insulin Sensitivity and Skeletal Muscle Substrate Oxidation During High Fat Feeding
Institution conferring degree: Virginia Tech
College, School, or Division: College of Agriculture and Life Sciences
Department or Program: Human Nutrition Foods and Exercise
Degree awarded (abbreviate; e.g., Ph.D.): PhD
Year degree awarded: 2014
Year manuscript completed: 2014
Advisor/Committee Chair: Kevin Davy
Committee Member: Matthew Hulver
Committee Member: Madlyn Frisard
Committee Member: Christopher Melby
Language of manuscript: English
Primary Subject Category: Health and Medical Sciences

You may suggest two additional subject categories that may aid in the discovery of your work in our digital database.

Code: 0570
Category: English

Provide up to 6 keywords or short phrases for citation indices, library cataloging, and database searching.

probiotic high fat diet insulin resistance
substrate oxidation

Current Contact Information

Street Address (line 1): 341 Albert Meredith Lane
City: Newport
State/Province: VA
Country: USA
Daytime Phone: 540 231 0923
Evening Phone: 847 707 3118
Current Email Address: kroster@vt.edu

Permanent Contact Information

Street Address (line 1): Same as above
City: Same as above
Country: Same as above
Permanent Email Address: kroster@vt.edu

THIS PAGE MUST ACCOMPANY YOUR MANUSCRIPT AND THE REST OF YOUR SUBMISSION MATERIALS
Attach additional, separate copies of your Title Page and Abstract to this form
Section III. Publishing Options & Signature

Select the publishing options below that best fit your interests and scholarly publishing obligations.

Traditional Publishing

☐ I want to make my work widely available and I want to be eligible to receive royalties on the sale of my work.
 • I understand that I must maintain a current mailing address with ProQuest/UMI in order to be eligible to receive royalties.
 • I understand that the ProQuest/UMI fee for Traditional Publishing is $25 for Master's thesis and $25 for Doctoral dissertations.
 • I understand that my graduate institution may pay all or a portion of the total fee as well as may require additional fees in association with my submission to ProQuest/UMI.

Open Access Publishing PLUS

☐ I want the broadest possible dissemination of my work, and I want to provide free global access to the electronic copy of my work via the internet.
 • I understand that I will not be eligible to receive royalties.
 • I understand that the ProQuest/UMI fee for Open Access Publishing PLUS of Master's thesis is $120 and for Dissertations is $120, and that my graduate institution may pay all or a portion of the total fee as well as may require additional fees in association with my submission to ProQuest/UMI.

SELECT PUBLISHING OPTIONS

I want my work to be available as soon as it is published

☐ Yes
☒ No – I would like access to the full text of my work to be delayed for the following period of time:
 ☐ 6 month embargo
 ☐ 1 year embargo
 ☒ 2 year embargo

Note: Most institutions have delayed release (embargo) policies, please consult with your Graduate School/Program, if you need to delay the release of your work. Access to the full-text of your work will be delayed for the time period specified above, beginning from the date that we receive your manuscript at ProQuest/UMI. During this time, only your citation and abstract will appear in the ProQuest Dissertations & Theses Database (PQDT).

I want major search engines (e.g. Google, etc...) to discover my work. Learn more: http://www.proquest.com/en-US/products/dissertations/google.shtml

☐ Yes
☒ No

I want my graduate work to be sold by third party retailers in addition to ProQuest/UMI. (Note: If Traditional Publishing is chosen above, all sales are eligible to accrue royalties.)

☐ Yes
☒ No

Acknowledgment: I have read, understand and agree to this UMI® Publishing Agreement, including all rights and restrictions included within the publishing option chosen by me as indicated above.

REQUIRED Author's signature _____________________________ Date __________

(Print Name) __

Institution conferring degree Virginia Tech

Questions: Our Author Relations Team is available by phone at (800) 521-0600 ext. 7020 or by email at disspub@proquest.com

Need help selecting a subject heading? Contact our editors at (800) 521-0600 ext. 4883 (Social Sciences/Humanities) or ext. 2209 (Sciences/Engineering)
Effect of a Probiotic Supplement on Insulin Sensitivity and Skeletal Muscle Substrate Oxidation during High Fat Feeding.

Kristin Linnea Osterberg

Dissertation submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Human Nutrition, Foods and Exercise

Kevin P. Davy, Chair
Matthew W. Hulver
Madlyn I. Frisard
Christopher L. Melby

July 2, 2014
Blacksburg, VA

Keywords: Probiotic, High Fat Diet, Insulin Resistance, Substrate Oxidation
Effect of a Probiotic Supplement on Insulin Sensitivity and Skeletal Muscle Substrate Oxidation during High Fat Feeding.

Kristin Linnea Osterberg

Background: Modifying the gut microbiota through the administration of probiotics during high fat feeding has been shown to attenuate weight gain and body fat accretion while improving insulin sensitivity in animal models.

Objective: Our objective was to determine the effects of the probiotic VSL#3 on body weight and composition, skeletal muscle substrate oxidation, and insulin sensitivity and during 4 weeks of high-fat, hypercaloric feeding. We hypothesized that the probiotic would attenuate the body weight and fat gain and adverse changes in insulin sensitivity and substrate oxidation following high fat, hypercaloric feeding in young, non-obese males.

Methods: Twenty non-obese males (18-30 y) volunteered to participate in the present study. Following a 2-week eucaloric control diet, subjects underwent a dual x-ray absorptiometry (DXA) to determine body composition, an intravenous glucose tolerance test (IVGTT) to determine insulin sensitivity, a skeletal muscle biopsy for measurement of substrate oxidation. Serum endotoxin was also measured. Subsequently, subjects were randomized to receive either VSL#3 (2 sachets) or placebo during 4 weeks of consuming a high fat (55% fat), hypercaloric diet (+1,000 kcal/day). Macronutrient composition of the high fat diet was 55% fat, 30% carbohydrate, and 15% protein.

Results: There were no differences between the groups in subject characteristics or in the dependent variables at baseline. Body weight and fat mass increased less (P<0.045) following the high fat diet with VSL#3 compared to placebo. Insulin sensitivity (and other IVGTT variables) and both glucose and fat oxidation did not change significantly with time or VSL#3 treatment. Serum endotoxin concentration was not different between groups following the high-fat diet.

Conclusions: VSL#3, a multi-strain probiotic, attenuated body weight and fat gain following a 4-week high fat, hypercaloric diet compared with a placebo. There were no differences between the VSL and control in circulating endotoxin, insulin sensitivity (and other IVGTT variables) or in skeletal muscle substrate oxidation.

Key words: Probiotic, gut microbiota, high-fat feeding, endotoxin