Linking Nutrition-Health-Agriculture

Shibani Ghosh
Jeffrey K. Griffiths
Patrick Webb
Tufts University
Linking Nutrition outcomes to Agriculture

- Agriculture=Food=/=Nutrition
- Agriculture- Water- Infection- Stunting
- Agriculture practices-Food Safety- Stunting
Agriculture=Food=/=Nutrition
Theoretical Framework Example

Masset et al 2011
Systematic review of agricultural interventions that aim to improve children’s nutritional status by improving the incomes and diet of the rural poor.
Masset et. al. (2011)
Agricultural interventions show...

a) Positive impact on farm output.
b) “Poor evidence of impact on households’ income.”
c) “Little evidence...on changes in diets of the poor.”
d) None assessed if interventions improve quality of whole diet.
e) 9 studies tested impact on Vitamin A (only 4 were positive).
f) “No evidence of impact on stunting, wasting.”
<table>
<thead>
<tr>
<th>Review paper</th>
<th>System review?</th>
<th>Number of studies screened</th>
<th>Studies reviewed</th>
<th>Period of studies retained</th>
<th>Agriculture activities included</th>
<th>Important conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>➢ “basic information on efficacy is needed.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>➢ “negative effects were not uncommon.”</td>
</tr>
</tbody>
</table>
| Leroy and Frongillo (2007) | Y | Not specified | 14 | 1987-2003 | Animals aquaculture, poultry, credit | ➢ “only 4 studies evaluated impact on nutritional status and found effect.”
| | | | | | | ➢ “integrated [activities] generally found positive results.” |
| Bhutta et al. (2008) | Y | Not specified | 29 | 1985-2004 | Home gardens, animals, small ruminants, BCC | ➢ “dietary diversification strategies have not been proven to affect nutritional status or micronutrient indicators on a large scale.” |
| Kawarazuka (2010) | Y | Not specified | 23 | 2000-2009 | Aquaculture | ➢ “data on improved dietary intake to nutritional status were scarce.”
| | | | | | | ➢ “nutritional outcomes not demonstrated.” |
| Masset et al. (2011) | Y | 7,239 | 23 | 1990-2009 | Biofortification, home gardens, aquaculture, husbandry, dairy | ➢ “very little evidence was available on changes in the diet of the poor.”
| | | | | | | ➢ “no evidence of impact on stunting, wasting and underweight.” |
| Arimond et al. (2011)| N | >2,000 | 39 | 1987-2003 | All forms of agriculture | ➢ “few agricultural interventions with nutrition objectives scaled up.”
| | | | | | | ➢ “many of the studies... weakly designed.” |
| Girard et al. (2012) | Y | 3,400 | 37 | 1990-2009 | Home gardens, biofortification, BCC, husbandry | ➢ “estimates for effects on stunting...were not significant.” |
Nutrition is about choices

Banerjee and Duflo (2011) *Poor Economics: A Radical Rethinking of the Way to Fight Global Poverty*

They advocate “careful thinking about incentives and behavior” at household *and* institutional levels.
An Introduction to Nutrition-Agriculture Linkages

Kimberly Chung
Michigan State University
Figure 2: The Trickle Down Approach to Improving Nutrition thru Agriculture

- Off-farm income → Income
- Income → Improved Production
- Income → Other Expenditures
- Other Expenditures → Health & education expenditures
- Health & education expenditures → Health
- Health → Health Environment
- Health Environment → Healthcare behaviors
- Healthcare behaviors → Health
- Health → Nutritional Status
- Income → Own consumption
- Own consumption → Labor Productivity
- Labor Productivity → Short-run
- Labor Productivity → Long-run

Ag Research & Outreach

Food Intake:
- Energy
- Micronutrients

Nutritional Status: ???
“Changes should be monitored at each link within the chain, with the understanding that changes to nutritional status will be the last to be affected. Given the complexity of these linkages it is important to think beyond advocating for a single approach and to instead think about building a larger, coherent strategy that comprises many varied approaches.”

Chung 2012
Agriculture- Water- Infection- Nutrition
• **Thesis**: Eliminating stunting & malnutrition will require provision of adequate and diverse diets;

 – Environmental contamination

 – Prevention of infectious diseases
Big Picture Thesis 2: Stunting

FOOD DEFICITS

1/3rd STUNTING ADDRESSED BY ADEQUATE DIET

~ 40\% OF STUNTING

WASH – CLEAN ENVIRONMENT

‘DIARRHEAL DISEASE’ ONLY ACCOUNTS FOR MUCH SMALLER \% OF GROWTH DEFICITS THAN WASH DEFICIT (5-15\% VS 40\%).

AFLATOXIN – COULD ACCOUNT FOR 40\% OF STUNTING (WEST AFRICA DATA)
Water needed for crops, for farm animals (meat protein is good), to keep farmers hydrated and fit for work, Irrigation, reservoir construction

What else does the water carry?
AGRICULTURAL WASTEWATER

<table>
<thead>
<tr>
<th>ORGANISM</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTAVIRUS</td>
<td>HUMANS; PERHAPS ANIMALS</td>
</tr>
<tr>
<td>HEPATITIS A</td>
<td>HUMANS</td>
</tr>
<tr>
<td>HEPATITIS E</td>
<td>HUMANS, SWINE</td>
</tr>
<tr>
<td>E. coli (bacteria)</td>
<td>CATTLE, HUMANS</td>
</tr>
<tr>
<td>Shigella species</td>
<td>HUMANS</td>
</tr>
<tr>
<td>Salmonella enterica (bacteria)</td>
<td>CATTLE, POULTRY, SWINE, HUMANS</td>
</tr>
<tr>
<td>Campylobacter jejuni (bacteria)</td>
<td>POULTRY</td>
</tr>
<tr>
<td>Cryptosporidium (protozoan)</td>
<td>CATTLE, HUMANS, OTHER FARM ANIMALS</td>
</tr>
<tr>
<td>Microsporidia (fungus)</td>
<td>FARM AND DOMESTIC ANIMALS, HUMANS</td>
</tr>
</tbody>
</table>

* Causes chronic diarrhea, wasting, malnutrition in people with HIV/AIDS

Cryptosporidium – a leading cause of diarrhea in children < 24 months; known to cause stunting; and children have x 4 risk of death in next year

Pathogens in Rural and Agricultural Water and Watersheds. USDA 2010
Agriculture in Urban Nairobi: Sewage

Left: broken sewage main in field. Right: lush fields.

Farmers work in contaminated fields; crops contaminated with human pathogens; go home to families carrying tools & wearing boots that have been in sewage...
High potential for domestic animals and people to contaminate household environment

Photo: J K Griffiths Ethiopia August 2012
Stunting is strongly related to gut injury and permeability – ‘environmental enteropathy’ –
Poor Sanitation / Hygiene. Fecal Contamination of Domestic Environment

Fecal Ingestion Infants/Children and Enteric Infections

(1) Intestinal Inflammation (2) Increased gut permeability (3) Bacteria get into body via leaky gut
(4) Entire Immune System gets activated

ENVIRONMENTAL ENTEROPATHY
Malabsorption & Malnutrition; Oral Vaccine Failure; ↑ Risk of Infection; ↑ Morbidity/Mortality, ↓ Cognition, Economic Potential
Permeability (L)

• Larger molecules can pass through the barrier
 – Antigens, viruses and bacteria that continually stimulate an acute but often subclinical immune response

• The permeability associated with diarrhea is transient and disappears within 5 days

• Permeability associated with EE is chronic
Nice normal intestine. Note long skinny finger-like villi, which absorb nutrients.

ENVIRONMENTAL ENTEROPATHY

EE - Nasty blunted villi, and tissue is infiltrated with inflammatory cells. EE is a state of chronic inflammation.
Environmental Enteropathy

Children in highly contaminated environments have leaky, chronically inflamed intestines
5% less carbohydrate,
15% less protein absorption
Zinc malabsorption
Vitamin B 12

Leak lets ‘dirty’ contents of gut into body; chronic inflammation uses up/diverts nutrients, leads to anemia...
Malnourished Children have less diverse, different gut microbiomes

Bacteria Shared With Animals
• 317 Malawian twins studied first 3 years of life
• 50% both well nourished; 43% discordant (one well, one malnourished); 7% both were malnourished.
• Both twins in discordant pairs received RUTF, a therapeutic food. Gut microbiomes (MB) studied: RUTF → transient MB improvement.
Gnotobiotic (sterile gut) mice – given either **Normal** or **Kwashiorkor** MB

- Mice given kwashiorkor MB bacteria – lost 1/3 of their weight
- Mice given normal MB – maintained weight
1. Stunting occurs in setting of ubiquitous Environmental Enteropathy (EE). 43% of stunting related to EE in Gambia.

and:

2. Gut microbiomes of malnourished children are abnormal, and appear to actually promote weight loss and malnutrition.
Solutions

• **Classic household water & sanitation**

• **Agricultural practices**
 – Farm practices to control spread of disease are well known
 – **Keeping animals out of human water supplies**

January 4 2013: FDA proposes rules to “ensure water used in irrigation meets standards...”
Agriculture practices - Food Safety - Stunting
Aflatoxins

• Historically, well known cause of liver cancer.
• If large doses eaten, cause rapid death (likely from liver failure).
• Cause stunting, low birth weights in animals.
• Aflatoxins present in dried foods; human breast milk; cow milk, poultry, eggs, and meat if animals given feed with aflatoxins.
• *Recent* data highly suggestive it is a cause of stunting, low birth-weight, enhanced risk of infectious diseases in human populations.
AF
Inhibition of protein synthesis

DON
Increase in systemic cytokines

FUM
Inhibition of ceramide synthase

1. Altered intestinal architecture
 Inhibition of intestinal regeneration
 Impaired tight junctions
 Glucose-galactose malabsorption

2. Translocation of macromolecules and luminal antigens
 Systemic immune activation

3. Zinc deficiency

Environmental Enteropathy

Impaired Nutrient Uptake

Inflammatory Diarrhea
Decrease in circulating IGFALS and IGF1
Impaired nutrient uptake
Food refusal

Zinc deficiency

Impaired Growth
Aflatoxin damage mimics EE.
CONTAMINATED WATER / POOR HYGIENE (PATHOGENS, OTHER STUFF IN WATER)

ENVIRONMENTAL ENTEROPATHY & STUNTING

AFLATOXIN (MYCOTOXIN) INGESTION (FUNGI NEED WATER/MOISTURE TO GROW)
P. Turner et al showed (Lancet 2005) these 5 methods reduced blood aflatoxins by 60%:
1. Sun dry thoroughly on mats, not ground;
2. hand sort and discard moldy nuts;
3. use fiber (not plastic) sacks for storage;
4. store storage sacks on pallets, above the ground;
5. spray insecticide on ground under the pallets to reduce insect damage.

Post-Harvest Handling Can Decrease Aflatoxins in Those Who Eat the Groundnuts
• Gong et al (BMJ, 2002) showed that **stunting** and **underweight** were inversely related to aflatoxin levels in Gambia. Jolly and colleagues (Peanut Innovation Lab) have shown the same in Ghana.
• The same group (Gong et al, 2004) showed marked seasonal and site variation in aflatoxin levels by season in four villages. Note many human blood levels are 50-250 pg/mg of albumin.
How much stunting does aflatoxin cause?

• Turner et al (2007) prospectively studied Gambian infants. They linked maternal and infant aflatoxin exposure to subsequent growth.

• They estimated that a child with a blood aflatoxin level of 1 (instead of 100) pg/mg at age 16 weeks ended up a full SD taller at 12 months of age. Each log drop e.g. 100 → 10, led to a 0.5 HAZ score improvement. A 2 log drop (100 → 1) led to a 1.0 HAZ score (1 SD) taller child.
Malnutrition
Dietary Insufficiency (can grow more with water)
which worsens

Enteropathy
Environmental factor: aflatoxin (too little or too much water)
which worsens

Environmental factor: Dirty Environment (fix with water)
which worsens

An updated diagram!
Conclusion

• Linkages are complex
• Agriculture-food-nutrition links need to be confirmed through rigorous research
• Recent science: contaminated environments, infections, and toxins adversely change the child’s gut via EE.
• Agricultural practices in association with water and sanitation practices should be considered as points of intervention
Thanks!