Chitinase Activity on Amorphous Chitin Thin Films: A Quartz Crystal Microbalance with Dissipation Monitoring and Atomic Force Microscopy Study

Chao Wang, Joshua D. Kittle, Chen Qian, Maren Roman, and Alan R. Esker

Biomacromolecules
American Chemical Society
Aug 1, 2013

Copyright © 2013, American Chemical Society

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.
Order Completed

Thank you very much for your order.

This is a License Agreement between Chao Wang ("You") and Elsevier ("Elsevier"). The license consists of your order details, the terms and conditions provided by Elsevier, and the payment terms and conditions.

Get the printable license.

License Number 3443280023605
License date Aug 06, 2014
Licensed content publisher Elsevier
Licensed content publication Carbohydrate Polymers
Licensed content title Nanocrystalline chitin thin films
Licensed content author Chao Wang, Alan R. Esker
Licensed content date 15 February 2014
Licensed content volume number 102
Licensed content issue number n/a
Number of pages 8
Type of Use reuse in a thesis/dissertation
Portion full article
Format both print and electronic
Are you the author of this Elsevier article? Yes
Will you be translating? No
Title of your thesis/dissertation Renewable Natural Polymer Thin Films and Their Interactions with Biomacromolecules
Expected completion date Aug 2014
Estimated size (number of pages) 244
Elsevier VAT number GB 494 6272 12
Permissions price 0.00 USD
VAT/Local Sales Tax 0.00 USD / 0.00 GBP
Total 0.00 USD
Surface-Initiated Dephosphogenative Polymerization of Monolignols: A Quartz Crystal Microbalance with Dissipation Monitoring and Atomic Force Microscopy Study

Author: Chao Wang, Chen Qian, Maren Roman, Wolfgang G. Glasser, and Alan R. Esker

Publication: Biomacromolecules
Publisher: American Chemical Society
Date: Nov 1, 2013
Copyright © 2013, American Chemical Society

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.