Smallholder Adoption of Conservation Agriculture and GHG Reduction Potential in Mozambique and Lesotho

D.M. Lambert1, W. McNair1, D. O’dell1, E. Bisangwa1, T. Simone1, N. Eash1, M.D. Wilcox2

F. Walker1, M. Marake3, C. Thierfelder4

1University of Tennessee Institute of Agriculture

2Purdue University

3National University of Lesotho

4International Maize and Wheat Improvement Center, CIMMYT

3Department of Soil Science

4Harare, Zimbabwe

\textit{Presentation Prepared for the Agricultural and Applied Economics Association Annual Meetings, August 4-6, 2013, Washington, DC.}

Portions of this data has been generated and funded through USAID funds under the Platform Project in Mozambique (PLAIT) and SANREM-CRSP. CIMMYT data has been generated and funded through USAID funds under PLAIT.

The views expressed here are those of the authors.

ACKNOWLEDGEMENTS
Background

- *Developing Sustainable Conservation Agricultural Production Systems for Smallholder Farmers in Southern Africa*
- Lesotho and Mozambique
- Five year project
 - Identify optimal input management regimes for CA systems
 - Characterize C:N soil/cover crop interactions
 - C sequestration potential of CA systems
 - CA adoption, income, and maize marketing
 - Maize production, input use and CA adoption
Mozambique profile*

• Ag sector employs 90% of the population
• Average farm size: 2.4 ha
• 98% of production occurs on farms less than 5 ha
• 16% of labor for agricultural production is hired
• 11% of the farmland cultivated with tractors or animal traction
• Maize yields range between 0.4 and 1.3 Mt ha\(^{-1}\)
• 4% of farms use fertilizer
• When fertilizer used, typically under-applied at 3.2 kg ha\(^{-1}\).
• Estimated loss of 51 kg ha\(^{-1}\) yr\(^{-1}\) on tilled plots

*Mozambique Ministry of Agriculture, 2008
FARMING TO THE EDGE…

PRIVATE ACTIONS

LOCALIZED EXTERNALITIES

COMPETING FOR LIMITED RESOURCES…

SYSTEMATIC “MACRO” EROSION

SEASONAL WEATHERING & EROSION…
Two points of view (among many...)

Malthus

Boserup (Conditions of Agricultural Growth, 1965)
Conservation agriculture

Actions:

- Reduced, minimal, and no-till
- Residue management
- Intercropping and crop rotation

Expected Outcomes:

- Improve soil fertility
- Less yield variability
- Food security
- Surplus
- Moderate erosion
- Sequester carbon

Source: FAO
Demonstration plots

Tete, Manica, and Sofala Provinces, Mozambique 2008 – 2011

- Demonstration plots (CIMMYT/USAID, IFAD)
- Check, Basins, Jab planter
- Maize/cowpea rotations
- N = 638 farmers, 22 villages
- NPK/Urea (all plots)
- Herbicide on CA plots
Net returns: conventional tillage treatments and CA planting technologies, Mozambique, 2008 – 2011 (N = 631 farms)

<table>
<thead>
<tr>
<th>Net returns (USD ha(^{-1}))</th>
<th>Control</th>
<th>Basin</th>
<th>Jab planter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>104</td>
<td>148</td>
<td>195</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>452</td>
<td>478</td>
<td>499</td>
</tr>
<tr>
<td>CV</td>
<td>435</td>
<td>323</td>
<td>257</td>
</tr>
</tbody>
</table>

----H\(_0\): distributions not different*----

| Control | 0.07 | 0.12 |
| | (0.0776) | (0.0002) |

*Kolmogorov-Smirnoff test; D-statistic (p-value)
Bowen’s Ratio Energy Balance and CO₂ flux: no-till/residue management and conventionally managed fields
No-tillage and tillage GHG profiles

CO₂ emissions

Lost

Sequestered

Cumulative carbon emission

Till: 2.31 kg ha⁻¹ day⁻¹
No-till: 2.22 kg ha⁻¹ day⁻¹

Trend difference:
\(\Delta \text{diff}/\Delta t \approx 0.0071 \text{ Mt ha}^{-1} \text{ day}^{-1} \)
Mozambique Household Survey
March 16-31, 2012
Tete, Manica Provinces

10 enumerators from provinces; 2 females/8 males

Sample 10% of 5,265 households (HH)

8% M.O.E. (95% CI)

Stratified sampling of villages
Exposed/CA (204 HH)
Exposed/Non-CA (3,001 HH)
Unexposed (2,244 HH)

Systematic sampling
| Profile | | N |
|---|---|
| Distribution of groups: | | |
| Adopters | 27% | 153 |
| Abandoners | 3% | 15 |
| Conventional farmers | 70% | 383 |
| Aware of conservation agriculture | 44% | 553 |
| Participated in farmer groups before adoption | 58% | 149 |
| Years conservation agriculture practiced | 3.2 (0, 15) | 151 |
| Increased planting area, 2011-2012: | | |
| Conventional plots | 45% | 67 |
| Conservation agriculture plots | 55% | 82 |
| Plan to manage additional area under CA, 2013 | 95% | 148 |
Input use

Herbicide

- CA: 6% Yes, 14% No
- Conv: 2% Yes, 36% No

Herbicide source from a project

- CA: 9% Yes, 11% No
- Conv: 2% Yes, 32% No

Fertilizer

- CA: 15% Yes, 19% No
- Conv: 11% Yes, 28% No

Fertilizer source from a project

- CA: 15% Yes, 18% No
- Conv: 11% Yes, 28% No

Local seed varieties

- CA: 5% Yes, 67% No
- Conv: 27% Yes, 37% No

Seed from a project

- CA: 15% Yes, 13% No
- Conv: 27% Yes, 37% No

Tete
Barue
Labor constraints, training, and credit

Labor bottleneck: land preparation

- Tete: CA 4%, Conv 16%
- Barue: CA 13%, Conv 38%

Labor bottleneck: weeding

- Tete: CA 4%, Conv 16%
- Barue: CA 20%, Conv 60%

Labor bottleneck: planting

- Tete: CA 3%, Conv 17%
- Barue: CA 1%, Conv 38%

Hired labor

- Tete: CA 5%, Conv 15%
- Barue: CA 19%, Conv 25%
Training, credit, and project support

Agricultural training
- CA Tete: 18% Yes, 2% No
- Conv Tete: 67% Yes, 13% No
- CA Barue: 34% Yes, 5% No
- Conv Barue: 52% Yes, 10% No

Loan
- CA Tete: 18% Yes, 2% No
- Conv Tete: 76% Yes, 4% No
- CA Barue: 28% Yes, 10% No
- Conv Barue: 51% Yes, 11% No

Inputs from project
- CA Tete: 18% Yes, 2% No
- Conv Tete: 55% Yes, 9% No
- CA Barue: 29% Yes, 38% No
- Conv Barue: 24% Yes, 29% No
Adoption patterns by practice: 3 or more consecutive years, 2008-2011

Barue
- No-till: 94% (n = 185)
- Residue mgt.: 75% (n = 185)
- Crop rotation: 67% (n = 185)

Tete
- No-till: 81% (n = 372)
- Residue mgt.: 55% (n = 372)
- Crop rotation: 75% (n = 372)
Probability of continuous use (3 – 4 year period)

<table>
<thead>
<tr>
<th>Practice (dependent variables)*</th>
<th>Respondent attributes</th>
<th>Household characteristics</th>
<th>Farm management</th>
<th>Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-till</td>
<td>Household Head Age</td>
<td>Size</td>
<td>Herbicide use</td>
<td>Distance to market</td>
</tr>
<tr>
<td>Crop rotation</td>
<td>Household Head Sex</td>
<td>% age 15-65</td>
<td>Fertilizer use</td>
<td>Labor shortages: land preparation</td>
</tr>
<tr>
<td>Residue management</td>
<td>Education</td>
<td>% staple produced</td>
<td>Seed variety</td>
<td>Labor shortages: weeding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Farm size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Female primary vendor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Livestock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HH net maize seller</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Distance to fields</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ag. Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hired-in labor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Barue</td>
</tr>
</tbody>
</table>

*Continuous practice for 3+ years, 2008 - 2011
No-till adoption: credit, herbicide/fertilizer use

Pr(Adopt no till, 2008-2011 = 1)
Female headed households

<table>
<thead>
<tr>
<th>Credit</th>
<th>Herbicide/Fertilizer Use</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>No loan</td>
<td>No herb</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>48%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>34%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>73%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>61%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>89%</td>
</tr>
</tbody>
</table>

Pr(Adopt no till, 2008-2011 = 1)
Male headed households

<table>
<thead>
<tr>
<th>Credit</th>
<th>Herbicide/Fertilizer Use</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>No loan</td>
<td>No herb</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>67%</td>
</tr>
</tbody>
</table>

Pr(Adopt no till, 2008-2011 = 1)
Female headed households

<table>
<thead>
<tr>
<th>Credit</th>
<th>Herbicide/Fertilizer Use</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>No loan</td>
<td>No herb</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>34%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>73%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>61%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>89%</td>
</tr>
</tbody>
</table>

Pr(Adopt no till, 2008-2011 = 1)
Male headed households

<table>
<thead>
<tr>
<th>Credit</th>
<th>Herbicide/Fertilizer Use</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>No loan</td>
<td>No herb</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>No herb</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td>Herb</td>
<td>67%</td>
</tr>
</tbody>
</table>
Conservation agriculture adoption and hectares managed: Tete and Barue, Mozambique area survey

Farmer adoption

- New adopters
- Previous adopters
- 1.2 new adopters: 1 adopter

Hectares

- New area
- Previous area

1,135 ha (year 2039)

3,405 ha (year 2043)

1,753 ha (year 2054)

5,261 ha (year 2060)
Directions

• Additional C measurement collection
 – Plant growth stages
 – Cover crops (wheat, vetch, oats)

• Conservation agriculture technology and on production efficiency

• Adoption of CA technology, maize production, and participation in local maize markets

• Input use, maize production, and adoption of CA technology